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Instructions

Topic Overview:

The accurate forecasting and analysis of weather patterns heavily depend on the 

resolution of available meteorological data. Super-resolution (SR) techniques, 

particularly those based on deep learning, have emerged as powerful tools to enhance 

the spatial resolution of weather datasets, thereby improving the precision of weather 

predictions, climate modeling, and environmental monitoring. Among the deep learning 

methods, diffusion-based models, such as Denoising Diffusion Probabilistic Models 

(DDPM), have shown promising results in generating high-resolution imagery from low-

resolution inputs. This project compares two diffusion-based super-resolution models, 

SRDiff and ResDiff, using the WeatherBench dataset—a comprehensive dataset for 

benchmarking weather forecasts. By enhancing the resolution of weather data, these 

models have the potential to significantly contribute to more accurate and detailed 

meteorological analyses and predictions, facilitating better-informed decisions in fields 

ranging from agriculture to disaster preparedness and climate change adaptation.

Tasks for the Student:

1/ Literature Review: Survey the current landscape of super-resolution techniques with a 

focus on diffusion models in the context of weather data enhancement. Highlight the 

strengths and weaknesses of these approaches, particularly their ability to capture and 

reconstruct fine-scale atmospheric features.
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2/ In-depth Method Study: Delve into the specifics of the SRDiff and ResDiff models. 

Understand the underlying mechanisms that enable these diffusion-based models to 

enhance the resolution of weather data, paying special attention to their model 

architectures, training strategies, and the theoretical principles that guide their 

performance.

3/ Dataset Acquisition and Preprocessing: Obtain the WeatherBench dataset and 

perform the necessary preprocessing steps. This includes data cleaning, normalization, 

and any other transformations required to make the data compatible with the input 

requirements of both diffusion models.

4/ Model Implementation and Training: Implement the SRDiff and ResDiff models using 

the deep-learning framework PyTorch. Train the models on the preprocessed 

WeatherBench dataset, fine-tuning the hyperparameters and employing robust 

validation strategies to ensure the models are well-optimized and generalizable.

5/ Performance Evaluation: Assess the performance of both models using appropriate 

evaluation metrics tailored to super-resolution, such as the Peak Signal-to-Noise Ratio 

(PSNR) and Structural Similarity Index Measure (SSIM) or MSE. Conduct a comparative 

analysis to identify which model demonstrates superior capability in enhancing the 

resolution of weather data.

6/ Error Analysis and Model Limitations: Analyze instances where the models 

reconstruct high-resolution weather data accurately. Identify and discuss the limitations 

of each model, considering aspects like computational efficiency, scalability, and 

sensitivity to input data quality.

7/ Documentation and Implications: Thoroughly document the research process, 

including model architectures, dataset preparation, training protocols, and evaluation 

results. Discuss the potential implications of the findings of meteorology and climate 

science, especially in improving the accuracy and utility of weather forecasts and 

climate models.
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Abstract

This thesis investigates the application of advanced deep-learning diffusion models, specifically
SR3, SRDiff, and ResDiff architectures, for super-resolution of weather data. The primary focus
is to evaluate these model’s capability to enhance the resolution of meteorological variables from
low-resolution inputs, a crucial aspect for an accurate weather forecasting and climate analysis.

Through experiments, conducted using the WeatherBench dataset, this work compares the
performance of these models using a variety of validation metrics and explores enhancements
through physics-based modifications and architectural improvements. The findings indicate that
SRDiff, and ResDiff, further improved by incorporating physics-based filters, significantly outper-
form the traditional SR3 method, offering substantial improvements in capturing high-frequency
details essential for accurate meteorological representations.

This thesis underscores the potential of integrating artificial intelligence with meteorological
science to advance weather prediction capabilities, setting a foundation for future improvements
in deep-learning diffusion models for weather data super-resolution.

Keywords weather modelling, denoising diffusion probabilistic models, super-resolution, Py-
Torch, deep learning

Abstrakt

Tato práce se zabývá použit́ım pokročilých difuzńıch model̊u založených na hlubokém učeńı a to
konkrétně architektur SR3, SRDiff a ResDiff, pro superrozlǐseńı meteorologických dat. Hlavńım
ćılem je posoudit schopnost těchto model̊u zvyšovat rozlǐseńı meteorologických proměnných ze
vstup̊u s ńızkým rozlǐseńım. Tato schopnost je kĺıčová pro analýzu klimatu a přesnou předpověd’
počaśı.

Prostřednictv́ım experiment̊u prováděných na WeatherBench datasetu, tato práce porovnává
tyto modely pomoćı r̊uzných validačńıch metrik a vylepšuje jejich architekturu. Výsledky exper-
iment̊u ukazuj́ı, že SRDiff, ResDiff a jeho varianta vylepšená pomoćı fyzikálńıch konvolučńıch
filtr̊u, výrazně překonávaj́ı p̊uvodńı SR3 model a lépe zachycuj́ı vysokofrekvenčńı detaily d̊uležité
pro přesnou reprezentaci počaśı.

Tato práce ukazuje potenciál využit́ı umělé inteligence v meteorologii a vytvář́ı základ pro
budoućı pokrok difuzńıch model̊u v tomto oboru.

Kĺıčová slova modelováńı počaśı, difúzńı modely, superrozlǐseńı, PyTorch, hluboké učeńı
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Introduction

Global climate models are used to study global weather. These models operate on a global
and continental scale and thus are unable to capture local weather information. Local weather
information is crucial to society as it affects many aspects of our daily lives, such as choice of
clothing, planning outdoor activities, energy production, transportation or agriculture. While
global climate models provide valuable climate information, they can’t provide detailed forecasts
for a specific place at a specific time.

To address this limitation, one promising approach is the super-resolution of weather data.
This technique enhances the resolution of weather variables measured at lower resolutions.

In the field of super-resolution currently excel deep learning models. There are many classes
of deep learning models used for the super-resolution of images. One of these classes is known as
diffusion models, which have recently shown excellent results in generating high-quality images
and are therefore integrated into models like ChatGPT-4.

Diffusion models work by a process that gradually adds noise to an image, transforming it
into a Gaussian noise distribution, and then learning to reverse this process to reconstruct the
original image from the noise. [1]

Because diffusion models offer a promising approach to super-resolution, this thesis aims to
explore the application of advanced deep-learning diffusion models, specifically, SR3 [2], SRDiff
[3], and ResDiff [4], for the super-resolution of weather data, to compare them, and to improve
their performance through the integration of physics-based modifications and architectural en-
hancements.

This work is organized into four chapters. Chapter 1 introduces the concept of super-
resolution and its application in meteorology, detailing various techniques. Chapter 2 provides
explanation of diffusion models, detailing the underlying mathematical principles, various ar-
chitectures, and advanced variants specifically designed for super-resolution applications that
are utilized in this work. Chapter 3 provides an overview of the WeatherBench dataset [5] and
describes the implementation details. In Chapter 4 are presented conducted experiments and
analysis of their outcomes.
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Chapter 1

Weather Super-Resolution

1.1 Super-Resolution
Single Image Super-Resolution (SISR) is a technique in image processing and computer vision
that reconstructs a high-resolution (HR) image from a single low-resolution (LR) image. The
primary challenge of SISR lies in efficiently extracting useful features from the LR input and
utilizing them to produce an HR image with enhanced details. Furthermore, this process is
complicated by the possibility of generating multiple HR images from the same LR image, re-
sulting in a one-to-many mapping issue that adds complexity to the reconstruction process. The
approaches to address this challenge fall into two broad categories: traditional methods and deep
learning-based methods. [6, 7]

Traditional SR methods primarily include interpolation and reconstruction-based techniques.
Interpolation methods, such as Bicubic and Bilinear Interpolation [8], are straightforward and
fast, offering basic image enhancement by filling in new pixel values based on nearby pixels.
However, these methods often lack accuracy and can lead to blurred images, especially at higher
magnifications. Reconstruction-based SR techniques [9] improve upon interpolation by using
prior knowledge to impose constraints that guide the high-resolution image creation. These
methods, however, tend to falter as the desired resolution scale increases. [6]

The domain of super-resolution has been revolutionized with the advent of deep learning,
particularly through the use of Convolutional Neural Networks (CNNs) [10]. The first significant
model in this area was the Super-Resolution Convolutional Neural Network (SRCNN) [11], which
demonstrated that CNNs could effectively learn mapping from low-resolution to high-resolution
images. Following SRCNN, there have been significant advancements with the introduction of
models such as Very Deep Super Resolution (VDSR) [12], which utilizes deeper networks for
better performance, and Enhanced Deep Super-Resolution network (EDSR) [13] that employs
deeply Recursive Convolutional Networks for refined learning processes.

Generative Adversarial Networks (GANs) [14] are another class of machine learning models
that achieve impressive results in super-resolution. The architecture of GANs includes two
neural networks: a generator and a discriminator. These networks are trained together through
adversarial processes. The generator’s goal is to create data that closely mimics real data, while
the discriminator works to distinguish between the generator’s output and genuine data. This
competition improves the generator’s ability to produce high-quality images. In the domain of
Generative Adversarial Networks (GANs), advancements include models like SRGAN [15] and
ESRGAN [16], or SRGAN-DAM-SISR [17].

In addition to CNNs and GANs, Transformer-based models [18, 19, 20] have emerged as
a powerful new approach in the field of super-resolution. Transformers, originally designed
for natural language processing tasks, have been adapted to handle image data through the

3
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introduction of Vision Transformers [21]. These model’s utilize self-attention mechanisms [22]
that allow them to focus on relevant parts of an image, facilitating a more global understanding
compared to the local receptive fields of CNNs. This characteristic is particularly advantageous
for super-resolution tasks, where contextual information from distant image regions can be crucial
for reconstructing high-resolution details.

Diffusion models [1] represent an innovative approach to super-resolution, offering new tech-
niques for enhancing image quality. These models have shown substantial capabilities in pro-
ducing high-quality images. Particularly in the context of super-resolution, diffusion models like
SR3 [2] and SRDiff [3] have been employed with promising results.

1.2 Climate Downscaling
Global Climate Models (GCMs) are fundamental tools in climate science, used to simulate and
predict the evolution of the climate system. These models numerically solve the physical equa-
tions governing the different components of the earth’s climate system—the atmosphere, hy-
drosphere, cryosphere, and lithosphere—and their interactions. [23] By integrating data from
experiments, observations, and theoretical physics, GCMs provide insights into the long-term
patterns of weather variables such as temperature, precipitation, humidity, and wind across the
globe. [24] Despite their comprehensive nature, GCMs have a significant limitation: their coarse
spatial resolution. This limitation arises from the computational demands of running these com-
plex models, which necessitate dividing the earth into a grid with cells that can be quite large,
often spanning hundreds of kilometers on each side. This scale is adequate for global or con-
tinental analyses but fails to capture the finer details necessary for understanding regional and
local climate. [25, 26]

Therefore, an alternative procedure called downscaling is employed to address the spatial
resolution limitations of Global Climate Models. Downscaling is a procedure that enables gen-
erating forecasts on a smaller, local level using climate data originally available at a larger scale.
[26] In climate science, climate fields are often represented using structures similar to images,
with different dimensions. This analogy allows for conceptualizing grid points on a climate map
as pixels in an image, suggesting that downscaling can be approached as a single image super-
resolution task. Although this process is termed ”downscaling,” it involves what is essentially
an image upscaling task, where the goal is to create finer-resolution maps from coarser ones by
adding more grid points, resulting in maps with smaller horizontal resolutions. [27]

There are two primary methods for the downscaling of climate variables: dynamical and sta-
tistical downscaling. Dynamical downscaling utilizes Regional Climate Models (RCMs), which
simulate local physical processes such as convective and vegetation schemes. This method in-
volves a physics-based model that employs equations to represent various components of the
climate system and their interactions. However, RCMs are computationally demanding and
their applications are not easily transferable across different regions. [28, 29]

Statistical downscaling provides a more adaptable approach by estimating the relationship
between coarse-scale and fine-scale variables. Among the leading-edge techniques in this field
are deep learning models that excel in capturing complex nonlinear relationships inherent in
climatic data. [28] Notable examples primarily include super-resolution (SR) models adapted for
downscaling, such as those based on Convolutional Neural Networks (CNNs) [30, 31], Generative
Adversarial Networks (GANs) [27, 32], and other models [33, 34]. Furthermore, diffusion models
are emerging as a promising approach for generating high-resolution climatic predictions. Despite
earlier assessments, such as those by [35] which reported suboptimal results using the SR3 [2]
model, this work demonstrates the superior capabilities of diffusion models in this field.



Chapter 2

Diffusion Models

This chapter describes diffusion models and their advanced variants designed for the super-
resolution of weather data. Section 2.1 investigates the mathematical foundations, optimization,
and training of diffusion models. Sections 2.2, 2.3, and 2.4 discuss advanced variants such as
SR3, SRDiff, and ResDiff. In Section 2.5, we introduce a novel variant of the ResDiff model
that incorporates physics-based improvements. Given the focus on advanced deep learning ar-
chitectures, it’s assumed that the reader has a fundamental understanding of neural networks,
including the principles of convolutional neural networks and training methods.

2.1 DDPM
Denoising Diffusion Probabilistic Models (DDPMs) [1], inspired by nonequilibrium thermody-
namics [36] represent a significant breakthrough in the domain of generative machine learning
[37]. Their application spans a wide array of fields, notably including image generation and
super-resolution, where they are prized for their ability to generate high-quality samples. This
capability has elevated DDPMs to the forefront of image synthesis architectures. In contrast to
Generative Adversarial Networks (GANs) [14], DDPMs offer a simpler training process and are
relatively straightforward to define. [38]

Unlike traditional generative models that directly learn the data distribution or map from
a latent space to the data space, DDPMs adopt a novel approach by gradually transforming
data into a known distribution, typically Gaussian noise through a process known as the forward
diffusion process. This transformation is achieved by iteratively adding Gaussian noise to the
data over a series of steps, effectively diffusing the data into noise. The beauty of this process
lies in its reversibility. The model learns to reverse this noise addition, effectively denoising the
data to reconstruct the original input from noise, in what is known as the backward or reverse
diffusion process. [1]

5
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2.1.1 Forward Diffusion Process

Figure 2.1 Illustration of the Forward Diffusion Process where noise is incrementally introduced to
an image across T steps.

The forward diffusion process is essentially a Markov chain, starting with the data point x0
obtained from data distribution q(x). It systematically introduces a small amount of Gaussian
noise to x0 in each iteration, progressively increasing the noise level across the samples x1, ...., xT .
It’s important to note that as T increases, the data point xT progressively loses more detail.
Ultimately, as T → ∞, xT converges towards an isotropic Gaussian distribution. This iterative
process over T steps can be represented as follows [38]:

q(x1:T | x0) =
T∏

t=1
q(xt | xt−1) (2.1)

To incrementally introduce noise, we establish a variance schedule characterized by the sequence
(β1, β2, ..., βt) where βt ∈ (0, 1). The goal is to initially add a substantial amount of noise to
the image and then gradually reduce the noise intensity as we approach the final iteration T . A
single step in this process can be defined as follows [39]:

q (xt | xt−1) = N
(

xt;
√

1 − βtxt−1, βtI
)

=
√

1 − βtxt−1 +
√

βte for e ∼ N (0, I)
(2.2)

A highly beneficial characteristic of this process is the capability to directly sample at an arbitrary
timestep t, conditioned on x0, in closed form by employing the reparameterization trick. By
introducing ᾱt =

∏t
i=1 αi with αt = 1−βt and given that ϵt−1, ϵt−2, ... ∼ N (0, I) we can rewrite

diffusion steps as follows [38, 39]:

xt = √
αtxt−1 +

√
1 − αtϵt

= √
αt

(√
αt−1xt−2 +

√
1 − αt−1ϵt−1

)
+

√
1 − αtϵt

= √
αtαt−1xt−2 +

√
αt(1 − αt−1) + (1 − αt)ϵt−1

= √
αtαt−1xt−2 +

√
1 − αtαt−1ϵt−1

= √
αtαt−1αt−2xt−3 +

√
1 − αtαt−1αt−2ϵt−2

...
=

√
αtx0 +

√
1 − αtϵ0

q (xt | x0) = N
(√

ᾱtx0, (1 − ᾱt) I
)

(2.3)

It demonstrates that the entire forward process can be computed in a single step.
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The original authors [1] implemented DDPM using a linear variance schedule (10−4 ≤ βi ≤
0.02 for i = [0, T ]), achieving notable outcomes. However, Nichol and Dhariwal [40] proposed a
cosine-beta schedule that is more effective, enhancing sample quality and training efficiency [38]:

ᾱt = 1
2(cos(t/T · π) + 1) (2.4)

By structuring the diffusion process in this way it provides a controlled way of transforming
the original data into noise, setting the stage for the reverse process where the model learns to
reconstruct the original data from the noise.

2.1.2 Reverse Diffusion Process

Figure 2.2 Illustration of the Backward Diffusion Process where an image is incrementally denoised
using the model pθ across T steps.

The reverse diffusion is a Markov process that is characterized by gradually refining a sample
from a simple noise by applying learned reverse diffusion steps. The objective of reverse diffusion
processes is to reconstruct an original data point x0 from a noisy distribution, specifically Gaus-
sian noise N ∼ (0, I). Directly reversing the diffusion sequence, characterized by q(xt|xt−1), to
sample from q(xt−1|xt) is not computationally feasible due to the complexity and requirements
of utilizing the entire dataset for accurate estimation. [38, 1] As a solution, we leverage a learned
model pθ, parameterized by θ, which aims to approximate the conditional probabilities essential
for reverse diffusion. For some fixed sequence of σ1...σT , model pθ is represented as follows [39]:

pθ (xt−1 | xt) = N
(
xt−1; µθ (xt, t) , σ2

t I
)

(2.5)

The whole reverse process can be represented as so:

pθ (x0:T ) = p (xT )
T∏

t=1
pθ (xt−1 | xt) (2.6)

It’s important to note that reverse of q (xt−1 | xt) is tractable when conditioning on x0. This
posterior q (xt−1 | xt, x0) can be derived using Bayes theorem with β̃t and µ̃t (xt, x0) which are
represented as follows [39]:

β̃t = 1 − ᾱt−1

1 − ᾱt
βt

µ̃t (xt, x0) =
√

ᾱt−1βt

1 − ᾱt
x0 +

√
αt (1 − ᾱt−1)

1 − ᾱt
xt = 1

√
αt

(
xt − 1 − αt√

1 − ᾱt
et

)
q (xt−1 | xt, x0) = N

(
xt−1; µ̃t (xt, x0) , β̃tI

)
(2.7)

This posterior distribution plays a crucial role in parameterizing the reverse chain and in es-
tablishing a variational lower bound [41] for the log-likelihood of the reverse process. [1] The
detailed derivations of these expressions can be found in [38].
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2.1.3 Model Optimization
Initially, we start with the image x0, to which we apply the forward and backward processes. The
goal is to carry out these processes to maximize the probability of the result being our original
image. This leads to the minimization of the negative log-likelihood.

−Eq(x0) [log pθ (x0)] (2.8)

The probability of pθ (x0) cannot be directly computed in a straightforward manner, as it depends
on the entire sequence of time steps {x0, x1, ..., xT }. This would require tracking T random
variables, which is impractical in real-world application. To address this issue, we can compute
the variational lower bound (VLB) [41] for this objective, leading to a formula that is more
computationally feasible [38, 42]:

− log pθ(x0) ≤ − log pθ(x0) + DKL (q(x1:T |x0)||pθ(x1:T |x0))

= − log pθ(x0) + Ex1T ∼q(x1:T |x0)

[
log (q(x1:T |x0))

pθ(x0:T )/pθ(x0)

]
= − log pθ(x0) + Eq

[
log (q(x1:T |x0))

pθ(x0:T ) + log pθ(x0)
]

= Eq

[
log (q(x1:T |x0))

pθ(x0:T )

]
Let LV LB = Eq(x0:T )

[
log (q(x1:T |x0))

pθ(x0:T )

]
≥ −Eq(x0) log pθ(x0)

(2.9)

In order to make each term in this equation analytically computable, we further decompose the
objective into a series of Kullback-Leibler (KL) divergence and entropy terms [1]:

LV LB = Eq(x0:T )

[
− log pθ(xT ) +

T∑
t=2

log q(xt|xt−1)
pθ(xt−1|xt)

+ log q(x1|x0)
pθ(x0|x1)

]

= Eq(x0:T )

[
− log pθ(xT ) +

T∑
t=2

log
(

q(xt−1|xt, x0)
pθ(xt−1|xt)

q(xt|x0)
q(xt−1|x0)

)
+ log q(x1|x0)

pθ(x0|x1)

]

= Eq(x0:T )

[
− log pθ(xT ) +

T∑
t=2

log q(xt−1|xt, x0)
pθ(xt−1|xt)

+ log q(xT |x0)
q(x1|x0) + log q(x1|x0)

pθ(x0|x1)

]

= Eq(x0:T )

[
log q(xT |x0)

pθ(xT ) +
T∑

t=2
log q(xt−1|xt, x0)

pθ(xt−1|xt)
− log pθ(x0|x1)

]

= Eq(x0:T )

DKL (q(xT |x0)∥pθ(xT ))︸ ︷︷ ︸
LT

+
T∑

t=2
DKL (q(xt−1|xt, x0)∥pθ(xt−1|xt))︸ ︷︷ ︸

Lt

− log pθ(x0|x1)︸ ︷︷ ︸
L0


The total loss consists of three parts: LT , Lt and L0. Since LT represents a forward process that
does not involve learning and is constant relative to θ, it can be disregarded. Term L0 facilitates
the generation of a discrete image representation from a continuous form. The authors [1] chose
to eliminate this term, altering only the sampling method at time step t = 1 [42, 39].

Particularly significant is term Lt, representing the KL divergence between the inverse of
the forward process and the model pθ. This KL divergence is calculated between two Gaussian
distributions N

(
xt−1; µ̃t, (xt, x0) , β̃tI

)
, N

(
xt−1; µθ (xt, t) , σ2

t I
)

and can be integrated, allowing
for explicit computation as follows [42, 38]:
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Lt = E

[
1

2 ∥σtI∥2
2

+ ∥µ̃t(xt, x0) − µθ(xt, t)∥2
2

]
(2.10)

To enable our model to accurately approximate the conditional probability distributions inherent
in the reverse diffusion process, we aim to train model, denoted as µθ (xt, t), to predict the
outcome of µ̃t (xt, x0). As previously demonstrated, reverse process can be represented by:

µ̃t (xt, x0) = 1
√

αt

(
xt − 1 − αt√

1 − ᾱt
et

)
(2.11)

This suggests that our model can be adapted to focus on predicting the Gaussian noise added
to an image in its forward process, instead of reconstructing the denoised image. The model’s
formulation can be redefined as ϵθ(xt, t), illustrated by the following equation:

µθ(xt, t) = 1
√

αt

(
xt − 1 − αt√

1 − ᾱt
ϵθ(xt, t)

)
(2.12)

where ϵθ(xt, t) represents the neural network designed for noise prediction [39]. The architecture
of this network is described later in this work for each specific model.

Since the model only predicts noise added to the image, the loss can then be reparametrized
as follows [39]:

Lt = E

[
1

2 ∥σtI∥2
2

+
∥∥∥∥ 1

√
αt

(
xt − 1 − αt√

1 − ᾱt
et

)
− 1

√
αt

(
xt − 1 − αt√

1 − ᾱt
ϵθ(xt, t)

)∥∥∥∥2

2

]

= E

[
(1 − αt)2

2αt(1 − ᾱt) ∥σtI∥2
2

+ ∥et − ϵθ(xt, t)∥2
2

]

= E

[
(1 − αt)2

2αt(1 − ᾱt) ∥σtI∥2
2

+
∥∥et − ϵθ

(√
ᾱtx0 +

√
1 − ᾱtet, t

)∥∥2
2

]
.

(2.13)

Authors [1] empirically found that simplifying the loss function by removing the constant
term (1−αt)2

2αt(1−ᾱt)∥σtI∥2
2
, leads to improved model performance. Therefore, the final loss function is

expressed as [39]:
Et∈{1..T },x0,et

[∥∥et − ϵθ

(√
ᾱtx0 +

√
1 − ᾱtet, t

)∥∥2
2

]
(2.14)

The objective of the final loss function is to minimize the error between the noise predicted by
the model and the actual sampled noise.

2.1.4 Model Training and Sampling
When training the DDPM model, as depicted in 2, the focus is on teaching the model to ac-
curately predict the noise that has been added to the original image. The process starts with
sampling data from the distribution q. Next, a timestep T and Gaussian noise are sampled. A
noised image is then generated, and the model is updated to minimize the squared error be-
tween the predicted noise and the actual noise. This procedure is iteratively repeated during the
training phase.

The DDPM sampling process starts with an initial sample of Gaussian noise. For each
timestep from T down to 1, the model predicts the noise that was incrementally added to the
image, and then subtracts it from the current image state. Through this iterative process, the
addition of noise is effectively reversed, ultimately resulting in the production of a denoised
image. A notable drawback of this algorithm is its computational intensity, as the model must
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utilize the denoising network T times, one for each timestep, making sampling even a single image
notably time-consuming.[1] Detailed descriptions of these algorithms are provided in figure 2.3.

Algorithm 1 DDPM Training
1: repeat
2: x0 ∼ q(x0)
3: t ∼ Uniform({1, . . . , T })
4: ϵ ∼ N (0, I)
5: Take gradient descent step on

∇θ

∥∥ϵ − ϵθ(
√

ᾱtx0 +
√

1 − ᾱtϵ, t)
∥∥2

6: until converged

Algorithm 2 DDPM Sampling

1: xT ∼ N (0, I)
2: for t = T, . . . , 1 do
3: z ∼ N (0, I) if t > 1, else z = 0
4: xt−1 = 1√

αt

(
xt − 1−αt√

1−ᾱt
ϵθ(xt, t)

)
+ σtz

5: end for
6: return x0

Figure 2.3 DDPM Training and Inference Algorithms [1]
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2.2 SR3
Building on the foundational principles of Denoising Diffusion Probabilistic Models (DDPMs) [1],
the SR3 model, first proposed in [2], introduces several significant enhancements developed for the
task of super-resolution. Unlike the basic DDPM framework, which focuses on generating images
from noise without explicitly specifying the target image’s appearance, SR3 adapts and extends
this concept for super-resolution by utilizing a conditional generation strategy. This approach
enables SR3 to convert low-resolution images into high-resolution counterparts through iterative
detail refinement.

In the pursuit of enhancing image resolution, slight modifications are necessitated in the
diffusion model. The model must be conditioned on a low-resolution image which can be re-
constructed into the original high-resolution image. This process is initiated with a dataset
comprising pairs of HR and LR images, denoted as D = {(xi, yi)}N

i=1, where xi signifies the i-th
low-resolution image within the dataset, and yi indicates the i-th high-resolution counterpart.
In this work, these pairs represent values of weather temperature measurements captured in low
and high resolution. [2, 35]

The objective is to learn a parametric approximation of the conditional probability p(y|x),
mapping a source LR image x to a target HR image y, through a stochastic iterative refinement
process. To accomplish this, the HR image undergoes a controlled degradation process by the
sequential addition of Gaussian noise throughout the forward diffusion phase. A conditional
DDPM is then trained to invert this process, aiming to reconstruct the original HR image from
its LR counterpart. Given that we start with y0. Thus, the forward process, which involves the
addition of noise to the HR image, can be reformulated as follows [35, 2]:

q(y1:T | y0) =
T∏

t=1
q(yt | yt−1) (2.15)

q(yt | yt−1) = N (yt;
√

αtyt−1, (1 − αt)I) (2.16)

q(yt | y0) = N (yt;
√

γty0, (1 − γt)I) (2.17)

The above formulas closely follow the fundamental concepts of DDPM [1], utilizing an identical
approach for derivation. A significant enhancement to the model includes the authors [2] deciding
to further refine the forward process by adapting the noise schedule. They introduced a piecewise
distribution [43, 44] for γ, denoted as p(γ) =

∑T
t=1

1
T U(γt−1, γt), which has proven to enhance

the generation of three-channel super-resolution images. However, in this work, an SR3 model
with a cosine noise schedule 2.4 has been employed, as empirical validation has revealed that it
is more effective with climate variable data.

In the backward process, the model is conditioned on both a low-resolution image and a
high-resolution noised image, described as:

pθ(yt−1 | yt, x) = N
(
yt−1; µθ(x, yt, γt), σ2

t I
)

(2.18)

The objective function aims to maximize the likelihood of accurately reconstructing the noise et

added to the HR image, presented as:

Et,y0,x,et

[∥∥∥et − fθ

(
x,

√
γty0 +

√
1 − γtet, t

)∥∥∥2
]

(2.19)

where, fθ represents the model’s estimation of the noise et at step t, based on the LR image x
and the noised HR image yt. [2]
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2.2.1 SR3 Inferencre and Training
The SR3 training process depicted in Algorithm 3 innovates on traditional DDPM by conditioning
on variance γ rather than the timestep t, enabling a more adaptable approach to training. This
conditioning allows for flexibility in the number of diffusion steps and the customization of the
noise schedule during inference.

The SR3 inference process depicted in Algorithm 4, begins with yT , which is approximately
Gaussian noise. Throughout the T iterations, normally distributed noise Z is sampled, and at
each step, the mean is computed by a denoising model. This mean is then adjusted by adding
noise according to a predefined variance schedule, acting as noise perturbation [45]. This process
progresses iteratively, with each step gradually reducing the noise in yt and ultimately producing
a reconstructed SR image. The iteration count, T , serves as a hyperparameter. The authors [2]
define T = 2000 for the training phase and T = 100 for the inference phase. [2]

Algorithm 3 SR3 Training
1: repeat
2: (x, y0) ∼ p(x, y)
3: γ ∼ p(γ)
4: ϵ ∼ N (0, I)
5: Take a gradient descent step on

∇θ

∥∥fθ(x,
√

γy0 +
√

1 − γϵ, γ) − ϵ
∥∥p

p

6: until converged

Algorithm 4 SR3 Sampling

1: yT ∼ N (0, I)
2: for t = T, . . . , 1 do
3: z ∼ N (0, I) if t > 1, else z = 0
4: yt−1 = 1√

αt

(
yt − 1−αt√

1−γt
fθ(x, yt, γt)

) √
1 − αtz

5: end for
6: return y0

Figure 2.4 SR3 Training and Inference Algorithms. [2]

2.2.2 SR3 Architecture
The architecture of a neural network designed for predicting noise in SR3, depicted in Figure 2.5,
involves several key components, each serving a unique purpose to enhance the model’s ability
make accurate predictions. Here, We investigate the architecture’s building blocks.

Figure 2.5 Architecture of SR3 model used for Climate Variable downscaling.
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The input for the denoising neural network includes a noisy image yt and a bilinearly [46] in-
terpolated low-resolution image x. These images are concatenated and inputted into the network.
[47]

U-Net Structure
The core of the SR3 neural network fθ is based on a U-Net [48] architecture, which is characterized
by its U-shaped structure. This structure includes an encoder that compresses the input image
into a dense feature representation and a decoder that reconstructs the image details from this
compressed form. The segment of the network serving as a transition point between the encoder
and decoder is known as the bottleneck. The bottleneck handles the most compact version of the
data, helping to move essential details from the encoder to the decoder for image reconstruction.
[48, 49]

In SR3, the encoder employs convolutional layers [10] with stride [50] for downsampling of the
image at each level by a factor of 2, as illustrated in Fig. 2.5. Conversely, the decoder utilizes
nearest neighbor interpolation [51] for upsampling, aiming to expand the compressed feature
representation back to the original image dimensions. [47] A distinctive feature of U-Net is its
use of skip connections [48], which bridge the encoder and decoder sections. These connections
forward feature maps from each level of the encoder directly to the corresponding level in the
decoder, ensuring that detailed spatial information lost during compression is effectively reintro-
duced. Additionally, the use of skip connections contributes to stabilizing the training process
and enhancing the convergence of the model. [49, 52]

ResNet Block
A ResNet block, also known as a residual block, is a foundational component of the ResNet archi-
tecture [53] designed specifically to combat the challenges associated with training deeper neural
networks. As networks increase in depth, they often face the vanishing gradient problem [54],
where gradients diminish as they are propagated back through the layers during training. This
issue can worsen the training and overall network performance. The ResNet block architecture
helps mitigate this issue. [55, 53]

A ResNet block is typically composed of a few stacked layers of convolutional neural networks,
each followed by batch normalization [56] and an activation function. Unlike traditional neural
networks where layers attempt to directly approximate the desired function H(x) for an input x,
ResNet blocks take a different approach by focusing on learning a residual function. Specifically,
the layers in a ResNet block are designed to approximate the residual F (x) defined as F (x) :=
H(x) − x. The output of the ResNet block is then obtained by adding the input x back to the
output of the residual mapping, yielding H(x) = F (x) + x. [57, 53]

In a ResNet block, the input x not only passes through the stacked convolutional layers to
compute F (x), but it also travels via shortcut connections that bypass these layers, as shown in
Figure 2.6. This configuration allows gradients to propagate directly through the network. [57,
53]

Figure 2.6 Architecture of ResNet block utilized in SR3 model.
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In the SR3 ResNet block, depicted in Figure 2.6, there are two convolutional layers preceded
by Group Normalization [58] and the Swish activation function [59]. Between these two convolu-
tion layers, the SR3 ResNet block is additionally conditioned on a specific diffusion timestep t [2,
39]. This conditioning is achieved by integrating the timestep into the network using sinusoidal
position embeddings inspired by the Transformer [22] architecture, where position embeddings
are used to provide sequence order information.

Self-attention
Self-attention is a mechanism that enhances neural network architectures, enabling them to
dynamically focus on relevant parts of the input data. By computing attention scores, self-
attention allows models to determine the importance of various input elements and adjust their
influence accordingly, ensuring a context-aware understanding. This capability is particularly
crucial in language processing tasks, as it enables the model to adapt the interpretation of a
word depending on its contextual placement within a sentence or a larger document. [60]

Self-attention can be described through a sequence of mathematical steps involving three
primary vectors for each element in the input: queries q, keys k, and values v. These vectors are
projections from the original input vectors, created by multiplying the input with three separate
weight matrices W Q, W K , and W V , which are learned during training. [61, 22]

The attention mechanism computes the attention scores by taking the dot product of the
query vector with all key vectors. The attention scores are then scaled by the dimensionality
of the keys to help stabilize the gradients during training. Mathematically, the score between a
query q and a key k is calculated as q·k√

dk
, where dk is the dimensionality of the key vectors. [22]

After computing these scores, a softmax function is applied to convert them into a probability
distribution, ensuring that they are positive and sum to one. This softmax operation is performed
for each query against all keys and is defined as softmax( QKT

√
dk

), where softmax is applied column-
wise across the resulting matrix. Here, Q and K are matrices containing all query and key vectors,
allowing for efficient simultaneous computation. [61, 22]

The output is then computed as a weighted sum of the value vectors, with weights given by
the softmax output. For each query, the final output vector is the sum of all values V , weighted
by the attention scores, effectively allowing each output element to consider information from
the entire input sequence described as:

Attention(Q, K, V ) = softmax(QKT

√
dk

)V

This sequence of operations allows the self-attention mechanism to dynamically focus on different
parts of the input data. [61]

Figure 2.7 Architecture of image self-attention module first used in SAGAN [62]
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In the SR3 architecture, specific ResNet blocks incorporate self-attention mechanisms to
address global dependencies in addition to local ones captured by convolutional layers. The
inputs to this self-attention are the 2D convolutional feature maps from the output of the ResNet
block. These feature maps are treated as sequences of feature vectors, which are processed using
1x1 convolutions, as illustrated in Figure 2.7. Subsequently, these vectors are utilized to generate
the Q, K, V matrices essential for the self-attention process. [39, 47]

As depicted in Figure 2.5, ResNet blocks with self-attention are employed only at lower
resolution levels in the U-net architecture due to the high computational cost associated with
processing large images.

2.3 SRDiff
SRDiff [3] is a conditional diffusion model for super-resolution that shares a similar architecture
with SR3 but introduces modifications in its conditioning approach by using a pre-trained LR
encoder and incorporating residual prediction.

Figure 2.8 Illustration of residual-based prediction.

Unlike SR3 method which aims to predict a high-resolution image directly, SRDiff adopts a
residual prediction strategy. This approach involves estimating the difference between the HR
image and an upsampled low-resolution image, referred to as the input residual image. The
model transforms the residual image into a latent variable with a Gaussian distribution using
a diffusion process. Subsequently, it employs a denoising network conditioned on the encoded
low-resolution image using an RRDB-based [63] LR encoder, refining the latent variable into a
detailed residual image. This residual image is then combined with the upsampled LR image to
reconstruct the final SR image. [3]

2.3.1 SRDiff LR Encoder

Figure 2.9 Architecture of RRDB encoder utilized in SRDiff model.

The SRDiff LR Encoder is a neural network designed to encode information from low-resolution
images, which is essential for conditioning of denoising model. The authors adopted an encoder
architecture from [63], which incorporates Residual in Residual Dense Blocks (RRDB) originally
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used in ESRGAN [16]. As shown in Fig. 2.9, these blocks feature densely connected convolu-
tional layers with Leaky ReLU [64] activations and multiple dense skip connections, deliberately
omitting batch normalization [56] layers.

The use of this neural network for image encoding is not standard. The network is trained to
reconstruct high-resolution images from LR ones using L1 loss. However, to obtain the encoded
image, instead of using the network’s output, which is the HR image reconstruction, the con-
catenated outputs from all RRDB blocks are used. This concatenation results in a multi-level
encoding of the LR image, which is ideal for conditioning. Additionally, the number of RRDB
blocks within the encoder is a hyperparameter that offers flexibility to adjust the complexity of
the encoded image and optimize the encoder’s performance. [3, 63]

2.3.2 SRDiff Inferencre and Training
As illustrated in Algorithm 5, the training process begins with sampling low-resolution image
x and high-resolution image y. The residual image is then created by subtracting the bicubic-
interpolated LR image x from the HR image y. This LR image is encoded using a pre-trained
RRDB encoder. Subsequently, the encoded image xe and the residual image yr are used to
compute the gradients, following the methodology of the basic DDPM training Algorithm 1.

The inference phase, illustrated in Algorithm 6, starts with sampling yt from the standard
Gaussian distribution and encoding the LR image x using the RRDB encoder to produce xe.
Over the course of T iterations, the residual image undergoes denoising through a network that
is conditioned on the encoded image, similar to the methodology used in the SR3 model. After
completing T iterations, the denoised residual image is combined with an interpolated image to
produce the final SR image. [3]

Algorithm 5 SRDiff Training
1: Input: LR image and HR image pairs P =

{(xk, yk)}K
k=1, total diffusion step T

2: Initialize: randomly initialized conditional
noise predictor ϵθ and pretrained LR encoder
D

3: repeat
4: Sample (x, y) ∼ P
5: Upsample up(x), compute yr = y − up(x)
6: Encode LR image x as xe = D(x)
7: Sample ϵ ∼ N (0, I)
8: Sample t ∼ Uniform({1, · · · , T })
9: Take gradient step on:

∇θ∥ϵ − fθ(yt, xe, t)∥, yt =
√

ᾱtyr +
√

1 − ᾱtϵ

10: until converged

Algorithm 6 SRDiff Sampling
1: Input: Low-resolution image x, total diffusion

step T
2: Load: Conditional noise predictor ϵθ and low-

resolution encoder D
3: Sample yT ∼ N (0, I)
4: Upsample x to up(x)
5: Encode x as xe = D(x)
6: for t = T to 1 do
7: Sample z ∼ N (0, I) if t > 1, else z = 0
8: Compute yt−1:

yt−1 = 1√
αt

(
yt − 1−αt√

1−ᾱt
fθ(yt, xe, t)

)
+ σtz

9: end for
10: return y0 + up(x) as the super-resolved (SR)

prediction

Figure 2.10 SRDiff Training and Inference Algorithms. [3]
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2.4 ResDiff
The Residual-structure-based diffusion model [4] is an architecture based on SR3 [2] and SRDiff
[3] that combines Convolutional Neural Networks (CNNs) [10] and conditional diffusion models.
ResDiff adapts the residual prediction strategy from SRDiff and also replaces the initial bicubic
interpolation [46] used for conditioning the SR3 denoising network with a pre-trained CNN,
specialized in capturing major low-frequency components. Furthermore, ResDiff introduces High-
Frequency Guided Diffusion that modifies the denoising network to focus on enhancing high-
frequency image components. This method ensures that the details lost in the SR3 diffusion
process, are meticulously reconstructed.

The ResDiff training process is practically the same as in the SRDiff training algorithm 5
with a modification that instead of using a pre-trained LR encoder for model conditioning, a
pre-trained CNN is utilized. The CNN generates a super-resolution version of the low-resolution
input image, which is then concatenated with the noised residual image. This approach resembles
the process in SR3, where the interpolated image is combined with the noised input to condition
the denoising network. [4]

The inference process is also similar to the SRDiff sampling algorithm 6, with the only
difference being that the model is initially conditioned on the SR output from the pre-trained
CNN, instead of being conditioned on the interpolated image as in SR3.

2.4.1 Pre-trained CNN
The primary function of the CNN in the ResDiff model is to generate an initial HR prediction that
effectively recovers the major low-frequency components and partial high-frequency components
of a low-resolution image better than bicubic interpolation. It’s designed to be lightweight,
containing fewer parameters to reduce computational demands while still effectively capturing
essential image features. [4]

Figure 2.11 Architecture of pre-trained CNN utilized in ResDiff.

The architecture of the pre-trained CNN, depicted in Figure 2.11, consists of three convo-
lutional layers, each followed by a ReLU activation function. The output from the final ReLU
activation serves as the input for the Pixel Shuffle operation, also known as sub-pixel convolution.
This technique upscales images from a low to high spatial resolution by rearranging elements
from multiple feature map channels into a larger spatial grid. The process increases the number
of channels in the feature maps by a factor of r2 (where r is the upscaling factor) through a
convolutional layer. This is followed by reorganizing these channels back into the spatial di-
mensions to create the upscaled image [65]. The output from the Pixel Shuffle is then merged
through a residual connection with bicubic upsampled low-resolution input, forming the final
initial prediction. [4]

The most important component of the simple CNN is its loss function, which comprises three
distinct losses: FFT (Fast Fourier Transform) Loss, DWT (Discrete Wavelet Transform) Loss,
and GT (spatial domain) Loss.

Spatial Domain Loss is a component of the loss function, calculated as the mean square error
between the predicted and ground-truth high-resolution images. The primary purpose of the
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LGT is to ensure that the network accurately captures the overall pixel intensity and placement.
The LGT is mathematically represented as:

LGT = E
[
∥Y − Ŷ ∥2

]
(2.20)

where Y is the ground-truth image and Ŷ is the image predicted by the CNN. [4]
Frequency Domain Loss is complement the spatial domain loss, it handles the frequency

aspects of the image reconstruction. It involves applying the Fast Fourier Transform (FFT)
[66] to both the predicted and ground-truth images, converting them from the spatial to the
frequency domain. The loss is then calculated as the MSE between the magnitudes of these FFT
coefficients. This approach focuses the network’s learning on preserving the structural integrity
of the image in the frequency domain. The LF F T is defined as:

LF F T = E
[
∥M − M̂∥2

]
(2.21)

where M and M̂ are the magnitudes of the FFT coefficients of the ground-truth and predicted
images, respectively. [4]

Discrete Wavelet Transform Loss enhances the models focus on specific high-frequency com-
ponents. It works by decomposing both the predicted and actual images into four sub-bands
using the Discrete Wavelet Transform (DWT) [67]. These sub-bands include low-low (LL), low-
high (LH), high-low (HL), and high-high (HH) components of the image. From high frequency
components HL, LH and HH are then extracted wavelet coefficients H, V, and D which represent
horizontal, vertical, and diagonal directions in the image. The low-frequency component, LL,
which contains the structural information of the image, is further decomposed into another set of
four sub-bands: LL, LH, HL, and HH. These sub-bands are processed in the same manner as the
initial set. This decomposition process is recursively repeated four times, with each application
of the DWT reducing the size of the LL component by half. Consequently, the LL component
at the lowest level is reduced to 1/16th of the original image size in both dimensions. The H,
V, and D coefficients extracted at multiple levels are then used to calculate the loss, which is
computed as the sum of the mean squared errors across these coefficients:

LDW T =
L∑

i=1
E

[
∥Hi − Ĥi∥2 + ∥Vi − V̂i∥2 + ∥Di − D̂i∥2

]
(2.22)

where Hi, Vi, Di are the high-frequency sub-bands of the ground-truth image and Ĥi, V̂i, D̂i are
high-frequency sub-band of the predicted image, across different levels i of the wavelet decom-
position. [4, 68]

Finall CNN loss is then computed as sum of there three losses:

LSimpleCNN = α · LGT + β · LF F T + LDW T (2.23)

where α, β are parameters that determine the relative importance of the spatial and frequency
domain losses. [4]

2.4.2 ResDiff Architecture
As shown in Figure 2.12, ResDiff adds the FD Info Splitter and HF-guided Cross-Attention (CA)
into denoising network architecture.



ResDiff 19

Figure 2.12 Architecture of ResDiff model used for Climate Variable downscaling.

FD Info Splitter
The Frequency-Domain Information Splitter (FD Info Splitter) is a component of ResDiff that
segregates image data into high and low-frequency bands. This segregation is fundamental for
focusing the model’s attention on preserving or enhancing the details critical for high-quality
image super-resolution. The process begins with the application of 2D FFT to both the inter-
polated and the noised residual images. This transformation allows the model to analyze and
manipulate the frequency components of the image data directly.

Innovation within the FD Info Splitter is the use of a Residual Squeeze-and-Excitation
(ResSE) block, proposed and described in [69]. The ResSE block processes the FFT-transformed
feature maps, dynamically adjusting the importance of different channels in the output feature
map. Following this, the computation of the standard deviation, σ, is carried out with formula:

σ = min
(

| ResSE(M)| + l

2 , l

)
(2.24)

The high-pass filtering, represented by H(u, v), is then applied to isolate and enhance these
high-frequency components:

H(u, v) = 1 − e− D2(u,v)
2σ2 (2.25)

where D(u, v) measures the distance of a frequency component from the origin in the frequency
domain. This filtering process results in a feature map L, enriched with high-frequency details.

Following the high-pass filtering, an inverse FFT is applied to L, facilitating the generation
of a low-frequency focused image representation, xLF . Concurrently, the ResSE block refines L
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to extract attention weights that are specific to the high-frequency domain. These weights are
then applied to the upsampled image x to isolate its high-frequency components, resulting in
xHF .

The outcome of this process is a set of five distinct feature maps: [x, yt, xHF , xLF , y′
t], where

x and yt represent the source and the noise-added residual images, respectively, xHF and xLF

denote the high and low-frequency components extracted, and y′
t is the target high-resolution

output at iteration t. These feature maps are utilized to condition the model, enhancing its
ability to reconstruct images, particularly in the high-frequency bands. [4]

Figure 2.13 Architecture of FD Info Splitter.

HF-guided Cross-Attention (CA)
The HF-guided Cross-Attention mechanism enhances the model’s capability to focus on and
refine high-frequency details. Unlike typical self-attention, where all elements—queries, keys, and
values—are derived from the same input to correlate different parts of that input, cross-attention
employs queries from one input and matches them with keys and values from another. Within the
ResDiff architecture, the cross-attention mechanism utilizes outputs from the Discrete Wavelet
Transform (DWT) and feature maps sourced from the denoising network’s skip connections. As
depicted in Figure 2.14, linear projections of these feature maps serve as keys and values in
the attention mechanism, while the combination of the DWT components H, V, and D forms
the query. The result of this cross-attention mechanism is a feature map that is dynamically
adjusted to emphasize high-frequency details, which are critical for reconstructing the image’s
finer structures and textures. [4]

Figure 2.14 Architecture of HF-guided Cross-Attention.
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2.5 ResDiff Enhanced with Physics-Inspired Convolutional
Filters

In an effort to further refine the ResDiff architecture for applications requiring a nuanced un-
derstanding of dynamic systems, such as weather prediction, we introduce a novel modification
termed ”ResDiff + Physics”. This adaptation integrates physics-inspired convolutional filters that
mimic finite difference schemes used for computing derivatives. This approach allows the model
to explicitly focus on derivative features that are fundamental to the Navier-Stokes equations
[70], which govern fluid dynamics and are critical in meteorological modeling.

Motivation
The integration of physics-based principles into deep learning models offers a promising direction
for improving the accuracy of predictions in fields heavily reliant on physical laws. By embedding
convolutional filters that approximate spatial derivatives, ”ResDiff + Physics” aims to capture
the underlying physical processes that drive weather patterns.

Convolutional Derivative Filters
To achieve this, the Frequency-Domain Information Splitter was replaced with a set of three spe-
cialized convolutional filters designed to approximate first and second-order spatial derivatives,
key components in differential equations like the Navier-Stokes. These filters are applied to the
interpolated image, capturing the gradient and curvature information relevant to fluid motion
and atmospheric dynamics. The filters are defined as follows:

∂x =

0 0 0
0 −1 1
0 0 0

 ∂y =

0 0 0
0 −1 0
0 1 0

 ∇2 =

0 1 0
1 −4 1
0 1 0


Each filter is applied to the interpolated image using a reflect padding of 1 to ensure boundary

consistency. The resulting derivative feature maps are then concatenated, forming a comprehen-
sive tensor of shape [B 1 , 3 , H 2 , W 3 ] that encapsulates spatial variation information.

Integration into ResDiff
Following the convolutional operation, the derivative feature maps are concatenated with the
noised residual image and the original upsampled image. This enriched tensor serves as the
input to the ResDiff U-net architecture, conditioning the model on physically meaningful deriva-
tives rather than solely on frequency-domain information. This modification aims to ground
the model’s learning process in the physical reality of atmospheric dynamics, providing a more
informed basis for generating high-resolution weather predictions.

Furthermore, We refined the HF-guided cross-attention 2.14 mechanism by incorporating a
1x1 convolution directly applied to the high-frequency components derived from the Discrete
Wavelet Transform. This adjustment further enhances the model’s ability to focus on and recon-
struct high-frequency details, now informed by derivative-based features that reflect underlying
physical processes. Additionally, we replaced the pretrained CNN with bicubic interpolation to
further enhance the model’s overall performance on weather data.

1 Size of mini Batch
2 Image Height
3 Image Width
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Chapter 3

Dataset and implementation

This chapter describes the dataset used for the experiments, along with the technologies employed
and implementation details.

3.1 WeatherBench dataset
For model training and evaluation, we utilized the WeatherBench dataset [5], a benchmark
dataset designed for assessing and comparing machine learning models in weather forecasting
tasks. This dataset encompasses a variety of meteorological variables in different resolutions
derived from the ERA5 [71] reanalysis dataset. ERA5 integrates modeled data with global
observations to provide a consistent, gridded representation of historical weather conditions. In
this work, we focused on the downscaling of the T2M (two-meter temperature) variable, which
represents temperature readings in Kelvin on a latitude-longitude grid, situated two meters above
the ground level. Data are recorded hourly, resulting in 24 distinct temperature measurements
per day, covering the entire surface of the Earth and forming a rectangular image. In the context
of our super-resolution task, we utilized data pairs with grid spacings of 5.625° and 1.40525°.
Consequently, the low-resolution images consist of 32 × 64 pixels, and the high-resolution images
consist of 128 × 256 pixels, effectively enhancing the resolution by four times in each dimension.
These images are single-channel, as only one climate variable is used.

The dataset has a total volume of 45 GiB and includes 341,880 climate image pairs, collected
between January 1, 1979, and December 31, 2018. For the training of the models, we utilized
data pairs from January 1, 1979, to February 1, 2015. The validation set covers the period from
January 1, 2016, to December 31, 2016.

Due to limited computational resources and the slow validation of models when utilizing 1000
timesteps for sampling, we downsized the dataset by using only the values measured in January
for both the validation and training sets. These data are then standardized separately for each
resolution. In some experiments, models were trained using data from other months, but always
in such a way that no more than one distinct month was used at a time for training any single
model.

The acquired data are stored in the NETCDF format, a standard for multi-dimensional sci-
entific data such as atmospheric measurements, oceanographic metrics, and other environmental
variables. For easier manipulation and enhanced training efficiency, these data are then converted
into the standard NumPy binary format.

23
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3.2 Implementation and tools
All experiments were conducted on a single NVIDIA A100 graphics card with 40 GB of memory
and AMD Epyc 7742, 64 cores 3.6GHz processor. The whole project is implemented in Python
3.11, with the machine learning library PyTorch 2.0. For experiment tracking and logging was
used Weights and Biases. The implementation of this work is based on the weather SR3 imple-
mentation [72] and the original ResDiff implementation [73]. The SR3 implementation includes
code for handling weather data, which we utilized in our work. However, we found parts of this
code to be extremely slow and inefficient, requiring us to rewrite them completely. We revised
and optimized the code, greatly improving its speed and efficiency for handling large datasets.
Additionally, we integrated new features related to regularization, handling of monthly data,
training, and visualization. We sourced the ResDiff and SR3 models from the original ResDiff
implementation and further refined them for weather data, as the original implementations were
designed for working with fixed-size RGB images. The architecture of the RRDB encoder was
obtained from [74], while the rest of the code, including the mentioned modifications, is our own.



Chapter 4

Experiments

4.0.1 Training details
This section describes the common hyperparameters and training details for the individual mod-
els. All changes to these hyperparameters and training procedures are always specified in the
experiments.

Pretrained RRDB encoder and CNN
The RRDB encoder and the Simple CNN were both trained for up to 200 epochs, with early
stopping mechanisms implemented to prevent overfitting. After each epoch, validation, and
model checkpoints were conducted. Both models were trained on the same dataset as the other
diffusion models utilized in the experiments. The Simple CNN employed an Adam optimizer
with a learning rate of 1e-4 and due to its simplicity, a batch size of 128 was used. In CNN loss
function we set parameters to α = 0.2 and β = 0.1. Conversely, the RRDB encoder utilized an
Adam optimizer with a slightly higher learning rate of 2e-4 and a smaller batch size of 32. The
number of input channels for the RRDB blocks was set at 64.

Diffusion models
We trained models for 200,000 iterations, using various batch sizes. Specifically, SR3 and SRDiff
models utilized a batch size of 16, while ResDiff-based models required a batch size of 4 due to
their higher memory demands during experimentation. Validation was performed every 10,000
iterations across the entire validation set. Despite the computational intensity of diffusion models
during inference, as they must utilize the entire denoising network for each timestep T , we kept
T = 1000 for both training and validation to have accurate validation error estimates. As a
result, the total training time for a single run was approximately 50 hours. For both training
and validation, we utilized a linear noise schedule ranging from 1e-6 to 1e-2 and applied a dropout
rate of 0.2 within each ResNet block. The dropout layer was placed after each Swish activation
function, meaning each block contained two dropout layers. Additionally, similar to the authors
in the original paper [1], we applied the Exponential Moving Average to model parameters with
a decay rate of 0.9999. For optimization, we utilized Adam with a learning rate of 1e-4.

25
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Validation metrics
As validation metrics, we employed basic measures such as Mean Squared Error (MSE) and
Mean Absolute Error (MAE), along with more sophisticated metrics designed for super-resolution
evaluation. One such metric is the Structural Similarity Index Measure (SSIM) [75]. SSIM is
a method for measuring perceived image quality, which surpasses traditional metrics like MSE
by considering image structure that aligns more closely with human visual perception. SSIM
is based on the computation of three key comparison measurements Luminance, Contrast, and
Structure. These measurements are being computed between test image window x and reference
image window y and can be defined as:

l(x, y) = 2µxµy + C1

µ2
x + µ2

y + C1
(4.1)

c(x, y) = 2σxσy + C2

σ2
x + σ2

y + C2
(4.2)

s(x, y) = σxy + C3

σxσy + C3
(4.3)

The luminance comparison function l(x, y) evaluates the average brightness of the pixels in
the images, where µx and µy represent the mean luminance values of image windows x and
y, respectively. The contrast comparison function c(x, y) assesses the similarity in contrast
between images, which is determined by the standard deviations of x and y, denoted as σx and
σy. The structure comparison function s(x, y) measures the correlation coefficient, where σxy

represents the covariance between x and y. The terms C1, C2, C3 are small constants added to
avoid division by zero when the denominators are very small. The overall SSIM index is then a
weighted combination of these three components:

SSIM(x, y) = [l(x, y)α · c(x, y)β · s(x, y)γ ] (4.4)

To compute the final SSIM index between two images, it is calculated using a sliding window of
size n × n that moves pixel-by-pixel across the entire image. At each position, the SSIM index
is calculated, resulting in a matrix of SSIM values. The mean of all these values is the final
result. The result is a value between −1 and 1, where 1 indicates perfect similarity (images are
identical) and -1 indicates maximal dissimilarity. In this work, we utilized a sliding window of
size 11 × 11 for the computation of all SSIM scores.[76, 75]

Along with SSIM we also utilized Peak signal noise ration (PSNR) metric. PSNR measures
the quality of a reconstructed image compared to the original image. It is expressed in decibels
(dB) and quantifies the ratio between the maximum possible signal power and the power of
corrupting noise and is defined as:

PSNR = 10 · log10

(
MAX2

MSE

)
(4.5)

Where MAX represents the maximum possible pixel value of the image and MSE represents the
mean squared error between the original and compressed image. A higher PSNR value typically
indicates better image quality, as it suggests a lower level of error or noise. [77]
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4.0.2 RRDB encoder
In this experiment, we explored various configurations of the RRDB encoder by altering the
number of RRDB blocks within the network. Motivated by the fact that each block contains
15 convolutional layers, which are both memory and computationally intensive, our goal was to
identify the setup that delivers optimal performance in terms of the SSIM while minimizing the
number of blocks used. It’s important to note that a higher SSIM score does not necessarily reflect
better performance of the encoder within the SRDiff model. This is because the SRDiff model
is not conditioned on the output of the RRDB network, but on the internal representations
of the image derived from all activations within each RRDB block. Thus, the output of the
encoder depends on the number of RRDB blocks. Having too many blocks in the encoder would
also require compressing the encoder output into a smaller dimension to make it usable for
conditioning the SRDiff model.

Table 4.1 Validation results of RRDB Encoder with different numbers of RRDB blocks.

RRDB Blocks MSE ↓ SSIM ↑ PSNR ↑ MAE ↓
17 Blocks 29.05 0.767 25.66 2.987
23 Blocks 29.05 0.769 25.66 2.988
27 Blocks 29.04 0.770 25.66 2.988
30 Blocks 29.03 0.770 25.66 2.981
32 Blocks 29.04 0.769 25.66 2.986
Bicubic 6.866 0.854 31.52 1.542
Ground Truth 0 1 ∞ 0

The data presented in Table 4.1 indicate that the number of RRDB blocks in the encoder has
minimal impact on the overall validation scores. Among the configurations tested, the architec-
ture with 23 RRDB blocks emerges as the optimal choice, balancing efficiency and performance
with only a marginal 0.001 difference in SSIM compared to the versions with more blocks. As
the number of blocks increases, the models do not show improved performance; therefore, it does
not make sense to use more than 27 blocks in the encoder.

4.0.3 SRDiff
We experimented with two methods of training the SRDiff model. In the first approach, we
locked the weights of the pre-trained RRDB neural network, preventing the encoder from being
trained alongside the SRDiff. In the second approach, we unlocked these weights, allowing the
RRDB encoder to undergo further training during the SRDiff training process. To enable this,
both the L1 loss of the RRDB encoder and the ResDiff L1 loss are summed together before
gradient computation.

Table 4.2 Validation results of SRDiff with locked and unlocked RRDB encoder.

Model MSE ↓ SSIM ↑ PSNR ↑ MAE ↓
SRDiff + (locked RRDB) 1.748 0.951 37.81 0.820
SRDiff + (unlocked RRDB) 1.761 0.950 37.84 0.819
Bicubic 6.866 0.854 31.52 1.542
Ground Truth 0 1 ∞ 0

One might assume that unlocking the encoder’s weights and allowing further training would
enable the SRDiff model to utilize the encoder even more effectively. Table 4.2 reveals that
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although the locked version is more easier to train, it achieves slightly better SSIM and MSE
scores. On the other hand, the unlocked RRDB encoder performs better in terms of PSNR
and MAE scores. This indicates that overall, both models perform very similarly. As depicted
in Figure 4.1, both versions of SRDiff achieve exceptional results in weather super-resolution.
Compared to bicubic interpolation over oceans, both achieve similar outcomes; however, on land,
primarily in the Southern Hemisphere, there is a very notable improvement in favor of SRDiff.
Comparing the locked and unlocked versions of SRDiff, they predict very similarly, but in regions
such as Africa and Australia, the SRDiff with the locked RRDB is slightly more accurate from
a visual perspective.

Figure 4.1 Comparative visualization of absolute error in Kelvins across models: Bicubic interpo-
lation, Simple CNN, SRDiff with locked RRDB encoder, SRDiff with unlocked RRDB encoder. The
color scale at the bottom indicates the magnitude of errors, with areas of large errors highlighted in red
and areas of minimal errors in blue. This visual representation helps in evaluating model accuracy over
different global regions, demonstrating ; however each model performs.

4.0.4 ResDiff
As shown in Table 4.3, the Simple CNN outperforms bicubic interpolation in all validation
metrics. This comparison is significant because, unlike the RRDB encoder, the Simple CNN
serves as a direct replacement for interpolation within ResDiff. These results imply that because
the Simple CNN surpasses bicubic interpolation, it should also enhance ResDiff performance.
However, despite these favorable results achieved by the Simple CNN, we experimented with
removing it from the ResDiff architecture and replacing it with bicubic interpolation, conditioning
the model in the same manner as in the SR3 base model.
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Figure 4.2 Part of the HF-guided Cross Attention module, illustrating the modification where the
summation is replaced by concatenation.

Furthermore, as depicted in Figure 4.2, we modified the HF-guided Cross Attention in Res-
Diff. We changed the processing of the wavelet coefficients for the high-frequency bands H, V,
and D—corresponding to the horizontal, vertical, and diagonal directions, respectively in the
image—from summing to concatenating these outputs. These concatenated outputs are then
processed by a 1x1 convolution. Our motivation for this adjustment was to preserve more cru-
cial high-frequency information in the image for cross-attention, which might otherwise be lost
through summation.

Table 4.3 Validation results of various ResDiff versions.

Model MSE ↓ SSIM ↑ PSNR ↑ MAE ↓
Simple CNN 3.072 0.907 35.01 1.096
ResDiff + Simple CNN 1.801 0.952 37.59 0.824
ResDiff 1.768 0.953 37.66 0.813
ResDiff with concat 1.842 0.951 37.52 0.828
Bicubic 6.866 0.854 31.52 1.542
Ground Truth 0 1 ∞ 0

Table 4.2 demonstrates that incorporating high-frequency components through concatena-
tion in cross-attention did not enhance model performance. All validation metrics were worse
than those of the unmodified ResDiff. Figure 4.3 indeed shows that although ResDiff with con-
catenation committed fewer errors in regions like the South Pole and South America, its overall
performance still lags behind other versions of ResDiff as indicated by the validation metrics.

On the other hand, Table 4.2 also shows that eliminating the pre-trained CNN from the
model led to unexpectedly positive outcomes. The ResDiff variant without the CNN surpassed
the version with the SimpleCNN across all key metrics MSE, SSIM, PSNR, and MAE. This
suggests that the pre-trained CNN might be omitting critical information that is preserved by
bicubic interpolation. A significant advantage of removing the CNN is that it makes the ResDiff
model faster, more efficient, and simpler to train.
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Figure 4.3 Comparative visualization of absolute error in Kelvins across various models: Simple
CNN, ResDiff + Simple CNN, ResDiff, and ResDiff with concatenation. The color scale at the bottom
indicates the magnitude of errors.

4.0.5 Model comparison
Moreover, we analyzed the top-performing variants of each diffusion model discussed in this
work. Utilizing SR3 as a reference point, data from Figure 4.4 shows that SRDiff, ResDiff, and
ResDiff+Physics all significantly outperform the SR3 method across the entire 200,000 iterations.
Unlike SR3, which shows considerable fluctuations in accuracy during training, the SRDiff and
ResDiff-based methods consistently achieve an SSIM above 0.9. Notably, SR3 reaches its highest
validation SSIM at 120,000 iterations, earlier than the other models. ResDiff+Physics and Res-
Diff achieve their optimal validation SSIM at 190,000 and 170,000 iterations, respectively, with
SRDiff peaking at 150,000 iterations. Interestingly, ResDiff+Physics demonstrates considerable
instability in MSE, PSNR, and MAE metrics up to 80,000 iterations. This instability is interest-
ing since the integration of convolutional physical-based filters into the ResDiff framework does
not add any new learnable parameters. Beyond 80,000 iterations, ResDiff+Physics’s performance
aligns closely with that of ResDiff and SRDiff.
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Figure 4.4 Model validation scores during training across models: SR3, ResDiff, ResDiff + Physics,
and SRDiff. The Y-axis is scaled exponentially for SSIM and PSNR, and logarithmically for other
metrics.

Overall, as shown in Table 4.4, the ResDiff model achieves the highest SSIM and MAE scores
across all models tested, while the SRDiff architecture achieves the best MSE and PSNR scores.
ResDiff+Physics represents a middle ground between these models, achieving better SSIM than
SRDiff but not as high as ResDiff, and better PSNR than ResDiff but not equaling SRDiff.
In contrast, SR3 performs significantly worse in MSE and other metrics, even underperforming
bicubic interpolated outputs. This underscores the substantial improvement in performance when
residual-based prediction is incorporated into diffusion models for weather super-resolution. As
demonstrated, models such as SRDiff, ResDiff, and ResDiff+Physics effectively capture low-
frequency information in weather data, producing results that are difficult to distinguish from
high-resolution reference images, as illustrated in Figure 4.5.

Table 4.4 Validation results of top-performing variants of each diffusion model discussed in this work.

Model MSE ↓ SSIM ↑ PSNR ↑ MAE ↓
SR3 35.15 0.824 16.71 4.477
SRDiff + (locked RRDB) 1.748 0.951 37.81 0.820
ResDiff 1.768 0.953 37.65 0.813
ResDiff + Physics 1.789 0.952 37.78 0.821
Bicubic 6.866 0.854 31.52 1.542
Ground Truth 0 1 ∞ 0
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Figure 4.5 Comparison of images generated by the SR3, SRDiff, ResDiff, and ResDiff+Physics mod-
els. The left column displays super-resolution images generated by each model, annotated with their
corresponding temperatures in Kelvins. The right column illustrates the absolute error of each model
compared to the high-resolution ground truth image, with error magnitudes indicated on the color bar
under each image.
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4.0.6 More experiments
In all prior experiments, we exclusively used data from January as our training set. To evaluate
performance across various months and seasons, we trained 12 distinct ResDiff+Physics models,
one for each month. All these models were trained using the same hyperparameters for 190,000
iterations. Each model was evaluated on data from the same month it was trained on, using
data collected from January 1, 2016, to December 31, 2016.

Table 4.5 Validation results of various models trained across different months.

Metric Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
MSE ↓ 1.789 1.654 1.753 1.621 1.617 1.609 1.487 1.435 1.351 1.523 1.732 1.949
RMSE ↓ 1.338 1.286 1.324 1.273 1.294 1.268 1.219 1.198 1.162 1.234 1.316 1.396
SSIM ↑ 0.951 0.956 0.958 0.962 0.960 0.966 0.967 0.964 0.965 0.956 0.949 0.950
PSNR ↑ 37.78 38.60 38.97 39.39 39.49 40.20 40.77 40.55 41.06 39.32 37.72 37.33
MAE ↓ 0.821 0.813 0.852 0.815 0.822 0.790 0.772 0.768 0.760 0.803 0.825 0.864

Table 4.5 reveals that model performance varies significantly with the changing months.
Nearly all models outperform the baseline January model used in previous experiments. From
January to September, there is a general upward trend in validation scores for all metrics, with
some exceptions. Particularly notable are the results from July, where ResDiff+Physics reaches
an impressive SSIM of 96.7, and September, where it achieves an MSE of 1.351, representing
a 25% improvement compared to the January MSE of 1.789. November and December, while
being the lowest-performing months, still produce very good results. This demonstrates that
ResDiff+Physics consistently performs well throughout the year. Notably, as shown in Figure 4.6,
the models have a tendency to overestimate temperatures in certain areas while underestimating
them in others, depending on the month or season.

Figure 4.6 Average error of models in February, May, August, and November measured in Kelvins.
Red areas indicate regions where the model’s predictions were overestimated, blue areas where they were
underestimated, and white areas represent locations with an error of less than one Kelvin.
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Diffusion models are computationally intensive during inference, as they must utilize a T -step
denoising process for image sampling. To find an optimal balance between inference duration
(number of steps T) and output quality, we utilized Phydiff + Physics with varying numbers of
diffusion steps during both inference and training phases. We trained four different models, each
with a distinct number of training time steps: (Tt = 100, Tt = 500, Tt = 1000, Tt = 2000). The
training timestep parameter does not affect inference time. It determines the range of numbers
used in forward noising process and for conditioning the denoising network. Each of these four
models were then evaluated using sampling timesteps of (Ts = 100, Ts = 500, Ts = 1000). These
numbers specify how many times the denoising network is utilized to gradually denoise the image
to its final high-resolution version. In the original DDPM paper [1], the authors suggest that the
ideal number of diffusion steps for both training and validation is (T = 1000).

Table 4.6 Validation results of models trained with varying numbers of training and validation steps

Training Validation MSE ↓ SSIM ↑ PSNR ↑ MAE ↓

Tt=100
Ts=100 5.674 0.772 32.90 1.858
Ts=500 1.773 0.950 37.72 0.823
Ts=1000 1.791 0.950 37.74 0.829

Tt=500
Ts=100 5.822 0.769 32.79 1.881
Ts=500 1.855 0.949 37.45 0.842
Ts=1000 1.869 0.949 37.49 0.846

Tt=1000
Ts=100 5.01 0.797 33.48 1.734
Ts=500 1.778 0.952 37.73 0.819
Ts=1000 1.789 0.952 37.78 0.821

Tt=2000
Ts=100 4.687 0.809 33.65 1.671
Ts=500 1.955 0.944 37.53 0.881
Ts=1000 1.974 0.944 37.45 0.887

Table 4.6 demonstrates that the number of training steps (Tt) has less of an impact on the final
validation scores compared to the number of sampling steps (Ts). Training with (Tt = 1000)
achieves the best results in terms of SSIM, PSNR, and MAE. Surprisingly, training with a
smaller number of timesteps (Tt = 100) results in the best MSE, which is unexpected, as one
would typically expect that a model trained on fewer timesteps and validated on more timesteps
would underperform compared to a model trained and validated on the same number of steps.
Using a higher number of training timesteps (Tt = 2000) results in worse performance with lower
validation scores compared to other models. When a smaller number of sample timesteps (Ts =
100) is used, models trained on a larger (Tt) demonstrate improved performance. However, these
results are suboptimal, with an MSE of around 5 and SSIM of around 0.78. A key observation
from Table 4.6 is that using (Ts = 500) for sampling often performs similarly or better than
(Ts = 1000). This suggests that using (Ts = 500) for model inference not only doubles the model
inference speed but also enhances the outcomes compared to (Ts = 1000) used in all previous
experiments.



Conclusion

In this thesis, we researched the application of advanced deep-learning diffusion models, specifi-
cally SR3, SRDiff, and ResDiff for the super-resolution of weather data. Initially, we introduced
the reader to the problem of weather super-resolution, and then we focused on understanding
the fundamental operational principles of each model, followed by a series of experiments to eval-
uate their performance on weather data using a variety of validation metrics. To enhance the
performance of these models, we experimented with architectural changes and the incorporation
of physical-based convolutional filters.

Experiment results demonstrated that advanced architectures such as ResDiff, SRDiff, and
ResDiff+Physics achieved significantly better results than the SR3 model or interpolation meth-
ods. One of the main reasons for the superior performance of ResDiff, SRDiff, and ResD-
iff+Physics is their use of a residual-based prediction strategy. A smaller but still significant
influence on this performance also comes from how these diffusion models are conditioned. Ex-
periments showed that adding more feature maps for conditioning does not always lead to better
results, as demonstrated by ResDiff+Physics. However, this does not imply that integrating
domain-specific knowledge, such as physics filters, can’t further improve super-resolution out-
comes. Although ResDiff+Physics did not achieve the highest score in any single validation
metric, it outperformed both ResDiff and SRDiff in two metrics. Additionally, ResDiff+Physics
has a simpler architecture because the FD info splitter was replaced with convolutional filters,
making this model faster. Further experiments revealed that for weather data using half as
many iterations during sampling as originally suggested by the authors results in better valida-
tion scores and a significant speedup in inference.

This work has demonstrated the effectiveness of deep-learning diffusion models, specifically
SRDiff, ResDiff, and ResDiff+Physics, in the super-resolution of weather data and highlights the
potential for further exploration and improvement of diffusion models in meteorology.

Outline of future work
Future work should focus on further refining diffusion model architectures to even more enhance
their performance on weather data. In this thesis, we attempted to improve the ResDiff model by
incorporating convolutional filters designed to approximate spatial derivatives. However, these
filters did not significantly change the validation results of this model. One idea is to allow the
model to autonomously learn these spatial derivative filters, which could advance their ability to
adaptively understand atmospheric dynamics.

Another potential challenge is to further refine the loss function to account for the physical
properties of weather, which could improve the results of these models.

More effort could also be put into evaluating these models on different datasets and comparing
them to other weather super-resolution models.
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Contents of the attachment

configs...............................directory containing model and data configurations
data.....................................directory containing data manipulation modules
example ........................................................ directory with examples
experiments.......................................default directory for experiment saves
logger...................................................directory with logging modules
models

diffusion models.............directory containing implementation of diffusion models
rrdb encoder.........................................RRDB encoder implementation
simple cnn..............................................simple CNN implementation
base model.py ............................................. model base abstract class

thesis
src ...................................... directory containing thesis LATEX source files
thesis.pdf .......................................... thesis document in PDF format

training .............................. directory containing modules used during training
pretrain.py ............................................... script for pretraining models
README.md...............................general information and instructions about code
sample.py.....................................................script for image sampling
train.py...........................................................main training script
example.ipynb...........................................................code examples
requirements.txt .................................................. list of dependencies
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