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Abstract

This thesis presents a comprehensive analysis of React one-page application
development focusing on designing and implementing an intuitive interface for
question-answering bots. The research encompasses the integration of various input
file formats, including PDF, XLSX, and TXT, and explores best React practices,
libraries, and tools to ensure a seamless user experience. A thorough testing plan
was devised to evaluate functionality, performance, and reliability. The mechanisms
for collecting user feedback were incorporated and analyzed to identify areas for
improvement. This document provides detailed technical specifications, user
manuals, and guidelines for future development and maintenance of the developed
application.
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1. Introduction

The thesis delves into the realm of question-answering bots, emphasizing the
importance of both user interface (UI) quality and the robustness of underlying code.
In this context, attention is paid to ensuring that the codebase is documented, tested,
and deployed. With a core objective of aiding customers in navigating user queries
and optimizing internal resource management through PDF analysis and question
resolution, the thesis underscores the significance of an efficient and user-friendly bot
interface. To achieve these objectives, the study adopts React with TypeScript for
front-end development, recognizing its suitability for creating dynamic and scalable
user interfaces.

2. State-of-the-Art

2.1 Requirement Specification

2.1.1 Target Audience

The target audience consists of individuals and organizations seeking to
integrate a web bot into their systems. This audience may include businesses looking
to enhance customer support by providing automated assistance with inquiries, as
well as organizations aiming to streamline internal communication by empowering
employees with a tool to address their queries efficiently. Whether utilized for
customer-facing interactions or internal knowledge management, the software caters
to users seeking to leverage the capabilities of a web bot to improve productivity,
streamline processes, and enhance user experience within their respective domains.

2.1.2 Requirements

The software needs an intuitive and user-friendly interface. It must possess
the capability to display diverse media formats like PDF files, code snippets, and
images, accommodating various types of content seamlessly. Furthermore, it should
support multiple input methods including text input, voice input, and button clicks to
ensure accessibility for users. A key requirement is the provision of extensive
configuration options, enabling customers to tailor the software to their specific
preferences and requirements. For stable development, testing procedures and
version control methods are important. comprehensive documentation of the
codebase is also essential to support future development efforts, aiding developers in
understanding and extending the software's functionality effectively.
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2.2 User Interface (UI)

A UI is the interface between users and digital systems, comprising elements
like buttons and menus. We choose React, a front-end library, as our framework for
development.

2.2.1 What is React

React is an open-source JavaScript library developed by Facebook, primarily
used for building highly dynamic and interactive UI’s. It operates on a
component-based architecture, allowing developers to create reusable UI elements,
thereby enhancing efficiency and simplifying interface management. Central to React
is its virtual DOM feature, which optimizes rendering by updating only specific parts
of a web page when data changes, leading to faster, more responsive, and scalable
web applications. React's impact on modern web development practices is
significant, providing a streamlined approach to constructing robust single-page
applications and promoting a structured methodology in front-end development.

2.2.2 Brief History

In 2011, Facebook aimed to enhance user experience by creating a more
dynamic and responsive interface. To address this challenge, Jordan Walke, a
Facebook software engineer, developed React.js. Initially implemented in Facebook's
newsfeed, React's unique approach to manipulating the Document Object Model
(DOM) transformed the company's web development strategies. Subsequently, React
gained rapid popularity within the JavaScript ecosystem after its release as an
open-source technology. [1]

2.2.3 Advantages and Disadvantages

React streamlines web app development with minimal coding. It emphasizes
UI speed improvement but comes with pros and cons.
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Advantages:

1. Dynamic Apps: Simplifies complex HTML string creation.
2. Reusable Components: Simplifies app development and maintenance.
3. Performance Boost: Speeds up app performance with virtual DOM.

Disadvantages:

1. Rapid Development Pace: Challenges in keeping up with updates.
2. Limited Scope: Focuses mainly on UI layers, requiring additional tech.
3. JSX Complexity: JSX complexity can be daunting for new developers. [2]

2.2.4 Alternatives Considered

1. Angular

Angular is an open-source framework by Google, utilizes TypeScript and
offers a full-fledged MVC (Model-View-Controller) framework. Angular is robust for
enterprise-grade applications, providing clean code development and dependency
injection. Its two-way data binding, comprehensive features, and ready-made
solutions make it suitable for certain project requirements.

The preference for React over Angular is often due to React's flexibility, efficient
performance with virtual DOM, ease of learning, and scalability. Its modular approach
and extensive community support make it a versatile choice for building customizable
applications, especially when developers have expertise in HTML, CSS, and
JavaScript.

Therefore, the choice between React and Angular hinges on project-specific needs,
developer expertise, and the complexity of the application being developed. For
those seeking a more customizable and scalable approach in front-end development,
React's attributes often make it the preferred choice over Angular. [3]

2. NextJS

Next.js is a JavaScript framework built upon React, shines in enabling
server-side rendering (SSR) and static website development, offering features like
SSR, static export, and enhanced performance. While React's extensive resources,
adaptability, and support make it the go-to choice for diverse and dynamic application
development needs, Next.js simplifies server-side rendering and static site
generation, catering to specific requirements in a more specialized domain.
Ultimately, React's flexibility and extensive toolset continue to position it as the
preferred option for developers seeking versatility and robustness in creating
sophisticated web applications. [4]
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Here is a graph from Google Trends displaying the popularity of the 3
frameworks compared (Searched on 12/05/2024, with the worldwide parameter)

Figure 2.1: Google Trends comparison for React, NextJS and Angular.

2.3 Project Folder Structure

The project folder structure is essentially the organized arrangement of files
and directories within a project's main folder, outlining where different types of files,
such as source code, assets, and configuration files, are located.

The beginner folder structure is simplistic, suitable for smaller projects with limited
folders (components, hooks, tests).

The advanced structure introduces an extensive system, grouping code by
features, providing comprehensive organization. However, it might be overwhelming
for smaller projects, leading to underutilized folders and complexity.

The intermediate structure strikes a balance, expanding from the beginner setup by
introducing more folders for better organization without overwhelming users. It
maintains clarity between global and page-specific code, making it suitable for
varying project sizes. The comparison of folder structures—beginner, intermediate,
and advanced—derives from [5].

In addition, Each component within their respective folders now contains separate
CSS files.

Figure 2.2: Displaying the Button component folder.
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2.4 Creating Dialogues

Flowstorm is an open-source conversational AI platform designed for
creating, executing, and analyzing conversational applications. It offers a novel
dialogue architecture that combines tree structures with generative models, allowing
for rapid dialogue execution and flexibility in handling various conversation scenarios.
The platform utilizes tree structures for training Natural Language Understanding
(NLU) models specific to dialogue scenarios, while generative models enhance
dialogue functionality across applications. Flowstorm provides a user-friendly visual
editor, enabling both novice users and experts to design applications easily and
extend functionality with custom code. Notably, it facilitates asset reuse across
applications and supports multiple languages. Flowstorm's architecture has been
proven effective, with applications like Alquist, a winning socialbot in the Alexa Prize
Socialbot Grand Challenge, demonstrating its suitability for complex conversational
systems. [6]

With Flowstorm, crafting tailored applications for diverse clients is
straightforward. Its intuitive interface and hybrid dialogue architecture empower
developers to create interactive experiences that meet clients' unique needs.
Leveraging its out-of-the-box components streamlines the process, enabling rapid
prototyping and deployment across various domains.

Figure 2.3: Flowstorm’s visual dialogue building interface
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2.5 Client-Server Architecture

Client-server architecture is a computing model that separates client and
server roles, with clients making requests and servers processing them, allowing for
efficient and distributed computing. In our application, the client-server architecture
functions as follows: When a user visits our client's website, the build files of our
embedded bot (JavaScript and CSS) are loaded on their device, allowing them to
interact with the user interface. This UI connects to Flowstorm, which acts as an
intermediary between the user and the dialogues it manages. When the user asks a
question, we call our API through Flowstorm, which is equipped with
query-answering capabilities and can also provide PDF files as needed. This
architecture ensures smooth and efficient interactions between the user, the
application, and the server-side resources.

Figure 2.4: Displaying the client-server architecture

2.6 Version Control

Git is a version control system that tracks changes to files in a project,
allowing multiple developers to collaborate efficiently by managing different versions
of the codebase. Services like GitLab provide a platform for hosting Git repositories,
offering additional features such as issue tracking, code review tools, and continuous
integration pipelines to streamline the software development process further. [7]

2.7 Testing

Testing ensures the functionality and reliability of software by systematically
evaluating its performance against predefined criteria. It involves executing the code
under various conditions to uncover errors or bugs, ensuring that the software
behaves as expected. Through rigorous testing, developers identify and rectify
issues, thereby enhancing the overall quality of the product and providing users with
a seamless experience.
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2.7.1 Types of Testing

Software testing includes manual and automated methods. Manual testing
involves human interaction, which can be error-prone and resource-intensive.
Automated testing relies on pre-written scripts executed by machines for robustness
and reliability. Types of testing range from unit and integration testing to functional,
end-to-end, acceptance, performance, and smoke testing, each serving unique
purposes in ensuring software quality and functionality. [8]

2.7.2 Testing Methods of Choice

For our project, we adopt a blend of integration testing and unit testing
methodologies. Integration testing is crucial as it allows us to simulate interactions
between various components of the application, particularly focusing on mocking the
server to isolate UI testing from backend functionality, which falls outside our project
scope. Meanwhile, unit testing plays a pivotal role in ensuring the fundamental
functionality of our React components, providing granular assessments of their
behavior and performance. This hybrid approach enables us to comprehensively
evaluate both the integration of our application's components and the core
functionality of its frontend elements.

2.7.3 Cypress

Cypress stands out as an ideal tool for integration testing thanks to its
user-friendly syntax, powerful mocking capabilities, and seamless test execution.
With features designed specifically for web applications, Cypress simplifies the
process of testing interactions between frontend components and backend services.

2.7.4 Jest

Jest shines for unit testing TypeScript, offering simplicity and robustness.
Tailored for JavaScript and TypeScript, Jest integrates seamlessly into projects,
enabling straightforward testing with built-in TypeScript support. With features like
snapshot testing and coverage reporting.
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2.8 Deployment

Deployment in frontend development is the act of making a web application
accessible to users by releasing it onto a server or hosting platform. This process
involves transferring files and configuring settings to ensure the application functions
properly in its production environment. Firebase was chosen for its ease of use and
robust features, allowing for efficient and seamless deployment of frontend
applications.

2.8.1 What is Firebase

Firebase, Google's versatile application development platform, offers a
comprehensive suite of services tailored to streamline web application development
and expansion. Its serverless architecture simplifies development by eliminating the
need for developers to manage servers, allowing them to focus on building and
optimizing their applications. With Firebase, developers can seamlessly integrate
features like real-time database synchronization, user authentication, cloud storage,
and cloud functions directly into their web projects. This platform's popularity stems
from its smooth database management, scalability, and robust security features,
making it a preferred choice for many organizations and seasoned developers in the
web development community. Furthermore, Firebase provides extensive
documentation and support for various web frameworks, including React, Angular,
and Vue.js, empowering developers to create dynamic and interactive web apps
tailored to their clients' needs. [9]

2.8.2 Alternatives Considered

In comparing backend platforms for web application deployment, alternatives
like AWS, Heroku, and Azure were considered alongside Firebase. AWS boasts strong
performance and scalability but requires more management and can lead to higher
costs. Heroku simplifies deployment but lacks certain features like static IP
addresses. Azure offers scalability but demands more management and expertise.
Ultimately, Firebase's user-friendly interface, beginner-friendly setup, extensive
documentation, and generous deployment credits made it the preferred choice. Its
real-time database, authentication services, and seamless scalability further
solidified its suitability for rapid application development. [10]
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2.9 Documentation

Comprehensive documentation improves collaboration among team members
and supports onboarding new developers efficiently. We decided to handle this by
implementing a robust README.md file to outline the project's general structure and
usage. Additionally, we incorporated code comments to explain complex logic and
functions within the codebase. For visual component documentation, we utilized
React Storybook, providing a centralized hub for showcasing and exploring our React
components. These approaches enable us to maintain an accessible and
well-organized codebase that is straightforward for new developers to understand
and begin working with.

2.9.1 What Is Storybook

Storybook is a powerful tool widely used in React development that facilitates
the creation, testing, and showcasing of UI components in isolation. It acts as a
sandbox environment where developers can build and view individual components
outside the context of the larger application. Storybook allows for efficient
component-driven development by enabling developers to craft reusable and
interactive components independently, write test cases for these components, and
display them in various states or scenarios, making it easier to spot design
inconsistencies or potential issues early in the development process. This tool
significantly streamlines the workflow for React developers, fostering collaboration,
enhancing component quality, and ultimately contributing to the overall robustness of
the application's user interface.

Figure 2.5: Displaying the UI of Storybook and the control panel of the component
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2.9.2 Advantages, Disadvantages of Storybook

"Tim Davidson delves into the benefits and challenges of using Storybook as
a development environment for UI components. Storybook offers advantages like
isolated component development, faster UI creation, and simplified debugging,
making it a go-to tool for managing complex projects. It enables developers to create,
test, and maintain UI components independently of the main application, aiding in
component organization and reuse. Storybook's compatibility with various
frameworks like React, Vue, and Angular amplifies its utility for projects with
numerous components. However, its setup complexity, management of a large
number of stories, and limited support for certain frameworks pose challenges.
Despite these frustrations, Storybook facilitates faster development, eases testing,
streamlines collaboration between designers and developers, and enables
customization through its extensive ecosystem of add-ons. The tool's best practices
include maintaining organized stories, leveraging add-ons, integrating with testing
frameworks, and regular updates to maximize its potential in software development."
[11]

Reasons for using Storybook:
Storybook serves as a crucial tool in UI development, offering benefits like:

1. Isolation of components: Allows for independent development and testing
of UI components without affecting the entire application.

2. Faster and efficient development: Facilitates faster development and
efficient testing of different component variations.

3. Easy access and management: Provides a centralized platform to view,
manage, and modify components.

4. Collaboration and customization: Enhances collaboration between
designers and developers and offers extensive customization through
add-ons.

5. Simplified testing and debugging: Provides a dedicated environment for
testing and debugging components, ensuring early issue detection.

Ultimately, Storybook streamlines UI component management and testing, despite its
initial complexities, making it an invaluable asset for software developers.
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3. Development

3.1 Project Setup

The initial setup of the project began with the creation of the UI using "npx
create-react-app." This command established the foundational structure necessary
for React development, configuring essential dependencies and settings. Following
this setup, the project incorporated server-side communication with Flowstorm, a
system providing application flow. The integration involved cloning the code from a
pre-existing codebase [12], enabling interaction with Flowstorm's server-side
resources. By leveraging this existing infrastructure, the project rapidly integrated
essential functionalities for managing application flows, streamlining development
efforts.

3.2 Component Creation

The React documentation provides guidance on building modular UI
components for web applications. It highlights the use of JSX for integrating markup
with JavaScript, facilitating dynamic UI development. Components communicate via
props, enabling data exchange and flexible rendering. Techniques like conditional
rendering and rendering lists enhance component versatility. Emphasizing pure
functions for component logic promotes scalability and reduces bugs. Overall, the
documentation equips developers with best practices for creating robust and
maintainable UIs. [13]
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3.3 Component Hierarchy and State Management

In React, hierarchy refers to the organization of components within a tree-like
structure, where each component is nested within its parent component. This
hierarchical arrangement determines the flow of data and props between
components, facilitating the building of complex user interfaces. State management
in React involves handling and updating the internal state of components, allowing
them to maintain and display dynamic data. By managing state effectively, React
ensures that changes in data trigger re-rendering only where necessary, optimizing
performance and maintaining a consistent user experience.

Figure 3.1: Different components marked on the UI
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3.3.1 Hierarchy

Understanding the component hierarchy is essential for developers to
effectively manage and maintain their codebase, as it provides a clear visual
representation of how different parts of the application interact and depend on each
other.

Here are two figures explaining the hierarchy of our React components

Figure 3.2: The hierarchy of React components in a tree graph
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3.3.2 State Management

React state management relies on the useState, useEffect, and useRef
hooks. We utilize useState to effectively manage component-level state, ensuring
smooth data tracking and updates within each component. With useEffect, we
synchronize state changes creating a consistent application. Additionally, useRef
allows us to manipulate DOM elements directly, increasing our control over the UI. To
facilitate seamless communication between parent and child components, we pass
useState variables down the component tree, enabling multiple different components
to adjust to any changes on the variable.[14]

The useState variable named messages, coupled with its setter function
setMessages, plays a pivotal role in managing the messages displayed on the
screen. This state variable serves as the central repository for all messages, allowing
for seamless manipulation and rendering throughout the application. As messages
are added or removed, setMessages updates the state accordingly, triggering
re-renders as necessary to reflect the changes in real-time. To facilitate user
interaction, both messages and setMessages are passed down to various
components, such as the TextInput component for adding new messages and the
Messages component responsible for displaying the messages. By centralizing
message management through the useState hook and effectively distributing it
across relevant components, we foster a robust and responsive messaging system
that enhances the overall functionality and usability of our software project.

Figure 3.3: messages and setMessages state changes.
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3.4 UI Development

UI development involves creating the visual and interactive elements of a
digital application, such as buttons, menus, and forms. We have developed a variety
of user input methods, such as button clicks, text input, and voice input. In addition,
we’ve created various UI elements to visualize information effectively, such as code
displays, PDF views, and image displays. To maintain high code quality, We used the
following tools: ESLint and Prettier, which help maintain clean, consistent, and
well-structured code.

3.4.1 Design Overview

We have crafted an interface where users can easily interact with the
application. They can view messages, mute or unmute the bot, and click the
microphone icon for voice input. A restart button allows users to reset the app, while
a text field enables them to type their queries. The messages are displayed in a
scrollable element for easy viewing, and suggestive buttons help guide users through
the app.

Figure 3.4: Displaying the design of the bot
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3.4.2 UI Capabilities
Our UI capabilities extend to displaying a variety of content types, including

PDFs, code snippets, Markdown text, and images. This versatility allows us to create
rich, dynamic interfaces that cater to different user needs and preferences, whether
they are reading documents, reviewing code, or browsing visual content.

Figure 3.5: Showcasing different UI components of the bot

3.4.3 PDF Support

Our bot has the capability to view PDF files and navigate seamlessly through
their pages. Users can easily switch between pages within a document to access
specific sections of interest. Additionally, the bot can answer questions related to the
PDF's content, guiding users to relevant pages that contain the information they
seek. This streamlined functionality enhances the user's experience by making it
simple to find and review pertinent data within PDF files.
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3.4.4 Code Quality
We use ESLint and Prettier to enhance our code quality and consistency.

ESLint helps enforce coding standards and best practices, while Prettier
automatically formats code to maintain a uniform style. Together, they ensure our
code is clean, readable, and adheres to established guidelines.

Figure 3.6: ESlint error about TypeScript “any“ type usage

3.4.5 Style Protection

Given that our web bot will be embedded in various environments with
potentially differing stylesheets and frameworks, such as Bootstrap, it's crucial to
safeguard our CSS values to ensure consistent styling and prevent interference from
external styles. To achieve this, we've implemented a CSS rule that unsets all
properties and applies a standardized font family to our bot's container and its child
elements. This ensures that our bot maintains a consistent look and feel across
different environments and remains unaffected by external styles or CSS
frameworks.

Figure 3.7: CSS adjustment to protect the styles of the bot
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3.5 Responsive Design

Responsive design is a design methodology focused on creating websites or
applications that seamlessly adjust to various screen sizes and devices. It ensures
an optimal user experience by dynamically adapting layout, content, and functionality.
In our project, we've embraced responsive design principles by implementing specific
features tailored to different devices. For instance, we've introduced responsive fonts,
which scale up on smaller devices to maintain readability. Moreover, our bot's sizing
is responsive, maximizing screen space on mobile devices while remaining dynamic
on larger screens. Additionally, users have the flexibility to resize the bot according to
their preferences, offering a personalized experience across all devices. These
responsive design enhancements contribute to a cohesive and user-friendly
interface, catering to the diverse needs of our audience across various platforms and
screen sizes.

3.5.1 Responsive Font Sizing

Font size plays a critical role in responsiveness, directly affecting readability
across various devices. Adjusting font size based on screen dimensions is essential
to ensure content remains clear and legible, enhancing user experience on different
devices.

This adjustment of font size for responsiveness is typically achieved through
CSS media queries, which allow developers to apply specific styles based on the
characteristics of the user's device or viewport. By defining rules within media queries
that target different screen sizes or resolutions, such as small screens for mobile
devices or larger screens for desktops, developers can dynamically adapt font sizes
to maintain readability across a range of devices. For optimal readability and efficient
use of space, we should use larger font sizes on smaller devices (mobile phone) and
smaller font sizes on bigger devices (PC, Tablet).

Figure 3.8: Message with smaller font size for bigger devices

Figure 3.9: Message with bigger font size for smaller device
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3.5.2 Responsive Size of The Bot

The sizing of the bot element is dynamically adjusted according to the screen
size to optimize user experience across different devices. On smaller screens like
mobile phones, the bot element spans the full screen, utilizing the available space
efficiently and providing a seamless, immersive experience. This full-screen display
ensures that users can interact with the bot comfortably without distractions.
Conversely, on larger screens such as tablets or computers, the bot element
maintains a dynamic size, adapting to the available space without spanning the entire
screen. This approach ensures that the bot remains visually balanced and integrated
with other content on the page, offering a responsive and cohesive interface across
various devices and screen sizes.

Figure 3.10: Web Bot adjusting itself to different screen sizes

3.6 Bot Configuration

Our application offers a wide range of configuration options, allowing users to
personalize various aspects of their experience to suit their preferences. Users can
adjust settings related to appearance, behavior, and functionality through our
Settings configuration. They can customize the title of the bot, enable or disable
sound, specify the initial position of the application, and choose from different
themes. Additionally, users can fine-tune color schemes, font sizes, and component
sizes to match their aesthetic preferences and optimize readability. The ability to
configure custom components further enhances the user's ability to tailor the
application to their specific needs. By offering such a diverse array of configuration
options, we empower users to create a personalized and enjoyable interaction with
our application, ultimately contributing to a positive UX.
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Here is a quick rundown of all configuration options. You can also view the
README.md file [15] to view the full list.

Basic Settings:

● Title: Specifies the title of the bot
● Sound: Enables or disables sound.
● Key: Unique identifier for the application.
● Starting Position: Sets the initial position of the application on the screen.
● Resizing: Indicates whether resizing the bot is allowed.
● Dragging: Indicates whether dragging the bot is allowed.
● Input Line Limit: Determines the maximum number of lines the input field

can expand to.
Theme:
Defines the theme of the application (default, dark, or light).

Figure 3.11: Displaying different themes of the bot

Colors:
Allows customization of various color aspects of the application, including bot
messages, user messages, background color, title color, icon color, and suggestions.

Font Size:
Sets the font size of the text to small, standard, big, or biggest.

Size Options:
Defines size options for the bot as small, standard, big, or biggest.

PDF Options:
Provides options related to PDF functionality, including PDF ID, PDF scale, and
enabling or disabling the file selector functionality.
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Custom Components:
Specifies custom CSS for various components such as bubbles, messages, loading
bar, suggestions, text input, video, image, button, icon, and bot.
Here is a schema showcasing how the configuration options interact with the
components

Figure 3.12: Explaining how specific (custom components) and general configuration
options interact with the components

3.7 Project Structure

A project structure is an
organized arrangement of files and
directories within a project to facilitate
efficient development and maintenance.
In our project, we have two main folders:
`service`, which is the cloned directory
handling backend connections, and
`app`, which is a React application
serving as the frontend.

Figure 3.13: Explaining different kinds of files in the project
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The `app` directory contains
several subdirectories that organize

our project files. The `public`
directory holds static assets like

images, index.html, and other files

needed for the application to run. The

`src` directory is where all of our
source code resides, including

components, utilities, and styles

necessary for developing the

application. The `build` directory is
where the production-ready version

of our app is stored after running the

build process, ensuring that our code

is optimized for deployment.

Additionally, the `storybook-static`
directory contains the static files for

Storybook.

Figure 3.14: Displaying the root of the project

In the `src` directory, you will find the
essential files and folders that drive the
functionality and appearance of our React
application. The main script for React is in
`app.tsx`, while `app.css` provides the primary
styling for the application. The `assets` folder
is where we store various media files like
images, icons, and other resources used
throughout the application. The `stories`
folder contains our React Storybook stories.
All our application components reside in
the`components` folder, providing the
building blocks of our user interface. Figure 3.15: Displaying src folder
The `testing` folder houses tests for our code.
Finally, the `utility` folder includes helper functions and utilities that support and
streamline other parts of our codebase. Here are the contents of each folder
mentioned above.
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Assets and Components

Figure 3.16: Displaying the assets and components directories

Testing directory

Figure 3.17: Displaying the testing directory
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3.8 Flowstorm Server

Flowstorm is a block dialogue-building application that also serves the
necessary files for our service connection. It simplifies the process of generating
dialogues to meet our customers' needs and provides a visual interface for
constructing and managing dialogues.

The Flowstorm server connection is managed through the `service` folder,
which was cloned from a pre-existing codebase and is responsible for handling
communication between our application and the Flowstorm server. This folder
manages text-to-speech (TTS) functions and ensures that dialogue states are
correctly transferred to the user interface.

By using Flowstorm script blocks with Kotlin, we can call our API for
question-answering capabilities, handling user queries. This approach allows us to
keep our API endpoints hidden and perform crucial calls server-side, enhancing
security and protecting our backend infrastructure.

Figure 3.18: Displaying a function block from Flowstorm that calls the question
answering API
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4. Project Management

Our two-person team operates with defined roles, with me as the lead
developer. Using GitLab for version control, we store our code and track project
progress through its issue tracking system. Each issue is logged separately, allowing
us to keep track of tasks. We employ a systematic versioning strategy, tagging stable
bot releases for easy reference and deployment. Integration of CI/CD (Continuous
integration / Continuous development) practices automates code integration, testing,
and deployment. These practices uphold organization, efficiency, and reliability
throughout the project lifecycle.

4.1 Version Control

Version control plays a pivotal role in the development process, and we have
chosen GitLab as our preferred platform. GitLab provides us with robust version
control capabilities, allowing us to track changes, collaborate effectively, and maintain
the integrity of our codebase throughout the development lifecycle. Its intuitive
interface and comprehensive set of features enable us to streamline our
development workflow and ensure the reliability and stability of our project. The
source code for the project can be found here [16]

4.1.1 Git Ignore
A ‘.gitignore’ file specifies intentionally untracked files that Git should ignore,

such as build artifacts, dependencies, cache files, and other miscellaneous files that
do not need to be versioned. In our project, the ‘.gitignore’ file is set up to exclude
dependencies in the ‘node_modules’ directory and other related files like ‘.pnp’ and
‘.pnp.js’ for dependency management. It also ignores testing coverage files and
production artifacts such as the ‘build’ and ‘storybook-static’ directories.
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4.2 Task Tracking

GitLab's issue tracking system is instrumental in managing tasks, bugs, and
TODOs. Each item is logged separately, ensuring prioritization and progress tracking.
To maintain stability, we create dedicated branches for each task, isolating changes
and preventing disruption to the main branch. Once tasks are completed and tested,
changes are merged back into the main branch, ensuring consistent stability.

Figure 4.1: Gitlab issue tracking UI

36



5. Testing

We've adopted a dual approach to testing, incorporating both integration and
unit testing methodologies. To facilitate unit testing, we've installed Jest, while for
integration testing, we've implemented Cypress. Our testing scripts reside within the
src/testing directory, enabling organized and comprehensive testing of our project's
functionality and interactions.

5.1 Jest

We define individual test suites tailored to specific components. Within each
suite, we orchestrate various scenarios to thoroughly assess the component's
behavior, from basic rendering with different props to complex interactions and
callback functions. For instance, in the case of our Button component, which serves
as a clickable button with either text or images, we conduct tests to ensure proper
rendering with both text and image props. Additionally, we verify that clicking the
button triggers the expected callback function and that the component behaves
appropriately in response to user interactions.

Figure 5.1: Displaying the results of the unit tests, ran on the CI / CD pipeline

5.2 Cypress

Cypress is a robust end-to-end testing framework tailored for web
applications, renowned for its intuitive interface and extensive feature set. It provides
developers with a seamless testing experience, offering automatic waiting, real-time
feedback, and an array of assertion functions. With Cypress, developers can
efficiently validate application functionality across various scenarios, ensuring
reliability and consistency. Cypress simplifies the testing process by seamlessly
integrating with popular JavaScript tools, making it a preferred choice for testing web
applications.
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5.2.1 Integration Tests

We conduct our tests on the Chrome environment, ensuring compatibility and
reliability across this widely used browser platform. Additionally, to facilitate
comprehensive testing, we've developed a mock server to simulate the Flowstorm
backend, enabling us to evaluate the user interface independently of the server
connection. This approach allows us to rigorously test the bot's functionality and
responsiveness under various conditions without relying on external dependencies.
Here are the tests we run:

1. Functionality of Icons: We test the functionality of icons such as the shrink
box toggle, cross icon (to close the bot), mute/unmute icons, play/restart
icons, and microphone icon to ensure they perform their intended actions
correctly.

2. Input Methods Testing: We validate input methods such as text input and
button clicks and typing text into the input field to ensure that the bot
responds appropriately to user input.

3. Responsive Design Tests: We assess how the application responds to
different device sizes by testing its behavior and layout on various viewport
sizes to ensure a consistent user experience across devices.

4. Dragging and Resizing Functionality: We test the dragging and resizing
functionality of elements within the application, such as draggable
components, to ensure they function smoothly and as expected.

5. PDF Capabilities: We evaluate the application's ability to display PDF files
and navigate between pages by testing functionalities like loading PDF files,
switching pages, and handling errors related to PDF rendering.

6. Code Display and Styling Tests: We verify the display and styling of code
snippets and other styled content within the application to ensure they are
rendered correctly and adhere to design specifications.

Figure 5.2: Displaying the results of the integration tests, ran on the CI / CD pipeline
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5.2.2 Limitations

Unfortunately, due to current limitations, we are unable to test the voice input
functionality using Cypress. This functionality requires manual testing or alternative
testing methods outside of our automated tests.

5.3 Running The Tests

In our CI/CD pipeline, we execute both integration and unit tests before each
deployment to ensure the integrity and quality of our application. Further details
regarding our testing procedures in the CI/CD pipeline are provided in the
Deployment section.
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6. Deployment

Our deployment process for the project comprises several key steps to
ensure efficiency and reliability. Firstly, we build the project to prepare it for
deployment. Following this, our Continuous Integration/Continuous Deployment
(CI/CD) pipeline kicks in, executing thorough testing procedures to validate code
changes. Once the testing phase is successfully completed, the CI/CD pipeline
deploys the updated code to Firebase. This automated process, facilitated by a
YAML file configuration, guarantees that updates are swiftly and reliably delivered
while maintaining high standards of code quality.

6.1 Building the Project

In React development, preparing applications for production deployment
involves a series of crucial tasks orchestrated by `npm run build`. These include
compiling JSX into standard JavaScript, bundling assets for optimized performance,
and generating a production-ready build folder.

Here are some important features it has:
1. Transpilation: It transpiles JSX code into plain JavaScript, ensuring browser

compatibility and simplifying development.
2. Optimization: It optimizes assets by bundling them together, reducing file

sizes and improving load times for enhanced performance.
3. Production Build: It generates a production-ready build folder with

minimized and compressed files, suitable for deployment to web servers or
hosting platforms.

6.2 CI / CD

GitLab's CI/CD capabilities play a pivotal role in our software development
lifecycle. We capitalize on GitLab CI/CD pipelines to automate critical processes,
particularly testing, in our workflow. These pipelines, configured through YAML files,
offer customizable options to tailor testing procedures according to project needs.
Prior to deployment to Firebase, our testing functions, as outlined in the testing
section, are executed within GitLab CI/CD pipelines. This ensures that code changes
undergo rigorous testing, to maintain quality.

Figure 6.1: Gitlab’s CI / CD interface
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6.3 Firebase Hosting

After building and testing our applications, we swiftly deploy them using
Firebase Hosting. This ensures rapid and reliable delivery to production
environments, supported by features like CDN integration and SSL support. With
Firebase, we maintain high availability and deliver top-notch software efficiently. This
deployment process marks the completion of our CI/CD pipeline, ensuring seamless
integration, thorough testing, and efficient delivery of our applications using Firebase
Hosting.
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7. Documentation

Documentation is paramount in our codebase, serving as a crucial resource
for understanding and maintaining the software. Key aspects of our documentation
strategy include utilizing README.md files to provide an overview of the project,
including installation instructions, usage guidelines, and important project
information. Additionally, we embed code comments throughout the codebase to
explain functionality, clarify complex logic, and provide context for future developers.
Furthermore, we employ React Storybook Component Documentation methods to
create interactive and visual guides for understanding our UI components. This
approach accelerates the integration of future developers.

7.1 Readme File

A README file is a text document often found at the root of a software
project's directory, providing essential information about the project to users and
developers.

In our project, we've crafted a README file to offer guidance and insights into
various aspects of our software.

Here are some sections of the README file:
● Project overview: provides a brief summary of the project's purpose, goals,

and features.
● Install and setup: provides step-by-step instructions on how to run the code

locally on your computer.
● Embedding: explains how to integrate the bot into your website, expanding

its functionality beyond standalone use.
● Configurations: offers guidance on customizing the bot to suit specific

preferences or requirements, enhancing its adaptability.
● Structure overview: provides insight into the organization and layout of the

bot's codebase, aiding developers in navigating and understanding its
architecture.

These sections collectively cover a wide range of aspects. The full
README.md file can be found here [15]
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7.2 Comment Blocks

In our project, we've employed typedoc, a documentation generator for
TypeScript projects, to automatically generate documentation from comment blocks.
Typedoc extracts comments and compiles them into comprehensive documentation,
complete with descriptions, parameter details, return types, and more. With typedoc,
we can effortlessly maintain thorough documentation alongside our code, facilitating
seamless collaboration.

Figure 7.1: A TypeDoc comment block explaining a function
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7.3 Storybook Component Visual Documentation

React Storybook is a powerful tool utilized in our project to create visual
documentation for each component, enhancing understanding and facilitating
collaboration among developers. By leveraging React Storybook, we can showcase
individual components in isolation, providing interactive and visual representations of
their functionality, appearance, and variations. This approach enables future
developers to visually comprehend each component's purpose, usage, and behavior
within the project's ecosystem. With React Storybook, we streamline the process of
component exploration and documentation, fostering clarity, consistency, and
efficiency in our development workflow. The visual representations of components
are also deployed live on the internet. You can check them out here [17].

Figure 7.2: Displaying Storybook UI and the control panel of Code Display for a JSX
script

Figure 7.3: Displaying Storybook UI and the control panel of Code Display for a
Python script
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8. Results and discussion

The implementation of a React-based one-page application for
question-answering bots demonstrated successful integration of various input file
formats and best practices for user interaction. Comprehensive testing, including unit
and integration tests, confirmed the application's efficiency and reliability across
different scenarios. React's component-based architecture allowed for a streamlined
user interface and enhanced user experience, with Storybook providing valuable
visual documentation and testing capabilities.

The application's responsiveness across various devices ensured consistent
performance and usability, while extensive configuration options enabled
personalized user experiences.

The application is already in use by clients such as UPV and T-Mobile, showcasing
its real-world applicability and effectiveness in diverse environments. This adoption
demonstrates the software's potential for broader market success and establishes it
as a viable solution for organizations seeking to enhance their customer support and
internal communication processes.

Despite these successes, further improvements could include providing more
customization options and expanding the range of UI components available for
displaying customer data. Overall, the research validates the approach taken and
provides a strong foundation for further enhancements and applications in the field of
question-answering bots.
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9. Conclusion

This thesis establishes a solid foundation for the development of React-based
one-page applications dedicated to question-answering bots, offering seamless user
interaction and efficient integration of various file formats. Looking ahead, as large
language models (LLMs) continue to improve, we can replace Flowstorm with an
LLM as the dialogue manager, enabling more sophisticated and natural interactions.
By leveraging AI, we can generate custom elements tailored to customer needs,
granting them unprecedented control over their experience. This versatile web bot
holds potential for various applications, such as internal document management,
where the bot can read and answer queries from PDFs, or customer support,
assisting our clients' customers with their questions about the business. Overall, the
application offers a robust platform that can be further enhanced to meet a wide array
of user needs.
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