
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of bachelor’s thesis

Performance impact of the EDNS Client Subnet Extension

Vojtěch Šletr

Ing. Martin Kolárik

Informatics

Computer Systems and Virtualization 2021

Department of Computer Systems

until the end of summer semester 2024/2025

Instructions

EDNS Client Subnet (ECS) is a DNS extension intended to improve DNS-based load

balancing commonly used by content delivery networks and other global services. The

goal of this work is to evaluate its real-world impact on the performance of existing web

services.

Proceed in the following steps:

1. Familiarize yourself with the principles of ECS and the current state of its deployment

in existing public DNS resolvers, and with the Globalping platform (https://globalping.io).

2. Propose a suitable metric for assessing the performance of DNS-based load balancing

and a methodology for evaluating the impact of ECS on the proposed metric.

3. Implement a CLI application that can be used to perform experimental measurements

based on the proposed methodology using the Globalping platform.

4. After consultation with the supervisor, select suitable targets for experimental

measurements. Perform the experiments and discuss the results.

Electronically approved by prof. Ing. Pavel Tvrdík, CSc. on 8 December 2023 in Prague.

Bachelor’s thesis

PERFORMANCE IMPACT
OF THE EDNS CLIENT
SUBNET EXTENSION

Vojtěch Šletr

Faculty of Information Technology
Department of Computer Systems
Supervisor: Ing. Martin Kolárik
May 16, 2024

Czech Technical University in Prague
Faculty of Information Technology
© 2024 Vojtěch Šletr. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic. It has been sub-
mitted at Czech Technical University in Prague, Faculty of Information Technology. The thesis
is protected by the Copyright Act and its usage without author’s permission is prohibited (with
exceptions defined by the Copyright Act).

Citation of this thesis: Šletr Vojtěch. Performance impact of the EDNS Client Subnet Extension.
Bachelor’s thesis. Czech Technical University in Prague, Faculty of Information Technology,
2024.

Contents

Acknowledgments vii

Declaration viii

Abstract ix

List of abbreviations xi

Introduction 1

1 EDNS Client Subnet 5
1.1 Extension Mechanisms for DNS . 5
1.2 Intended implementation of ECS . 6
1.3 ECS usage in practice . 8
1.4 ECS alternatives . 9

2 The Globalping service 11
2.1 JsDelivr . 11
2.2 Available testing tools . 12

2.2.1 DNS . 12
2.2.2 My Traceroute (MTR) . 12
2.2.3 HTTP . 13

2.3 Integration . 13

3 Metrics for analysis 15
3.1 Round-trip time . 15
3.2 Geographical distance . 15
3.3 Content delivery time . 16

4 Methodology proposal 17
4.1 Location of the tests . 17
4.2 Targets of testing . 18
4.3 IP assignment . 18
4.4 Resolvers . 18
4.5 Measurements . 18

4.5.1 Round-trip time . 19
4.5.2 Content delivery time . 19
4.5.3 Geographical distance . 20

4.6 Data evaluation . 20

iii

iv Contents

5 Application for data collection 21
5.1 CLI application . 22
5.2 Inputs . 23
5.3 Data collection . 24
5.4 Solution of Globalping API test limitations 26
5.5 Data visualization . 26

5.5.1 Ratios of assigned IPs . 27
5.5.2 Response times . 28
5.5.3 Delivery times . 28

5.6 Application setup and requirements . 28

6 Performing the measurement 29
6.1 Input data selection . 29

6.1.1 CDNs for testing . 29
6.1.2 Public resolvers used . 30
6.1.3 Locations of the tests . 30

6.2 Test outputs . 31
6.3 Exported data . 32
6.4 Results discussion . 32

7 Conclusion 37

Attachment structure 43

List of Figures

1.1 Structure of fixed part of the OPT RR according to RFC 6891 5
1.2 ECS extension format in DNS packet according to RFC 7871 6

2.1 Exemplary usage of DNS test with default settings implemented above dig 12

5.1 Generated help-page for the first level of commands 21
5.2 Generated help-page for the run subcommand 22
5.3 Sidebar with controls for Ping difference visualization 28

6.1 Ratio of the equal and distinct assigned addresses for AdGuard resolver . 33
6.2 Ratio of the equal and distinct assigned addresses per service 33
6.3 Mean of median response times per service with Control D resolver. . . . 34
6.4 Mean of download times per service with Control D resolver 35

List of Tables

1.1 Public DNS servers and their ECS support 8

6.1 Selected CDN providers . 30
6.2 Selected public DNS resolvers . 30
6.3 Number of unique IP addresses . 34

v

List of code listings

5.1 Function append file from file manager.py handling addition to internal
files . 24

5.2 Handling of depleted hourly API limits . 26
5.3 Code to store data for visualization and relauch the application with

Streamlit . 26
5.4 Code for closing the Streamlit application 27
5.5 Code for hiding the Streamlit deploy button 27
6.1 Modification of the app for collecting the locations 31
6.2 Script for data collection . 31

vi

I would like to thank my supervisor Ing. Martin Kolárik for
sharing his experiences in this field with me, his assistance
with the decisions made, and his contributions to the Globalp-
ing service that serves as a backbone to the application devel-
oped in this thesis.

vii

Declaration

I hereby declare that the presented thesis is my own work and that I have cited all sources
of information in accordance with the Guideline for adhering to ethical principles when
elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipulated by
the Act No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact that
the Czech Technical University in Prague has the right to conclude a licence agreement
on the utilization of this thesis as a school work pursuant of Section 60 (1) of the Act.

In Kladno on May 16, 2024

viii

Abstract

The thesis focuses on comparing the results returned from load balancing DNS servers
supporting ECS and those without this extension. Firstly, it describes what the DNS
extension named ECS is, shows the intended implementation, and compares it to the
actual practiced state. Then it introduces the Globalping platform, its functions and
methods of data collection.

After introducing the main technologies used, it suggests suitable metrics for the
comparison of the returned queries by DNS with and without the use of ECS. We
then propose a methodology to collect and evaluate these metrics. According to the
methodology, we develop a CLI application to automate this process with the use of
Globalping API. This application is then used to perform measurements on a variety of
public DNS services and CDN providers of different network sizes. The evaluated data
suggest a statistically significant improvement when using ECS for some of the tested
services, but without correlation to the size of the DNS resolver or the size of the CDN
service network.

Keywords ECS, Globalping, DNS, load balancing, CDN, CLI, Python

ix

x Abstract

Abstrakt

Práce se zaob́ırá porovnáváńım rozhodnut́ı o přerozdělováńı zátěže na DNS serverech
při použit́ı ECS a naopak bez tohoto rozš́ı̌reńı. Zprvu proběhne seznámeńı se s DNS
rozš́ı̌reńım nazývaným ECS, jeho doporučovanou implementaćı a porovnáńı s jeho
aktuálńı podporou v praxi. Následně poṕı̌se službu Globalping, j́ı podporované funkce
a zp̊usoby sběru dat z jej́ıch výstup̊u.

Po seznámeńı se s hlavńımi použ́ıvanými technologiemi poṕı̌se možné metriky, které
lze využ́ıt pro porovnáńı navrácených výsledk̊u. Pro tyto metriky navrhne metodiku a
implementujeme př́ıslušnou CLI aplikaci určenou ke sběru dat dle navržené metodiky.
Ta použ́ıvá primárně služby Globalping ke sběru definovaných dat a následně tato
data zpracovává pro vyhodnoceńı a př́ıpadnou vizualizaci. Tato aplikace je následně
použita na sběr ukázkových dat z testovaných CDN služeb za využit́ı rozd́ılných DNS
resolver̊u s r̊uznými počty server̊u. Analyzovaná data naznačuj́ı statisticky významné
zlepšeńı pozorovaných metrik při použit́ı ECS pro některé z testovaných služeb, ovšem
bez návaznosti na počet server̊u CDN nebo DNS resolveru.

Kĺıčová slova ECS, Globalping, DNS, přerozdělováńı zátěže, CDN, CLI, Python

List of abbreviations

API Application Programming Interface
CDN Content Delivery Network
CLI Command Line Interface

DNS Domain Name System
ECS EDNS Subnet Client

EDNS Extension Mechanism for DNS
PoP Point of Presence

REST Representational State Transfer

xi

xii List of abbreviations

Introduction

Since the rise of content delivery networks, there has been a need for a precise method to
allocate servers near the client. Servers must be capable of providing content, but must
also be close enough for efficient delivery. Today’s DNS servers can generate dynamic
responses based on the status of the servers inside a given cluster using load balancing
features. But because the delivery time matters, the load balancing isn’t based only on
the load. For example, we should take into account the state of a network or the relative
location of the server and the client.

In our ever-growing networks, the ability to approximate the client location only by
the last known source address can be impaired. The DNS resolvers that have been as-
signed to us can be assigned to large areas and can deform our geographical or statistical
estimations used for server assignment. Thats why ECS was created and implemented,
it is a DNS extension that attaches a client subnet to the DNS query. This method
primarily raised questions about the clients privacy, because techniques of approximat-
ing location by IP are used on a daily basis. But it is not the only rebuke, if the
responses should differ based on the client subnet, it can affect the DNS server’s caching
abilities due to a larger amount of records. Because of this, the promised performance
improvements come into question. Are the responses that were generated with added
ECS performing significantly better? Are privacy concerns and caching challenges worth
the performance improvement?

In this thesis, we will try to answer these questions. This question is mostly important
to CDN providers, their goal is to globally deliver the content. They dispose of many
data centers, and the task of assigning the server to the client is a crucial step for them.
This task of assigning the server to the client is often delegated to a DNS resolver. But
it is not the only possible solution. Some CDNs prefer load balancing through anycast
network. As mentioned above, the DNS resolver can benefit from additional data about
the original client, which could be lost during DNS query propagation. ECS provides to
all resolvers that support ECS a subnet containing the client IP.

Since the implementation of ECS presents some challenges and compromises, not
every DNS resolver supports the extension. We will describe related metrics that can
get affected and present possibilities of their collection. One of the methodologies is
implemented, set of CDN services to be tested will be prepared, and the collected data
will be used to compare the differences caused by the use of ECS for these services.

1

2 Introduction

Thesis goals

The main goal of this bachelor thesis is to describe the functionality of ECS and to
measure the performance difference when it is used. We will define suitable metrics for
measurement and propose how to collect and evaluate them. The thesis output is a
CLI application designed to perform measurements and collect the data obtained. This
application will be suitable for both occasional and periodic testing of the network state.
Its main functionality will be linked to the Globalping API service. The application
will parse the input and collect the data returned by the API. After data collection,
the application will generate visualizations. This funcionality will be presented with
exemplary input data as we discuss and evaluate the performance impact of ECS on the
collected data with possible correlations to the sizes of tested services.

3

4 Introduction

Chapter 1

EDNS Client Subnet

In the first chapters, we will look into the technologies around which our thesis will
revolve. Now, let us describe the main technology, ECS. ECS is part of the DNS ex-
tensions family which provides additional information for better decision–making of the
DNS resolvers. In this chapter, we will describe the Internet standard EDNS(0) and one
of the extensions named ECS.

1.1 Extension Mechanisms for DNS

Extension mechanisms have been created and implemented as a reaction to the limits of
the DNS protocol. As stated in the EDNS standard: “The Domain Name System’s wire
protocol includes a number of fixed fields whose range has been or soon will be exhausted
and does not allow requestors to advertise their capabilities to responders” [1, Abstract]

Figure 1.1 Structure of fixed part of the OPT RR according to RFC 6891 [1, Chapter 6: The
OPT Pseudo-RR]

5

6 EDNS Client Subnet

Additional information is added into the additional data section of a DNS packet in
the form of an OPT (Options) record, which is referred to as a pseudo-RR (Resource
Record). It contains a structure of fixed parts, as shown in Figure 1.1, and a variable
part containing the option code, length in bytes, and its data. [1, Chapter 6: The OPT
Pseudo-RR]

By default, the UDP, packet size is set to 512 bytes, and if the UDP cannot be used
for transmission, TCP on port 53 is used as a fallback mechanism. When EDNS is
used, the size of DNS packets can often exceed 512 bytes, so a reconfiguration is needed
to accommodate larger packets. This happens mainly when DNSSEC is used, which
asynchronously ciphers the content. [2]

1.2 Intended implementation of ECS

The EDNS Subnet Client extension has not yet been standardized and is only docu-
mented for informational purposes, as stated in the RFC 7871 abstract [3]. This ex-
tension tries to solve the performance issues that arise with the spread of centralized
resolvers. Their location can vastly vary from the original location of the client, and
because of that, authoritative nameservers can create different, less precise responses.
ECS in addition to DNS requests provides a scope of the originating network that can,
but does not have to be used for creating a DNS response.

But it helps with more than just delivery performance. Geographical data can be
used also for policy compliance, for instance the cloud security company Zscaler sees
also benefits in using ECS values to identify the clients more accurately and enforce
policies according to it or check the compliance with local regulations. This additional
knowledge can help us with decision making, but raises questions about the security of
client sensitive information [4].

Figure 1.2 ECS extension format in DNS packet according to RFC 7871[3, Chapter 6: Option
Format]

Intended implementation of ECS 7

The format of the ECS option is stored, as mentioned in the definition of EDNS, in
the additional data section of the DNS packet. The structure of the variable part of OPT
RR is described in 1.2. The option code for ECS is 0x0008, family represents the address
family code assigned by IANA. For us, the most important family codes are number 1:
IPv4 and number 2: IPv6. The source prefix–length marks a usable prefix for lookup
and is mirrored from query to response. The scope prefix–length is set to 0 in the query,
and in the response it represents the prefix that was used for generating the response.
The sent address must be truncated according to the source prefix and replaced by zeros;
otherwise, the query should be rejected. [3, Chapter 6: Option Format]

The extension can be attached by the first resolver closest to the client, in most cases,
it is represented by a stub resolver, but it doesn’t have to be. It can be added along
the way on a resolver that serves larger areas and where accuracy could be affected.
Of course, for the successful usage of this information, every topologically succeeding
resolver until the authoritative nameserver has to be ECS compatible.

“If the triggering query included an ECS option itself, it must be examined for its
source prefix-length. The Recursive Resolver’s outgoing query must then set source prefix-
length to the shorter of the incoming query’s source prefix-length or the server’s maximum
cacheable prefix length.” [3, Subsection 7.1.1: Recursive Resolvers] This means that the
source prefix-length set to 0 effectively disables the extension. If any of the succeeding
resolvers doesn’t support ECS or DNS extensions at all, the additional data can be
ignored and lost.

As documented in RFC 7871, when the authoritative nameserver receives a query
with injected ECS, but the nameserver doesn’t accept ECS, the extension should be
ignored and the response shouldn’t contain the ECS data. Some nameservers can blindly
copy it from a query into a response. Because the scope prefix has to be set to 0 in the
query, the response is still valid – prefix 0 means it applies to every address.

If the nameserver accepts ECS, it can use its provided information and set the scope
prefix accordingly for correct caching. The response is propagated through the interme-
diate nameservers to the query author. The response gets propagated with additional
ECS information only to the point where the ECS was injected. When caching, the
address with the shortest prefixes of the source, scope, and locally configured maximal
prefix gets stored. [3, Section 7.2: Generating a Response]

Even in the RFC 7871 [3, Subsection 7.3.1: Caching the Response], they mention the
impact on the cache when ECS is supported. When intermediate nameserver supports
ECS, the cache is filled up by entries duplicated for different subnets, and because of
that, the number of unique entries cached is decreased, and the load on the server has
to increase.

8 EDNS Client Subnet

1.3 ECS usage in practice

Implementing ECS into a resolver’s topology can impose many difficulties. From the
impact on the cache performance to security obligations. For example, NS1 has seen a
significant increase in queries when ECS is enabled: “Typically, for a non-ECS-enabled
record, 2-3% of queries come from Google and OpenDNS. For an ECS-enabled record,
that can increase to between 10-50% of queries depending on the user base. In some
extreme cases, NS1 has seen traffic inflate up to 2-3 times upon enabling ECS.” [5] This
corresponds to findings published at the Internet Measuring Conference in 2019 about
cache–hit ratio drop: “The results show a drop in hit rate due to ECS by more than
half, for all client populations. For the full client population, the hit rate declines from
around 76% to around 30%” [6]

These results show that we must be careful about the prefix length that we are
storing. The prefix length is important not only because of the cache performance, but
also because of the security aspect. In RFC 7871 it is recommended to use a 24 or 20
bit prefix: “To protect user’s privacy, Recursive Resolvers are strongly encouraged to
conceal part of the user’s IP address by truncating IPv4 addresses to 24 bits. 56 bits are
recommended for IPv6, based on [RFC6177].

ISPs should have more detailed knowledge of their own networks. That is, they might
know that all 24-bit prefixes in a /20 are in the same area. In those cases, for optimal
cache utilization and improved privacy, the ISP’s Recursive Resolver should truncate IP
addresses in this /20 to just 20 bits, instead of 24 as recommended above.” [3, Section
11.1: Privacy]

Table 1.1 Public DNS servers and their ECS support

Service name ECS support IP of controlled primary DNS resolver
AdGuard DNS yes [7] 94.140.14.14
CleanBrowsing no 185.228.168.168

Cloudflare no [8] 1.1.1.1
Comodo Secure DNS no 8.26.56.26

Control D no 76.76.2.0
Dyn yes[9] 216.146.36.36

Google yes[10] 8.8.8.8
OpenDNS yes[11] 208.67.222.222

Quad9 yes[12] 9.9.9.11
Yandex DNS no 77.88.8.88

ECS alternatives 9

This shows that the integration of ECS into a standard isn’t straightforward. Many
public DNS recursive resolvers already support it, but we can still find nonnegligible
outliers that slow down its full integration, as can be seen in the table 1.1.

Some of these DNS providers don’t disclose their ECS support status. In those
cases, we collected data from the dig utility. When the subnet option is used on the
dig command, it specifies the ECS option in the DNS request, and we can analyze the
responses to determine if the resolver utilized it.

1.4 ECS alternatives

The ECS isn’t the only viable option for CDNs. Another popular method of effective
load balancing can be achieved through anycast routing. Anycast-based CDNs delegate
the load balancing to the routers. Their data centers share a common IP address, so
the DNS resolver response is always the same. When a request is sent to the given IP,
routers have to assign the server. This presents benefits as well as drawbacks. The load
balancing can be done more dynamically – with every request, the assigned server can
be changed according to the actual state of the network. That serves as an effective
mitigation strategy for DDoS attacks. It is easier to dynamically change the active
servers. When a server is added/removed, it just needs to be propagated to the routers,
and no other action is needed. But, as mentioned, the network has to be adapted for
anycast traffic. Routers have to be able to advertise the anycast groups, the routers have
to monitor the state of the network to make load balancing decisions or, for example,
there must be policies in place that supervise geopolitical compliance. [13]

10 EDNS Client Subnet

Chapter 2

The Globalping service

There are multiple ways to test the state and quality of the network. In most cases,
we can use many local-run techniques for basic network testing. But in some instances
of worldwide accessible services, such as content delivery networks, tests have a higher
informational value, when performed at different locations. These CDNs could poten-
tially benefit the most from enabling the ECS option, but testing should become even
more intensive to make the right load-balancing decisions. Since renting multiple server
locations can become quite expensive for larger business models, there are services such
as Globalping or Ripe Atlas that provide this feature.

Globalping is an open-source project developed by the jsDelivr organization and
provides multiple testing features for data collection from many running probes around
the world. Probes are hosted on servers and stations and can be expanded by anyone who
runs a container provided by the developers. This chapter is based on the information
provided by Globalping [14] and jsDelivr [15].

Ripe Atlas has more than 12 thousand testing probes around the world and, according
to their website, they aim to be the largest testing network. But unlike Globalping,
users cannot create their own tests above their infrastructure without participating in
the project. They can become a sponsor or become a probe practitioner to gain credits.
After that, they can create and run their own testing scenarios. [16]

2.1 JsDelivr

The jsDelivr organization’s main product is a free CDN for open source files. With
the main focus on fail-proof solutions, load balancing, and accessibility, the project is
accessible without bandwidth limits for free, and the CDN loads are distributed along
the sponsor’s servers.

Currently, jsDelivr CDN is a multi-CDN that uses CDN networks provided by Cloud-
flare, Fastly, Bunny, and GCore, and uses 2 DNS providers with load balancing capabil-
ities to evade the risk of a single point of failure.

11

12 The Globalping service

It’s not a coincidence, that they decided to develop Globalping. As a CDN provider,
they benefit from a worldwide testing tool for their network state. By allowing others
to access this testing service and giving away benefits for maintaining their own probes,
they gain a solid testing ground to evaluate the state of their network.

2.2 Available testing tools

To this day, five possible testing tools are provided. In this section, we look at them in
more detail. Every tool can be targeted at a chosen URL/IP and the tester can specify
a set of locations where to test from. If the tester wants randomly chosen locations, he
leaves the location on “World” and then specifies the number of tests to run. According to
the Globalping website, the location specification can be quite heterogeneous. Thanks to
what is called the “magic API field”, they are able to parse many different location names
of different granularity. For example, we can specify location from default World value,
through continents, countries, to ASNs or ISP names. We can even specify datacenter
tags or cloud region names. With a valid specification of the location, they will try to
find the most suitable and active probes in the amount asked. If not enough probes fit
the specification, the number of tests will be set to the available number of probes.

2.2.1 DNS

Figure 2.1 Exemplary usage of DNS test with default settings implemented above dig [14]

DNS testing is performed on probes using the dig command for DNS lookup. With
default settings in use, the dig runs with some predefined arguments as shown in figure
2.1. In addition, we can set the port, protocol, record type, IP address of the desired
resolver, and usage of the trace option for iterative queries.

2.2.2 My Traceroute (MTR)
MTR is a special combination of network tools used to test the network. “My Traceroute
(MTR) is a tool that combines traceroute and ping, which is another common method for
testing network connectivity and speed. In addition to the hops along the network path,
MTR constantly shows up-to-date information on the latency and packet loss along the
route to the destination. This helps in troubleshooting network issues by allowing you to

Integration 13

see what’s happening along the path in real-time.” [17] We can use options to specify the
transport protocol (TCP, UDP, ICMP), with ICMP selected as a default for pinging, the
number of test packets for each hop, and the port. Of course, Globalping provides both
ping and traceroute as separate testing features, and these results could be replicated
manually.

2.2.3 HTTP
For testing, we can also use the HTTP request and monitor the response metrics. Except
for the received header, we gain time measurements about DNS query, TCP connection,
time to first byte (TTFB) and download time of the contents. The request can be
modified with a specified header consisting of hostname, path, query string, targeted
port, protocol (HTTP, HTTP2, HTTPS), and method used (GET, HEAD). We can
also select a specific resolver. This method of testing with consistent options can be
periodically run for data collection and subsequently monitoring the state of the network.

2.3 Integration

The goal of the Globalping project is to provide easy testing tools so that they can be
automatically deployed. This presents a challenge in creating many possible integrations
to reach a larger audience. For one-time testing, the easiest is possibly the integration
into their website. Although data can be collected directly from the website, it would
be time-consuming and resource-consuming. The main computer-friendly integration is
provided by the REST API, and the other integrations provided by Globalping are based
on it as well. The API doesn’t require authentication and the request–response model
is JSON-encoded with standardized HTTP response codes.

In addition to API, we can use the CLI implementation for Debian / Red Hat-based
operating systems or MacOS with support for all testing methods, as it is ideal for
scripting. For better documentation of the tests and their shareability, it can generate
an url for the recorded values.

We can also add Globalping functionality to our Slack chat, and it can be run directly
by users or as a GitHub Bot. According to the Globalping website, more versions are to
come. For example, integration for ChatGPT, Zapier, or GitHub Action. [18]

14 The Globalping service

Chapter 3

Metrics for analysis

In this chapter, we will focus on accessible metrics for further analysis. We will describe
some of the possibilities that can be periodically measured and compared against each
other. Our main focus is on the server assigned by the DNS query response. The
additional load generated by the ECS option on DNS resolvers and its effect on the
DNS resolver response time are secondary to us. But even with this in mind, there are
multiple ways to compare the responses.

3.1 Round-trip time

Even though we are not focused on the response time of the DNS resolvers, we can
demand low response times and fast delivery of content from the assigned servers. One of
the easiest scenarios for measuring these capabilities can be comparing round-trip times
of packets between the client and the assigned server. These statistics provide important
information on the state of the network. These metrics can be primary if the load is
frequent, time-sensitive, and relatively small. With larger packets, this importance can
decrease, even though it always depends on our ability to receive and process incoming
data.

3.2 Geographical distance

Another way of comparing the assigned servers is to estimate the geological position and
measure the distance from our client. Even though this type of measurement doesn’t
automatically relate to performance metrics, it can help us with geological policy en-
forcement and can give us a insight into the load balancing techniques used by the
resolver.

The geographical distance can be estimated on its own using multiple techniques.
One of the most used techniques is database geolocation. This database can map IPs to
countries, cities, ISPs, and other similar locations.

15

16 Metrics for analysis

However, the database has to be well maintained with a sufficient number of entries to
be precise. The next option can be String matching geolocation that relies on information
accessible from DNS names. We can track location by having many known nodes and
finding location using the shortest RTT or topological order and other algorithms. [19]

3.3 Content delivery time

To complete our data collection, it is important to test the network throughput or the
delivery time of the content. For periodic testing, we can prepare static data that
correspond with our typical data delivery requests, or create multiple sets of these files
and compare the download times from assigned servers. For example, this test can be
performed as an HTTP request with time-measuring functions, as mentioned in Section
2.2.3.

For optimal testing, this measurement requires us to state our priorities and to
research the most frequent file sizes that our service delivers. We should periodically
inspect those decisions and change the tested files accordingly.

Chapter 4

Methodology proposal

We have already set the metrics of interest in the previous chapter. Now we can consider
metrics collection techniques and propose a methodology for their evaluation. As stated
before, we focus on the performance benefits of ECS for CDN providers. Because of
that, the tests should be run globally and evaluated together.

Our goal is to decide whether the performance of content delivery is improved by
using ECS. In addition, we want to test whether the performance impact is affected by
the size of the CDN network or the DNS resolver. We expect that the change in network
sizes could impact the ratio of distinctively and equally assigned CDN servers, and with
this change in ratio, we could see the ECS perform differently. To test this, we will select
the CDN services and resolvers to cover different company sizes and permutate these
combinations.

4.1 Location of the tests

To run the tests from various locations around the world, we have to obtain access to
the servers or end-user devices at those locations that are capable of running our tests.
It could be done by renting many hosted servers or even buying and maintaining them.
But it is very expensive and not nearly as flexible as our other option. In Chapter 2,
we have described the Globalping service that provides us exactly with these features
to run tests from hundreds of possible probes and, in this instance, even without any
costs to run these tests. Globalping isn’t the only testing service available, similarly, we
mentioned RIPE Atlas with even more probes, but RIPE doesn’t provide free testing
utilities without participating on the project. Thats why we will propose the tests with
the Globalping abilities in mind.

17

18 Methodology proposal

4.2 Targets of testing

As we are trying to find a relation between CDN size and the performance impact, we
will choose our targets based on their availability to the public and the number of PoPs
(points of presence) provided. We need to filter out CDNs that use anycasted routing,
because then the DNS responses would be the same as they assign the server by routing
in the moment of data request instead of DNS request. We won’t also test private CDNs
as they serve only content of a specific parent company and they can’t be used by other
customers.

4.3 IP assignment

As we are testing the ECS capabilities, we are coming to a bottleneck in our methodology
proposal. For every location tested, we need a static resolver that will serve both our
DNS requests — with and without the ECS. The selected testing utilities don’t provide
us with the option to set the subnet prefix provided by ECS to 0 length. Without setting
the prefix to 0, we cannot ensure that an intermediate resolver will not add the ECS
along the way. There is a special public DNS resolver Quad9 [20], which allows control
of the ECS, but it would limit our choices and the results of our measurement could not
be easily convertable to other DNS services.

With these limitations in mind, we have decided to perform the measurements using
only DNS servers that do not support ECS. To simulate the ECS functionality, we will
use the DNS trace option. When the trace flag is set, the command iteratively propagates
the DNS query through the resolution hierarchy by sending the requests directly from
the client to every intermediate resolver up to the authorative nameserver. This means
that the nameserver has direct access to the client IP address. This will serve as a
best-case scenario for the ECS function, because ECS should not provide a prefix longer
than 24 bits [3, Section 11.1: Privacy] under normal circumstances and with the trace
option, we will provide all 32 bits of our IPv4 address to the nameserver.

4.4 Resolvers

As described in previous section, we will be using resolvers that don’t support ECS.
Because of that we won’t rely on default recursive resolvers assigned to the probes and
we will be selecting public resolvers. We already listed a few of them in the section ECS
usage in practice in the first chapter. We will consider the number of their servers, as it
could impact the resolution.

4.5 Measurements

After we have selected our targets, the locations from which to run the tests and which
resolvers to use, we can approach the measurements themselves. Let us say that we
have been assigned with IP addresses of the service servers for every location and every
service that we chose. With the first step completed, we can start collecting data about
our defined metrics.

Measurements 19

In some cases, the IP assigned by a non-traced DNS query will match the traced
DNS query. We could run the test 2 times, but the differences coming from those results
wouldn’t reflect the change in DNS decision but only a instability of the network or
change in cache. We don’t consider these metrics relevant and because of that, the
measurement will be conducted only once. We could even ignore locations with same
assigned IPs, but since we are creating a global average of the difference, we don’t want
to exclude them as they are part of the DNS behavior.

4.5.1 Round-trip time
With already assigned IPs, the response time is fairly straightforward. We can use
ICMP ping to measure it and run it multiple times just to get more representative
average values. But average values are not everything, we can make use of its extremes
for informational purposes. It is also a good idea to account for occasional packet loss
by implementing outlier detection or to analyze the median of response times instead of
mean.

4.5.2 Content delivery time
The measurement of the delivery time is not as straightforward as measuring response
time. Before performing these tests, we need to set a representative response size for
the tested service. Since we are conducting a general test of universal services, we can
simulate a content delivery for a web page.

If we look into the last report on page weight by Web Almanac from the year 2022 [21],
the websites are steadily growing each year and in 2022, the 50th percentile of the median
total web weight was around 2MB. This isn’t served as a single request, but is split into
higher tenths or requests. The loaded images contribute to the page weight in about
1MB per page, and Javascript files can reach about 500kB. Even with compression and
minification techniques, web weights grow consistently every year.

With these statistics in mind, we can prepare multiple files with different sizes and
test their delivery times against each other. Since we already have the server’s IP
assigned, we can focus just on the delivery.

The most interesting metrics for us are the time until the first byte is received and
the download time itself. To ensure the consistency of the tests, we need to run these
tests multiple times, so that the CDN can cache the response at the nearest available
location. This will help our further analysis as we don’t have to consider the probabilities
of a cache miss.

20 Methodology proposal

4.5.3 Geographical distance
To measure the approximated distance of the client from the server, one needs to obtain
the longitude and latitude of both of them. Since we chose Globalping testing probes, we
obtain its longitude and latitude data in every successful measurement. The location of
the CDN server would then have to be obtained from a third-party geolocation database,
and their precision could affect our measurements. Because of this, we will not gather
this proposed metric.

4.6 Data evaluation

After collecting the data, we should have accessible data for every location in the per-
mutation of the targeted service, the used resolver, and the downloaded file. This is
an ideal premise, and during the real measurements, some locations will be lost as the
test will be run continuously for hours. We can then group them into categories by the
number of CDN PoPs and the number of DNS servers for each tested file. Then we can
look if any of these groups performed better when the IP was assigned by trace DNS
query and compare the groups between each other if the effects are canceling each other
out with different number of servers or vice versa.

To confirm our observations, we can use Paired T-Test on the median response times
and the download times. The differences between the measurements on the assigned
servers should follow a normal distribution and will be independent between locations
and services. By choosing the null and alternative hypotheses based on the mean of
difference, we will be able to pick out subjects that will not fit into the set significance
level and we will reject the null hypothesis in favor of the alternative hypothesis.

This evaluation can help us understand if the performance impact can become neg-
ligible with enough servers available by DNS and/or CDN service, or if the performance
impact overcomes the stated privacy concerns and challenges with higher loads on DNS
cache.

Chapter 5

Application for data collection

Since we have proposed a method that we could use for the ECS performance testing,
we can develop an application, designated for data collection. In this thesis, we aim
to develop a CLI application that will be able to collect data for metrics described in
the previous chapter Metrics for analysis. Because our application is meant to test
mostly CDN services that rely on DNS load balancing, we want to perform our tests
from multiple locations. Because of that, we will be using testing utilities provided by
Globalping. As mentioned in the chapter Globalping service, they dispose with hundreds
of testing probes around the world, which can be accesed through their RESTful API.
Eventhough the API doesn’t require authetication, without it, there are hourly limits in
place that we will have to respect.

For easier data collection, input processing, and mainly data aggregation, we chose
to develop the application in Python 3.10. Python provides us with modules that ensure
standardized CLI, API utilities, plenty of possibilities to store and aggregate the collected
data, and also gives us solid ground for additional features like visualization of the data.

Figure 5.1 Generated help-page for the first level of commands

21

22 Application for data collection

5.1 CLI application

Since we chose Python, we could standardize the interface of our application with existing
modules. After testing multiple of them, we build our interface on top of the Argparse
module1. This provides us with support for nested commands, many types of options
and arguments, and automatically generated help-pages.

As the commands are nested, firstly the commands are split between test locations
management, management of the tested services, running the ping and http tests, and
lastly running the visualizations. These commands are documented for help-page gen-
eration, which respects the command nesting as can be seen in figure 5.1

These commands continue to be divided by subcommands and other options similarly
to the main run command in Figure 5.2. This command handles the main task of
running the tests and therefore contains many possible options and flags to change the
program behavior. From input specifications, suppressing error messages and enabling
the visualization to the data export.

Figure 5.2 Generated help-page for the run subcommand

1https://docs.python.org/3/library/argparse.html

https://docs.python.org/3/library/argparse.html

Inputs 23

5.2 Inputs

The main data expected at the input are the locations from which to run the tests
and the services that should be tested from them. Those inputs can be imported from
external CSV files, or they can be stored internally in named sets with multiple ways of
managing these sets.

For locations, our application doesn’t parse the location names from input and we
are handing them over to the Globalping API that provides special “magic” fields for
location selection. This funcionality has been already described in the chapter Globalp-
ing. Thanks to this functionality, we only store the location specification and the number
of probes that should be used in this location. When there are not enough test probes
corresponding to the location specification, the number of tests is reduced to the number
of corresponding probes. The number of locations is limited by the API and is set to
200 for every location up to 500 in total, or one location with up to 500 measurements.

For services, we have to store more information. Mainly we need the service URL,
for more lucid data export, we optionally collect user-defined name for the service, and
if the http test should be run, we collect additional URL from where a test object should
be downloaded for advanced performance measurements. But if the user doesn’t include
them, the application generates both values from the service URL. If multiple files should
be tested, the user can set only the base URL and append file names with option -f when
starting the test.

Both sets can be saved internally with additions/deletions from the CLI, or they
can be overwritten from an external CSV file. When the tests are run, they can accept
more optional arguments like custom resolver for DNS requests, authentication keys to
increase the API’s limits, or IDs of previous measurements to reuse the test locations.

Both of these subcommands delegate file operation to functions available from
file manager.py. In this file, the adresses are parsed, and with the use of pathlib module2,
file operations are performed, including exception management. This can be seen in the
code listing 5.1 where the line should be added to the internally stored set of locations
or services. The function first generates an absolute path to the expected file to mitigate
the path of the working directory from which the app was run. Then it checks if the file
exists and if it is a writeable path. If the file or its parent directory does not exist, it
will try to create them and write the initial line of CSV with column names. Only then
is the line written, and possible exceptions are treated.

Other functions handle the files with a similar level of caution for errors. The File
Manager takes care of file writing, deleting files and lines from them, loading Pandas
Dataframes from CSV files, or listing stored files.

2https://docs.python.org/3/library/pathlib.html

24 Application for data collection

Code listing 5.1 Function append file from file manager.py handling addition to internal files

def append_file (setname , line , location = False):
filepath = pathlib .Path(local_addr (setname , location))
dirpath = pathlib .Path(__file__). parent . absolute ()
dirpath = (dirpath / " location_sets "

if location
else dirpath / " service_sets ")

try:
if not filepath . exists ():

if not dirpath . exists ():
dirpath .mkdir(parents =True)

if not dirpath .is_dir ():
print (" Cannot create file , " +

dirpath . __str__ () +
"is not a directory ",

file=sys. stderr)
return

with open(filepath , "w+") as file:
if location :

file.write("Location , Count\n")
else:

file.write(" ServiceName ,ServiceURL , "
+ " DownloadPath \n")

file.write(line + "\n")
elif filepath .is_file ():

with open(filepath , "a") as file:
file.write(line + "\n")

return
else:

print (" Cannot append file , " +
filepath . __str__ () +

"is not a file", file=sys. stderr)
except PermissionError as e:

print(" Permission denied ", file=sys. stderr)
except IOError as e:

print(" Unable to write into the file " +
filepath . __str__ (), file=sys. stderr)

5.3 Data collection

The app collects the data from the Globalping API. When input data are parsed, the
app first uses DNS mode to receive the IPs of assigned servers. This is done twice for
each location as we collect the IP assigned by the standard DNS request and also from
the trace DNS request. The trace option ensures that the nameserver has our client’s
IP and simulates the best-case scenario for the ECS option. When the IPs are collected,
we can continue with the selected test.

We must ensure that the locations do not change during our tests. Because Glob-

Data collection 25

alping probes don’t have public IDs and we cannot choose them directly, Globalping
returns ID of the measurement, which can later be used to run more tests from the
same probes. We can use this instead of the separate probe ID and replace the location
specification. When request ID is used, Globalping ensures that the same probes are
used and results are returned in the same order. Although this solution seems flawless, it
poses a challenge on the amount of the request sent. Since we have received the server’s
IP previously from the DNS request, we cannot use the URL as a target and we need
to run the API request for every unique IP and location. This poses a challenge on the
API limits and significantly slows down the data collection.

Following the guidelines of Globalping API [18], the application can request the
results every 500 ms until measurements are collected. Because of that, there is a lot
of waiting time that gives us an opportunity to parallelize the data collection. Firstly,
we collectively query the DNS for each service. After getting the IPs assigned, we store
each location as a set of country code, city name, and ASN. This can lead to losing some
locations with the same attributes, but if we would query the DNS separately by every
location, we would lose the automatical probe dispersion provided by the Globalping
magic field.

After parsing the DNS queries, the following tests will be run for each service and
location separately, once with IP assigned without the trace option and with the location
defined by the country, city and ASN. Secondly, if IP assigned by the traced DNS differs,
another test is run for the given IP, with the location specified using the ID of previous
measurement.

All measurements are created, retrieved, and stored in Pandas Dataframe in functions
defined in the file api interface.py as they handle DNS queries and http or ping tests.
The process of creating a measurement is done in a unified function send request that
sends POST requests using the module Requests 3 and handles possible response codes
and exceptions that could arise, including the depletion of hourly API limits.

With the long waiting times for measurement data retrieval, parallelization is needed.
For DNS queries, the worker manages both sending the request and retrieving the data,
as it is required only twice per service. In follow-up testing scenarios, the measurement
is created in the parent thread, and the worker threads serve only as consumers of the
shared queue. The default number of running threads is set to 16 but we recommend
running at least 64 as many of them will be waiting the defined 500ms. The user can
change this value by using the -t option with values in the range of 1-1024.

If in any of the workers an exception arises that would make the continuing test
unforessenable, the thread end variable representing synchronized threading.Event() is
set and the program is ended. In most cases, this action isn’t needed as the failed
measurement gets simply skipped. If all tasks are completed, the results get joined with
existing dataframe and the collection ends.

3https://requests.readthedocs.io/en/latest/

26 Application for data collection

5.4 Solution of Globalping API test limitations

Eventhough the service is accessible for free, there are limits to the number of tests to be
performed per hour. To overcome this, the user can use the authentization key to gain
higher limits or to be charged for the test in credits. When the hourly limit is depleted,
API responses with code 429, the function send request handles this behavior, as can
be seen in the following code listing 5.2. The function reads the returned headers and
they contain values about the limits and consumed credits if the authentication key was
used. When the –daemonize flag is set, the application waits for the returned time and
requests the results again. Otherwise, the application ends.

Code listing 5.2 Handling of depleted hourly API limits
if response . status_code == 429:

till_reset = int(response
. headers [’X-RateLimit -Reset ’])

if daemonize :
time.sleep(till_reset)
return send_request (data , headers , daemonize)

else:
raise requests . exceptions . RequestException (
" Globalping API Limit Exceeded , wait " +
str(till_reset) + " seconds and try again" +
" or run the tests with -d flag. If you " +
"have valid authentication key for Globalping "
"API and sufficient credits , use parameter -k")

5.5 Data visualization

When running the tests, the flag –visualize can be set to display the data using Streamlit
module4. Since the streamlit website app has to be started separately with streamlit run
[file.py], the application saves the generated data internally into the visualize folder and
relaunches the application as can be seen in 5.3.

Code listing 5.3 Code to store data for visualization and relauch the application with Stream-
lit

if args. visualize :
if data_for_visualization (results):

print ("To stop the web application , use Ctrl+C"+
" or click the Close button on page.")

sys.argv = [" streamlit ", "run",
pathlib .Path(__file__). parent . absolute ()

. __str__ () + "/ visualizer .py"]
sys.exit(stcli.main ())

else:
print (" Couldn ’t store data for visualization ")

4https://streamlit.io/

Data visualization 27

The streamlit application opens up a loaded website in our browser and then can be
terminated using Ctrl + C in the terminal, or we added an additional close button to its
sidebar. The closing mechanism, seen in code listing 5.4, used by the button is also used
when the application is unable to continue corectly like when the data at input couldn’t
be succesfully loaded. This process is based on a solution made by the Streamlit user
Ahmadzam [22]

Code listing 5.4 Code for closing the Streamlit application
def close_app ():

time. sleep (0.5)
Terminate streamlit python process
pid = os. getpid ()
p = psutil . Process (pid)
p. terminate ()

Another modification to the web page was to hide a Deploy button that is by de-
fault shown in the application header. This could be hidden with the Tony Kipkemboi
code [23] with this modified block of code 5.5.

Code listing 5.5 Code for hiding the Streamlit deploy button
st. markdown ("""

<style >
.reportview - container {

margin -top: -2em;
}
. stDeployButton { display :none ;}

</style >
""" , unsafe \ _allow _html=True)

When data are successfully loaded from the CSV file, the program checks for columns
found and adds possible visualization modes accordingly. With selected visualizations,
other control features can be loaded into the web sidebar. Those include filtering by a
service, removing rows with the same IPs assigned by DNS query with and without the
trace flag, filtering out the outliers or sampling the data, to make the graphs more lucid.

Outliers are filtered by the function zscore provided by Scipy Stats package. It
calculates the mean of the values in the column and assign a z-value to them assuming
the data follow a normal distribution and remove outliers with more than three times
the deviation. [24]

5.5.1 Ratios of assigned IPs
First category of possible visualizations is the ratio of IPs assigned by DNS servers
without trace flag that match the responses of the traced DNS. We can look into these
numbers globally, per service and per location.

28 Application for data collection

5.5.2 Response times
Another visualization is based on the time differences between the response times. The
16 collected pings are aggregated into the median and can be aggregated as a mean per
service, or we can select a service and see the difference per location. In this detailed
view, sampling comes handy so the location labels don’t overlap each other. For ping,
we offer the option to display the lowest and highest value along with the average. These
controls are located in the sidebar, as can be seen in Figure 5.3

Figure 5.3 Sidebar with controls for Ping difference visualization

5.5.3 Delivery times
Last set of visualizations uses data collected from the http test. There are two modes
that display the difference between the total download times per service or per location
and service, or there is a more detailed version that shows a dual-stacked bar graph
that displays the actual time until the first byte was received and the download time
afterward.

5.6 Application setup and requirements

The application comes with requirements.txt file through which the user can install
all dependencies using the command pip install -r requirements.txt. After meeting the
requirements, the application can be run with the command python3 ecs collector . . .
The application comes with pregenerated data for visualization and comes with pre-filled
location and service sets. To test the basic functions, the user can follow the available
ReadME.md file or just use the -h flag that will show him the available subcommands.

Chapter 6

Performing the measurement

In this chapter we focus on input data selection, its parsing into the application, running
the tests and generating data from them, exporting the data and lastly discussing the
outcome.

6.1 Input data selection

As we mentioned in the methodology proposal, we will choose our input data with
multiple criteria. For both public resolvers and CDN providers, we will try to find
services with different numbers of servers. The CDNs will have to be publicly usable,
and they have to use DNS to load balance their servers. The resolvers on the other hand
can’t support ECS to ensure the client’s subnet won’t be propagated to the nameserver.

6.1.1 CDNs for testing
We have chosen the services that met our criteria and were successful in storing our
testfiles on their servers. The services and their number of locations can be seen in
the table 6.1. Some other services were in play, but we were unable to get a free test
account to be able to use them. To list some of them, we weren’t able to get in contact
with services like Akamai and CDNetworks. Some other known services come to our
mind when selecting the services, like Microsoft Azure, Cloudflare, Google Cloud, Edgio,
Wedos, Imperva, or GCore, but, based on our testing, they use anycast routing instead
of DNS-based load balancing.

The data cached in these services were 3 files of different sizes with generated “lorem
ipsum” content. The file sizes were 10KB, 100KB, and 1MB according to the methodol-
ogy proposal. These files were uploaded to the services directly or a free Github-hosted
page ecstest1.github.io was used to cache.

29

30 Performing the measurement

Table 6.1 Selected CDN providers

Service name Number of servers / locations
Cloudfront 1200 PoPs in 300+ cities[25]

Bunny CDN 123 locations[26]
Fastly 78 locations[27]

KeyCDN 60 locations[28]
CDN77 54 locations[29]
Netlify 22 locations[30]

6.1.2 Public resolvers used
To test the difference that the size of public DNS can have on the assignment, we chose
public resolvers listed in the table 6.2. This variance should provide us with enough
information if the number of DNS locations affects the server assignment.

Table 6.2 Selected public DNS resolvers

Resolver name Number of servers / locations Resolver IP
Cloudflare 320 cities 1.1.1.1[31]

Quad9 220 locations 9.9.9.9[32]
Control D 137 locations 76.76.2.0[33]

CleanBrowsing 58 servers in 28 cities 94.140.14.14[34]
AdGuard 70 servers in 15 locations 208.67.222.222[35]

6.1.3 Locations of the tests
We didn’t specify the locations for the testing and let Globalping choose them variably
from the active pool of probes. We maximized the number of locations and ran a test
with 500 locations specified as “World”. We ran this request right before the data
collection and obtained a measurement ID to reference this location list for every other
succeeding test.

In addition, we slightly modified the application, as can be seen in the code listing
6.1, to record the returned locations for us, and the list of locations can be seen in the
attachments.

Test outputs 31

Code listing 6.1 Modification of the app for collecting the locations
location_map = sim. StringIntMap ()
print (’index ,country ,city ,asn ’)
for row in response [’results ’]:

if (’probe ’ in row and
all(l in row[’probe ’]

for l in [’country ’, ’city ’, ’asn ’])):
print (str(location_map . string (

row["probe"][" country "],
row["probe"]["city"],
row["probe"]["asn"]))

+ "," + row["probe"][" country "]
+ "," + row["probe"]["city"]
+ "," + str(row["probe"]["asn"]))

return location_map

6.2 Test outputs

After the measurement ID was obtained as mentioned in the previous section, we ran a
script, which can be seen in the code listing 6.2, to collect and export data from the ping
and http measurements for every mentioned service and resolver from the locations.

Code listing 6.2 Script for data collection
#!/ bin/bash
declare -a res_ip =(
[0]=208.67.222.222
[1]=94.140.14.14
[2]=76.76.2.0
[3]=9.9.9.9
[4]=1.1.1.1
)
declare -a res_name =(
[0]= AdGuard
[1]= CleanBrowsing
[2]= ControlD
[3]= Quad9
[4]= Cloudflare
)
declare id=" ThYo3LoyqqxcyBiL "
for i in {0..4}
do
time python3 ecs_collector run -i -c 1 -d -t 1024 \

-e data/$(($i + 1)) _${ res_name [$i]}. csv \
-r ${ res_ip [$i]} ping http $id services \

-f 10 100 1000 2>&1 | tee -a \
data/$(($i + 1)) _${ res_name [$i]}. log

This script runs the tests for every resolver with one round of cache warm-up to
standardize the download times, uses the maximum of 1024 threads, exports the results
into separate files and specifies the names of the 3 files to be downloaded.

32 Performing the measurement

In addition, it runs a time command to measure collection time and logs the output
of the application into separate files. If the API limit should be reached, the -d flag is
set to wait until reset of limits and continues in the measurements.

6.3 Exported data

The tests were completed successfully after 7 hours of continuous running. We have
collected data from 437 locations, as some of them shared the same identifiers and some
of them stopped responding during the testing phase. We haven’t been able to collect
response times from Netlify servers as it seems that the ICMP protocol for ping is blocked
by their firewall.

For this exact collection, the testing time per resolver was, on average, 84 minutes,
but when similar tests with the same measurement settings were run from another
station, we were able to achieve times under 50 minutes. We suppose that the final times
are dependent on the number of CPU cores and the abilities of the network interface.

All generated data can be found in attachments as they are five different CSV files
consisting of around 7500 rows each. They are sorted per the service in the same order as
on input, as multiple files were downloaded, the measurement rows are duplicated, and
the file name is appended to them, the appended string is also stored in separate column
for easier parsing later on. If a ping test was run, the measured data are represented
only in the first of these duplicated rows. As 16 ping packets were sent to every assigned
server, the response times are stored separately plus aggregated data such as mean,
median, minimum, and maximum value. For the http test, the time to first byte, the
download time, and their sum are stored. All these columns are duplicated and the prefix
“t ” is used for the responses from the trace-assigned server. If same IP was resolved,
the data are identical to the non-traced version.

6.4 Results discussion

After data collection, we have looked at the pregenerated visualizations by running a
“python3 ecs collector visualize -p [file path]”, when we visually compared the results,
we found that the ratio of identical and distinct assigned servers was consistent through
our testing for every resolver, as the percentage of distinct IP addresses was around 65%
as can be seen in Figure 6.1

Results discussion 33

Figure 6.1 Ratio of the equal and distinct assigned addresses for AdGuard resolver

The ratios per service remained fairly similar throughout the tests as well, as some
services responded differently more often than others, as can be seen in Figure 6.2

Figure 6.2 Ratio of the equal and distinct assigned addresses per service

34 Performing the measurement

We expected to see some differences between the used resolvers and we looked into
the data itself. We have counted the total number of unique addresses, and later on we
counted the addresses for each service also 6.3, and the data stays consistent throughout
the testing.

Table 6.3 Number of unique IP addresses

Service name AdGuard CleanBrowsing Control D Quad9 Cloudflare
Cloudfront 257 262 247 247 249

Bunny CDN 120 119 122 120 117
Fastly 80 81 81 79 80

KeyCDN 45 46 45 46 45
CDN77 204 201 207 205 198
Netlify 28 28 28 28 28
total 734 737 730 725 717

The only outlier that didn’t correspond with the expected number of servers was the
CDN77, but after examining the IPs with the IPinfo tool [36], we were able to confirm
that every location uses at least pair of IPs and often more, so the number of locations
corresponds with our expectations in the end.

This data lead us to believe that, in our measurements, the resolvers in our tested
range of tenths to lower hundreds of locations don’t visibly affect the outcome of the
response. After observing the responses from DNS, we arrive at evaluating the response
times and download times of the services. When observed visually, we used primarily
the absolute mean values per service next to each other, such as the ping measurement
in Figure 6.3 or 6.4

Figure 6.3 Mean of median response times per service with Control D resolver.

Results discussion 35

Figure 6.4 Mean of download times per service with Control D resolver

When compared to other visualizations from other data sets, some services kept
similar results and some didn’t, to evaluate the results more precisely, we have used the
Paired T-Test on the median of the response time per location and the total download
time per location. In both instances, the assigned servers should return data that are
dependent on each other through location but are independent between locations or
services and resolvers. Also, the differences between these values are normally distributed
and so the Paired T-Test can be used.

To perform this test, we have used Scipy Stats module1. We have stated the null
hypothesis such that the mean of the times measured on non-trace assigned servers
will be equal or lower, with the alternative hypothesis that the mean times from trace
assigned servers will be lower. When examined for the 5% significance level, we have
rejected the null hypothesis in favor of the alternative hypothesis in some cases, which
can be seen in the attachments.

When we examined the rejections, some services were present in almost all tested
permutations of test type and resolver. With these data in mind, we can say that the
Cloudfront servers assigned from DNS query with trace flag performed overall better
and the mean measured times were lower. In terms of percentages, improvements in
Cloudfront’s performance ranged from 12.2% to 38.2% for download times and from
12.7% to 17.5% for the average response times. We have seen a statistically significant
improvement for CDN77 download times in the range from 6% to 22.9% percentage
wise, but the response times were not significantly better, as the improvement rate
stayed between 5.6% and 11.2%. The download times were sometimes also better for
Netlify and Bunny CDN, but they weren’t consistent, so we will not conclude anything
about the performance improvement. The Fastly service, on the other hand, performed
often similarly or slightly worse when a trace DNS query was used.

1https://docs.scipy.org/doc/scipy/reference/stats.html

36 Performing the measurement

As the results vastly differ between the services, we don’t find correlation between
the CDN size and the results of measurements. Cloudfront as the biggest tested service
performed overall better, but also the middle-sized CDN77 had seen significant per-
formance improvements. On the other hand, Fastly, size-wise placed in between these
CDN providers, doesn’t profit from the client source address as well as the results from
Bunny CDN, that don’t show significant changes. The reason behind these differences
is a good suggestion for future research. In this moment, we can only speculate that
the service-specific setup of the load-balancing implementation may cause ECS to be
inefective.

Even though we are unable to conclude the performance impact from the knowledge
of client source address or part of it based on the size of CDN provider and the used
resolver, we were able to confirm the possibility of performance improvement with the
usage of ECS for some services. However, to achieve these improvements, more research
is needed to understand why only some services benefit from ECS, and our application
may be used to perform additional measurements.

Chapter 7

Conclusion

Our objective has been to map the EDNS Client Subnet extension and its performance
impacts. We focus on its recommended implementation and use that is described in
RFC 7871. We have looked into its drawbacks that are posed on ECS supporting DNS
resolvers and outlined some reasons why it isn’t supported by all public DNS resolvers
including the biggest one of them – Cloudflare.

We wanted to introduce testing services that are used for testing the network state
from many locations such as Globalping. We zoomed in on the CDN provider JsDelivr,
which developed this testing utility as it gained its own worldwide testing service by
providing the testing tools to others and rewarding users for running their own probes.
We mentioned other testing service RIPE Atlas that provides more probes, but unlike
Globalping, doesn’t offer completely free testing without participation on the project.
We dive into the offered testing utilities, their customizable options, and their imple-
mentations based on the REST API.

After introducing ECS and the need to review its performance impacts, which are
most important for CDN providers that use DNS load balancing, we looked at possible
metrics that could be compared against each other. Those metrics can be measured
when the ECS enabled DNS query returns a different assigned IP than the ECS disabled
query.

During the methodology proposal, we have substituted the use of ECS by the traced
DNS query as it provides us with more flexibility and wider selection from possible DNS
resolvers. We also specified the simulated content for delivery according to the global
web statistics and the proposed methodology for evaluation.

Based on this methodology and the stated need for world-wide testing of the CDN
load balancing capabilities, we have developed a CLI Python application. This appli-
cation uses a standardized command-line interface, provides multiple possible ways of
data import and export, and uses Globalping API to collect data about CDN services
from multiple specified locations around the world.

37

38 Conclusion

After the application was implemented and tested, we gathered a list of CDNs, public
DNS resolvers, set locations for the tests, and run our tests. Although the results were
different from our expectations when the methodology was proposed, we were able to
evaluate the data and confirm that some services perform overall better when ECS was
simulated. We weren’t able to confirm a correlation between the number of CDN servers,
number of DNS servers and the outcomes. As this remains unanswered, more testing
and research is required to better understand it. Based on our findings, possibly more
complex methodology could be proposed to test the implications of different service sizes
and perhaps find out the reason for these inconsistencies.

Our application can remain a solid testing ground for the ECS performance impacts,
and it is possible to implement more modes of testing to reflect the possible shift in
methodology proposal.

Bibliography

1. SILVA DAMAS, Joao da; GRAFF, Michael; VIXIE, Paul A. Extension Mechanisms
for DNS (EDNS(0))[online] [RFC 6891]. RFC Editor, 2013. Request for Comments,
no. 6891. Available from doi: 10.17487/RFC6891.

2. THE DNS INSTITUTE. DNSSEC Guide : What’s EDNS All About (And Why
Should I Care)? [Online]. ©2014-2017 [visited on 2024-02-24]. Available from: htt
ps://dnsinstitute.com/documentation/dnssec-guide/ch03s05.html.

3. CONTAVALLI, Carlo; GAAST, Wilmer van der; LAWRENCE, David C; KU-
MARI, Warren ”Ace”. Client Subnet in DNS Queries[online] [RFC 7871]. RFC
Editor, 2016. Request for Comments, no. 7871. Available from doi: 10.17487/RFC7
871.

4. ZSCALER INC. About EDNS Client Subnet (ECS) Injection [online]. ©2007-2024
[visited on 2024-03-03]. Available from: https://help.zscaler.com/zia/about-
edns-client-subnet-ecs-injection.

5. NS1. EDNS Client Subnet (ECS) extension [online]. 2024-03 [visited on 2024-05-
15]. Available from: https://www.ibm.com/docs/en/ns1-connect?topic=overv
iew-edns-client-subnet-ecs-extension.

6. AL-DALKY, Rami; RABINOVICH, Michael; SCHOMP, Kyle. A Look at the ECS
Behavior of DNS Resolvers [online]. In: Proceedings of the Internet Measurement
Conference. Amsterdam, Netherlands: Association for Computing Machinery, 2019,
pp. 116–129. IMC ’19. isbn 9781450369480. Available from doi: 10.1145/335536
9.3355586.

7. ANDREY, Meshkov. Privacy-friendly EDNS Client Subnet [online]. 2024-01 [vis-
ited on 2024-04-12]. Available from: https://adguard-dns.io/en/blog/privacy
-friendly-edns-client-subnet.html.

8. JACKSON, Kody. FAQ - Cloudflare 1.1.1.1 docs [online]. 2024-04 [visited on 2024-
04-12]. Available from: https://developers.cloudflare.com/1.1.1.1/faq/.

9. ORACLE. EDNS Client Subnet (ECS) FAQs & Information — Dyn Help Center
[online]. ©2024 [visited on 2024-04-17]. Available from: https://help.dyn.com/e
dns-client-subnet-faq-info/.

39

https://doi.org/10.17487/RFC6891
https://dnsinstitute.com/documentation/dnssec-guide/ch03s05.html
https://dnsinstitute.com/documentation/dnssec-guide/ch03s05.html
https://doi.org/10.17487/RFC7871
https://doi.org/10.17487/RFC7871
https://help.zscaler.com/zia/about-edns-client-subnet-ecs-injection
https://help.zscaler.com/zia/about-edns-client-subnet-ecs-injection
https://www.ibm.com/docs/en/ns1-connect?topic=overview-edns-client-subnet-ecs-extension
https://www.ibm.com/docs/en/ns1-connect?topic=overview-edns-client-subnet-ecs-extension
https://doi.org/10.1145/3355369.3355586
https://doi.org/10.1145/3355369.3355586
https://adguard-dns.io/en/blog/privacy-friendly-edns-client-subnet.html
https://adguard-dns.io/en/blog/privacy-friendly-edns-client-subnet.html
https://developers.cloudflare.com/1.1.1.1/faq/
https://help.dyn.com/edns-client-subnet-faq-info/
https://help.dyn.com/edns-client-subnet-faq-info/

40 Bibliography

10. GOOGLE. eDNS0 Client Subnet (ECS) - Interconnect Help [online]. ©2024 [visited
on 2024-04-17]. Available from: https://support.google.com/interconnect/an
swer/7658602?hl=en.

11. ALEXANDER, Harrison. Umbrella and EDNS Client Subnet (ECS) [online]. 2022-
09 [visited on 2024-04-17]. Available from: https://support.umbrella.com/hc/e
n-us/articles/360021857552-Umbrella-and-EDNS-Client-Subnet-ECS.

12. QUAD9. Frequently Asked Question [online] [visited on 2024-04-17]. Available from:
https://www.quad9.net/support/faq/.

13. IMPERVA INC. What is Anycast Routing [online]. © 2024 [visited on 2024-04-19].
Available from: https://www.imperva.com/learn/performance/anycast.

14. JSDELIVR. Globalping - Internet and web infrastructure monitoring and bench-
marking. Available also from: https://www.jsdelivr.com/globalping.

15. JSDELIVR. About - jsDelivr [online]. ©2012-2024 [visited on 2024-03-15]. Available
from: https://www.jsdelivr.com/about.

16. RIPE NCC. What is RIPE Atlas? - RIPE Atlas — RIPE Network Coordination
Centre [online]. ©1992–2024 [visited on 2024-04-03]. Available from: https://atl
as.ripe.net/about.

17. CLOUDFLARE, INC. What is My Traceroute (MTR)? [Online]. ©2024 [visited on
2024-03-20]. Available from: https://www.cloudflare.com/learning/network-
layer/what-is-mtr/.

18. Globalping API [online]. 1st ed. 2024. Available at https://www.jsdelivr.com/d
ocs/api.globalping.io.

19. CHATZOPOULOU, Doxa; KOKKODIS, Marios. IP geolocation [online]. 2007. ht
tps://www.researchgate.net/publication/228453630_IP_geolocation.

20. QUAD9. Service Addresses & Features [online] [visited on 2024-05-14]. Available
from: https://quad9.net/service/service-addresses-and-features.

21. JAMIE, Indigo; DAVE, Smart. Page Weight 2022 [online]. 2022-10 [visited on 2024-
05-08]. Available from: https://almanac.httparchive.org/en/2022/page-weig
ht.

22. AHMADZAM. Close Streamlit App with button click [online]. 2023-07 [visited on
2024-05-07]. Available from: https://discuss.streamlit.io/t/close-streaml
it-app-with-button-click/35132/5.

23. TONY, Kipkemboi. Removing the deploy button [online]. 2023-10 [visited on 2024-
05-07]. Available from: https://discuss.streamlit.io/t/removing-the-deplo
y-button/53621/2.

24. PANDEY, Harsh. How to Calculate z-score in Python [online]. ©2024 [visited on
2024-05-07]. Available from: https://flexiple.com/python/z-score-python.

25. AMAZON WEB SERVICES, INC. Key Features of a Content Delivery Network –
Performance, Security – Amazon CloudFront [online]. ©2024 [visited on 2024-05-
09]. Available from: https://aws.amazon.com/cloudfront/features/?nc=sn&l
oc=2&whats-new-cloudfront.sort-by=item.additionalFields.postDateTime
&whats-new-cloudfront.sort-order=desc.

https://support.google.com/interconnect/answer/7658602?hl=en
https://support.google.com/interconnect/answer/7658602?hl=en
https://support.umbrella.com/hc/en-us/articles/360021857552-Umbrella-and-EDNS-Client-Subnet-ECS
https://support.umbrella.com/hc/en-us/articles/360021857552-Umbrella-and-EDNS-Client-Subnet-ECS
https://www.quad9.net/support/faq/
https://www.imperva.com/learn/performance/anycast
https://www.jsdelivr.com/globalping
https://www.jsdelivr.com/about
https://atlas.ripe.net/about
https://atlas.ripe.net/about
https://www.cloudflare.com/learning/network-layer/what-is-mtr/
https://www.cloudflare.com/learning/network-layer/what-is-mtr/
https://www.jsdelivr.com/docs/api.globalping.io
https://www.jsdelivr.com/docs/api.globalping.io
https://www.researchgate.net/publication/228453630_IP_geolocation
https://www.researchgate.net/publication/228453630_IP_geolocation
https://quad9.net/service/service-addresses-and-features
https://almanac.httparchive.org/en/2022/page-weight
https://almanac.httparchive.org/en/2022/page-weight
https://discuss.streamlit.io/t/close-streamlit-app-with-button-click/35132/5
https://discuss.streamlit.io/t/close-streamlit-app-with-button-click/35132/5
https://discuss.streamlit.io/t/removing-the-deploy-button/53621/2
https://discuss.streamlit.io/t/removing-the-deploy-button/53621/2
https://flexiple.com/python/z-score-python
https://aws.amazon.com/cloudfront/features/?nc=sn&loc=2&whats-new-cloudfront.sort-by=item.additionalFields.postDateTime&whats-new-cloudfront.sort-order=desc
https://aws.amazon.com/cloudfront/features/?nc=sn&loc=2&whats-new-cloudfront.sort-by=item.additionalFields.postDateTime&whats-new-cloudfront.sort-order=desc
https://aws.amazon.com/cloudfront/features/?nc=sn&loc=2&whats-new-cloudfront.sort-by=item.additionalFields.postDateTime&whats-new-cloudfront.sort-order=desc

Bibliography 41

26. BUNNYWAY D.O.O. Global CDN Network — Low latency CDN with 114+ PoPs
[online]. ©2024 [visited on 2024-05-10]. Available from: https://bunny.net/netw
ork/.

27. FASTLY INC. Fastly network map [online]. 2024-03 [visited on 2024-05-09]. Avail-
able from: https://www.fastly.com/network-map/.

28. PROINITY LLC. Network - KeyCDN [online]. ©2024 [visited on 2024-05-09]. Avail-
able from: https://www.keycdn.com/network.

29. CDN77. Status — CDN77 documentation [online]. 2024-05 [visited on 2024-05-09].
Available from: https://client.cdn77.com/support/status.

30. CHRIS, McCraw. Is there a list of where Netlify’s CDN pops are located? [Online].
2024-01 [visited on 2024-05-10]. Available from: https://answers.netlify.com
/t/is-there-a-list-of-where-netlifys-cdn-pops-are-located/855/2.

31. CLOUDFLARE INC. Cloudflare Global Network — Data Center Locations [online].
©2024 [visited on 2024-05-10]. Available from: https://www.cloudflare.com/ne
twork/.

32. QUAD9. Locations [online] [visited on 2024-05-10]. Available from: https://www
.quad9.net/service/locations/.

33. CONTROL D INC. Network [online] [visited on 2024-05-10]. Available from: http
s://controld.com/network.

34. CLEANBROWSING. CleanBrowsing Network Status [online]. 2024-05 [visited on
2024-05-10]. Available from: https://cleanbrowsing.org/status/.

35. ADGUARD DNS. AdGuard DNS — ad-blocking DNS server [online]. ©2016–2024
[visited on 2024-05-10]. Available from: https://adguard-dns.io/en/welcome.h
tml.

36. IPINFO. The trusted source for IP address data, leading IP data provider [online].
©2024 [visited on 2024-05-12]. Available from: https://ipinfo.io/.

https://bunny.net/network/
https://bunny.net/network/
https://www.fastly.com/network-map/
https://www.keycdn.com/network
https://client.cdn77.com/support/status
https://answers.netlify.com/t/is-there-a-list-of-where-netlifys-cdn-pops-are-located/855/2
https://answers.netlify.com/t/is-there-a-list-of-where-netlifys-cdn-pops-are-located/855/2
https://www.cloudflare.com/network/
https://www.cloudflare.com/network/
https://www.quad9.net/service/locations/
https://www.quad9.net/service/locations/
https://controld.com/network
https://controld.com/network
https://cleanbrowsing.org/status/
https://adguard-dns.io/en/welcome.html
https://adguard-dns.io/en/welcome.html
https://ipinfo.io/

42 Bibliography

Attachment structure

/
readme.md .. Attachement structure
thesis..Thesis LATEXsource code

sletrvoj BP 2024.pdf...........................Generated bachelor thesis
ecs collector...Application

service sets.....................................Preloaded set of services
location sets Preloaded set of locations
visualize....................Pregenerated data for the visualization demo

data.......................................Data and logs from data collection
inputs...................................Input data for the measurements
logs...Logs from the data collection

43

	Acknowledgments
	Declaration
	Abstract
	List of abbreviations
	Introduction
	EDNS Client Subnet
	Extension Mechanisms for DNS
	Intended implementation of ECS
	ECS usage in practice
	ECS alternatives

	The Globalping service
	JsDelivr
	Available testing tools
	DNS
	My Traceroute (MTR)
	HTTP

	Integration

	Metrics for analysis
	Round-trip time
	Geographical distance
	Content delivery time

	Methodology proposal
	Location of the tests
	Targets of testing
	IP assignment
	Resolvers
	Measurements
	Round-trip time
	Content delivery time
	Geographical distance

	Data evaluation

	Application for data collection
	CLI application
	Inputs
	Data collection
	Solution of Globalping API test limitations
	Data visualization
	Ratios of assigned IPs
	Response times
	Delivery times

	Application setup and requirements

	Performing the measurement
	Input data selection
	CDNs for testing
	Public resolvers used
	Locations of the tests

	Test outputs
	Exported data
	Results discussion

	Conclusion
	Attachment structure

