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Abstrakt

V poslednich letech se ukazalo, ze
posilované uceni je velmi slibné pri
feSeni slozitych her. Tento vyzkum se
zabyva aplikaci technik posilovani uceni
na sbhératelské karetni hry se zamérenim
na Hearthstone. Pouzili jsme algoritmy
Proximal Policy Optimization (PPO)
a Advantage Actor-Critic (A2C) k
trénovani agentd v ruznych scéndrich.

N&as vyzkum zahrnoval formulovani
Hearthstone ve formalismu popisujici
hry s nedokonalou informaci, tpravu
simulatoru hry Hearthstone, vyvoj
agentll ucicich se pomoci technik posi-
lovaného uceni, definovani dostupnych
informaci o stavu pro agenty, imple-
mentace vice neuronovych siti pro akce,
a empirické vyhodnoceni vykonu agentil
oproti heuristickym agentim a také
proti sobé. Vysledky ukazaly, ze PPO
se sice dokaze naucit zakladni strategie
a cile hry. Naproti tomu A2C vykazo-
val zna¢nou numerickou nestabilitu pri
uceni, coz jej ¢inilo pro nase ucely témér
nepouzitelnym.

Zavérem lze Tici, ze ackoli posilo-
vaci uceni vykazuje ve sbératelskych
karetnich hrach potencial, soucasné
algoritmy celi zna¢nym vyzvam pti do-
sahovani nadlidského vykonu v téchto
multiagentnich prostiedich s nedoko-
nalymi informacemi. Budouci prace
by mohla zahrnovat zkouméani sofisti-
kovanéjsich algoritmi, jako je RNaD,
a zdokonalovani metodik trénovani s
cilem zvysit vykonnost agent.

Kli¢ova slova: Posilované uceni, stro-

jové uceni, sbératelské karetni hry,
Hearthstone, Proximal Policy Op-
timisation, Advantage Actor-Critic,

multi-agentni systémy.

Pieklad titulu: Aplikace metod posi-
lovaného uceni pro sbératelské karetni
hry

/ Abstract

Vi

In recent years, reinforcement learn-
ing has shown significant promise in
solving complex games. This research
investigates the application of reinforce-
ment learning techniques to Collectible
Card Games (CCGs), with a specific
focus on Hearthstone. We have used
Proximal Policy Optimisation (PPO)
and Advantage Actor-Critic (A2C)
algorithms to train agents in various
scenarios.

Our research includes formulating
Hearthstone in the formalism describing
imperfect information games, adjusting
a Hearthstone simulator, developing
reinforcement learning agents, defining
the observation given to agents, im-
plementing multiple neural networks
for actions, and empirically evaluating
their performance against heuristic-
based agents and also against each
other. The results demonstrated that
the PPO was able to learn the basic
strategies and objectives of the game.
In contrast, the A2C exhibited signifi-
cant numerical instability, rendering it
nearly unusable for our purposes.

In conclusion, while reinforcement

learning shows potential in CCGs,
current algorithms face significant
challenges in achieving superhuman

performance levels in these multi-agent,
imperfect information environments.
Future work could involve exploring
more sophisticated algorithms, such as
RNaD, and refining training method-
ologies to enhance agent performance.

Keywords: Reinforcement Learning,
Machine Learning, Collectible Card
Games, Hearthstone, Proximal Policy
Optimisation, Advantage Actor-Critic,
Multi-Agent Systems.
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Chapter 1
Introduction

Reinforcement learning is a technique for finding a solution to large-scale planning
problems in both single-agent and multi-agent environments. Algorithms have exceeded
human performance in perfect information games such as Chess and Go [1-2]. However,
the performance of these algorithms in imperfect information games (IIGs) presents a
different challenge. Although there are some games in which algorithms play games
better than human professionals thanks to reinforcement learning, such as Poker [3-6]
or Scotland Yard [3] or to some extent Starcraft II [7], there are still a wide variety of
imperfect information games that cannot be played on a superhuman level with current
algorithms.

Collectible Card Games (CCGs), or alternatively, Trading Card Games, represent a
category of card games that blend the elements of deck construction with the charac-
teristics of an arena-style duel. There are several reasons why CCGs are classified as
games with imperfect information. Firstly, the construction of a deck from a finite set
of cards and then competing against an opponent whose deck composition is unknown.
Because of this, the deck must be robust enough to counter any potential deck the
opponent can create. Second, during the match, the player mostly cannot see cards
in the opponent hand and also some secret effects when the card is played. Magic the
Gathering, Gwent, or Hearthstone are examples of CCGs that are still not being played
on a superhuman level.

This work aims to apply reinforcement learning techniques to play one of the CCGs,
Hearthstone. Agents will be trained using randomly assembled and specifically crafted
decks, each representing a distinct strategic approach to the game. This approach
allows us to compare the quality of reinforcement learning based on the complexity
of the deck. It is also expected to contribute to our understanding of reinforcement
learning algorithms and investigate their capabilities.



Chapter 2
Background

I 2.1 Factored-observation stochastic games (FOSG)

Games are interactive systems in which players employ strategies to achieve desirable
outcomes. Each game typically includes several key elements: strategies, which are
comprehensive plans of actions that players may execute; payoffs, which quantify the
outcomes each player receives from different combinations of strategies; and the infor-
mation each player possesses when making decisions.

There are several formalisms for describing games [8-9]. One way to formally de-
scribe imperfect information games is factored-observation stochastic games [10]. We
have chosen this formalism because the information about the current state of the game
is factored into the public and private information of each player. Information is con-
sidered public within a group of agents if it is available to all of them. Information is
classified as private if only a single agent has access to it.

Definition 2.1 (FOSG). Let § = (N, W, p,w™ A T R, 0O), where N is the set of
players, W is the set of all world states in the game, p: W — 2%V is a player function,
w™ is a designated initial state, .4 is the space of joint actions, 7:W x A — AW
is the transition function, R:W x A — R is the reward function, O: W — O is the
observation function.

= N = {1, ..., N} for some N € N.

= W is compact, which means that the set is bounded and closed.

- A = Hie & Ai where each A; is an arbitrary set of actions of i € N. We will use
A;(w) to denote the set of all joint actions available when the player ¢ is in the world
state w € W.

= A world state with no acting players p(w) = () and an undefined transition function
T is called terminal.

= () is factored into private observations ¢
Opup a8

0= (Opm’v(l)v ) 0priv(N)> Opub)'

0= Hie o~ Opriv(iy X Opup, where O ) are arbitrary sets (of possible observations).

We will often use o; € O,;(w) to denote the observation of the world state w € W
given to the player 3.

= R(w,a):= (R;(w,a));cn for each non-terminal world state w and a € A(w).

= Ri(0;,0):= (R;(w,a));cn for o corresponding to the states w for the reward of the
player ¢. This does not hold universally for all games; however, it is applicable to the
game used in this work.

priv(i) Where ¢ € N and public observations

To give a better understanding of how this representation works, let us show an
example. The game starts in the initial state w"**. Each active player i € p(w) selects
alegal action a; € A;(w) in each state. After the player performs the selected action, the



game switches to a new state w’ and each player will receive a reward R;(w, a). Finally,
this generates a new observation O(w’), from which each player receives O,(w’):=
(Oprings) (W), Opyp(w’)) € O;. This process will continue until a terminal state is reached.
The objective of each player is to maximise the total reward gained during the game.

B 2.2 collectible card Game (cCG)

Collectible card games are a type of card game that combines deck-building elements
with features of arena duels, initially made popular by Magic: The Gathering.

Collectible card games can take many shapes and forms, but most commonly they are
played between two players, although there are also multiplayer formats like Munchkin.
CCGs, which are played with defined sets of cards. Players collect cards to create a
limited-size deck, and then use this deck to compete against others. Each card has an
effect on the game. Some cards may have more impactful effects than others. Based
on the power of the effects, we could order the cards and naively use only the most
powerful cards. This is possible, and in some CCGs, such decks may have moderate
success, but the most powerful decks often use synergies between cards, or contain cards
that may only be good in some particular scenario. Creating a robust deck requires not
only using these strong synergies but also not being easily exploited by some opponents
cards. The cards are also divided into several categories. Categories may differ by
game, but, in general, we can divide them into two main categories. Cards that can
be played to trigger a one-time effect or ability, described in the card’s text, and cards
with a long-time effect that can last until the end of the game and can to some extent
change the basic rules of the game.

After constructing their decks, players engage in arena-style duels, which are typically
turn-based, with each player starting with their deck shuffled. There are multiple CCGs,
and the gameplay may differ significantly between them. However, in most of those,
and particularly in the ones we examine in this work, each player selects a hero who
begins with a certain amount of health points. The objective is to reduce the opponent’s
health points to zero or less using cards from the preconstructed deck. To achieve this,
players take turns drawing cards from their deck. At the start of each turn, players
receive a set amount of in-game currency which they can spend to play cards. As each
action can alter subsequent legal actions, players must strategically manage their mana
to execute their moves within the turn. To gain the upper hand, players must take
actions in the correct order and plan their actions a few turns ahead.

Each player knows his deck, but does not know the opponent’s deck, nor the order
of cards in his deck. Some cards may have hidden effects, while others have a public
effect.

I 2.3 Reinforcement learning (RL)

Reinforcement learning is a branch of machine learning focused on training agents
to make optimal or almost optimal decisions in an environment. Agents learn from
the environment through a feedback loop. In other words, agents are affecting the
environment by actions and then learning from it by collecting rewards, which do not
have to be positive. In RL, the concept of reward is crucial, as it indicates the quality of
the outcomes achieved by the agents. In many environments, this reward is only given at
the end of the game, which can make learning optimal strategies challenging. However,
in other settings, rewards are more frequent, providing more immediate feedback on the



effectiveness of the agent’s actions. The primary task of RL is to utilise these observed
rewards to develop an optimal or near-optimal policy that directs the agent’s behaviour
in the environment. In this work, we will focus on policy-gradient algorithms.

The policy gradient algorithm is a method that optimises the strategy that an agent
follows to maximise its cumulative reward. These algorithms optimise a policy directly
by performing a gradient ascent on the expected return, which is a function of the
policy parameters 6.

Now, let us rephrase this more formally. In Section 2.1, we have defined our environ-
ment as G = (N, W, p,w"™ A, T R ,O). The agents act in the game G. The players
may stay in one of many states w € W in the environment. Each player ¢ chooses to
take one of many legal actions a; € A(w) based on a given observation o, € O,(w)
to move from one state to another. The state w’ in which the agent will arrive is de-
termined by the transition function w’~T (w,a) € AW. Once an action is taken, the
environment provides a reward r € R, (w, a) to the agent as a feedback. R is a reward
function R: W x A — RV, where ®,(w, a) is a reward given to the player i if it chooses
an action a € A(w) in state w € W

Definition 2.2 Policy function. The stochastic policy of a player i is a function
710, x A; — [0,1]

For each pair of observation-action (o,, a;), the 7,(0;,a;) function gives the probability
that the action a; is chosen when the observation is o,. We will refer to this function
as m;(a;|o;) because this notation is more common.

We will refer to 6 as the policy parameters for 7;%(a;|o;), where T;
parameterized by 6.

9 is a policy

Definition 2.3 State value function. The state value function is

V" (0;) = [Ew[Rt|0it = o,]

K3 7

where:

= Rit is the return, representing the total accumulated rewards over time ¢ € N, while
t < T for a player i« € N, where T' € N represents the length of the trajectory.
It is typically calculated as the sum of the rewards the player ¢ received, adjusted
by a discount factor v € [0, 1], which tells us how we value future rewards: R," =
Zf:_g yFr 4k where vt € R,(0,%, a;t) at time .

= 0;,' = o0; the condition specifies that the observation o, for a player i at time ¢ (the
starting point of the evaluation) is the observation o;.

= £ is the expectation operator, indicating that V;™(o,) is the expected value of the
return R,".

The state value function estimates the expected return starting from observation o
following the policy 7 thereafter. This corresponds to all players following the policy 7.



Definition 2.4 Action value function. The action value function is

Q;"(0;,a;) = [Ew[Rit‘Oit = Oi7ait = a,]

177

where:
= £, R,;" are defined as in 2.3
= 0;,' = 0;,a;' = a; the conditions specify the initial observation and action at time ¢

over the length of the trajectory T, from which future rewards are evaluated.

The action value function quantifies the expected long-term return for a player ¢ € N
after playing action a;, when it currently has observation o; and then all players follow
the policy .

Environment

action reward state

Agent

Figure 2.1. Reinforcement learning model.

The stochastic policy is necessary in imperfect information games because it can
capture the uncertainty in the environment. It gives a probability distribution over
actions given an observation. The stochastic policy allows for randomness in the choice
of actions, providing a way to explore different strategies and potentially discovering
better solutions in complex environments. Simply, it means that the policy defines the
behaviour of an agent in an environment. It is essentially a strategy that the agent
follows, mapping observations of the environment to actions.

Depending on a policy 2.2, each observation can be associated with a value function
V."(0;) 2.3 that predicts the expected amount of future rewards that the agent can
receive when the current observation acts on the corresponding policy. In other words,
the value function quantifies the amount of reward the agent receives if all agents follow
the policy m. Reinforcement learning is trying to approximate both the policy and the
value function. They are even trying to approximate the optimal ones, because learning
arbitrary value function or policy function is trivial.

B 2.3.1 Actor-Critic

The objective of reinforcement learning is to accurately estimate the policy and value
function. This distinction gives rise to two primary types of reinforcement learning
algorithms: policy-based and value-based. In value-based reinforcement learning, the
agent determines the value of a given observation or performs a specific action on
that observation and makes decisions based on selecting the action that maximises this
value. In contrast, policy-based reinforcement learning involves learning a policy that



in a probabilistic manner determines the action to be taken when having observation.
This means that unlike value-based behaviour, this allows us to select different actions
with different probabilities even while having the same observation. The Actor-Critic
method represents a hybrid reinforcement learning algorithm that integrates the char-
acteristics of both policy-based and value-based approaches. It consists of the two main
components, the actor and the critic, which work together to learn the optimal policy
and value function. The actor module is responsible for representing the parameterized
policy from which actions are sampled. The objective of the actor is to repeatedly refine
this policy, typically parameterized by a neural network, to maximise the probability of
choosing effective actions when having specific observations. The critic module repre-
sents a parameterized observation or an observation-action value function. The primary
function of the critic is to provide an evaluation of the observation or observation-action
based on the rewards from the environment [11].

\

——— Policy —
Actor
3y TD
Critic error
Value
state — . i
Function action
/
reward

Environment

Figure 2.2. The Actor-Critic architecture [12].

In our work, we will be using Advantage Actor-Critic (A2C), where, unlike standard
Actor-Critic, A2C also uses the advantage function 2.5. This function provides a mea-
sure of the relative value of taking a particular action a, when having an observation
o, compared to the average value of that observation under a policy 7. It essentially
quantifies how much better or worse an action is compared to the policy’s average.

Definition 2.5 Advantage function. The advantage function is

Af(‘%‘»%) = Qiﬂ(oiv a;) —V;"(0;)
where:

= Q," (0;,a;) is defined in 2.4
= V."(0,;) is defined in 2.3.

We will refer to A, (0;,a;) as an advantage in time ¢ for a player i.



Definition 2.6 Actor loss function. The actor loss function is

Liactorw) — ﬂie(ait|0it) : 5't

(2

where:

= 7,%(a;t|0,t) is defined in 2.2 at a time ¢ for a player .

= §," is the temporal difference error of the critic, calculated as 8, = r, +~-V;™(0,*1)—
V.™(0;') where v € [0,1] and V,;™(0,;') is the state value function defined in 2.3 at a

time t for a player i.

Definition 2.7 Critic loss function. The critic loss function is

Licritic<0> _ 5((;Zt)Q

where:

= §;' is the TD error of the critic, calculated as §," = 7, 4+~ - V,"(0,'*') — V;™(0;?)

where v € [0,1] and V;"(0,;') is the state value function defined in 2.3 at a time ¢ for
a player 1.

The interaction between these two components, the actor and the critic, allows for
more stable and effective learning compared to methods that use either value function
or policy function alone. Also, with a value function alone, we would not be able to
approximate an optimal solution in imperfect information games. This method balances
the dilemma of reinforcement learning: exploration, testing new actions to discover
their effects, and exploitation, using the best action known in a given observation.
Specifically, the actor, guided by the critic’s evaluations, can safely explore various
actions without the risk of significant performance drawbacks, as the critic helps identify
which actions are potentially beneficial. This dynamic enables the system not only to
exploit known effective actions, but also to continuously explore new strategies, thus
optimising the learning process across diverse scenarios.

Bl 2.3.2 Proximal Policy Optimisation (PPO)

One of the problems we face in Actor-Critic based algorithms is maintaining stability
and efficiency in the learning process. Proximal Policy Optimisation is an algorithm
proposed in paper [13], which seeks to address some of these challenges. The core
concept of PPO focusses on integrating key aspects of Trust Region Policy Optimisation
(TRPO) 2.11, notably its method of imposing a constraint on the size of policy updates
to ensure stable training. Using a trust region, TRPO prevents drastic policy updates
that could lead to performance degradation. PPO simplifies this by using a clipped
surrogate objective function 2.12, which approximates the trust region approach, but
with easier implementation and improved computational efficiency. This allows PPO
to converge faster to an optimal solution with fewer interactions or samples from the
environment.

Definition 2.8 Kullback-Leibler Divergence. Kullback-Leibler (KL) divergence between
two probability distributions P and @) over the same variable X is

= X DP(x)



Definition 2.9 Generalized Advantage Estimate. Generalized Advantage Estimate
(GAE) is

~t

A =604 (YN L ()T T

(2

where:

=6t =1t +4Vi(0) = V(o))
= )\ € R controls the trade-off between variance and bias.

Although PPO can use the advantage function defined in 2.5, to further reduce
variance while retaining a bias-acceptable level, PPO frequently employs GAE. Using
GAE, PPO can more effectively manage the exploration-exploitation trade-off, leading
to more robust learning in complex environments [13].

Definition 2.10 Policy gradient estimator. Policy gradient estimator is

gi = [Ei [Vieln Wie(aﬂoit)/i‘t]

1
where:
~t
= A, is an estimator of the advantage function 2.9 at time ¢ for a player .

= [Ef[] indicates the empirical average over a finite batch of environmental samples at
time ¢ for a player i.

The estimator g; is obtained by differentiating the objective:

L;PY = [Eﬁ [In ﬂ-ig(ait ‘Oit)fi't]

(2 (2

where:

= LZ-P @ is the loss function of the policy gradient that optimises the parameters 6 for
a player 1.

Definition 2.11 Trust Region Policy Optimisation. Trust Region Policy Optimisation is

m,%(a;tlo;t) ~t

-, |
e [Ei[ﬂie"“(aﬂ%t) '

subject to

EL[K L{m o (Jo,!), m,(-|o;")] < 6
where:
= 6,4 is the vector of policy parameters before the update.

TRPO is a reinforcement learning algorithm that addresses the stability and efficiency
of policy updates in policy gradient methods. TRPO formulates the policy optimisation
problem with a constraint on the size of the policy update. The objective is to maximise
expected return while ensuring that the KL divergence 2.8 between the new policy and
the old policy remains below a predefined threshold 9.

PPO uses an objective function that includes a clipping mechanism to restrict the
updating step of the policy. This clipping limits the policy update to staying within
a small region around the current policy. By doing this, the policy is prevented from
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changing too drastically, which helps to maintain the stability of the training. What
0

makes PPO different is the use of the probability ratio ¢;*(6) = % This
uses Trust Region Method TRPO that maximises a ’surrogate’ objective: LF1(§) =
- ~t
5" (0)A,; ] [14]

Without a constraint, maximisation of LiCP I would lead to a huge policy update;
therefore, we now consider how to modify the objective and penalise policy changes

that move ¢,;*(0) away from 1.

Definition 2.12 Surrogate objective function. Surrogate objective function is

LOMP(6) = Etmin(g;'(0) A, clip(q, (6),1 — e, 1+ €) A, )]
where:
=e€l0,1]
= [Ef is defined in 2.10.

~t

= A, 1is defined in 2.9.

= The clip(q;'(0),1 — ¢, 1+ ¢) function cuts the ratio to no more than 1+ € and no less
than 1 —e.

The objective function of PPO takes the minimum one between the original value and
the clipped version, and therefore the algorithm does not increase the policy too much
in a direction of better rewards.

Algorithm 1. PPO, Actor-Critic Style

1. for iteration=1,2,3,... do
2. for actor=1,2,3,....,N do

3. Run policy 7Ti0ld in environment for T’ timesteps
~1 ~T

4. Compute the advantage estimates 4, ,..., A,

o. end for

6. Optimise the surrogate LiCLI Pt 0, with K epochs

7. 0,10 < 0

8. end for

By reusing data through multiple epochs and effectively managing the extent of policy
updates using the clipping technique, PPO is efficient and has robust performance
across a wide range of environments. The clipping mechanism of the surrogate objective
function Licu P (0) significantly contributes to the stability of the learning process by
reducing the issue of excessively large policy updates, which may result in performance
breakdown.



Chapter 3
Hearthstone

Choosing the right game for this project was crucial to success. There are many CCGs
that fall into the category of two-player zero-sum IIGs. The main criteria for this
project were that the game was easy to understand and that there is already a public
simulator available.

There are many titles to choose from, and we will consider only a small part of
them, which are typical and well-known titles, because only they suffice the condition
of having multiple free simulators. One of them is Magic: The Gathering Arena, which
is a digital version of Magic: The Gathering, which made the CCGs famous. Although
it is a fairly old game, it does not have that many simulators to choose from. Gwent has
a very different gameplay from other titles. Players do not have health, but compete
who will have more power points with minions on board, and the game can only last 3
rounds. But unlike Magic: The Gathering Arena, Gwent does not have any simulators.
We found only an API that interacts with the game itself, so Gwent was not suitable
for this project. MARVEL SNAP was released in 2022 and has a variety of simulators
to choose from (some in Python and even Rust). The game is easy to understand and
has fast gameplay, so this was a suitable candidate. Hearthstone was released in 2014
and there were many attempts to test Al on this game [15-16]. The game has a wide
variety of simulators that are being developed today.

In the end, the decision was between MARVEL SNAP and Hearthstone. We preferred
Hearthstone because we were already familiar with the rules and gameplay and others
used this game for reinforcement learning. We will focus mainly on the Classic version
of the game and will not include released expansions that add new mechanics to the
game. Even in this version, the game contains more than 103!* possible game states.

B 3.1 Deck

Deck building forms a core strategic component of Hearthstone, where players design a
set of cards that will be used in gameplay. Initially, a player selects a hero class, which
defines and restricts the card pool available for deck construction, aligning with the
thematic and strategic elements characteristic of that class.

Each deck must be precisely made up of 30 cards. Standard deck construction rules
allow a player to include up to two copies of any individual card. However, there is an
exception for legendary cards that are unique, usually powerful, and visually distinctive
cards, which restricts players to include only one copy of each in their deck.

The choice of cards within a deck is influenced by several factors, including the
player’s strategic preferences, the anticipated decks other players are likely to use, and
current game trends. Effective deck building is not only about selecting the strongest
cards, but involves crafting a consistent strategy in which card interactions and syn-
ergies are carefully considered to maximise deck overall effectiveness in various game
scenarios.
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I 3.2 Rules

In Hearthstone, each game begins with both players creating their 30-card decks. Fol-
lowing the shuffling of their decks, the game randomly decides which player will play
first. Fach player gets the selection of n-cards from its own deck and selects which one it
wants to keep and which he wants to replace: three cards for the player who plays first
and four cards for the player who plays second. This stage, known as the Mulligan,
is tactically significant as players aim to draw the best possible starting hand based
on both their deck composition and their opponent. The second player also receives
“The Coin”, a special card that grants one extra in-game currency for a single turn to
compensate for going second. The players then take turns making actions. At start of
each turn they draw one card from their deck.

B 3.2.1 Board

The board is the area where players play their minions and long-term effect cards. Each
player can have up to seven minions on their side of the board at any given time.

B 3.2.2 Mana

Mana is the resource that players use to play cards. Each player starts with 0 mana,
which increases by 1 at the beginning of each turn, up to a maximum of 10. The
mana is reset to the player’s current maximum at the start of each turn. The cost of
a card generally correlates with its power, with higher-cost cards usually having more
impactful effects.

B 3.2.3 CcCards

Cards are the primary tools players use to influence the game. There are different types
of cards, each serving different functions:

= Spell cards: These cards can have one-time or long-time effects when played and can
target any character or area unless otherwise specified.

= Minion cards: These cards summon minions onto the board. Each minion has an
attack power and health. Minions can attack opposing minions or the opponent’s
hero in following turns after being played. To remove a minion from the board, its
health must be reduced to zero, either through combat with other minions or by using
spell cards that inflict damage. When minions attack each other, they simultaneously
deal damage equal to their attack power to each other’s health. Minions can have
special attributes that modify the basic rules of the game 3.3.

= Weapon cards: These cards equip the hero with a weapon that possesses attack power
and durability, allowing the hero to make an attack.

B 3.2.4 Heroes

Each player controls a hero, which starts the game with 30 health points. The hero’s
health is a critical component, as the main objective of the game is to reduce the
opponent’s hero health to zero or less. Heroes can also have armor, a special type of
health that absorbs damage before health points are affected. Armor can accumulate
infinitely and is depleted before any damage is done to the hero’s health. Heroes
can attack if equipped with a weapon that has both attack and durability attributes.
Additionally, each hero has a Hero Power that can be used once per turn for a cost of
2 mana, with effects that vary significantly between hero classes 3.4.
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3. Hearthstone

B 3.2.5 Hand

The hand is the area where players store their drawn cards which are available for play.
Fach player can hold up to a maximum of 10 cards in their hand, and any additional
cards drawn are instead discarded. When a card is played, it is removed from the
player’s hand, and its effects are executed. The cards in the hand are critical to a
player’s strategy, as they determine the part of available actions each turn. Managing
the hand effectively is essential to maintain a strong position throughout the game.

B 3.2.6 Fatigue

If a player exhausts their deck and cannot draw a card when required (such as at the
start of their turn), they begin to take fatigue damage. Fatigue starts at 1 damage and
increases by 1 for each additional card the player fails to draw. This mechanic ensures
that the game remains finite.

l 3.2.7 Objectives

The primary objective of Hearthstone is to reduce the opposing hero’s health to zero or
below. Achieving this requires strategic use of cards, effective management of resources
such as mana and health, and tactical positioning of minions on the board.

Figure 3.1. Demonstration of how the game looks with a description.

I 3.3 Special attributes

We discussed that the minions on board can have some special attributes. These at-
tributes affect the basic rules of the game, providing players with additional defensive
and offensive tools, thus adding complexity to the game. There are in total eight special
attributes: Taunt, Divine Shield, Immune, Stealth, Charge, Windfury, Deathrattle, and
Battlecry.
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B 3.3.1 Taunt

Taunt is a passive ability assigned to minions that forces the opponent’s minions and
hero to attacks towards minions with this ability. It is designed to protect the player’s
hero and other friendly minions until the Taunt minions are removed. However, Taunt
does not protect against spell cards, which can bypass this ability.

B 3.3.2 Divine Shield

The Divine Shield is an ability that applies only to minions. The ability negates the
first instance of damage that the minion would take, after which the ability is removed.
This makes it highly effective at preserving key minions from initial attacks or harmful
effects.

B 3.3.3 Immune

Immune is a rare ability that can be applied to both minions and heroes. A character
with Immune is completely protected from all incoming damage and cannot be specif-
ically targeted by the opponent. This provides a temporary but powerful safeguard
during critical moments in the game.

B 3.3.4 Stealth

Stealth is an ability that prevents the minion from being targeted by enemy attacks
and spells. The effect persists until the minion attacks. While Stealth protects against
direct attacks and targeted spells, it does not shield the minion from area-of-effect spells
and abilities or from effects that randomly target characters.

B 3.3.5 Charge

Charge allows a minion to attack on the same turn it was summoned. This ability is
particularly valuable in aggressive strategies, enabling sudden and unexpected attacks
that can shift the game’s momentum in favour of the player using Charge.

M 3.3.6 Windfury

Windfury is an ability that enables a character (either a minion or a hero) to attack
twice in a single turn. This can significantly enhance offensive capabilities, allowing for
powerful combinations and increased damage output within a single turn.

B 3.3.7 Deathrattle

Deathrattle is an ability that triggers a specific effect when the minion or weapon that
it contains is destroyed. This is the most flexible of the special abilities, as effects can
vary widely from summoning additional minions, dealing damage, or creating other
advantageous conditions for the player. Minions can possess multiple Deathrattles,
each activating upon the minion’s destruction.

l 3.3.8 Battlecry

Battlecry mechanic is an ability to trigger a specific effect whenever a minion with the
Battlecry ability is played from the hand on the board. This effect can vary widely,
ranging from dealing damage, summoning additional minions, to manipulating the cards
in play or in each player’s hand.
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I 3.4 Classes

Class is a primary determinant of the hero’s powers and abilities in Hearthstone. It
also significantly influences deck selection because it restricts the player to class-specific
cards. There are in total 9 unique classes, each equipped with unique class cards
and special mechanics. The Hearthstone classes are as follows: Druid, Hunter, Mage,
Paladin, Priest, Rogue, Shaman, Warlock, and Warrior.

B 3.4.1 Druid

Druids are versatile, with powerful Taunt minions and adaptable “Choose One” effects,
which let the player choose one of two effects described on the card. They can accelerate
their mana accumulation, enabling them to play cards of high mana cost earlier. The
Druid hero power grants the hero +1 temporary attack and +1 armor.

B 3.4.2 Hunter

The Hunter class is known for its synergy with beasts, deadly traps, and weapons, fo-
cussing on quickly overwhelming the opponent. The Hunter hero power deals 2 damage
directly to the enemy hero, supporting rapid and aggressive strategies.

B 3.4.3 Mage

Mages wield formidable single-target and area-of-effect spells, with strong synergies
that enhance spell potency. The Mage hero power allows the player to deal 1 damage
to any character of their choice, providing tactical flexibility.

B 3.4.4 Paladin

Paladins use spells to strengthen friendly minions and possess a range of healing spells
and weapons. The Paladin hero power summons a “Silver Hand Recruit”, a minion
with 1 attack and 1 health, useful for building a board presence.

BB 3.4.5 Priest

Priests excel in restoration, capable of sustaining the player’s hero and friendly minions
while debilitating the opponent’s forces. The Priest hero power can restore 2 health to
any character, enhancing their durability.

B 3.46 Rogue

Rogues rely on inexpensive cards that can become extremely potent when combined
correctly. The Rogue hero power equips a weapon with 1 attack and 2 durability,
complementing their strong weapon-enhancing spells.

B 3.4.7 Shaman

Shamans are masters of elemental magic, using powerful spells and minions to strike a
balance between offensive and defensive tactics. Their hero power can summon one of
five different totems, each with a special attribute.

B 3.4.8 Warlock

Warlocks engage demons of varying strengths and can sacrifice their own health for
strategic advantages, particularly in card drawing. The Warlock hero power deals 2
damage to the hero and draws a card, offering potent but risky utility.
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B 3.4.9 Warrior

Warriors wield heavy weapons to deal significant damage to opponents. As they often
sustain damage through attacks, the warrior hero power grants +2 armor to the hero,
reducing some of the incoming damage.

I 3.5 Simulator

Hearthstone was used in research of several Al projects [15-16]. This means that there
are a variety of simulators to choose from. Our main requirements were speed, ease of
use, and some user interface. The first simulator we have looked at was recommended
by community was RosettaStone [17]. It is a C++ based simulator and is developed
even today. Unfortunately, this simulator contained several bugs and we were not
able to play even a single game with it. Another project developed in Python until
today is FirePlace [18]. Unfortunately, it is only the API to communicate with the real
Hearthstone client, and it was unsuitable for reinforcement learning. The last simulator
is the one we have chosen as suitable for this project. Hearthbreaker was used by the
DeepMind team at Google for Hearthstone card generation [19], but the project is no
longer maintained. The simulator contained several bugs, but we were able to fix them.
We discuss them in 5.6.

I 3.6 Game observation in Hearthstone.

Understanding the game observation is crucial to making strategic decisions in Hearth-
stone. The world state of the game includes multiple layers of information concerning
both players, covering heroes, hands, decks, mana, and the game board.

B 3.6.1 Hero

Each player controls a hero, which is the primary representation of the player within
the game. The available information on the hero of the player includes:

= Class: Hearthstone features a total of 9 distinct hero classes, each equipped with
specialised abilities that significantly influence gameplay strategy. Additionally, there
are two unique cards within the game that can alter the player’s hero class during
gameplay, providing new hero powers and potentially shifting the player’s strategic
approach.

= Health: The maximum amount of hero’s health is 30 health points.

= Armor: Total number of additional protective points that absorb damage before the
health is affected. The game does not restrict a maximum amount of armor hero can
have.

= Total current hero attack: This is the attack value the hero can use to attack oppo-
nents. Includes bonuses from equipped weapons or temporary effects.

= Equipped weapon (if any):
= Attack: The damage that the weapon can deal.
= Durability: The remaining uses of the weapon before it breaks.

= Hero attack capability: Indicates whether the hero can attack this turn, which could
be restricted by game effects.
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B 3.6.2 Player's Hand

= Maximum card limit: A player can hold up to 10 cards in their hand.
= Current number of cards: Total number of cards currently held.
= Observations for each card:
= Identity: The specific card, including its artwork and effects.
= Mana cost: How much mana is required to play the card.
= Playability: Whether the card can be played in this turn, influenced by the available
mana and other game conditions.

= Deck information:
= Total number remaining cards: The number of cards left in the player’s deck.

= The next fatigue damage: The damage a player will take from fatigue when they
need to draw a card but do not have cards left in their deck.

B 36.3 Mana

= Current available mana: The mana currently available to the player this turn.
= Maximum mana: The total mana slots the player has accumulated throughout the
game, up to a maximum of 10.

B 3.6.4 Player's board

= Minion count: The number of minions currently on the player’s board.
= Minion details:
= Identity: Which specific card the minion is.
= Current attack and health: Minion’s battle stats, which can change due to in-game
effects.
= Attack capability: Whether the minion can attack this observation.
= Special attributes: Attributes that affect gameplay, such as Taunt, Divine Shield,
Spell Damage, Charge, Stealth, Immune, Windfury, Deathrattle and Frozen (min-
ion is unable to attack until the next turn).

Il 3.6.5 Opponent’'sinformation

From the player’s perspective, the game observation also includes information related to
the opponent, mirroring many aspects of the player’s own observation but with limited
visibility:

= Hero information: Same categories as the player’s hero.

= Hand and deck:
= Number of cards in hand and deck: Visible count but not specific cards.
= Next fatigue damage: Same aspects as the player’s fatigue.

= Mana:
= Maximum mana: Current maximum mana capacity of the opponent.

= Board: Detailed similarly to the player board but based on observable data.
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I 3.7 Action Space

In Hearthstone, the range of actions available to players during gameplay is extensive
and dynamic, changing as each action is executed. To simplify analysis, these actions
can be generalised into four primary categories: attacking with a character, playing a
card from the hand, using the hero power, and ending the player’s turn.

Attacking a character, be it a minion or hero, requires a two-step decision process.
Initially, the player selects which of their characters will attack; this choice typically
includes up to seven minions and the hero itself, allowing for a maximum of eight
possible options. Subsequently, the player must choose a target for the attack, which
could be any of the characters of the opponent, again, up to seven minions and the
hero.

The action of playing a card involves additional complexities. If the card is a minion,
the player must decide the precise placement on the board, which is crucial for strategic
alignments and interactions. In contrast, if the card is a spell, the player may need to
choose a target from among up to 16 possible characters that encompass both allies
and enemies. However, playing a weapon card or a non-targetable spell simplifies the
process as it requires no further actions beyond the initial play.

Hero powers vary significantly in their action requirements, influenced by the class-
specific mechanics discussed in section 3.4. For example, the hero power of the mage
requires choosing a target to inflict damage, whereas the hero power of the warlock,
which draws a card at the cost of health, requires no additional targeting decision.

This structured approach to describing the action space not only clarifies the options
available to players, but also highlights the strategic complexity inherent in the game
mechanics.
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Chapter 4
Reinforcement learning in Hearthstone

In this work, we have chosen a self-play strategy to enable an agent to master the
game without any human interaction to avoid dependency on human data as much as
possible. This means pitting two Al agents against each other and letting them learn
through gameplay, deciphering the underlying mechanics, and goals.

The experimental setup involves the agents playing a set of games, specifically 10
per set. Throughout each set, agents accumulate data on the rewards received during
gameplay, the observations encountered, the actions taken, and the policy associated
with those actions. These data serve as the foundation for training the neural networks
that drive agent behaviour, enabling them to progressively refine their strategies and
improve their performance in the game.

I 4.1 Reward function

The reward function in this scenario is structured to assign a reward of +1 exclusively
when the player successfully defeats the opponent while their hero remains alive. In
contrast, a loss results in a reward of -1 and a draw in a reward of 0. Thus, the only
way to earn a positive reward is by defeating the opponent and ensuring the player’s
hero survives the encounter.

I 4.2 Neural network architecture

Given the complexity of the game and the wide range of possible actions detailed in
Section 3.7, a single neural network is insufficient for effectively managing the decision-
making process. To address the challenges posed by the large action space, we have
developed a distributed neural network architecture comprising three specialised neural
networks, referred to as actors. Each actor is tasked with handling a critical aspect of
decision making, and their coordinated function is essential for achieving the game’s
objectives.

These neural networks are constructed using a multilayer perceptron (MLP)
model [20], a type of feed forward artificial neural network [21]. By segmenting the
decision-making process into three interconnected networks, we effectively reduce the
cognitive load on any single network, thereby improving overall performance and
quality of decisions.

B 4.2.1 General actor-critic

The General actor plays a crucial role in overseeing the game’s strategy and determining
the type of action the agent should execute, such as attacking, playing a card, using the
hero power, or ending the turn. The neural network associated with the General actor
generates a distribution of all potential types of actions, regardless of their legality.
Consequently, it becomes necessary to filter out actions that are not legal within the
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current game observation. Once these illegal types of action are removed, the remain-
ing action’s probabilities are normalised to guide the agent’s decision-making process
effectively.

B 4.2.2 Handactor

The Hand actor is tasked with selecting the most appropriate card to play based on the
current game observation. Its output is a probability distribution over indexes ranging
from 1 to 10, representing a card’s position in the player’s hand. Similarly, the Hand
actor’s neural network does not know which cards are possible to play, so the given
distribution must be filtered to remove unplayable cards in given game observation.
The Hand actor is activated specifically when the General actor determines that the
next action should involve playing a card. This focused approach ensures that the
choice of card is optimally aligned with the strategic demands of the game observation.
Since the Hand actor neural network uses the same game observation as the General
actor, we have decided to use the General critic as a critic for the Hand actor.

B 4.2.3 Targeting actor-critic

The Targeting actor plays an important role in managing interactions on the game
board. Its responsibilities include deciding the placement of a minion on the board,
selecting which minion should initiate an attack, and determining the targets for these
actions. This actor becomes crucial particularly when a Hand actor chooses to play
a targetable spell card or a minion with a Battlecry ability that requires a specific
target, or when the General actor directs an attack action or hero power action that
requires a specific target. In these scenarios, the Targeting actor must strategically
choose a friendly minion to perform the attack and select an appropriate enemy target.
This means that the Targeting actor-critic requires more additional information about
agent’s intentions in game observation. We will discuss the details in 4.3.2.

I 4.3 Game observation encoding

The game state in Hearthstone is complex and contains a lot of information that can be
categorised. To encode categorical information about the game, such as the name of a
card in the player’s hand or the type of minion on the game board, we can use one-hot
encoding (OH n, where n € N is the number of categories). This technique transforms
each categorical feature with n unique categories into n separate binary features, with
only one active. For example, we have 3 classes: Warlock, Rogue, and “None” where
Warlock is 010, Rogue is 001 and 000 which represents no class. Thanks to one-hot
encoding, many algorithms may perform better or converge faster when categorical data
are encoded in this manner because each observation is equally weighted and distinct,
but it can significantly increase the dimensionality of the data. Data can also be encoded
as binary numbers (BIN n, where n € N is the number of bits), which is more space
efficient than one-hot encoding, but can result in information loss compared to one-hot
encoding, as it reduces the number of columns representing the categorical feature.
Neural networks work better with only binary numbers [22-24], so our approach to
defining the observation was to use a hybrid combination of these two encodings to
provide a balance between the efficiency of binary encoding and the clear categorical
representation of one-hot encoding.

In Hearthstone, we are also processing a lot of data that do not have a numerical
representation, mainly cards alone. To ensure that the neural network would be able
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to distinguish between each card, we had to make a dictionary with all available cards
and assign each card a unique ID. There are in total 1,302 unique cards in Hearthstone,
and we must also add “no card” category, so to represent one card use OH 1,303.

The world observation is encoded with 73,986 bits.

B 4.3.1 The game observation

1. Player’s hero:
= Class — OH 11
= Hero current health — OH 31
= Hero armor — BIN 8
= Hero power used - BIN 1
= Hero attack — BIN 8
= Can attack? — BIN 1
= Weapon:
= Card ID — OH 1,303
= Durability — OH 11

2. Player's deck and hand:
= Current hand per card:
= Card ID — OH 1,303
= Mana cost — OH 12
= Can be played? — BIN 1
= Number of cards in hand — OH 11
= Current deck per card:
= Card ID — OH 1,303
= Number of remaining cards in deck — OH 41
= Fatigue — BIN 8
3. Player's mana:
= Current mana — OH 12
= Maximum mana — OH 11
4. Player's board:
= Number of minions on board — OH 8
= Per minion:
= Card ID — OH 1,303
= Attack — BIN 8
= Health — BIN 8
= Spell damage — BIN 8
= Can attack? — BIN 1
= Frozen — BIN 1
= Taunt — BIN 1
= Divine shield — BIN 1
= Charge — BIN 1
= Stealth — BIN 1
= Immune — BIN 1
= Windfury — BIN 1
= Deathrattle — BIN 1

20



5. Opponent’s hero:
= Class - OH 11
= Hero current health — OH 31
= Hero armor — BIN 8
= Weapon:
= Card ID — OH 1,303
= Durability — OH 11
6. Opponent’s deck and hand:
= Number of cards in hand — OH 11
= Number of remaining cards in deck — OH 41
= Fatigue — BIN 8
7. Opponent’s mana:
= Maximum mana — OH 11
8. Opponent’'s board:
= Number of minions on board — OH 8
= Per minion:
= Card ID — OH 1,303
= Attack — BIN 8
= Health — BIN 8
= Spell damage — BIN 8
= Frozen — BIN 1
= Taunt — BIN 1
= Divine shield — BIN 1
= Charge - BIN 1
= Stealth — BIN 1
= Immune — BIN 1
= Windfury — BIN 1
= Deathrattle — BIN 1

4.3 Game observation encoding

Figure 4.1. Example of in-game observation where the numbers correspond to 4.3.1.
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B 4.3.2 Game observation for the Targeting actor-critic

The way we have defined our action space requires additional information to differ not
only between harmful and beneficial effects, but also deciding with which minion to
attack what the target is, where to place a minion on the board, or when using a hero
power that requires a target. This complexity leads us to categorise actions into three
distinct types:

= Using hero power: Indicates that an action involving the hero power has been se-
lected, which requires identifying a target.

= Playing a card: This could involve playing either a spell card or a minion card
equipped with a Battlecry ability, both of which require selecting a target.

= Attack with a character: Specifies that an attack action has been chosen, requiring the
identification of both a source (friendly character) and a target (opponent character).

To facilitate these actions, it is essential to recognise the specific card or character
involved:

= Card ID: Represents the specific card currently being used that requires targeting.

= Character board index: Helps to distinguish which specific friendly character on the
board is initiating an attack, particularly when multiple copies of the same card may
exist on the board.

The game board accommodates up to 14 minions, evenly split between the two
players, with each player controlling up to 7 minions. Additionally, both heroes, who
may also engage in attacks, are considered, leading to a total observational space of 16
characters. The parameters “Placing on board?” and “Choosing my character?” serve
as indicators of the intended action and are designed to be mutually exclusive.

To incorporate all these components, the total size of the current game observation
is calculated to be 75,290 bits, broken down as 1,324 bits for action and character
identification and 73,966 bits for the full observation representation.

Encoding of observation for the Targeting actor-critic:

= Action type - OH 3

= Card ID - OH 1,303

= Character board index - OH 16

= Placing on board? - BIN 1

= Choosing my character? - BIN 1

= Game observation - size of 73,986 bits

I 4.4 Feedbackloop

In developing a training strategy for agents in a complex game environment, our ini-
tial approach involved putting two agents assisted by the neural network against each
other for a n set of games. This setup allowed the agents to explore the dynamics of
the game autonomously, guided solely by a simple reward function detailed in Section
4.1. However, against our expectations, the training process proved inefficient and pro-
gressed slowly. We observed that the agents predominantly chose to end their turns
prematurely until they exhausted their decks, a strategy leading to fatigue damage,
which only then prompted them to engage in more diverse actions.
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This passive behaviour persisted over numerous games, with the agents rarely initi-
ating varied actions from the game’s action set. In an effort to accelerate the learning
process, we implemented a strategy in which, for the first m sets of games, each agent
would intermittently compete against a heuristic agent. The probability of facing a
heuristic opponent was determined using the formula max(™—¢,0), where m is a con-
stant number of initial sets and ¢ the number of sets completed.

Furthermore, to maintain a challenging environment, the second agent was configured
to learn from the gameplay experiences of the first agent whenever the second mentioned
was matched against the heuristic player. This modification significantly accelerated
the training process, leading to a substantial improvement in the agents’ performance
and engagement from the beginning of the games.

I 4.5 Training function

In our methodology, the feedback loop is structured to include a set of 10 games, from
which agents derive new experiences that cover observations, actions, rewards, and
sampling policies for learning. To enable effective training of the three core components
of our model, the General actor-critic, the Hand actor, and the Targeting actor-critic,
the training function is divided into four distinct segments.

Initially, we sampled the collected experiences to create batches specific to each
component’s needs. The Hand actor requires only a subset of the full batch, specifically
those parts where the “play a card” action was executed. Similarly, the Targeting
actor-critic is trained on subset of full batch, but it requires a different observation.

Subsequently, the training process for each component proceeds independently, util-
ising the custom batches. This segmented training approach ensures that each compo-
nent is optimised according to the specific algorithms designed for its function, thereby
enhancing the overall effectiveness of our model.

Algorithm 2. Training function of A2C fer General actor-critic

1. Sample game observations, rewards 7, actions, log probabilities Ip

2. Evaluate sampled values using the General critic V;*(0,?)

3. Compute the advantage estimate Ait

4. Evaluate the values collected by the critic V;*(0,?)

5. Collect the current logarithmic probabilities clp from the General actor
6. Calculate General actor-critic losses:

actor,,,, = L;***"(0)
criticy,,, = L;"(0)
7. Calculate gradients of the General actor network
8. Perform backward propagation of the General actor network
9. Calculate gradients of the General critic network
10. Perform backward propagation of the General critic network

Algorithm 3. Training function of PPO for General actor-critic

1. Sample game observations, rewards 7, actions, log probabilities Ip
2. Evaluate sampled values using the General critic V;*(0,?)

~t
3. Compute the advantage estimate A,

23



4. for 1,2, 3,...N do
5. Evaluate the values collected by the critic V;*(0,*)
6. Collect the current logarithmic probabilities clp from the General actor
7. Calculate the surrogate losses:
~t

surrl = eP=P 4,

surr2 = clip(q;,*(0),1 — €, 1 + e)/iit
8. Calculate General actor-critic losses:

G’Ctorloss = LiCLIP <6>

CTiticloss = (‘/;n - qin)2
9. Calculate gradients of the General actor network
10.  Perform backward propagation of the General actor network
11.  Calculate gradients of the General critic network
12.  Perform backward propagation of the General critic network
13. end for

I 4.6 Simple agent

The Simple agent represents a basic implementation of a player within the game, func-
tioning without the aid of neural networks. This agent is programmed to execute all
available actions, excluding the end-turn action, in a random sequence until no fur-
ther actions remain except to end the turn. The method of choosing playing cards or
positioning minions on the board is also randomised.

Due to its simplistic decision-making structure, this agent generally exhibits a lower
winrate, particularly when interacting with more complex decks where the strategic
play of synergistic cards is essential for success. An example of such a deck is the
Miracle Rogue, which is heavily based on card combinations and precise sequencing to
achieve victory.

On the other hand, the Simple agent tends to perform more effectively with decks
designed for early game dominance and rapid conclusion of matches, such as the Zoo
Warlock deck. In these scenarios, the agent’s straightforward approach aligns well with
the deck’s objective to quickly overwhelm the opponent.

Algorithm 4. Simple agent

1. while true:

2 Sample possible actions excluding end turn
3 if any possible action then
4 Pick a random action from possible actions
D. Do that action
6 else

7 End turn
8. end while

I 4.7 Konigs agent

The Konigs agent embodies our implementation of a neural network based agent de-
signed to navigate the strategic complexities of the game. This agent plays a pivotal

24



role in the decision-making process, tasked with invoking the appropriate actor, whether
the General actor, the Hand actor, or the Targeting actor, based on the current game
scenario.

A crucial aspect of its operation involves the filtration of non-possible actions from
distribution provided by the neural networks. Following this, the agent adds a small
constant to the given distribution and normalise the distribution to ensure that the
probability sums to one.

Algorithm 5. Konigs agent

1. Set action to play a card

2. while action not end turn do

3. Get game observation

4 Sample probabilities from the General actor for actions

5 Filter out non-possible actions from given probabilities

6 Pick a random action based on filtered and normalised probabilities
7. case: play a card action then

8 Sample probabilities from the Hand actor

9 Filter out non-playable cards from given probabilities

10. Choose a random card based on filtered and normalised probabilities

11. Play that card

12. if card requires a target then

13. Get targeting game observation

14. Sample probabilities from the Targeting actor

15. Filter out non-possible targets from given probabilities

16. Choose a random target based on filtered and normalised probabilities
17. Execute card effect

18.  case: attack action then

19. Get targeting game observation

20. Sample probabilities from the Targeting actor for a friendly character

21. Filter out non-possible characters from given probabilities

22. Choose a random character based on filtered and normalised probabilities
23. Sample probabilities from the Targeting actor for a target

24. Filter out non-possible targets from given probabilities

25. Choose a random target based on filtered and normalised probabilities
26. Execute attack

27.  case: hero power action then

28. Use hero power

29. if hero power requires a target then

30. Get targeting game observation

31. Sample probabilities from the Targeting actor

32. Filter out non-possible targets from given probabilities

33. Choose a random target based on filtered and normalised probabilities
34. Execute hero power

35. end while
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Chapter 5
Experiments

This chapter outlines the experiments designed to evaluate the performance of agents

based on neural networks in various strategic game settings. The experiments are

structured to test the trained agents with four pre-crafted decks, where each deck

requires a different strategy, to evaluate the robustness and adaptability of the models.
The agents were trained in scenarios:

m Training agent to use a pre-crafted deck against a pre-crafted deck.

m Training agent to use a pre-crafted deck against four different pre-crafted decks, with
the opponent’s deck selected randomly for each new set.

m Training agent to use a pre-crafted deck against a randomly assembled deck for each
new set.

m Training agent to use a randomly assembled deck for each new set against a pre-
crafted deck.

The models were trained in 40,000 sets, where a set consists of 10 games in all
experiments. To improve the reliability of the results, each training session was repeated
three times using different seeds. One training that involved the most complex deck,
the Miracle Rogue, was extended to 250,000 sets. In this scenario, the Miracle Rogue
deck was matched against four pre-crafted decks, with deck chosen randomly at the
beginning of each set.

To monitor progress and evaluate temporary performance, the models were saved at
every 1,000-set interval during the feedback loop. After training, each 10,000-set saved
model was tested against a Simple agent in one of two scenarios:

m Agent playing with a pre-crafted deck against a pre-crafted deck.

m Agent playing with a pre-crafted deck against four pre-crafted decks, with the deck
chosen randomly for each new set.

These experiments are designed to provide information on the strategic capabilities
of agents. The main idea behind these experiments is to determine whether trained
agents are able to defeat Simple agent with almost 100% winrate, then we can consider
that the agents have learnt a robust strategy. We can further deduce that if the trained
agent performed worse than 50% winrate against the Simple agent mirror match, a
match in which the competing decks are the same, then the trained agent did not learn
any successful strategies.

I 5.1 Hyperparameters

In the implementation of PPO and A2C, the specific settings of the hyperparameters
play a essential role in defining their behaviour and effectiveness.
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B 5.1.1 PPO hyperparameters

The PPO, known for its stability and efficiency, uses a relatively higher learning rate of
3-10~* and a maximum gradient norm of 40. These settings allow for faster convergence
while maintaining a balance that avoids the pitfalls of drastic policy updates, which
can destabilise the training process. The robustness of the PPO is further supported
by:

m v = 0.998 - High discount factor, prioritising short-term rewards, but it does not
decrease the value of long-term rewards that much.

m A = 0.975 - Balance the bias-variance trade-off in advantage estimation.

m ¢ = 0.2 - Clipping parameter that moderates the policy update step, enhancing
stability.

m N = 10 - Specifies the number of epochs for updating policies with collected data.

m 3,55 = (0.9, 0.999) - default arguments of Adam optimiser.

Il 5.1.2 A2Chyperparameters

In contrast, the A2C, which operates on a similar principle but with a focus on real-time
updates, employs a lower learning rate of 1-10™* and a maximum gradient norm of
5. These more conservative settings reflect the algorithm’s sensitivity to rapid changes
in policy, requiring a more cautious approach to updates to prevent instability in the
training progression. The A2C’s hyperparameters are structured to enhance precise
adjustments without overshooting, which is crucial for maintaining consistent learning
momentum.

B 5.1.3 Neural network configuration

The configuration of the neural networks for both algorithms involves hidden layers
sized (128, 512, 512). These parameters were selected because they offer us a balance
between computational efficiency, overfitting, and generalisation.

Generalisation refers to the model’s ability to perform well on new, unseen data,
whereas overfitting occurs when a model is too closely fitted to the training data,
failing to predict new data accurately. The chosen layer sizes are designed to capture
complex patterns in the data effectively without being excessively specialised to the
training set.

Furthermore, computational efficiency was a critical consideration in selecting the
size of the hidden layers. Larger networks, while potentially more capable, require
significantly more computational resources and training time. The adopted layer con-
figuration (128, 512, 512) represents a compromise, maximising model performance
while maintaining reasonable training durations.

A2C hyperparameters

learning rate = 1-107%
hidden layer = (128, 512, 512)
By, By = (0.9, 0.999)
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PPO hyperparameters

learning rate = 3 - 10~*
hidden layer = (128, 512, 512)
B1, By = (0.9, 0.999)

v = 0.998
v = 0.998
A=0.975
e=0.2
N =10

I 5.2 Useddecks

Since Hearthstone is a popular game and multiple strong decks have already been
developed, we can evaluate the quality of the algorithm on these known decks. We
have chosen 4 decks where each deck has a different play style. Some are more complex
and require a deeper understanding of the game.

B 5.2.1 ZooWarlock

The least complex deck we will be using is called the Zoo Warlock, in which the main
play style is to overwhelm the opponent with low-cost minions from the start of the
game and defeat the opponent as fast as possible. This deck is great for beginners
because it does not require a lot of planning ahead and it simply follows logic that if a
player can do some kind of action (play a card, use hero power, attack with a minion,
etc.), he should probably do it.

Bl 5.2.2 Tempo Mage

The second deck is called Tempo Mage, which requires a better understanding of the
game because it uses the synergy between cards to gain an advantage against its oppo-
nent in mid-game with some late-game finishers. The main game plan for the player is
to hold on cards that are considered weak when played alone and use them later with
the combination of other stronger cards. The deck heavily depends on the card play
order, because some cards boost the effect of others.

B 5.2.3 Control Warrior

The third deck is called the Control Warrior. The main game plan is to control the
early board at all costs so that the player can use powerful expensive cards later in the
game to defeat the opponent. This game plan seems easy, but in fact is very complex
because the player must predict what kind of cards the opponent will play so that he
can maximise the value of his cards.

Bl 5.2.4 Miracle Rogue

The last deck, and also the most complex deck we are using, is called Miracle Rogue.
This deck combines fast-paced and slow-paced game play. The player has the potential
to defeat his opponent in just 4 turns by drawing specific cards from the start of the
game and also starting as the second player due to the “The Coin” card the player gets.
Unfortunately, this specific combination of events has only a small chance to occur, so
the player must focus more on the late game. The main backbone of this deck is the
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ability to draw a lot of cards during the game and make them cheaper with the use
of other cards. This deck is heavily dependent on card synergies, and the player must
retain some cards to the late game in order to make a lethal attack on enemy hero
just in one turn. This requires significant knowledge of the game, as the game plan is
heavily dependent on which deck is facing the player.

700 Warlock

Tempo Mage

2 x Shieldbearer

2 x Flame Imp

2 x Young Priestess

2 x Dark Iron Dwarf
2 x Dire Wolf Alpha
2 x Voidwalker

2 x Harvest Golem

2 x Knife Juggler

2 x Shattered Sun Cleric
2 x Argent Squire

2 x Doomguard

2 x Soulfire

2 x Defender of Argus
2 x Abusive Sergeant
2 x Nerubian Egg

2 x Arcane Missiles

2 x Ice Lance

2 x Leper Gnome

2 x Mana Wyrm

2 x Mirror Image

1 x Bloodmage Thalnos
2 x Frostbolt

2 x Knife Juggler

2 x Sorcerer’s Apprentice
1 x Acolyte of Pain

2 x Arcane Intellect

2 x Fireball

1 x Polymorph

2 x Water Elemental

2 x Azure Drake

1 x Archmage Antonidas
1 x Flamestrike

1 x Pyroblast

Table 5.1. All cards that are in each deck [1/2].
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Control Warrior

Miracle Rogue

2 x Execute

2 x Shield Slam

2 x Armorsmith

2 x Cleave

2 x Cruel Taskmaster
2 x Fiery War Axe

2 x Slam

1 x Acolyte of Pain

1 x Big Game Hunter
2 x Shield Block

2 x Twilight Drake

2 x Brawl

1 x Cairne Bloodhoof
1 x Sylvanas Windrunner

2 x Backstab

2 x Preparation

2 x Shadowstep

2 x Cold Blood

2 x Conceal

2 x Deadly Poison

1 x Blade Flurry

1 x Bloodmage Thalnos
2 x Eviscerate

2 x Sap

2 x Earthen Ring Farseer
1 x Edwin VanCleef

2 x Fan of Knives

2 x SI:7 Agent

2 x Sunwalker

1 x Baron Geddon

1 x Grommash Hellscream
1 x Ragnaros the Firelord
1 x Alexstrasza

1 x Leeroy Jenkins
2 x Azure Drake
2 x Gadgetzan Auctioneer

Table 5.2. All cards that are in each deck [2/2].

I 5.3 PPO experiments

B 5.3.1

To establish a baseline for our trained models, we have put the agents in an “ideal”
environment, where each agent is learning with one of four pre-crafted decks against
agent also using one of four pre-crafted decks (one-on-one); Control Warrior, Tempo
Mage, Miracle Rogue and Zoo Warlock, over 40,000 sets of training games. To monitor
progress and evaluate temporary performance, the models were saved at every 1,000-
set interval during the feedback loop. After training, each 10,000-set saved model was
tested against a Simple agent playing with one of four pre-crafted decks. By comparing
training graphs with test graphs, we can deduce if our training approach, pitting two
PPO agents against each other and hoping that they learn and improve in the game, is
successful. We expect the winrate of mirror matches, matches where players are using
the same deck, to be around 50%, indicating that both agents are developing a strategy
to counter the opponent’s.
Training:

Pre-crafted deck against pre-crafted deck

5.1 Overall performance: The agents demonstrate generally good performance in
most matches, with winrates in most cases establishing above 50% after an initial pe-
riod of fluctuation. This suggests that the agents are effectively learning and adapting
strategies that work against different classes.

5.1 Spike in performance: Notably, there is an upper spike in winrates around the

middle of the graph for all matches. This spike aligns with a phase where the Warlock
agent began training again against the Simple agent, by our mistake. This change
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Figure 5.1. Graph showing a winrate of agent training with Zoo Warlock against agent
using a pre-crafted deck.

in the training setup probably provided the agent with easier matches, artificially
inflating the winrates temporarily. This also shows us that the agent is learning since
the spike has higher winrates than in the initial training period. After this phase,
the winrates seem to normalise, reflecting a more accurate measure of the agent’s
capabilities against agent with more sophisticated strategy.

5.1 End of training anomaly: Near the end of the training period, there is a noticeable
drop in winrates in Warlock vs. Warlock matches. The cause of this decline is unclear,
suggesting an area where further investigation is needed. Possible factors could include
overfitting, where the agent might have become too customised to specific strategies

that do not generalise well against new variations of strategies used by the opposing
Warlock.

5.1 Stability across matches: Except for the observed anomalies, the training process
appears to have reached a stable state, indicating that the agent has achieved a relatively
stable understanding of effective strategies in each scenario. The fluctuations that
persist are typical in complex game environments where small changes in strategy by
either player can significantly impact the outcome.
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Figure 5.2. Graph showing a winrate of agent training with Tempo Mage against agent
using a pre-crafted deck.

5.2 Initial variability: At the beginning of training, there is noticeable variability in
winrates in all matches. This initial fluctuation likely reflects the agent’s adjustment
phase as it learns basic strategies and counters with a more complex deck.

5.2 Spike in performance: Again the prominent spike around the midpoint of the
training for all matches corresponds to an accidental training phase against the Simple
agent. This unintended switch likely resulted in significantly easier matches for the
Mage agent, leading to the sharp increase in performance. The subsequent return to
normal levels indicates the reversion to training against more challenging opponents.

5.2 Learning and improvement over time: Despite artificial inflation during the mid-
training phase, the maximum winrates after the spike are higher than those observed
at the start. This indicates that the agent has gained proficiency and is better at the
game than it was initially. The higher baseline post-spike suggests that some of the
strategies learnt during the easier phase may have had a lasting positive effect on the
agent’s performance.

5.2 Overall performance: The agents demonstrate generally good performance in
matches against Rogue, Mage and Warrior, which was expected since the complexity of
those decks is the same or higher, but worse performance in matches against Warlock.
Overall, we can see a growth in the winrate after the initial period in most matches.
This suggests that the agents are learning and adapting strategies that work against
different classes.

32



5.3 PPO experiments
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Figure 5.3. Graph showing a winrate of agent training with Control Warrior against agent
using a pre-crafted deck.

5.3 Spike in performance: Again the prominent spike around the midpoint of training
against Mage corresponds to an accidental training phase against the Simple agent.
This change temporarily eased the challenge faced by the Warrior agent, leading to
artificially inflated winrates. Once training against the appropriate opponents resumed,
the winrates corrected to more realistic levels.

5.3 Overall performance: The graph indicates a generally unstable performance in
all matches, with significant variability in winrates. Such fluctuations suggest that the
Warrior agents are struggling to consistently apply effective strategies against their
opponents, which may be due to the complexity of the Control Warrior play style.
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Figure 5.4. Graph showing a winrate of agent training with Miracle Rogue against agent
using a pre-crafted deck.

5.4 Complexity of Miracle Rogue: The graph shows an increase in winrates at the
beginning of training in all matches, reflecting an initial phase in which the agents
were matched with the Simple agent. However, the Miracle Rogue deck is known for
its complexity and relies heavily on card synergies and precise play sequences to be
effective. So, observing lower winrates across different classes was expected.

5.4 Performance overview: The general trend of improvement in some matches to-
ward the later stages of training may suggest gradual learning and adaptation. However,
the complexity of the deck probably requires more refined tuning of the neural network,
training algorithms, and also much longer training to achieve better consistency and
higher winrates.
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Testing:
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Figure 5.5. Graph showing a winrate of PPO agent playing as Zoo Warlock against Simple
agent using a pre-crafted deck.

5.5 Rapid early improvement: Unlike the training performance graph, this test graph
against the Simple agent shows a steep initial increase in winrates for all matches. This
rapid ascent is indicative of the PPO agents quickly adapting to and exploiting the
simpler strategies employed by the Simple agent. Winrates reach a peak and generally
maintain high levels, demonstrating effective learning and generalisation capabilities
when facing a less complex opponent.

5.5 High winrate: After the initial surge, the winrates for most matches stabilise at
high levels, particularly against the Warrior, Mage, and Rogue. This shows the ability
of the PPO agent to maintain consistent performance and suggests that the agent has
learnt effective strategies to exploit the weaknesses of the Simple agent.

5.5 Fluctuations and decline in Warlock matches: Although most matches show
stability, there is a visible decline in the winrate against Warlock towards the end of
the training sessions. This may indicate specific challenges that the Warlock strategy
poses, which could be due to its ability to counter the strategies that the PPO agent
employs effectively against other classes.

5.5 Comparison with training performance: The graph here shows a clearer, more
consistent upward trajectory compared to the training performance graph, where the
winrates were more variable and generally lower. This suggests that the test conditions
against the Simple agent provide a controlled environment in which PPO agents can
leverage its learnt behaviours more effectively. In contrast, the training environment
likely presents a wider variety of challenges and complexities that the PPO agent is
more struggling to handle.

5.5 Implications for further training and testing: High performance against the Simple
agent demonstrates the potential of PPO agents under ideal or less complex conditions.
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However, to improve performance in more variable and challenging scenarios as seen
in the training graph, it may be beneficial to further refine the agent’s training or
incorporate additional strategies and countermeasures specific to the more complex
behaviours exhibited by different classes in regular gameplay.
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Figure 5.6. Graph showing a winrate of PPO agent playing as Tempo Mage against Simple
agent using a pre-crafted deck.

5.6 Rapid early improvement: The graph shows a significant increase in the winrates
for all matches during the early stages of the testing, which was expected. This rapid
improvement suggests that PPO agents quickly learn effective strategies against the
less complex tactics employed by the Simple agent. The sharp incline of the graph
signifies efficient learning and adaptation by the PPO.

5.6 Slight variability: The matches against Warrior and Warlock show some variabil-
ity, but the fluctuations are contained within a relatively narrow range. This indicates
that while the PPO agents is generally successful, there may be specific strategies used
by the Warrior and Warlock that occasionally challenge the agents.

5.6 Comparison with training performance: Unlike the training performance graph
showing much more fluctuation and variability in winrates, the testing graph against
the Simple agent reveals a clearer trend of performance improvement and stability.
This difference underscores the effectiveness of the PPO agents in adapting to and
capitalising on the predictable nature of the Simple agent, as opposed to the more
dynamic and possibly challenging scenarios presented by diverse strategies in the
regular training environment.

5.6 Implications for further training and testing: Consistent high performance against
a Simple agent implies that while PPO agents have become adept at handling less com-
plex opponents, further adjustments or a more sophisticated training regime might be
necessary to handle strategies employed by more advanced or unpredictable opponents,
as suggested by the more variable results in the regular training graph.
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Figure 5.7. Graph showing a winrate of PPO agent playing as Control Warrior against
Simple agent using a pre-crafted deck.

5.7 Initial performance spike: Similar to the training graph, there is an initial spike
in winrates in all matches, suggesting that PPO agents quickly learn to exploit the
predictable strategies of the Simple agent. This rapid adaptation initially leads to high
winrates.

5.7 Decline and stabilisation: Following the initial spike, there is a notable decline in
winrates in matches against the Mage, Rogue, and particularly the Warlock. The win-
rates for these matches gradually stabilise, but at lower levels compared to their initial
peaks. This trend could indicate that, while the agent initially exploits weaknesses
effectively, it may suggest that both agents are using weaker strategies during training.
The main surprise is the large performance drop in the Warrior against Rogue matches,
where the dominance of PPO agents was expected.

5.7 Comparison with training performance: As training progresses, the divergence
between training and testing performance becomes more pronounced. The training
graph shows a gradual improvement in some matches, suggesting ongoing learning and
adaptation. In contrast, the testing results reveal a decline post-initial spike, possibly
reflecting the limitations of the strategies when tested in a controlled environment
against the Simple agent.
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Figure 5.8. Graph showing a winrate of PPO agent playing as Miracle Rogue against
Simple agent using a pre-crafted deck.

5.8 Initial performance spike: The graph shows an improvement in winrates in
all matches. This rise indicates that the PPO agents are quickly learning effective
strategies to exploit the basic strategies of the Simple agent.

5.8 Winrate growth: The higher initial and stabilised winrates in testing indicate
that the PPO agents are effectively learning. However, the lower performance against
Warlock and Warrior in both training and testing suggests that these matches present
specific challenges that the agent has not fully overcome. In general, we can observe a
healthy growth in winrates suggesting that further training may improve the effective-
ness of PPO agents.

5.8 Comparison with training performance: The test graph indicates higher winrates
against the Simple agent compared to the training environment. This suggests that the
PPO agents are better against the less complex strategies of the Simple agent, while it
struggles more in the dynamic and varied training environment.
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B 5.3.2 Pre-crafted deck against random deck

The main purpose of this experiment is to test whether the PPO agents that were
trained against randomly assembled decks would do better in generalisation and per-
formance than training against specific pre-crafted decks over 40,000 sets of training
games. Again, the models were saved at every 1,000-set interval during the feedback
loop, and after training, each 10,000-set saved model was tested against a Simple agent
playing with one of four pre-crafted decks.

Training:

100 Average winrate during training
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Figure 5.9. Graph showing a winrate of PPO agent training with pre-crafted deck against
agent using a randomly assembled deck for each new set.

5.9 Initial performance spike: All classes exhibit a expected steep initial increase in
winrates. This suggests that the pre-crafted decks initially have a strategic advantage
over the random decks, possibly due to better synergy and coordination among the
cards selected based on specific strategies.

5.9 Overall performance: The overall higher performance of pre-crafted decks un-
derscores the importance of strategic deck building based on synergies and targeted
strategies. However, the variability and declines in performance, particularly for the
Warrior, highlight potential gaps in adapting to or countering unexpected strategies
presented by the random deck.
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5.3 PPO experiments

Testing:
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Figure5.10. Graph showing a winrate of PPO agent playing as Zoo Warlock against Simple
agent using a pre-crafted deck.

5.10 Performance overview: The graph indicates that the Warlock’s performance
against the Simple agent varies significantly based on the opponent’s class. In particular,

winrates are generally lower compared to the experiment in which PPO agents were
trained against a specific pre-crafted deck.
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5. Experiments

Average winrate of PPO against Simple agent
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Figure 5.11. Graph showing a winrate of PPO agent playing as Tempo Mage against
Simple agent using a pre-crafted deck.

5.11 Performance overview: The graph indicates that the Mage’s performance
against the Simple agent varies and even at the end shows a winrate decline. Again,

the winrates are generally lower compared to the experiment in which PPO agents
were trained against a specific pre-crafted deck.
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5.3 PPO experiments

100 Average winrate of PPO against Simple agent
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Figure 5.12. Graph showing a winrate of PPO agent playing as Control Warrior against
Simple agent using a pre-crafted deck.

5.12 Performance overview: Compared to other classes tested in similar scenarios,
the overall performance of the Warrior against the Simple agent is lower. In addition,
the wide variance of the Warrior against the Warlock deck may indicate that the agent
encountered less powerful decks during the training period.
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5. Experiments

Average winrate of PPO against Simple agent
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Figure 5.13. Graph showing a winrate of PPO agent playing as Miracle Rogue against
Simple agent using a pre-crafted deck.

5.13 Performance overview: Compared to the performance in training scenarios,

where the agents were trained against a specific pre-crafted deck, the winrates here are
lower with higher variance.
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5.3 PPO experiments

Bl 5.3.3 Random deck against pre-crafted deck

This experiment aims to evaluate the agent’s ability to recognise Hearthstone’s game
rules and objectives, when the agent is training with randomly assembled decks for
each new set. The agents are training against opponents with established deck types;
Zoo Warlock, Tempo Mage, Control Warrior, and Miracle Rogue. We then test the

trained models in play with pre-crafted decks against Simple agent using pre-crafted
decks.

Training:

100 Average winrate during training

random deck vs Mage
random deck vs Rogue
random deck vs Warlock
random deck vs Warrior

80 A

winrate %

0 5 10 15 20 25 30 35 40
x1000 sets

Figure 5.14. Graph showing a winrate of PPO agent training with randomly assembled
decks for each new set against agent using a pre-crafted deck.

5.14 Performance overview: All matches show a sharp decline in winrates at the
beginning of the training period. This suggests an initial struggle to adapt to the ran-
domness of the composition of the deck and the lack of a consistent strategy. Following
the initial drop, there is a gradual increase in the winrates in matches, indicating some
learning and adaptation. However, winrates remain mainly below 40%, with signifi-
cant fluctuations throughout the training period. The general low winrates and high
variability suggest that the agent struggles to develop and apply effective strategies
consistently, which is expected because the decks are not constructed in any strategic
way, so it is more dependent on luck.
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5. Experiments

Testing:
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Figure 5.15. Graph showing a winrate of PPO agent playing with Zoo Warlock against
Simple agent using a pre-crafted deck.
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Figure 5.16. Graph showing a winrate of PPO agent playing with Tempo Mage against
Simple agent using a pre-crafted deck.

5.15 - 5.18 Performance Overview: Compared to our baseline Figures 5.5 - 5.8, the
winrates are significantly lower across almost all tested decks. In particular, the winrates
in mirror matches against the Simple agent are below 50%, indicating that the agent’s
strategies are less effective than playing randomly. The exception to this trend is
observed in Tempo Mage mirror matches, where the winrate exceeds 50%. This suggests

that the Targeting actor has effectively learnt to target opponent characters, enhancing
the agent’s performance in this specific scenario.
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5.3 PPO experiments
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Figure 5.17. Graph showing a winrate of PPO agent playing with Control Warrior against
Simple agent using a pre-crafted deck.
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Figure 5.18. Graph showing a winrate of PPO agent playing with Miracle Rogue against
Simple agent using a pre-crafted deck.
B 5.3.4 Pre-crafted deck against four pre-crafted decks

These experiments aimed to test the performance of agents trained with one of four
pre-made decks against an agents who randomly choose a pre-crafted deck with each
new set (one-on-four). We then test these models against the Simple agent that plays
with pre-crafted decks chosen randomly for every game.

Training:

5.19 Performance overview: All classes show a sharp increase in winrates at the be-
ginning of training. This initial spike likely reflects the rapid learning of basic strategies
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5. Experiments

100 Average winrate during training

winrate %

Mage
Rogue
Warlock
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Figure 5.19. Graph showing a winrate of PPO agent training with a pre-crafted decks
against agent using four pre-crafted deck chosen randomly for each new set.

and tactics of specific decks by agents. After the initial rise, winrates for most classes
stabilise but at relatively moderate levels.
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Testing:

Average winrate of PPO against Simple agent
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Figure 5.20. Graph showing a winrate of PPO agent playing with a pre-crafted deck against
Simple agent using four pre-crafted decks chosen randomly for each new set.

5.20 Performance overview: All classes demonstrate a steep increase in winrates
at the beginning of the training period. This sharp rise suggests that agents quickly
master the basic strategies and tactics of their respective decks, effectively exploiting
the predictable behaviours of the Simple agent. After the initial ascent, the winrates
for most classes stabilise at high levels. The Rogue demonstrates the lowest among the
high performances, but still maintains near a 50% winrate, indicating that agent is able
to learn basic strategies of the most complex deck.

5.20 Comparison to baseline: When comparing the average results of agents trained
with specific pre-crafted decks against those trained with the same pre-crafted decks,
the results demonstrate a close similarity, with a slight advantage of specific vs. specific
pre-crafted deck training. For example, the average winrate for agents trained using
a Warlock deck is approximately 92%, while the average winrate observed in this test
is around 88%, indicating a marginal discrepancy of 4%. A similar trend is observed
across other models, indicating that the agent maintains consistent performance when
trained simultaneously against four distinct decks.

49



Bl 5.3.5 Extended training with Miracle rogue

This experiment aims to test the PPO agent to determine if it is able to learn the
most complex deck we have used for training; Miracle Rogue, over a significantly longer
training time. Training was extended from 40,000 sets to 250,000 sets, and the agent
was trained against four pre-crafted decks chosen randomly each new set. We then test
agent’s performance against Simple agent using four pre-crafted decks chosen randomly
every new game. Since this experiment required a significant amount of computing time,
we managed to train only one model.
Training:

100 Winrate of Rogue during training

—— winrate per set
——- average winrate

80 -

60 -

winrate %

0 50 100 150 200 250
x1000 sets

Figure 5.21. Graph showing a winrate of PPO agent training with Miracle Rogue deck
against agent using four pre-crafted decks chosen randomly for each new set.

5.21 Performance overview: The observed data indicate overall growth in the win-
rate, demonstrating that the agent is either successfully learning the complex strategies
associated with the deck or the performance of the opponent is deteriorating. A sig-
nificant decline in winrate after the 175,000-set is attributed to the interruption and
following resumption of the training session, which was initially halted due to the ex-
haustion of allocated resources. This interruption resulted in the loss of state for the
Adam optimiser, which, upon resumption of training, placed greater emphasis on newly
observed experiences, thereby effecting more substantial adjustments to the model. Fol-
lowing this decline, a recovery in winrate is evident, suggesting that the agent resumed
its learning trajectory, progressively learning the complex strategies of the game.
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Testing:

Average winrate of PPO against Simple agent
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Figure 5.22. Graph showing a winrate of PPO agent playing with Miracle Rogue deck
against Simple agent using four pre-crafted decks chosen randomly for each new set.

5.22 Performance overview: Initially, there is a rapid increase in winrate, reflecting
rapid learning and effective execution of the strategy. However, the graph shows a
peak winrate stabilising below 60% for a considerable period before experiencing a
significant drop to below 20% after the 175,000-set. This performance decline indicates
a critical disruption in the agent’s learning process discussed previously. After the drop,
there is a slight recovery, suggesting some level of re-adaptation, but the overall lower
performance indicates enduring challenges in maintaining previously achieved winrates.
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5. Experiments

I 5.4 A2Cexperiments

A2C was numerically unstable even after many tests and adjustments in training. We
have managed to train only two sets of models without the Warrior model. It is probable
that our training difficulties were due to an exploding gradient, as indicated by the
increasing loss over the duration of training.

B 5.4.1 Pre-craftet deck against four pre-crafted decks

Training:

100 Average winrate during training

—— Mage
—— Rogue
—— Warlock

winrate %
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x1000 sets

Figure 5.23. Graph showing a winrate of A2C agent training with a pre-crafted deck
against agent using three pre-crafted decks chosen randomly for each new set.
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5.4 A2C experiments

Testing:

Average winrate of PPO against Simple agent
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Figure 5.24. Graph showing a winrate of A2C agent playing as Zoo Warlock against Simple
agent using a pre-crafted deck.
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Figure5.25. Graph showing a winrate of A2C agent playing as Tempo Mage against Simple
agent using a pre-crafted deck.

5.24 - 5.26 Performance overview: From Figures 5.24 - 5.26 we can clearly see that

agent performance is poor across all decks used. All mirror matches have a winrate
much lower than 50%, indicating that the agent did not learn any basic strategy.
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Figure 5.26. Graph showing a winrate of A2C agent playing as Miracle Rogue against
Simple agent using a pre-crafted deck.

I 5.5 Comparison of performance

The A2C performed consistently poorly compared to the PPO. Despite extensive ad-
justments to the A2C hyperparameters, the algorithm remained numerically unstable.
Figures 5.24 - 5.26 illustrate that the overall winrates achieved by A2C are significantly
lower than those achieved by the PPO baseline (Figures 5.5 - 5.8). These results under-
score the robustness and numerical stability of the PPO, which demonstrated superior
performance within our experimental environment. The data clearly indicate that PPO
is more adept at learning and executing effective strategies in Hearthstone, highlighting
that it is more suitable for complex multi-agent environments than A2C.

B 5.6 Fixedbugs

We have discovered many bugs in the original implementation of the Hearthstone
simulator. We were able to fix the majority of bugs that prevented a flawless training
progression with pre-crafted decks. However, approximately in 1 out of 5000 games,
we have encountered few other bugs of unknown origin during training with randomly
assembled decks, which are still not fixed and may have affected some experiments to
some extent.

Bugs that we have managed to fix:

= The game failed to conclude correctly, allowing a defeated opponent to take an ad-
ditional turn.

= The game could not return copies of cards to the player’s hand or deck.

= When running several games simultaneously, the game experienced significant mem-
ory leaks.

= Incorrect Deathrattle trigger system.

= Numerous cards were leading to game crashes, necessitating their redesign.
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Chapter 6
Conclusion

In this work, we explored various collectible card games (CCGs) and ultimately selected
Hearthstone due to our familiarity with its rules and the availability of game simulators.
We chose a simulator that is both capable of simulating the game and adaptable to RL
algorithms. After making the necessary adjustments to the Hearthstone simulator, we
implemented two reinforcement learning algorithms and one heuristic agent. We subse-
quently trained the models using each algorithm in different scenarios and empirically
evaluated their performance.

The surprising result is that the PPO agent trained in one-on-four scenario performed
just as well as the PPO agent trained in a one-on-one scenario. This outcome suggests
that the PPO agent was able to generalise effectively across different decks, maintaining
high performance despite the increased variability in its training environment.

The results indicate that the PPO agent successfully learnt some basic strategies
of the game and understood its objectives. This limitation can be attributed to the
PPO, which was originally designed for single-agent environments, whereas our scenario
involved a multi-agent environment. In contrast, the A2C proved almost unusable be-
cause of numerical instability arising from the game’s complexity and the vast size of
game observations. The PPO demonstrated superior robustness and numerical stabil-
ity compared to A2C and showed the ability to learn to some extent the strategies
introduced by the most complex deck used.

I 6.1 Future work

Our work demonstrated that the PPO enabled the agent to learn the game to a certain
degree. PPO does not have any theoretical guarantees, which means that performance
might still be poor after adequate training, due to getting stuck in the local optima.
This suggests that alternative approaches to our feedback loop could be explored, where
the agent focusses on playing only parts of the game rather than the entire game.
This approach might provide the agents with a better understanding of the game’s
rules and facilitate the development of more complex strategies over a shorter training
period. We observed that the agent exhibited slow growth before a significant drop in
winrates with the Miracle Rogue deck during extended training, suggesting that the
PPO agent might be capable of learning complex strategies in sufficient time. Further
research could involve the introduction of more complex heuristic agents, conducting
additional tests with varied experimental hyperparameters to potentially enhance the
results during the training and testing phases. Furthermore, it may be considered to
implement more sophisticated algorithms, such as RNaD [25], may be considered. This
would necessitate further adjustments and redesigns of the game simulator to meet the
algorithm’s requirements.

By pursuing these paths, future work could improve the efficiency and effectiveness
of training agents in complex multi-agent environments like Hearthstone, ultimately
leading to the development of more proficient and adaptable Al.
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