
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of bachelor’s thesis

A software solution for user-friendly reading and visualisations

of machine messages from CAN Trace data logs

Ondřej Luks

doc. Ing. Robert Pergl, Ph.D.

Informatics

Information Systems and Management

Department of Software Engineering

until the end of summer semester 2024/2025

Instructions

1) Perform review of the necessary theoretical foundations and possible similar

applications.

2) Analyze the current functioning of company processes and propose improvements

supported by the application.

3) Design and implement a desktop application for converting data from MF4 log

files into relational database. The application should consist of separate

backend and GUI application for configuration and control, communicating

together. Implement the solution in Python.

4) Create a dashboard in Grafana for viewing the stored logs from the relational database.

5) Test the solution properly.

6) Demonstrate the solution on a case study.

7) Discuss the benefits and limitations of the application in the context of

the company.

Electronically approved by Ing. David Buchtela, Ph.D. on 19 June 2023 in Prague.

Bachelor’s thesis

A software solution for user-friendly reading
and visualisations of machine messages from
CAN Trace data logs

Ondřej Luks

Department of Software Engineering
Supervisor: doc. Ing. Robert Pergl, Ph.D.

May 16, 2024

Acknowledgements

I would like to extend my sincere gratitude to my supervisor, doc. Ing. Robert
Pergl, Ph.D., for his invaluable guidance, assistance, and patience throughout
the development of this thesis. Additionally, I wish to express my appreciation
to my family, girlfriend, friends, and colleagues for their enduring support
and encouragement. I am also grateful to Ing. Michal Karas for providing me
with the opportunity to undertake this work. Furthermore, I extend my thanks
to Ing. Peter Abraham for his valuable insights and knowledge that he shared
with me.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipu-
lated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in partic-
ular that the Czech Technical University in Prague has the right to conclude
a license agreement on the utilization of this thesis as a school work under the
provisions of Article 60 (1) of the Act.

In Prague on May 16, 2024

Czech Technical University in Prague
Faculty of Information Technology
© 2024 Ondřej Luks. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis
Luks, Ondřej. A software solution for user-friendly reading and visualisations
of machine messages from CAN Trace data logs. Bachelor’s thesis. Czech
Technical University in Prague, Faculty of Information Technology, 2024.

Abstract

This bachelor’s thesis delves into the process of handling and inspecting data
from construction machines utilizing the CAN protocol at Doosan Bobcat
EMEA, s.r.o. company. The current state of the process is thoroughly anal-
ysed, identifying associated problems and deficiencies. Based on the analysis
of prospective solutions, followed by its subsequent design and implementation,
a new Python desktop application with a graphical user interface is developed,
coupled with dynamic data inspection dashboards created in Grafana. This
novel solution saves the company up to 2 days and 5.75 hours of time with
each execution of this process.

Keywords desktop app, GUI, MF4, DBC, data vizualization, Grafana, SAE
J1939-TP, PostgreSQL, Python

vii

Abstrakt

Tato bakalářská práce se zabývá procesem zpracování a inspekce dat ze staveb-
ních strojů využívajících protokol CAN ve společnosti Doosan Bobcat EMEA,
s.r.o. Současný stav procesu je důkladně analyzován s cílem identifikovat sou-
visející problémy a nedostatky. Na základě analýzy možných řešení, násle-
dované jejich návrhem a implementací, je v Pythonu vyvinuta nová desktopová
aplikace s grafickým uživatelským rozhraním, doplněná o dynamické nástěnky
pro inspekci dat vytvořené v Grafaně. Toto nové řešení společnosti ušetří
až 2 dny a 5,75 hodiny času při každém provedení tohoto procesu.

Klíčová slova desktopová aplikace, GUI, MF4, DBC, vizualizace dat, Gra-
fana, SAE J1939-TP, PostgreSQL, Python

viii

Contents

Introduction 1

Goals and methodology 3

1 Theoretical foundation 5
1.1 CAN bus . 5

1.1.1 General information . 5
1.1.2 Messaging . 5
1.1.3 SAE J1939 Transport Protocol 6
1.1.4 DBC file . 6

1.2 ASAM MDF . 6
1.2.1 General information . 7
1.2.2 Key features . 7

1.3 CANedge2 . 7
1.4 Grafana . 7

1.4.1 General information . 8
1.4.2 Grafana Dashboard . 8
1.4.3 Deployment and usage 8

2 Analysis of the current state 9
2.1 Basic information . 9
2.2 Detailed description of the process 9

2.2.1 From the machine to Grafana 10
2.2.2 Current activity diagrams 10
2.2.3 Resources . 13

2.3 Used technologies . 14
2.4 Currently implemented requirements analysis 14

2.4.1 Current functional requirements 14
2.4.2 Current nonfunctional requirements 15

2.5 Currently implemented Use case model 15
2.5.1 Actors . 15
2.5.2 Conversion and upload of MF4 files into the database . 16
2.5.3 Data inspection . 17

2.6 Summary . 19

ix

3 Analysis of the future solution 23
3.1 To-Be requirements analysis . 23

3.1.1 Functional requirements 23
3.1.2 Nonfunctional requirements 24

3.2 To-Be Activity diagrams . 25
3.2.1 Data processing . 25
3.2.2 Data downloading . 25
3.2.3 Data inspection . 25

3.3 To-Be Use case model . 25
3.3.1 Actors . 25
3.3.2 Basic application operations 26
3.3.3 Converting and uploading MF4 data into the database . 27
3.3.4 Database configuration 30
3.3.5 Data downloading . 31
3.3.6 Creating Grafana dashboard JSON 32
3.3.7 Data inspection . 33

4 Design 35
4.1 Proposal of the new solution . 35
4.2 Architecture . 36

4.2.1 Domain model . 36
4.2.2 Architectural style . 37
4.2.3 Security architecture . 38
4.2.4 Technology stack . 38
4.2.5 Deployment . 41
4.2.6 Documentation . 42

4.3 User experience . 42
4.3.1 User roles . 42
4.3.2 Navigation and flow . 42
4.3.3 Performance . 43
4.3.4 Error handling . 43
4.3.5 Accessibility . 44

4.4 Graphical user interface . 44
4.4.1 Typography and colours 44
4.4.2 Responsiveness . 44
4.4.3 Wireframe . 45

5 Implementation and testing 47
5.1 Implementation . 47
5.2 Unit testing . 48
5.3 User testing . 48
5.4 Stress testing . 48

6 Case study 51
6.1 Performed case study . 51

7 Evaluation 53
7.1 Improvements and benefits . 53
7.2 Drawbacks . 54
7.3 Plans for future development 54

x

Conclusion 55

Bibliography 57

A Abbreviations 59

B To-Be activity diagrams 61

C To-Be use case diagrams 65

D Contents of attachments 71

xi

List of Figures

2.1 Current activity diagram for data retrieval subprocess 11
2.2 Current activity diagram for data processing subprocess 12
2.3 Current activity diagram for data inspection subprocess 13
2.4 Current actors . 16
2.5 Current diagram of UC1, UC2 and UC3 19
2.6 Current diagram of UC4 . 19
2.7 Current diagram of UC5 . 20
2.8 Current diagram of UC6, UC7 and UC8 20

3.1 To-Be actors . 26

4.1 System domain model design . 37
4.2 Wireframe of the main window . 45

B.1 To-Be activity diagram for data processing subprocess 62
B.2 To-Be activity diagram for data downloading subprocess 63
B.3 To-Be activity diagram for data inspection subprocess 64

C.1 To-Be use case diagram for Basic application operations 66
C.2 To-Be use case diagram for Converting and uploading of MF4 data 67
C.3 To-Be use case diagram for Database configuration 68
C.4 To-Be use case diagram for Data downloading 69
C.5 To-Be use case diagram for Creating Grafana dashboard JSON . . 69
C.6 To-Be use case diagram for Data inspection 70

xiii

Introduction

In today’s dynamic business environment, employees often find themselves con-
fronted with problems that fall outside their job scope, yet hinder their task
completion. Consequently, unqualified workers resort to implementing new
temporary solutions to meet deadlines. However, as one might predict, nothing
is as enduring as a temporary fix. It comes as no surprise that these makeshift
remedies are not very effective; they prove to be wasting valuable company
time due to their poor design, complexity and lack of functionality.

That being said, companies – especially larger ones, where supervision may
be insufficient – tend to accumulate these formerly temporary processes, further
adding to the complexity of the colossal clockwork. But inefficiency and time
waste are not the only consequences of this detrimental practice.

In businesses operating within the digital realms, hastily stitching together
software without proper documentation or adherence to organizational cul-
ture can lead to significant repercussions. In a few years, employees may find
themselves in the dark about how the program operates. Therefore, while
these temporary measures may offer short-term relief, they ultimately con-
tribute to long-term problems and undermine the company’s ability to thrive
in a competitive marketplace.

This thesis will take a closer look at a specific process established as a tem-
porary measure, that has been utilized for over three years, and endeavour
to optimize this process with the aim of improving efficiency and effectiveness.
It concerns the handling and viewing of data collected from construction ma-
chines by Test engineers and Design engineers in Doosan Bobcat EMEA, s.r.o.
company.

1

Goals and methodology

The primary goal of this thesis is to enhance the company’s process for handling
and viewing collected data from construction machines that utilize the CAN
bus. These data originate from real-world tests and evaluate the machine’s
behaviour during these tests.

The theoretical segment will acquaint the reader with the foundational tech-
nological aspects of the CAN bus protocol and MDF file format DBC file for-
mat, CANedge2 device, as well as with an open-source data inspection tool
named Grafana.

Furthermore, the practical part will concentrate on analysing and describing
the current state of the process.

Drawing from the gathered information, this thesis will propose a novel
solution to enhance the aforementioned process. Building upon this proposal,
a new GUI desktop application will be designed, implemented, and tested.
The outcomes will be showcased through a case study, demonstrating the extent
of improvement achieved by the new solution.

The development of the application will utilize agile methodologies, en-
suring flexibility and adaptability throughout the work. Additionally, Git
will be employed for version control, enabling seamless management of code
changes. This approach ensures that the development process remains orga-
nized, transparent, and conducive to rapid iteration and improvements.

Firstly in the scope of this thesis, Chapter 1 will briefly describe CAN
protocol, as being one of the technological foundations of this process. All
machines in the company utilize CAN for communication between controllers,
hence the data collected from the machines is in the format of CAN messages.
Next, ASAM MDF files will be introduced – as being the vessel for storing
CAN messages – together with CANedge2 device recording them. Lastly in
the theoretical part, this thesis will describe the basics of an open-source data
visualization tool named Grafana.

3

Goals and methodology

Analysis of the current process will open up the practical part with Chap-
ter 2, providing a detailed description of the problem, alongside with currently
used technologies, requirements and use cases. Subsequent to this chapter,
an analysis of the future solution will be conducted in Chapter 3. Next, Chap-
ter 4 will introduce a design for a novel solution, revealing the conceptualiza-
tion of a new desktop application and delineating its architectural framework.
This will be followed by Chapter 5 with an implementation phase, wherein
the proposed solution will be developed and tested to ensure its stability and
robustness.

Followed by Chapter 6, a case study will be conducted, showcasing real-
use application scenarios and evaluating the performance of the new solution.
Finally, Chapter 7 will carry out an in-depth evaluation, comparing the new
solution against existing benchmarks and assessing its impact on efficiency,
productivity, and user experience. Concluding remarks will summarize key
findings, highlight strengths and limitations, and propose avenues for future
research and improvement.

4

Chapter 1
Theoretical foundation

1.1 CAN bus

All machines produced by Doosan Bobcat EMEA s.r.o. are equipped with
a standardized automotive communication system known as the CAN bus,
ensuring seamless integration between various controllers.

1.1.1 General information
The Controller Area Network (CAN) is a message-based protocol designed
to allow the Electronic Control Units (ECUs) found in today’s automobiles, as
well as other devices, to communicate with each other in a reliable, priority-
driven fashion. Messages, or “frames”, are received by all devices in the net-
work, which does not require a host computer. CAN is supported by a rich set
of international standards under ISO 11898 [1].

1.1.2 Messaging
Devices on a CAN bus are called “nodes”. Each node consists of a CPU, CAN
controller, and a transceiver, which adapts the signal levels of both data sent
and received by the node. All nodes can send and receive data, but not at the
same time [1].

Nodes cannot send data directly to each other. Instead, they send their data
onto the network, where it is available to any node to which it has been ad-
dressed. The CAN protocol is lossless, employing a bitwise arbitration method
to resolve contentions on the bus [1].

All of the nodes are synchronized so that they all sample data on the net-
work simultaneously. However, data is not transmitted with clock (time) data,
so CAN is not truly a synchronous bus, such as EtherCAT, for example [1].

5

1. Theoretical foundation

With CAN, all data is sent in frames, and there are four types:

• Data frames transfer data to either a single recipient or multiple receiver
nodes, accommodating a maximum size of 8 bytes per frame.

• Remote frames ask for data from other nodes.

• Error frames report errors.

• Overload frames report overload conditions [1].

1.1.3 SAE J1939 Transport Protocol
Messages greater than 8 bytes in length are too large to fit into a single CAN
Data Frame. Therefore they must be divided by the sender into individual
packets, which can then be sent with a CAN message each. The receiver has
to recombine the individual fragments in their original order. A set of rules is
defined for this in the J1939 standard: a so-called Transport protocol [2].

Two types of the J1939 TP exist:

1. The CM (Connection Mode) intended for a specific device

2. The BAM (Broadcast Announce Message) intended for the entire network
[3]

For example, a transmitting ECU may send an initial BAM packet to set up
a data transfer. The BAM specifies the identifier for the multi-packet message
as well as the number of databytes and packets to be sent. It is then followed
by up to 255 packets/frames of data. Each of the 255 packets uses the first
databyte to specify the sequence number (1–255), followed by 7 bytes of data.
The max number of bytes per multi-packet message is therefore 8 · 255 =
1, 785 bytes. In post processing, a conversion software tool can reassemble the
multiple entries of 7 databytes into a single payload and handle it according
to the multi-packet specifications as found in e.g. a DBC file [3].

1.1.4 DBC file
A DBC (CAN Database) file is a standardized format to define the communica-
tion parameters and message structures of a CAN bus. It serves as a dictionary
or mapping file that translates raw CAN bus data into human-readable signals
and parameters. DBC files contain information such as message identifiers,
signal names, scaling factors, signal offsets, and signal data types, enabling
software tools to interpret and process the data transmitted over the CAN bus
[3].

1.2 ASAM MDF

Another important technological aspect of the company process is dealing with
ASAM MDF files.

6

1.3. CANedge2

1.2.1 General information
MDF (Measurement Data Format) is a binary file format to store recorded or
calculated data for post-measurement processing, off-line evaluation or long-
term storage. The format has become a de-facto standard for measurement
and calibration systems, but is also used in many other application areas [4].

As a compact binary format, ASAM MDF offers efficient and high perfor-
mance storage of huge amounts of measurement data. MDF is organized in
loosely coupled binary blocks for flexible and high performance writing and
reading. Fast index-based access to each sample can be achieved by loss-free
re-organization (i.e. sorting) of the data. Distributed data blocks even make
it possible to directly write sorted MDF files. The file format allows storage
of raw measurement values and corresponding conversion formulas; therefore
raw data can still be interpreted correctly and evaluated by post-processing
tools [4].

1.2.2 Key features
ASAM MDF offers efficient storage for vast amounts of measurement data,
especially with compression options since ASAM MDF 4.1.0. (MF4). Utilizing
a 64-bit data type, it overcomes the limitations of previous versions, promising
virtually unlimited file and measurement data size [5].

High data rates for reading and writing make it suitable for real-time ap-
plications, facilitating direct writing of raw values from an ECU and efficient
storage of fixed-formatted data chunks. Tools vary in complexity, with simpler
loggers supporting unsorted writing, while advanced tools enable direct sorted
writing, minimizing the need for sorting before reading [5].

Furthermore, it supports partial file reading, allowing access to descrip-
tive information without loading signal data entirely, which is crucial for large
datasets. It accommodates multiple and non-periodic sampling rates, synchro-
nized via a master channel concept, and offers flexibility in recording based
on time, angle, or distance. Besides storing data and descriptions within a sin-
gle file. Primarily designed for automotive use, it includes specialized data
types and features tailored for automotive applications, and enjoys wide indus-
try adoption with support from leading tools [5].

1.3 CANedge2

For inspection and testing purposes, transmitted CAN messages between nodes
need to be recorded and stored.

The CANedge2 data logger, developed by CSS Electronics, is a plug-and-
play device designed for the simultaneous recording of timestamped CAN data
onto an SD card. It seamlessly saves the recorded data into MF4 files for
efficient storage and retrieval [6].

1.4 Grafana

Lastly, it is needed to introduce an open-source data inspection tool named
Grafana by Grafana Labs, which is also being used in the company process.

7

1. Theoretical foundation

1.4.1 General information
Grafana is a powerful data visualization and monitoring tool that enables
users to create insightful dashboards and graphs for analysing and understand-
ing metrics from diverse data sources. Renowned for its flexibility and ease
of use, Grafana supports a wide range of data types and integrations, includ-
ing databases, cloud services, and even IoT devices [7].

With its intuitive interface and customizable features, users can effortlessly
build dynamic visualizations, set up alerts for anomalies, and collaborate with
team members to derive valuable insights from their data. Whether used
for performance monitoring, infrastructure analysis, or business intelligence,
Grafana provides organizations with the tools to effectively utilize their data
for informed decision-making [7].

1.4.2 Grafana Dashboard
Grafana dashboards serve as dynamic interfaces for visualizing and analysing
data collected from a variety of sources. At their core, these dashboards are
composed of panels, each representing a different aspect of the data. Users
configure queries to fetch specific information from connected data sources, such
as databases or monitoring systems. Once the data is retrieved, Grafana offers
a range of visualization options, including graphs, gauges, tables, and heat
maps. Users can customize these visualizations to suit their needs, adjusting
parameters such as time ranges, dynamic filters, and thresholds [8].

The arrangement of panels on the dashboard is entirely customizable, al-
lowing users to create layouts that best present their data. Panels can be
grouped together to highlight relationships between different metrics or orga-
nized to provide a comprehensive overview of a particular system or process.
Grafana also supports interactivity, enabling users to zoom in on specific time
periods, toggle between different metrics, or drill down into underlying data
for deeper analysis. This flexibility empowers users to explore their data in
real-time and derive meaningful insights [9].

A dashboard in Grafana is represented by a JSON object, which stores its
metadata. Dashboard metadata includes dashboard properties, metadata from
panels, template variables, panel queries, etc. Consequently, users possess the
capability to export or import these JSON objects, facilitating the publication
or creation of various dashboards [10].

1.4.3 Deployment and usage
Installing Grafana on a local server is a straightforward process when using
a supported operating system and compatible database. The executable nec-
essary for installation can be easily obtained from the Grafana Labs website.
Following successful installation and configuration, the Grafana server can be
deployed, offering a user-friendly interface accessible via web browsers [11].

Grafana’s flexible user hierarchy further enhances its utility, allowing ad-
ministrators to define user roles and permissions to regulate access levels. That
ensures users to efficiently collaborate on dashboard creation and analysis while
maintaining data security and integrity [12][13].

8

Chapter 2
Analysis of the current state

Efficiency is critical for organizational success. This chapter conducts a compre-
hensive analysis of the existing company process to identify areas for improve-
ment. Through process mapping, stakeholder interviews, and observation, it
aims to uncover inefficiencies and bottlenecks within the work flow.

This analysis serves as a foundation for identifying opportunities for opti-
mization, enhancing organizational performance.

2.1 Basic information

At the beginning of the year 2019, an initiative was launched within the Embed-
ded Software team of Doosan Bobcat EMEA s.r.o. company to create a new
tool for visualizing diagnostic data downloaded from machines, as the tools
being used at that time were inadequate.

A former employee took on the solution, seeing the project as a good oppor-
tunity to learn Python programming language. His initial functional prototype
only worked within Python and Jupyter notebooks, where machine data (MF4
files) was converted with the help of DBC files from binary to text format
and plotted using the Python library Pyplot. The script only worked for one
specific machine and any modifications required code intervention.

Later, it was found that such an approach was insufficient for larger data
volumes, so the program was enhanced with another script that uploaded the
converted data to a local PostgreSQL database. In addition to the database,
a Grafana server was also running on the computer for simple visualization.

This brings us closer to the current state of the solution. The scripts under-
went several modifications to store more detailed data, but the core remained
the same – two Python scripts executed sequentially, a PostgreSQL database,
and Grafana. There is also no support for SAE J1939-TP type of messages.

Everything is set up at a virtual Windows desktop running within the com-
pany intranet, accessible to all employees.

2.2 Detailed description of the process

This section delivers a detailed examination of the current process, offering
an in-depth understanding of its intricacies and dynamics.

9

2. Analysis of the current state

2.2.1 From the machine to Grafana

The process begins with Worker 1 approaching the machine and removing the
SD card from the CANedge2 data logger. This typically occurs once or twice
a week for all necessary operating machines, ranging from 5 to 10 in number.
Worker 1 then returns to the office with the SD card and downloads the data,
which he then packages into a ZIP archive and sends to Worker 2, as only he
is proficient in Python scripting.

Worker 2 downloads, moves, and extracts the ZIP archive onto the com-
pany’s virtual desktop computer where the scripts are located. He either places
the files into a specific folder from which the script can automatically retrieve
them, or he must rewrite the file paths in the code. Additionally, he must
provide the scripts with properly configured DBC files using the same method
as the files from the SD card. Once everything is prepared, Worker 2 can exe-
cute the first script, which converts and saves the binary MF4 files into Excel
spreadsheets using the DBC files. Each MF4 file corresponds to one .xlsx file,
with each signal occupying one column in the respective file. The data is al-
ways sorted by timestamp. Upon completion of the first script, Worker 2 must
configure and execute the second script, responsible for uploading all generated
Excel files into the PostgreSQL database. The database connection configu-
ration needs to be entered into a text file that the script reads. Worker 2 is
responsible for setting up the database with a specific schema for each machine
and properly adjusting everything in the text file.

After the second script finishes running, all the converted data is inside
the database. Several static dashboards have been created in Grafana, which
automatically pull and display data through queries. Thanks to Grafana’s
web user interface, all company employees have access to the data if they are
connected to the intranet and have the correct login credentials. If someone
wishes to display different signals or expand the CAN signal bus, it is needed
to manually modify or create a new dashboard. That responsibility would
most likely fall on Worker 2 again, as there are very few employees proficient
in administration of Grafana in the company.

2.2.2 Current activity diagrams

Following figures show the forementioned process transformed into activity
diagrams. Figures are also included as attachments.

2.2.2.1 Data retrieval

Figure 2.1 illustrates the activity diagram of the subprocess, which consists
of downloading data from the machine to the computer.

2.2.2.2 Data processing

Figure 2.2 illustrates the activity diagram of the subprocess, which consists
of handling, processing and uploading the data to the database.

10

2.2. Detailed description of the process

Figure 2.1: Current activity diagram for data retrieval subprocess

11

2. Analysis of the current state

Figure 2.2: Current activity diagram for data processing subprocess

12

2.2. Detailed description of the process

Figure 2.3: Current activity diagram for data inspection subprocess

2.2.2.3 Data inspection

Figure 2.3 illustrates the activity diagram of the subprocess, which consists
of final data inspection.

2.2.3 Resources
For the purpose of improvement and subsequent objective assessment, it is
necessary to mention the current time and personnel burden of the entire pro-
cess. The measured tests were conducted with a package of MF4 files totalling
100 MB and a DBC file defining 21 signals without any SAE J1939-TP messages
to extract. The following runtime numbers are the average of five measure-
ments on the same system under consistent conditions.

From chapter 2.2.1, it is evident that at least two employees are required
– Worker 1 and Worker 2 – not considering a third person, who requested
the data and needs to inspect it. Worker 1 is responsible only for collecting
data from the machine, which takes an average of 40 minutes. However, after

13

2. Analysis of the current state

downloading and packaging the data, a problem arises – it needs to be sent
to Worker 2, who is usually busy with other tasks. This leads to a dead period,
during which nothing is done with the data, on average up to 2.5 days.

Downloading, extracting, and moving the data to the server takes Worker 2
an average of 25 minutes. Another 5 to 10 minutes are spent setting up and
running both Python scripts, which run in the background for 27.5 minutes.
Only then is it possible to see the result in Grafana, provided that a dashboard
has already been defined. Creating one, if needed, takes an average of 1.3 hours.

Overall, the process starting with data retrieval from the machine to visual-
ization in Grafana can take up to 2 days and 7 hours, from which 27.5 minutes
represent the runtime of the scripts, considering only a 100MB sample of 21
signals. Furthermore, it requires two extra personnel. However, the actual size
of downloaded data from the machine fluctuates around tens of gigabytes every
week, which substantially increases the runtime – a data package with a scale
of 1 gigabyte defining 21 signals extends to 3 hours and 7.3 minutes.

2.3 Used technologies

Every employee of the company utilizes a computer running the Windows 10
Professional operating system, forming the foundation of the infrastructure. As
previously mentioned, the files downloaded from the machines are in the MF4
format, and processing is conducted through Python, particularly the version
3.9.5, with external libraries including asammdf, cantools, numpy, openpyxl,
pandas, psycopg2 and sqlalchemy.

Converted MF4 files are uploaded into the PostgreSQL 13 database, upon
which Grafana 10.1.0 executes queries to display desired data. In order to see
those displays, the employee must utilize a web browser for connecting to the
Grafana server user interface.

2.4 Currently implemented requirements analysis

A necessary prerequisite to designing software that meets user needs is to under-
stand what the users intend to do with it. Some teams take a product-centric
approach, they focus on defining the features to implement in the software, with
the hope that those features will appeal to prospective users. In most cases,
though, it is better to take a user-centric and usage-centric approach to require-
ments elicitation. Focusing on users and their anticipated usage helps reveal
the necessary functionality, avoids implementing features that no one will use,
and assists with prioritization [14].

The following requirements have been formulated based on analysis of the
current company process.

2.4.1 Current functional requirements

Functional requirements specify the behaviours the process will exhibit under
specific conditions. They describe what the developers must implement to en-
able users to accomplish their tasks [15].

14

2.5. Currently implemented Use case model

2.4.1.1 F1 – Conversion and upload of MF4 files into the database

The system shall allow the selection of MF4 files from a directory on the com-
puter, conversion of these files into a text format by extracting CAN and
SAE J1939-TP messages with the help of DBC files and uploading the resulting
data to a remote database. All of this with graphical feedback to inform the
user about the progress of the process.

2.4.1.2 F2 – Data inspection

2.4.2 Current nonfunctional requirements
Nonfunctional requirements describe the product’s characteristics in various
dimensions that are important either to users or to developers and maintain-
ers, such as performance, safety, availability, and portability. Additionally
nonfunctional requirements describe external interfaces between the system
and the outside world. These include connections to other software systems,
hardware components, and users, as well as communication interfaces [15].

2.4.2.1 N1 – Microsoft Windows platform

Despite the possibility of multi-platform development, the system will exclu-
sively run on the Microsoft Windows 10 or Microsoft Windows 11 operating
systems.

2.5 Currently implemented Use case model

A use case describes a sequence of interactions between a system and an exter-
nal actor that results in the actor being able to achieve some outcome of value
[14].

The following use cases represent the current state of the process. They
have been formulated based on analysis conducted among Test engineers and
Design engineers within the company. The subprocess of collecting the SD
card from the machine is left out, as it does not require any interaction with
information system and can’t be optimized in the scope of this thesis.

2.5.1 Actors
An actor is a person (or sometimes another software system or a hardware
device) that interacts with the system to perform a use case [14]. Refers to di-
agram on figure 2.4.

2.5.1.1 Worker 1

The person responsible for downloading data from the machine and subse-
quently sending it to further processing.

2.5.1.2 Worker 2

The person responsible for processing data from the machine and uploading it
to the database. Additionally, this actor manages the operation of the Grafana
tool.

15

2. Analysis of the current state

Figure 2.4: Current actors

2.5.1.3 User

The person who requested the inspection of data from the machine – the end
user.

2.5.1.4 Employee

Generalization of all forementioned actors.

2.5.2 Conversion and upload of MF4 files into the database
This use case package contains the description of functionalities ensuring the
conversion and upload of MF4 files into the database.

2.5.2.1 UC1 – Packaging the machine data

Allows packaging the MF4 files downloaded from the machine into a ZIP file
for easy transmission. Refers to diagram on figure 2.5.

1. The use case begins when new data from the machines are present on the
Worker 1’s computer.

2. Worker 1 packages the MF4 files into ZIP files.

2.5.2.2 UC2 – Sending the packaged data

Allows sending the packaged machine data to Worker 2. Refers to diagram
on figure 2.5.

1. The use case begins when new data from the machine have been packaged
into a ZIP file.

2. Worker 1 transfers the ZIP file to Worker 2.

16

2.5. Currently implemented Use case model

2.5.2.3 UC3 – Transfering the data onto a remote computer

Allows transferring the data to the remote desktop computer within the com-
pany, where all necessary scripts are located. Refers to diagram on figure 2.5.

1. The use case begins with Worker 2 receiving a ZIP file containing collected
machine data.

2. Worker 2 downloads the ZIP file.

3. Worker 2 moves the zip file from his computer to the remote desktop
computer.

4. Worker 2 extracts the ZIP file.

2.5.2.4 UC4 – Converting MF4 files into Excel spreadsheets

Allows converting the binary MF4 files into a text-based Excel files with the
help of DBC files. Refers to diagram on figure 2.6.

1. The use case begins with extracted machine data on the remote desktop
computer.

2. Worker 2 configures all necessary changes in the Python script for MF4
file conversion.

3. Worker 2 runs the Python script for MF4 file conversion.

2.5.2.5 UC5 – Uploading the Excel spreadsheets into the database

Allows uploading the signals from converted Excel spreadsheets to the database.
Refers to diagram on figure 2.7.

1. The use case begins when the Python script for MF4 file conversion fin-
ishes running.

2. Worker 2 configures all necessary changes in the Python script for data
upload.

3. Worker 2 runs the Python script for data upload.

2.5.3 Data inspection
This use case package contains functionalities that facilitate inspecting the
machine data uploaded to the database.

2.5.3.1 UC6 – User login

Allows any user to log into Grafana server website under given role. Refers
to diagram on figure 2.8.

1. This use case begins when any employee needs to log into the Grafana
server website.

2. Employee opens Grafana login website.

17

2. Analysis of the current state

3. Employee fills out his login credentials.

4. Employee clicks on the Log in button.

2.5.3.2 UC7 – Dashboard creation

Enables the creation of a new Grafana dashboard if a suitable one does not
exist. Refers to diagram on figure 2.8.

1. This use case begins if there is a lack of Grafana dashboard suitable
for inspection of the freshly processed data and Worker 2 is logged into
Grafana server website as an administrator.

2. Worker 2 opens the Dashboards menu on the Grafana server website.

3. Worker 2 clicks on the New button.

4. Worker 2 clicks on the New dashboard button.

5. Worker 2 configures the new dashboard as needed.

2.5.3.3 UC8 – Data inspection

Enables the User to inspect freshly processed data via the Grafana server web-
site. Refers to diagram on figure 2.8.

1. This use case begins if User needs to inspect machine data and is already
logged into the Grafana server website.

2. User opens the Dashboards menu on the Grafana server website.

3. User clicks on the desired Dashboard from the listing.

4. User inspects displayed data.

18

2.6. Summary

Figure 2.5: Current diagram of UC1, UC2 and UC3

Figure 2.6: Current diagram of UC4

2.6 Summary

In this chapter, a relatively complex workflow process of data retrieval from the
machine and its visualization was described. At least two employees are needed
to carry it out, not counting the third one who originally requested the data
inspection. The data must be sent to the correct employee, who must upload
them to a dedicated remote desktop computer, as only on it the scripts for
processing this data function. Therefore, the current solution is not portable.
The process is also not intuitive; it requires code intervention and manual
execution of Python scripts. Even the visualization itself is not automated;
only statically created dashboards in Grafana are available. If a new signal
needs to be read from the machine, the dashboard must be manually adjusted
or a new one must be created.

All of this can mean up to 2 days and 7 hours of time for a small dataset,
of which 27.5 minutes is the pure script runtime. In a real-world environment,
however, larger data sets reaching tens of gigabytes will be processed, and with
just 1 GB of data, the scripts now run for 3 hours and 7.3 minutes.

19

2. Analysis of the current state

Figure 2.7: Current diagram of UC5

Figure 2.8: Current diagram of UC6, UC7 and UC8

20

2.6. Summary

Furthermore, based on the analysis, functional and non-functional require-
ments were defined, and the end of this chapter described existing use cases. It
was discovered that only one functional requirement is currently implemented
(F1 – Conversion and upload of MF4 files into the database, described in the
Section 2.4.1.1). Regarding non-functional requirements, it is similar; cur-
rently, only one is implemented (N1 – Microsoft Windows platform, described
in the Section 2.4.2.1).

These insights stemming from the analysis set the stage for subsequent chap-
ters focused on optimizing the process and developing a new system to address
identified inefficiencies and meet user needs effectively.

21

Chapter 3
Analysis of the future solution

3.1 To-Be requirements analysis

The following requirements have been formulated based on the analysis con-
ducted among Test engineers and Design engineers within the company.

3.1.1 Functional requirements
3.1.1.1 F1 – Graphical user interface

The system shall feature a graphical user interface (GUI) that allows users
to interact with system functionalities seamlessly and intuitively. This includes
but is not limited to navigation menus, input forms, buttons, and graphical
elements.

3.1.1.2 F2 – Conversion and upload of MF4 files into the database

The system shall allow the selection of MF4 files from a directory on the com-
puter, conversion of these files into a text format by extracting CAN and
SAE J1939-TP messages with the help of DBC files and uploading the resulting
data to a remote database. All of this with graphical feedback to inform the
user about the progress of the process.

3.1.1.3 F3 – Simple data aggregation

The system shall allow the user to configure data aggregation, which will occur
before uploading to the database. In this case, aggregation involves skipping
records that occur consecutively within a maximum specified time interval
if these records have the same value.

3.1.1.4 F4 – Universal data inspection

The system shall offer the user a user-friendly and versatile tool for inspecting
signals from the remote database. The data will be automatically updated
based on the content of the database. The user will be able to display multiple
signals in one graph simultaneously.

23

3. Analysis of the future solution

3.1.1.5 F5 – Data download

The system shall allow the user to download selected data losslessly directly
from the database without any aggregation and save it to their computer. The
selection of data for download will be done by selecting the desired signals and
a specific time range.

3.1.1.6 F6 – Configuration files

The system shall save all configuration changes into configuration JSON files if
the user chooses to save the changes. Upon each system start-up, the current
configuration will be loaded from these files.

3.1.1.7 F7 – Manual page

Users shall have the ability to effortlessly locate a manual within the system,
providing them with all necessary information for understanding and navigat-
ing the system.

3.1.1.8 F8 – Packaged application

The system shall be packaged as a self-contained application, requiring no
installation of additional components or dependencies. Users will be able
to launch the system simply by opening the designated application or accessing
a web page.

3.1.1.9 F9 – Informational file

The system shall allow the user to log information about the currently processed
MF4 file during conversion. It will record its name, path, first timestamp, and
last timestamp.

3.1.1.10 F10 – Administrator mode

Certain configuration elements of the system will only be accessible to the user
after entering a password for the administrator mode. These elements primarily
include database connection settings.

3.1.1.11 F11 – Downloaded data formats

Downloaded data from the database shall be savable in CSV or XLSX format.

3.1.2 Nonfunctional requirements
3.1.2.1 N1 – Portability

The system shall be easily transferable between computers via various transfer
media, such as cloud storage or portable storage devices. This will enable users
to effortlessly run the system on any computer within the company.

24

3.2. To-Be Activity diagrams

3.1.2.2 N2 – Microsoft Windows platform

Despite the possibility of multi-platform development, the system will exclu-
sively run on the Microsoft Windows 10 or Microsoft Windows 11 operating
systems.

3.1.2.3 N3 – Responsive design

The system’s user interface shall be responsive to the size of the window set by
the user, including full-screen display capability.

3.1.2.4 N6 – No unnecessary temporal files

During its operation, the system will not store any temporary files on the
computer, such as converted signals before uploading them to the database.

3.2 To-Be Activity diagrams

Following figures show an improved company process with a new system trans-
formed into activity diagrams. Figures are also included in the attachments.

3.2.1 Data processing
Figure B.1 illustrates the activity diagram of the new subprocess, which consists
of processing and uploading the source MF4 files into the database.

3.2.2 Data downloading
Figure B.2 illustrates the activity diagram of the new subprocess, which consists
of downloading selected data from the database.

3.2.3 Data inspection
Figure B.3 illustrates the activity diagram of the new subprocess, which consists
of final data inspection.

3.3 To-Be Use case model

The following use cases represent a new, improved state of the process. They
have been formulated based on To-Be requirements (ref. 3.1) and analysis
conducted among Test engineers and Design engineers within the company.
The subprocess of collecting the SD card from the machine is left out, as it
does not require any interaction with the information system and can’t be
optimized in the scope of this thesis.

3.3.1 Actors
In the new system, the end user stands as the sole actor. There is no need for
additional participants in the improved process.

25

3. Analysis of the future solution

Figure 3.1: To-Be actors

3.3.1.1 User

Any employee of the company that wishes to process or inspect new machine
data.

3.3.2 Basic application operations
This use case package contains the description of functionalities ensuring basic
operations in the new application. Refers to diagram on figure C.1.

3.3.2.1 UC1 – Saving changes

Allows saving all changes of configuration made within the application to the
configuration file.

1. The use case begins with some unsaved changes in the application, which
User wants to save.

2. User clicks on the Save changes button in the main window.

3. If there are no problems, the application responds with “Settings up-
dated.” as a feedback information.

3.3.2.2 UC2 – Discarding changes

Allows discarding all changes of configuration made within the application.

1. The use case begins with some unsaved changes in the application, which
User wants to scratch.

2. User clicks on the Discard changes button in the main window.

3. Application prompts a pop-up asking, if the User is sure about this action.

4. User clicks on the Yes button.

26

3.3. To-Be Use case model

3.3.2.3 UC3 – Entering Admin mode

Allows User to gain administrator rights within the application.

1. The use case begins when User wants to gain administrative privileges
in the application.

2. User clicks on the Admin mode button in the main window.

3. Application prompts a pop-up asking for the password.

4. User fills the password into the entry field in the pop-up window.

5. User click on the Ok button in the pop-up window.

3.3.2.4 UC4 – Viewing the manual

Allows User to view the usage manual of the application.

1. This use case begins when User wants to view the usage manual of the
application.

2. User clicks on the Manual button in the main window.

3.3.2.5 UC5 – Changing the appearance theme

Allows changing the visual appearance of the application between light and
dark modes.

1. The use case begins when User wants to change the visual appearance
mode of the application.

2. User clicks on the expandable menu next to the Theme label in the main
window.

3. The application shows a list of the following options: Light, Dark, System.

4. User clicks on the desired option.

3.3.3 Converting and uploading MF4 data into the database
This use case package contains the description of functionalities ensuring pro-
cessing and uploading of source MF4 files. Refers to diagram on figure C.2.

3.3.3.1 UC6 – Selecting MF4 files directory

Allows User to select a directory with source MF4 files.

1. This use case begins when it is needed to specify the source directory
of MF4 files.

2. User clicks on the Before start button in the main navigation within the
main window of the application.

3. User clicks on the Select MF4 dir button in the newly displayed content
frame within the main window.

27

3. Analysis of the future solution

4. Application prompts User with a standard directory selection tool default
to the operating system.

5. User navigates to the desired directory and confirms the selection.

3.3.3.2 UC7 – Selecting DBC files directory

Allows User to select a directory with DBC files.

1. This use case begins when it is needed to specify the source directory
of DBC files.

2. User clicks on the Before start button in the main navigation within the
main window of the application.

3. User clicks on the Select DBC dir button in the newly displayed content
frame within the main window.

4. Application prompts User with a standard directory selection tool default
to the operating system.

5. User navigates to the desired directory and confirms the selection.

3.3.3.3 UC8 – Turning on/off data aggregation

Allows enabling simple aggregation upon data from MF4 files during the con-
version.

1. This use case begins when User wants to enable simple aggregation upon
data from MF4 files.

2. User clicks on the Conversion & Upload button in the main navigation
within the main window of the application.

3. User checks (on) or unchecks (off) the switch next to the Aggregate raw
data label.

3.3.3.4 UC9 – Configuring data aggregation

Allows configuring the simple aggregation upon data from MF4 files, if the
Aggregate raw data option is enabled.

1. This use case begins when the Aggregate raw data option in the Con-
version & Upload content frame is enabled and User wants to further
configure this setting.

2. User types a new value of seconds into the entry next to the Seconds
to skip when value is consistent label.

28

3.3. To-Be Use case model

3.3.3.5 UC10 – Turning on/off moving done files

Allows enabling movement of already processed MF4 files into another direc-
tory.

1. This use case begins when User wants to enable the movement of pro-
cessed MF4 files.

2. User clicks on the Conversion & Upload button in the main navigation
within the main window of the application.

3. User checks (on) or unchecks (off) the switch next to the Move done files
label.

3.3.3.6 UC11 – Configuring moving done files

Allows selection of destination directory for the moved MF4 files.

1. This use case begins when the Move done files option in the Conversion
& Upload content frame is enabled and User wants to further configure
this setting.

2. User clicks on the Select destination button.

3. Application prompts User with a standard directory selection tool default
to the operating system.

4. User navigates to the desired directory and confirms the selection.

3.3.3.7 UC12 – Starting conversion and upload of MF4 files

Allows running of the main conversion and upload of the source MF4 files with
the help of DBC files.

1. This use case begins when User wants to start the main conversion and
upload process.

2. User clicks on the Conversion & Upload button in the main navigation
within the main window of the application.

3. User clicks on the Start conversion & upload button.

4. If there are no problems, the application displays a progress bar and
starts displaying feedback messages.

3.3.3.8 UC13 – Inspecting informational file

Allows inspection of the informational file, when the application has converted
and uploaded at least 1 MF4 file.

1. The use case begins when User wants to view the contents of the in-
formational file and the application has already converted and uploaded
at least 1 MF4 file.

2. User navigates to the directory where the application executable is lo-
cated.

3. User opens and inspects the MF4-info.csv file in the same directory.

29

3. Analysis of the future solution

3.3.4 Database configuration
This use case package contains the description of functionalities ensuring all
database configurations within the new application. Refers to diagram on figure
C.3.

3.3.4.1 UC14 – Configuring database host

Enables configuring the host of the database connection. Requires administra-
tor privileges.

1. This use case begins when User has administrator privileges and wants
to configure the host of the database connection.

2. User clicks on the Database config button in the main navigation within
the main window of the application.

3. User types a new value into the entry field next to the Host label.

3.3.4.2 UC15 – Configuring database port

Enables configuring the port of the database connection. Requires administra-
tor privileges.

1. This use case begins when User has administrator privileges and wants
to configure the port of the database connection.

2. User clicks on the Database config button in the main navigation within
the main window of the application.

3. User types a new value into the entry field next to the Port label.

3.3.4.3 UC16 – Configuring database name

Enables configuring the database name of the database connection. Requires
administrator privileges.

1. This use case begins when User has administrator privileges and wants
to configure the database name of the database connection.

2. User clicks on the Database config button in the main navigation within
the main window of the application.

3. User types a new value into the entry field next to the Database label.

3.3.4.4 UC17 – Configuring database user

Enables configuring the user of the database connection. Requires administra-
tor privileges.

1. This use case begins when User has administrator privileges and wants
to configure the user of the database connection.

2. User clicks on the Database config button in the main navigation within
the main window of the application.

3. User types a new value into the entry field next to the User label.

30

3.3. To-Be Use case model

3.3.4.5 UC18 – Configuring database password

Enables configuring the password of the database connection. Requires admin-
istrator privileges.

1. This use case begins when User has administrator privileges and wants
to configure the password of the database connection.

2. User clicks on the Database config button in the main navigation within
the main window of the application.

3. User types a new value into the entry field next to the Password label.

3.3.4.6 UC19 – Configuring database schema name

Enables configuring the used schema name within the database.

1. This use case begins when User wants to configure the used schema name
within the database.

2. User clicks on the Database config button in the main navigation within
the main window of the application.

3. User types a new value into the entry field next to the Schema label.

3.3.5 Data downloading
This use case package contains the description of functionalities ensuring down-
loading of signal data from the database. Refers to diagram on figure C.4.

3.3.5.1 UC20 – Updating signal names

Allows dynamical updating of the signal names currently stored in the database.

1. The use case begins when User wants to download data from the database.

2. User clicks on the Download data button in the main navigation within
the main window of the application.

3. User clicks on the Update signal names button on the newly displayed
content frame.

3.3.5.2 UC21 – Selecting signals for download

Allows selecting signals to be downloaded from the database. Requires having
the update of signals already completed (see 3.3.5.1).

1. The use case begins when User wants to download data from the database
and has already updated the signal names.

2. User clicks on the Select signals button on the Data download content
frame.

3. Application will display a new widows containing a list of all the available
signals with check marks next to every one of them.

31

3. Analysis of the future solution

4. User selects the check marks of all the signals intended for download.

5. User clicks on the Ok button.

3.3.5.3 UC22 – Selecting time range for download

Allows the selection of the time frame delineating the range of downloaded
signals. Requires having the update of signals already completed (see 3.3.5.1).

1. The use case begins when User wants to select the time range for down-
loaded data and has already updated the signal names.

2. User clicks on the Set time filter button on the Data download content
frame.

3. Application will display a new widows containing a tool for selecting
opening and closing timestamps.

4. User selects the proper date in the interactive calendar for both opening
and closing timestamp.

5. User fills out desired hours, minutes and seconds for both opening and
closing timestamp.

6. User clicks on the Ok button.

3.3.5.4 UC23 – Downloading selected data

Allows downloading requested signals of a specific time range from the database.
Requires having the update of signals, selection of signals and selection of time
range already completed (see 3.3.5.1 to 3.3.5.3).

1. The use case begins when User wants to download signals from a specific
time range and has already updated the signal names, selected the signals
and selected the time range.

2. User clicks either on the Download as CSV or Download as Excel button
on the Data download content frame.

3. Application prompts User with a standard file selection tool default to the
operating system.

4. User navigates to the desired directory and confirms the selection.

5. If there are no problems, the application responds with a feedback infor-
mation confirming the download in the selected format.

3.3.6 Creating Grafana dashboard JSON
This use case package contains the description of functionalities ensuring the
creation of a new Grafana dashboard JSON to be imported into Grafana.
Refers to diagram on figure C.5.

32

3.3. To-Be Use case model

3.3.6.1 UC24 – Entering dashboard name

Allows entering the name of the JSON Grafana dashboard.

1. This use case begins when User wants to enter a name for the generated
Grafana dashboard.

2. User clicks on the Get Grafana template button in the main navigation
within the main window of the application.

3. User types a new value into the entry field next to the 1) Enter Dashboard
name: label.

3.3.6.2 UC25 – Getting dashboard JSON

Allows downloading of the correct JSON Grafana dashboard.

1. This use case begins when User wants to generate and save the Grafana
dashboard.

2. User clicks on the Get Grafana template button in the main navigation
within the main window of the application.

3. User clicks on the Get template button.

4. Application prompts User with a standard file selection tool default to the
operating system.

5. User navigates to the desired directory and confirms the selection.

6. If there are no problems, the application responds with a feedback infor-
mation confirming the successful save of the JSON file.

3.3.7 Data inspection
This use case package contains the description of functionalities ensuring in-
spection of the processed data. Refers to diagram on figure C.6.

3.3.7.1 UC26 – Logging into Grafana

Allows User to log into Grafana server website under given role.

1. This use case begins when User needs to log into the Grafana server
website.

2. User opens Grafana login website.

3. User fills out the login credentials.

4. User clicks on the Log in button.

33

3. Analysis of the future solution

3.3.7.2 UC27 – Dashboard creation

Enables the creation of a new Grafana dashboard if a suitable one does not
exist.

1. This use case begins if there is a lack of Grafana dashboard suitable for
inspection of the freshly processed data and User is logged into Grafana
server website as an administrator.

2. User opens the Dashboards menu on the Grafana server website.

3. User clicks on the New button.

4. User clicks on the Import button.

5. User clicks on the Upload dashboard JSON file section

6. Grafana prompts User with a standard file selection tool default to the
operating system.

7. User navigates to the desired JSON file and confirms the selection.

8. User clicks on the Import button.

3.3.7.3 UC28 – Data inspection

Enables User to inspect freshly processed data via the Grafana server website.

1. This use case begins if User needs to inspect machine data and is already
logged into the Grafana server website.

2. User opens the Dashboards menu on the Grafana server website.

3. User clicks on the desired Dashboard from the listing.

4. User inspects displayed data.

34

Chapter 4
Design

Having dissected the intricacies of the current workflow and identified its lim-
itations in the Chapter 2, it’s evident that a significant overhaul – featuring
content from the analysis of the future solution in Chapter 3 – is necessary. The
preceding analysis unveiled a complex process fraught with inefficiencies and
a lack of automation, leading to substantial time investments and operational
constraints.

With the Design chapter, the focus shifts towards crafting a novel sys-
tem that addresses these shortcomings while adhering to the new requirements
outlined earlier. Through planning and innovative ideation, this chapter aims
to engineer a solution that streamlines machine data processing and visualiza-
tion, fostering agility, simplicity, and user-centric functionality.

4.1 Proposal of the new solution

The entire current process can be almost fully automated. Instead of several
required workers, only one person will be responsible for its operation. Spe-
cialized workers will no longer be required, as the intuitive nature of the new
solution will empower anyone to handle the task effectively.

The main enhancement will result in a new desktop application, replac-
ing the current disjointed scripts. The user-friendly graphical interface will
guide each user through the entire process of handling machine data from the
comfort of their computer with minimal intervention required. Primarily, the
application will feature loading of MF4 files, decoding them with extended
CAN databases (with the support of SAE J1939-TP messages) and uploading
the resulting data to a remote server. Additionally, users will be able to choose
whether they want to perform operations on the data, such as aggregation.

The secondary functionality of the new application will involve the capabil-
ity to download data directly from the remote database using signal names and
timestamps as references. This data will be storable in both CSV and Excel
formats.

A web service accessible from anywhere within the company’s intranet will
facilitate the reading of all signals stored in the database. Data from this
database will be dynamically pulled into interactive plots, allowing users to de-
fine which signals they want to view within a specified time range. The frame-
work of the solution to this part is already provided by Grafana tools and the

35

4. Design

system will utilize its capabilities. Grafana dashboard JSON files will be gen-
erated within the desktop application, allowing simple set-up of new views for
data inspection.

With this approach, the program will implement all of the requirements
defined by the analysis in the chapter 3.1, while simultaneously reducing overall
complexity and time consumption of this process.

4.2 Architecture

Qhe software architecture of a system is the set of structures needed to rea-
son about the system. These structures comprise software elements, relations
among them, and properties of both [16].

Since architecture consists of structures, and structures consist of elements
and relations, it follows that an architecture comprises software elements and
how those elements relate to each other. This means that architecture specif-
ically and intentionally omits certain information about elements that is not
useful for reasoning about the system. Thus an architecture is foremost an ab-
straction of a system that selects certain details and suppresses others. In all
modern systems, elements interact with each other by means of interfaces that
partition details about an element into public and private parts. This abstrac-
tion is essential to taming the complexity of an architecture: one simply cannot,
and do not want to, deal with all of the complexity all of the time. The under-
standing of a system’s architecture is needed to be many orders of magnitude
easier than understanding every detail about that system [16].

Several following sections of this chapter will be devoted specifically to the
architecture of the designed application.

4.2.1 Domain model
A domain model serves as a conceptual representation of the fundamental en-
tities and their relationships within a specific problem domain. It encapsulates
the essential concepts and interactions, providing stakeholders with a common
understanding of the problem space that the information system addresses. By
identifying the relevant entities and relationships, the domain model helps de-
fine the scope and requirements of the system, guiding the design, development,
and implementation processes.

Figure 4.1 shows the domain model of this system design. It consists
of a core composed of three objects – App, Database, and Grafana server.
The App represents the main desktop application with which users will pri-
marily interact, when it comes to data processing or downloading. The App
has access to the Database, where processed data is stored and from where
data is also retrieved. Additionally, it has a Configuration file for storing all
settings, MF4 files with machine data, and DBC files used for their translation.
The App can be used by either a regular User or an Administrator, but not
both simultaneously.

The second important node is the Grafana server entity, which can display
Grafana dashboards through the Grafana user interface. In this way, users
can dynamically view data pulled from the Database. The Grafana server is
capable of creating an unlimited number of Grafana user interface instances,
so the total of simultaneous users is unlimited.

36

4.2. Architecture

Figure 4.1: System domain model design

4.2.2 Architectural style
The proposed system comprises two distinct components: a desktop applica-
tion responsible for data processing, upload, and download functionalities, and
a server dedicated to hosting the visualization tool Grafana, featuring a web-
based user interface.

The desktop application will adhere to a two-layer architecture model,
strategically partitioning the visual and logical components. This architec-
tural approach ensures optimized performance of the graphical user inter-
face (GUI) while efficiently distributing computationally intensive tasks across
available CPU cores. Embracing conventional frontend-backend development
paradigm, the application segments will exclusively communicate via a text-
based pipeline, ensuring seamless interoperability between processes.

In contrast, Grafana adopts a microservices-based architecture, aptly named
“Mimir”. This architectural model embodies multiple horizontally scalable mi-
croservices, each capable of autonomous operation and concurrent execution.
Leveraging this framework, the system attains enhanced scalability and flexi-
bility. Notably, the visualization tool capitalizes on web technologies to furnish
users with an intuitive interface, facilitating seamless navigation and interac-
tion.

37

4. Design

Both components are mutually independent; they are connected solely
through a shared database containing records from converted MF4 files.

4.2.3 Security architecture

The Security Architecture (SA) practice focuses on the security linked to com-
ponents and technology that developers deal with during the architectural de-
sign of the software. Secure Architecture Design looks at the selection and
composition of components that form the foundation of the solution, focusing
on its security properties [17].

The security architecture of the new desktop application is meticulously
designed to ensure robust protection and controlled access. The application
operates locally within its directory on any computer within the company,
ensuring it does not interfere with any files except for its configuration file.
This isolation helps maintain the integrity of the system and minimizes the
risk of accidental or malicious file modifications. The only external connection
established by the application is to a remote database within the company.
This connection is tightly controlled and requires the entry of correct access
credentials, which are safeguarded and can only be altered through admin-
istrative rights. Users can obtain these rights only by entering the correct
password within the application, ensuring that only authorized personnel can
make critical changes.

The security of the server hosting the database is governed by the company’s
security policies. Access to the server is restricted to authorized employees only,
ensuring that sensitive data is protected from unauthorized access and potential
breaches. The Grafana dashboard, an integral part of this architecture, is
configured to execute read-only queries, thus preventing data manipulation
risks. Any changes to the dashboard or its queries require administrative rights,
which can be obtained only by logging in with the correct credentials. This
read-only configuration ensures that the integrity of the data is maintained,
and unauthorized modifications are prevented.

By adhering to these security measures, the application ensures that both
the local environment and the remote database are protected against unautho-
rized access and potential security threats. The architecture supports a secure,
controlled, and reliable operation, safeguarding sensitive company data and
maintaining compliance with internal security standards.

4.2.4 Technology stack

A technology stack is a comprehensive set of tools and technologies that work
together to build, deploy, and maintain an application. It includes everything
from front-end and back-end development to infrastructure, security, and mon-
itoring, providing a cohesive framework for delivering a functional and efficient
software solution.

This chapter describes the architecture of the technological solution for
the proposed system. Given that Grafana is not the subject of design and
implementation, its technological parameters will not be discussed in detail.
However, its presence in this system will be described and justified.

38

4.2. Architecture

4.2.4.1 Python

The entire desktop application will be written in the Python programming
language. The primary reason for this choice is the ability to utilize the asam-
mdf and can_decoder libraries, which handle the translation of MF4 files into
signal-based text format, supporting the SAE J1939-TP standard.

Other than that, Python was chosen due to its versatility, ease of use, and
strong community support. One of the key advantages of Python is its sim-
plicity and readability, which make it accessible to developers of all skill levels.
This is particularly important for ensuring that the codebase is maintainable
and that new developers can quickly become productive.

Furthermore, Python boasts a rich ecosystem of libraries and frameworks
that can significantly speed up the development process. For data processing
tasks, libraries such as pandas and NumPy provide powerful tools for handling
large datasets efficiently. These libraries are essential for the project, given the
need to process and analyze machine data. Additionally, Python’s robust sup-
port for integration with databases through libraries like SQLAlchemy ensures
that data can be managed effectively.

In addition to its strengths in data processing and integration, Python also
offers excellent frameworks for building GUIs, such as the customtkinter library.
It allows developers to create modern, responsive, and user-friendly interfaces
with ease. This framework extends the capabilities of the standard Tkinter
library, providing more flexibility and a wider range of design options.

Lastly, Python’s extensive community support and comprehensive docu-
mentation make it easier to find solutions to potential problems and stay up-
dated with the latest developments in technology. The availability of numerous
tutorials, forums, and third-party modules ensure that developers have access
to a wealth of resources, which can facilitate the development process and
enhance the overall robustness of the application. Therefore, Python’s combi-
nation of simplicity, powerful libraries, and strong community support makes
it the optimal choice for this project’s programming language.

4.2.4.2 JSON file

The JSON (JavaScript Object Notation) file format is ideal for storing the
application configuration due to its simplicity, readability, and compatibility.
It is a lightweight data interchange format that is easy for humans to read
and write, and easy for machines to parse and generate. Its straightforward,
key-value pair structure allows configuration settings to be clearly defined and
organized, making it easy to understand and modify. Additionally, JSON is
language-independent but has parsers available in almost every programming
language, including Python. This ensures seamless integration and manipula-
tion within the application.

4.2.4.3 PostgreSQL

The database system for storing the converted data and subsequently reading
it for visualization will be implemented using PostgreSQL 16. This open-source
relational database management system offers a high level of reliability and sta-
bility, which is essential for storing and managing the application’s data. Its

39

4. Design

strong support for ACID (Atomicity, Consistency, Isolation, Durability) prop-
erties ensures data integrity and transaction reliability, making it a trustworthy
choice for applications dealing with large datasets.

Another key reason for selecting PostgreSQL is its advanced support for
SQL standards and extensive functionality. It supports complex queries, for-
eign keys, joins, views, triggers, and stored procedures, providing a useful
toolkit for data management. PostgreSQL’s powerful indexing and full-text
search capabilities enable efficient querying and data retrieval, which is crucial
for the performance of the application.

PostgreSQL also boasts strong community support and extensive documen-
tation, ensuring that developers have access to a wealth of resources and exper-
tise. This active community contributes to regular updates and improvements,
keeping the database system secure and up-to-date with the latest features and
best practices.

4.2.4.4 Grafana

There is no need for designing a new visualization tool because Grafana offers
a robust solution that meets all the requirements for data visualization. As
a leading open-source platform, Grafana is renowned for its ability to visu-
alize time-series data effectively and interactively. Its extensive features and
proven reliability make it an ideal choice for this project, eliminating the need
to develop a custom tool from scratch.

Grafana can seamlessly integrate with PostgreSQL, the selected database
system, as well as numerous other databases and data sources. This integra-
tion capability allows for the efficient querying and display of the converted
data, enabling users to interact with and analyze the information dynamically.
Importantly, Grafana can be deployed on a server within the company, and
employees can simply access it via a web browser from their computer, making
it highly accessible and convenient.

Its user-friendly interface and powerful visualization capabilities are an-
other significant advantage. It provides a wide range of visualization options,
including graphs, tables, and heatmaps, allowing stitching together the most
appropriate format for the data.

In addition, Grafana allows administrators to set up interactive dashboards,
ensuring that only authorized personnel can create and modify visualizations.
The ability to create and share dashboards quickly enhances collaboration and
ensures that stakeholders have access to the information they need in an easily
digestible format. Regular users are then enabled to customize their views by
selecting desired signals, applying filters, and drilling down into specific data
points. Moreover, administrators have the option to import dashboards from
JSON files, providing a convenient way to share and replicate dashboards across
different environments.

40

4.2. Architecture

4.2.5 Deployment
This chapter will outline the deployment strategy and procedures for the sys-
tem, detailing the environment setup, portability, rollout plan and installation
process. It aims to provide an understanding of how the developed solution will
be deployed and managed in a real-world environment, ensuring its successful
operation.

4.2.5.1 Environment

All components will be designed for the Microsoft Windows 10 operating sys-
tem running on computers with processors featuring 4 or more physical cores.
These computers will be connected to the corporate intranet, ensuring com-
munication with company servers where the database and Grafana backend
will be running. The application and Grafana frontend will be executable from
individual employee personal computers.

4.2.5.2 Portability

The Python application will be encapsulated within an executable file, com-
plete with its own interpreter, thereby facilitating seamless execution for users
without the need to install all the requisite dependencies individually. The ex-
ecutable file will be located in the application directory, which users can freely
move between computers using any means of information transport. Subse-
quently, each employee can access the Grafana user interface with ease by
simply inputting the correct URL into a web browser.

4.2.5.3 Rollout plan

The entire development process will be monitored through the company’s
GitHub repository. On its page, release versions will be available for down-
load, accompanied by comments detailing the changes implemented. Each
release will be versioned according to the schema x.y.z, where x signifies the
major version of the application, y denotes additions or enhancements to func-
tionality, and z indicates improvements that do not affect functionality, such as
bug fixes. Each new version will evolve based on any new system requirements
that may arise – without any strict schedule.

4.2.5.4 Installation

The application will not require any installation; it will suffice to download
the release from GitHub and run the executable. However, before the initial
launch, it will be necessary to set up the PostgreSQL database and Grafana
backend on the company server. Within the database, two users will need to be
created: one with editing and schema/table creation rights, and another with
read-only privileges. Within the application, logging in with administrative
rights will be necessary for correctly configuring the database connection with
the authorized user for modifications. In Grafana, it will be necessary to define
an administrator and users. Subsequently, the administrator can configure the
database connection using the read-only user and import the JSON dashboard
generated from the application.

41

4. Design

Users will be also able to build the executable of the application locally by
following the instructions provided in the README file, which defines all the
necessary technologies and guides users through the entire building process.

4.2.6 Documentation
Documentation and sustainability are crucial aspects of ensuring the long-term
success and viability of the project. Comprehensive code documentation will
be provided through GitHub Pages of the repository to guide future develop-
ers through the application code, ensuring a smooth onboarding process and
minimizing potential issues.

All requirements for the building process and technological requirements
will be written in the README file. The user guide on how to use the applica-
tion will be included as part of the application itself, ensuring accessibility and
convenience for users. Additionally, users will find instructions on how to use
Grafana dashboards on the Wiki pages of the GitHub repository, providing
comprehensive support and guidance for utilizing the system’s visualization
features.

4.3 User experience

User experience (UX) is made of all the interactions a user has with a product
or service. It is the personal, internal experience customers go through when
using a product’s interface [18].

The aim of this section is to design such UX, that will allow the users to work
with the system with ease. The UX of Grafana has already been designed and
implemented by Grafana Labs, so the following text will only pertain to the
Python desktop application.

4.3.1 User roles
By default, the application will operate without requiring any login credentials.
Any user can simply open it and use it. However, there will be an option to en-
ter a password for administrator login. With administrator rights, additional
options will become available on various screens of the application.

4.3.2 Navigation and flow
The application will consist of two main frames – a navigation menu and a dis-
play area (referred to as the content frame). Through the navigation menu,
users will switch between various application functionalities, which will be dis-
played in the content frame. The menu items will exclusively include

• selection of MF4 and DBC files,

• database connection settings,

• conversion and upload of MF4 files,

• data downloading and

• creation of a JSON dashboard for Grafana.

42

4.3. User experience

The content frame for selecting MF4 and DBC files will feature an intuitive
selection of paths to directories where these files are located on the computer.
Users will also receive feedback displaying the currently selected directory path.

The content frame for database connection settings will depend on whether
the user is logged in as an administrator or not. If so, all necessary config-
urations for connecting to the remote database will be displayed. This may
include fields such as IP address, port, username and password. Without ad-
ministrative rights, users will only be able to edit the schema name where the
application will store converted data.

The content frame for converting and uploading MF4 files will consist
of configurations designed for data processing, primarily options related to ag-
gregation. The main element will be a button that initiates the entire process
of converting and uploading MF4 files.

The content frame for downloading data from the database will offer users
a selection of signals currently available in the database, from which they can
choose any number. Subsequently, users will use an intuitive tool to select
the start and end data timestamp to specify the range of downloaded data.
Another button will then start the download of selected data to the location
chosen by the user on their computer.

The content frame for creating a JSON dashboard for Grafana will only
require an option for defining its name. The application will handle the rest,
and users will only need to click the download button.

Additionally, the content frame will be divided into two sections, with the
smaller one containing a screen where the application will display feedback
information for the user. This screen will always be in the same location and
will be present in all instances. Below the content frame, buttons will be placed
for saving the changes made in the application.

4.3.3 Performance

The application’s response time will be instantaneous; users do not want to wait
after each button click. However, the speed of the MF4 file conversion and
upload process will depend on the hardware resources of the computer where
the application will be running. The faster the clock speed of the CPU, the
quicker it will be done.

4.3.4 Error handling

It is possible for errors to occur within the application, whether on the user’s
side or within the program itself. In both cases, the application will respond
by creating a new dialogue window to inform the user of the encountered issue.
Depending on the nature of the error, the application will provide the user with
certain options on how to proceed further.

User errors may, for example, include incorrectly filled or omitted fields,
unsaved settings, or attempts to close the application during the conversion
process. In all these cases, the application will alert the user with a new
dialogue window and guide them on how to resolve the issue.

43

4. Design

4.3.5 Accessibility
The application will scale relative to the display scale settings of the operat-
ing system. To enhance readability and reduce eye strain, the application will
support both light and dark modes for appearance. The color scheme of the ap-
plication will accommodate all possible types of color blindness affected users.

4.4 Graphical user interface

The user interface (UI) is the point of human-computer interaction and com-
munication in a device. This can include display screens, keyboards, a mouse
and the appearance of a desktop. It is also how a user interacts with an appli-
cation or a website, using visual and audio elements, such as type fonts, icons,
buttons, animations and sounds [19].

Most modern devices and applications leverage a graphical user interface
in their builds. A graphical user interface (GUI) is a digital interface in which
a user interacts with graphical components such as icons, buttons, and menus.
In a GUI, the visuals displayed in the user interface convey information relevant
to the user, as well as actions that they can take [20].

In accordance with the initial functional requirements outlined in this sys-
tem (refer to 3.1.1.1), the application will showcase a GUI constructed upon
the UX framework delineated in Section 4.3. Subsequent paragraphs will delve
into detail, describing and showcasing the visual aspects of the application.

4.4.1 Typography and colours
The text font utilized throughout the entire application will belong to the
Roboto font family and will be set to the normal weight at a size of 13 points.
The application’s colors will vary based on the display mode – light or dark.

In the light mode, the color of all texts except buttons will be black
(hex #000000), and the background will be filled with light gray (hex #ebe-
beb). The color of the navigation menu will be slightly darker (hex #dbdbdb).
All buttons will be a bold blue (hex #3b8ed0), with white text (hex #ffffff).
Any input text elements will also be white.

The dark mode will function as a complement to the light mode, except
for the buttons, which will remain the same color, including their text. Text
outside the buttons will be white, the default background will be dark gray
(hex#242424), and the navigation menu will be slightly lighter (hex #2b2b2b).
Any input text elements will also have the same lighter color.

4.4.2 Responsiveness
The main window of the application will be resizeable, and its content will
dynamically adjust to the current size. By content, everything except the
navigation panel is meant. Navigation will remain fixed in size at all times.

The application exclusively utilizes English as its language, reflecting the
formal language standard of the company. Given this, there is no requirement
for additional language support.

44

4.4. Graphical user interface

Figure 4.2: Wireframe of the main window

4.4.3 Wireframe
The figure 4.2 shows the basic wireframe of the GUI of the new application.
On the left side, there will be a column with the main navigation menu, the
content frame will be located at the top right, and below it there will be the
program feedback field. At the bottom of the left side, there will be buttons for
displaying the manual and switching to the Admin mode, while on the right,
there will be buttons for saving or discarding changes in the configuration.

45

Chapter 5
Implementation and testing

This chapter transitions from the design phase to the implementation and
testing of the application. Here, the steps taken to turn the design specifications
into a working product will be described. Following the implementation, testing
strategies will be discussed.

5.1 Implementation

The application was implemented based on the specifications defined in the
analysis conducted in chapter 3 and the design defined in chapter 4. Using
Python, a two-tier desktop application with a fully responsive GUI was devel-
oped in an object-oriented manner. The application meets all functional and
non-functional requirements outlined in Section 3.1, except for the functional
requirement F4 (see 3.1.1.4), which is addressed by the Grafana dashboard.

The separation of the frontend and backend was achieved using the multi-
processing library, enabling the creation of new Python processes within a single
program. These processes communicate textually through a pipeline. Both lay-
ers feature an interface class to interpret received messages correctly, running
on separate threads. Message transmission between processes is encapsulated
in a custom PipeCommunication class, ensuring simpler operations.

The frontend was developed using the customtkinter library, an extension
of the widely spread tkinter library. This library facilitates a simple grid-
like window design with customizable widgets. Logical operations were moved
to the backend layer to avoid overloading the rendering process.

The backend process primarily involves functions for processing MF4 files
and uploading them to a database. Libraries such as can_decoder, mdf_iter,
canedge_browser, asammdf, and pandas translate the original binary files into
dataframes containing decoded signals and their data. If the user desires,
aggregation is performed on the final dataframes. Once this is completed, the
final data is uploaded to the database, managed by a class that utilizes the
sqlalchemy and psycopg2 libraries.

All Python modules were eventually packaged into an executable file and
placed in a folder along with other necessary components. This was accom-
plished using the cx_Freeze library, which bundles all source files and the
Python interpreter into an .exe file, ensuring portability and eliminating the
need for installations. This process was automated using a batch script.

47

5. Implementation and testing

To implement the creation of a dashboard in Grafana, it was first neces-
sary to create a JSON template, which the application would edit. This was
achieved by creating a real dashboard template in Grafana, from which the
JSON configuration was exported. The dashboard has been revamped to dy-
namically retrieve all signals from the database, empowering users to selectively
compare desired values in time within single plots.

5.2 Unit testing

Unit testing is a software development process in which the smallest testable
parts of an application, called units, are individually scrutinized for proper
operation. Software developers complete unit tests during the development
process. The main objective of unit testing is to isolate written code to test
and determine if it works as intended [21].

During the development of the application, the basic functions were tested,
primarily focusing on independent logical operations and file handling. The
graphical user interface was mainly reviewed through user tests – as described
in the following Section 5.3.

For implementing unit tests, the unittest library was used. It is a built-in
Python module, making it easily accessible without requiring additional instal-
lations, which simplifies the setup process. Additionally, unittest supports test
automation, sharing of setup and shutdown code for tests, aggregation of tests
into collections, and independence of tests from the reporting framework, which
streamlines the testing workflow. Its wide adoption and extensive documenta-
tion also provide ample resources and community support, making it an ideal
choice for systematic and effective unit testing.

5.3 User testing

User testing is the process through which the interface and functions of an app
are tested by real users who perform specific tasks in realistic conditions. The
purpose of this process is to evaluate the usability of that website or app and
to decide whether the product is ready to be launched for real users [22].

In the application, the effectiveness and intuitiveness of the designed UX,
the functionality of the GUI, and the stability of functionalities were mainly
verified through user tests. These tests engaged multiple independent em-
ployees, each following specific scenarios that delineated the steps required
to accomplish various use cases. This approach significantly fostered the agile
development methodology of the application. It ensured that based on the
insights gained from these tests, continuous enhancements, fixes, or additions
were made to specific functionalities.

5.4 Stress testing

In a system dealing with large volumes of data, testing its durability under
extreme conditions with a maximal performance load becomes imperative. This
is precisely where stress tests come into play, as conducted on this application.

The stress tests involved running up to 20 instances of the application simul-
taneously, with each instance executing the conversion process of source MF4

48

5.4. Stress testing

files with DBC files defining over 300 signals. The operating system efficiently
distributed the load across processors and RAM, ensuring smooth operation.
Every one of the instances did not end in a fault. However, the overall run-
time for a single application instance was slightly longer compared to tests
conducted with only one application running, as the operating system faced
hardware resource constraints and had to allocate them among the processes.

49

Chapter 6
Case study

Case study is a detailed description and assessment of a specific situation in
the real world created for the purpose of deriving generalizations and other
insights from it. A case study can be about an individual, a group of people,
an organization, or an event, among other subjects. Unlike experiments, where
researchers control and manipulate situations, case studies are considered to be
“naturalistic” because subjects are studied in their natural context [23].

In the scope of this thesis, the following case study will delve into the process
described in Section 2.2.1, but applied to the new, improved solution utilizing
the application and Grafana dashboards. Same parameters as in Section 2.2.3
will be used, ensuring a valid comparison of the new solution to the old one.

6.1 Performed case study

The whole process begins similarly to how it was in the previous state – a per-
son is still needed to physically retrieve data from the machine. However,
after this action, things start to differ. The same individual is now capable
of performing all other necessary tasks comfortably using the new application
on their computer. Thus, the average of 40 minutes for data retrieval from
the machine remains, but the dead period is completely eliminated, resulting in
savings of up to 2.5 days on average.

Once the data is downloaded onto the computer, there is no further need
for manual operations; only setting the correct paths within the new appli-
cation is required, taking an average of 2 minutes. Another 30 minutes are
therefore saved when subtracting the 5 minutes from the original script setup.
The conversion and upload process into the database in the new system runs in
the background for only 2 minutes and 15 seconds without aggregation. With
aggregation, the time increases to 7 minutes and 19 seconds. Additionally, the
application is now capable of translating SAE J1939-TP messages, if they are
defined within the DBC files. Grafana is then once again used for displaying the
converted data, however with the creation and import of missing dashboards
taking only 4 minutes on average.

Altogether, the new process starting with data collection from the ma-
chine to visualization in Grafana takes a maximum of 48.25 minutes, of which
2.25 minutes represent the runtime of the new system for converting and up-
loading MF4 files with a 100MB dataset containing 21 signals. With aggrega-

51

6. Case study

tion enabled, the process runtime in the application extends by 5 minutes and
4 seconds to 7.32 minutes. Moreover, all of this can be handled by just one
person. Considering a larger volume of data, the new application is naturally
more efficient. Processing a 1GB dataset takes the new application 27 minutes
and 49 seconds without aggregation, or 1 hour, 36 minutes and 24 seconds with
aggregation enabled.

Lastly, the application also features new functionalities, such as the ability
to download selected data from the database or generate a JSON model of the
dashboard for Grafana. Thanks to their graphical interface and simple design,
users can utilize them in just a matter of a few minutes.

52

Chapter 7
Evaluation

The forementioned case study has provided data that allows for a measurable
comparison between the previous system and the new one. This data enables
to draw tangible conclusions regarding the performance and efficacy of the two
systems.

7.1 Improvements and benefits

The old system relied on multiple personnel and manual processes, resulting
in significant time delays and inefficiencies. It required at least two employees
to handle data retrieval, processing, and visualization. The process was marred
by a “dead period” where no progress was made, leading to substantial delays
of up to 2.5 days on average.

In contrast, the new system revolutionizes the workflow by minimizing man-
ual intervention and streamlining operations, eliminating the “dead period”
entirely. The new application empowers a single individual to perform all nec-
essary tasks efficiently, eliminating the need for additional personnel and the
associated coordination challenges.

Moreover, the new system significantly reduces processing times. Data
conversion and upload processes, which previously took considerable time, are
now completed swiftly in the background, with minimal user input. This op-
timization results in a dramatic reduction in the overall processing time, with
the entire process of the same source MF4 file dataset taking a maximum
of 2.25 minutes, which is 12.25 times faster, to be exact. With aggregation,
the processing speed is accelerated by a factor of 3.8.

Additionally, the new system introduces advanced functionalities that en-
hance user experience and flexibility. Users can now selectively download data
from the database and generate JSON models of dashboards for Grafana ef-
fortlessly. These features, coupled with the application’s intuitive graphical
interface, enable users to accomplish tasks more efficiently in just a matter
of minutes.

53

7. Evaluation

In conclusion, the new system represents a remarkable improvement over its
predecessor. It not only reduces processing times and eliminates inefficiencies
but also introduces new functionalities that enhance usability and productiv-
ity. By automating manual processes and streamlining operations, the new
system optimizes resource utilization and enhances overall efficiency, saving
the company up to 2 days and 5.75 hours per one process that hap-
pens several times a month, not counting the improvements in runtime
of the application.

7.2 Drawbacks

The new solution has not introduced any negatively impacting elements into
the process. The only remaining drawback is the persistent need for manual
data retrieval from the machines.

7.3 Plans for future development

Building upon the mentioned drawback, it is advisable to propose and imple-
ment a solution for the future that ensures automatic, wireless transfer of data
directly from the machines to the server, where they would be automatically
processed.

Moreover, the creation of Grafana dashboards could be completely auto-
mated in the future, utilizing its API communicating with Python.

54

Conclusion

The primary aim of this thesis was to enhance and optimize the process of han-
dling, converting and inspecting data collected from construction machines
utilizing the CAN bus at Doosan Bobcat EMEA, s.r.o. company.

In Chapter 2, the work meticulously analyzes the current process, thus
providing a solid foundation for evaluating its deficiencies. Based on further
analysis of prospective solutions, in Chapter 3 the thesis delineated new re-
quirements, activity diagrams, and use cases. Subsequently, leveraging the
data gathered, the Chapter 4 designs a new information system resembling
a desktop application with a graphical user interface and data inspection dash-
boards using the open-source tool Grafana. Emphasis was placed on enhancing
efficiency, simplicity, and portability during the design phase.

The resulting application serves as the focal point of the entire process, con-
solidating all functionalities into one accessible platform for all users. The en-
tire process of collecting MF4 data from the machines to their upload or down-
load from the database is implemented within this tool, made also easily exe-
cutable from an .exe file. Its implementation is discussed in the Chapter 5.

Lastly in this thesis, the Chapter 6 describes a conducted case study uti-
lizing the new information system in real-world operations. The results of this
study are subsequently summarized and evaluated in the Chapter 7, contrast-
ing with the previous solution, which was found to be significantly inferior in
all possible aspects. The new solution saves the company a substantial amount
of time and logistical difficulties, ultimately validating the main goals of this
document.

Nevertheless, the evolution of this new system does not conclude here; there
is still room for future enhancements, such as the automation of data collection
from machines or the complete automation of dashboard creation in Grafana.

55

Bibliography

1. SMITH, Grant. What Is CAN Bus [online]. 2024. [visited on 2024-02-15].
Available from: https://dewesoft.com/blog/what-is-can-bus.

2. VECTOR INFORMATIK GMBH. SAE J1939 [online]. 2024. [visited on
2024-04-21]. Available from: https://www.vector.com/at/en/know-
how/protocols/sae-j1939/.

3. CSS ELECTRONICS. CAN Bus - The Ultimate Guide. 8230 Aabyhoej,
Denmark, 2023.

4. ASAM E. V. ASAM MDF [online]. 2019. [visited on 2024-02-15]. Available
from: https://www.asam.net/standards/detail/mdf/.

5. ASAM E. V. ASAM MDF [online]. 2019. [visited on 2024-02-15]. Available
from: https://www.asam.net/standards/detail/mdf/wiki/.

6. CSS ELECTRONICS. CANedge2 Docs [online]. 2024. [visited on 2024-
03-02]. Available from: https : / / canlogger . csselectronics . com /
canedge-docs/ce2/introduction.html.

7. GRAFANA LABS. Grafana Labs Documentation - About Grafana [online].
2024. [visited on 2024-03-08]. Available from: https://grafana.com/
docs/grafana/latest/introduction/.

8. GRAFANA LABS. Grafana Labs Documentation - Panels and visual-
izations [online]. 2024. [visited on 2024-03-08]. Available from: https:
//grafana.com/docs/grafana/latest/panels-visualizations/.

9. GRAFANA LABS. Grafana Labs Documentation - Use dashboards [on-
line]. 2024. [visited on 2024-03-08]. Available from: https://grafana.
com/docs/grafana/latest/dashboards/use-dashboards/.

10. GRAFANA LABS. Grafana Labs Documentation - Dashboard JSON
model [online]. 2024. [visited on 2024-03-08]. Available from: https://
grafana.com/docs/grafana/latest/dashboards/build-dashboards/
view-dashboard-json-model/.

11. GRAFANA LABS. Grafana Labs Documentation - Install Grafana on
Windows [online]. 2024. [visited on 2024-03-08]. Available from: https://
grafana.com/docs/grafana/latest/setup-grafana/installation/
windows/.

57

https://dewesoft.com/blog/what-is-can-bus
https://www.vector.com/at/en/know-how/protocols/sae-j1939/
https://www.vector.com/at/en/know-how/protocols/sae-j1939/
https://www.asam.net/standards/detail/mdf/
https://www.asam.net/standards/detail/mdf/wiki/
https://canlogger.csselectronics.com/canedge-docs/ce2/introduction.html
https://canlogger.csselectronics.com/canedge-docs/ce2/introduction.html
https://grafana.com/docs/grafana/latest/introduction/
https://grafana.com/docs/grafana/latest/introduction/
https://grafana.com/docs/grafana/latest/panels-visualizations/
https://grafana.com/docs/grafana/latest/panels-visualizations/
https://grafana.com/docs/grafana/latest/dashboards/use-dashboards/
https://grafana.com/docs/grafana/latest/dashboards/use-dashboards/
https://grafana.com/docs/grafana/latest/dashboards/build-dashboards/view-dashboard-json-model/
https://grafana.com/docs/grafana/latest/dashboards/build-dashboards/view-dashboard-json-model/
https://grafana.com/docs/grafana/latest/dashboards/build-dashboards/view-dashboard-json-model/
https://grafana.com/docs/grafana/latest/setup-grafana/installation/windows/
https://grafana.com/docs/grafana/latest/setup-grafana/installation/windows/
https://grafana.com/docs/grafana/latest/setup-grafana/installation/windows/

Bibliography

12. GRAFANA LABS. Grafana Labs Documentation - Manage dashboard per-
missions [online]. 2024. [visited on 2024-03-08]. Available from: https:
/ / grafana . com / docs / grafana / latest / administration / user -
management/manage-dashboard-permissions/.

13. GRAFANA LABS. Grafana Labs Documentation - Roles and permis-
sions [online]. 2024. [visited on 2024-03-08]. Available from: https://
grafana.com/docs/grafana/latest/administration/roles- and-
permissions/.

14. WIEGERS, Karl E.; BEATTY, Joy. Software Requirements. Vol. 3, Chap-
ter 8. Understanding user requirements. Redmond, Washington: Microsoft
Press, 2013. isbn 978-0735679665.

15. WIEGERS, Karl E.; BEATTY, Joy. Software Requirements. Vol. 3, Chap-
ter 1. The essential software requirement. Redmond, Washington: Mi-
crosoft Press, 2013. isbn 978-0735679665.

16. BASS, Len; DR. CLEMENTS, Paul; KAZMAN, Rick. Software Architec-
ture in Practise. Vol. 4, Chapter 1. What is software architecture? Boston,
Massachusetts: Addison-Wesley Professional, 2021. isbn 978-0136886099.

17. OWASP. Security architecture [online]. 2024. [visited on 2024-04-22].
Available from: https://owaspsamm.org/model/design/security-
architecture/.

18. ZAPPA, Letizia. What is User Experience? Overview and examples [on-
line]. 2024. [visited on 2024-05-01]. Available from: https://userreport.
com/blog/user-experience/.

19. HASHEMI-POUR, Cameron. User interface (UI) [online]. 2024. [vis-
ited on 2024-05-01]. Available from: https://www.techtarget.com/
searchapparchitecture/definition/user-interface-UI.

20. JUVILER, Jamie. What Is GUI? Graphical User Interfaces, Explained
[online]. 2024. [visited on 2024-05-01]. Available from: https://blog.
hubspot.com/website/what-is-gui.

21. TECHTARGET. Unit testing [online]. 2023. [visited on 2024-05-03]. Avail-
able from: https://www.techtarget.com/searchsoftwarequality/
definition/unit-testing.

22. OMNICONVERT. User Testing [online]. 2024. [visited on 2024-05-03].
Available from: https : / / www . omniconvert . com / what - is / user -
testing/.

23. RAIKAR, Sanat Pai. Case study research [online]. 2024. [visited on 2024-
05-05]. Available from: https://www.britannica.com/science/case-
study.

58

https://grafana.com/docs/grafana/latest/administration/user-management/manage-dashboard-permissions/
https://grafana.com/docs/grafana/latest/administration/user-management/manage-dashboard-permissions/
https://grafana.com/docs/grafana/latest/administration/user-management/manage-dashboard-permissions/
https://grafana.com/docs/grafana/latest/administration/roles-and-permissions/
https://grafana.com/docs/grafana/latest/administration/roles-and-permissions/
https://grafana.com/docs/grafana/latest/administration/roles-and-permissions/
https://owaspsamm.org/model/design/security-architecture/
https://owaspsamm.org/model/design/security-architecture/
https://userreport.com/blog/user-experience/
https://userreport.com/blog/user-experience/
https://www.techtarget.com/searchapparchitecture/definition/user-interface-UI
https://www.techtarget.com/searchapparchitecture/definition/user-interface-UI
https://blog.hubspot.com/website/what-is-gui
https://blog.hubspot.com/website/what-is-gui
https://www.techtarget.com/searchsoftwarequality/definition/unit-testing
https://www.techtarget.com/searchsoftwarequality/definition/unit-testing
https://www.omniconvert.com/what-is/user-testing/
https://www.omniconvert.com/what-is/user-testing/
https://www.britannica.com/science/case-study
https://www.britannica.com/science/case-study

Appendix A
Abbreviations

API Application Programming Interface

BAM Broadcast announce message

CAN Controller area network

CM Connection mode

CSV Comma-separated values

DBC CAN database

ECU Electronic control unit

GB Gigabyte

GUI Graphical user interface

JSON JavaScript Object Notation

MDF Measurement data format

MB Megabyte

MF4 MDF4

SQL Structured query language

TP Transport protocol

UI User interface

UX User experience

XLSX Microsoft Excel Spreadsheet

59

Appendix B
To-Be activity diagrams

61

B. To-Be activity diagrams

Figure B.1: To-Be activity diagram for data processing subprocess

62

Figure B.2: To-Be activity diagram for data downloading subprocess

63

B. To-Be activity diagrams

Figure B.3: To-Be activity diagram for data inspection subprocess

64

Appendix C
To-Be use case diagrams

65

C. To-Be use case diagrams

Figure C.1: To-Be use case diagram for Basic application operations

66

Figure C.2: To-Be use case diagram for Converting and uploading of MF4 data

67

C. To-Be use case diagrams

Figure C.3: To-Be use case diagram for Database configuration

68

Figure C.4: To-Be use case diagram for Data downloading

Figure C.5: To-Be use case diagram for Creating Grafana dashboard JSON

69

C. To-Be use case diagrams

Figure C.6: To-Be use case diagram for Data inspection

70

Appendix D
Contents of attachments

readme.txt.............................a brief description of the contents
exe.............................directory with the executable application
src

impl...................................the implementation source files
thesis....................................the thesis LATEX source files

fig..used figures
diagrams Enterprise Architect source files

text...the thesis text
thesis.pdf.............................the thesis text in PDF format

71

	Introduction
	Goals and methodology
	Theoretical foundation
	CAN bus
	General information
	Messaging
	SAE J1939 Transport Protocol
	DBC file

	ASAM MDF
	General information
	Key features

	CANedge2
	Grafana
	General information
	Grafana Dashboard
	Deployment and usage

	Analysis of the current state
	Basic information
	Detailed description of the process
	From the machine to Grafana
	Current activity diagrams
	Resources

	Used technologies
	Currently implemented requirements analysis
	Current functional requirements
	Current nonfunctional requirements

	Currently implemented Use case model
	Actors
	Conversion and upload of MF4 files into the database
	Data inspection

	Summary

	Analysis of the future solution
	To-Be requirements analysis
	Functional requirements
	Nonfunctional requirements

	To-Be Activity diagrams
	Data processing
	Data downloading
	Data inspection

	To-Be Use case model
	Actors
	Basic application operations
	Converting and uploading MF4 data into the database
	Database configuration
	Data downloading
	Creating Grafana dashboard JSON
	Data inspection

	Design
	Proposal of the new solution
	Architecture
	Domain model
	Architectural style
	Security architecture
	Technology stack
	Deployment
	Documentation

	User experience
	User roles
	Navigation and flow
	Performance
	Error handling
	Accessibility

	Graphical user interface
	Typography and colours
	Responsiveness
	Wireframe

	Implementation and testing
	Implementation
	Unit testing
	User testing
	Stress testing

	Case study
	Performed case study

	Evaluation
	Improvements and benefits
	Drawbacks
	Plans for future development

	Conclusion
	Bibliography
	Abbreviations
	To-Be activity diagrams
	To-Be use case diagrams
	Contents of attachments

