

Fakulta elektrotechnická Katedra Mikroelektroniky

Bakalářská práce

IR kamera pro kontrolu desek s plošnými spoji

Jakub Doktor Elektronika a komunikace

Vedoucí práce: Ing. Alexandr Laposa, Ph.D. Květen 2024

ZADÁNÍ BAKALÁŘSKÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

Příjmení:	Doktor	Jméno: Jakub	Osobní číslo: 507268
Fakulta/ústav:	Fakulta elektrotechnická		

Zadávající katedra/ústav: Katedra mikroelektroniky

Studijní program: Elektronika a komunikace

II. ÚDAJE K BAKALÁŘSKÉ PRÁCI

Název bakalářské práce:

IR kamera pro kontrolu desek s plošnými spoji

Název bakalářské práce anglicky:

IR Camera for Inspection of Circuit Boards

Pokyny pro vypracování:

Seznamte se s problematikou bolometrických a termočlánkových senzorů pro bezkontaktní měření teploty.
 Na základu získaných poznatků zvolte vhodné technické řešení stolní termokamery se zaostřovacím stativem a zařízení realizujte.

3. Implementujte funkce pro zobrazení a ukládání dat termogramů. Přidejte vstup pro externí termočlánkový teploměr, který umožní ověření nastavené emisivity.

4. Sestavte pracoviště pro kontrolu a testování, včetně referenčních zdrojů tepla a standardizovaných testovacích postupů. Proveďte sérii testovacích měření, zhodnoťte dosažené parametry a navrhněte další možná vylepšení.

Seznam doporučené literatury:

[1] J. G. Webster and H. Eren, Eds., Measurement, Instrumentation, and Sensors Handbook. CRC Press, 2017. ISBN 9781315217451.

[2] H. Budzier and G. Gerlach, Thermal Infrared Sensors. Wiley, 2011. ISBN 9780470976913.

[3] A. Rogalski and K. Chrzanowski, "Infrared devices and techniques (revision)," Metrol. Meas. Syst., vol. 21, no. 4, pp. 565–618, Dec. 2014, doi: 10.2478/mms-2014-0057.

Jméno a pracoviště vedoucí(ho) bakalářské práce:

Ing. Alexandr Laposa, Ph.D. katedra mikroelektroniky FEL

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) bakalářské práce:

Datum zadání bakalářské práce: 01.02.2024

Termín odevzdání bakalářské práce:

Platnost zadání bakalářské práce: 21.09.2025

Ing. Alexandr Laposa, Ph.D. podpis vedoucí(ho) práce prof. Ing. Pavel Hazdra, CSc. podpis vedoucí(ho) ústavu/katedry prof. Mgr. Petr Páta, Ph.D. podpis děkana(ky)

III. PŘEVZETÍ ZADÁNÍ

Student bere na vědomí, že je povinen vypracovat bakalářskou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací. Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v bakalářské práci.

Datum převzetí zadání

Podpis studenta

Poděkování

Děkuji především svému vedoucímu práce, Ing. Alexandru Laposovi, Ph.D., za vřelý přístup a cenné připomínky v průběhu psaní práce. Také děkuji své rodině a přátelům za psychickou a morální i technickou podporu. Také děkuji Ing. Petru Vilímovi za příspěvek na výtisk úvodního listu papíru.

Prohlášení

Prohlašuji, že jsem předloženou práci vypracoval samostatně a že jsem uvedl veškeré použité informační zdroje v souladu s Metodickým pokynem o dodržování etických principů při přípravě vysokoškolských závěrečných prací.

V Praze dne 24. května 2024

Abstrakt

Tato bakalářská práce se zabývá návrhem a realizací infračervené kamery pro kontrolu desek plošných spojů (DPS). Cílem bylo vytvořit produkt, který je finančně dostupný a rozměrově kompaktní. V úvodních kapitolách jsou popsány různé technologie kontaktního měření teploty. Následně byl proveden rozbor tématu bezkontaktního měření s využitím bolometrických, termoelektrických a kvantových senzorů.

Práce dále popisuje jednotlivé prvky realizace termokamery, včetně funkcí pro zobrazování a ukládání termogramů, a implementaci externího termočlánkového teploměru pro ověření emisivity. Navržený prototyp byl testován na referenční DPS a dosažené výsledky byly vyhodnoceny. Kvalita výsledné termokamery byla ověřena opakovaným testováním na komerční termokameře, přičemž výsledky ukázaly, že systém je schopen spolehlivě zobrazovat součástky od velikosti 0201 (0,6 mm x 0,3 mm). V závěru práce jsou navržena možná vylepšení pro budoucí vývoj.

Klíčová slova: Termografie, Infračervené zobrazování, Kontrola DPS, Kontaktní měření teploty, Bezkontaktní měření teploty, Termokamera, open-source termokamera

Abstract

This bachelor's thesis deals with the design and implementation of an infrared camera for inspecting printed circuit boards (PCBs). The aim was to create a product that is both financially accessible and compact in size. The introductory chapters cover various technologies for contact temperature measurement. Subsequently, an analysis of non-contact measurement using bolometric, thermoelectric, and quantum sensors was conducted.

Furthermore, the thesis describes the individual elements of the thermal camera, including functions for displaying and storing thermograms, and the integration of an external thermocouple based thermometer to verify emissivity. The proposed prototype was tested on a reference PCB, and the achieved results were evaluated. The quality of the resulting thermal camera was verified through repeated testing on a commercial thermal camera, with results showing that the system is capable of reliably displaying components as small as 0201 (0,6 mm x 0,3 mm).

In conclusion, possible enhancements for future development are suggested.

Keywords: Thermography, Infrared imaging, PCB fault detection, Contact temperature measurement, Non-contact temperature measurement, Thermal camera, open-source thermal camera

Title translation: IR Camera for Inspection of Circuit Boards

Obsah

1	Úvod	1
2	Kontaktní měření teploty	2
2.1	Odporové teploměry	. 2
2	.1.1 Odporové - kovové	. 2
2	.1.2 Odporové - polovodičové .	. 3
2.2	Termočlánkové teploměry $\ . \ . \ .$. 3
3	Bezkontaktní měření teploty	5
3.1	Bolometry	. 5
3.2	Termoelektrické senzory záření	. 5
3.3	Polovodičové/kvantové senzory	. 6
3.4	$Z\acute{a}klady\ .\ .\ .\ .\ .\ .\ .$. 7
3	.4.1 Černé těleso	. 8
3	.4.2 Emisivita \ldots	. 9
3	.4.3 Responzivita	10
3	.4.4 Noise-equivalent Power	
	$(NEP) \dots \dots \dots \dots \dots$	10
3.5	Termokamera	11
3	.5.1 Optický systém	12
3	$.5.2$ Parametry \ldots \ldots \ldots	12
4	Hardware	13
4.1	Kamerový modul \hdots	13
4.2	Referenční teploměr $\ . \ . \ . \ .$	15
4.3	$\check{\mathrm{R}}\mathrm{\acute{i}d}\mathrm{\acute{i}c}\mathrm{\acute{i}}$ a zobrazovací jednotka $% \check{\mathrm{R}}\mathrm{\acute{i}}\mathrm{i}\mathrm{\acute{i}}\mathrm{i}}\mathrm$	17
4.4	Konstrukce jednotky $\ . \ . \ .$.	17
5	Software	23
5.1	SeekThermal S319SPX	23
5.2	Referenční teploměr $\ . \ . \ .$.	25
5.3	Zobrazovací aplikace	25
6	Testovaní	29
6.1	Testovací DPS	29
6.2	Porovnání s termokamerou	
	Optris XI 400	31
7	Výsledky a navrhované vy-	
	lepšení	35
8	Závěr	37
	Literatura	38
A	Slovníček	41
В	Datasheet	42
с	Soupiska dílů	46
D	- Referenční teploměr	49
Е	Testovací DPS	57
F	3D model termokamery	59

G	Výkresy konstrukce	65
Н	Barevné škály	77

Obrázky Tabulky

2.1	Typická struktura odporové-
	ho teploměru2
2.2	Závislost NTC/PTC na teplotě $\ldots 3$
2.3	Závislost výstupního napětí
	na teplotě4
2.4	Principiální konstrukce ter-
	močlánkového teploměru4
3.1	Struktura mikrobolometru5
3.2	Struktura termočlánkového
	pixelu6
3.3	Závislost měrné detektivity
	na vlnové délce7
3.4	Spektrální hustota černého
	tělesa v závislosti na vlnové
	délce8
3.5	Intenzita záření černého tělesa9
3.6	Elektromagnetické spektrum $\dots 9$
3.7	Interakce záření s objektem 11
3.8	Blokové schéma termokamery . 11
4.1	Přidaná přibližovací předsád-
	ka 14
4.2	Kamerový modul S319SPX 14
4.3	Pohled shora na kamerový
	modul S319SPX 15
4.4	Pohled ze strany na kamero-
	vý modul S319SPX 15
4.5	Referenční teploměr 17
4.6	Zapojení modulů k RPI4 17
4.7	Struktura 3D model ter-
	mokamery 18
4.11	Pohled na termokameru
	zprava (otevřené dveře) 18
4.8	Finální konstrukce termoka-
	mery s rozměry 19
4.9	Pohled na termokameru ze-
	předu a zleva 20
4.10	Pohled na termokameru ze
	zadu a zprava 20
4.12	Ponied na termokameru shora . 21
4.13	Ponied na termokameru ze-
	Vilitr
4.14	romed na termokameru ze-
F 4	VIIIti 2
5. I	cnímků osu zpracovalil
	siiiiiku

2.1	Typy termočlánkových tep-
	loměrů4
3.1	Shrnutí druhů bezkontakt-
	ních teplotních senzorů7
3.2	Emisivita různých povrchů
	pro různé vlnové délky 10
3.3	Používané materiály pro čoč-
	ky termokamer 12
4.1	Parametry SeekThermal
	S319SPX
4.2	Porovnání S319SPX a Flir
	ETS320 14
4.3	Specifikace převodníku
	ADS1247
4.4	Porovnání rozhraní pro ter-
	močlánky 16
5.1	Programovací příkazy
	ADS124X
6.1	Tabulka velikostí použitých
	součástek 30
7.1	Výsledná cena výrobku 35

5.2	Možnosti barevného zobraze-
	ní
5.3	Diagram pracovní složky ter-
	mokamery 27
5.4	Menu nastavení aplikace $\ldots \ldots 27$
5.5	Menu nastavení škály 27
5.6	Základní podoba aplikace 28
6.1	Testovací pracoviště
6.3	Rozpoznávací test dle veli-
	kostí součástek s rozměry
	součástek 29
6.2	Rozpoznávací test dle veli-
	kostí součástek 30
6.4	Rozpoznávací test topného
	elementu 30
6.5	Testovací DPS 31
6.6	Testovací pracoviště pro
	Optris XI 400 31
6.7	Porovnání termogramů veli-
	kosti součástek 32
6.8	Porovnání termogramů top-
	ného elementu 32
6.9	Porovnání termogramů veli-
	kosti součástek 2 32
6.10	Porovnání termogramů top-
	ného elementu 2 33
6.11	Porovnání termogramů veli-
	kosti součastek 3 33
6.12	Porovnani termogramu top-
	ného elementu 3 33
6.13	Zobrazovaci aplikace pro
C 1 A	Marris XI 400
6.14	Menu nastavem pro Optris
7 1	AI 400
7.1	termokamera v provozu pri
7 7	Uchyani tostovnej DDC 26
7.2	Iniciální návrh referenčního
D . 1	toploměru 50
ד ס	Ziednodušené zapojoní rofo
D ./	renčního teploměru 52
E 1 7	Řez modelem termokomory 50
1.17	1002 modeleni termokamery 99

Kapitola **1** Úvod

Kontrola desek plošných spojů (DPS) je klíčovým prvkem v elektronickém průmyslu, kde je zajištění vysoké kvality, případné diagnostiky a následné opravy vad výsledných zařízení nezbytné. DPS představují základní stavební kameny elektronických systémů a jakákoli chyba nebo vadný spoj může mít závažné důsledky, včetně poruchy celého zařízení či dokonce rizika požáru či úniku toxických látek.

Tradiční metody kontroly DPS, jako je vizuální inspekce a kontaktní měření teploty, mají svá omezení. Vizuální inspekce může být náchylná k lidské chybě a není vždy spolehlivá při detekci mikroskopických vad nebo nepřesností. Kontaktní měření teploty, založené na použití teploměrů, může být časově náročné a náchylné k ovlivnění výsledků vnějšími faktory, jako jsou například tepelné ztráty do okolního prostředí.

V této práci se zaměřuji na využití infračervené (IR) termografie jako moderního přístupu k náhledu DPS. Infračervená termografie umožňuje bezkontaktní měření teploty a detekci teplotních anomálií pomocí snímání infračerveného záření emitovaného objektem. Tato metoda poskytuje nejenom detailní obraz teplotních rozložení na povrchu DPS, ale také umožňuje detekci skrytých vad, které by jinak mohly zůstat nezjištěny.

Cílem této práce je navrhnout a realizovat infračervenou (IR) kameru s vysokým rozlišením určenou pro kontrolu a opravu DPS. Dalším z hlavních cílů je také zveřejnění výsledného produktu jako open-source projektu.

Kapitola **2** Kontaktní měření teploty

Jak již z názvu vyplývá jedná se o měření teploty, kdy je měřící prvek v kontaktu s měřeným objektem. Kontaktem se vytváří teplovodivá cesta, tím dochází k fyzikálním jevům, které mění fyzikální vlastnosti senzoru. Samotné senzory dělíme dle různých kritérií, např. dle transformace signálu (aktivní/generátorové, pasivní), dle fyzikálního principu (např.: odporové, termoelektrické, aj.).

2.1 Odporové teploměry

Odporové senzory se dělí na kovové a polovodičové senzory. Nejčastěji se setkáme s kovovými odporovými senzory (Pt100, Pt1000). Polovodičové odporové teploměry se nejčastěji používají v aplikacích kdy není vhodné použít teploměry odporové kovové (převážně z cenového hlediska).

2.1.1 Odporové - kovové

Tyto senzory pracují na principu změny odporu v závislosti na teplotě. Tato závislost není lineární po celém teplotním spektru, viz rovnice (2.1).

$$R = R_0 (1 + A\vartheta + B\vartheta^2 + C\vartheta^3 + \dots), \qquad (2.1)$$

kde koeficienty $A, B \ aC$ jsou koeficienty závislé na kalibračních konstantách α, β a γ , které jsou dány výrobcem senzoru[1]. Jedná se o nekonečnou řadu, která se pro rozmezí teplot 0 - 100 °C aproximuje do podoby rovnice (2.2).

$$R = R_0 (1 + \alpha \vartheta) \mathbf{y} \tag{2.2}$$

kde R_0 udává hodnotu odporu při 0 °C, α je teplotní součinitel odporu a ϑ teplota ve stupních Celsia. Při výrobě senzorů jsou používány kovy, které mají teplotně stabilní činitel odporu. Nejpoužívanější materiály na výrobu těchto senzorů jsou platina (Pt), měď (Cu) a nikl (Ni)[2]. Typickou konstrukci teploměru lze vidět na obrázku 2.1.

Obrázek 2.1. Typická konstrukce industriálního odporového teploměru[1].

2.1.2 Odporové - polovodičové

Polovodičové senzory teploty podobně jako teploměry kovové využívají závislosti odporu na teplotě. Polovodičové odporové teploměry dělíme na NTC/PTC-termistory a monokrystalické senzory teploty. Závislost odporu na teplotě je silně nelineární, proto se používají jen pro poměrně úzké rozmezí teplot, kde je závislost linearizována viz obrázek 2.2. Pro NTC termistory se udává teplotní závislost odporu rovnicí (2.3)

$$R = R_0 \cdot e^{-\beta \left(\frac{1}{T_0} - \frac{1}{T}\right)},$$
(2.3)

kde R_0 a R jsou hodnoty odporu při jejich respektivních teplotách T_0 a T. β je materiálová teplotní konstanta. Pokud měříme v malém okolí pracovní teploty T_0 , můžeme rovnici (2.3) linearizovat rozvojem do Taylorovy řady

$$R = R_0 \left(1 - \frac{\beta}{T_0^2} \Delta T \right) = R_0 \left(1 + \alpha \Delta T \right), \text{ kde } \alpha = -\frac{\beta}{T_0^2}.$$
 (2.4)

Parametr α je senzitivita termistoru na změnu teploty ΔT při teplotě $T_0[1]$. β i α bývají uváděny výrobcem. Pro přesnější vyhodnocení teploty se rovnice (2.3) rozvíjí do nekonečné řady

$$\frac{1}{T} = A + B \ln \frac{R}{R_0} + C \left(\ln \frac{R}{R_0} \right)^2 + D \left(\ln \frac{R}{R_0} \right)^3 + \dots$$
(2.5)

Zde hodnota R_0 odpovídá referenčnímu odporu, například 1 Ω nebo 1 k Ω . Samotné parametry A, B, C a D lze zjistit regresní analýzou.

Obrázek 2.2. (a)Závislost odporu NTC termistoru na teplotě[3] a (b)Závislost odporu PTC termistoru na teplotě[1].

2.2 Termočlánkové teploměry

Tento druh teploměrů využívá Seebeckova jevu. Samotný Seebeckův jev spočívá v generování elektrického pole mezi dvěma konci vodiče, které mají různou teplotu. Pro vodič z jednoho materiálu se tento jev označuje jako absolutní Seebeckův efekt[1]. V realitě jsou termočlánkové teploměry založeny na relativním Seebeckově jevu, který se prokazuje zahříváním spoje dvou termoelektrických materiálů (A a B), kde spoj je o teplotě $T_{\rm m}$ a zbylé konce o teplotě $T_{\rm r}$. Výsledné elektrické pole odpovídá rovnici (2.6)

$$E_{\rm AB}(T_{\rm m}, T_{\rm r}) = E_{\rm A}(T_{\rm m}, T_{\rm r}) - E_{\rm B}(T_{\rm m}, T_{\rm r}).$$
(2.6)

Citlivost těchto teploměrů udává Seebeckův koeficient, σ vyjádřený rovnicí (2.7)

$$\sigma(T) = \lim_{\Delta T \to 0} \frac{\Delta E}{\Delta T} = \frac{dE}{dT}.$$
(2.7)

V rovnici (2.7) se jedná o absolutní Seebeckův koeficient a pro relativní Seebeckův koeficient platí podobný vztah jako v rovnici (2.6), viz rovnice (2.8)

$$\sigma_{\rm AB}(T_{\rm m}) = \sigma_{\rm A}(T_{\rm m}) - \sigma_{\rm B}(T_{\rm m}). \tag{2.8}$$

V tabulce 2.1 jsou vypsány různé typy termočlánkových teploměrů společně s konstrukčním materiálem a jejich teplotním rozsahem. Na obrázku 2.3 lze vidět nelineární závislost generovaného napětí na teplotě teplého konce teploměru a na obrázku 2.4 je principiální konstrukce termočlánkového teploměru.

Tabulka 2.1. Typy termočlánků s konstrukčním materiálem a teplotním rozsahem[3, 4].

Označení	Materiál	Teplotní rozsah
Т	Cu-CuNi, Cu-ko	- 200 až 350
J	Fe-CuNi	- 200 až 750
E	NiCr-CuNi, ch-ko	- 100 až 900
Κ	Ni-Cr-Ni, ch-a	- 200 až 1200
Ν	NiCrSi-NiSi	- 200 až 1200
\mathbf{S}	PtRh10%-Pt	0 až 1600
R	PtRh13%-Pt	0 až 1600
В	PtRh30%-PtRh6%	300 až 1700

Obrázek 2.3. Závislost výstupního napětí na teplotě různých termočlánkových teploměrů[5].

Obrázek 2.4. Principiální konstrukce termočlánkového teploměru[4].

Kapitola **3** Bezkontaktní měření teploty

Mezi nejvýznámější bezkontaktní teplotní senzory patří pasivní senzory bolometrické, generátorové senzory termoelektrické, senzory polovodičové, také nazývané kvantové a aktivní senzory pyroelektrické (také známé jako pyrometrické, tzv. pyrometry), které fungují na pyroelektrickém jevu. V této práci probereme pouze první tři druhy senzorů. V tabulce 3.1 jsou shrnuty probrané senzory.

3.1 Bolometry

Bolometrické bezkontaktní senzory tepla využívají principu odporových teploměrů, viz kapitola 2.1.1. Jedná se o poměrně citlivou a přesnou řadu senzorů, která se skládá z absorbentu, odporového teplotního senzoru (bolometrického lůžka) a substrátu[6].

Při dopadu elektromagnetického záření v dynamickém rozsahu senzoru, dochází k přeměně energie vyzařované tělesem na teplo což vede ke změně odporu senzoru. Účinnost snímače bývá navíc vylepšena přidáním reflexní vrstvy pod bolometrické lůžko, aby se neabsorbované záření odrazilo zpět do snímače[7]. Typicky jsou tyto senzory vyráběny pro vlnové délky 7 - 14 μm.

Výhodou bolometrických senzorů je vysoká přesnost a skvělá selektivita podobně jako u protější kontaktní verze. Další výhodou je způsob vyhodnocení naměřené teploty. Protože jde v principu o stejný postup jako pro vyhodnocení kontaktního odporového teploměru, je změna odporu bolometrického pixelu úměrná absolutní teplotě T.

Obrázek 3.1. (a)Struktura mikrobolometrického pixelu a (b)FPA pole mikro - bolometrických pixelů[4].

3.2 Termoelektrické senzory záření

Termoelektrické senzory používají stejné materiály pro absorbent a substrát, jako senzory bolometrické. Tento druh senzoru využívá Seebeckova jevu, viz kapitola 2.2. Proto jsou termoelektrické senzory zařazovány mezi senzory generátorové. To odstraňuje

nevýhody bolometru spojené s proudovým buzením senzoru. Na druhou stranu přináší potřebu nízkého zatížení a tedy velké vstupní impedance měřicích obvodů.

Typicky se v jednom senzoru řadí sériově několik termočlánků, to zlepšuje citlivost senzoru na úkor časové konstanty systému. Teplý spoj termočlánku je spojen s absorbentem, zatímco studený spoj je spojen se substrátem, nebo pouzdrem[6]. Termoelektrické senzory byly jedny z nejpoužívanějších senzorů v infračervené měřící technice, pokrokem v optimalizaci výroby je tato pozice obsazena bolometry. Oproti bolometrům ztrácejí na citlivosti. Tato nevýhoda je kompenzována jejich cenou výroby[8]. Také přebírají hlavní nevýhodu termoelektrických kontaktních senzorů, protože termočlánek měří rozdíl teplot mezi teplým a studeným koncem, je nutno aby všechny senzory obsahovaly teploměr absolutní teploty pro studený konec. Ten je většinou integrovaný v podobě polovodičového referenčního teploměru[1].

Obrázek 3.2. Struktura termočlánkového pixelu[4].

3.3 Polovodičové/kvantové senzory

Kvantové senzory spoléhají na interakci jednotlivých fotonů s krystalickou mřížkou polovodičových materiálů[1]. jedná se tedy o senzory využívající fotovoltaický a fotorezistivní jev.

Když foton s dostatečnou rychlostí dopadne na polovodičový krystal, jeho energie musí být dostatečně vysoká k oddělení elektronu od jeho místa ve valenčním pásmu a tlačit jej skrz energetickou mezeru do vodivostního pásma na vyšší energetické úrovni. V tomto pásmu je elektron volný k tomu, aby sloužil jako nosič proudu. Nedostatek elektronu ve valenčním pásmu vytváří díru, která také slouží jako nosič proudu. To se projevuje snížením specifického odporu materiálu. Energetická mez slouží jako práh pro fotonovou energii, pod kterým materiál není citlivý na světlo[1].

Pro menší fotonové energie (delší vlnové délky), jsou vyžadovány polovodiče s užším zakázaným pásem, jinak jsou fotony s nižší energií příliš slabé na překonání mezery. Avšak i když má speciální kvantový detektor dostatečně úzké zakázané pásmo, při pokojových teplotách je jeho vlastní vnitřní šum mnohem vyšší než generovaný signál. To je důvod, proč pro provoz ve středních a vzdálených IR spektrálních oblastech musí mít kvantový detektor nejen dostatečně úzkou energetickou mezeru, ale senzor musí být chlazen na úroveň, kde je jeho vlastní vnitřní šum snížen na přijatelnou úroveň. V závislosti na požadované citlivosti a pracovní vlnové délce se pro kryogenně chlazené fotorezistory obvykle používají následující krystaly: sulfid olovnatý (PbS), indium

11 11

Obrázek 3.3. Závislost měrné detektivity na vlnové délce[1].

Detektory	Bolometrické	Termočlánkové	Kvantové
princip Teplotní závislost výst. signálu spektrální rozsah nutnost chlazení cena výroby wychlost odczuv	změna odporu T 0,75-1000µm ne vysoká pomolé	generování elektri ΔT 3-15µm ne nízká ² wychlá	cké veličiny T úzký ¹ ano vysoká wychlá
Tychlost odezvy	pomaia	rycina	Tycina

Tabulka 3.1. Shrnutí druhů bezkontaktních teplotních senzorů.

arsenid (InAs), germanium (Ge), selenid olovnatý (PbSe) a amalgám rtuti-kadmium--tellurid (HgCdTe), viz obrázek 3.3.

3.4 Základy

Základem celé radiometrie jsou tři fyzikální zákony. První zákon je Planckův vyzařovací zákon, který stanovuje, že množství energie vyzářené absolutně černým tělesem,
které je závislé na teplotě T samotného tělesa a vlnové délce záření λ .

$$E_{\lambda} = \frac{c_1}{\lambda^5 (e^{\frac{c_2}{\lambda \cdot T}} - 1)}.$$
(3.1)

 $^{^1\,}$ Přesný spektrální rozsah je závislý na použitém materiálu detektoru

 $^{^2}$ S rozlišením drasticky stoupá cena výroby

Kde c_1 a c_2 jsou konstanty

$$c_1 = 2\pi^2 h c^2 \text{ a } c_2 = \frac{hc}{k_{\rm B}}.$$
 (3.2)

kdeh je Planckova konstanta, c je rychlost světla ve vakuu a $k_{\rm B}$ je Boltzmannova konstanta. Pro malé hodnoty součinu λT platí

$$e^{\frac{c_2}{\lambda T}} \gg 1. \tag{3.3}$$

tímto krokem získáváme zjednodušenou podobu Planckova vztahu, tvz. Wienův posunovací zákon[4]

$$W_{\lambda} = c_1 \lambda^{-5} \cdot e^{-\frac{c_2}{\lambda \cdot T}}.$$
(3.4)

Protože je teplota statistickou reprezentací průměrné kinetické energie, vyjadřuje nejvyšší pravděpodobnost pro částice, aby vibrovaly o specifické frekvenci a vlnové délce. Tato pravděpodobnost vychází z křivky dané vztahem (3.4). Zákon také popisuje maximální vlnovou délku $\lambda_{\rm m}$ na dané absolutní teplotě T. Získáme ji přiřazením první derivace vztahu (3.4) k nule[1, 4]

$$\lambda_{\rm m} = \frac{b}{T},\tag{3.5}$$

kde $b = 2898 \,\mu \text{K}[1]$. Ze vztahu (3.5) lze vidět, že vlnová délka s teplotou klesá.

Dalším důležitým zákonem pro bezkontaktní měření teploty je Stefanův-Boltzmannův zákon, který zamezuje šířku pásma tepelné radiace. Výsledný tvar zákonu, který je odvozen z Planckova vyzařovacího zákonu a znázorněn na obrázku 3.4, lze vidět v rovnici (3.6).

$$E = \epsilon \sigma T^4, \tag{3.6}$$

kde E je hustota zářivého toku, ϵ emisivita, σ Stefanova-Boltzmannova konstanta a T je teplota v K [1].

Obrázek 3.4. Závislosti spektrální hustoty dokonale černého tělesa na vlnové délce[9].

3.4.1 Černé těleso

Jedná se o těleso, které pohlcuje jakékoliv záření dopadající na jeho povrch a zároveň vyzařuje na všech vlnových délkách při dané teplotě maximální dosažitelnou energii zářivého toku, viz obrázek 3.5. Takové těleso se v přírodě nikde nenachází, jde o idealizovaný objekt[10], který se využívá pro popis fyzikálních zákonů pro elektromagnetické vyzařování. V praxi lze vytvořit model absolutně černého tělesa za pomoci světelně neprostupné dutiny s otvorem[1]. Plocha otvoru musí být mnohem menší než plocha

Obrázek 3.6. Elektromagnetické spektrum[11].

vnitřního povrchu samotné dutiny. Pro reálný svět se spíše setkáváme s názvem šedé těleso, což označuje všechny objekty, které se blíží k ideálním vlastnostem černého tělesa. Rozdíl těchto vlastností udává parametr emisivity ϵ . Na obrázku 3.6 lze vidět rozložení elektromagnetického spektra.

3.4.2 Emisivita

Emisivita je parametr charakterizující povrch měřeného objektu, jehož hodnota je podle vztahu (3.7) rovna hodnotě absorpce povrchu α_{λ}

$$\varepsilon_{\lambda}(\lambda, T) = \alpha_{\lambda}(\lambda, T). \tag{3.7}$$

Podle Stefanova-Boltzmanova zákona pro vyzařování šedého tělesa, viz kapitola 3.4 rovnice (3.6), udává emisivita povrchu tělesa jeho schopnost emitovat tepelné záření.

Čím větší je emisivita, tím více tepelného záření předmět při dané teplotě vyzáří. Emisivita není pro daný povrch konstantní a je funkcí mnoha dalších parametrů, především teploty tělesa a vlnové délky záření, což je třeba při měření zohlednit[12]. Jak bylo již zmíněno emisivita je závislá na vyzařované vlnové délce což znamená, že se musí použít různé emisivity pro různé infračervené senzory viz tabulka 3.2. Pro tuto práci je důležitý sloupec pro spektrální odezvu 8 - 14 μ m.

spektrální odezva	$1,0~\mu{ m m}$	1,6 $\mu \mathrm{m}$	$5,1~\mu m$	$8\text{-}14~\mu\mathrm{m}$	
materiál		emis	ivita ϵ		
Hliník (neoxidovaný)	0,1-0,2	0,02-0,2	0,02-0,2	$0,\!02\text{-}0,\!1$	
Hliník (leštěný)	0,1-0,2	0,02-0,1	0,02-0,1	0,02-0,1	
Hliník (broušený)	0,2-0,8	0,2-0,6	0,1-0,4	0,1-0,3	
Hliník (oxidovaný)	0,4	$0,\!4$	0,2-0,4	0,2-0,4	
Měď(leštěná)	0,05	0,03	0,03	0,03	
Měď (broušená)	0,05-0,2	$0,\!05-\!0,\!2$	$0,\!05\text{-}0,\!15$	0,05-0,1	
Měď (oxidovaná)	0,2-0,8	0,2-0,9	0,5-0,8	0,4-0,8	
Olovo (leštěné)	0,35	$0,\!05-\!0,\!2$	0,05-0,2	$0,\!05-\!0,\!1$	
Olovo (broušené)	$0,\!65$	$0,\!6$	$0,\!4$	$0,\!4$	
Olovo (oxidované)	_	0,3-0,7	0,2-0,7	0,2-0,6	
Cín (neoxidovaný)	0,25	0,1-0,3	$0,\!05$	$0,\!05$	
Zlato	0,3	0,01-0,1	0,01-0,1	0,01-0,1	
Stříbro	0,04	$0,\!02$	$0,\!02$	0,02	
Sklo (tabulové)	_	0,2	$0,\!98$	$0,\!85$	
Sklo (foukané)	_	$0,\!4\text{-}0,\!9$	0,9	—	
Keramika	0,4	$0,\!8-\!0,\!95$	$0,\!8-\!0,\!95$	0,95	
Plast (neprůhledný)	—	—	0,95	0,95	
Guma	_	_	0,9	0,95	

Tabulka 3.2. Emisivita různých povrchů pro různé vlnové délky[13].

3.4.3 Responzivita

Responzivita senzoru popisuje změnu hodnoty výstupní proměnné v důsledku změny vstupní proměnné, která způsobuje tuto změnu[4]. Jedná se tedy o schopnost reagovat na změny infračerveného záření v prostředí. Vyšší responzivita znamená, že senzor je schopen rychleji a přesněji detekovat změny v infračerveném záření. Rozlišujeme několik typů responzivit: napěťová, viz rovnice (3.8), kde S je responzivita, ΔU změna výstupního napětí, $\Delta \Phi$ změna zářivého toku. Proudová, viz rovnice (3.9), kde ΔI je změna výstupního proud. A spektrální responzivita, která je převážně daná materiálem senzoru (u termokamer také materiálem optiky.)

$$S_{\rm V} = \frac{\Delta U}{\Delta \Phi} \tag{3.8}$$

$$S_{\rm I} = \frac{\Delta I}{\Delta \Phi} \tag{3.9}$$

3.4.4 Noise-equivalent Power (NEP)

Noise-equivalent Power je definována jako výkon dopadající na detektor při vlnové délce λ , který poskytuje signál rovný efektivní hodnotě šumu při měření s šířkou pásma 1 Hz. NEP závisí také na modulační frekvenci, přičemž tento efekt bývá významný

u tepelných detektorů, ale často zanedbatelný u kvantových detektorů[1]. Jedná se tedy o míru citlivosti senzoru, která vyjadřuje minimální výkon signálu, který je detekovatelný nad pozadím šumu na úrovni určené NEP. Čím nižší je NEP, tím citlivější je senzor nebo detektor. NEP se často používá v oblasti optoelektroniky a fotoniky, například při charakterizaci fotodetektorů a čidel pro detekci světla nebo infračerveného záření. Výpočet NEP obvykle zahrnuje měření šumu detektoru v kombinaci se známou účinností senzoru a šířkou pásma signálu. Vyjadřuje se jako výkon, obvykle ve wattech (W) nebo ve wattech na druhou odmocninu hertzu (W/ $\sqrt{\text{Hz}}$). Nižší NEP umožňuje detekci slabších signálů a zlepšuje citlivost detektoru.

Tento parametr je také spojen s detektivitou senzoru D dle vztahu $D = \frac{1}{NEP}$. U senzorů se setkáme spíše s pojem Měrná detektivita D^* , která je daná rovnicí (3.10), kde A odpovídá snímací ploše, B_f je šířka pásma.

$$D^* = \frac{\sqrt{A \cdot B_f}}{NEP(\lambda)} \tag{3.10}$$

3.5 Termokamera

Jedná se o měřící zařízení, které zpracovává naměřená data ze senzoru do tzv. termogramu. Záření dopadající na objekt se skládá ze záření emitovaného (ϵ), záření odraženého (ρ), záření pohlceného (α) a záření procházejícího objektem (τ), viz obrázek 3.7. Proto termogram představuje pouze aproximaci rozložení teploty ve scéně. Jde o standardní fotografickou kameru, se zaměněnými optickými filtry a snímacím senzorem jak lze vidět na obrázku 3.8.

Obrázek 3.7. Interakce záření s objektem[14].

Obrázek 3.8. Blokové schéma termokamery[15].

3.5.1 Optický systém

Velikou součástí funkční termokamery je její optický systém. Tento systém určuje podstatnou část finálních parametrů termokamery, jako třeba velikost zorného pole, šířku spektrálního rozsahu zužovanou materiálem čočky, fokální vzdálenost. V tabulce 3.3 lze vidět některé z používaných materiálů pro výrobu čoček. Pro přesné měření je nutná kalibrace systému vůči jeho vlastnímu zahřívání, která se provádí opakovaným zacloněním. Časté zaclonění však zároveň narušuje samotné měření. Časový interval mezi zacloněním je dán teplotní změnou zobrazované scény[4].

Matriál	spektrální rozsah μm
Germanium [Ge]	2 - 17
ZnSe	0,5 - 17
Fluorid vápenatý $[CaF_2]$	0,13 - 10
Safír $[Al_2O_3]$	0,17 - 5
Silikon [Si]	1,2 - 9

Tabulka 3.3. Používané materiály pro čočky termokamer[16].

3.5.2 Parametry

Pramatery HFOV a VFOV reprezentují horizontální a vertikální úhlové rozsahy pozorované scény, jak jsem již zmínil v podkapitole 3.5.1, jsou závislé na použité optice termokamery. Dalším důležitým parametrem je spektrální rozsah, který specifikuje na jaké vlnové délky kamera reaguje. Velice zásadním parametrem je NETD, jedná se o rozlišovací schopnost termokamery. NETD (Noise-equivalet temperature difference) vyjadřuje rozlišovací schopnost teplotního rozdílu ΔT v objektu, který generuje SNR rovný 1[4].

$$NETD = \frac{u_n}{\Delta U} \Delta T \tag{3.11}$$

Rovnice (3.11) ukazuje nejběžnější výpočet NETD, kde u_n je efektivní šumové napětí, ΔU rozdílový signál středních hodnot výstupního napětí a ΔT teplotní rozdíl pozadí a měřeného objektu. Důležitým parametrem je také teplotní rozsah, který termokamera může správně snímat. Pokud termokamerou měříme teploty nižší/vyšší než je specifikováno, výrobce nezaručuje přesnost měření.

Kapitola **4** Hardware

V této kapitole proberu použitý hardware, který se skládá z kamerového modulu, modulu pro referenční měření teploty, řídící, zobrazovací jednotkou a na závěr modelem konstrukce jednotky. Realizace termokamery je inspirována termokamerou Flir ETS320.

4.1 Kamerový modul

Pro realizaci termokamery jsem zvolil kamerový modul S319SPX od firmy SeekThermal. Modul se vyznačuje mikrobolometrickým senzorem s vysokým rozlišením 320x240 pixelů a vysoké snímkové frekvenci až 27 Hz[17]. Modul komunikuje pomocí USB protokolu. Programuje se pomocí řadičů dostupných na vývojářských stránkách firmy SeekThermal. Programování, zobrazovací módy a ostatní softwarové specifikace proberu v kapitole 5.1. Modul S319SPX jsem vybral kvůli jeho optice s předpokladem, že tovární optika bude schopna zaměřit objekt ve vzdálenosti 10 cm. Očekávaná zobrazovaná plocha měla být přibližně 32 mm x 43 mm s rozlišením 0,132 mm na pixel. Po otestování modulu se ukázalo, že v továrním nastavení není modul schopen zobrazit ostrý obraz objektu ve vzdálenosti 10 cm. Při následném testování jsem naměřil minimální fokální vzdálenost pro ostrý obraz, která činila přibližně 1,5 m. Modul je původně určen pro snímání vzdálených objektů, viz parametry HFOV, VFOV, identifikační a detekční vzdálenost v tabulce 4.1, a proto bylo nutné použít předsádku.

Parametr	Hodnota	
Rozlišení senzoru	$320 \ge 240$ pixelů	
Typ objektivu	24° pevný objektiv	
Zorné pole (HFOV x VFOV)	$24^{\circ} \ge 18^{\circ}$	
Detekční vzdálenost	$758 \mathrm{~m}$	
Identifikační vzdálenost	$108 \mathrm{~m}$	
Spektrální rozsah	7,8 - 14 μm	
Teplotní citlivost (NETD)	typ. 65 mK	
Obnovovací frekvence	až 27 Hz	
Rozsah měření teploty	-40°C až 330°C	
Komunikační rozhraní	USB	
Kompatibilita	Android, Windows, Linux	

Tabulka 4.1. Používané materiály pro čočky termokamer[17].

Použitá předsádka, viz obrázek 4.1, je vyrobena z materiálu ZnSe[18] a zkracuje fokální vzdálenost z předpokládaných 100 mm na 38 mm. Přiblížením se zmenšila zobrazovací plocha na 10 mm x 15 mm, oproti předpokládané ploše 32 mm x 43 mm. Na úkor menší snímané plochy jsem zlepšil rozlišení na přibližně 0,045 mm. Porovnání parametrů modulu s inspirační kamerou lze vidět v tabulce 4.2. Na obrázcích 4.2 až 4.4 je vyfocen samotný modul S319SPX.

4. Hardware

. . . .

. . .

.

Obrázek 4.1. Přidaná přibližovací předsádka.

Parametr	SeekThermal S319SPX	FLIR ETS320
Rozlišení senzoru	320 x 240 pixelů	320 x 240 pixelů
Zorné pole	$24^{\circ} \ge 18^{\circ}$	$45^{\circ} \ge 34^{\circ}$
Spektrální rozsah	7,8 - 14 μm	$7{,}5$ - $13~\mu{\rm m}$
Teplotní citlivost (NETD)	typ. 65 mK	< 60 mK
Obnovovací frekvence	až 27 Hz	$9~\mathrm{Hz}$
Rozsah měření teploty	-40°C až 330°C	-20°C až 250°C
Typ objektivu	24° pevný objektiv	Pevný objektiv
Cena (bez DPH)	700 €	2850 €

Tabulka 4.2. Porovnání S319SPX a Flir ETS320[17, 19].

Obrázek 4.2. Kamerový modul S319SPX.

Obrázek 4.3. Pohled shora na kamerový modul S319SPX.

Obrázek 4.4. Pohled ze strany na kamerový modul S319SPX.

4.2 Referenční teploměr

Jako referenční teploměr jsem zvolil měření pomocí termočlánkového teploměru typu K. Termočlánek je vyhodnocen analogově-digitálním převodníkem, ADS1247 od firmy Texas Instruments, s rozlišením 24 bitů. Jak lze vidět z tabulky 4.3, jedná se o ADC pro senzorové měření a disponuje vysokým rozlišením výstupního slova a vysokou rychlostí převodu. Tyto dvě vlastnosti umožňují vyšší teplotní přesnosti oproti jiným specializovaným převodníkům pro termočlánky, viz tabulka 4.4.

Parametr	Hodnota
Napájecí napětí ¹ Roglišení	2,7 - 5,5 V 24 bitů
Přenosová rychlost	až 2 kSps
Počet vstupů Interní referenční zdroj	4 2 048 V
Nízko šumový PGA	$48 \text{ nV}_{\text{RMS}}$ při zesílení 128
Komunikační protokol	SPI

Tabulka 4.3. Specifikace převodníku ADS1247[20].

Tabulka 4.4.	Porovnani	rozhrani	pro	termoclanky.

Komponenta	Pozitiva	Negativa
ADS1247	vysoké rozlišení (24-bitů), nízký šum a drift, vhodné pro přesná měření, rychlé převody až 2 kSps	relativně složitá implementace, vyžaduje externí komponenty
MAX6675	jednoduché použití, SPI rozhraní pro snadnou integraci, cenově dostupný	omezeno pouze na termočlánky typu K, nižší rozlišení (12-bit), nižší přesnost, pomalé převody (200 ms)
MCP96L00	podpora více typů termočlánků, integrovaná kompenzace studeného spoje, I2C rozhraní pro flexibilní připojení	složitější konfigurace, může vyžadovat více kalibrace, mírně vyšší spotřeba energie

Převodník komunikuje přes SPI sběrnici a využívá dvou vstupních a jednoho výstupního signálu. V pozdější kapitole 5.2 proberu programování převodníku více podrobněji.

V průběhu realizace prošel modul dvěma verzemi. Obě verze převážně vychází z aplikačního zapojení od TI. První verze měla použít referenční teploměr MAX6610, který by poskytoval referenční napětí pro převodník o velikosti 2,56 V, viz příloha D.1. Toto zapojení obsahovalo velikou nevýhodu, výsledný teploměr by fungoval pouze pokud by se měřila teplota větší jak okolní teplota studeného konce. Proto jsem přistoupil k jednoduššímu zapojení za použití vnitřní napětové a teplotní reference převodníku, viz příloha D.7. Tím jsem získal celý pracovní rozsah termočlánku, viz tabulka 2.1. Výsledný modul lze vidět na obrázku 4.5. Bohužel z časových důvodů jsem neobjednal novou verzi DPS, která by byla kompaktnější.

 $^{^1\,}$ Pro napájení digitální části/unipolární analogové části, bipolární analogové části \pm 2,5 V

Obrázek 4.5. Referenční teploměr.

4.3 Řídící a zobrazovací jednotka

Pro zpracování dat jsem zvolil mikropočítač RPi4B s 4 GB RAM. Tuto cestu jsem zvolil protože se jedná o výkoné a zároveň poměrně kompaktní zařízení, které je dostupné. Dále jsem potřeboval přístup k GPIO pinů pro propojení referenčního teploměru, viz kapitola 4.2. Mikropočítač je chlazen pasivním chladičem, který za běhu dosáhne maximální teploty okolo 40 °C. K mikropočítači je připojen 4,3 palcový displej s rozlišením 800 pixelů x 480 pixelů a kapacitní dotykovou vrstvou od firmy Waveshare[21]. Tento displej jsem vybral, protože používá DSI konektor pro připojení. Nezabírá tím 40 pinový konektor mikropočítače ani jeden z vestavěných micro-HDMI portů. Tím je propojení více schované. K mikropočítači je také připojeno vypínací tlačítko, které umožňuje mikropočítač "uspat" a poté znovu zapnout. Výsledné blokové schéma propojení jednotlivých modulů lze vidět na obrázku 4.6.

Obrázek 4.6. Zapojení modulů k RPI4.

4.4 Konstrukce jednotky

Celá konstrukce je tisknuta na 3D tiskárně v plastu PETG, barvy RAL5015, kterou jsem uznal jako nejbližší k barevnému kódu zadanému v grafickém manuálu identity

4. Hardware

ČVUT (barva je označovaná jako Pantone 300 nebo C:100 M:43 Y:0 K:0). Plast PETG jsem zvolil kvůli jeho vyšší teplotě skelného přechodu, mezi 75 °C a 80 °C[22]. Kostra jednotky se skládá z 10 kusů, které jsou spojeny dohromady šrouby, viz obrázek řezu F.17. Displej je nakloněn o 30 stupňů pro zlepšení pozorovací polohy uživatele. Model jednotky lze vidět na obrázcích 4.7 a výsledný sestavený výtisk na obrázku 4.8. Aby měřící prostor mezi termokamerou a sledovaným objektem byl co nejvíce volný, je předsádka připevněna na oddalující tunel. Tento tunel minimálně zasahuje do zorného pole samotného kamerového modulu a přináší pocit, že je měřící prostor větší.

Obrázek 4.7. 3D model termokamery.

Obrázek 4.11. Pohled na termokameru zprava.

. .

Obrázek 4.8. Finální konstrukce termokamery s rozměry.

4. Hardware

Obrázek 4.9. Pohled termokamery a) zepředu b) zleva.

Obrázek 4.10. Pohled termokamery a) zezadu b) zprava.

Obrázek 4.12. Pohled termokamery shora.

Obrázek 4.13. Pohled na termokameru zevnitř.

4. Hardware

Obrázek 4.14. Pohled na termokameru zevnitř.

Kapitola **5** Software

Vzhledem k tomu, že termokamera běží na RPi4, jsem se rozhodl, že nejvhodnějším programovacím jazykem pro tento účel bude Python. V následujících podkapitolách podrobněji proberu softwarové ovládání kamerového modulu, referenčního teploměru a následně popíši výslednou uživatelskou aplikaci.

5.1 SeekThermal S319SPX

Jak jsem již krátce zmínil v kapitole 4.1, kamerový modul S319SPX je připojen k zobrazovací jednotce pomocí USB a programuje se pomocí řadičů z vývojářského portálu firmy SeekThermal. Pomocí těchto řadičů lze využít kamerový modul v různých aplikacích jako třeba machine learning, termografie nebo detekční monitorování, viz obrázek 5.1.

Obrázek 5.1. Diagram toku zpracování snímků [23].

Protože jsou originální řadiče napsány v jazyce C/C++ využil jsem Python wraperu seekcamera-Python, který výrobce modulu spravuje. Wraper se skládá z modulu SeekCamera, který mapuje funkce originálních knihoven do metod v Pythonu.

Ovládání modulu je v jazyce Python zjednodušeno do tří bloků první je třída Renderer, ve které je uloženo ID kamerového modulu, naměřený snímek a další dodatečné stavové proměnné dle potřeby, viz kód 5.1.

Druhým blokem je metoda on_frame, která se stará o uložení příchozího snímku do proměnné renderer.frame a také funguje pro jakýkoli další kód, který by měl být proveden po získání nového snímku, viz kód 5.2. Posledním nutným blokem je metoda on_event, která se stará o zpracování tzv. eventů modulu, jako např.: připojení, odpojení nebo error, viz pseudo-kód 5.3. Vše je poté projopjeno pomocí metody SeekCameraManager viz kód 5.4.

5. Software

33	class Renderer:
34	"""Contains camera and image data required to render images to the
	screen."""
35	
36	<pre>definit(self):</pre>
37	<pre>self.busy = False</pre>
38	<pre>self.frame = SeekFrame()</pre>
39	<pre>self.camera = SeekCamera()</pre>
40	<pre>self.frame_condition = Condition()</pre>
41	<pre>self.first_frame = True</pre>

Kód 5.1 Struktura třídy Renderer

```
44 def on_frame(_camera, camera_frame, renderer):
45 #Async callback fired whenever a new frame is available.
46 with renderer.frame_condition:
47 renderer.frame = camera_frame.color_argb88888
48 renderer.frame_condition.notify()
```

Kód 5.2 Struktura metody on_frame

```
def on_event(camera, event_type, event_status, renderer):
51
52
         #Async callback fired whenever a camera event occurs.
53
         if event_type == SeekCameraManagerEvent.CONNECT:
54
55
             if renderer.busy:
                 return
56
             #intial setup of camera after connect
57
58
         elif event_type == SeekCameraManagerEvent.DISCONNECT:
59
             if renderer.camera == camera:
60
                 #disconnect procedures when camera disconects
61
62
         elif event_type == SeekCameraManagerEvent.ERROR:
63
             print("{}:__{}".format(str(event_status), camera.chipid))
64
65
         elif event type == SeekCameraManagerEvent.READY TO PAIR:
66
             return
67
```

Kód 5.3 Struktura metody on_event

```
77 with SeekCameraManager(SeekCameraIOType.USB) as manager:
78 # Start listening for events.
79 renderer = Renderer()
80 manager.register_event_callback(on_event, renderer)
```

Kód 5.4 Propojení metod pro správné připojení modulu

Při programovaní kamerového modulu je třeba brát na mysl některé kolizní situace, např. pokud pracuje kamerový modul v zobrazovacím režimu, výstup kamery je barevná informace pro každý pixel. Modul v tomto módu ztrácí informace o naměřené teplotě.

Pokud je nutné naměřenou teplotu vědět musí modul pracovat v termografickém režimu, kdy výstupem modulu je naměřená teplota pro každý pixel. Tento mód zaplňuje vnitřní registry modulu ohledně minimální, maximální, okolní teploty modulu a tzv. spot temperature. Spot temperature je průměrná teplota prostředních 36 pixelů.

5.2 Referenční teploměr

Jak jsem již zmínil v kapitole 4.2 referenční teploměr je založen na senzorovém analogově-digitálním převodníku ADS1247, který komunikuje přes rozhraní SPI a tří řídících signálů Data ready (DRDY), Start a Reset. Signály Start a Reset řídí zapnutí převodu a případné resetování převodníku, zatímco signál DRDY oznamuje řídící desce zda jsou připravená data pro přenos. Nastavení probíhá přes již zmíněné rozhraní SPI. Rodina převodníků ADS124X využívá 13 základních příkazů, viz tabulka 5.1. V této práci jsem použil pouze příkazy SYNC, RESET, RDATA, SDATAC, WREG a SELFOCAL. Struktura čtení dat je založena na ukázkovém pseudo-kódu viz kód 5.5. Pro následné vyhodnocení naměřených dat využívám knihovnu thermocouples od uživatele Jonathanimb[24], která využívá dekádové interpolace tabulkových hodnot generovaného napětí organizace NIST pro rychlejší průběh programu.

Příkaz	Hodnota	Popis
WAKEUP	0x00	Přepnutí převodníku z režimu spánku
SLEEP	0x02	Přepnutí převodníku do režimu spánku
SYNC	0x04,0x04	Synchronizace převodů k hodinovému cyklu
RESET	0x06	Reset převodníku do základního nastavení
NOP	$0 \mathrm{xFF}$	"Bílý znak", který nic nedělá
RDATA	0x12	Žádost o vyslání převedených dat
RDATAC	0x14	Zapnutí neustálého vysílání dat
SDATAC	0x16	Zastavení neustálého vysílání dat
RREG	0x2X,0x0N	Přečtení N+1 registrů začínající na X
WREG	0x4X,0x0N	Zapsání do N+1 registrů začínající na X
SYSOCAL	0x60	Zapnutí kalibrace offsetu
SYSGCAL	0x61	Zapnutí kalibrace zisku
SELFOCAL	0x62	Zapnutí automatizované kalibrace offsetu

Tabulka 5.1. Programovací příkazy ADS124X[20].

5.3 Zobrazovací aplikace

Výsledná aplikace je vytvořena pomocí knihovny tkinter. Jedná se o základní knihovnu, která je standardně obsažená ve většině instalací Pythonu. Tento postup jsem vybral, kvůli jeho jednoduché struktuře a dobré dokumentaci. Jak jsem již zmínil v podkapitole 5.1, z kamerového modulu přijímám informaci o teplotě pro každý naměřený pixel. Tyto hodnoty se musí normalizovat, aby byli mezi 0 a 255. Tyto hodnoty poté využívám jako indexy barevné škály, čímž vytvářím samotný termogram.

V aplikaci lze přepínat mezi různými barevnými škálami. V současné době je možné použít jakoukoliv základní barevnou škálu knihovny CV2, viz obrázek 5.2. V průběhu programování výběru škál jsem narazil na velmi nepříjemnou chybu v interakci Tkinter

5. Software

1	#Power up
2	Delay to allow power supplies to settle and power-on reset to complete
3	Set the START pin high
4	Configure the serial interface
5	Send the RESET command (06h)
6	Delay;
7	Send SDATAC command (16h) #prevent new data interrupting reg write;
8	Write register configuration, WREG command (40h, 03h, xxh, \ldots)
9	SYNC command (04h) to start the ADC conversion
10	Loop
11	{
12	Send the RDATA command (12h)
13	Send 24 SCLKs to read out conversion data on DOUT/DRDY
14	}

Kód 5.5 Pseudo-kód pro čtení dat z ADS12XX

a zpracování dotyku z dotykové obrazovky. Pokud element neprotínal kurzor myši, i když kurzor nebyl vidět, aplikace nezaznamenala event kliknutí (aplikace si myslí, že element není vybraný). Řešení tohoto problému spočívá v tom, že kurzor zůstává vždy uprostřed obrazovky, pokud uživatel s kurzorem nepohne pomocí myši. Z tohoto důvodu jsem musel zajistit, aby jakákoliv vyskakovací okna protínala prostředek obrazovky. Nejedná se o graficky ideální řešení, ale z mých pokusů jde o řešení nejspolehlivější.

Obrázek 5.2. Možnosti barevného zobrazení.

Aplikace umožňuje uživateli uložit snímek buď jako obrázek typu .PNG, nebo jako nezpracovaná data v souboru .CSV. Lze také pořizovat videozáznam typu .AVI. Všechny záznamy jsou ukládány do složky na ploše nazývané Thermography. Tato složka je členěna do čtyř podsložek, viz obrázek 5.3. Složka logo obsahuje použité ikony, ve složce pictures jsou uloženy termogramy. Složka RawData obsahuje nezpracovaná data ve formátu .CSV a složka videos obsahuje natočená videa.

Důležitým menu je nastavení, viz obrázek 5.4, kde lze přepínat mezi režimem plné obrazovky, zapnutí/vypnutí automatického škálování a manuální opravu obrazu pro větší monitory. Pokud je automatické škálování vypnuto objeví se v nastavení tlačítko pro změnu extrémů škálování, viz obrázek 5.5. Samotné menu limit škálování se automaticky otevře při změně módu škálování. Nastavení emisivity se nachází na hlavní obrazovce.

Obrázek 5.3. Diagram pracovní složky termokamery.

Obrázek 5.4. Menu nastavení aplikace.

Obrázek 5.5. Menu nastavení škály.

Na obrázku 5.6 lze vidět podobu aplikace po spuštění. Tlačítkem Connect TC spouštím čtení termočlánkového referenčního teploměru.

5. Software

. .

Obrázek 5.6. Základní podoba aplikace.

Testování schopností termokamery jsem provedl na navržené testovací DPS se třemi snímky. Na obrázku 6.1 lze vidět sestavení testovacího pracoviště.

Obrázek 6.1. Testovací pracoviště.

6.1 Testovací DPS

Jak jsem již zmínil testovací DPS se skládá ze tří snímků. První snímek prověřuje rozlišovací schopnost dle standardních velikostí používaných odporů v průmyslu. Jedná se o součástky viz tabulka 6.1. Tyto odpory jsou zapojeny paralelně viz obrázek 6.2. Odpory jsem zvolil dle maximálního zatížení odporu velikosti 0201, což je $\frac{1}{20}$ W. Při pevně daném napětí 15 V vychází odpor o velikosti 4,5 k Ω , proto sem zvolil velikost odporu 4,7 k Ω . Jedná se o standardní hodnotu, která je dostupná. Protože jsem chtěl, aby proud protékal rovnoměrně přes všechny odpory, jsou ostatní odpory také 4,7 k Ω . Z důvodu nedostupnosti jsem musel nahradit odpor 0201 hodnotou 6 k Ω . Celkový odpor testovacího zapojení tedy není 940 Ω , ale 980 Ω . Na obrázku 6.3 lze vidět vertikální a horizontální rozměry použitých součástek.

Obrázek 6.3. Rozpoznávací test dle velikostí součástek s rozměry součástek.

6. Testovaní

Označení imperiálně	$\begin{array}{c} \text{Velikost} \\ [\text{mil}]^1 \end{array}$	Označení metricky	Velikost [mm]
0201	výška: 20 šířka: 10	0603	výška: 0,6 šířka: 0,3
0402	výška: 40 šířka: 20	1005	výška: 0,6 šířka: 0,3
0603	výška: 60 šířka: 30	1608	výška: 1,6 šířka: 0,8
0805	výška: 80 šířka: 50	2012	výška: 2 šířka: 1,2
1206	výška: 120 šířka: 60	3216	výška: 3,2 šířka: 1,6

Tabulka 6.1. Tabulka velikostí použitých součástek.

Obrázek 6.2. Rozpoznávací test dle velikostí součástek a) z mikroskopu b) z vyrobené termokamery.

Druhým snímkem je topná spirála tvořena měděnou cestou o šířce 0,254 mm a celkovým odporem 0,6 Ω viz obrázek 6.4. Z obrázku lze vidět vada v návrhu, kde je topné těleso bez nepájivé masky. To způsobuje při měření problém s emisivitou pocínované mědi. Na termogramu to vypadá jako kdyby se deska zahřívala, zatím co pocínovaný meandr je studený. Napravení této chyby lze vyřešit nanesením vrstvy nepájivé masky.

Obrázek 6.4. Rozpoznávací test topného elementu a) z mikroskopu b) z vyrobené termokamery.

¹ 1 mil alternativně 1 thou = $\frac{1}{1000}$ palce

Obrázek 6.5. Testovací DPS.

Poslední snímek testuje rozlišovací schopnost termokamery pro nezahřívané prvky. Skládá se z několika tras o rozdílných šířkách od 152 μ m do 762 μ m. Na obrázku 6.5 lze vidět celou testovací DPS.

6.2 Porovnání s termokamerou Optris XI 400

Abych posoudil kvalitu postavené termokamery v zobrazování termogramů, provedl jsem testování na termokameře Optris XI 400. Termokamera disponuje podobným rozlišením snímače (382 pixelů x 288 pixelů)[13]. Na obrázku 6.6 lze vidět testovací pracoviště. Oproti mnou vyrobené kameře má termokamera Optris nastavitelnou fokální vzdálenost. V tomto testu, aby porovnání bylo za nejpodobnějších podmínek, jsem nastavil fokální vzdálenost co nejmenší neboli 80 mm. Musím poznamenat větší potřebný pracovní prostor, způsobený potřebou externího počítače. Lze tedy vidět výhodu integrovaného počítačového systému vyrobené termokamery. V následujících obrázcích lze vidět snímky testovací DPS v různých škálách.

Obrázek 6.6. Testovací pracoviště pro Optris XI 400.

Velikou výhodou termokamery Optris je několik let vývoje termografní aplikace, kterou lze vidět na obrázku 6.13. Aplikace je více přizpůsobená pro detailní analýzu termogramů. Nicméně, jak lze vidět na obrázku 6.14, je nastavení poměrně nepřehledné. 6. Testovaní

.

Obrázek 6.7. Porovnání termogramů velikosti součástek a) Optris b) vyrobená termokamera.

Obrázek 6.8. Porovnání termogramů topného elementu a) Optris b) vyrobená termokamera.

Obrázek 6.9. Porovnání termogramů velikosti součástek a) Optris b) vyrobená termokamera.

Obrázek 6.10. Porovnání termogramů topného elementu a) Optris b) vyrobená termokamera.

Obrázek 6.11. Porovnání termogramů velikosti součástek a) Optris b) vyrobená termokamera.

Obrázek 6.12. Porovnání termogramů topného elementu a) Optris b) vyrobená termokamera.

6. Testovaní 🔳

. .

Obrázek 6.13. Zobrazovací aplikace pro Optris XI 400.

Image arranging Alarms Event grabb	er External Corr	munication	Extend	ed Lavout			
apshots / Copy to clipboard Trig. Reco	rding / Snapshot	s Capture	Screen	Histogram	Extended	neasuring	Measuring cold
eneral Measure areas Temp. profiles	Temp/Time diag	gram Devid	ce Dev	ice (PIF)	Referencing	Recording	Playing
Temperature range scaling	Reduce display	ed frames:					
○1σ ○3σ ○<>	Mode: Av	erage		\sim			
● Manual Min: 24.6 🚔 °C	Display framer	ate:	20	🗘 Hz			
Max: 60.0 ♀ °C	Averaging time	e	50	\$% of fr	ame time		
Palette optimization (OPT)	Keep device external co	e framerate mmunicatio	for temp n and PII	/time diagr F outputs	am,		
Application title bar						∠ Inst	ance name
						Rev	ision name
Optimization Quality	Performance	🗸 Кеер А	spect Ra	atio			
		Vider 🗸	n narrow	formats			
		Preven	t screen:	saver			
		VIS camer	а				
		🔽 Use (if	available	e)			
		IR/VIS	fusion				
		✓ Indoor (use (Anti	flicker)			

Obrázek 6.14. Menu nastavení pro Optris XI 400.

Kapitola **7** Výsledky a navrhované vylepšení

Z testování lze vidět, že je termokamera vhodná na kontrolu DPS osazenou součástky o velikosti až 0201. Vyšší obnovovací frekvence kamerového modulu umožnila plynulé zobrazování scény a zachycovala rychlé změny v teplotě. Naklonění Obrazovky o 30° velmi pomohlo s ergonomikou měření. Zobrazovací aplikací je měřená teplota omezena na NETD 100 mK. Výsledná termokamera je tedy vhodná pro základní nahlížení na desky plošných spojů. Kvůli omezení zorného pole je spíše vhodná pro kontrolu DPS mobilních zařízení, které se stále zmenšují.

V tabulce 7.1 jsem shrnul náklady pro výrobu termokamery, není zde zahrnuta cena práce v době vývoje.

Položka	Standardní cena [Kč]	Akční cena 1 [Kč]
Kamerový modul ²	17 290	3 300
Přibližovací čočka ³	400	400
Stojan	500	500
podložka pro stojan	500	500
Příslušenství pro stojan	900	900
RPi4	1 500	1 500
Chladič	200	200
Displej[25]	690	690
Kostra pouzdra $(220g)^4$	99	99
Referenční teploměr	450	450
Spojovací materiál	150	150
Kufr	500	500
Smíšené zboží 5	800	800
Celková cena (bez DPH)	24 154	9 809

Tabulka 7.1. Výsledná cena výrobku.

Hlavním námětem pro vylepšení je přepracování uživatelské aplikace. Protože využívá velice jednoduchého grafického systému, ztrácí se část výkonu kamerového modulu. Modul by měl být schopen zobrazovat snímky o frekvenci 27 Hz. Zobrazovací schopnost kamery je pouze okolo 18 Hz, proto by aplikaci prospěla další optimalizace například předěláním na platformu PyQt nebo Kivy, které jsou více stavěné na rychlé zpracování snímků. Přechod na jinou grafickou platformu by také mohl zlepšit výkon na vyšších

 $^{^1}$ Kamerový modul koupen na Arrow.com za 145\$

² Kurz 1 $\in = 24.7$ Kč

 $^{^3\,}$ Cena samotné čočky + výtisk úchytu

 $^{^4}$ 1 kg PETG = 450 Kč

 $^{^5\,}$ USB kabel, propojovací dráty, konektory, Napájecí zdroj, tlačítko

rozlišení při připojeném externím monitoru. Pomohlo by také přidaní měřících oken, které s platformou Tkinter nebylo možné spolehlivě udělat.

Protože je měřící přesnost kamerového modulu ± 5 °C nebo $\pm 5\%$ na rozsahu 5 °C až 140 °C nebo $\pm 10\%$ na rozsahu 140 °C až 330 °C nevyužije termokamera vysoké přesnosti převodníku ADS1247. Proto by bylo vhodné zvážit termočlánkové rozhraní MCP9601, které dosahuje dostatečného rozlišení a dostatečné přesnosti i při vyšší převodní rychlosti.

Termokameru by také vylepšilo rozšíření o bateriový napájecí systém. Pro RPi již existují tzv. UPS moduly, které jsou převážné používány jako ochrana při výpadku proudu. Modul by ale také šel využít pro bateriové napájení termokamery. Při měření energetického odběru termokamery se ukázalo, že termokamera má maximální odběr 12 W při napětí 5 V a proudu 2,4 A. Proto při použití napájecího modulu by termokamera měla být schopna pracovat po dobu cca 2 hodin.

Obrázek 7.1. Termokamera v provozu při testování.

Obrázek 7.2. Uchycení testovací DPS.

V této bakalářské práci jsem se zabýval návrhem a realizací infračervené kamery pro kontrolu desek plošných spojů. Cílem bylo vytvořit produkt, který je relativně finančně dostupný, viz tabulka 7.1 a rozměrově kompaktní, viz datasheet v příloze B.

V kapitole 2 jsem probral různé technologie kontaktního měření, poté jsem popsal bezkontaktní měření teploty, kde jsem se zaměřil na bolometrické, termoelektrické a kvantové senzory záření. V kapitolách 4 a 5 jsem provedl rozbor jednotlivých prvků realizace výsledné termokamery, mezi které patří funkce pro zobrazování a ukládání termogramů a implementace externího termočlánkového teploměru pro ověření emisivity.

Navržený prototyp byl testován na referenční DPS a dosažené výsledky byly vyhodnoceny z hlediska spolehlivosti měření. Pro ověření kvality výsledné termokamery jsem zopakoval testování na termokameře Optris XI 400. Výsledky testování ukázaly, že navržený systém je schopen spolehlivě zobrazovat součástky od velikosti 0201 s rozměry 0,6 mm na 0,3 mm.

V závěru, viz kapitola 7, jsem stanovil několik možných vylepšení pro budoucí práci. Kompletní dokumentace je k dispozici jako open-source projekt, pro pořízení cenově dostupné termokamery s vysokým rozlišením. Tímto způsobem umožňuji využití komunity, jako nezávislé testery. Věřím, že spolupráce s komunitou pomůže objevit a odstranit případné nedostatky. Navíc očekávám, že komunita přinese cenné nápady na další funkce, které by mohly termokameru ještě vylepšit. Celou práci lze najít v repozitáři na stránkách GitHub: https://github.com/Doktojak/CVUTSeek

Literatura

- WEBSTER, John G. a Halit EREN. Measurement, instrumentation, and sensors handbook: spatial, mechanical, thermal, and radiation measurement. 2nd vyd. Boca Raton: CRC Press/Taylor & Francis, 2014. ISBN 9781439848883.
- [2] MILOŠ KMÍNEK, Karel Kadlec. Měřící a řídící technika [online]. Dostupné na htt p://uprt.vscht.cz/kminekm/mrt/F4/F4k43-tepl.htm.
- [3] ING. MIROSLAV HUSÁK, CSc. prof. Teplotní senzory [online]. Dostupné na http s://moodle.fel.cvut.cz/pluginfile.php/381587/mod_resource/content/ 2/09_Teplotni_senzory_SEE_2022.pdf.
- [4] BUDZIER, Helmut, Gerald GERLACH a Dörte MÜLLER. Thermal infrared sensors: theory, optimization, and practice. First publish;1. Aufl.;1; vyd. Chichester: John Wiley & Sons, 2011. ISBN 9780470871928.
- [5] A Basic Guide to Thermocouple Measurements [online]. Dostupné na https:// www.ti.com/lit/an/sbaa274a/sbaa274a.pdf.
- [6] REINŠTEIN, David. Bezkontaktní měření teploty pro biomedicínské aplikace [online].
 2023. Bakalářská Práce. Dostupné na https://dspace.cvut.cz/handle/10467/
 108563.
- [7] ŠŤASTNA, Matěj. Senzorový modul s bezkontaktním měřením teploty pro zabezpečovací systémy [online]. 2023. Diplomová Práce. Dostupné na https://dspace. cvut.cz/handle/10467/109933.
- [8] MOISELLO, Elisabetta, Piero MALCOVATI a Edoardo BONIZZONI. Thermal Sensors for Contactless Temperature Measurements, Occupancy Detection, and Automatic Operation of Appliances during the COVID-19 Pandemic: A Review. *Micromachines* [online]. 2021, ročník 12, č. 2. ISSN 2072-666X. Dostupné na DOI 10.3390/mil2020148. Dostupné na https://www.mdpi.com/2072-666X/12/ 2/148.
- [9] Vizualizační a optické měřicí metody [online]. Dostupné na https://eu.fme. vutbr.cz/file/vomm.
- [10] JAN SOVA, Karel Kadlec. Termokamery a pyrometry princip měření, vlastnosti a využití [online]. Dostupné na http://old.allforpower.cz/UserFiles/file/ termokamery_1.pdf.
- [11] Electromagnetic Spectrum Definition and Explanation [online]. Dostupné na ht tps://sciencenotes.org/electromagnetic-spectrum-definition-andexplanation/.
- [12] KADLEC, Karel. Měření teploty. Automa [online]. 2014, ročník 20, č. 2. Dostupné na https://automa.cz/Aton/FileRepository/pdf_articles/52891.pdf.
- [13] Operator's Manual fo Optris XI series [online]. Dostupné na https://www.o ptris.com/en/download/xi-series-manual/?wpdmdl=160838&refresh= 65e5a8e93998f1709549801.

- [14] KADLEC, Karel. Měření teploty. Automa [online]. 2014, ročník 20, č. 2. Dostupné na https://automa.cz/Aton/FileRepository/pdf_articles/52890.pdf.
- [15] CENTRUM TERMOGRAFIE: Konstrukce termokamery [online]. Dostupné na h ttp://www.termokamera.cz/princip-a-funkce/konstrukce-termokamery.
- [16] SAAYMAN, Melanie. Materials for infrared optics [online]. Dostupné na https:// wp.optics.arizona.edu/optomech/wp-content/uploads/sites/53/2016/10/ Saayman-521-Tutorial.pdf.
- [17] SEEKTHERMAL. Mosaic core datasheet [online]. Dostupné na https://www.ther mal.com/uploads/1/0/1/3/101388544/mosaic_core_specification_sheet_2 021v2-web.pdf.
- [18] What specifications does a macro lens need for a Thermal Seek CompactPro? [online]. Dostupné na https://photo.stackexchange.com/questions/122264/ what-specifications-does-a-macro-lens-need-for-a-thermal-seekcompactpro.
- [19] SYSTEMS, Flir. Flir ETS320 datasheet [online]. Dostupné na https://flir.netx. net/file/asset/3949/original/attachment.
- [20] INC., Texas Instrumens. ADS124X Datasheet [online]. Dostupné na https://www.ti.com/lit/ds/symlink/ads1247.pdf.
- [21] WAVESHARE. 43H-800480-IPS [online]. Dostupné na https://www.waveshare. com/wiki/43H-800480-IPS.
- [22] COLÓN QUINTANA, José, Lucinda SLATTERY, JON PINKHAM, JOANNA KEATON, Roberto LOPEZ-ANIDO a Keith SHARP. Effects of Fiber Orientation on the Coefficient of Thermal Expansion of Fiber-Filled Polymer Systems in Large Format Polymer Extrusion-Based Additive Manufacturing. *Materials*. 04, 2022, ročník 15, s. 2764. Dostupné na DOI 10.3390/ma15082764.

- [24] JONATHANIMB. *Python library for thermocouple conversions* [online]. Dostupné na https://github.com/jonathanimb/thermocouples.
- [25] RPISHOP.CZ. WaveShare 4.3 inch touchscreen [online]. Dostupné na https:// rpishop.cz/lcd-oled-displeje/6295-wavehare-43-dsi-displej-ips-800-480-kapacitni-dotykovy-i2c.html.

^[23]

Příloha A Slovníček

ADC	Analog-Digital converter/Analogově - Digitální převodník
ČVUT	České Vysoké Učení Technické
DPH	Daň z přidané hodnoty
DPS	Deska plošných spojů
DSI	Display Serial Interface
GPIO	General Purpose Input/Output
HDMI	High Definition Multimedia Interface
HFOV	Horizontální zorné pole
IR	Infračervená
I2C	Inter-Integrated Circuit
NEP	Noise-equivalent Power
NETD	Noise-equivalet temperature difference
NIST	National Institute of Standards and Technology
NTC	Negative temperature coefficient
PETG	Polyethylene Terephthalate Glycol-modified
PTC	Positive temperature coeficient
RPi	Raspberry Pi
SMD	Surface mount device
SPI	Serial Peripheral Interface
ΤI	Texas Instruments
USB	Universal Serial Bus
VFOV	Vertikální zorné pole

Product Datasheet

CVUTSeek

General Information

Parameter	
	Description
Manufacturer	Czech technical university in Prague
Release Date	May 2024
Product Website	https://github.com/Doktojak/CVUTSeek

Technical Specifications

Dimension	s		ize [cm]	Weight [Kg]		
Height			36.5			
Width			20	2.6		
Depth			25.5	2.0		
Performance	specificat	ion	2010			
renormane	especificat		Details			
Processor			Broadcom BCM2711, Quad core Cortex-A72			
Memory			4 GB			
Storage			32 GB			
Connectivity	/ Details					
Wireless	Capable	e of w	vireless connectivity			
Ports	2x USB	2.0, 2	x USB 3.0, 1x 1 Gb eth	ernet, 2x micro-HDMI		
Display	Details					
Туре	Capacitive	Capacitive touchscreen				
Size	4.3 inch					
Resolution	800x480					
IR specificat	ion					
		Det	Details			
Туре		Und	Jncooled microbolometer			
Resolution		320	320x240 pixels			
Pixel pitch		12	12 µm			
Spectral ran	ge	7.8	7.8 μm - 14 μm			
FOV (HFOVx	VFOV)	24°	24° x 18°			
Fixed Focus Distance: 38		38 mm				
Measurement area 15		15 mm x 11 mm				
Spot size 45		45 J	15 μm/pixel			
NETD		<10	<100 mK			
Image frequ	ge frequency 18 Hz					

Features

- **Measurement accuracy:** The greater of ±5°C or 5% between 5°C to 140°C scene temperatures. Typical performance of ±10% between 140°C to 330°C scene temperatures
- Supported units: °C, °F, K
- Saved image format .PNG
- Saved raw data format .CSV
- Saved video format .AVI
- Number of color palettes: 22
- Additional Features: Reference thermocoule port, Manual emisivity correction, Manual/Automatic temperature scale

Accessories & Packaging

Accessories	Details
Included Accessories	Power adapter (EU), HDMI to micro-HDMI adapter, HDMI-HDMI
	cable

Support

Service	Details
Support Contact	https://github.com/Doktojak/CVUTSeek
Support Email	doktojak@fel.cvut.cz

Notes

The product is in early stages of development and may have some undiscovered bugs. If found please report so that it can be worked on.

Figure 1: Product photo

Product Parts list

CVUTSeek

Electrical Components

Part		
	Number of pieces	URL
SeekThermal S319SPX	1	SeekThermal or
		Arrow
RPi 4	1	Amazon
RPi 4 heatsink	1	Amazon
4.3 inch screen	1	Amazon
μSD to μSD extender [25 cm]	1	AliExpress
DSI extention cable [15 cm]	1	Amazon
Momentary switch	1	AliExpress
Sacrificial micro-USB cable	1	
USB-C capable power adapter	1	
Reference thermocouple board (optional) ¹	1	
8 pin female to female cable (optional) ¹	1	

¹ Only if you decide to use my thermocouple board.

Mechanical Components

Dort		
	Number of pieces	
Stand Base		AllExpress
25 mm Stand Arm	1	AliExpress
25 mm id ¹ Microscope Arm	1	AliExpress Ino longer
Holder		available! alternative
		AliExpress ² or try luck w/
		Amazon
25mm Bar Bracket Support	1	AliExpress
ZnSe Focus lens	1	AliExpress
Focus lens holder	1	Printables
Stand attachment	1	
Screen holder	1	
RPi Case	1	
Screen infill	1	
Camera Module Top Shell	1	
Camera Module Bottom	1	
Shell		
Optic tunnel	1	
Front cover (tunnel/full)	(1/1)	
Back cover	1	
Door	1	
Magnetic PCB holder (op-	1	
tional)		
5 mm x 5 mm neodymium	6	
magnet (optional) ³		
20 cm x 19 cm steel plate	1	
(optional) ⁴		

¹ id - inner diameter.

² Need to model an attachment adapter.
³ Only if you decide to use my PCB holder pegs.
⁴ Needs modification to fit nicely to the stand base.

Consumables

Part	Number of pieces
M3x8	4
M3x12	5
M3x20	6
M3 washer	9
M3 nut (optional) ¹	3
M3 heatinsert d4.5 mm	2
M3 heatinsert d5 mm	8
M4 screw ²	2
M2.5x16	2
M2.5x20	6
M2.5 nut	8
66 mm of 1.75 mm thick filament (or equivalent)	1

¹ Only if you decide to use my thermocouple board.
 ² For fastening steel plate to the stand base.

Příloha **D** Referenční teploměr

Designator	Value	Name	Manufacturer 1	Manufacturer Part Numb	Supplier 1	Supplier Part Number 1
C1	100nF	Capacitor 100 nF +/-10% 50 V 0805	Yageo	CC0805KRX7R9BB104	Newark	68R4910
C2	100nF	Capacitor 100 nF +/-10% 50 V 0805	Yageo	CC0805KRX7R9BB104	Newark	68R4910
C3	10nF	0805YC103KAT2A	Kyocera AVX	0805YC103KAT2A	Avnet	34C6801
C4	100nF	Capacitor 100 nF +/-10% 50 V 0805	Yageo	CC0805KRX7R9BB104	Newark	68R4910
C5	10nF	0805YC103KAT2A	Kyocera AVX	0805YC103KAT2A	Avnet	34C6801
C6	100nF	Capacitor 100 nF +/-10% 50 V 0805	Yageo	CC0805KRX7R9BB104	Newark	68R4910
C7	10µF	Capacitor 10 uF +/- 10% 16 V 0805	Murata	GRM21BR61C106KE15L	Mouser	81-GRM21BR61C106KE15
J1		PRT-13612	SparkFun	PRT-13612	Arrow Electronics	PRT-13612
J2		90121-0768	Molex	90121-0768	Arrow Electronics	90121-0768
R1	1k	Resistor 1k +/-1% 0805 125 mW	Yageo	RC0805FR-071KL	Rs	6183583
R2	1k	Resistor 1k +/-1% 0805 125 mW	Yageo	RC0805FR-071KL	Rs	6183583
R3	10M	RMCF0805ZT10MR00	Stackpole Electronics	RMCF0805ZT10MR00	Mouser	708-RMCF0805ZT10MR00
R4	10M	RMCF0805ZT10MR00	Stackpole Electronics	RMCF0805ZT10MR00	Mouser	708-RMCF0805ZT10MR00
U1		ADS1247IPW	Texas Instruments	ADS1247IPW	Mouser	595-ADS1247IPW
U2		MAX6610AUT+T	Maxim	MAX6610AUT+T	Mouser	700-MAX6610AUTT

Obrázek D.2. BOM prvního návrhu referenčního teploměru.

Obrázek D.3. Pohled na 3D model DPS prvního teploměru shora.

. .

. . .

.

 $\ensuremath{\mathsf{Obrázek D.4.}}$ Pohled na 3D model DPS prvního teploměru zdola.

Obrázek D.5. Horní layout prvního návrhu referenčního teploměru.

. . . .

Obrázek D.6. Dolní layout prvního návrhu referenčního teploměru.

	1	2	3	4
А				
В	J1 O A 1 Cold1 O C 2 Cold2 MNT 1 3 MNT 2 4	3V3 R3 10M 1%	$-C_3$ GND C1 uF	
С	PRT-13612 III II	Cold1 R1 Ik Cold2 R4 Ik R2 Ik Ik Ik GND	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	IN0/IEXC SCLK IN1/IEXC DIN IN2/IEXC/GPI02DOUT/DRDY IN2/IEXC/GPI03 CS EFP0/GPI00 START EFN0/GPI01 RESET DRDY REFOUT REFOUT REFOUT REFOUT CLK VSS AVDD GND DVDD S1247IPW C1 C2 100nF, cy C1
D	Reset 7 7 8 8 GND 90121-0768	Obrázek D.7. Zjednodušené zapojer	ní referenčního teploměru. A4 Date: 4 File: 0	Thermocouple interface - simplified 1 Number Revision 5.16.2024 Sheet of C:\Users\.\ThermopileBorad.SchDoc Drawn By: Jakub Doktor 4

D Referenční teploměr

Value	Designator	Comment	Quantity
100nF	C1, C2, C4	Capacitor 100 nF +/-10% 50 V 0805	3
10nF	C3, C5	0805YC103KAT2A	2
10µF	C7	Capacitor 10 uF +/- 10% 16 V 0805	1
	J1	PRT-13612	1
	J2	90121-0768	1
1k	R1, R2	Resistor 1k +/-1% 0805 125 mW	2
	R3, R4	10M 1%	2
	U1	ADS1247IPW	1

Obrázek D.8. BOM zjednodušeného návrhu referenčního teploměru.

Obrázek D.9. Pohled na 3D model DPS zjednodušeného teploměru shora.

Obrázek D.10. Pohled na 3D model DPS zjednodušeného teploměru zdola.

Obrázek D.11. Horní layout zjednodušeného návrhu referenčního teploměru.

.

Obrázek D.12. Dolní layout zjednodušeného návrhu referenčního teploměru.

Obrázek E.13. Horní layout testovací DPS.

Name	Value	Designator	Quantity	Manufacturer 1	Manufacturer Part Number 1	Supplier 1	Supplier Part Number 1
TSW-102-22-L-S-RA		P1, P2	2	Samtec	TSW-102-22-L-S-RA	Newark	79P3649
Resistor 4k7 +/-1% 0402 100 mW	4.7k	R1	1	Panasonic	ERJ-2RKF4701X	Newark	64R5288
Resistor 4k7 +/-1% 0603 100 mW	4.7k	R2	1	Panasonic	ERJ-3EKF4701V	Newark	85Y8747
Resistor 4k7 +/-1% 0805 125 mW	4.7k	R3	1	Yageo	RC0805FR-074K7L	Rs	6181408
Resistor 4k7 +/-1% 1206 250 mW	4.7k	R4	1	Vishay	CRCW12064K70FKEA	Newark	53K2354
CRCW02014K70FNED		R5	1	Vishay	CRCW02014K70FNED	Newark	84W8539

Obrázek E.15. BOM testovací DPS.

 $\ensuremath{\textbf{Obrázek E.14.}}$ Pohled na 3D model testovací DPS shora.

Obrázek E.16. Realizace testovací DPS.

Obrázek F.17. Řez modelem termokamery a) zachycující díry pro přichycení mikropočítače a rámu obrazovky b) zachycující díry pro úhlovou vložku a kamerový modul.

.

Obrázek F.18. 3D model uchycení obrazovky.

 $\ensuremath{\textbf{Obrázek F.19.}}$ 3D model výplně mezi obrazovkou a uchycení modulu.

. . .

Obrázek F.20. 3D model uchycení ke stojanu.

Obrázek F.21. 3D model vrchní části krytu kamerového modulu.

.

Obrázek F.22. 3D model spodní části krytu kamerového modulu.

Obrázek F.23. 3D model uchycení předsádky a) připevnění k modulu b) nástavec pro předsádku.

 $\ensuremath{\textbf{Obrázek F.24.}}$ 3D model složení nástavce pro předsádku.

Obrázek F.25. 3D model karbice pro RPi.

. . . .

Obrázek F.26. 3D model zadní části termokamery.

Obrázek H.28. Barevná škála Autumn.

Obrázek H.29. Barevná škála Bone.

Obrázek H.30. Barevná škála Jet.

Obrázek H.31. Barevná škála Winter.

Obrázek H.32. Barevná škála Rainbow.

.

Obrázek H.33. Barevná škála Ocean.

Obrázek H.34. Barevná škála Summer.

Obrázek H.35. Barevná škála Spring.

. . . .

Obrázek H.36. Barevná škála Cool.

Obrázek H.37. Barevná škála HSV.

Obrázek H.38. Barevná škála Pink.

.

.

. . . .

Obrázek H.39. Barevná škála Hot.

Obrázek H.40. Barevná škála Parula.

Obrázek H.41. Barevná škála Magma.

Obrázek H.42. Barevná škála Inferno.

Obrázek H.43. Barevná škála Plasma.

Obrázek H.44. Barevná škála Viridis.

 . .

.

. . . .

Obrázek H.45. Barevná škála Cividis.

Obrázek H.46. Barevná škála Twilight.

Obrázek H.47. Barevná škála TwilightS.

 Obrázek H.48. Barevná škála Turbo.

Obrázek H.49. Barevná škála DeepG.