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A B S T R A C T

Information entropy is a measure of the uncertainty of a probability
distribution. Stochastic systems tend to be in the state of maximal entropy.
Without any internal dependencies, this would correspond to a uniform
distribution. However, variables are typically dependent on each other.
We can gain insights into groups of mutually dependent variables by
fixing marginal entropies and then computing the maximal possible entropy.
When comparing the results, we can say how much groups of n variables
interact compared to groups of other sizes. This thesis focuses on methods
that maximise entropy under entropic constraints, the implementation and
comparison of these methods, and their demonstration through several
examples. It also evaluates data from real-life neurological experiments,
comparing the results with data published by the authors and with data
from another bachelor’s thesis.

A B S T R A K T

Informační entropie je míra nejistoty pravděpodobnostní distribuce.
Stochastické systémy mají tendenci být ve stavu maximální entropie. Bez
jakýchkoliv vnitřních závislostí by to distribuce odpovídala rovnoměrnému
rozložení. Ale většinou jsou jednotlivé proměnné na sobě závislé. Fixováním
marginálních entropií a poté spočítáním maximální možné entropie
jsme schopni získat náhled do skupin vzájemně závislých proměnných.
Při pohledu na výsledky pak můžeme říci, jak moc všechny skupiny
n proměnných spolu interagují v porovnání se skupinami jiných velikostí.
Tato práce se zaměřuje na metody maximalizace entropie s entropickými
podmínkami, jejich implementaci a porovnání a předvedení na několika
příkladech. Také vyhodnocuje data z reálného neurologického experimentu
a porovnává výsledky s originálními výsledky publikovanými autory a
s výsledky jiné bakalářské práce.
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1 I N T R O D U C T I O N

Probability distributions are hidden in many aspects of everyday life,
and they provide information about phenomena that might seem to be
completely random. Those stochastic systems usually require more than one
variable to be described. When a probability distribution depends on more
variables, it also contains information about the dependence of variables
on each other. While mutual dependence of specific variables can be
easily seen by eliminating other variables, insight into mutual dependence
over every possible set of variables with given size cannot be seen that
straightforwardly.

Inspection of those relations takes advantage of the fact that stochastic
systems tend to be in the state of maximal entropy. So, the entropy of
distribution is being maximised while preservation of specific properties
helps with getting the insight. One of those properties is marginal
distribution, which leads to a standard optimisation problem with
established solutions.

However, fixing marginal distribution is applicable only for smaller
systems with a suitable size of a probability distribution. For larger
instances, different properties of probability distribution have to be fixed.
One suitable property on which this thesis will focus is the entropy of
marginal distributions.

The main goal of this thesis will be the implementation of methods
computing the maximal information entropy while fixing the entropy of
marginal distributions of given orders. Those methods will then be tested
on real-world data and from the perspective of their usage on undersampled
distributions. In the end, the importance of connected information will be
clarified through several experiments.

1.1 proposed solutions

Maximisation of information entropy with fixed marginal entropies is a
challenging optimisation task mainly due to the non-convex nature of
information entropy. This thesis will implement and evaluate two forms
of the maximisation task

• placing constraints on the marginal entropies and submitting the non-
convex task to solvers,

• and reformulating and approximating the task by introducing entropic
variables and linear constraints.

After implementing methods for estimating the maximal entropy of a
distribution, the estimation of entropy from real data samples will be
focused. Entropy will be estimated from the data

1



2 introduction

• by creating a probability distribution using the empirical distribution,

• and using NSB algorithm [13], specifically made for undersampled
distributions.

These methods of estimation will be compared based on the number of
data samples.

1.2 thesis structure

This chapter introduces the overall topic and outlines the proposed solutions.
In Chapter 2, concepts from information theory will be presented along
with the concepts required for the reformulated and relaxed task. Chapter
3 describes the data and tools used for the evaluation while the comparison
of used methods is presented along with the experiments using real-world
data in Chapter 5. The implementation of all methods is outlined in Chapter
4. Finally, Chapter 6 concludes the thesis with achieved goals and ideas for
future research.



2 I N F O R M AT I O N T H E O R Y

This chapter introduces the concept of entropy, its significance, and the
maximisation problem. In Information theory, the unit of information is
the bit, representing two values. Therefore, it is conventional to use the
binary logarithm to express results in the correct units. In this paper, we use
log = log2.

2.1 notation

We introduce a notation to deal with interactions across multi-dimensional
spaces. Let N = {1, . . . ,n} for some positive n. Consider a non-empty finite
set χi ⊂ R for all i ∈ N; for J ⊂ N define χJ = ×i∈Jχi and χN = χ. We will
be dealing with a discrete random vector X = (X1, . . . ,Xn) with the sample
space χ and a probability mass function p, which satisfies the following
conditions:

p : χ→ [0, 1]
∑
x∈χ

p(x) = 1

When dealing with sets of indices, we often use notation without commas
and parentheses; for example, ijk = {i, j,k}.

2.2 information entropy

As Shannon [18] proved, information entropy is a unique measure of the
information provided by a probability distribution over a set of variables.
It also quantifies the average uncertainty of a random variable.

Definition 1. The entropy H(X) of a discrete random variable X, which takes
values from the sample space χ with a probability mass function p, is defined
as

H(X) = −
∑
x∈χ

p(x) logp(x) (1)

If the probability p(x) is equal to 0, then p(x) logp(x) is also 0.

Information entropy can be interpreted as the number of bits needed to
describe the probability distribution, as illustrated by Examples 1 and 2.

Example 1. Consider a uniform distribution of a two-dimensional binary random
vector X with a probability mass function

p(0, 0) = p(0, 1) = p(1, 0) = p(1, 1) = 0.25.

3



4 information theory

The best way to encode this distribution is to let the first bit represent the first value
and the second bit represent the second value. There is always the same probability
for 0 and for 1 (marginal distributions p1 and p2).
On average, we need 2 bits to describe the output, which corresponds to the entropy:

H(X) = 4 · (−0.25 log 0.25) = 2.

Example 2. Consider a distribution with two binary values and a probability mass
function, as shown in Table 1.

Huffman coding [7] optimally reduces uncertainty by half with each bit of

p(0, 0) 0.5
p(0, 1) 0.25
p(1, 0) 0.125
p(1, 1) 0.125

Table 1: The probability mass function used in Example 2.

information and creates prefix-free coding. The first bit should indicate whether
the sample is (0, 0) or any other value (both options have a probability of 0.5). Let
0 correspond to (0, 0). If 0 is received, the sample is known exactly. If 1 is received,
we need to distinguish among three samples, and the updated probabilities are now
the following:

p(0, 1) = 0.5; p(1, 0) = 0.25; p(1, 1) = 0.25.

The second bit will decide if the sample is (0, 1) (encoded as 10) or a different value
(encoded as 11_), again reducing the uncertainty by half. If the second bit is 1,
the third bit will determine whether the sample is (1, 0) (encoded as 110) or (1, 1)
(encoded as 111).

sample coded as

(0, 0) 0

(0, 1) 10

(1, 0) 110

(1, 1) 111

Table 2: An example of an ideal coding for the samples from Example 2 with
probabilities according to Table 1.

The average number of bits, navg, needed to encode a sample using Huffman
coding [7] can be calculated from Tables 1 and 2:

navg = 0.5 · 1+ 0.25 · 2+ 0.125 · 3+ 0.125 · 3 = 1.75

, which also corresponds to the entropy

H(X) = −0.5 log 0.5− 0.25 log 0.25− 2 · 0.125 log 0.125 = 1.75
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2.3 marginal distributions

Definition 2. Let N = {1, ...,n}, non-empty subset J ⊆ N, and χJ = ×i∈Jχi.
The marginal distribution pJ is a probability distribution given by

pJ(x) =
∑

y∈χN\J

p(x, y), x ∈ χJ

The probability distribution pJ is called the J-marginal of p and has an order
|J| = k. If J = {i}, we write pi.

For a 3-dimensional probability distribution, a visualisation of marginal
distributions is shown in Figure 1.

Definition 3. Consider χi to be a non-empty sample space. Let N = {1, ...,n}
and a non-empty subset J ⊆ N. Let χJ = ×i∈Jχi, XJ = (Xi)i∈J, and pJ be
the J-marginal of p. The J-marginal entropy H(XJ) is defined as:

H(XJ) = −
∑
x∈χJ

pJ(x) logpJ(x)

The marginal entropies for a 3-dimensional probability distribution are
also shown in Figure 1.

This thesis focuses on maximising the information entropy of a random
vector X, where the J-marginal entropy is consistent between the final and
original distribution of X for all J ⊂ N where the order of J is less than or
equal to a given constant.

2.4 maximisation of information entropy

The maximal value of information entropy without any constraints is
achieved when the distribution is uniform. This can be demonstrated using
Lagrange multipliers:

L = −
∑
x∈χ

p(x) logp(x) − λ

(∑
x∈χ

p(x) − 1

)
∂L

∂p(x)
= − logp(x) − 1− λ

∂L

∂λ
=

∑
x∈χ

p(x) − 1

∀x ∈ χ : p(x) = 2−1−λ

∀x ∈ χ : p(x) =
1

|χ|
(2)

Equation (2) shows that maximum entropy is achieved for a uniform
distribution.

Our task is to maximise information entropy while the underlying
distribution satisfies certain conditions. Specifically, we will fix the marginal
information entropies for some of the marginal distributions. This problem
does not have a general analytical solution, and therefore, we need to use
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Figure 1: Visualised probability distribution (black) with the corresponding
marginal distributions (p) of orders 2 (red) and 1 (blue) and the
corresponding marginal entropies (H).

approximation methods to find the optimal solution. Moreover, this is not a
convex optimisation problem, which will present itself as a problem during
the optimisation.

Given an input distribution p, we aim to solve the following task:

Maximise Hq(X) subject to Hq(XJ) = Hp(XJ), ∀J : |J| ⩽ k, (3)

where q is the vector of control variables that still satisfies the basic
properties of a probability distribution.

Note that we do not need to recover the entire distribution q, but only its
information entropy.

We will denote the optimal value of (3) as Hk
p(X).

Using the chain rule for entropy and the fact that conditioning on a
variable cannot increase the entropy,

H(X1, . . . ,Xn) = H(X1|X2, . . . ,Xn) + · · ·+H(Xn) ⩽
n∑

i=1

H(Xi), (4)

where the equality holds if and only if the variables are independent. The
resulting distribution is then the product of all marginals of size 1.

Since increasing the maximal order of the marginals only adds more
conditions, the following inequalities hold:∑

i∈N

H(Xi) = H1(X) ⩾ H2(X) ⩾ . . . ⩾ Hn−1(X) ⩾ Hn(X) = H(X) (5)
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2.5 connected information

An interesting characteristic of a probability distribution is the dependency
of variables on each other. The measure that describes the dependence of the
variables in all groups of a given size is called connected information [16].

Definition 4. Let p be a probability distribution of a random vector X =

(X1, . . . ,Xn) on the sample space χ. The connected information of order k

(where k = 2, . . . ,n) is defined as:

Ikp(X) = Hk−1
p (X) −Hk

p(X). (6)

Without loss of generality, we will be using Ik(X) = Ikp(X).
Note that connected information is always non-negative due to the

inequalities (5). The value Ik(X) reflects the level of k-order stochastic
interactions among the random variables (X1, . . . ,Xn) = X with the
probability distribution p. If all variables are independent, then Ik(X) =

0 ∀k : k = 2, . . . ,n. Examples are shown and computed in Chapter 5.

2.6 polymatroid cone

Definition 5. Let P(N) be the power set of N. A polymatroid is a function
h : P(N)→ R that satisfies the following conditions:

1. h(∅) = 0,

2. h(A) ⩾ h(B) for all A,B ⊆ N with A ⊃ B, monotonicity

3. h(A) + h(B) ⩾ h(A∪B) + h(A∩B) for all A,B ⊂ N. submodularity

Definition 6. A polymartoid cone (of order n), labelled Γn, is the set of all
polymatroids on P(N), where |N| = n.

Note that for any h1,h2 ∈ Γn, any non-negative linear combination is also
a polymatroid:

α1h1 +α2h2 ∈ Γn α1,α2 ⩾ 0.

In other words, a polymatroid cone [4] is a convex cone in the space of all
functions P(N)→ R.

To fully describe a polymatroid cone, it is sufficient to use n+ 2n−2
(
n
2

)
elemental linear inequalities. Firstly, n equations for monotonicity,

∀i ∈ N : h(N) ⩾ h(N \ i), (7)

and secondly, 2n−2
(
n
2

)
equations for submodularity,

∀i, j ∈ N, i ̸= j, ∀A ⊆ N \ ij :

h(A∪ i) + h(A∪ j) ⩾ h(A∪ ij) + h(A). (8)

Basic examples of polymatroids are entropic vectors, introduced in Section
2.7.
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2.7 entropic region

Definition 7. Let p be a probability distribution of a random vector X =

(X1, . . . ,Xn). An entropic vector is defined as a function hp, which satisfies
the following conditions:

hp(J) =

{
Hp(XJ) J ̸= ∅, J ⊆ N,

0 J = ∅.

Due to the basic properties of entropy, an entropic vector satisfies all the
conditions required of a polymatroid, hence hp ∈ Γn.

Definition 8. Let Γ∗n be the set of all entropic vectors hp derived from a
distribution p of a random vector X = (X1, . . . ,Xn). Then Γ∗n is called an
entropic region (of order n).

A Shannon-type inequality is an inequality that can be expressed as a non-
negative linear combination of inequalities from (7) and (8). However, these
inequalities are not sufficient to describe all entropic regions. Zhang and
Yeung [21] demonstrated the following:

• Γ∗2 = Γ2.

• Γ∗3 ⊂ Γ3. However, for the topological closure, Γ∗3 = Γ3, and therefore,
it is fully represented by the Shannon-type inequalities.

• Γ∗4 ⊂ Γ4. There exist non-Shannon type inequalities that constrain
the topological closure and are valid for an entropic region, so-called
Zhang-Yeung inequalities:

3[h(ik) + h(il) + h(kl)] + h(jk) + h(jl)

−h(i) − 2[h(k) + h(l)] − h(ij) − 4h(ikl) − h(jkl) ⩾ 0 (9)

for all distinct i, j,k, l ∈ N

These inequalities are valid for n ⩾ 4.

Since k and l are interchangeable, there are
n!

2 · (n− 4)!
unique Zhang-

Yeung inequalities satisfied by every entropic vector.



3 DATA S E T S

Testing entropy maximisation methods requires datasets suitable for
inspecting interactions among differently sized sets of variables. Using
randomly generated samples without any modification is not a suitable
approach since the random generator tries to return uniformly distributed
values. Connected information of these distributions is minimal, meaning
the methods would be tested with very atypical conditions.

The best way of obtaining data is to get samples from real-life systems. In
our thesis, we will be using data from Martin et al. [11] (Section 3.1) and
from Fokoue and Gunduz [6] (Section 3.2).

3.1 magnetic resonance imaging signal

Martin et al. [11] used in their paper dataset consisting of time series of
functional magnetic resonance imaging signals. The samples originate from
96 healthy volunteers who were monitored in IKEM (Institute for Clinical
and Experimental Medicine) in Prague. Data contain 36480 samples, each
corresponding to one time-point. Each sample represents 20 signals from
different regions of the brain, 10 from the default mode network and 10

from the fronto-parietal network.
Signals in the MAT file format are expressed as floating-point numbers.

Since our methods expect discrete probability distributions, we have
discretised the data. According to [11], the signals in their experiment were
discretised into 2 and 3 levels using equiquantal (equiprobable) binning.
Following the same principle, we partitioned the signals into the same levels
and added levels 4 and 5.

After this process, the final samples were 10-dimensional vectors of
discrete values from 1 to 10 for two brain regions. Those vectors were used
during computations in Section 5.2.

Data from Martin et al. [11] are not publicly available, but they were
provided upon request.

3.2 student questionnaire

Fokoue and Gunduz [6] conducted research among students at Gazi
University in Ankara (Turkey). They were given a survey about a course
and its instructor containing 28 questions. Questions were answered with
integers ranging from 1 to 5, and the responses were saved along with five
additional attributes.

The resulting dataset contains 5820 sets of student answers - a table of 33

columns (5 + 28) and 5820 rows. For computations, additional attributes

9



10 datasets

were ignored due to inconsistency in value ranges with the rest of the
questions. No additional changes to the dataset were needed.

For benchmarking in Section 5.1, columns 6 . . . 6+(d− 1) were used based
on the number of dimensions required d. In Section 3, specific columns from
the table were chosen. Specifically, questions 13, 14, 16, 18, 20, 21, 22, and 28

were selected because they all reflect the teacher’s subjective view. Due to
this connection, interaction among different questions is expected.

Data, including the questions, can be obtained at https://archive.ics.

uci.edu/dataset/262/turkiye+student+evaluation, 6.5.2024; data are in
CSV format.

https://archive.ics.uci.edu/dataset/262/turkiye+student+evaluation
https://archive.ics.uci.edu/dataset/262/turkiye+student+evaluation


4 M E T H O D S

The primary goal of this thesis is to implement methods to compute
connected information. It involves finding the maximal information
entropy while fixing the marginal entropies of specified orders. The Julia
programming language was chosen for this purpose. The result is a Julia
package providing an interface for methods to maximise the information
entropy of a given distribution and other useful functions. This package
is available for use under EntropyMaximisation1. Part of the package also
focuses on the maximisation of entropy with fixed marginal distributions
(rather than their entropies).

Julia was chosen mainly for its strengths in mathematical computing,
including intuitive and efficient handling of multi-dimensional arrays, high
efficiency (as a partially compiled language, it is faster than most other
math/optimisation-focused languages like Python or R), and a convenient
way of publishing the resulting package.

We used JuMP [10], a Julia modelling language for mathematical
optimisation.

The resulting package offers various entropy maximisation methods,
with the default method determined by the performance on real data, as
demonstrated in Section 5.1.

4.1 direct maximisation using solvers

Direct maximisation involved rewriting the maximisation task (3) into Julia,
specifically the JuMP modelling language. The optimiser aimed to find
the distribution with the maximum entropy while satisfying the entropic
conditions.

Since the entropic constraints were in the form∑
x∈χJ

pJ(x) logpJ(x) = const.,

Non-linear programming (NLP) solvers had to be used.

4.1.1 Maximisation Using the Exponential Cone

The initial idea was to reformulate the objective of entropy maximisation (3)
into the form of the exponential cone [1]. This was the first-choice approach
because the exponential cones had been proven to be the most efficient
solution to the maximisation problem with fixed marginal distributions (not
their entropies).

1 https://gitlab.com/kislijak/entropy-maximisation

11



12 methods

The entropy equation (1) was rewritten into the form of the exponential
cone as follows:

Kexp = {(x,y, z) ∈ R3 : yex/y ⩽ z,y > 0}, (10)

which could be solved by Second Order Cone Programming (SOCP)
solvers. Each part of the sum (1) was rewritten as follows:

ti ⩽ −p(i) log(p(i))

p(i) log(p(i)) + ti ⩽ 0

log(p(i)) +
ti
p(i)

⩽ 0

p(i)e
ti

p(i) ⩽ 1 (11)

Now Equation (11) could be easily rewritten into the form of Equation (10)
with the following substitutions:

x = ti; y = p(i); z = 1 (12)

To fix the marginal entropies, the entropies of the sums over all of the
remaining dimensions were fixed. The sums then created the marginal
distributions.

To allow the solver to maximise the entropy, it was provided with the
corresponding variables and constraints (all variables and constraints were
created by Julia macros):

1. Variable p represented the optimal probability distribution with
maximised entropy. Its length was equal to the length of the original
distribution. To ensure that p was a probability distribution, a
constraint was introduced for the sum of p, which had to be equal
to 1, and for the values, which had to be non-negative.

2. The fixed marginal entropies were ensured by placing equality between
each entropy of the original marginal (the sum over the remaining
dimensions of the original distribution) and the corresponding entropy
of the model’s marginal. Visualisation of marginal entropies connected
to their corresponding marginals is shown in Figure 2. Since entropy
(1) is not a linear function, non-linear constraints were used for the
solver.

3. Another introduced variable was t, an array of lower bounds of partial
products of the probability mass function and its logarithm:

ti ⩽ −p(i) log(p(i)). (13)

4. The final constraints were placing the variables into the exponential
cone. Using the already derived assignment (12), each point in the
distribution was put into the constraints.
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Figure 2: Visual representation of maximisation task with fixed marginal entropies
(H) - probability distribution (black) and the corresponding marginal
distributions of orders 2 (red) and 1 (blue) with unknown values. Some
of the corresponding marginal entropies are shown with values according
to Figure 1.

Since the distribution’s entropy is the sum over partial products (1), our
goal was to maximise the sum over t, while considering the introduced
variables.

After setting all of the variables, constraints, and the main objective, the
solver optimised the model. The optimised value was the sum over its
objective values.

Note that the exponential cone used the logarithm of the base 10.
Therefore, the last step was to divide the value by log1 0(2) to return the
information entropy, which uses the logarithm of base 2.

By maximising the sum over t using the exponential cone, the goal was
reached at a point where the inequality in (13) became equality

ti = −p(i) log(p(i)).

4.1.2 Maximisation Using the Basic Entropy Equation

To directly maximise entropy with entropic constraints, the second approach
involved putting the constraints in their original form (1) into the model. The
main difference was that the constraint of the exponential cone was not used,
which allowed the use of other solvers, primarily focused on NLP.

While the implementation of the entropic constraints remained the
same as in maximisation using the exponential cone (Subsection 4.1.1), a
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significant difference was in the definition of objective variable t. In this
method, t was defined as:

ti = −p(i) log(p(i)).

Similarly to the previous approach, the objective remained the same -
maximisation of the sum of t - the entropy of the whole distribution.

4.2 relaxation of the maximisation task

Another approach to computing the maximal entropy of a distribution was
to relax the constraints, making the task (3) easier for the solver to solve. The
entropic region (Section 2.7) was used for this purpose.

Note that the entropic region can represent a possible entropy function of
a distribution using only linear inequalities. So, when we maximised the
entropy, we obtained the entropy as a function value of the entropic vector.
However, this did not tell us what the underlying distribution looked like,
only what the marginal entropies were while achieving the maximum overall
entropy.

The following was the relaxed linear optimisation task:

Maximise h(N) subject to h(J) = H(J) for all J ⊆ N where |J| ⩽ k, (14)

where H(J) is the J-marginal entropy of the original distribution.
The first step of the maximisation was to define the polymatroid (Section

2.6). The definition is shown in Algorithm 1.

Algorithm 1: Elemental constraints of polymatroid
Data: Function h : P(N)→ R

h(∅) = 0

for i in N do
h(N) ⩾ h(N \ i)

end
for A in powerset(N,max_size = n− 2) do

for i, j in powerset(N \A, size = 2) do
h(A∪ i) + h(A∪ j) ⩾ h(A∪ ij) + h(A)

end
end

When Zhang-Yeung inequalities (9) were used in the maximisation, they
had to be defined for the polymatroid as well (Algorithm 2).

The last step of setting the constraints was to fix the entropies. This was an
easier task than fixing the entropies during the direct optimization (Section
4.1) because here the model variables were the entropies and not the values
of the probability distribution. Entropic constraints were, therefore, linear
(Algorithm 3).

Finally, the task (14) was optimized, and the resulting value was h(N).
Note that there were no conversions of the result since the entropy was
already encoded in bits because entropy in the constraints was also encoded
in bits.
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Algorithm 2: Zhang-Yeung inequalities for polymatroid
Data: Function h : P(N)→ R

if n ⩾ 4 then
for i, j in powerset(N, size = 2) do

for k, l in powerset(N \ ij, size = 2,ordered = true) do
0 ⩽ 3[h(ik) + h(il) + h(kl)] + h(jk) + h(jl) − h(i) − 2[h(k) +

h(l)] − h(ij) − 4h(ikl) − h(jkl)

end
end

end

Algorithm 3: Fixing entropy for all marginals
Data: Function h : P(N)→ R, joined probability p, maximal order of

fixed marginal entropy m_size

for i← 1 to m_size do
marginals = permutations(n, length = i)

for m in marginals do
pm = marginal_distribution(p,m)

h(m) = entropy(pm)

end
end

4.3 full entropy representation of distribution

In the previous section we had a method for determining the maximal
entropy of the entire distribution, however, it was not possible to easily
determine whether the Zhang-Yeung inequalities (9) restricted the resulting
polymatroid. For this purpose, the Julia package Polyhedra [9] was used.

The Polyhedra package supports the same interface as JuMP, making it
easy to replicate the optimisation algorithm from Section 4.2. No specific
solver was defined; instead, the Polyhedra package internal solver returned
the vertex representation of the polymatroid.

4.4 estimation of entropy from samples

So far, we have focused on maximising the entropy of a probability
distribution. However, we have not taken into account that the data used
to create the distribution could be undersampled, particularly the data from
Martin et al. [11]. Data is considered undersampled when N≪ K, where N
is the number of samples and K is the size of the sample space.

The following methods are compared in Subsections 5.1.2 and 5.1.3.



16 methods

4.4.1 Estimation from Empirical Distribution

When there are sufficient samples, the most convenient method to estimate
the entropy of the distribution would be using empirical distribution
(frequency estimation). Given the lack of any further (prior) information,
the distribution p over the sample space χ, |χ| = K, was constructed as
an empirical distribution based on N samples x1, . . . , xn. The probability
function of the empirical distribution was defined as:

p(x = i) =
1

N

N∑
j=1

[xj = i]

for all i = 1, . . . ,K, where [xj = i] evaluates to 1 only if xj = i, otherwise it
evaluates to 0. This distribution p served as the base for our computations.

Even for enough samples (N ≫ K), the empirical distribution remains
inaccurate. As demonstrated by Schürmann and Grassberger [17], the
empirical distribution underestimates the entropy Hemp, which can be
corrected with the following equation:

H = Hemp +
K− 1

2N
+O

(
1

N2

)
(15)

However, this is a problem when the distribution is undersampled.

4.4.2 NSB Estimator

For undersampled datasets, Nemenman, Shafee, and Bialek [13] proposed
a method for entropy estimation with insufficient samples called NSB. The
method assumes a distribution with insufficient samples and no knowledge
about the priors. An implementation exists in Matlab and Octave [12]. The
implementation in Octave was used, and instead of creating the underlying
distribution p and estimating its (marginal) entropies, the samples were
categorized and formatted appropriately as inputs for the Octave code. The
code was then called directly from Julia as a command in the command line.

4.5 solvers

To compute the task, the methods outlined in Sections 4.1 and 4.2 rely
on optimisation solvers written in JuMP modelling language [10] 2. The
tasks contain different constraints, and, therefore, the solvers vary for each
method.

For the maximisation using the exponential cone (Subsection 4.1.1), the
solver has to comprehend both non-linear constraints and the exponential
cone constraints. The only solver supporting Non-Linear Programming
(NLP) and Second Order Cone Programming covering (SOCP), which covers
the exponential cone constraints, is currently Pajarito [5].

2 https://jump.dev/JuMP.jl/stable/installation/#Supported-solvers, 2.5.2024, is a website
with a list of all supported solvers by JuMP.
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The maximisation method using only the basic entropy equation does
not require the support of SOCP. The only requirement is the ability to
calculate with non-linear constraints. For this purpose, publicly available
solvers Ipopt [20] and MadNLP [19] were used.

Lastly, the optimisation using polymatroids requires only linear
constraints. Linear constraints can be solved by most of the available solvers.
The solvers used in Section ?? were SCS [14], a publicly available solver, and
Mosek [2], an industrial solver with academic licenses.

4.6 benchmark

For comparison of solvers and methods in Section 5.1, Julia features a
benchmark package called BenchmarkTools [15]. This package executes
the tested method multiple times and measures statistics such as elapsed
time and memory allocation. The elapsed time is the main factor in our
comparison.

All comparisons and evaluations were performed on a MacBook Air with
an Apple M1 chip and 16 GB of RAM, using Julia version v1.9.3.





5 R E S U LT S A N D E X P E R I M E N T S

This chapter covers the results of experiments conducted using the
methods outlined in Section 4. Section 5.1 compares methods for entropy
maximisation, methods for determining the entropy, and diverse solvers.
The results of calculations using real-life data (from Section 3.1) are shown
in Section 5.2. The effects of Zhang-Yeung inequalities [21] are evaluated in
Section 5.3.

Section 5.4 provides experiments with connected information on data
created by randomisation with some fixed underlying conditions and an
evaluation of an experiment with data from Section 3.2.

5.1 solvers and methods

Initially, the optimisation methods for directly computing a probability
distribution with maximised entropy were implemented as described in
Section 4.1. Unfortunately, we were unable to solve the task using
exponential cone programming (Subsection 4.1.1) because the Pajarito solver
[5] was unable to complete it. Even though the solver can apply both types of
constraints (NLP and SOCP), it cannot solve the model with both constraints
simultaneously.

The second method for entropy maximisation (Subsection 4.1.2) always
returned the same results regardless of the size of fixed marginals for data
from Section 3.2. This phenomenon happened with both solvers Ipopt [20]
and MadNLP [19], and it is presumably caused by the non-convex nature of
the entropic constraints.

The methods that utilised the polymatroid approximation technique
consistently delivered valid results when applied to a variety of datasets.
Performance comparison of Mosek [2] and SCS [14] solvers and of the
methods for determining entropy can be found in the following Subsections
5.1.1 and 5.1.2. Data used for the comparisons are described in Section 3.2.

5.1.1 Solvers Performance Comparison

The test runs varied in the number of dimensions d, ranging from 2 to 10,
and the size of fixed marginal entropies m, ranging from 1 to d − 1. The
number of distinct values in each dimension was always s = 5.

Table 3 demonstrates that Mosek was consistently faster than SCS during
all test runs (the full set of results can be found in Appendix A, Table 14). On
the other hand, the time difference was not proportional to the distribution
size or the number of fixed marginal entropies. Therefore, the use of the
publicly available SCS solver does not significantly impact feasibility due to
exceptionally long processing times.

19



20 results and experiments

s = 5

Time
without ZY with ZY

Mosek SCS Mosek SCS

d = 2 m = 1 0.91ms 1.7ms — —
d = 4 m = 1 1.4ms 7.6ms 1.4ms 7.9ms

m = 2 1.4ms 28ms 1.5ms 18ms
m = 3 1.2ms 11ms 1.3ms 8.5ms

d = 8 m = 5 110ms 1.1 s 110ms 910ms
m = 6 120ms 650ms 120ms 690ms
m = 7 120ms 370ms 120ms 420ms

d = 10 m = 5 12 s 41 s 13 s 31 s
m = 6 17 s 59 s 18 s 56 s
m = 7 19 s 33 s 19 s 36 s
m = 8 22 s 33 s 22 s 34 s
m = 9 21 s 23 s 21 s 23 s

Table 3: Table displaying time needed to compute the maximal entropy for
different solvers while using the polymatroid method with estimating the
entropy from empirical distribution with d dimension, size of marginal
distributions m and a fixed number of samples in each dimension (s = 5).
Mosek [2] and SCS [14] solvers were used with and without the usage of
Zhang-Yeung inequalities (ZY). Data used were from the questionnaire [6]
(Section 3.2). The full set of results can be seen in Appendix A in Table 14.

The difference in performance between running the method with Zhang-
Yeung inequalities was also negligible.

Even though we had data to try higher dimensions, instances of
11-dimensional distributions with 5 samples or more would require a
significant amount of time or greater computing power.

5.1.2 Entropy Methods Performance Comparison

Comparing the methods for determining the entropy revealed notable
differences in time requirements. The computation of entropy from the
probability distribution using Formula (1) was several times faster (Table
3) than the NSB estimator (Table 4).

Computing the task using a distribution with more than d = 4 dimensions
was really slow, so it was not used for the comparison. The most time-
consuming aspect of maximisation was the calculation of entropy using
the Octave implementation [12] of the NSB estimator. The actual solver
computation using the NSB estimator was a minor portion of the total time,
explaining the marginal differences between the two solvers.

5.1.3 Entropy Methods Accuracy Results

A severe limitation of the method employing the NSB estimator was the
precision of entropy computation. The computation occasionally failed
when the distribution was not sufficiently undersampled. The Octave code
[12] could not determine the distribution’s entropy when a precision value
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s = 5

Time
without ZY with ZY

Mosek SCS Mosek SCS

d = 2 m = 1 3.4 s 3.4 s — —
d = 3 m = 1 5.4 s 5.3 s — —

m = 2 9.5 s 9.3 s — —
d = 4 m = 1 7.0 s 6.8 s 6.8 s 6.9 s

m = 2 15.3 s 15.2 s 15.3 s 15.6 s
m = 3 20.7 s 21.4 s 20.7 s 21.4 s

Table 4: Table displaying time needed to compute the maximal entropy for different
solvers while using the polymatroid method with estimating the entropy
using NSB estimator with d dimensions, size of marginal distributions m

and a fixed number of samples in each dimension (s = 5). Mosek [2] and
SCS [14] solvers were used with and without the usage of Zhang-Yeung
inequalities (ZY). Data used were from the questionnaire [6] (Section 3.2).

of 0.1 was required (where 0.1 means approximately a difference of 1/1000
in the resulting entropy).

This issue typically occurred during computations of marginal entropies
of size 1 because the size of the marginal distribution was minimal at that
point. The minimal size ensured that the distribution was not undersampled.
The problem with the number of samples was mitigated by repeatedly
rerunning the algorithm with a halved accuracy (doubled precision value)
until it returned a valid result (usually lowering the accuracy once was
enough).

The smaller accuracy of the result implied that the model of the
optimisation task could become infeasible. This problem was resolved by
introducing the tolerance t. The resulting constraints were changed from
those in Algorithm 3 to pairs of constraints:

entropy(pm) ∗ (1− t) ⩽ h(m) ⩽ entropy(pm) ∗ (1+ t) (16)

Inequalities (16) with a tolerance t = 0.01 were utilized in all of the
solutions, especially during the optimisation of data (Section 5.2).

Sections 5.4.1 and 5.4.2 show the difference in accuracy between the NSB
estimator and computation of entropy from the empirical distribution. While
the difference in the connected information is negligible for sufficiently
sampled distributions, when the distribution is undersampled, the results
significantly differ from each other. Those results showed the NSB estimator
has significantly better accuracy compared to the empirical distribution
method. The results with an undersampled distribution were comparable
to those obtained from sufficiently sampled distributions.

Because the NSB estimator is intended for use with undersampled
distributions, it failed to compute properly all of the marginal entropies
when the distribution was not undersampled. This implies a further
limitation on this method because it will fail to determine all of the marginal
entropies even with lower precision, therefore lacking sufficient information
to run the optimisation task.
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Order
Discretised levels

2 3 4 5
NSB emp NSB emp NSB emp NSB emp

2 0.727 0.869 0.736 0.745 0.628 0.536 0.500 0.411

3 0.107 0.091 0.094 0.058 0.082 0.038 0.065 0.028

4 0.052 0.019 0.051 0.021 0.047 0.022 0.041 0.023

5 0.031 0.006 0.027 0.012 0.023 0.018 0.018 0.034

6 0.021 0.003 0.021 0.013 0.018 0.043 0.013 0.102

7 0.017 0.002 0.018 0.025 0.016 0.093 0.028 0.181

8 0.017 0.002 0.015 0.041 0.027 0.124 0.096 0.142

9 0.012 0.003 0.014 0.050 0.033 0.091 0.146 0.063

10 0.015 0.003 0.025 0.035 0.126 0.035 0.092 0.016

Table 5: Table showing the normalised connected information In/IN of the fronto-
parietal network for different levels of discretisation for both methods of
the entropy estimation from data (NSB, empirical distribution - emp) and
for all orders. The most significant values are for the order of 2.

5.2 comparison with other implementations

The implementation of the maximization algorithms was tested on real data
from the article "Network inference and maximum entropy estimation on
information diagrams" by Martin et al. [11], and compared to their results,
as well as to results mentioned in a bachelor’s thesis by Ibatullina [8]. The
paper [11] computed connected information on data of resting-state human
brain networks.

Connected information from the discretized data were computed. From
the partial results, total correlation was determined:

Definition 9. Let p be a probability distribution of a random vector X =

(X1, . . . ,Xn) on the sample space χ. The total correlation is given by:

IN(X) =
∑
i∈N

H(Xi) −H(X) = H1(X) −Hn(X).

Using Equation (6) for the connected information, the following formula
can be constructed:

IN(X) =
n∑

i=1

Ik(X)

The original paper computed the normalised connected information
values of I2/IN while discretising into 2 or 3 levels. Ibatullina [8] also
computed the connected information for all sizes of marginals and the
discretisation into 4 values, but only for the default mode network.

The results are shown in Tables 5 and 6. Throughout all discretisation
levels and both methods for entropy estimation, it was evident that the most
significant dependence was of order 2. However, the dependence was also
higher for the lower levels of discretisation.

The NSB method had more stable results across different discretisation
levels (mainly focusing on fixing orders of 2 and 3 as mentioned by Martin
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Order
Discretised levels

2 3 4 5
NSB emp NSB emp NSB emp NSB emp

2 0.783 0.907 0.811 0.793 0.702 0.589 0.571 0.456

3 0.077 0.064 0.067 0.042 0.055 0.027 0.045 0.020

4 0.054 0.013 0.053 0.013 0.047 0.013 0.040 0.015

5 0.024 0.005 0.022 0.008 0.017 0.016 0.014 0.032

6 0.019 0.002 0.019 0.011 0.016 0.040 0.012 0.100

7 0.012 0.002 0.012 0.023 0.009 0.091 0.019 0.176

8 0.010 0.002 0.009 0.038 0.019 0.111 0.141 0.129

9 0.009 0.003 0.008 0.043 0.120 0.080 0.101 0.056

10 0.011 0.002 0.000 0.029 0.015 0.032 0.056 0.015

Table 6: Table showing the normalised connected information In/IN of the default
mode network for different levels of discretisation, both methods of the
entropy estimation from data (NSB, empirical distribution - emp) and for
all orders. The most significant values are for the order of 2.

Discretisation Fronto-parietal network Default mode network
level Our results [11] Anna Our results [11] Anna

2 0.727 0.89 —– 0.783 0.93 0.653

3 0.736 0.94 —– 0.811 1.00 0.575

4 0.628 —– —– 0.702 —– —–
5 0.500 —– —– 0.571 —– —–

Table 7: Table comparing the result values of I2/IN for various levels of
discretisation of data from Martin et al. [11] obtained by our research,
Martin et al. [11] and Ibatullina [8]. Fields with unknown values are filled
with a line.

et al. [11]). While it had lower values for the level 2 of discretisation, the
values for levels 4 and 5 were higher than using the estimate from empirical
distribution.

Table 7 compares our data with the data computed by Martin et al. [11]
and Ibatullina [8]. Despite results from Martin et al. [11] suggesting higher
dependence than ours, both sets of results suggested that discretising the
data to 3 levels implied higher connected information. This is contrary to
the results obtained by Ibatullina [8]. Furthermore, according to the results
of Ibatullina [8], some maximal entropies, while fixing two following orders
of marginal entropies, were the same, implying exactly zero connected
information of some orders (specifically 5, 7 and 9). We argue that having
zero connected information across multiple orders, which are not directly
consecutive or on the edge of the range of possible orders, is highly unlikely.

5.3 zhang-yeung inequalities

We used the Polyhedra package [9] to compute the vertices of an entropic
region, ensuring each polymatroid satisfied the entropic constraints for a
given order of marginal entropies, both with and without Zhang-Yeung
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inequalities. We validated the algorithm’s correctness by finding the vertex
with the maximal value for h(N), the entropy of the entire distribution1.

However, we were not able to compute the representation for more than
four random variables due to the high computation time (using concatenated
data from Section 5.2).

Upon comparing the results for fixing the marginal entropies up to orders
2 and 3, we found the vertex representation to be identical regardless of
the usage of Zhang-Yeung inequalities. This was different when fixing only
the marginal entropies of order 1. While the maximal entropy for the entire
distribution remained the same, the vertex representation with Zhang-Yeung
inequalities consisted of more vertices, and therefore the entropic regions
were not identical.

5.4 experiments and real-life utilisation

Differently sized groups of variables interacting with each other can be
observed in many areas of everyday life. This section provides insight
into the meaning of the connected information in experiments that serve
as examples that can be more intuitive and easier to understand. Also,
Experiments 5.4.1 and 5.4.2 show the mutual dependence of differently sized
groups.

5.4.1 Experiment - Connected Information in Multivariate Normal
Distribution

A multivariate normal distribution of n variables is characterized by its
covariance matrix Σ of dimension n × n and its mean vector. However,
the mean vector only shifts the origin and does not affect the shape of the
distribution or the interactions between the variables. The covariance matrix,
which is symmetric and positive-semidefinite, can be expressed as Σ = AAT .

The covariance matrix describes the covariance between each pair of
variables. In a multivariate normal distribution, we expect to observe
interactions of order 2, while interactions among groups of 3 or more
should be negligible. These interactions can be analysed using the connected
information.

Experiment 1. Consider a multivariate normal distribution with five variables,
defined by a mean vector 0 and a covariance matrix Σ = AAT where

A =


0.0 0.5 1.0 1.5 2.0
1.5 0.0 −1.0 −0.5 1.5
1.0 −1.0 0.5 3.0 −2.5
0.5 1.0 2.0 0.0 1.5
2.5 −2.0 −2.5 −1.5 2.5

 .

We generated distributions from 10, 000, 000 (and 1, 000) random samples si in each
dimension, which were discretised to xi according to Table 8 as follows.

1 Each vertex had 2n coordinates, where n is the number of dimensions of the original
distribution, which corresponds to all possible subsets of N = {1, . . . ,n}
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xi

si < −10 1

−10 ⩽ si < −6 2

−6 ⩽ si < −3 3

−3 ⩽ si < −1 4

−1 ⩽ si < 0 5

0 ⩽ si < 1 6

1 ⩽ si < 3 7

3 ⩽ si < 6 8

6 ⩽ si < 10 9

10 ⩽ si 10

Table 8: Table showing the discretisation of random variables in Experiment 1. The
first column shows the interval, and the second column shows the discrete
index.

Subsequently, we computed the connected information of all orders from both
distributions.

Num. of samples 10000000 1000

Ent. method NSB emp NSB emp

I2 1.1672 1.6840 1.0728 1.7804
I3 0.2065 0.2978 0.1342 0.9503
I4 0.0103 0.0154 0.0193 1.1503
I5 0.0020 0.0034 0.0000 0.4251

Table 9: Table showing the connected information of normal distribution measured
by different entropy methods (NSB estimator, empirical distribution - emp)
on a distribution created from different numbers of samples. The highest
connected information is in all cases of order 2.

Num. of samples 10000000 1000

Ent. method NSB emp NSB emp

I2/IN 0.842 0.842 0.875 0.413
I3/IN 0.149 0.149 0.109 0.221
I4/IN 0.007 0.008 0.016 0.267
I5/IN 0.001 0.002 0.000 0.099

Table 10: Table showing the values In/IN (normalised connected information)
of normal distribution measured by different entropy methods (NSB
estimator, empirical distribution - emp) on a distribution created from
different numbers of samples. The normalised connected information
is always the highest for order 2, but when using empirical distribution
(emp) with 1000 samples, the difference from other orders is much lower
compared to any other column.

Given that the interactions were only pairwise, as indicated by the values
in the matrix Σ, the connected information of order 2 was expected to be the
highest, with higher-order interactions being nearly zero. Table 9 confirms
this expectation, showing that the connected information of order 2 was
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always the highest. The normalised connected information values in Table 10

are the most intuitive. When there was a sufficient number of samples, both
the NSB estimator and the entropy estimation from empirical distribution
yielded the same results.

When the distribution was undersampled, the entropy estimation method
using empirical distribution yielded inferior results compared to the NSB
method. Interestingly, the NSB method performed even better with
undersampled distributions than with adequately sampled ones.

5.4.2 Experiment - Connected Information in XOR and RAID 6
Distribution

Another example of connected information involves functions computing
complements for data storage. These functions generate a new byte from n

original bytes distributed on n disks. The composition of c+ n disks can
withstand the malfunction or destruction of up to c disks.

XOR is one of the functions that has this ability. Whenever one bit from
n original bits is lost, it can be recovered by computing the XOR of the
remaining n− 1 bits along with the original XOR:

x = b1⊕b2⊕ . . .⊕bn ⇒ ∀i : bi = b1⊕b2⊕ . . .⊕bi−1⊕bi+1⊕ . . .⊕bn⊕ x.

Another function with the same property is the EVENODD code [3]. It
computes the additional byte differently than XOR, and therefore, it is
suitable for RAID 6 structures, which are immune to the failure of up to
two drives. We applied the EVENODD modification to three 3-bit values
(ranging from 0 to 7). Figure 3 illustrates the computation. We can compute
the value of any one of b1,b2,b3, provided we know the other two values
and the EVENODD result e.

Experiment 2. Consider 106 and 103 random samples from the sample space
{0, 1, . . . , 7}3. Compute the fourth and fifth value using XOR and EVENODD
codes. Then, create a distribution from these samples and compute the connected
information of all possible orders using both the NSB method and empirical
distribution entropy estimation.

The results are shown in Tables 11 and 12.

Num. of samples 1, 000, 000 1, 000
Ent. method NSB emp NSB emp

I2 0.0000 0.0001 0.0237 0.1396
I3 0.0000 0.0007 0.0233 0.7848
I4 3.3754 4.9995 2.8904 4.4655
I5 0.1249 0.0000 0.3516 0.0000

Table 11: Table showing the connected information of distribution partially
computed by XOR and EVENODD function measured by different
entropy methods (NSB estimator, empirical distribution - emp) and on
distribution created from different numbers of samples. The highest
connected information is always of the order 4.
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Figure 3: Visualisation of modified EVENODD code that is used in Experiment 2

for the computation of the fifth value. The red line shows the XOR of bits
b1,3,b2,2,b3,1. The result of this operation is x, which is then used as the
first input for the following XOR operations (blue line). The remaining
lines (orange) show which other bytes are used in XOR for the resulting
bits of the 3-bit number e, which is the result of the whole code.
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Num. of samples 1, 000, 000 1, 000
Ent. method NSB Cat. NSB Cat.

I2/IN 0.000 0.000 0.007 0.026
I3/IN 0.000 0.000 0.007 0.146
I4/IN 0.964 1.000 0.879 0.828
I5/IN 0.036 0.000 0.107 0.000

Table 12: Table showing the values In/IN (normalised connected information)
of distribution partially computed by XOR and EVENODD function
measured by different entropy methods (NSB estimator, empirical
distribution - emp) and on distribution created from different numbers
of samples. Normalised connected information is always of the order 4.

In the distribution with enough samples, the connected information of
orders 2 and 3 was almost zero. This was due to the random samples from
the 3-dimensional space, indicating no interactions that only 2 or 3 variables
could describe. A change occurred when we considered 4 variables. The
combination of XOR and EVENODD ensured that we could construct the
values of the fourth variable from each set of 3 variables, creating a clear
dependence in every quadruplet. (It was also possible to determine the
fourth or fifth value when we knew the XOR result, EVENODD result, and
only 1 variable from the original sample.) There were no interactions of
order 5 because both functions have all interactions of order 4, computed
from 3 variables.

Both methods for determining entropy computed the highest connected
information of order 4 even when the distribution was undersampled.
While the empirical distribution method indicated some dependence of
order 3, the NSB method successfully computed the lower orders of the
connected information as almost zero. However, it did determine the
connected information of order 5 to be non-zero. Overall, for undersampled
distributions, the NSB method was slightly closer to the results obtained
with enough samples.

5.4.3 Experiment - Questionnaire

The last experiment that was carried out was the evaluation of the data
described in Section 3.2.

Experiment 3. Using the questionnaire data from Fokoue and Gunduz
[6], compute the connected information both with and without Zhang-Yeung
inequalities.

The results are presented in Table 13.

As expected based on the dataset focusing on potentially connected
information, the results revealed a significant dependence within groups
of two variables, suggesting strong connections in groups of two. These
pairwise connections suggest that knowing any single answer provides a
strong basis for predicting the remaining answers. According to Schneidman
et al. [16], this finding implies that little additional information is gained
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Order In In/IN

2 10.051 0.828
3 0.8849 0.073
4 0.4212 0.035
5 0.3612 0.030
6 0.2466 0.020
7 0.1289 0.011
8 0.0388 0.003

Table 13: Table showing the connected information and the values In/IN

(normalised connected information) of distribution created from student
answers to the questionnaire in Example 3. All entropies in the
calculations were computed from the empirical distribution. Since the
results were the same regardless of Zhang-Yeung inequalities, the table
does not specify the usage. The highest connected information is of the
order 2.

from observing triplets or larger sets of variables beyond what can be
learned from pairs alone.





6 C O N C L U S I O N

In our work, we implemented multiple methods to maximise the
information entropy of a distribution. Rewriting the maximisation task
into exponential cone optimisation (Subsection 4.1.1) was not successful due
to a lack of solvers able to handle both non-linear and exponential cone
constraints. Similarly, the direct rewriting of entropic equalities (Subsection
4.1.2) did not succeed because the task was non-convex, preventing solvers
from finding the global minimum.

On the other hand, the implementation of the relaxed task using
polymatroid and entropic vectors (Section 4.2) proved successful, allowing
us to determine the entropy and the connected information of a distribution.
We also implemented Zhang-Yeung inequalities [21] and found that these
inequalities did not alter the resulting maximal entropy.

For distributions with insufficient samples, we implemented an alternative
approach to calculate the information entropy from the data. Instead of
constructing an empirical distribution, we used the NSB estimator [13],
specifically its implementation in Octave [12]. Comparing the results
obtained by both approaches, we observed that the NSB estimator yielded
significantly better results for undersampled distributions. However,
this improvement was counterweighted by the time required for the
computation. We had to pre-compute the values of all entropies to reuse
them, thereby minimizing computation time. Implementing the algorithm in
Julia instead of Octave could speed up this process by eliminating pipeline
calls, making the algorithm suitable for larger datasets without requiring
hours of pre-computation.

We applied our algorithms to data from Martin et al. [11] and compared
our results with those from the original study and from Ibatullina [8].
Our results are the most accurate, given that the distributions were
undersampled and that we used a better entropy estimator. The entropy
results from Ibatullina [8] suggested exactly zero connected information
across non-consecutive orders.

We showed that, in smaller examples, Zhang-Yeung inequalities [21] do
not affect the maximal entropy of a distribution. On the other hand, they can
constrain the entropic region, even though they do not affect the maximum
entropy.

Finally, calculation over partial data from the paper [6] indicated that
the answers to specific questions could be effectively predicted by a single
question. This suggests that questions related to the subjective view of a
teacher were highly dependent, and having only one question instead of
eight could provide a similar amount of information.

In conclusion, this thesis has shown that conventional convex solvers
cannot solve the problem of entropy maximisation with entropic constraints.
However, it has also shown a promising alternative - the possibility of
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32 conclusion

calculating the connected information of datasets with higher dimensions
by relaxing the task. It has obtained the most accurate data when compared
with others, and the outcome is the first publicly available method for the
computation of maximal entropies and connected information with a focus
on undersampled distribution by using the NSB method [12]. Future work
could include rewriting the NSB algorithm [12] into Julia, and the most
immediate improvements could contain optimisations in data handling of
the implemented algorithms.



B I B L I O G R A P H Y

[1] Mosek ApS. Mosek Modeling Cookbook. https://docs.mosek.com/MOSE
KModelingCookbook-letter.pdf(visited 2024-05-19). 2024.

[2] Mosek ApS. Mosek Optimizer API for Julia. Release 10.1.21. 2019. url:
https://docs.mosek.com/10.1/juliaapi.pdf.

[3] M. Blaum et al. “EVENODD: an efficient scheme for tolerating double
disk failures in RAID architectures.” In: IEEE Transactions on Computers
44.2 (1995), pp. 192–202. doi: 10.1109/12.364531.

[4] Qi Chen and Raymond Yeung. “Characterizing the entropy function
region via extreme rays.” In: Sept. 2012, pp. 272–276. isbn: 978-1-4673-
0224-1. doi: 10.1109/ITW.2012.6404674.

[5] Chris Coey, Miles Lubin, and Juan Pablo Vielma. “Outer
approximation with conic certificates for mixed-integer convex
problems.” In: Mathematical Programming Computation 12.2 (2020),
pp. 249–293.

[6] Ernest Fokoue and Necla Gunduz. Turkiye Student
Evaluation. UCI Machine Learning Repository. DOI:
https://doi.org/10.24432/C5S02S. 2013.

[7] David A Huffman. “A method for the construction of minimum-
redundancy codes.” In: Proceedings of the IRE 40.9 (1952), pp. 1098–
1101.

[8] Anna Ibatullina. “Entropy maximization under entropic constraints.”
Czech Technical University in Prague, 2023.

[9] Benoît Legat. “Polyhedral Computation.” In: JuliaCon. July 2023. url:
https://pretalx.com/juliacon2023/talk/JP3SPX/.

[10] Miles Lubin et al. “JuMP 1.0: Recent improvements to a
modeling language for mathematical optimization.” In: Mathematical
Programming Computation (2023). doi: 10.1007/s12532-023-00239-3.

[11] Elliot Martin et al. “Network Inference and Maximum Entropy
Estimation on Information Diagrams.” In: Scientific Reports 7 (Dec.
2017). doi: 10.1038/s41598-017-06208-w.

[12] Ilya Nemenman. “Coincidences and Estimation of Entropies of
Random Variables with Large Cardinalities.” In: Entropy 13.12 (2011),
pp. 2013–2023. issn: 1099-4300. doi: 10.3390/e13122013. url: https:
//www.mdpi.com/1099-4300/13/12/2013.

[13] Ilya Nemenman, Fariel Shafee, and William Bialek. “Entropy and
Inference, Revisited.” In: arXiv 14 (Sept. 2001).

[14] Brendan O’Donoghue et al. “Conic Optimization via Operator
Splitting and Homogeneous Self-Dual Embedding.” In: Journal of
Optimization Theory and Applications 169.3 (2016), pp. 1042–1068. url:
http://stanford.edu/~boyd/papers/scs.html.

33

https://docs.mosek.com/MOSEKModelingCookbook-letter.pdf
https://docs.mosek.com/MOSEKModelingCookbook-letter.pdf
https://docs.mosek.com/10.1/juliaapi.pdf
https://doi.org/10.1109/12.364531
https://doi.org/10.1109/ITW.2012.6404674
https://pretalx.com/juliacon2023/talk/JP3SPX/
https://doi.org/10.1007/s12532-023-00239-3
https://doi.org/10.1038/s41598-017-06208-w
https://doi.org/10.3390/e13122013
https://www.mdpi.com/1099-4300/13/12/2013
https://www.mdpi.com/1099-4300/13/12/2013
http://stanford.edu/~boyd/papers/scs.html


34 bibliography

[15] Jarrett Revels. BenchmarkTools. 2015. url: https://juliaci.github.
io/BenchmarkTools.jl/stable/ (visited on 05/06/2024).

[16] Elad Schneidman et al. “Network Information and Connected
Correlations.” In: Phys. Rev. Lett. 91 (23 2003), p. 238701. doi: 10.1103/
PhysRevLett.91.238701. url: https://link.aps.org/doi/10.1103/
PhysRevLett.91.238701.

[17] Thomas Schürmann and Peter Grassberger. “Entropy estimation of
symbol sequences.” In: Chaos (Woodbury, N.Y.) 6 (Oct. 1996), pp. 414–
427. doi: 10.1063/1.166191.

[18] C. E. Shannon. “A Mathematical Theory of Communication.” In: Bell
System Technical Journal 27.3 (1948), pp. 379–423. doi: https://doi.
org/10.1002/j.1538-7305.1948.tb01338.x. eprint: https://onlinel
ibrary.wiley.com/doi/pdf/10.1002/j.1538-7305.1948.tb01338.x.
url: https://onlinelibrary.wiley.com/doi/abs/10.1002/j.1538-
7305.1948.tb01338.x.

[19] Sungho Shin, François Pacaud, and Mihai Anitescu. “Accelerating
optimal power flow with GPUs: SIMD abstraction of nonlinear
programs and condensed-space interior-point methods.” In: arXiv
preprint arXiv:2307.16830 (2023).

[20] Andreas Wächter and Lorenz Biegler. “On the Implementation of an
Interior-Point Filter Line-Search Algorithm for Large-Scale Nonlinear
Programming.” In: Mathematical programming 106 (Mar. 2006), pp. 25–
57. doi: 10.1007/s10107-004-0559-y.

[21] Zhen Zhang and R.W. Yeung. “On characterization of entropy function
via information inequalities.” In: IEEE Transactions on Information
Theory 44.4 (1998), pp. 1440–1452. doi: 10.1109/18.681320.

https://juliaci.github.io/BenchmarkTools.jl/stable/
https://juliaci.github.io/BenchmarkTools.jl/stable/
https://doi.org/10.1103/PhysRevLett.91.238701
https://doi.org/10.1103/PhysRevLett.91.238701
https://link.aps.org/doi/10.1103/PhysRevLett.91.238701
https://link.aps.org/doi/10.1103/PhysRevLett.91.238701
https://doi.org/10.1063/1.166191
https://doi.org/https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://onlinelibrary.wiley.com/doi/pdf/10.1002/j.1538-7305.1948.tb01338.x
https://onlinelibrary.wiley.com/doi/pdf/10.1002/j.1538-7305.1948.tb01338.x
https://onlinelibrary.wiley.com/doi/abs/10.1002/j.1538-7305.1948.tb01338.x
https://onlinelibrary.wiley.com/doi/abs/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1007/s10107-004-0559-y
https://doi.org/10.1109/18.681320


Appendices

35





A B E N C H M A R K

Table 14: Table displaying the time needed to compute the maximal entropy for
different solvers with or without Zhang-Yeung inequalities (ZY) while
using the polymatroid method with estimating the entropy from an
empirical distribution with d dimension, size of marginal entropies m

and a fixed number of samples in each dimension (s = 5). Data used were
from questionnaire [6] (Section 3.2). SCS solver [10] is slower then Mosek
[2], but the ration between them stays similar for all dimensions. There is
no significant difference when using the Zhang-Yeung inequalities.

s = 5

Time
without ZY with ZY

Mosek SCS Mosek SCS
d = 2 m = 1 0.91ms 1.7ms — —
d = 3 m = 1 1.1ms 6.8ms — —

m = 2 1.0ms 8.1ms — —
d = 4 m = 1 1.4ms 7.6ms 1.4ms 7.9ms

m = 2 1.4ms 28ms 1.5ms 18ms
m = 3 1.2ms 11ms 1.3ms 8.5ms

d = 5 m = 1 2.0ms 9.9ms 2.1ms 11ms
m = 2 2.3ms 30ms 2.3ms 31ms
m = 3 1.9ms 40ms 2.0ms 21ms
m = 4 1.7ms 12ms 1.7ms 15ms

d = 6 m = 1 4.3ms 28.6ms 4.3ms 16ms
m = 2 4.4ms 210ms 4.4ms 150ms
m = 3 4.3ms 60ms 3.9ms 240ms
m = 4 4.1ms 53ms 4.6ms 140ms
m = 5 4.2ms 28ms 4.5ms 45ms

d = 7 m = 1 9.7ms 23ms 9.7ms 26ms
m = 2 11ms 130ms 11ms 130ms
m = 3 13ms 420ms 12ms 1.1 s
m = 4 14ms 230ms 14ms 440ms
m = 5 15ms 350ms 15ms 160ms
m = 6 15ms 150ms 15ms 73ms

d = 8 m = 1 30ms 65ms 30ms 64ms
m = 2 42ms 720ms 42ms 940ms
m = 3 63ms 1.5 s 51ms 1.2 s
m = 4 85ms 900ms 85ms 1.1 s
m = 5 110ms 1.1 s 110ms 910ms
m = 6 120ms 650ms 120ms 690ms
m = 7 120ms 370ms 120ms 420ms

d = 9 m = 1 120ms 210ms 120ms 230ms
m = 2 180ms 1.8 s 190ms 2.1 s

Continued on the next page
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Table 14 – continued from the previous page

s = 5

Time
without ZY with ZY

Mosek SCS Mosek SCS
m = 3 370ms 4.1 s 370ms 4.0 s
m = 4 660ms 3.5 s 650ms 3.2 s
m = 5 930ms 4.8 s 1.0 s 5.0 s
m = 6 1.1 s 4.1 s 1.1 s 4.1 s
m = 7 1.3 s 3.4 s 1.3 s 3.5 s
m = 8 1.3 s 2.8 s 1.3 s 2.8 s

d = 10 m = 1 470ms 1.2 s 480ms 1.5 s
m = 2 1.2 s 8.5 s 1.3 s 11 s
m = 3 3.3 s 44 s 3.3 s 38 s
m = 4 7.8 s 19 s 18 s 20 s
m = 5 12 s 41 s 13 s 31 s
m = 6 17 s 59 s 18 s 56 s
m = 7 19 s 33 s 19 s 36 s
m = 8 22 s 33 s 22 s 34 s
m = 9 21 s 23 s 21 s 23 s
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