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Abstract

This Bachelor’s thesis explores the viability of the QUIC protocol in the space
of Virtual Private Networks (VPN). It documents the process of designing
and implementing a new VPN based on the QUIC protocol and compares
it with established VPN implementation, such as OpenVPN and WireGuard,
using a series of tests aimed at measuring throughput, latency, and stability.
The resulting implementation fulfills all requirements presented by the thesis
assignment and achieves good results in performance tests, providing higher
throughput and lower latency than OpenVPN and nearing the throughput and
latency of WireGuard, proving the viability the QUIC protocol in the VPN
space.

Keywords VPN, QUIC, TLS, network traffic tunnelling, secure communi-
cation
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Abstrakt

Tato bakalářská práce zkoumá použitelnost protokolu QUIC v prostředí vir-
tuálních privátních sítí (VPN). Dokumentuje proces návrhu a implementace
nové VPN založené na protokolu QUIC a porovnává ji s existujícími VPN jako
OpenVPN a WireGuard pomocí série testů zaměřených na propustnost, ode-
zvu a stabilitu spojení. Výsledná implementace splňuje všechny požadavky ze
zadání a dosahuje dobrých výsledků ve výkonostních testech, poskytujíc větší
propustnost a nižší odezvu než OpenVPN a přibližujíc se propustnosti a odezvě
protokolu WireGuard, čímž potvrzuje použitelnost protokolu QUIC v prostředí
VPN.

Klíčová slova VPN, QUIC, TLS, tunelování síťového provozu, bezpečná
komunikace
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Introduction

In the rapidly evolving landscape of online security and privacy, the importance
of Virtual Private Networks (VPNs) cannot be overstated. The widespread use
of digital communication has led to a greater focus on ensuring the confidential-
ity, integrity, and authenticity of data transmitted over the Internet. Transport
Layer Security (TLS) and QUIC are the most commonly used protocols to se-
cure Hypertext Transfer Protocol (HTTP) Web traffic and, as such, serve as
a cornerstone of online security and privacy. Although these protocols excel
in securing web traffic, their application in VPNs has opened new frontiers to
ensure security and privacy in a wider range of online activities.

The space of VPN protocols has been relatively stagnant in the last decade,
with innovations few and far between. WireGuard, a notable exception, has
gained widespread adoption due to its simplicity, performance, and user-friendly
design. Many commercial VPN services have quickly adopted it after its first
stable release, leading to additional innovation and research. Despite the avail-
ability of various VPN protocols that adequately address security concerns, a
critical issue persists: Many of these protocols are relatively easy to detect by
sophisticated networking equipment. This often leads to unwarranted moni-
toring and blocking of user traffic, especially in contexts where security and
privacy are of utmost concern.

Due to the existence and increasing prevalence of such environments, the
exploration of new VPN protocols that provide better security and privacy
becomes necessary. The quest for protocols that not only meet strict security
standards, but also circumvent detection and blocking by modern networking
infrastructures, is ongoing. Addressing these challenges is crucial to ensure
the unimpeded use of VPNs in a diverse range of scenarios, from safeguarding
sensitive corporate communications to enabling individuals to access data on
the Internet in an unrestricted and uncensored manner.
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Chapter 1
State-of-the-art

The goal of this chapter is to provide an introduction to network protocols
relevant to this thesis and to explore the realm of existing VPNs. By doing so,
it builds the foundation that will be used in the subsequent chapters.

1.1 Network protocols

This section summarises the important information about all network protocols
needed to understand the rest of the thesis, including TCP and UDP, both of
which are heavily utilised in multiple VPN protocols, TLS used by OpenVPN
and QUIC used by the implementation in this thesis.

TCP
The Transmission Control Protocol (TCP) is one of the oldest and most com-
monly used protocols still serving today’s Internet. It allows applications and
devices to reliably exchange data, encapsulated in packets, over a potentially
unreliable network [1].

TCP is a connection-orientated protocol, meaning that a connection is es-
tablished before any data is transferred. There is a concept of a client and
a server, with the client initiating a connection, while the server listens for
incoming connections on a socket, which is a combination of an IP address and
a port, which in a way identify a running network application, such as a web
client or server.

When a connection is established, TCP divides the data to be sent into
packets of an appropriate size, which are then sent to the other party, while
ensuring data integrity by sending acknowledgements of received packets. This
is useful for standard operation, but can cause issues when used by VPNs as
the backing protocol for the created tunnel. This is due to the deterioration
in latency and, transitively, throughput, caused by multiple layers of acknowl-
edgements being sent in both directions.

UDP
The User Datagram Protocol (UDP) is another commonly used protocol that
serves as a counterpart to TCP. It allows applications and devices to send data
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1. State-of-the-art

in an unreliable manner, encapsulated in datagrams, over a network with little
additional overhead.

Unlike TCP, UDP is a connectionless protocol that works in a transaction-
orientated manner, with the transaction consisting of a single datagram. The
protocol does not provide any protection with respect to data integrity and was
created to contain as few protocol mechanisms as possible [2]. This makes it
especially useful in cases where latency and low protocol overhead are of great
importance, such as VPN protocols. This is why many VPN protocols, such
as OpenVPN and WireGuard, use it as the underlying transport protocol1.

TLS
The Transport Layer Security (TLS) protocol is the de facto standard of secure
communication over the Internet. It enables endpoints to communicate in a
secure manner over a network, protecting both the confidentiality and integrity
of the transferred data [3]. It is based on the Public Key Infrastructure (PKI),
which leverages asymmetric encryption for peer endpoint authentication and
encryption, allowing endpoints to securely share data, such as symmetric en-
cryption keys used for later communication, without the need to pre-share an
encryption key over a potentially unsecured channel beforehand.

TLS provides applications with a wide array of different cipher suites, which
are a combination of an asymmetric encryption-based key exchange and signing
algorithm, usually based on Rivest–Shamir–Adleman (RSA) or Eliptic Curve
Cryptography (ECC), and an authenticated symmetric encryption algorithm,
usually Advanced Encryption Standard (AES) with Secure Hashing Algorithms
(SHA) or ChaCha20 with Poly1305 (for more information about these cipher
suites, please refer to [4]). This allows endpoints to choose a cipher suite
which fits them best (e.g. some ciphers might be hardware accelerated, which
might be relevant due to their impact on lower power consumption or higher
throughput), allowing for greater versatility of the protocol.

TLS is a successor of the Secure Sockets Layer (SSL) protocol, which served
a very similar purpose but eventually became too outdated and insecure, and
has seen 4 major versions with numerous improvements. The latest version,
TLS 1.3, greatly increases the security of the protocol, deprecating numerous
insecure cipher suites and configuration options [5].

The described versatility and its widespread use are the reason why this
protocol, and SSL before it, served as the underlying protocols used for au-
thentication, encryption, and transport for numerous VPNs, the most notable
of which is OpenVPN.

QUIC
The QUIC protocol is a novel protocol, originally developed by Google and
later standardised by the Internet Engineering Task Force (IETF), aiming to
replace TLS-over-TCP for HTTP/3 and other connection-orientated applica-
tion protocols. QUIC uses UDP as the underlying transport protocol and
TLS for authenticated encryption of transferred data. It brings much needed

1OpenVPN can also use TCP as the underlying transport protocol, however, due to
throughput and latency issues, the UDP mode became more prevalent.
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1.1. Network protocols

improvements in both latency and throughput, and introduces some modern
concepts, such as connection multiplexing and network path migration [6].

Connection multiplexing is arguably one of the biggest benefits of QUIC
over TLS-over-TCP, as it removes one of the biggest issues in HTTP/1 and
HTTP/2 – head-of-line blocking. This issue occurs when a web client makes
multiple requests to the same web server over a singular TLS-over-TCP con-
nection and one of the requests takes a longer time or has issues with being
delivered, such as dropped packets needing to be resent or a slow database
connection on the back-end. This request then blocks all of the subsequent re-
quests, slowing down the load time of the web application considerably. There
are some workarounds, such as opening multiple TLS-over-TCP connections,
which partially mitigate the issue. However, they come at the cost of increased
overhead and latency, due to having to perform multiple TLS-over-TCP hand-
shakes, which take a considerable amount of round-trips. HTTP/2 implements
a method to multiplex requests at the application layer. Unfortunately, this
only moves the problem to the TCP at the transport layer, which suffers from a
similar issue [7]. QUIC removes the head-of-line blocking issue by using UDP
as its transport protocol, which does not suffer head-of-line blocking issues
due to having no datagram acknowledgement methods, and by implementing
streams, which act as individual and parallel bidirectional connections. These
streams implement similar reliability features as TCP on a per-stream basis,
meaning that if a stream packet is dropped, it is retransmitted similar to how
TCP would retransmit a lost packet. Since these streams exist within a single
TLS session, established at the beginning of the communication, creating a
new stream comes at no cost, allowing multiple requests to be made without
blocking each other with virtually no overhead [6].

QUIC also allows sending unreliable datagrams, which are nearly identical
to UDP datagrams in function, with the addition of their data being encrypted
as they are still handled by the TLS session established by the QUIC connec-
tion. This allows some use-cases, such as video streaming or real-time commu-
nication, where packet loss is not critical to the data transfer, to bypass any
and all reliability features provided by streams and achieve lower latency and
higher throughput [6].

In addition to the aforementioned features, QUIC also introduces network
path migration, which allows two QUIC endpoints to easily handle events in
which a part of the network path between them has changed, such as transfer-
ring from a mobile 4G network to a known Wi-Fi network. With TCP, this
situation would begin a lengthy process of re-establishing the connection when
it times out. In the case of HTTP/1 or HTTP/2, multiple connections would
need to be re-established, due to the way they leverage their established TCP
connections for multiplexing. With QUIC, individual connections are identified
using a unique connection identifier, which is attached to every packet sent,
which means that all it takes to migrate to a new network path is to send
a new packet, with the endpoints automatically associating the newly discov-
ered remote socket (IP address and port) with the connection at essentially no
overhead [6].

The unreliable datagrams and network path migration provided by QUIC
make it a great replacement for currently used transport application protocols
currently used by other VPN implementations, which is why this thesis aims
to explore this use case and create a novel VPN implementation based on it.

5



1. State-of-the-art

1.2 VPN protocols

This section provides an overview of the most commonly used VPN proto-
cols, including their functionality, strengths, and weaknesses, thus providing
sufficient context for the following chapters of this thesis.

OpenVPN
OpenVPN is an open-source VPN solution built around the SSL/TLS protocol.
It has a wide range of features and can be used in many types of deployment
and is also one of the oldest, most commonly used and versatile VPN protocols
today [8].

The security model of OpenVPN was initially based on the SSL protocol,
later migrating to TLS when it replaced SSL.

OpenVPN was initially released in 2001 [9], with the idea behind it being:
“Starting with the fundamental premise that complexity is the enemy of se-
curity, OpenVPN offers a cost-effective, lightweight alternative to other VPN
technologies that is well-adapted for the SME and enterprise markets” [8]. This
statement made sense at the time of initial release, when the only other viable
alternative was the relatively more complex IPsec protocol suite. However,
this changed over time - as more and more features were added, the OpenVPN
source code became more lengthy and complex, totalling about 86,000 lines of
C code [10].

All this accumulated complexity eventually led to OpenVPN being overly
complex and difficult to maintain. This leads not only to increased difficulty
auditing the code base, but also to subtle bugs arising either from unforseen
side effects of changes or the increased difficulty of effective code review [11].

WireGuard
WireGuard is an open-source VPN protocol based on the ethos of simplicity
and performance. It “aims to replace both IPsec for most use cases, as well
as popular user space and/or TLS-based solutions like OpenVPN, while being
more secure, more performant, and easier to use” [12].

The WireGuard security model was created from the ground up, with a sin-
gle modern authenticated encryption scheme, ChaCha20Poly1305 (a relatively
new authenticated symmetric encryption scheme with ChaCha20, a stream
cipher, at its heart [13]), and a novel approach to session management and
endpoint authentication. In short, this model allows WireGuard to have a fast
1-RTT handshake, low latency, and high throughput – all desirable proper-
ties for a modern VPN protocol. The entire protocol has gone through formal
verification using Tamarin (a tool used for formal verification of security proto-
cols using falsification and unbounded verification in the symbolic model [14])
and numerous security analyses performed by third parties, proving that the
protocol is not only simple and performant, but also secure [15, 16].

Similarly to OpenVPN, WireGuard can be deployed as a client-to-site or
site-to-site VPN. Unlike OpenVPN, however, these deployments are virtually
identical, due to WireGuard’s symmetric design. This means that all endpoints,
called peers, are equal in function and responsibilities, leading to greater ver-
satility without the need for additional configuration.
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1.3. Objectives

1.3 Objectives

As mentioned in the previous sections, QUIC provides great connection prop-
erties and features, which could be leveraged by a VPN implementation. As
of writing this thesis, there have been no attempts at creating an open-source
VPN implementation based on QUIC and exploring its performance and secu-
rity, which is why the objective of this thesis is to evaluate QUIC’s feasibility in
the VPN space by exploring existing VPN implementations, designing a novel
VPN implementation based on the QUIC protocol, and then evaluating the
performance and security of the created implementation by comparing it with
some well-established VPNs, such as OpenVPN and WireGuard.
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Chapter 2
Analysis

This chapter focusses on an analysis of the process of creating a novel VPN im-
plementation, to give the reader a better understanding of the architecture and
implementation choices made during the development of the implementation
presented in this thesis, further referred to as Quincy2.

2.1 VPN design

While it might seem that the currently used VPN implementations, such as
OpenVPN and WireGuard, might work very similarly, their design varies
greatly. This variance is due to different design philosophies and the vast sets of
features VPNs can provide, such as different modes of operation (client-to-site,
site-to-site, peer-to-peer), authentication schemes (basic authentication, PKI-
based, TLS-based), policy-based routing, tunnel address assignment schemes,
etc. Since almost all of these features come at a significant cost of code/imple-
mentation complexity and attack surface, choosing the correct feature set for
given implementation goals is of utmost importance.

To give an example, OpenVPN supports client-to-site and site-to-site modes
of operation, both based on the client-to-site implementation, reducing the
needed complexity. It supports basic authentication, with support for multiple
authentication backends such as a local SQLite database, LDAP and RADIUS,
optional client certificate verification, and offers a DHCP-like tunnel address
assignment [17].

In contrast, WireGuard chooses a more simplistic, yet generalised approach.
Instead of distinguishing between different types of endpoints (client and server
in the case of OpenVPN), the peer-to-peer model was chosen, providing de-
centralised deployment configurations. Instead of using basic authentication,
WireGuard chooses to use the underlying public-key infrastructure on which
the protocol relies to secure the packets to also serve as the authentication layer.
This greatly reduced the complexity of the implementation, fitting under 4000
lines of code, compared to almost 90000 lines of code needed by OpenVPN
[12].

2a word play on the QUIC protocol, inspired by the race of so-called Quincies in a popular
animated series – Bleach
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2. Analysis

Modes of operation

The mode of operation of a VPN implementation is highly dependent on the
underlying protocol used for the authentication and transport of packets be-
tween endpoints. For VPNs relying on TLS or TLS-like protocols, with a strict
distinction between client and server endpoints, the client-to-site mode of oper-
ation is the most preferred, since it takes advantage of the underlying protocol,
without the need for additional handling or added complexity, compared to
the peer-to-peer mode of operation.

The most explored and popular modes of operations currently used are:

client-to-site A mode of operation which distinguishes between client and
server endpoints, usually deployed in a star topology – with multiple
clients connecting to a singular server and all traffic between clients being
transferred through the server. This is the mode of operation used by
many VPN implementations, most notably OpenVPN.

site-to-site A mode of operation in which two or more endpoints connect
multiple existing networks, providing a secure tunnel between them. This
mode of operation can be emulated with relative ease using the client-to-
site mode, reducing the need for additional code complexity.

peer-to-peer A mode of operation in which two or more endpoints form a
partial mesh network without distinguishing the importance of individual
peers. This mode of operation has the advantage of being more resistant
to failures of individual endpoints, which in other modes can cause the
entire topology to fall apart, and is currently used by WireGuard.

Authentication schemes

The authentication schemes provided by a VPN form one of the important
pillars of its security, as they usually serve as one of the first layers of defence
against attacks and unwarranted access. These methods encompass a variety
of techniques to verify the identities of users and devices seeking access to the
VPN. They range from basic username-password schemes to advanced multi-
factor authentication systems, and the chosen method significantly impacts the
overall security stance of the VPN setup. The chosen method is highly depen-
dent on other design choices and is one of the main influences on the perceived
experience of both users and administrators. Supporting multiple authentica-
tion schemes can also provide better versatility for a wide range of deployments,
which is an ethos used by OpenVPN. As stated previously, it provides multi-
ple authentication backends, all based on the username-password scheme, only
with a different underlying storage of user credentials. This allows OpenVPN
to be used in a wide range of deployments, especially on the business side,
where authentication against a RADIUS server or an LDAP endpoint might
be highly preferred. On the other hand, WireGuard chooses a more simplistic
approach, using only public key cryptography for user/endpoint authentica-
tion. This simplifies the code base, at the cost of lesser versatility, especially
in business deployments with complicated user management.
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2.2. Functional requirements

Tunnel address assignment schemes
Most currently used VPN implementations use a mechanism to assign tunnel
addresses to endpoints. Some VPNs, such as OpenVPN, employ a DHCP-
like address assignment scheme, which allows for both automatic assignment
from a pool of available addresses, or a static assignment per client set-up on
the server endpoint. In contrast, WireGuard employs a different scheme using
AllowedIPs, which define a subset of addresses that individual peers serve. If
we have a peer A, whose AllowedIPs for peer B is set to 10.0.0.0/24, then all
traffic on peer A, which is routed to its active WireGuard TUN interface, with
the destination address in the 10.0.0.0/24 subnet will get routed to peer B.
Peers need to have their addresses set manually, with no option for dynamic
assignment, which might make user management in a typical deployment more
difficult [12].

The choice between different address assignment schemes depends heavily
on what tooling is provided to users and administrators and what deployments
or modes of operation will be supported by the VPN. For site-to-site or peer-
to-peer deployments, a static assignment approach, such as what is provided
by WireGuard, might be preferred, where as for client-to-site deployments,
the dynamic assignment approach will provide a better user and administrator
experience.

2.2 Functional requirements

This section focusses on transforming the requirements in the attached thesis
assignment into actionable functional requirements. There are 3 general re-
quirements stated by the assignment: “Using a QUIC library of your choice,
design and implement a viable VPN protocol [...]”, “Establishing a tunnel using
basic authentication (username and password)” and “Routing traffic through
the tunnel using TUN/TAP interface”. Since these requirements are some-
what vague, they were transformed into the following actionable functional
requirements, with F1 corresponding to the first requirement, F2 and F3 cor-
responding to the second requirement, and F4 and F5 corresponding to the
third requirement.

F1 The system shall use QUIC as the underlying transport protocol, relying
on it for the encryption and transfer of tunnelled traffic.

F2 The system shall provide a means of basic authentication to verify the
identity of users.

F3 The system shall allow only authenticated users to establish a secure tunnel
to the server.

F4 The system shall provide a TUN3 interface responsible for routing traffic
through the established tunnel.

F5 The system shall use a dynamic provisioning system to assign IP addresses
to the created TUN interfaces.

3since TAP interfaces are mostly obsolete and not used in modern VPN deployments
anymore, only TUN interfaces are to be supported by the implementation
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Chapter 3
Realisation

This chapter focusses on one of the main goals of this thesis – creating a
minimum viable product VPN based on the QUIC protocol called Quincy. In
the previous chapter, 5 functional requirements, F1 through F5 were created,
which specify the characteristics of such an implementation.

3.1 Development process

The overall architecture and development of Quincy were approached in an it-
erative matter, beginning with multiple proof-of-concepts and eventually lead-
ing to the creation of a usable architecture and the resulting minimum viable
product.

Language and library choice
The first chosen step in this iterative process was the selection of a language
and a library on which the final product should be based. This was due to
the author’s belief that the programming experience and tooling of a chosen
language and library are not only important for a smooth development process,
but also serve as a good starting point for the overall maintainability and
security of the solution. Since a VPN implementation benefits from near-direct
access to low-level system primitives, due to the importance of performance and
low latency of operations, the chosen language needed to be relatively low-level
itself, without the added impact of garbage collectors (such as Go, C# or
Java), overhead from being an interpreted language (such as Python or Ruby),
etc. This ultimately resulted in a possible set of languages being limited to
C, C++, Zig, or Rust. In the end, Rust was chosen not only because of its
advanced tooling, zero-cost abstractions, or memory safety guarantees [18], but
also because of the author’s familiarity with the language.

In the Rust ecosystem, there are a number of potential QUIC libraries,
most of which are backed by either large open-source communities or by the
industry, the most used and recognised ones being:

quinn [19] A high-level asynchronous QUIC library, supported by multiple
widely known Rust open-source contributors. It uses a third-party-audited
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pure-Rust implementation of the TLS protocol, rustls [20, 21] and pro-
vides a very user-friendly API, greatly utilising many of the zero-cost
abstractions provided by the Rust language.

s2n-quic [22] A mid-level4 asynchronous QUIC library created by Amazon for
internal use, published under the Apache-2.0 licence.

quiche [23] A low-level synchronous QUIC library created by Cloudflare for
their HTTP/3 edge-network support. This library forces the user to
provide the entire service runtime, exposing only the primitives required
for processing QUIC traffic.

All three of these libraries were used in a simple proof-of-concept appli-
cation, aimed at evaluating their developer experience and overall ergonomy.
The design was a simple client and server application, where data was sent
bidirectionally. Due to some design choices of Rust, such as borrow check-
ing, issues arised from using s2n-quic and quiche for simultaneous sending and
receiving of QUIC datagrams, which were deemed too difficult to overcome
at the time. Quinn, on the other hand, did not experience the same issues.
This meant that although both quiche and s2n-quic are backed by large com-
panies and, as such, are unlikely to be left unmaintained due to being a part
of their infrastructure, neither provided a sufficiently stable developer-friendly
API at the time of writing this thesis. The community-backed quinn provided
a much easier-to-use and stable API, which, coupled with the audited TLS
library used as the cryptographic back-end, resulted in it being chosen for the
implementation.

Since quinn’s API is written in async Rust, with support for multiple async
runtimes, and since Rust does not provide a default async runtime in the
standard library [24], this choice of the QUIC library forced the choice of an
async runtime and, more importantly, influenced the choice of the library used
for interacting with TUN interfaces. Due to the limited availability of TUN
libraries in Rust, with only one of them supporting all major platforms (Win-
dows, Linux, MacOS), tun2 was chosen [25], providing both sync and async
high-level APIs for interacting with TUN interfaces. The only async runtime
supported by this library is tokio [26], the most popular multithreaded work-
stealing async runtime/executor.

To sum up, the following technologies and libraries were chosen:

Rust as the programming language

tokio as the async runtime/executor

quinn as the QUIC library

tun2 as the TUN interface library

Proof of concept
With the technologies and libraries selected, an iterative development process
began with a proof-of-concept application, utilising both the QUIC and TUN

4an implementation, which does not provide neither low-level primitives, nor a user-
friendly high-level API
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interfaces. The idea behind making a first proof-of-concept application with
all the required components was to analyse the interoperability of individual
components and to scout for any potential pitfalls. It also served as the first
informal evaluation of the potential throughput and latency of the solution,
which are important factors for a VPN.

The initial proof-of-concept was a simple relay between a TUN interface
and a QUIC tunnel, mostly agnostic in the functionality of endpoints, apart
from some required distinctions due to the architecture of the QUIC protocol
(such as the inherited TLS connection client-server separation), without any
authentication modules. At this point, some initial observations were made –
while QUIC streams initially seemed to provide a good interface for a VPN use
case, the TCP-like reliability functionality interfered with the performance of
the solution in initial crude benchmarks. This shifted the attention to QUIC
datagrams, which provide a very simple way to send encrypted data in unre-
liable datagrams, without any packet acknowledgements and interference be-
tween stacked reliability layers. When using QUIC datagrams, the benchmark
measurements improved noticeably, resulting in the choice to use them for all
tunnelled traffic.

The proof-of-concept also laid a foundation of the final task model, e.g.
what tasks are spawned in each of the components and for what purpose, mostly
due to certain performance considerations. Tasks in tokio act as lightweight
“threads” – where you would use a thread for a processing task in a stan-
dard thread model, you spawn a tokio task instead. Since the executor is
multithreaded, multiple tasks can be run in parallel by different threads. Ad-
ditionally, the executor is work-stealing, meaning that if a thread “runs out”
of tasks to run, it will “steal” tasks from a different thread, busy running a
different task. Through a couple of iterations, the conclusion to the task model
is to have 3 tasks running per-connection:

1. a task to receive packets from the TUN interface and send them to the
connected QUIC endpoint as a datagram

2. a task to receive packets from the QUIC endpoint and put them into a
queue

3. a task to take tasks from the queue and send them to the TUN interface

The reason for splitting packet processing in the QUIC to TUN interface
pipeline into 2 tasks was made mostly due to a number of empirical measure-
ments; the task dedicated to receiving a packet from the TUN interface and
sending it to the QUIC endpoint spent most of its time waiting for a packet to
be available on the TUN interface. Due to design choices in quinn, sending a
datagram is non-blocking and, generally speaking, instant5. The potential task
dedicated to receiving QUIC datagrams from the endpoint and sending them
to the TUN interface spent most of its time on the TUN interface write calls.
This caused some datagrams to be dropped due to limited buffer space of the
QUIC endpoint, which, albeit configurable, cannot be infinite. When divided
into two tasks, each handling its “side” of the relay, the number of dropped
packets was noticeably lower.

5For more information, refer to the relevant issue (https://github.com/quinn-
rs/quinn/issues/1738) documenting this behaviour.
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Authentication system
The development of the authentication system was the most intensive iterative
process in the overall development of Quincy. This was mainly due to the
existence of multiple possible and equally valid approaches, each with its own
set of advantages and disadvantages.

The first version of an authentication system was very similar to how many
modern web frameworks handle authentication – a basic username and pass-
word authentication with a session cookie. This session cookie was not sent
with every packet, but was periodically sent by the client. This approach
seemed to provide more security at the time, but was quickly found redundant.
Since Quincy uses QUIC in a connection-orientated way and since the TLS ver-
sion 1.3 it uses is resistant to replay attacks if 0-RTT is disabled (which is true
for Quincy) [27], the session cookie does not provide any additional security to
the established session, making it redundant.

An important part of the multiple iterations of the authentication sys-
tem was to prevent common pitfalls, such as not having proper authentication
guards in the relay functions, and hence allowing unauthorised users to freely
communicate over the secure tunnel established by Quincy. The initial solution
– simple checks in the relay methods – was error-prone, and one of the itera-
tions even contained a bug, which allowed the exact situation described above:
unauthorised access to the established tunnel. This was eventually solved by
partly leveraging the type system of Rust and making it impossible to relay
packets for unauthorised connections.

A final step in the development of the authentication system was to make
it modular to allow for easy extensibility in the future. The current implemen-
tation of a file-based basic username and password authentication is sufficient
for simple use cases, but if Quincy were to be used in more professional de-
ployments, support for database-, LDAP- or RADIUS-backed authentication
would be very likely required. This modularity was achieved by dynamically-
dispatched traits in Rust, essentially enabling countless authentication methods
to be added, by implementing 2 single-function interfaces – one for client-side
authentication payload generation and one for server-side payload verification
– as shown in 3.1.

#[ async_tra i t ]
pub trait ServerAuthent i cator : Send + Sync {

async fn authent i cate_user (
&se l f ,
address_pool : &AddressPool ,
authent icat ion_payload : Value ,

) −> Result<(String , IpNet ) >;
}

#[ async_tra i t ]
pub trait Cl i entAuthent i ca to r : Send + Sync {

async fn generate_payload(& s e l f ) −> Result<Value >;
}

Listing 3.1: Authentication module interfaces
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3.2 Architecture

This section focusses on the final architecture, created in the iterative process
described in the previous section.

Components
Quincy is composed of a number of components to separate logic, such as
client/server functionality, interface operations, authentication, and address
assignment.

Client A client-side component encapsulating client authentication and a packet
relay for transferring traffic between its TUN interface and its QUIC end-
point.

Server A server-side component responsible for handling incoming connec-
tions and managing traffic flow between its TUN interface and multiple
client QUIC endpoints.

Interface An abstraction over TUN network devices, allowing for different im-
plementations/libraries in different operating conditions (different plat-
forms, etc.).

Authentication Client A client-side component responsible for client au-
thentication with a modular payload generator, matching the back-end
choice of the authentication server.

Authentication Server A server-side component responsible for handling
client authentication, with modular back-end support (currently only file-
backed authentication) and automatic client tunnel address assignment
from a pool of available addresses.

The interactions of these components are shown in the diagram 3.1.

Connection flow
Below is a more detailed step-by-step description of the connection flow, as
illustrated by 3.2:

1. The client initiates a connection to the server.

2. The server accepts the connection to its socket and waits for the client
to authenticate.

3. The client opens a new QUIC stream and sends its credentials to the
server.

4. The server accepts the new QUIC stream, receives the client’s credentials,
and, if authentication is successful, sends the assigned tunnel IP address
to the client using the same stream.

5. The client receives its assigned tunnel IP address, creates a TUN inter-
face, configures it to use the received address, and closes the authentica-
tion stream.
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Figure 3.1: Component diagram

6. Both the client and the server begin to relay packets between the TUN
interface and the other endpoint using QUIC datagrams.

An important part of the connection flow is the authentication process. As
can be seen in 3.2, the process is client-proactive, which means that the client
initiates the authentication process, with the server awaiting payload from the
client, timing out if it is not provided within the configured authentication
timeout window. When a payload is received, it is checked using the chosen
authenticator module (only the UsersFile authenticator is supported at the
time of writing this thesis). If the payload is valid, the server sends the needed
connection parameters to the client and both sides start relaying packets using
the established QUIC connection.
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3.3 Functional requirements

In the previous chapter, Analysis, functional requirements F1 through F5 were
created from the thesis assignment:

F1 The system shall use QUIC as the underlying transport protocol, relying
on it for the encryption and transfer of tunnelled traffic.

F2 The system shall provide a means of basic authentication to verify the
identity of users.

F3 The system shall allow only authenticated users to establish a secure tunnel
to the server.

F4 The system shall provide a TUN interface responsible for routing traffic
through the established tunnel.

F5 The system shall use a dynamic provisioning system to assign IP addresses
to the created TUN interfaces.

The functional requirement F1 was achieved by leveraging the existing
quinn library, which provides an async Rust API for QUIC.

The functional requirement F2 was achieved using the modular authenti-
cation module for the client and the server.

The functional requirement F3 was achieved by leveraging the Rust type
system, essentially not allowing unauthenticated connections to relay any traf-
fic.

The functional requirement F4 was achieved using the existing tun2 library,
which provides a TUN interface API for Rust.

The functional requirement F5 was achieved by implementing a dynamic
address assignment component in the server authentication module.

3.4 Security considerations

With any VPN implementation, it is important for the security aspects to be
a large part of the design from day 1 to prevent security issues and privacy
concerns from ever arising, needing to be patched and stitched onto an already
existing insecure implementation.

To achieve this goal, Quincy attempts to delegate a large part of its security
to the underlying protocol, QUIC, and its reputable implementation, quinn, to
minimise remaining attack surface. However, certain parts of Quincy, such as
authentication, needed to be designed from the ground up, to be as secure as
possible, while remaining user-friendly.

Protocol
As mentioned earlier, quinn is responsible for the implementation of the QUIC
protocol used by Quincy. It is split into a number of crates6:

quinn-proto implementing the entirety of the QUIC protocol as a determin-
istic state machine,

6name for Rust packages
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quinn-udp implementing specifically optimized UDP sockets,

quinn using quinn-proto and quinn-udp to provide a pure-Rust async API and
runtime.

Quinn supports modular cryptography modules, making it usable with dif-
ferent cryptographic implementations of the TLS protocol. The default im-
plementation, and the implementation used by Quincy, is rustls. As pre-
viously mentioned, this library has gone through a third-party security au-
dit [21], finding no issues and overall very high code quality. This makes a
strong argument for the safety of the TLS implementation itself. Addition-
ally, since Quincy specifically only uses TLS 1.3 with the strongest cipher
suites (TLS13_AES_256_GCM_SHA384 and TLS13_CHACHA20_POLY1305_SHA256)
[28], any potential attack surface is greatly reduced. Furthermore, known is-
sues with the soundness of TLS 1.3, such as the security issues found with the
0-RTT functionality [27], are handled by rustls either in the form of sound
defaults, or by explicitly not being implemented.

Unfortunately, the same cannot be said for quinn, which, albeit an ac-
tive project with reputable maintainers, lacks any third-party security audits.
Although Rust provides a good guarantee on memory safety of the software
written in it, it only does so much to prevent logical errors. While a security
audit of the library is outside of the scope of this thesis, it would be a welcome
addition to the overall soundness of the QUIC ecosystem in Rust and as such
would be a worthy future endeavour.

Authentication
The authentication system in Quincy is composed of 2 main components – the
authentication client and server. These are modular and can possibly support
numerous authentication schemes. The only scheme supported at the time of
writing this thesis is the UsersFile scheme, which represents basic file-based
authentication, which will be the focus of this subsection.

As described in the previous sections, the authentication process is client-
proactive, which means that the server awaits client authentication. This makes
the implementation much easier to implement, but presents a noticeable draw-
back. If a number of malicious clients connected and stalled the authentication
process by not providing the authentication payload within the specified time-
out, they could cause resource exhaustion on the server side if not considered
carefully during the implementation. As of writing this thesis, the current
implementation handles the process of authenticating connections in a sepa-
rate task, in an effort to not block other parts of the connection flow, such
as handling of new and closed connections. Although this greatly reduces the
potential impact of such an attack, it does not eliminate it. If a sufficient
number of connections were created in a sufficiently small time frame (less
than the authentication timeout), the task executor could be slowed down by
the large number of futures, increasing the latency and likely CPU and RAM
usage of the server instance. With such a design, it is difficult to completely
mitigate this issue, as some low-effort solutions, such as limiting the number
of connections at one time, could lead to a similar Denial-of-Service scenario,
in which the limit of connections would be exhausted, disallowing legitimate
clients from connecting to the server. Other protocols, such as WireGuard,
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solve this issue by having authentication be part of the underlying protocol,
making it impossible to establish a session with the server without provid-
ing valid credentials. WireGuard goes as far as to not respond to improperly
authenticated packets during session establishment, effectively ignoring them
without sending any response. This makes it more difficult to discover running
instances of WireGuard, as well as preventing any Denial-of-Service attacks
aimed at the application itself [12]. An investigation into possible mitigations
of this issue presents a possible future endeavour and a continuation of this
thesis.

The credentials are stored, on both sides of the connection, in regular text
files. On the client side, the credentials are stored in plain text in the client
configuration file, which requires users to properly set the file ownership and
permissions to avoid leaking their credentials. This is a similar setup to Wire-
Guard, which stores private keys in plain-text form in the tunnel configura-
tion files. An option to load the credentials from a secure store, such as a
system-wide key chain, would constitute a great improvement to their confi-
dentiality. On the server side, credentials are stored in a format very similar
to /etc/shadow on Unix systems, which means that the username is stored in
plain text, while the password is stored as a salted Argon2 hash. The Argon2id
mode is used to prevent side-channel attacks and to improve resistance against
GPU cracking attacks, with secure default parameters [29, 30].

The session created by the authentication process is not kept by using ses-
sion cookies or similar methods, relying solely on the protocol’s session keeping.
This is so that there is no additional session keeping, which could possibly in-
crease the overhead of the protocol, delegating the protection against replay
attacks and similar exploits to the underlying QUIC protocol. A possible im-
provement could be made by integrating the authentication process into the
underlying protocol as an extension, using the quinn-proto library.

Summary
In summary, while taking reasonable security precautions, some sacrifices have
been made to keep the scope of this implementation within the limits of this
thesis. A security audit of the QUIC implementation – quinn – would pro-
vide a much needed verification of the soundness of its implementation of the
QUIC protocol, further improving the security guarantees of Quincy. More-
over, there is room for improvements in the authentication modules, which are
somewhat vulnerable to Denial-of-Service attacks and credential leaks arising
from misconfigurations by users on the client side.
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Chapter 4
Evaluation

This chapter delves into the evaluation of the VPN implementation described
in this thesis, Quincy, and compares it with other widely used protocols, such
as OpenVPN and WireGuard.

4.1 Methodology

All VPN protocols have been evaluated in numerous simulated scenarios, rang-
ing from environments with zero latency and jumbo packets enabled, to real-life
environments with simulated latency, packet loss, and packets of standard size.

To measure throughput, latency, and stability, a benchmarking suite was
created, using the iperf3 [31] benchmarking tool. iperf3 was run in both di-
rections (client-to-server and server-to-client) for 30 seconds, with a sampling
interval of 100 milliseconds. This suite is a collection of Bash scripts, whose
objective was to:

• prepare the environment – create required folders, compile Quincy

• start of one the VPNs and run the iperf3 benchmarks

• collect the data and save it to a remote machine

This was to ensure effortless scalability and flexibility of the suite, allowing for
testing in countless different scenarios. The benchmarks were run sequentially
and on virtual machines with non-overlapping CPU cores to prevent interfer-
ence.

In order to cover a wide variety of environments, the evaluation suite was
run with all possible combinations of 3 main parameters: simulated latency,
simulated packet loss, and MTU size. Both latency and packet loss were simu-
lated using the tc [32] Linux command-line utility for network interfaces, MTU
was set using the ip command and in the configuration files for each of the
VPNs.

The resulting data are processed using a Jupyter notebook to produce
graphs and other useful statistics. The entire benchmarking suite, together
with all the collected data, is present in the attachments.
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Latency
Latency is one of the most noticeable and influential properties of a network
connection, due to its overall effect on responsiveness and bandwidth when
using protocols such as TCP. With this in mind, three values have been picked
to reflect the most common types of connections, ranging from personal to
commercial/academic environments:

• 0 ms - CAN, or intra-datacenter connections

• 10 ms - MAN, or intra-continental WAN

• 150 ms - inter-continental WAN

Packet loss
Packet loss is another very important property of a connection, as with many
protocols (especially TCP), it can lead to a noticeable decrease in respon-
siveness and bandwidth and when combined with higher latency, it can be
catastrophic for user experience and perceived network quality. As such, it is
important for a VPN to be able to withstand it to a reasonable degree. Since
packet loss in modern networks is quite low and is usually guaranteed by Inter-
net service providers to be below a certain threshold, only the following values
have been chosen:

• 0 % - packet loss in most environments

• 1 % - packet loss in long-range communication (inter-continental connec-
tions, etc.)

• 5 % - packet loss in unrealiable environments (Wi-Fi/cellular connections,
partial outages, etc.)

MTU
The Maximum Transmission Unit (MTU) of a network connection is also an
important parameter, as it often is directly proportional to bandwidth (when
supported by all devices on the network path). This can happen due to a
number of factors, one of which is critical for most VPN protocols – the cost of
syscalls. As described in the previous chapter, syscalls can be quite expensive
to call, as they require a switch from user-space to kernel-space. Unfortunately,
syscalls are, for the most part, the only way to write/read from a TUN inter-
face from a user-space application, such as a VPN client. This means that
for systems where Generic Segmentation Offload (GSO) and Generic Receive
Offload (GRO) are generally not available, frequent syscalls are going to be one
of the most significant bottlenecks of most VPN implementations. Due to this
fact, three different MTU sizes have been chosen, to investigate this bottleneck
for all evaluated VPN protocols and to provide valuable information about a
wider variety of network environments:

• 1300 B - MTU value representing degraded/old connections

• 1500 B - the most common MTU value seen on the Internet as of writing

• 6000 B - MTU used in intra-datacenter communication for bandwidth-
dependent applications
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4.2 Environment

The evaluation environment was composed of 2 virtual machines running on a
type-2 hypervisor. The relevant hypervisor specifications:

• CPU: AMD Ryzen 9 3900 XT 12C/24T (x86_64)

• RAM: 64 GB DDR4 3200 MHz ECC U-DIMM

• Operating system: unRAID 6.12.4

• Hypervisor software: QEMU/KVM (libvirtd 8.7.0)

Both virtual machines shared the same specifications and configuration:

• CPU: 6 dedicated vCPU cores (host pass-through)

• RAM: 4 GB RAM

• Operating system: Rocky Linux 9.3

• Network interface: virtio-based, 30 Gbps

Quincy
The configuration used by Quincy in the evaluation environment was very
similar to the default configuration, with one notable change – the MTU being
set dynamically by the evaluation script. The complete client configuration
(4.1) and the server configuration (4.2) can be found below.

connect ion_str ing = ” quincy :55555”

[ au then t i c a t i on ]
username = ” t e s t ”
password = ” t e s t ”
t r u s t e d _ c e r t i f i c a t e s = [ ” examples / c e r t / ca_cert . pem ” ]

[ connect ion ]
mtu = {mtu}

[ l og ]
l e v e l = ” i n f o ”

Listing 4.1: Quincy client configuration

[ tunne l s . tun0 ]
name = ” tun0 ”
c e r t i f i c a t e _ f i l e = ” examples / c e r t / s e rve r_ce r t . pem”
c e r t i f i c a t e _ k e y _ f i l e = ” examples / c e r t / server_key . pem”
address_tunnel = ” 1 0 . 0 . 0 . 1 ”
address_mask = ”255 . 255 . 255 . 0 ”

[ au then t i c a t i on ]
u s e r s _ f i l e = ” examples / u s e r s ”
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[ connect ion ]
mtu = {mtu}

[ l og ]
l e v e l = ” i n f o ”

Listing 4.2: Quincy server configuration

WireGuard
As with the Quincy configuration, WireGuard configuration was very close to
the default configuration, with generated private and public keys and MTU set
dynamically by the evaluation suite. The complete client (4.3) and server (4.4)
configurations can be found below.

[ I n t e r f a c e ]
PrivateKey = cAUIq3HkJvW6PmOhqtiBfgFrfLfzI5nY1wAZK/O592c

=
Address = 1 0 . 1 . 0 . 2 / 3 2
MTU = {mtu}

[ Peer ]
PublicKey = Dc9BDk3izwdM6vMAVfbBeP4rT6ASfiSi2Fx71qREahk=
Endpoint = quincy :51820
AllowedIPs = 1 0 . 1 . 0 . 1 / 2 4

Listing 4.3: WireGuard client configuration

[ I n t e r f a c e ]
PrivateKey = mMG3iQlgWJcca+093MkfXJMHuMfIIp0oA5IHQR9pFHQ

=
Address = 1 0 . 1 . 0 . 1 / 2 4
Li s tenPort = 51820
MTU = {mtu}

[ Peer ]
PublicKey = CyqH3wfokaGTJfToqhcb+Q+dfY6+jeRyhDyldrlKWmE=
AllowedIPs = 1 0 . 1 . 0 . 2 / 3 2

Listing 4.4: WireGuard server configuration

OpenVPN
The OpenVPN configuration was made to be as simple and as performant as
possible. This was achieved by using UDP as the transfer protocol instead of
TCP, using the fast-io configuration option and by selecting the AES-256-GCM
cipher, which on the selected evaluation hardware provided the best through-
put. As with the other VPNs, the MTU was set dynamically by the evaluation
suite. The complete client (4.5) and server (4.6) configuration can be found
below.
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c l i e n t

proto udp
dev tun
tun−mtu {mtu}
mss f ix {mtu − 40}
remote quincy 1194
fa s t −i o

c iphe r AES−256−GCM
auth SHA256
t l s −c iphe r TLS−DHE−RSA−WITH−AES−256−GCM−SHA384

ca / e tc /openvpn/ pki / ca . c r t
c e r t / e t c /openvpn/ pki / c l i e n t . c r t
key / e t c /openvpn/ pki / c l i e n t . key

ke e pa l i v e 10 120

Listing 4.5: OpenVPN client configuration

s e r v e r 1 0 . 2 . 0 . 0 2 55 . 25 5 . 25 5 . 0

proto udp
port 1194
dev tun
tun−mtu {mtu}
mss f ix {mtu − 40}
fa s t −i o

c iphe r AES−256−GCM
auth SHA256
t l s −c iphe r TLS−DHE−RSA−WITH−AES−256−GCM−SHA384

ca / e tc /openvpn/ pki / ca . c r t
c e r t / e t c /openvpn/ pki / s e r v e r . c r t
key / e t c /openvpn/ pki / s e r v e r . key
dh / e tc /openvpn/ pki /dh . pem

t l s −s e r v e r
c l i e n t −to−c l i e n t

sndbuf 512000
rcvbuf 512000
push ” sndbuf 512000”
push ” rcvbuf 512000”

ke e pa l i v e 10 120

Listing 4.6: OpenVPN server configuration
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4.3 Network behaviour evaluation

In this section, different network configurations are grouped according to the
behaviour of the evaluated VPNs. This allows easier comparison and interpre-
tation of the results.

4.3.1 Ideal network conditions
The first observed behavioural group represents ideal network conditions - very
low latency, no packet loss, and a wide range of MTU sizes. Under such con-
ditions, the implementation limits of all tested VPNs can be observed.

In the first case, described by the interface configuration of 0 ms latency,
0 % packet loss, and 1500 B MTU, WireGuard has the highest throughput,
Quincy lags noticeably behind, and OpenVPN has the lowest throughput (4.1,
4.2).

0 5 10 15 20 25 30
Time (s)

0

500

1000

1500

2000

S
pe

ed
 (M

bp
s)

OpenVPN Quincy WireGuard

Figure 4.1: Download (0 ms latency, 0 % packet loss, 1500 B MTU)

Additionally, the throughput of both OpenVPN and Quincy is slightly
asymmetrical – with server-to-client transfer being marginally faster, and client-
to-server transfer being slower. In Quincy, and likely OpenVPN, this is due
to differences of packet routing in the client-side and server-side implementa-
tions. WireGuard is, by design, symmetrical and does not make this distinction
between two peers.

In terms of measured RTT, Quincy performed the best and had the low-
est added latency of the measured VPNs, with WireGuard showing a slightly
higher increase and OpenVPN adding the highest amount of latency (4.3).

In a very similar case, described by the interface configuration of 0 ms la-
tency, 0 % packet loss, and 6000 B, overall relative throughput remains largely
the same (4.4, 4.5), with the notable exception of Quincy throughput scaling.
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Figure 4.2: Upload (0 ms latency, 0 % packet loss, 1500 B MTU)

Both OpenVPN and WireGuard scale linearly with the MTU size – a 4x in-
crease in MTU size leads to a roughly 4x increase in throughput. However,
this is not the case for Quincy, whose throughput increases to only about three
times the throughput at the MTU of 1500 B. This might be due to Quincy
using a different runtime model (an async runtime with a user-space scheduler,
instead of a thread-based model with the OS scheduler) and warrants further
investigation. The trends in measured RTT are very similar to the previous
case, with the WireGuard RTT stabilising and slightly decreasing (4.6).

Overall, under ideal network conditions, according to the measured data,
Quincy heavily outperforms OpenVPN, and both Quincy and OpenVPN are
outperformed by WireGuard. This is likely due to the overhead of having to
make syscalls from user-space for each read/write operation on the TUN inter-
face. As WireGuard is a kernel module, it can make these syscalls at a much
lower, albeit not non-existent, cost. In summary, under these conditions, Wire-
Guard provides the best characteristics in terms of throughput, with Quincy
taking the lead in latency.
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Figure 4.3: RTT (0 ms latency, 0 % packet loss, 1500 B MTU)
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Figure 4.4: Download (0 ms latency, 0 % packet loss, 6000 B MTU)
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Figure 4.5: Upload (0 ms latency, 0 % packet loss, 6000 B MTU)
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Figure 4.6: RTT (0 ms latency, 0 % packet loss, 6000 B MTU)
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4.3.2 Common network conditions
The second observed behavioural group represents common network conditions,
with relatively low latency, low packet loss, and standard MTU sizes ranging
from 1300 to 1500 bytes. Such conditions are the most representative of real-
world performance in the established evaluation suite.

In the first example of such conditions, 10 ms latency, 0 % packet loss, and
1500 B MTU, the observed behaviour is somewhat similar to ideal network
conditions, with Quincy seeing higher overall throughput than WireGuard and
OpenVPN underperforming significantly.
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Figure 4.7: Download (10 ms latency, 0 % packet loss, 1500 B MTU)

All evaluated VPNs experience the “Saw-Tooth” behaviour inherent to the
default configuration of TCP (4.7). This is due to the evaluation suite us-
ing iperf3 in the default TCP mode and provides a view of the properties of
the VPN connection, as experienced by the application protocols that use it.
Both Quincy and WireGuard display similar connection properties, with Wire-
Guard possibly suffering from worse packet pacing, leading to marginally lower
throughput.

In terms of observed latency (4.8), both Quincy and WireGuard add less
than 1 ms of RTT, with WireGuard performing slightly better, increasing the
latency less. Notably, Quincy experiences sudden latency spikes multiple times
during the measurement, as can be seen on the histogram of its measured
RTT (4.9). OpenVPN experiences worse performance, similar to the measured
throughput, increasing the total RTT by up to 8 ms.

Another example of relatively common conditions, such as marginally un-
reliable (wireless) networks, is represented by the test parameters of 10 ms
latency, 1 % packet loss, and 1500 B MTU. In these conditions, all VPNs be-
have somewhat similarly due to the inherent limitations of unreliable networks
with measurable packet loss. However, Quincy seems to outperform both Wire-
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Figure 4.8: RTT (10 ms latency, 0 % packet loss, 1500 B MTU)

Guard and OpenVPN in terms of throughput by a slight margin (4.10). The
RTT measurements for all VPNs were nearly identical, with occasional latency
spikes (4.11).

In summary, under common network conditions, Quincy and WireGuard
behave similarly, both in terms of throughput and latency, with Quincy ex-
periencing marginally better throughput than WireGuard in some scenarios.
OpenVPN drastically underperforms both in throughput and in latency in
cases where network conditions are not the limiting factor. The relative im-
provement of Quincy compared to WireGuard might be due to better packet
pacing provided by the QUIC protocol and warrants further investigation.
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Figure 4.9: Quincy RTT distribution (10 ms latency, 0 % packet loss, 1500 B
MTU)
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Figure 4.10: Download (10 ms latency, 1 % packet loss, 1500 B MTU)
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Figure 4.11: RTT (10 ms latency, 1 % packet loss, 1500 B MTU)
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4.3.3 Poor network conditions
The last observed behavioural group represents poor network conditions – net-
works with high latency, noticeable packet loss, and decreased MTU sizes, such
as unreliable intercontinental connections, Wi-Fi or cellular networks with high
congestion (public places, hotels, events, etc.). Data from this behavioural
group show how the evaluated VPNs handle conditions in which the use of a
VPN might be required for privacy and security.

The first example of such conditions is described by the network parameters
of 10 ms latency, 5 % packet loss and 1500 B MTU. In such conditions, all
evaluated VPNs behave similarly, being mostly limited by the connection itself.
In terms of throughput (4.12), WireGuard and OpenVPN show very similar
results with a relatively stable connection. Quincy shows a slight increase in
throughput at the cost of less overall stability (4.13). In terms of latency, all
VPNs show very similar results, with Quincy and WireGuard experiencing a
low number of high latency spikes of up to 100 ms, which could be due to the
detection of link congestion by iperf3 or the packet pacing algorithms of the
VPNs (4.14).
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Figure 4.12: Download (10 ms latency, 5 % packet loss, 1500 B MTU)

The second example of poor network conditions, with 150 ms latency, 1 %
packet loss, and 1500 B MTU, represents less ideal intercontinental connec-
tions or connections with a large number of wireless links. In these conditions,
OpenVPN and WireGuard behave nearly identically, both in terms of mea-
sured throughput and latency (4.15, 4.16). Unlike the other VPNs, Quincy
is observably much more aggressive with its packet pacing, getting to and
keeping at a much higher transfer speed for most of the test. This behaviour
seems to come at a cost to the overall stability and latency of the connection,
which spiked significantly and was around 70 ms higher for most of the test
(4.17). Although it might be better for throughput-intensive network loads,
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Figure 4.13: Quincy download distribution (10 ms latency, 5 % packet loss,
1500 B MTU)

such as media consumption or downloading/uploading large files, it comes at a
detriment to the experience for real-time applications, such as communication
protocols (VoIP, WebRTC, etc.). Further investigation is needed to determine
the root cause of this behaviour.

The most extreme example of poor network conditions, with 150 ms latency,
5 % packet loss, and 1500 B MTU, shows very similar results to the previous
example. In terms of throughput, OpenVPN and WireGuard behave very sim-
ilarly, with WireGuard achieving marginally higher throughput in the down-
load (server-to-client) direction. Quincy’s throughput was observably higher,
at the cost of less stability (4.18). Regarding latency, both OpenVPN and
WireGuard again performed very well, with OpenVPN achieving slightly lower
overall RTT. Quincy observed similar problems as in the previous case, with
latency spikes and significantly worse RTT, about 75 ms higher than other
evaluated VPNs (4.19, 4.20).
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Figure 4.14: RTT (10 ms latency, 5 % packet loss, 1500 B MTU)
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Figure 4.15: Download (150 ms latency, 1 % packet loss, 1500 B MTU)
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Figure 4.16: RTT (150 ms latency, 1 % packet loss, 1500 B MTU)
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Figure 4.17: Quincy RTT distribution (150 ms latency, 1 % packet loss, 1500
B MTU)
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Figure 4.18: Download (150 ms latency, 5 % packet loss, 1500 B MTU)
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Figure 4.19: RTT (150 ms latency, 5 % packet loss, 1500 B MTU)
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Figure 4.20: Quincy RTT distribution (150 ms latency, 5 % packet loss, 1500
B MTU)
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4.4 Discussion

In this chapter, multiple groups of simulated network conditions were used to
evaluate the performance of Quincy, OpenVPN, and WireGuard, ranging from
ideal conditions, such as CAN or MAN networks, to poor conditions, such as
inter-continental WAN connections or unrealiable cellular/Wi-Fi networks.

Under ideal conditions with very low latency, no packet loss, and varied
MTU sizes, WireGuard observes the highest throughput, Quincy lags notice-
ably behind, and OpenVPN shows the lowest throughput of the tested VPNs.
Both Quincy and OpenVPN exhibit asymmetrical throughput, likely due to
different implementations of client-side and server-side routing, whereas Wire-
Guard shows symmetrical throughput in both directions, due to its peer-to-peer
design. The measured latency is the lowest for Quincy, with WireGuard and
OpenVPN adding slightly more latency. Overall, Quincy greatly outperforms
OpenVPN, and both fall short of WireGuard. WireGuard showcases the best
characteristics in throughput, likely due to its implementation residing in the
kernel-space, while Quincy leads in latency.

In scenarios representing common network conditions with low latency, low-
to-none packet loss, and standard MTU sizes, Quincy and WireGuard behave
similarly both in terms of throughput and latency. Quincy outperforms Wire-
Guard in throughput under specific conditions, while OpenVPN consistently
underperforms in all scenarios. The “Saw-Tooth” behaviour inherent to the de-
fault TCP configurations is observed for all VPNs, with Quincy and WireGuard
displaying similar connection properties. In scenarios simulating slightly unre-
liable networks with some packet loss, Quincy slightly outperforms WireGuard
in throughput.

Under poor network conditions, including high latency, packet loss, and
reduced MTU sizes, individual VPNs show how they handle challenging con-
ditions. In less extreme conditions, all VPNs behave very similarly, generally
limited by the connection. Quincy shows a slight throughput increase at the
cost of stability. In more extreme conditions, OpenVPN and WireGuard be-
have similarly, while Quincy demonstrates noticeably higher transfer speeds,
ultimately sacrificing stability and latency.

Overall, the performance of Quincy, both in terms of throughput and la-
tency, is better than the performance of OpenVPN and approaches that of
kernel-level WireGuard, even reaching beyond it in certain scenarios. As some
behavioural anomalies occurred during specific evaluation cases, such as the la-
tency and throughput spikes in poor network conditions, further investigation
of the QUIC protocol is required to fully understand its viability in the realm
of VPNs.
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Conclusion

The objective of this Bachelor’s thesis was to test the feasibility of the QUIC
protocol in the VPN space. To achieve this goal, a comprehensive analysis
of the current VPN space was performed, researching individual network pro-
tocols and existing VPN implementations. Afterwards, through an iterative
design and development process based on this analysis, a new VPN imple-
mentation, based on the QUIC protocol, was created. During the subsequent
evaluation, it was found to provide all required functionality while achiev-
ing satisfactory security and performance, nearing the throughput and latency
of the WireGuard implementation in the Linux kernel in many of the tested
scenarios, with both implementations achieving much higher throughput and
lower latency compared to OpenVPN. Therefore, it successfully met all the
requirements specified in the thesis assignment.

The created implementation has a sufficient feature set to allow for usual
VPN deployments, such as providing secure access to home and small business
local networks, being used as a site-to-site tunnel between multiple private
networks, or allowing users from countries with Internet censorship and privacy-
invasive laws to access the Internet in a secure manner, retaining their online
privacy.

Several potential improvements could be made to allow for a wider range
of possible use cases, such as validating the security and overall soundness
of the QUIC protocol implementation provided by quinn; implementing ad-
ditional authentication back-ends based on LDAP, SSO or PKI; or improving
the performance of the TUN interface using Generic Segmentation Offload and
Generic Receive Offload.
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Appendix A
Acronyms

AES Advanced Encryption Standard.

API Application Programming Interface.

CAN Campus/Company Area Network.

CPU Central Processing Unit.

DHCP Dynamic Host Configuration Protocol.

ECC Eliptic Curve Cryptography.

GPU Graphics Processing Unit.

GRO Generic Receive Offload.

GSO Generic Segmentation Offload.

HTTP Hypertext Transfer Protocol.

IETF Internet Engineering Task Force.

LDAP Lightweight Directory Access Protocol.

MAN Metropolitan Area Network.

MTU Maximum Transmission Unit.

PKI Public Key Infrastructure.

RADIUS Remote Authentication Dial-In User Service.

RAM Random Access Memory.

RSA Rivest–Shamir–Adleman.

RTT Round Trip Time.
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Acronyms

SHA Secure Hashing Algorithms.

SSL Secure Sockets Layer.

TCP Transmission Control Protocol.

TLS Transport Layer Security.

UDP User Datagram Protocol.

VoIP Voice over Internet Protocol.

VPN Virtual Private Network.

WAN Wide Area Network.

WebRTC Web Real-Time Communication.
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Appendix B
Contents of attachements

executables...................................directory with executables
linux-x86_64..............................Linux x86_64 executables
macos-arm64..............................MacOS ARM64 executables
windows-x86_64.........................Windows x86_64 executables
config...............directory with configuration files and certificates
README.md ............... a guide for running the provided executables

sources.........................................directory of source codes
quincy........................................ implementation sources
quincy-benchmark.................evaluation suite and collected data
thesis................................LATEX source codes of the thesis
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