
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of bachelor’s thesis

Web application quality assurance and test case design

Marie Kalousková

Ing. Oldřich Malec

Informatics

Web and Software Engineering, specialization Software

Engineering

Department of Software Engineering

until the end of summer semester 2024/2025

Instructions

- Analyze and describe different types of tests that can and should be used for web

application quality assurance.

- Analyze and describe different techniques for creating test cases.

- Compare manual testing and test automation. Contemplate if test automation is

always better, or even possible.

- Describe in depth the purpose, usage, and benefits of E2E testing, and also the

problems and often made mistakes.

- Analyze Atlantis - a warehouse management system - design the E2E test cases, decide

which are suited for automation, and implement these using Playwright. Describe the

testing environment and setup. In the end, they should be runnable from a local machine

with a summary of which test cases passed/failed.

Electronically approved by Ing. Michal Valenta, Ph.D. on 23 January 2024 in Prague.

Bachelor’s thesis

WEB APPLICATION
QUALITY ASSURANCE
AND TEST CASE DESIGN

Marie Kalousková

Faculty of Information Technology
Department of Software Engineering
Supervisor: Ing. Oldřich Malec
May 16, 2024

Czech Technical University in Prague
Faculty of Information Technology
© 2024 Marie Kalousková. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic. It has been sub-
mitted at Czech Technical University in Prague, Faculty of Information Technology. The thesis
is protected by the Copyright Act and its usage without author’s permission is prohibited (with
exceptions defined by the Copyright Act).

Citation of this thesis: Kalousková Marie. Web application quality assurance and test case design.
Bachelor’s thesis. Czech Technical University in Prague, Faculty of Information Technology,
2024.

Contents

Acknowledgments v

Declaration vi

Abstract vii

List of abbreviations viii

Introduction 1

1 Quality Assurance 3
1.1 Web application QA . 4
1.2 Testing approches . 4

1.2.1 Static testing . 4
1.2.2 Dynamic testing . 5

2 Test types 6
2.1 Functional tests . 6
2.2 Non-functional tests . 6

2.2.1 Efficiency tests . 7
2.2.2 Compatibility tests . 7
2.2.3 User experience tests . 7
2.2.4 Reliability tests . 8
2.2.5 Security tests . 8
2.2.6 Maintainability tests . 9
2.2.7 Portability tests . 9

3 Test desing techniques 10
3.1 Black-box test techniques . 11

3.1.1 Equivalence partitioning . 11
3.1.2 Boundary value analysis . 12
3.1.3 Decision table testing . 13
3.1.4 State transition testing . 14

3.2 White-box test techniques . 14
3.2.1 Statement testing . 15
3.2.2 Branch testing . 15
3.2.3 Condition testing . 15
3.2.4 Decision condition testing . 15
3.2.5 MC/DC . 16

ii

Contents iii

3.2.6 All paths coverage . 16
3.3 Experience-based test techniques . 17

3.3.1 Error guessing . 17
3.3.2 Exploratory testing . 17
3.3.3 Checklist-based testing . 17

4 Test automation 18
4.1 Benefits of test automation . 18
4.2 Risks of test automation, i.e., what speaks for manual testing 19

4.2.1 SEARCH of automation testing . 19
4.2.2 Depending on the people . 20

4.3 Test automation of GUI interactions . 20
4.4 Conclusion . 20

5 End-to-End Testing 22
5.1 Test automation pyramid . 23
5.2 Benefits of E2E testing . 25
5.3 Pitfalls of E2E testing . 25
5.4 E2E tests automation . 25

6 Atlantis 27
6.1 About . 27
6.2 How it all started . 28

6.2.1 Examples of found bugs . 28
6.2.2 User manual and diagrams . 29

6.3 E2E test case design . 30
6.4 Database . 32

6.4.1 Init state and getting data into database 32
6.4.2 The importance of cleaning up . 33

6.5 Playwright . 33
6.5.1 About . 34
6.5.2 Codegen . 34
6.5.3 Locator strategies . 35
6.5.4 Page Object Models . 35
6.5.5 Fixtures . 35

6.6 Setup . 35
6.7 Implementation . 38
6.8 Execution . 40

Conclusion 43

Attachments 48

List of Figures

5.1 Martin Fowler’s test pyramid [11] . 23
5.2 Scope of different tests in pyramid from semaphore web [13] 24
5.3 Kent Dodds’ JS test trophy [14] . 24

6.1 Activity diagram of scanning while item picking for personal collection . . 30
6.2 Part of a test report . 41
6.3 Part of a test case in report . 42

List of code listings

3.1 Statement vs. branch coverage example 15
3.2 Decision condition coverage example . 16

6.1 Fragment of playwright.config.js . 36
6.2 Define projects . 37
6.3 Defining Zebra device . 38
6.4 Part of an automated test case . 39

iv

I would like to thank my supervisor, Ing. Oldřich Malec, for
his guidance and valuable advice, and for letting me apply my
theoretical quality assurance knowledge to an existing applica-
tion. He and Ing. Jiř́ı Hunka sparked my interest in testing a
few years back during my studies, and I will be forever grateful
for that. I also want to thank my family and friends for their
unending support.

v

Declaration

I hereby declare that the presented thesis is my own work and that I have cited all sources
of information in accordance with the Guideline for adhering to ethical principles when
elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipulated by
the Act No. 121/2000 Coll., the Copyright Act, as amended. In accordance with Section
2373(2) of Act No. 89/2012 Coll., the Civil Code, as amended, I hereby grant a non-
exclusive authorization (licence) to utilize this thesis, including all computer programs
that are part of it or attached to it and all documentation thereof (hereinafter collectively
referred to as the “Work”), to any and all persons who wish to use the Work. Such
persons are entitled to use the Work in any manner that does not diminish the value of
the Work and for any purpose (including use for profit). This authorisation is unlimited
in time, territory and quantity.

In Prague on May 16, 2024

vi

Abstract

This bachelor thesis dives into the topic of quality assurance. It contains an overview
of different test types and introduces various test techniques used to design test cases,
e.g., black-box, white-box, and experience-based techniques. The work contemplates the
idea of test automation, describes its benefits and potential risks, and explains the usage
of E2E testing. The practical part focuses on E2E testing on a web application named
Atlantis, a warehouse management system. It describes the first steps that helped to
build a base for the automation of the E2E test cases, such as gaining domain knowledge
and familiarizing with Atlantis. It introduces a testing framework named Playwright
and its features and explains the test environment setup and possible execution of the
E2E test suite. The last part contains information about how the designing part was
approached and shows an example of an automated test case. In the end, manual testing
helped detect various defects, and the created automated test suite serves as a defense
against regression defects coming from the key application features.

Keywords web application, quality assurance, test case design, E2E testing, test
techniques, test automation, Playwright

Abstrakt

Tato bakalářská práce se zabývá tématem zajǐstěńı kvality. Obsahuje přehled r̊uzných
typ̊u test̊u a představuje r̊uzné testovaćı techniky použ́ıvané k navrhováńı testovaćıch
př́ıpad̊u, např. techniky černé skř́ıňky, b́ılé skř́ıňky a ty založené na zkušenostech.
Práce rozeb́ırá myšlenku automatizace testováńı, popisuje jej́ı výhody a možná rizika, a
vysvětluje E2E testováńı. Praktická část je zaměřena na E2E testováńı webové aplikace
Atlantis, systému slouž́ıćımu ke správě sklad̊u. Popisuje prvńı kroky, které pomohly vy-
budovat základ pro automatizaci testovaćıch E2E př́ıpad̊u, jako je źıskáńı doménových
znalost́ı a seznámeńı se s Atlantisem. Představuje Playwright, platformu na vývoj test̊u,
a jeho funkce, a vysvětluje nastaveńı testovaćıho prostřed́ı a možné spuštěńı E2E testo-
vaćı sady. Posledńı část obsahuje informace o tom, jak bylo přistoupeno k návrhové části,
a ukazuje př́ıklad automatizovaného testovaćıho př́ıpadu. Ručńı testováńı nakonec po-
mohlo objevit r̊uzné defekty a vytvořená sada automatizovaných test̊u slouž́ı jako obrana
proti regresńım defekt̊um pocházej́ıćım z kĺıčových funkćı aplikace.

Kĺıčová slova webová aplikace, zajǐstěńı kvality, návrh testovaćıch př́ıpad̊u, E2E
testováńı, techniky testováńı, automatizace testováńı, Playwright

vii

List of abbreviations

API Application programming Interface
BB Black-box
BE Back end (or Back-end)

BVA Boundary value analysis
CFG Control flow graph

CI Continuous integration
CSS Cascading Style Sheets

CTFL Certified Tester Foundation Level
DCC Decision condition coverage
DLL Dynamic-link library

DOM Document Object Model
EP Equivalence partitioning

E2E End-to-End
FE Front end (or Front-end)

GUI Graphical User Interface
HTML Hypertext Markup Language
ISTQB International Software Testing Qualifications Board

JS JavaScript
JSON JavaScript Object Notation

MC/DC Modified condition/decision coverage
OWASP Open Web/Worldwide Application Security Project

POM Page Object Model
QA Quality Assurance
QC Quality Control

SEARCH setup, execution, analysis, reporting, cleanup, help
SDLC Software Development Lifecycle

SP1 Software Project 1
SP2 Software Project 2

UI User Interface
UX User Experience
WB White-box

WSL Windows Subsystem for Linux
XPath XML Path Language

viii

Introduction

In today’s digital world, more and more people use web applications. They help with
online shopping and getting in touch with friends on chats or during multiplayer games.
They can be helpful tools in everyday life, but also beneficial for the work life, helping
employees to get the stuff done.

Because many web applications are developed every day, the demands on them are
becoming higher, focusing on fast performance, reliability, and functionality. If the appli-
cation is buggy or lacks desired functionality, customers might switch to an alternative.
That leaves developers in a competitive environment, pushing them to quickly release
and add new functionality. Unfortunately, this stress often leads to the release of a faulty
web application—the developer teams that can avoid that end up on top. So, how can
the teams create a high-quality product and set the right processes to prevent a faulty
release? What is missing is quality assurance and proper testing.

The thesis aims to encapsulate the most interesting and essential practices and
thoughts about testing and quality assurance based on books and articles written by
experts. Texts written by the International Software Quality Board or Microsoft test
professionals provide input to the theory behind testing and also to the practical ap-
proach to it.

The theoretical part explains why quality assurance and testing are critical when
developing a web application. Describes different test types typically used for quality
assurance. Describes the best practices and techniques for designing test cases, such as
black-box, white-box, and experience-based techniques. Compares manual testing and
test automation and discusses if test automation is always better or even possible. And
finally, it describes the purpose, usage, and benefits of End-to-End (E2E) testing and
the pitfalls of this kind of testing.

The thesis’s practical goal is to analyze Atlantis—a warehouse management system—
running as a web application on computers and Zebra mobile devices. The student
performs extensive manual testing first, then designs the E2E test cases and identifies
which are best suited for automation. She implements these using the Playwright testing
framework. Describes the testing environment and the setup of the framework. In the
end, the implemented test cases are runnable from a local machine, and after execution,

1

Introduction 2

a report with which test cases passed/failed is created. This all contributes to a better
quality of Atlantis, and the possibility to run the test suite every time before a release
can help catch failures before they reach the customer.

Chapter 1

Quality Assurance

“Quality in a product or service is not what the supplier puts in. Is it what the
customer gets out and is willing to pay for. A product is not quality because it is
hard to make and costs a lot of money, as manufacturers typically believe. This is
incompetence. Customers pay only for what is of use to them and gives them value.
Nothing else constitutes quality.” -Peter F. Drucker [1]

Pursuing a high-quality product is a primary objective in web development, encapsulat-
ing seamless user experience and robust functionality. But what means a high-quality
product and how can we produce it consistently? These are the questions that drive the
domain of quality management.

Quality Assurance (QA) and Quality Control (QC) are essential quality management
processes. QA embodies a proactive, preventive approach dedicated to improving pro-
cesses to prevent defects from surfacing during development. It is the oversight strategy,
which is what methods were applied to each process in our company to comply with
customer expectations—the assurances—and is based on the principle that following
good processes creates a high-quality product. Its goal is to build a product that meets
customer expectations regarding functionality, usability, reliability, performance and de-
sign. [2]

While some texts use QC or testing interchangeably with QA, they carry distinct
meanings. Testing falls under QC and involves examining the product to identify defects
and evaluate its quality. As a corrective approach, QC takes a reactive stance, focusing
on detecting and fixing defects before the product reaches the customer.

Testing is crucial for controlling quality. Its objectives are verification of require-
ments, product validation against users’ expectations, and building confidence in the
quality. The test process consists of activities such as test planning, test monitoring
and control, test analysis, test design, test implementation, test execution, and test
completion. These activities are an integral part of the software development lifecycle
(SDLC). [2]

3

Web application QA 4

QA uses test results to improve the test and development processes, while QC uses
them to fix defects. That said, choosing the correct type of testing or test design tech-
nique falls not only into QC but also into QA. And that’s what causes a lot of confusion
in these two terms, not only in job posts but also in books and academic texts. Where
is the line between what we do for QA and what we do for QC? [2, 3]

According to ISO 9000:2015, QC falls into QA. QA is a “part of quality management
focused on providing confidence that quality requirements will be fulfilled”. And QC is
“part of quality management focused on fulfilling quality requirements”. [3]

1.1 Web application QA

Web Application QA plays a crucial role in delivering a reliable, user-friendly, and secure
web application that meets the needs and expectations of its users. The accessibility
of web applications via web browsers and the internet presents significant challenges,
particularly in protecting against potential cyber attacks. But it’s essential to use all
kinds of test types, not only security testing, to uncover the remaining defects and deliver
a high-quality application.

1.2 Testing approches

There are two approaches for verifying and validating the application and ensuring the
quality of it: static testing and dynamic testing.

1.2.1 Static testing

Static testing does not rely on code execution and can be applied to any work prod-
uct that is easily understandable by humans, e.g., source code, user documentation,
specification documentation, test cases, and models. This form of testing is instrumen-
tal in identifying inconsistencies in code formatting using tools like parsers and linters.
Additionally, static testing can uncover potential risks, such as incorrect number of pa-
rameters and undefined variables, as well as detect unreachable code through control
flow analysis. Analyzing data flow is another part of static testing, designed to uncover
unwarranted side-effects of variable conversion or access to a variable that is out of scope
or already destroyed.

One form of static testing is reviews, ranging from informal to formal. Informal
reviews focus on detecting anomalies without following to a structured process. Walk-
throughs, led by the author of the code, aim to educate the reviewers and gain consensus.
Technical reviews, moderated by a facilitator, evaluate the technical side of the work
product. Inspections follow a very formal process through which they collect metrics to
improve the SDLC. [1, 2]

Testing approches 5

1.2.2 Dynamic testing

Dynamic testing is restricted to the executable code, focusing on evaluating the software’s
behavior during runtime. While dynamic testing may seem limited in scope compared
to its static counterpart, it is not inferior. In fact, these two testing strategies are
complementary, each offering unique insights into the software’s quality.

Dynamic testing excels in measuring quality characteristics dependent upon execut-
ing code, such as performance metrics, runtime failures, wild pointers, memory leaks,
and bugs in external libraries. It provides invaluable feedback on the software’s func-
tionality and reliability under varying conditions by simulating real-world scenarios and
interactions. [1, 2]

Chapter 2

Test types

This chapter will explore the different test types, allowing developers and QA engi-
neers to systematically assess various aspects of a software application. Each test type
serves a unique purpose and employs specific methodologies to uncover defects. By
strategically applying these tests throughout SDLC, teams can identify defects early,
leading to more reliable software releases. Whether it’s verifying the features, validat-
ing compatibility across platforms, or fortifying against potential security threats.

The ISTQB® Foundation Level Syllabus [2] addresses four different test types: functional
testing, non-functional testing, black-box testing, and white-box testing. Chapter 3 will
describe black-box and white-box testing as test techniques, as it better grasps the idea
behind these test types.

2.1 Functional tests

Functional testing is about testing functionality, hence the name. It tests what the
application should and shouldn’t do, e.g., “Application should accept shipping order
from a logged-in user.”

2.2 Non-functional tests

Non-functional testing is merely everything else that is not functional testing. These
tests are sometimes called quality tests, as they evaluate how well the application be-
haves in performance, reliability, maintainability, etc. [4] It is still connected to the user
requirements and expectations as these requirements can be: “The application should
process a shipping order in less than a minute.”

6

Non-functional tests 7

2.2.1 Efficiency tests

Efficiency testing encompasses various aspects to evaluate an application’s performance
and resource utilization. It includes measuring load and processing time and assessing
the application’s behavior under stress conditions.

Performance testing, a subset of efficiency testing, measures the system’s respon-
siveness. It involves analyzing processing, response, throughput, and turnaround times
under normal operating conditions to ensure optimal performance.

Additionally, efficiency testing evaluates the application’s ability to handle stress and
heavy workloads. Stress and scalability tests simulate extreme conditions by subjecting
the application to reduced resource availability or an enormous number of connected
users. These tests help identify potential bottlenecks and weaknesses in the system,
such as memory leaks that, over time, can gradually deplete available memory, causing
the application to crash. These failures can be found more effectively using stress testing
instead of running the application under normal conditions for a long period. [1]

2.2.2 Compatibility tests

Compatibility testing aims to ensure the application works as intended across different
operating systems, devices, and browsers. It also includes evaluating the ability to
interact with older and newer versions of related software components such as libraries,
plugins, and external APIs.

With many browsers on the market, the compatibility testing checks if the application
renders correctly on the supported browsers and is responsive to different screen sizes
and resolutions, allowing users a seamless user experience. [5]

2.2.3 User experience tests

User experience (UX) goes beyond usability; it is also about usefulness, meaningfulness,
and emotional impact. UX evaluation is usually set in a lab where the test user is
not distracted by other external influences. Lab environment has other benefits, such
as installed cameras that can track everything from eye movement to create heatmaps
to how many times the user switched from keyboard to mouse. Users follow written
instructions and complete predefined tasks.

UX is almost always evaluated qualitatively. The most known technique is called
think-aloud: The test user is encouraged to share everything that goes through her mind
when completing the tasks, e.g., what she is looking for on the screen, why she is looking
for something, etc. It’s important to remember that we are evaluating the application,
not the test user, so any comments or adverse reactions to her performance are not in
place.

There are also quantitative measures. Task performance can be timed, user errors
can be counted, or the test users can fill out various questionnaires. The most known

Non-functional tests 8

questionnaires are the standardized User Experience Questionnaire (UEQ), the Question-
naire for User Interface Satisfaction (QUIS), the System Usability Scale Questionnaire
(SUS), and one for Usefulness, Satisfaction, and Ease of Use (USE). Each one focuses
on a slightly different area of UX. [6]

Usability testing is more about how easily users can understand and operate the
application to complete their tasks. [4]

2.2.4 Reliability tests

When talking about reliability, we are talking about recoverability, robustness, and fault
tolerance. Reliability testing evaluates if the application reacts to invalid inputs and
incorrect data without failure, tests error tolerance and exception handling, and judges
the application’s ability to reestablish performance and recover the affected data. It
looks for immediate detection of failures followed by reliable failover. [1, 7]

2.2.5 Security tests

“Security issues often have no symptoms, right up until the time a hacker breaks in and
torches the system. Or, maybe worse, the hacker breaks in, steals critical data, and then
leaves without leaving a trace. Ensuring that people can’t see what they should not have
access to is a major task of security testing.” [1]

The question is how to defend our application against these attacks; an SQL injection
that can lead to unauthorized access, a buffer overflow that allows a hacker to rewrite
a return address to jump where she wants to, breaking encryption that can lead to
leakage of sensitive data, or being overwhelmed by requests in a distributed denial-of-
service attack (DDoS). [1]

There are a few interesting websites that might serve as guidelines for security test-
ing: Common Vulnerabilities and Exposure site (CVE), which lists and identifies vulner-
abilities and exposures; Common Weakness Enumeration (CWE) website that catego-
rizes known weaknesses; and Common Attacks Pattern Enumeration and Classification
(CAPEC), which is a list of security attack patterns. [8]

Probably the most known “checklist of threats” for web applications used by develop-
ers and penetration testers is OWASP Top Ten, compiled by the Open Web/Worldwide
Application Security Project (OWASP), which lists the most critical web application
security risks. OWASP keeps updating it based on actual data gathered from organiza-
tions. [9]

The job of a penetration tester is to try to break into the web application by simu-
lating real-world attack scenarios. The penetration tester documents the findings, used
exploit techniques, and identified vulnerabilities.

Organizations usually employ an external penetration testing agency that tries to
breach the system with some limited knowledge to simulate a real-world attack. Explicit

Non-functional tests 9

consent and cooperation of the organization are a must. Otherwise, it is illegal and can
be sanctioned appropriately.

Phishing campaigns can be part of penetration testing but are usually done as a
separate activity as they focus on educating employees about potential threats rather
than testing the application’s security. The goal is to assess how employees respond
to suspicious emails and messages—whether they click on suspicious links, download
attachments, or disclose sensitive information such as their username and password.

2.2.6 Maintainability tests

Maintainability is about the ease of modifying and updating code and testability. Writing
testable code with high coupling and low cohesion is the heart of good software design.

Part of the maintainability testing falls under static testing. That part assesses
the system’s analyzability. Poor analyzability is caused by spaghetti code, lack of doc-
umentation, and poor or nonexistent standards and guidelines (indentation, naming
conventions). [1]

2.2.7 Portability tests

Portability testing examines the installation and deployment process of the software
application on different systems, evaluating how hard the transfer is and if it is even
possible. It looks for problems like apps consuming each other’s resources, undefined de-
pendencies after an update, and DLL hell (Dynamic-link libraries hell)—shared resources
are incompatible. [1]

Chapter 3

Test desing techniques

“Good testers seem to understand that no matter how absurd clicking a button 50
times in a row might sound, somewhere, a customer will do exactly that.” [4] This
chapter is about test case design and will go through different test design techniques
that aim to identify (critical) scenarios to be tested.

One of the main testing principles states that “exhaustive testing is impossible” [2].
Exhaustive testing means testing every possible combination of inputs and every possible
scenario. Let’s look at a trivial example of buying beer.

Imagine a simple web application with a form with one input field for the user’s age
and a submit button. After submitting, the application checks the age, and a message
appears on the screen showing if the user can buy alcohol in Czechia or not. In Czechia,
the legal age for buying alcohol is 18 years old. Even if we only test reasonable numbers
between 0 and 122—the oldest person who ever lived died as 122-year-old. The manual
tester would need to try all the different values, i.e., submit the form 123 times and check
the corresponding results. That does not sound that impossible, right? Now, imagine
instead of inputting the age, the users will be met with an input field for their date
of birth. That means around 44,926 possible inputs, even though the logic of who can
buy beer is the same. Even automation won’t help. The test analyst will still need to
prepare the combination of corresponding inputs and outputs.

That is why we need test techniques, systematic approaches to design test cases. It
is important to understand that there is no silver bullet. There is no universal approach
to how to test an application. There is no ultimate test technique. Each test technique
has its benefits and drawbacks. Most of the techniques complement each other.

Test techniques help develop a small set of test cases that envelop all possible inputs
and outputs without actually checking all the combinations. Because it is not exhaustive
testing, it can miss some defects, but the systematic approach should help find most of
them if implemented correctly. [2]

10

Black-box test techniques 11

3.1 Black-box test techniques

Black-box (BB) test techniques, also called specification-based techniques, derive test
cases based on documentation of specified behavior, i.e., application specification, with-
out knowing an actual implementation.

Test cases are completely independent of how the software is implemented. That
means tests can be reused if the code is updated while the specification remains un-
changed. Further, tests can be developed before the code is written, as only the existing
specification is required.

The drawback of these techniques is the error of commission; the extra functionality
that is not in the specification cannot be covered by the definition. Also, only a few
tools provide coverage measurement for these techniques. [1, 2, 10]

3.1.1 Equivalence partitioning

Equivalence partitioning (EP) is the simplest BB technique. It divides data into parti-
tions that do not overlap based on the expectation that they behave and are processed
similarly. For each type of processing, at least one representative input value is used,
and at least one representative output value is produced.

One value for each EP is sufficient as the values should behave equivalently, so if the
test case detects a defect, any other value from that EP should have caught the defect as
well. It doesn’t matter which value is used for the test case if it’s not the boundary value
of the partition (more about boundary values in the following BB technique) because
these values are special edge values, so they are not the proper representative of the
whole partition.

Coverage is expressed as partitions exercised by test cases divided by identified par-
titions. [2, 10]

Let’s get back to the beer example. Specification can state: “A user fills her age into
the age field and submits it. If a negative number is inputted, the application should
alert the user that it is not a valid age. If the age is between 0 and 17 inclusive, the user
should be told she cannot drink beer in Czechia. Being above 18 years old and less than
122 years old inclusive, she is allowed to drink beer. Above 122 years old exclusive, she
should be alerted that this is likely not her age, but she can drink. It is impossible to
input anything other than a number by default.”

Let’s break it into the EPs sentence by sentence. The first one leads us to the fact
that we will look at the input and the corresponding output for the age field. The second
one is more interesting as it describes one EP.

I. age < 0 => "Not a valid age."

Black-box test techniques 12

The third one does not yield the same result as the previous one, so it will be another
partition.

II. age 0-17 inclusive => "You cannot drink beer."

The fourth one does not match either of the previously recognized partitions, leaving
it as another partition.

III. age 18-122 inclusive => "You can drink beer."

The same goes for the fifth one.

IV. age > 122 => "That is very unlikely your age,
but it is possible to drink beer at that age."

The last sentence rules out testing of invalid values (other than the negative num-
bers), as the field does not permit the user to input anything but numbers. That means
we do not need to add another partition for that.

We identified four EPs that do not overlap each other. From each test partition, we
randomly select a value, e.g., -29, 14, 28, 159. Ending with four test cases in total,
we can see how faster it will be to check than 123 values that were not even covering
the invalid partitions. The change to the calendar field would only mean changing the
ages to dates of birth; otherwise, it would leave the test cases untouched, as only the
first and last sentences in the specification would be changed, leaving the logic of the
drinking age unchanged.

3.1.2 Boundary value analysis

Boundary value analysis (BVA) is another BB technique. It builds on identified EPs,
exercising the boundary (minimum and maximum) values of the range. Therefore, this
technique can be used only on ordered partitions. The theory behind it is that developers
are more likely to make errors on the boundaries of the partitions, e.g., off-by-one errors
or complete omission of the boundary.

There is a 2-value BVA and a 3-value BVA, the difference being what other values
need to be covered in addition to the boundary value. For each boundary value in 2-value
BVA, the closest value from the adjacent partition must also be covered. That means
exercising all the boundary values because the closest one to the adjacent partition is
the boundary value of the adjacent partition.

Coverage is measured as the number of boundary values and its neighbor(s) exercised
divided by the total number of identified values. [2, 10]

Black-box test techniques 13

With 3-value BVA, both neighbors of the boundary value are exercised, allowing for
the catching of defects that 2-value BVA overlooks. If

if (age >= 18) "You can drink beer."

is incorrectly implemented as

if (age == 18) "You can drink beer."

leads to allowing beer to an 18-year-old but not a 19-year-old or older.
Let’s see it implemented using the beer example.

I. EP is from negative infinity to -1. -> boundary: -1

II. EP ranges from 0 to 17. -> boundaries: 0, 17

III. EP from 18 to 122. -> boundaries: 18, 122

IV. EP from 123 to infinity. -> boundary: 123

Without infinities, there are six boundary values: -1, 0, 17, 18, 122, 123. With
2-value BVA, these six values will need to be exercised.

With 3-value BVA: -1 has neighbors -2 and 0. 0 has neighbors -1 and 1, etc.
Therefore, 3-value BVA identifies 12 values to be exercised: -2, -1, 0, 1, 16, 17,
18, 19, 121, 122, 123, 124.

3.1.3 Decision table testing

Decision table testing, a BB technique, considers different combinations of conditions,
i.e., input values based on equivalence partitions. The rows of the table are the conditions
and the possible results. Each column represents a unique combination of conditions
along with the resulting action. Each condition cell holds a Boolean value: true or false,
or “-” if the condition is irrelevant to the outcome. Action cell contains an “X” if the
action should occur; it is blank if it should not happen.

A table containing every combination of conditions would be too large and complex.
It is common practice to delete the columns containing infeasible combinations of con-
ditions. The table can also be reduced by merging columns if the condition does not
affect the outcome (“-”, remember?) or by using minimization algorithms. Creating a
decision table is also helpful in finding contradictions in a specification.

To achieve 100% decision table coverage, all columns of the decision table must be
exercised. [2, 10]

White-box test techniques 14

3.1.4 State transition testing

State transition testing is a BB technique. The system’s behavior can be modeled as
states and transitions between the states. It can be written as a state transition diagram
or a state table. A state transition diagram is a graph representation of the states as the
nodes and the transitions as the edges. “The common transition labeling syntax is as
follows: event [guard condition] / action. Guard conditions and actions can be omitted
if they do not exist or are irrelevant for the tester.” [2] The diagram usually does not
explicitly define invalid transitions.

A state table’s rows represent states, and its columns represent events and guard
conditions. Each cell either contains the target state (and the action) or is left empty.
An empty cell represents an invalid transition.

A test case usually covers several transitions between states. Depending on what
we want to measure, we can choose all states coverage, valid transitions coverage, and
all transitions coverage. All states coverage is the number of visited states divided by
the total number of states. Valid transition coverage is the number of exercised valid
transitions divided by the total number of valid transitions. All transition coverage
depends on both valid and invalid transitions; therefore, a state transition table is more
suitable as a base for computing all transition coverage. [2]

3.2 White-box test techniques

“Performing only black-box testing does not provide a measure of actual code coverage.
White-box coverage measures provide an objective measurement of coverage and provide
the necessary information to allow additional tests to be generated to increase this cov-
erage, and subsequently increase confidence in the code.” [2]

White-box (WB) test techniques, also known as structure-based or code-based tech-
niques, are based on examining the internal structure of a system, exercising the code
implementation, and deriving test cases from it to achieve the highest possible coverage.
How the coverage is defined and counted depends on the specific WB technique. The
important thing is that although test cases—the input values and steps to take—are de-
rived from the implementation, the expected results for each test case must come from
the specification. If not, the test cases are pointless as they only verify that the tester
understands how the code works.

The benefit is that with the implementation knowledge, the tester can write specific
test cases to test boundary values (the boundary values in the code, not the specification)
and even to check edge cases of the used programming language.

The WB techniques are usually used after BB techniques, as the code must be
already written and executable. They also depend on both the implementation and the
specification, so changes in either can invalidate the test cases—code changes usually
do. Another drawback is that WB techniques are prone to defects of omission; if the
implementation lacks functionality, test cases cannot be derived from it. [1, 2, 10]

White-box test techniques 15

3.2.1 Statement testing

A statement is a line of executable code. The aim is to design test cases that lead
to exercising each statement at least once. This technique is usually used during unit
testing, the smallest scope of testing, so the tester doesn’t need to come up with complex
combinations of input values to execute some missing statement deep in the code.

Statement testing helps identify unreachable code but is not demanding of the com-
pound decisions - that a complex Boolean decision has been executed doesn’t mean all
possible combinations of the atomic conditions were. Using some programming lan-
guages with a packed syntax can mean that even the decision wasn’t resolved both ways
(true/false). [1, 2, 10]

If we use an input value age = 17 for the following code fragment, we achieve 100%
statement coverage (the line is executed). However, it never exercises the if branch “You
can drink beer.”

if (age >= 18) "You can drink beer." else "You cannot drink beer."

Code listing 3.1 Statement vs. branch coverage example

3.2.2 Branch testing

Branch testing or decision testing looks at the decisions, bearing in mind that every
decision can be resolved as either true or false. The coverage is measured as exercised
branches in code divided by the total sum of branches. 100% branch coverage guarantees
100% statement coverage, as executing a branch means executing all statements in that
branch. Compared to statement testing, the input data for 100% coverage is more
challenging to generate. [1, 2, 10]

For the previously mentioned code fragment 3.1, there will need to be two test cases
to achieve 100% branch coverage. One value greater or equal to 18 exercises the if
branch, and another one that is less than 18 executes the else branch.

3.2.3 Condition testing

A condition in this context means the atomic condition in a complex Boolean decision.
Condition testing is based on the principle that defects can be hidden in the condition
evaluation. This technique aims to ensure that each condition is resolved both ways. [1,
2, 4, 10]

3.2.4 Decision condition testing

Decision condition coverage (DCC) is focused on exercising not only every condition
both ways but also every decision both ways because 100% condition coverage doesn’t

White-box test techniques 16

necessarily mean 100% branch coverage. 100% DCC coverage guarantees 100% condition
coverage and 100% decision coverage. [10] To show that, let’s extend the beer example
with one simple condition: “If the person is a man, he cannot drink beer at all; his age
doesn’t matter.” This change can be incorporated in the code fragment like this:

if (gender == "woman" && age >= 18) {
"You can drink beer."

} else {
"You cannot drink beer."

}

Code listing 3.2 Decision condition coverage example

For 100% condition coverage, we need to exercise inputs for gender: woman and man,
and for age: 17-year-old and 23-year-old. The first test case can be a 17-year-old woman;
the second one covers a 23-year-old man. 100% condition coverage was achieved, but
only 50% decision coverage was because both these test cases resolved to “You cannot
drink beer.” For 100% DCC coverage, we need to add one more test case that resolves
to “You can drink beer.” For example, testing a 23-year-old woman.

3.2.5 MC/DC

Modified condition/decision coverage (MC/DC) goes further than DCC. The previously
mentioned techniques don’t consider possible combinations of conditions in the sense
that each condition can affect the decision outcome. The independent effect is verified
by varying the condition while holding the other conditions in that decision fixed. It still
does not test all possible combinations of conditions in a decision, testing that would lead
to a large number of test cases—that technique is called multiple condition coverage.
MC/DC achieves stronger coverage than DCC; 100% MC/DC coverage ensures 100%
DCC coverage. [10]

3.2.6 All paths coverage

All paths coverage, another WB technique, relies on creating control flow graphs (CFGs).
A path is an executable sequence of statements. CFG or control flow diagram is an ab-
stract representation of the program in the form of a directed graph depicting statements
(or indivisible blocks) as nodes and branches in the flow as edges. The CFG represents
the code flow structure, including different branches, outcomes, and decisions the code
makes. Creating CFGs is complex and time-consuming, so this technique is usually
employed only for critical software. [10]

Experience-based test techniques 17

3.3 Experience-based test techniques

Experience-based techniques are the third approach to testing, complementary to the
BB and WH techniques. They rely heavily on the skill of the tester and her domain
expertise: “The tests may be based on a range of experiences, including end-user expe-
rience, operator experience, business or risk experience, legal experience, maintenance
experience, programming experience and general problem domain experience, and so
on.” [10]

When there is no time to implement the BB and WB techniques, the experience-
based techniques can quickly but effectively check the application’s core. Because of
their unstructured nature, they do not and cannot ensure any degree of completeness of
the testing, so it’s essential to use the WB and BB techniques, too.

3.3.1 Error guessing

The error guessing technique is guided by the tester’s experience of what defects occurred
in the past in the application or other similar applications and what mistakes developers
usually make. [2, 10]

3.3.2 Exploratory testing

In this technique, the tester familiarizes with the application while going through it and
designs the test cases simultaneously. It is used to test the general usability of software
and to find untested application areas. [2, 4]

3.3.3 Checklist-based testing

“In checklist-based testing, a tester designs, implements, and executes tests to cover
test conditions from a checklist. Checklists can be built based on experience, knowledge
about what is important for the user, or an understanding of why and how software
fails. Checklists should not contain items that can be checked automatically, items
better suited as entry/exit criteria, or items that are too general.” [2] For example, the
graphical interface includes big enough buttons, non-disruptive colors, flexible layout,
etc.

Chapter 4

Test automation

“To Automate or Not to Automate, That Is the Question: Why should you write
automated tests? Why or when should you choose manual testing over automated
testing? Choosing whether to write automation and determining the extent of test
automation are issues that nearly every tester must contend with at some point. If you
are going to run a test only once, it doesn’t make sense to automate it. However, just
because you are going to run it twice doesn’t mean you should automate it either.” [4]

This chapter will talk about the differences between manual and automated testing.
Manual testing is done by human testers by manually executing every step of a test
case. In test automation, the test cases are executed by an automation software that
needs to be programmed to perform these steps. There are many things to consider when
choosing between manual and automated testing: the effort and the cost of automating
the test cases, the execution time, the accuracy with which they report correct results,
etc.

4.1 Benefits of test automation

Test automation saves time and test effort of test cases that must be repeated once in
a while. It is a suitable approach for regression tests used in release testing or smoke
testing suites. Regression tests check that a change in code somewhere did not change
the functionality in the unchanged part of the application somewhere else. The release
test suite consists of test cases that are repeated every release of the application. Smoke
test suite groups tests checking the core functionality and metrics. These test cases
would be impossible to cover manually every update. The test suite execution time is
reduced, allowing earlier feedback and defect detection.

Manual testing is slow and prone to human errors caused by loss of concentration.
Automated test cases, therefore, pose a lower risk by greater consistency and repeata-
bility.

18

Risks of test automation, i.e., what speaks for manual testing 19

Some test cases are almost impossible to execute without automation; code conven-
tion checks, performance tests, and stress tests fall into that category. For web applica-
tions, it can be scanning a website for broken links, measuring the speed of downloads,
or counting the hits. [2, 4]

4.2 Risks of test automation, i.e., what speaks for manual
testing

When testing is introduced too late in the SDLC, there is sometimes no option to
do anything besides manual testing. There is just no time, and the initial costs of
automation are too high. It’s important to consider the time spent on selecting the
right tool—check if there is sufficient support, if it complies with the safety standards,
how much it costs, and how hard it is to integrate the tool—or developing a tool. The
problem is that the testers must also learn to use the tool. Tools can also come out of
date, so maintenance is needed.

The automation tool is not the only thing that needs maintenance. Test cases develop
as a specification or implementation change, so the automated test case code needs to
be changed accordingly. [2, 4]

4.2.1 SEARCH of automation testing

Another problem is the automation setup. Because the test cases are executed automag-
ically by automation software, the product under test must be in a correct state before
running the test case. It’s important to remember that manual testers also deploy the
application or prepare the database before running the test case. Test automation is
even more strict. In most cases, the automation tool counts on whether the applica-
tion is in some particular state—that it contains or does not contain some data. The
preparation of these can take a lot of time, too.

If a step should result in failure, the manual tester can consciously decide that the
test failed, but what about automation software? It can wait for some data to appear,
and the data never appears; what would happen next? That is why it is essential to add
timeouts to ensure the tests will finish and run not too long.

The components of automation testing can be summed as SEARCH : setup, execu-
tion, analysis, reporting, cleanup, and help. Every step is essential. We talked about
the importance of setup and execution. The analysis consists of determining the result
of execution—pass or fail. Reporting collects and displays the results (typically for QA
people). A cleanup of artifacts and database is needed to proceed to the next test case.
The most neglected part—the help phase—is about the maintainability of the tests, that
they can be used later on, and not just once, if there is some significant modification
change in the application. [4]

Test automation of GUI interactions 20

4.2.2 Depending on the people

It’s also essential not to rely on automation too much; manual testing is sometimes more
appropriate because some defects can only be detected by a human being—a flashing
screen, unexpected notifications (that do not make the execution result in failure), wrong
font, etc.

Last but not least: “Microsoft test developers have coding skills equal to their de-
velopment peers, but there is one big difference between test code and product code:
Product code is tested.” Even if the test case is designed correctly, that does not say
anything about whether it was correctly automated. Because the code of automated test
case, such as every code, is not safeguarded against human errors. For that, it needs to
be carefully written and reviewed. [4]

4.3 Test automation of GUI interactions

GUI (graphical user interface) interactions are the most difficult testing that can be
automated. This is because of the ever-changing look of the application GUI and the
instability of the simulation of the clickings and manipulation with the GUI.

A capture/replay tool can help quickly write the test automation code. The manual
tester turns on the tool and executes the test case normally, and after she finishes, she
stops the tool. The tool captures the manual tester’s interactions with the GUI and
generates a code accordingly. The code can be executed and will perform the actions
just as the manual tester did. “It is our experience and that of every automator that
we have ever spoken to, that the capture/replay architecture is completely worthless as
a long-term testing solution.” The problem is that this solution is not stable and does
not check everything it should. The locators—the identifiers the automation tool uses
to identify buttons and elements on the screen—generated by the capture/replay tool
are sometimes complex or prone to change. In addition, the capture/replay tool does
not capture what the human checks only by looking at the screen because it does not
see the interaction happening. [1, 11]

4.4 Conclusion

It’s important to stress that on the whole project level, manual vs. automated is not an
either-or question. Sometimes, it is not even an either-or question on the test case level.
When a new test case is introduced, and it is a “simulating the user” test case, it can
make sense to test it both ways—manually and by using the automation tool—for the
first few releases because the user interactions with GUI can be difficult to automate
due to instability and are time-consuming to write.

Test automation is not a replacement for manual testing. When used effectively,
it can save time and money, but some tasks are better suited for human testers, and
some cannot be performed by the automation tool because the tool is not thinking. “A

Conclusion 21

manual tester—at least one that knows what they are doing—adds important elements
to the abstract list of steps we call a test procedure. We can narrow it down to two
important characteristics added by the human tester to every line of any test: context
and reasonableness.” [1] In the future, there may be tools using artificial intelligence that
will come closer to thinking human beings, but as for now, there is no such option.

Chapter 5

End-to-End Testing

“End-to-end testing (E2E testing) is a testing method that evaluates the entire appli-
cation flow, from start to finish. It ensures that all components work as expected and
the software application functions correctly in real-world scenarios. In E2E testing,
the software is tested from the end user’s perspective, simulating a real user scenario,
including the user interface, backend services, databases, and network communica-
tion. The purpose of E2E testing is to validate the application’s overall behavior,
including its functionality, reliability, performance, and security.” [12]

E2E testing encompasses the entire application, verifying and validating that the appli-
cation works correctly as a whole. This is done through UI (user interface) and should
be done in a production-like environment to simulate the real user scenarios as closely
as possible. It tests the application from the user’s point of view and doesn’t care about
what’s underneath. Its purpose is to check if the user interaction is correctly received, in-
terpreted, and displayed, e.g., clicking on the button “Show picture” results in rendering
a picture on a screen.

The E2E test cases are user-oriented. One of the first steps is to get into the user’s
mindset, and the other is to talk to a real user or a potential future user. The next step
is to understand the system—how it works and what’s possible to do in it—by using it
and studying the specification and user documentation. An exploratory test technique
can be very helpful in this endeavour. [12]

The test cases are complex, and executing them takes a lot of time. Therefore, E2E
testing should be only used to test common and critical scenarios. E2E testing is not a
silver bullet. And there is no place to test boundary values or exceptional behavior in
this kind of testing, which should be covered by unit and integration tests mentioned in
section 5.1.

22

Test automation pyramid 23

5.1 Test automation pyramid

Test Automation Pyramid is a model popularized in the book Succeeding with Agile
by Mike Cohn. The author describes three kinds of tests based on their scope and
granularity: unit, service, and UI. In some articles, they are called unit, integration, and
E2E, but the idea behind it stays the same. Unit tests check a small piece of code—one
unit—be it a function, method in a class, or a component (in CTFL v4.0 Syllabus [2],
they are called component tests). Because of the small scope, many are needed to achieve
reasonable coverage. Luckily, they are fast; one should run in milliseconds or even faster.
E2E tests, on the other hand, are more extensive in scope, running slower (in seconds),
and complex and costly to make. However, as they cover larger pieces of functionality,
they can catch defects arising from the combination of components or running the app
on different devices or browsers. Integration tests are only a little bit slower than the
unit tests, still usually running in milliseconds, looking for defects in the integration of
the components—how well the components work together. [13]

“The test pyramid is a way of thinking about how different kinds of automated
tests should be used to create a balanced portfolio.” [11] Looking at Martin Fowler’s
representation of the test pyramid 5.1, we can see that the test automation should build
on the many unit tests because they catch the defects as close as possible to the root
cause. They also run fast and are relatively cheap to make, so the return on investment
is high as they give invaluable feedback early. The next floor of the pyramid is the service
tests. Not so many are needed; they should not cover every edge case as the unit tests.
These tests focus on the integration of the component and are faster and easier to make
than E2E tests as they avoid the complexities of dealing with the application’s UI.

Figure 5.1 Martin Fowler’s test pyramid [11]

The following figure 5.2 shows what the different layers of the pyramid cover. Unit
tests are focused only on the code. The logic of extracting data from a database or
communicating with other components is mocked or stubbed to allow tests to run faster
and eliminate dependency on other functions that are not under test and can cause
failure. The integration tests evaluate how components work together, for example,
saving and extracting data from a database or communicating with an API (application
programming interface). E2E tests add interaction with the UI to the stack, mimicking
the user interactions with it.

Test automation pyramid 24

Figure 5.2 Scope of different tests in pyramid from semaphore web [13]

The “balanced portfolio” is needed to ensure that the suite containing all these
automated tests is fast and reliable so that it can be run every release/daily build/push
(depending on the criticality of the product) and produce quick and valuable feedback
to catch the failures early in the development process.

With the constant technological change and development of new technologies, Kent
C. Dodds proposes a new alternative model focused on testing JS (JavaScript) appli-
cations, naming it The Testing Trophy 5.3. “The Testing Trophy reorders priorities.
Integration tests are king as most modern UIs rely on backend components and are
difficult to test in isolation.” [13] Some part of unit testing is replaced by static testing—
using parsers and linters—to catch basic errors. E2E tests still take the same small part
in the overall number of tests.

Figure 5.3 Kent Dodds’ JS test trophy [14]

Benefits of E2E testing 25

5.2 Benefits of E2E testing

The E2E testing increases confidence in the application by ensuring that all components
work correctly together and that the application meets its business and user require-
ments. It complements the other test kinds by offering the user’s perspective, leading to
a more reliable and defect-free application. It allows the testers to create more complex
scenarios, test a broad scope, and ensure the components are integrated correctly and
the data flow is correct. In addition, it ensures that the application is running and
usable, testing it in a production-like environment, as running it in actual production is
not a good idea. Failing tests show how the failure can affect the user. These tests can
be helpful to test cross-browser and cross-device compatibility, even more so if they are
automated, and permissions—one role should see something, the other should not. [12]

5.3 Pitfalls of E2E testing

E2E depends on the entire application being runnable and having UI; therefore, these
tests can be developed only later on in SDLC. The design of an E2E test case is chal-
lenging as the tester first needs to understand the workflow and the user’s goals; only
then can she identify the critical scenarios and use cases. The execution is slow and
time-consuming, simulating real user interactions, such as clicking a button, waiting for
a render, etc.

5.4 E2E tests automation

E2E test cases can be automated. Many frameworks, such as Selenium, Cypress, and
Playwright, can help automate GUI interactions, emulating a real user—clicking on a
button, navigating on a screen, and inputting text. The pitfalls of the use of capture/re-
played tools have already been discussed in section 4.3. Although, the benefits of test
automation 4.1 are still there. It makes sense to automate the common scenarios that
will be otherwise repeated many times manually, considering the return on investment.
If it’s too hard or impossible to automate, it doesn’t make sense to do it. It still all
starts with the manual execution of the test cases. When designing these complex test
cases, the tester must be careful to understand the user workflow properly. It makes
sense to execute the test cases (also) manually for the first few times to ensure that the
test cases are designed soundly and don’t overlook something important.

Automating E2E test cases poses challenges mentioned in the previous chapter 4,
among many more. It’s essential to identify possible screens, web elements—input fields,
buttons—and additionaly the notifications and toast messages that could disrupt the
automated test case execution. Still, it did not cause a problem for a manual tester
because she is a thinking human being. They tend to be flaky. They are difficult to
maintain. They depend on GUI; they use locators to identify the web elements. Although
XPath (XML Path Language) is probably the most well-known locator strategy, it is a
bad idea to use it in E2E tests—the page layout is the thing that changes perhaps the

E2E tests automation 26

most. Some frameworks allow text selectors or even the creation of a custom selector.
The soundest and, in practice, the most used technique is to have the FE developers
team add a unique test ID selector to each critical element. That helps a little with the
stability and maintainability. [15]

Chapter 6

Atlantis

This chapter is about Atlantis that is neither a myth nor an island. Nonetheless, it
is about exploring this application full of wonders, about preparation and setup of the
hunt for potentially poisonous bugs that can be dangerous for the whole ecosystem.
Using Playwright as a tool to set up in place a net, woven carefully using various
test techniques and experience, will hopefully stop the most dangerous bugs. Unfor-
tunately, the net will always have holes through which some bugs can slip, but the
chance at least will be minimalized as it’s always with proper testing.

6.1 About

Atlantis is one of the commercial applications developed by Jagu s.r.o. It is a warehouse
management system aiming to help small and medium-sized warehouses organize their
stock, manage orders, track reservations, deliveries, the actual inventory, and the packing
process.

It is designed for four roles, each having a slightly different objective:

Warehouse worker stocks the delivered goods and does inventories.

Warehouse packer packs orders ready for shipment.

Warehouse organizer manages stock and its location in warehouses. She can create
tasks regarding stock transfer.

Warehouse manager manages warehouses, products, users, and orders. She divides
tasks and checks their fulfillment. In addition to that, she has the same rights and
can do everything someone in the warehouse organizer role can do.

27

How it all started 28

The roles use Atlantis, a web application, on devices with various screen sizes:

Warehouse manager and warehouse organizer typically uses the application on a
computer with a big screen.

Warehouse packer uses a tablet.

Warehouse worker goes around the warehouse only with a Zebra device—a mobile-
sized device capable of scanning barcodes.

6.2 How it all started

In the summer semester of 2022, a bold team of five people signed up to test the FE of
Atlantis. And I was one of them. The others are Jakub Vondráček, Jan Hlaváč, Jan
Jeńıček, and Ivo Koř́ınek. Next semester, Jǐŕı Heller joined the fold. It was a project
marketed under subjects Software Project 1 (SP1) and Software Project 2 (SP2), with
supervisors Ing. Jǐŕı Hunka, CEO of Jagu s.r.o., and Ing. Oldřich Malec, Project Manager
of Jagu s.r.o. 1

The testing should have been focused on the manual testing of GUI, with the pos-
sibility of testing automation. That mainly meant concentrating on UX and functional
E2E tests. As it was known that I would like to focus on this topic in my bachelor
thesis, I was put as the leader of the testing part of the project. Although the project
was focused on testing, the SP1 and SP2 subjects’ demands must have been satisfied,
too, slowing the whole testing process down.

The first step was to familiarize ourselves with the web application and gain ware-
house domain knowledge. There was no user manual at that time, so the only possibility,
other than a brief explanation from the two supervisors, was going through the applica-
tion to figure out what it does—create a warehouse, assign and complete tasks, add a
barcode to a product, etc.

Manual testing was a tedious process, but it helped exploit many bugs that were not
on the usual and most common paths through Atlantis and pinpoint places where visual
enhancements were needed.

6.2.1 Examples of found bugs

One of the problems I encountered was that there was no format validation for codes
and barcodes, so it was possible to input almost anything into that field. That is both
a security issue and, from the user’s point of view, can be an unanticipated behavior—
mistype of one character is not pointed out, so the user can submit a non-existent
barcode.

In the configuration list for the home screen, one of the filters remained with the
i18n (internationalization) text because no translation was defined for it.

1For the convinience of the reader the student changed this section to be written in first person.

How it all started 29

Jakub and I also found a bug: if an item-picking task without a specified target
location was assigned to the warehouse worker and she started working on it, she could
specify a non-existent barcode in the target location field, and the web application let
her do it. That leaves the task with an unspecified location and, therefore, in an invalid
state.

All these issues are fixed in the February 2024 version of Atlantis.
Functional and security unit tests should have found the first one. The second one

is a type that is easier to find during exploratory manual testing. The third one is a
functional test suitable both for the unit—the field component check—and for the E2E
test—the defined target location writes itself to the task assignment.

6.2.2 User manual and diagrams

As part of the SP1 and SP2, we were tasked to write the missing user manual. During
the extensive manual testing and consulting of different possibilities of the applications
and flows through the application with our supervisors, we became domain experts and
experts on how the application works. It also helped that one of the course requirements
was to create use case diagrams, which forced us to relate to the user and understand their
motivations, as these diagrams illustrate different user interactions with the application.
Or that we needed to create activity diagrams, “used to illustrate the flow of control in
a system and refer to the steps involved in the execution of a use case” [16], and that
helped us understand many possible user flows in the app. We, of course, were consulting
not only the creation of these diagrams but also the creation of the user manual with our
supervisors every week, and they consulted it with the warehouse managers and workers
to see if it made sense and corresponded with how they use the application in a real
warehouse environment.

The process of scanning during the tasks can be complicated, as the order of scanning
barcodes by itself can define which item is put where, and it is slightly different for each
task. I was put in charge of modeling that. An example of the scanning control flow,
one of the easiest, can be seen in figure 6.1. Activity diagrams are sort of CFGs but on
a different level, a much higher level of abstraction, but they can be useful for creating
test cases. Particularly for E2E test cases, as they depict various valid and invalid paths
through the software to achieve something. They can also help show the users what they
can do, so we put them into the user manual.

Figure 6.1 depicts the control flow of the scanning part of an item-picking task that
results in the personal collection of the goods. It all starts and ends with the question,
“Have all items been picked?”. Then, there are three parallel flows that can be executed
in any order. One is about picking items from the source location, the second is about
reporting problems (missing items), and the third is about the possibility of returning
previously picked items if the warehouse worker comes upon a better candidate.

The other activity diagrams of different types of scanning are much more complicated,
consisting of many flows and branching a lot, which makes them even more beneficial as
a tool to use when designing test cases.

E2E test case design 30

Figure 6.1 Activity diagram of scanning while item picking for personal collection

6.3 E2E test case design

E2E test case design relies heavily on the tester’s domain knowledge because of their
nature: the simulation of real user interactions and use cases. It is also the inability to
test all scenarios and the fact that edge cases and possible input values are thoroughly
tested on unit and integration levels. The best approach to designing an E2E test case
is either using experience-based techniques to cover key and critical scenarios or seeing
the software in use, seeing the real users interact with it in a natural environment—that
way, the most traveled paths in software can be noted and are the best candidates for
E2E smoke testing.

During SP1 and SP2, a visit to a warehouse where they use Atlantis was arranged,
and a warehouse manager and worker were observed. Combining it with manual testing
and the following exploratory testing performed by the student, led to noting more than
180 ideas about what to test that lay on the critical paths.

E2E test case design 31

Atlantis is a web application consisting of more than 80 different pages, each con-
taining many UI components with which to interact. During the exploratory testing,
each page was visited at least once, but that does not mean all different interactions
and combinations of interactions were carried out. E2E testing is the last layer of tests;
finding bugs at this level is tedious. The exploratory testing was performed with the
user manual and activity diagrams at hand to confirm the app’s behavior against the in-
tended functionality. Other than the created test cases, the exploratory testing led to the
reporting of more than 40 failures in just April and May of 2024. The failures ranged
from missing translation to incorrectly set user rights and non-deterministic behavior
where there should have been one.

Key scenarios were identified as ones about creating and completing tasks, the core
being the manipulation with an external order. On the other hand, such use cases as
creating the warehouse or carrier are not usually carried out daily, so these were decided
unsuitable for the E2E test level. Some use cases, such as filtering tables, are better
suited for UI component testing and not to be implemented as E2E test cases.

Most of the 180 ideas, the most important ones, were compiled into 52 E2E test
cases. Some test cases are only intended for manual execution because they cannot
be done with the testing framework. These cover mainly checking the printing and
scanning functionality and need a Zebra mobile device connected, such as printing the
labels for packages as the last part of the packing process. The others are suitable for test
automation as they are critical E2E test cases and can be implemented using Playwright.
All test cases are written as checklists to be carried out by manual testers and to serve
as a template for the automated test cases that will be almost step by step the same as
these, only including more checks that are required by the framework—waiting for some
page or component to appear. Each test case consists of the preconditions for the case
and the steps to be executed, including actions and verification checks. Here is a part of
an actual test case performed by a warehouse worker, the numbers in the brackets are
the ideas this test case covers:

Complete item picking for local collection (01.03, 01.04, 01.24, 01.27, 02.28)

□ precondition: #53211 (work in progress item picking for local collection with one
item to be picked)

□ go to the work in progress list

□ select a task by clicking on it

□ input + last scanned location barcode

□ fill in the location code in the scan box
□ the location is highlighted
□ the location is written below the scan field as last scanned

Database 32

□ input + last scanned item barcode

□ fill in the item barcode in the scan box
□ last scanned item is 1x item
□ item has moved out of to be stocked column
□ to direct handover to customer column
□ highlighted is direct handover to customer

6.4 Database

An important part of setup and teardown is how to manage test data. Atlantis uses a
Postgres database, which leads to the following questions: What should be the initial
state of the database? How should it be achieved? And to which state will the database
be reverted after the suite’s execution?

6.4.1 Init state and getting data into database

The database could start empty, and the data generated during the test case execution.
It is “the natural way of getting data into the database—using the user interface of the
application.” It does not violate direct access to the database, no fixture2 maintenance
is needed, and the fixtures2 “are always correct since they use the application’s natural
entry points for entering the data in the first place.” However, it would lead to a lot of
execution time being consumed on generating data without much time being focused
on the key and critical scenarios. So, in reality, this approach is, in most cases, not
applicable. [17]

Another option is to populate the database with data also by using the application’s
user interface, but do it before the execution, save it as a snapshot, and then load this
snapshot each time before testing (either before the test suite or each test case). This
approach keeps the advantages of the previous option, but the execution will be much
faster. However, it can take a lot of work to prepare the database to the point that it
will contain data to cover each test case.

The next approach is manually writing fixtures2. It takes time to write them, and
they are not as natural as the data created by using the application. However, the
set of fixtures is usually small, which means quicker load times than when importing a
database. [17]

Atlantis has a deployed testing environment where every developer can manually test
the new features and check the application is working as intended. The student writing
this thesis also used this testing environment during her manual testing. That means
there are a lot of production-like data without actually being the production data that
will fall under GDPR (General Data Protection Regulation). The dump of this testing

2The term fixtures is used either for sample data or for a mechanism to load a set of data into a
database.

Playwright 33

database can serve as a perfect basis for the final database dump. Additional data
are also created through GUI to provide as much natural data as possible. The final
database dump is imported only before the suite execution to allow parallel execution
of the test cases without worrying about a corrupt database state. It is also much faster
to import it only once than before every test case. The thing to be careful about is that
the database has to allow running test cases in any order, so it should cover enough data
so the test cases can work with different tasks and not affect each other.

6.4.2 The importance of cleaning up

The teardown part of the test environment is as essential as the setup part. “Let’s say
you’re in the kitchen and you want to do some cooking. You’re making tomato soup
in a pot, you cook the soup, you put it in a bowl, and you eat the soup. But now you
want some ice cream to top off the meal, but you’ve only got one bowl. You probably
wouldn’t just put the ice cream in the bowl that just had soup in it, first you’d clean
the bowl. You would want to completely clean out your bowl of soup before adding any
ice cream. The same principle applies to automated testing.” [18]

The problem is that the leftover data can overwhelm the testing environment, break
other tests, or impact manual testers that will use the same testing environment think-
ing it’s in the same state they left it—that is mostly a problem on deployed testing
environments shared for manual and automation testing. “There should be no evidence
that we were in the system at all once our tests are finished executing.” [18]

The teardown can be done on a test case level, test suite level, or even all test
suites execution level—but mostly it’s set up on both test case level and test suite level,
allowing for things like deleting only part of the database on the test case level that
can cause problems to other tests, but leaving the cleanup of the whole database to the
teardown of the suite.

The Atlantis test environment for automation has the database in a Docker container,
and the initial state of this database is empty. So, after the suite’s execution, it should
be reverted to empty. What about teardown after each test case? Because of the
setup decision (the database loaded only once before the suite execution), the teardown
cannot include the cleanup of the entire database. Deleting part of the database (the
data created by the test case) could lead to a corrupt database for one of the test cases
because of the parallel execution. The only teardown is, therefore, the one after the
suite execution.

6.5 Playwright

“Playwright enables reliable end-to-end testing for modern web apps.” [19] At least,
that is what their website says. It is a relatively new tool developed by Microsoft and
released in 2020. In 2022, it was already recommended in Vue.js documentation. That
was relevant because the FE part of Atlantis “utilizes a Javascript framework Vue.js and
a graphical library Vuetify” [20]. So, Playwright and JS were chosen, as they appeared

Playwright 34

to be most suitable for the needs and corresponded with the already existing technology
stack.

6.5.1 About

This tool supports multiple rendering engines—like Chromium and Firefox—and various
operating systems. The monitor’s screen size can be set, and the usage of mobile devices
is simulated using native emulation of Google Chrome. The scenarios can span multiple
tabs and multiple users, enabling saving the authentication state to bypass tedious and
time-consuming user login for each test case.

Like many other E2E tools, Playwright can auto-wait: it waits for elements to become
visible or interactive prior to performing a click or any other action. These actions and
checks of a state are limited with a timeout that can be either globally set or set for the
particular action.

It can capture screenshots and videos of what is happening during the execution. The
screenshot taken when a failure occurs can be highly valuable to speed up the process of
finding the root cause; the picture can say a lot if taken at the right moment; sometimes,
it is everything the tester needs for assessing the current situation. Sometimes, it’s clear
from the screenshot that the test case is just flaky and needs to be retried once more; the
retry strategy is also configurable in Playwright. And for CI (Continuous integration)
jobs, it’s very useful that Playwright can record a trace of the retried test, allowing
therefore even better insight into what was happening. [19]

Playwright can also be used to test the application’s REST API. That does not fall
under E2E testing as it bypasses the UI. Still, it can be helpful in combination with
some UI interaction, for example, “validating server post-conditions after running some
actions in the browser.” [21]

6.5.2 Codegen

Section 4.3 supposes that the capture/replay tool is worthless. The Playwright’s cap-
ture/replay shows that a lot can change in 13 years and that the technologies can evolve
and become helpful and sophisticated.

Playwright has a test generator in the form of a capture/replay tool with something
extra. It records the user interactions and generates the code directly into Visual Studio
Code or Playwright Inspector—depending on how the test generator was started. It
uses many different locator strategies and tries to choose the right one for the element.
It also enables the generation of assertions right from the tool. The assertion that the
element is visible, that it contains specific text, or has a specific value. There is also the
possibility to “record at cursor,” which means start recording from a specific point in
the test code. The locators can be picked using this tool and then placed in code.

Setup 35

There is also the possibility to “use the test generator to generate tests using emu-
lation so as to generate a test for a specific viewport, device, color scheme, as well as
emulate the geolocation, language or timezone”. [22]

After the generation, it is still necessary to go through the code if it makes sense
and the locators seem sensible. It is impossible to use it to check everything, so manual
code improvements are needed, but compared to what the book talked about, this tool
is certainly not worthless.

6.5.3 Locator strategies

“Locators are the central piece of Playwright’s auto-waiting and retry-ability. In a nut-
shell, locators represent a way to find element(s) on the page at any moment.” Playwright
focuses on the user-facing locators: getting an element by its role—button, checkbox,
alert—label, placeholder, or even text. It also supports the classic locators, e.g., test id,
CSS (Cascading Style Sheets) selector, and XPath (XML Path Language) locator, but
these are recommended to be used only when necessary. [15]

6.5.4 Page Object Models

“Large test suites can be structured to optimize ease of authoring and maintenance.
Page object models (POM) are one such approach to structure your test suite. . . Page
objects simplify authoring by creating a higher-level API which suits your application
and simplify maintenance by capturing element selectors in one place and create reusable
code to avoid repetition.” [23]

6.5.5 Fixtures

“Test fixtures are used to establish the environment for each test, giving the test ev-
erything it needs and nothing else. Test fixtures are isolated between tests.” One of
the predefined fixtures is page, providing an isolated page for the test case. A fixture
can encapsulate setup and teardown for the page and is reusable between the test cases
and on-demand, meaning only the needed ones for the test case are set up. They are
easily combined with the POMs, making the test cases cleaner without unnecessary page
setups and locator redefinitions. [24]

6.6 Setup

Automated test cases are run using Playwright and Node.js. Prerequisities are that FE
and BE are set up using the instructions on Jagu Gitlab.

The setup for running E2E tests locally consists of:

1. Changing the db_scripts.config to match the project structure

Setup 36

2. Installing Playwright browser dependencies with command:

npx playwright install --with-deps chromium

3. Starting BE docker environment using command:

docker-compose up -d

4. Starting FE test environment using command:

pnpm serve:test

Test configuration can be defined in the playwright.config.js file. It can spec-
ify the directory where to look for tests, timeout for a test case run, and timeout for
assertions—how long it should wait for some condition to be met. [25]

The first keyword in the fragment of playwright.config.js file (code listing 6.1)
sets retries to 2 for the CI job and 0 retries for the local execution. It is because if
the test case fails on the local machine, there is always the person who executed it
and, therefore, can make the decision to run the specific test once more or perform the
scenario manually instead.

retries: process.env.CI ? 2 : 0,
fullyParallel: true,
workers: process.env.CI ? 1 : undefined,
use: { browserName: 'chromium' },

Code listing 6.1 Fragment of playwright.config.js

The fullyParallel keyword specifies whether the tests in one test file should run
in parallel or not. For Atlantis E2E testing, each file just assembles test cases focused
on the same topic, so the parallel execution of test cases in one file is a desired behavior,
as they do not depend on each other. If it’s set as false, the tests in one file run in the
order of declaration. Parallel execution means the total run time is reduced, and it also
follows a good practice to have all tests as independent as possible. If it’s impossible
and some test cases depend on each other, Playwright allows annotating tests for serial
execution:.

test.describe.configure({ mode: 'serial' });

workers keyword limits the maximum number of parallel worker processes. Lim-
iting the workers on CI to 1 turns off parallel execution, but it should lead to a little
better stability, ensuring each test gets full system resources, with a trade-off of slower
execution. The undefined means that for local execution, Playwright uses the default
formula that sets the maximum number of workers to 50 % of the machine’s available
cores.

The suite is run using Chromium (code listing 6.1), therefore it is tested against
Chromium-based browsers such as Google Chrome and Microsoft Edge. That gives a

Setup 37

headstart if the application starts breaking to fix it because the Chromium releases are
ahead of Google Chrome releases.

“A project is logical group of tests running with the same configuration.” It is useful
if it’s desired to run the tests on different browsers or different devices. [26]

projects: [
{

name: 'manager',
testMatch: '*.@(manager|organizer).spec.js',
use: { ...manager }

},
{

name: 'worker',
testMatch: '*.worker.spec.js',
use: { ...worker }

},
{

name: 'organizer',
testMatch: '*.organizer.spec.js',
use: { ...organizer }

},
{

name: 'packer',
testMatch: '*.packer.spec.js',
use: { ...packer }

},
{

name: 'settings',
testMatch: '*/settings.spec.js',
fullyParallel: false,
use: { ...serial }

},
],

Code listing 6.2 Define projects

This presents a perfect opportunity to divide the suite into projects (code listing 6.2)
based on different roles and their devices. The ’worker’ project uses worker login and
device configuration for all tests in files that match the expression '*.worker.spec.js'.
There is a special project named ’settings’ that groups tests focused on checking settings
features, such as language change or time tracking toggle on and off. These tests do
not depend on each other but affect each other and the other tests—because changing
the user settings changes the settings for the same user across all the browsers—e.g.,
switching the language to Slovak causes the text locators in Czech not to be found.

The devices for the specific roles can be defined in JSON (JavaScript Object Nota-
tion) files and then used in the configuration. For example, the Zebra device for the

Implementation 38

warehouse worker can be set like in code listing 6.3, based on Galaxy S5 Playwright
definition.

{
"viewport": {

"width": 360,
"height": 640

},
"deviceScaleFactor": 2,
"isMobile": true,
"hasTouch": true

}

Code listing 6.3 Defining Zebra device

6.7 Implementation

The core part of converting manual test cases to automated test cases is to locate the
elements with which the interactions are. The codegen tool can help with that: it shows
the locators of the elements when hovering over them, which is true for all the elements on
the highest layer. Moving the cursor around is, therefore, one of the strategies that can
be used to locate the elements. It can be tricky as, for example, a button can be partially
covered with some div element, and this codegen tool will show the locator to this div,
not the button. That means the locators need to be carefully chosen. Sometimes, more
than the codegen tool is necessary. Look directly into HTML, derive a locator from that,
and trial and error if it works. The second strategy is essential for locating elements
that are not interactable and are deep into the HTML page structure; they usually don’t
have roles.

The locators and interactions with the pages were then coded using the POM pattern,
and the POMs were employed as fixtures in each test case. Manual test cases can
be converted step by step, but the automated equivalent of some steps needs to be
taken more strictly or less. Imagine such a simple step as “open item-picking task”.
The manual tester clicks on the task and then implicitly waits for the page to load.
The automation tool clicks on the task and waits for the page to load. Where is the
difference? Playwright waits for the page load event to be fired, which is a problem
with dynamic web applications like Atlantis. The load event is fired at the beginning, so
not all components are loaded. So if the load of the whole page is not fast enough, the
next expectation that some element is visible can fail on the timeout. These expectation
checks are, therefore, carefully ordered to lower the chance that this happens; first are
the ones of the first loaded components on the screen. The solution, of course, will be
to (somehow) wait for the whole page to load, but that’s a) almost impossible to do,
b) slows the whole execution, and c) does not simulate the real user: she will not wait
for all components to load if she doesn’t need it. Another solution can be to expand
the timeouts, but it will mean that if some test fails, like really fails, it would make it

Implementation 39

fail slower, slowing the whole execution down. The pages are loading smoothly under
normal circumstances, and the only reason why it occasionally takes longer time for the
page to load is overloaded BE. The correct approach to the loading problem is limiting
the number of test cases that run in parallel.

Just as for the manual test cases, the preconditions must be satisfied, but it’s nec-
essary to be even more specific in automation. In Atlantis, every test case has defined
specific tasks this test case touches. Because the database is set up only once, it’s es-
sential that the automated test cases don’t interact with each other and don’t change
some preconditions that other test cases build on, e.g., changing a sub-warehouse setting
about merging tasks or moving an item from a location that other test case assumes it
there.

The following example 6.4 shows part of a test case performed by a warehouse packer.
There is a title of that test case complete packing - allow selection for each, and the
following line shows which fixtures are used. The next lines specify the tasks this test
case interacts with, and the rest shows the automation tool’s steps. The test.step
syntax is used to encapsulate part of code that is logically together and show it as a step
in the report; don’t worry, the report steps can be expanded.

test('complete packing - allow selection for each',
async ({ common, packing, assignment }) => {

const taskPacking = '53268';
const taskOrder1 = '53265';
const taskOrder2 = '53277';
await common.goToTaskAndWaitForTitle(taskPacking, taskType.packing);
await common.startWorkingOnTaskButton.click();
await expect(packing

.itemInToBePacked(`300 Kus ${item.preclik.name}`)).toBeVisible();

await test.step('scan and confirm product, first order',
async () => {

await common.scanBarcode(item.preclik.code);
await expect(packing.areAllInstancesPackedDialog).toBeVisible();
await packing.confirmPackedButton(`300 Kus`).click();
await expect(

packing.itemInToBePacked(`300 Kus ${item.preclik.name}`))
.toBeHidden();

await expect(
packing.itemInPacked(`300/300 ${item.preclik.name}`))
.toBeVisible();

await expect(assignment.notYetShipmentCheckAlert).toBeVisible();
await assignment

.expectTextToBeVisible(assignment.order, `#${taskOrder1}`);
});

Code listing 6.4 Part of an automated test case

Execution 40

6.8 Execution

Commands for database setup and database teardown are part of the execution com-
mand. Database setup and teardown were discussed in section 6.4. BE and FE of
Atlantis don’t need to be restarted for repeated execution.

To execute a full suite of E2E tests, run command:

pnpm test

To run a specific project, test file, or test, run the corresponding command from the
following commands:

pnpm run test:debug --project=<project_name>
pnpm run test:debug <file_name>.spec.js
pnpm run test:debug -g <test_titles_to_grep>

The list of existing projects is defined in playwright.config.js file (code list-
ing 6.2). test:debug command contains only database setup as it is enough for debug-
ging purposes and it saves time—the presumption is these commands are run repeatedly
and in quick succession.

These four execution commands are for WSL (Windows Subsystem for Linux)/Linux.
The author does not promise anything for Windows users but it should be possible
(bash is required) to run the suite using pnpm test:win and the debug commands using
pnpm run test:win:debug.

Tests, by default, run in headless mode, with the GUI hidden from the human tester.
That is very useful when using automated software because it enables faster execution
due to less resource use but, at the same time, behaves in the same way as with the
GUI, navigating the page and clicking buttons by accessing the web page. However,
sometimes, it can be helpful for a human tester to have the opportunity to see what
steps the automation tool takes in the browser. If the screenshots of failures from the
headless mode run are insufficient to figure out the problem, two Playwright flags come
with a helping hand. The first one is --headed; it will open the browser at the start so
that all interactions will be visible on the GUI.

pnpm run test:debug --headed

The other possible mode is UI mode, and it can be started with a --ui flag. That
opens a UI mode window, where the tester can run the tests and see what steps hap-
pened and what actions the software took. It also enables the inspection of the DOM
(Document Object Model) and picking locators on the different screens the test case ran
by. It also has the Log, Console, and Network tabs. This mode is handy for debugging.

pnpm run test:debug --ui

Execution 41

After execution, Playwright produces a report. There are many possible formats of
the report, to be viewed here: [27], but for its visual and easy navigation, the HTML
(Hypertext Markup Language) report was chosen. The report can be accessed using
the following command, which opens it in the default browser. It shows not only which
test cases passed or failed (figure 6.2), but after clicking on the test, it shows the steps
and time each step took. And, eventually, at which step and on which line the error
happened, and screenshot at the moment of the failure 6.3.

pnpm test-report

Figure 6.2 Part of a test report

On the student’s notebook, which has eight logical processors and uses WSL for
the execution, Playwright spawns four workers. The full suite consisting of 47 logical
test cases runs in 4 minutes. The number 52 shown in the report is because test cases
consisting of switching between different users have to be implemented like separate tests,
and that they run serially and are in one described group doesn’t make a difference to
Playwright.

Using just one worker slows the execution to 7 minutes. This confirms that BE (or
the device running it) can become overloaded, which causes pages to load slowly. If
many tests fail, the right approach is to close all other applications or run it with fewer
workers using command:

pnpm run test:debug --workers=1

Another problem that can cause many tests to fail is that the person executing it
plays with the settings for the users on the locally deployed Atlantis, and she leaves the
window with it open during the execution. Settings, such as language and time tracking,
are saved in the database, but they are also loaded from the browser’s local storage. This
means that the changed settings in the open windows would override the settings in the
database. The easiest solution is to avoid playing with the settings or at least close all
browsers with Atlantis.

Execution 42

Figure 6.3 Part of a test case in report

Conclusion

The main goal of this thesis was to introduce the reader to the topic of quality assurance
and testing, explain why it is necessary, and show the complexity of delivering a high-
quality product. It described various types of tests, such as static, functional, and user
experience. The next part analyzed test design techniques, covering black-box, white-
box, and experience-based techniques. Some of them backed with an example of an
application on an imaginary web application that helped to point out their value but
also potential blind spots.

The benefits and risks of test automation were discussed, and the conclusion that it’s
still necessary to perform manual testing as some defects are impossible or near impos-
sible to detect using automated tests was reached. The E2E testing chapter introduced
the reader to the test automation pyramid and showed how E2E testing fits in with
the other kinds of tests. It also described the benefits and pitfalls of that testing and
discussed the potential automation of E2E test cases, including all the problems that
can arise during the implementation. The theoretical part was then concluded, and its
goals were met.

The work then continued to a more practical part. Atlantis, a warehouse manage-
ment system, was analyzed using manual testing. With the cooperation of colleagues
from Jagu s.r.o. and warehouse workers, a user manual was created, including activ-
ity diagrams detailing, e.g., the possible paths of the scanning process. Thanks to the
exploratory testing over than 40 failures were reported, including visual, functional,
and security ones. Most of them are already assigned to specific colleagues from Jagu
s.r.o. to fix. Also, many recommendations on the visual appearance or application logic
were discussed with the supervisor, approved, and later assigned to the developers to be
implemented.

The test automation environment was set up, including the database and Playwright
testing framework. Commands to prepare the setup and run the E2E test suite were
written for local execution on Linux/WSL machines. Another command was written to
show the report of passed and failed tests in a browser instead of a terminal. The work
also mentioned the Playwright’s many possibilities, such as code generating, running
tests in parallel, or simulating devices of various types with various screen sizes.

43

Conclusion 44

The actual test cases were designed primarily using the exploratory test technique
combined with black-box test techniques and not-so-conventional approaches using an
existing user manual and activity diagrams. Most of the designed test cases were suit-
able for test automation, but for example, testing the correct integration of the Zebra
mobile device scanner with the web application is only possible with the actual device
and someone scanning the code. On the other hand, automation was very suitable for
checking if the toggle to show or not show product images in task works. The test
cases were written in sentences in form of a checklists so the manual tester could easily
understand and execute them and the ones suitable for automation were implemented
using Playwright. There were 54 test cases designed, 47 of them were automated, and
the created test suite runs circa 4 minutes using 4 workers or 7 minutes using 1 worker.

The practical part showed results of the potential applications of the theory explained
in the first few chapters. The created E2E test suite will in future serve as a defense
against regression defects. Therefore, every new Atlantis release that reaches the cus-
tomers should work as intended, at least in key scenarios. All in all, the testing helped
and will help make Atlantis better for users, which concluded the goal of this part.

The work includes only a part of the setup of a CI environment. It is set only on the
Playwright’s side of things, meaning how the execution of the test cases will go. That is
the next sound extension of this thesis. Having it in a pipeline would improve the whole
process, as developers would not need to set up the testing environment to run the E2E
tests. It can be automated even more, e.g., to run after every push to the main branch
to check if the application still works correctly and report the issues directly to some
bug tracking manager.

Bibliography

1. BLACK, Rex; MITCHELL, Jamie L. Advanced Software Testing: Guide to the
ISTQB Advanced Certification as an Advanced Technical Test Analyst. Vol. 3. 2nd.
Ed. by BARABAS, Michael. United States of America: Rocky Nook, 2011. isbn
1933952393.

2. INTERNATIONAL SOFTWARE TESTING QUALIFICATIONS BOARD. Certi-
fied Tester Foundation Level Syllabus v4.0 [online]. 2023. [visited on 2024-03-01].
Available from: https://istqb- main- web- prod.s3.amazonaws.com/media/
documents/ISTQB_CTFL_Syllabus-v4.0.pdf.

3. COLEMAN, Lance B. The ASQ Certified Quality Auditor Handbook. 5th. United
States of America: ASQ Quality Press, 2020. isbn 1951058097.

4. PAGE, Alan; JOHNSTON, Ken; ROLLISON, Bj. How We Test Software at Mi-
crosoft. United States of America: Microsoft Press, 2008. isbn 0735624259.

5. AHMAD, Nazneen. What is Compatibility Testing: Tutorial With Examples [on-
line]. 2024. [visited on 2024-04-03]. Available from: https://www.lambdatest.
com/learning-hub/compatibility-testing.

6. HARTSON, Rex; PYLA, Pardha. The UX Book: Agile UX Design for a Quality
User Experience. 2nd. United States of America: Morgan Kaufmann, 2018. isbn
0128053429.

7. ISTQB® GLOSSARY WORKING GROUP. ISTQB Glossary [online]. 2024. Ver-
sion 4.3 [visited on 2024-04-03]. Available from: https://glossary.istqb.org/
en_US/search.

8. MEHTA, Umang. Risk Scoring Systems: Understanding CVE, CVSS, CWE, CAPEC,
and NVD [online]. 2024. [visited on 2024-04-03]. Available from: https://www.
linkedin.com/pulse/blog-29-risk-scoring-systems-understanding-cve-
cvss-cwe-umang-mehta-1a4xf.

9. OWASP FOUNDATION, INC. OWASP Top Ten [online]. 2023. [visited on 2024-
04-03]. Available from: https://owasp.org/www-project-top-ten/.

45

https://istqb-main-web-prod.s3.amazonaws.com/media/documents/ISTQB_CTFL_Syllabus-v4.0.pdf
https://istqb-main-web-prod.s3.amazonaws.com/media/documents/ISTQB_CTFL_Syllabus-v4.0.pdf
https://www.lambdatest.com/learning-hub/compatibility-testing
https://www.lambdatest.com/learning-hub/compatibility-testing
https://glossary.istqb.org/en_US/search
https://glossary.istqb.org/en_US/search
https://www.linkedin.com/pulse/blog-29-risk-scoring-systems-understanding-cve-cvss-cwe-umang-mehta-1a4xf
https://www.linkedin.com/pulse/blog-29-risk-scoring-systems-understanding-cve-cvss-cwe-umang-mehta-1a4xf
https://www.linkedin.com/pulse/blog-29-risk-scoring-systems-understanding-cve-cvss-cwe-umang-mehta-1a4xf
https://owasp.org/www-project-top-ten/

Bibliography 46

10. BIERIG, Ralf; BROWN, Stephen; GALVÁN, Edgar; TIMONEY, Joe. Essentials
of Software Testing: Guide to the ISTQB Advanced Certification as an Advanced
Technical Test Analyst. United Kingdom: Cambridge University Press, 2022. isbn
1108833349.

11. FOWLER, Martin. Test Pyramid [online]. 2012. [visited on 2024-03-16]. Available
from: https://martinfowler.com/bliki/TestPyramid.html.

12. BOSE, Shreya. What is End To End Testing [online]. 2023. [visited on 2024-03-16].
Available from: https://www.browserstack.com/guide/end-to-end-testing.

13. FERNANDEZ, Tomas; ACKERSON, Dan. The Testing Pyramid: How to Structure
Your Test Suite [online]. 2022. [visited on 2024-03-16]. Available from: https :
//semaphoreci.com/blog/testing-pyramid.

14. DODDS, Kent C. Testing JavaScript: Learn the smart, efficient way to test any
JavaScript application. [online]. 2024. [visited on 2024-03-16]. Available from: https:
//www.testingjavascript.com/.

15. MICROSOFT. Locators [online]. 2024. [visited on 2024-04-03]. Available from: https:
//playwright.dev/docs/locators.

16. GEEKSFORGEEKS. Activity Diagrams [online]. 2024. [visited on 2024-04-08]. Avail-
able from: https://www.geeksforgeeks.org/unified- modeling- language-
uml-activity-diagrams/.

17. NOBACK, Matthias. About fixtures [online]. 2018. [visited on 2024-04-12]. Available
from: https://matthiasnoback.nl/2018/07/about-fixtures/.

18. DIMAYACYAC, Keilah; WAGNER, Chris. The Teardown and What I Learned
About Test Environments From a Bowl of Soup [online]. 2023. [visited on 2024-04-
12]. Available from: https://platotech.com/2021/03/04/the-teardown-and-
what-i-learned-about-test-environments-from-a-bowl-of-soup/.

19. MICROSOFT. Playwright: Fast and reliable end-to-end testing for modern web
apps [online]. 2024. [visited on 2024-03-01]. Available from: https://playwright.
dev/.

20. MALEC, Oldřich. Frontend skladového systému. 2020. Master’s thesis. Faculty of
Information Technology, Czech Technical University in Prague. Available from:
https://dspace.cvut.cz/handle/10467/86593 or https://gitlab.fit.
cvut.cz/malecold/master-thesis.

21. MICROSOFT. API Testing [online]. 2024. [visited on 2024-04-08]. Available from:
https://playwright.dev/docs/api-testing.

22. MICROSOFT. Test Generator [online]. 2024. [visited on 2024-04-08]. Available
from: https://playwright.dev/docs/codegen.

23. MICROSOFT. Page object models [online]. 2024. [visited on 2024-04-08]. Available
from: https://playwright.dev/docs/pom.

24. MICROSOFT. Fixtures [online]. 2024. [visited on 2024-04-08]. Available from: https:
//playwright.dev/docs/test-fixtures.

25. MICROSOFT. Test Configuration [online]. 2024. [visited on 2024-04-08]. Available
from: https://playwright.dev/docs/test-configuration.

https://martinfowler.com/bliki/TestPyramid.html
https://www.browserstack.com/guide/end-to-end-testing
https://semaphoreci.com/blog/testing-pyramid
https://semaphoreci.com/blog/testing-pyramid
https://www.testingjavascript.com/
https://www.testingjavascript.com/
https://playwright.dev/docs/locators
https://playwright.dev/docs/locators
https://www.geeksforgeeks.org/unified-modeling-language-uml-activity-diagrams/
https://www.geeksforgeeks.org/unified-modeling-language-uml-activity-diagrams/
https://matthiasnoback.nl/2018/07/about-fixtures/
https://platotech.com/2021/03/04/the-teardown-and-what-i-learned-about-test-environments-from-a-bowl-of-soup/
https://platotech.com/2021/03/04/the-teardown-and-what-i-learned-about-test-environments-from-a-bowl-of-soup/
https://playwright.dev/
https://playwright.dev/
https://dspace.cvut.cz/handle/10467/86593
https://gitlab.fit.cvut.cz/malecold/master-thesis
https://gitlab.fit.cvut.cz/malecold/master-thesis
https://playwright.dev/docs/api-testing
https://playwright.dev/docs/codegen
https://playwright.dev/docs/pom
https://playwright.dev/docs/test-fixtures
https://playwright.dev/docs/test-fixtures
https://playwright.dev/docs/test-configuration

Bibliography 47

26. MICROSOFT. Projects [online]. 2024. [visited on 2024-04-08]. Available from: https:
//playwright.dev/docs/test-projects.

27. MICROSOFT. Reporters [online]. 2024. [visited on 2024-04-08]. Available from:
https://playwright.dev/docs/test-reporters.

28. KOVÁŘ, Pavel. Backend skladového systému. 2019. Master’s thesis. Faculty of
Information Technology, Czech Technical University in Prague. Available from:
https://dspace.cvut.cz/handle/10467/82591.

29. GRAMMARLY INC. Grammarly [online software]. 2024. [visited on 2024-05-15].
Available from: https://www.grammarly.com. Used in the EDU version with
suggestions but without Generative AI prompting.

https://playwright.dev/docs/test-projects
https://playwright.dev/docs/test-projects
https://playwright.dev/docs/test-reporters
https://dspace.cvut.cz/handle/10467/82591
https://www.grammarly.com

Attachments

text.pdf ... text of thesis in PDF format
link to GitLab.....................................implementation source code
link to Notion...E2E testing materials

Notes from exploratory testing
Ideas on what to test
Key test cases

48

	Acknowledgments
	Declaration
	Abstract
	List of abbreviations
	Introduction
	Quality Assurance
	Web application QA
	Testing approches
	Static testing
	Dynamic testing

	Test types
	Functional tests
	Non-functional tests
	Efficiency tests
	Compatibility tests
	User experience tests
	Reliability tests
	Security tests
	Maintainability tests
	Portability tests

	Test desing techniques
	Black-box test techniques
	Equivalence partitioning
	Boundary value analysis
	Decision table testing
	State transition testing

	White-box test techniques
	Statement testing
	Branch testing
	Condition testing
	Decision condition testing
	MC/DC
	All paths coverage

	Experience-based test techniques
	Error guessing
	Exploratory testing
	Checklist-based testing

	Test automation
	Benefits of test automation
	Risks of test automation, i.e., what speaks for manual testing
	SEARCH of automation testing
	Depending on the people

	Test automation of GUI interactions
	Conclusion

	End-to-End Testing
	Test automation pyramid
	Benefits of E2E testing
	Pitfalls of E2E testing
	E2E tests automation

	Atlantis
	About
	How it all started
	Examples of found bugs
	User manual and diagrams

	E2E test case design
	Database
	Init state and getting data into database
	The importance of cleaning up

	Playwright
	About
	Codegen
	Locator strategies
	Page Object Models
	Fixtures

	Setup
	Implementation
	Execution

	Conclusion
	Attachments

