
Master Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering

Real-time teleoperation of a robot arm for
manipulating self-localization in human participants

Oleg Baryshnikov

Supervisor: Doc. Mgr. Matěj Hoffmann, Ph.D.
Supervisor–specialist: Sergiu Tcaci Popescu, Ph.D.
Field of study: Open Informatics
Subfield: Software Engineering
May 2024

ii

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

507458 Personal ID number: Baryshnikov Oleg Student's name:

Faculty of Electrical Engineering Faculty / Institute:

Department / Institute: Department of Computer Science

Open Informatics Study program:

Software Engineering Specialisation:

II. Master’s thesis details

Master’s thesis title in English:

Real-time teleoperation of a robot arm for manipulating self-localization in human participants

Master’s thesis title in Czech:

Teleoperace robotické paže v reálném čase pro manipulaci sebelokalizace u lidských účastníků

Guidelines:

The mechanisms of how humans localize touch on their bodies are not fully understood. To increase understanding,
specific manipulations of tactile localization are needed. One possibility is to exploit self-contact when the human is sliding
over its skin surface, but insert a robot arm in the middle [CAT22]. However, state-of-the-art studies lack the ecological
conditions of free movement. A motion capture system (Qualisys) coupled with a teleoperated robotic manipulator equipped
with an artificial finger will bridge the gap and allow more freedom to study the influence of proprioception vs. touch during
self-touch by changing forward kinematics parameters [PAT12].
This thesis follows up on [ROJ23] and extends it into movements on a plane (2D space) with the possibility of different
manipulations of the spatial transformation (human arm to robot arm). The thesis will also provide a mature GUI interface
for running and configuring the experiments and data logging.
The commission for Ethics in Research at the Czech Technical University in Prague has approved the experiments and
the informed consent form. Experiments with participants will be conducted and evaluated during work on the thesis.
Tasks:
1. Familiarize yourself with the Kinova Gen3 robotic platform, Qualisys motion tracking system, psychological experiment
procedures [CAT22], and previous implementation [ROJ23].
2. Extend the existing implementation (and reimplement when necessary) by adding an interface to configure the experiments
(for non-programmers), a familiarization phase for participants, and logging of the data for evaluation of the experiments.
Extend the existing GUI where necessary. Rework existing software architecture and use suitable architecture and design
patterns if needed.
3. Analyze critical parts of the program and cover it by Unit-tests. Pay specific attention to the safety of participants - see
Risk assessment in [ROJ23]. It has to be guaranteed that the robot arm does not leave the defined workspace, exceed
set velocity limits, or contact forces.
4. Together with the supervisors, run experiments with participants (1D version - participants and robot moving on a line).
5. Extend the setup to a plane (2D): Participant moves its arm on a plane which is mapped to the motion of the robot arm
(subject to manipulations), which then touches the participant’s other arm.
6. Provide comprehensive documentation.

Bibliography / sources:

[CAT22] Cataldo, A., Dupin, L., Dempsey-Jones, H., Gomi, H., & Haggard, P. (2022). Interplay of tactile and motor
information in constructing spatial self-perception. Current Biology, 32(6), 1301-1309.
[PAT12] Patane, L., Sciutti, A., Berret, B., Squeri, V., Masia, L., Sandini, G., & Nori, F. (2012, June). Modeling kinematic
forward model adaptation by modular decomposition. In 2012 4th IEEE RAS & EMBS International Conference on
Biomedical Robotics and Biomechatronics (BioRob) (pp. 1252-1257). IEEE.
[ROJ23] Rojík, A. (2023). Real-time teleoperation of a robot arm for self-contact. MSc. thesis, Faculty of Electrical
Engineering, Czech Technical University in Prague.

© ČVUT v Praze, Design: ČVUT v Praze, VIC Page 1 from 2 CVUT-CZ-ZDP-2015.1

Name and workplace of master’s thesis supervisor:

doc. Mgr. Matěj Hoffmann, Ph.D. Vision for Robotics and Autonomous Systems FEE

Name and workplace of second master’s thesis supervisor or consultant:

Sergiu Tcaci Popescu, Ph.D. Vision for Robotics and Autonomous Systems FEE

Deadline for master's thesis submission: __________ Date of master’s thesis assignment: 25.01.2024

Assignment valid until: 21.09.2025

___________________________ ___________________________ ___________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature

Head of department’s signature doc. Mgr. Matěj Hoffmann, Ph.D.
Supervisor’s signature

III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC Page 2 from 2 CVUT-CZ-ZDP-2015.1

Acknowledgements
I am grateful to Matěj Hoffmann and ad-
mire his work in organizing and running
the “Cognitive and Humanoid Robotics
laboratory”, without whom this work
would not have been possible.

Thanks also to Sergiu Tcaci Popescu
and Jason Khoury for their incredible sup-
port and guidance throughout my thesis.

Finally, I would like to express my
heartfelt thanks to my entire family, who
have made it possible for me to achieve
all that I have now.

Declaration
I declare that the presented work was
developed independently and that I
have listed all sources of information
used within it in accordance with the
methodical instructions for observing the
ethical principles in the preparation of
university theses.

Prohlašuji, že jsem předloženou práci
vypracoval samostatně a že jsem uvedl
veškeré použité informační zdroje v
souladu s Metodickým pokynem o
dodržování etických principů při přípravě
vysokoškolských prací.

V Praze dne 24. května 2024

. .
Oleg Baryshnikov

v

Abstract

This thesis focuses on developing an ap-
plication for studies based on articles [1]
and [2], which investigate the role of tac-
tile sensations, proprioceptive sensations,
and signals to perform voluntary move-
ments in constructing the spatial percep-
tion of human beings.

To decouple all of these signals and
study how each contributes to construct-
ing spatial perception, a replication of
the experiment from [1] and [2] was con-
ducted. During experiment trials, the
participant’s left-hand movements were
tracked by the motion capture system,
and the Kinova Gen3 robotic arm was
real-time controlled by the tracked partic-
ipant’s hand, providing 1D tactile extent
to the participant’s right arm.

The experiment replication required
the application to operate the robotic arm
and motion capture system, synchronize
them, gather data from them and par-
ticipants, control experiment blocks and
trials, and provide relevant information
via UI. Development of such an applica-
tion was started by Adam Rojík in his
diploma thesis [3], but not all required
features for a complete experiment repli-
cation were implemented.

In the context of the current work, I
extended the functionality of the Adam
Rojík application, improved the code
structure and software architecture, inte-
grated unit tests, provided documentation
to simplify future use and development
processes of the application, and assisted
the supervisors in replicating the experi-
ments from articles [1] and [2].

Keywords: real-time teleoperation,
self-contact, human-robot interaction,
spatial perception, c++, software
architecture, motion capture

Supervisor: Doc. Mgr. Matěj
Hoffmann, Ph.D.

vi

Abstrakt

Tato práce se zaměřuje na vývoj aplikace
pro studie založené na článcích [1] a [2],
které zkoumají roli hmatových vjemů, pro-
prioceptivních vjemů a signálů k prová-
dění dobrovolných pohybů při vytváření
prostorového vnímání člověka.

Aby bylo možné všechny tyto signály
oddělit a prozkoumat, jak každý z nich při-
spívá ke konstrukci prostorového vnímání,
byla provedena replikace experimentu z [1]
a [2]. Během pokusů experimentu byly po-
hyby levé ruky účastníka sledovány sys-
témem snímání pohybu a robotická ruka
Kinova Gen3 byla v reálném čase řízena
sledovanou rukou účastníka, což poskyto-
valo 1D hmatové signály pravé ruky účast-
níka.

Replikace experimentu vyžadovala,
aby aplikace ovládala robotickou ruku a
systém snímání pohybu, synchronizovala
je, shromažďovala od nich a od účastníků
data, řídila bloky experimentu a pokusy a
poskytovala příslušné informace prostřed-
nictvím uživatelského rozhraní. Vývoj ta-
kové aplikace zahájil Adam Rojík ve své
diplomové práci [3], ale ne všechny po-
žadované funkce pro kompletní replikaci
experimentu byly implementovány.

V rámci této práce jsem rozšířil funkč-
nost aplikace Adama Rojíka, vylepšil jsem
strukturu kódu a architekturu softwaru,
integroval jsem unit-testy, zajistil jsem do-
kumentaci pro zjednodušení budoucího
používání a vývoje aplikace a pomohl
jsem vedoucím při replikaci experimentů
z článků [1] a [2].

Klíčová slova: teleoperace v reálném
čase, sebe-kontakt, interakce
člověk-robot, prostorové vnímání, c++,
softwarová architektura, snímání
pohybu

Překlad názvu: Teleoperace robotické
paže v reálném čase pro manipulaci
sebelokalizace u lidských účastníků

vii

Contents
1 Introduction 1

1.1 Motivation and main goals 1

1.2 Structure of the thesis 3

2 Context analysis 5

2.1 Experiments for investigation of
interplay of tactile and motor
information in constructing spatial
perception . 5

2.2 Kinova Gen 3 robotic platform . . 9

2.3 Qualisys motion tracking system 10

3 Experiment replication 13

4 Legacy tele-touch application
analysis 17

4.1 Architecture and design 17

4.2 Familiarization block 20

4.3 Experiment parameters
configuration 20

4.4 Data logging for future evaluation 21

5 Software application design 23

5.1 The new application architecture
design . 23

5.2 Familiarization block - design . . 25

5.3 Graphical UI to configure the
experiments - design 30

5.4 Data logging - design 35

5.5 2D extension - design 44

6 Software application
implementation 47

6.1 Familiarization block -
implementation 47

6.2 Graphical UI to configure the
experiments - implementation 55

6.3 Data logging - implementation . 60

6.4 2D extension - implementation . 62

6.5 Unit-tests . 64

6.6 Project documentation 66

7 Risks assessment 67

8 Conclusion 73

8.1 Meeting the Objectives 73

Bibliography 75

viii

Chapter 1

Introduction

1.1 Motivation and main goals
Spatial awareness is one of the most important perceptions that significantly contributes to
survival of many living organisms on our planet. Thoughts of how different species and
human beings in particular perceive space around them occupied the minds of thinkers and
scientists a long time ago and eventually led to the formation of several views and theories
concerning this theme.

There are several signals that contribute to spatial awareness perception; this diploma
thesis will focus only on three of them: tactile sensation, proprioceptive sensations, and
signals to perform voluntary movements. Nowadays, there are theories that can explain how
the signals mentioned above are formed. For example, generally accepted theories for tactile
sensation postulate that it is formed in the somatosensory cortex, which receives action
potentials from tactile receptors providing sensations of touch, pressure, and vibration.
Even when we know how each signal works separately, it still remains unclear how those
signals work together to form spatial perception, which we rely on in everyday life.

This could be studied by investigating the self-touch process, which involves all three
signals: tactile, proprioceptive, and voluntary movement. The latest research on how
those three signals influence spatial perception during the self-touch process was performed
by Antonio Cataldo, Lucile Dupin, Harriet Dempsey-Jones, Hiroaki Gomi, and Patrick
Haggard, and described in their two articles: “Sensorimotor signals underlying space
perception: An investigation based on self-touch” [1] and “Interplay of tactile and motor
information in constructing spatial self-perception” [2].

Those two articles contain descriptions of two experiments with identical setups but
slightly different parameters. In these experiments, a participant interacts with two robots:
he holds the first robot with their right hand and moves it freely from a certain start point
to a certain end point. At the same time, the second robot repeats the participant’s right
hand movements and touches the participant’s left hand, and the length of touch is not
always equal to the participant’s left hand movements and may vary. At the end of the trial,
participants must evaluate the extent of movement or touch. Details of these experiments
are provided in Section 2.1.

1

1. Introduction ..
These experiments may be subject to the following criticism: during the common self-

touch process, such as when a person styles their hair, he freely decide when to end their
movement instead of being interrupted during its production. However, in the experiments
described in the articles, a participant’s active movement is restricted by virtual walls, and
the end position is strictly set. Consequently, a participant cannot decide where he might
end movement as he would during normal voluntary movement. This leads to the difficulty
of making conclusions about the influence of voluntary movement commands on our spatial
perception during self-touch, and the role of voluntary motor commands remains unclear.

Avoiding that voluntary movement restriction is the main motivation of the experiment’s
replication that will be covered at this diploma thesis and especially in Chapter 3.

To repeat experiments, the setup with one Kinova Gen3 robot and the Qualisys motion
capture system is used. Using the motion capture system instead of a second robot to track
participant movements allows participants to move freely, as during common voluntary
movements, in any dimension. Their position will be tracked by markers attached to the
arm, and nothing will restrict participants in an ideal scenario. However, in the experiments
described in articles [1] and [2], participants made their movements only in 1D, and to
compare the results of the experiment replication with those of the previous ones, it is
required to restrict participant movement in a way that allows them to move only in 1D
during the experiment replication.

This setup requires an application that will operate the robot and motion capture system,
synchronize them, gather data from them and participants, control experiment blocks and
trials, and provide relevant information about them via UI. Adam Rojík started developing
such a tele-touch application while writing his diploma thesis [3]. His application provides
an interface for real-time teleoperation of the Kinova Gen3 robot via feedback from the
Qualisys motion capture system in 1D and a simple graphical UI that allows experimenters
to run experiment blocks.

However, a graphical UI to configure the experiment, a complete familiarization block
for participants, logging of the data for evaluating the experiments are required for the
experiment replication but were not implemented. Furthermore, the application that allows
us to control robots using information from the motion capture systems can be used for
future experiments; therefore, documentation, clean architecture, unit tests, and logic to
control the robot in at least 2D extension are also needed.

The main goals of this work are to extend the functionality of the legacy tele-touch
application, improve the code structure and software architecture, integrate unit tests,
provide documentation to simplify future use and development processes of the application,
and to replicate the experiments from articles [1] and [2].

2

..................................... 1.2. Structure of the thesis

1.2 Structure of the thesis
This thesis consists of the following chapters:..1. Introduction – contains the motivation, a quick overview of psychological aspects

related to this work, related works, the legacy application, and the main goals of the
thesis...2. Context Analysis – contains a description of previous experiments [1] [2]: methods,
setup, and results; as well as methods and setup for the experiment replication...3. Experiment Replication – contains a description of the experiment replication. For the
reader’s convenience, it comes immediately after the analysis of previous experiments,
the description of the robot and the motion capture system, preceding the design,
implementation, and risk assessment chapters...4. Legacy Tele-touch Application Analysis – contains an analysis of the legacy application’s
content related to the assignment of this diploma thesis, reasons for improvement or
reworking it, as well as the legacy application’s disadvantages that were found and
must be fixed in parallel with implementing logic from the thesis assignment...5. Software Application Design – contains specifications in a form of informal textual
description of the logic that must be implemented during the thesis, together with a
formal description provided as a set of functional requirements...6. Software Application Implementation – contains a description of how the logic specified
in the “Software Application Design” chapter was implemented and a showcase of it.
Also it contains a description of the unit-tests that were designed and implemented
in the application and a project documentation that was provided for the newly
implemented parts of the application...7. Risks assessment – contains an analysis and evaluation of possible risks that may occur
during the experiment...8. Conclusion – contains a high-level summary of what was accomplished.

3

4

Chapter 2

Context analysis

2.1 Experiments for investigation of interplay of tactile and
motor information in constructing spatial perception

There are three theories that might propose controversial approaches to prediction of
how motor (signals to perform voluntary movements), movement and sensory information
influence our perception during self-touch. First one is Lotze’s theory of local signs that
postulates that motor information should have a logical priority over tactile information
during self-touch [4]. Optimal integration theories assume that signals are independent and
are weighted according to reliability at an integration stage when spatial perception is form-
ing [5]. Another group of theories purpose completely independent spatial representations
for movement and for tactile sensation [6] [7]. [1] [2]

Correctness of those three groups of theories in regard to self-touch process were covered
in two articles: “Sensorimotor signals underlying space perception: An investigation based
on self-touch” [1] and “Interplay of tactile and motor information in constructing spatial self-
perception” [2] that investigate how motor, proprioceptive, and sensory information influence
spatial perception during self-touch. Authors of articles performed several experiments with
two linked robots where one robot was responsible for tactile part and other one for motor
part to decouple motors from sensory components and investigate movement interference
with tactile extent perception, and vice versa [1] [2]. The experiment setup from the [1]
article is shown at the Figure 2.1.

Active motion and passive motion conditions were used to understand the role of the
voluntary movement commands. A participant holds the first robot by his right-hand and
moves it by himself in active condition, in passive condition participant hand movements were
performed by experimenters. At the same time, the second robot touches the participant’s
left hand, and the length of the touch differs between the experiments described in the
articles [1] and [2]. It equals to a fixed value from a set of 6, 8, or 10 cm in experiments
from [1], or it corresponds to the length of the participant’s movement and the gain applied
to it in experiments from [2]. At the end of the experiment trial, participant must evaluate
either the extent of movement or the extent of touch. The combination of active/passive
conditions and movement/touch extent forms four experiment blocks: AM, AT, PM, PT.

Let’s assume that movement and tactile information have completely independent roles
in the process of forming spatial perception and consider the passive movement block (“D”)
in the experiment results from the article [1] shown in Figure 2.2. In such a case, if

5

2. Context analysis ..

Figure 2.1: The self-touch experiment setup. [1]

Figure 2.2: Results from the article “Sensorimotor signals underlying space perception: An
investigation based on self-touch”. [1]

6

2.1. Experiments for investigation of interplay of tactile and motor information in constructing spatial perception

experimenters performed participant’s hand movement with any length from predefined
set 6, 8, or 10 cm, then whatever touch the participant felt, touch extent must not affect
the movement judgments; therefore, all lines that corresponds to different lengths of touch
extent in the section “D” must overlap each other and be essentially the same. The same is
for the passive touch block and section “B” in the results. However, in sections “B” and
“D”, we see that the lines are not the same. Let’s also assume that the signals for the active
movements don’t affect and interfere with either the movement or the tactile signals in
constructing spatial perception; then, in active conditions when the signals for the active
movements are present, participants must judge movement or tactile extent fully equally to
the passive condition. However, we see differences between “A” and “B” blocks and “C”
and “D” blocks, which represent active and passive conditions respectively.

Specific differences between lines that denote different lengths of movement/touch extent
in the “A”, “B”, “C” and “D” blocks show that movement extent strongly interferes with
tactile extent perception and vice versa, and motor signals dominate the construction of
spatial percepts, but this dominance is not total [1]. Also, block “E” shows the analysis of
data from the other blocks described above. This analysis show differences in irrelevant
information impact on a to-be-judged signal between active and passive conditions and
from this can be concluded that signals for producing voluntary movement are also involved
in spatial perception forming process.

Experiment result data in article [1] and article [2] differ. Results from article [1] show
less task-irrelevant information impact during active movement of “judge movement” task
while results from article [2] show the opposite. That may be caused by the difference of
how the length of touch extent is formed in experiments. In the experiment from article [1],
the results of which we considered above, the length of touch extent always equals to one of
the value from the set of 6, 8, or 10 cm. In contrast, length of touch extent in experiments
from article [2] equals to the length of the movement and the gain from set 0.(6), 1 and 1.5
applied to it; in other words, it is equal to the length of the movement multiplied by one of
values from set of 0.(6), 1, 1.5.

Additionally, during all experiments participants’ active movement is restricted by virtual
walls and participants cannot decide where they want to stop their movement as during the
normal voluntary movement. This leads to the difficulty of making conclusions about the
influence of the voluntary motor commands on our spatial perception during the self-touch
and the role of the voluntary motor commands remains unclear.

According to two facts described in the previous paragraph the experiment might be
replicated to clarify task-irrelevant information impact during active movement of “judge
movement” task with improvement of participants’ ability to choose where he want to stop
their voluntary movement to investigate the role of voluntary motor commands.

To replicate experiments setup with one robot and the motion capture system was used.
The motion capture system doesn’t require any virtual walls for measuring participants
movements that introduces the ability for the participant to choose when he want to
stop his movement, therefore the purely voluntary movements can be studied. To clarify
task-irrelevant information impact during active movement condition, length of touch extent

7

2. Context analysis ..
during the experiment replication will be equal to the length of the movement multiplied
by one of values from set of 0.(6), 1, 1.5.

This setup requires the application that will operate the robot and motion capture system,
synchronize them, gather data from them and participants, control blocks (AT, AM, PT,
PM) and trials and provide relevant information about them by GUI. The development of
such an application was started by Adam Rojík [3] in his thesis “Real-time teleoperation
of a robot arm for self-contact – master thesis”. However, not all the required logic was
implemented for a complete replication of the experiment, and several improvements and
modifications need to be made, as described in Chapter 4. Adam Rojík’s application will
be called the “legacy application” or “legacy tele-touch application” in the context of the
current work. The description of the results of the experiment replication with the updated
application is presented in Chapter 3, following this chapter for the reader’s convenience.

8

..................................2.2. Kinova Gen 3 robotic platform

2.2 Kinova Gen 3 robotic platform
The Kinova Gen3 robot with 7 degrees of freedom is one of the main components of the
experimental setup. The robot consists of a base, seven actuators, and the gripper as it
shown in Figure 2.3.

Figure 2.3: The Kinova Gen3 robot.

The robot can be controlled directly by an Xbox gamepad, which always takes priority
over other control modes, or by the API with multiple servoing modes. A servoing mode is
a modality through which commands are transmitted to robot devices during operation [8].

There are three servoing modes in total:..1. High-level servoing: the default mode where the user communicates with the robot’s
base. In this mode, the robot control library is involved to perform inverse kinematics
computations for cartesian inputs and ensure safety by controlling collisions, boundary
box, and other parameters...2. Low-level servoing: in this mode, the user communicates with the robot’s base, which
provides faster API methods because the robot control library is not involved. Therefore,
the user controls the robot by sending certain joint positions of the robot’s actuators
and must ensure safety and inverse kinematics by themselves.

9

2. Context analysis ..3. Low-level bypass servoing: this mode allows the user to directly communicate with the
robot’s actuators by sending the position of joint angles to them. The robot control
library is not involved.

In order to ensure minimal and imperceptible delay when a participant’s hand is being
tracked and the robot repeats the participant’s movements, the legacy application uses the
low-level servoing mode to communicate with the robot. The legacy application works with
Cartesian coordinates to calculate the required position of the robot, checks if boundary
and speed limits are not violated, and then performs inverse kinematics computations using
the QuIK library to obtain joint angles for the robot’s actuators. After that, it checks for
any forbidden angles and finally sends the joint angles to the robot’s base. These methods
for ensuring safety will not be changed during the application changes in the context of
this diploma thesis.

2.3 Qualisys motion tracking system
The main Qualisys motion tracking system setup consists of: at least two motion capture
cameras, the calibration kit, a set of reflective markers, the computer or laptop with
Qualisys Track Manager software installed on it, and power and data cables that connect
the cameras and computer or laptop. The minimal Qualisys motion tracking system setup
is represented in Figures 2.4 and 2.5.

Before using the motion capture system, the Qualisys Track Manager needs to determine
camera positions relative to each other in order to correctly track markers. This must
be done by performing a calibration process with the calibration kit. The calibration kit
consists of the calibration triangle and the calibration wand, with reflective markers fixed
in a certain way so that the distances between them are known. During calibration, the
calibration triangle must lay on a surface inside the zone that will be tracked, while the
calibration wand is actively moves around the tracking zone. After a successful calibration,
the motion capture system can be used to track markers in the tracking zone.

10

................................. 2.3. Qualisys motion tracking system

Figure 2.4: Two miqus motion capture cameras, power and data cable, markers and laptop
with the Qualysis software.

Figure 2.5: The motion capture system calibration tools.

11

2. Context analysis ..
The following terms may be used when working with the motion capture system:

.Measurement: A separate file that must be created in the motion capture system
project in order to start a capture and work with the information that was received
during the capture.. Capture: The period when a measurement is open, and the motion capture system
tracks and saves the positions of markers in the tracking zone.

If the motion capture system is used to track markers with the same structure, such
as markers always placed on certain parts of the hand, it may be useful to create an
Automatic Identification of Markers (AIM) model. This model can then be applied to any
measurement that captures similar motions with the same marker set [9]. Markers in the
AIM model can be named, and their positions can be retrieved using the Qualisys API [10]
during a capture. The set of tracked markers with the applied AIM model in an opened
measurement is shown in Figure 2.6.

Figure 2.6: The Qualisys Track Manager view.

The positions of the markers during a capture with the AIM model applied on it are
actively used by the legacy tele-touch application to track participants’ hand movements
and repeat them by the robot’s movements.

12

Chapter 3

Experiment replication

While replicating the experiment, four Miqus motion capture cameras attached to tripods
to track markers at a frequency of 300 Hz were used. The cameras were connected to a
laptop with the Qualisys track manager application open, and this laptop was connected
to the laboratory network. Another laptop connected to the laboratory network ran the
tele-touch application, and an external DELL U2415 screen with an active screen height of
32.1 cm (1200px) was used to display the application GUI. The Kinova Gen 3 robot was
turned on and connected to the laboratory network. The robot gripper was equipped with
a brush with a long bristle. Additionally, there was a right-hand support allowing dynamic
changes in horizontal arm position, a left-hand fixator to restrict participant movements in
one direction, the wireless mouse that allows a participant to switch application scenes,
four markers with elastic bands attached to the participant’s hand, and one marker on the
robot. Finally, a motion capture calibration kit was used for motion system calibration.

Before starting each experiment with a participant, the robot was rebooted, and the
motion capture system was calibrated to ensure maximum data precision and experiment
safety. An AIM model was generated, and since the robot’s operating height was known
and fixed in the settings file, the vertical brush position was adjusted to ensure participant
comfort. The participant then placed markers on his left hand: one marker is placed on
the elbow, two markers on the wrist, and one on the base of the little finger, took his seat,
and attached his left hand to the hand fixator on the table. His right hand was placed on
the table with the right-hand support, which was dynamically aligned horizontally so that
the brush could equally touch the entire surface of the hand when the robot was moving.
The participant’s hand position during the experiment is shown on Figures 3.1 and 3.2.

While the participant performed the operations described below, the order of the four
experiment blocks was defined, and participant info files were created by experimenters
using the application GUI. The participant was then introduced to the instructions for
the familiarization block, and the UI familiarization scene with familiarization block GUI
components was displayed on the screen. The participant attempted to perform ten good
familiarization trials to familiarize themselves with the experiment setup, learn to move his
hand at a nearly constant speed, and utilize all the provided space for movement during
experimental trials. The participant that is trying to make a good trial in the familiarization
block is shown on Figure 3.3.

When the participant performed ten good familiarization trials, he was considered
prepared, and the first experiment block from the predefined order began. Before each

13

3. Experiment replication......................................

Figure 3.1: Participant’s left hand during experiment.

Figure 3.2: Participant’s move his left hand and the robot repeat his movements.

14

...................................... 3. Experiment replication

Figure 3.3: Participant is performing the familiarization trial.

experiment block, the participant received instructions and was asked to focus and evaluate
the extent of touch or movement. The participant was unaware that the robot did not always
replicate his movements 1:1 and that gain was applied. Before each block, customizable
block settings were adjusted to match the participant arm length. Each experiment block
consisted of 25 to 100 trials. After completing each block, the participant could choose to
take a break or proceed to the next block in order, and the application was restarted. Once
the last block in the order was finished, the experiment concluded.

Five participants took part in the experiment, interaction with one participant lasting
from 1 hour to 2.5 hours. Approximately 750 experimental trials and 100 familiarization
trials were performed. For each experiment, the following output files were obtained:

.Output files from the Qualisys motion capture system containing information about
the positions of all five markers for each trial..Output files containing information about each experiment block performed.. Output files with detailed information for each trial performed during the familiarization
block..Output files with information about each trial performed during every experiment
block.

Examples of each of these files are located in the ./cpp/output_data_example directory on
the project’s GitLab [11] and detail describtion of those files are provided in the Section
5.4.

15

3. Experiment replication......................................
The collected data is sufficient to begin future analysis, although data analysis is going

outside of the scope of the current work.

16

Chapter 4

Legacy tele-touch application analysis

4.1 Architecture and design
During the analysis of the legacy application, several design, style, and architecture disad-
vantages described in the text below were identified, and after analyzing these disadvantages,
several recommendations were made to eliminate them.

The legacy application contains 7 non-external-libraries files with the source code. All
of them are shown in Figure 4.1, which includes a non-standard diagram that shows the
legacy application files, relations between them, and information about the structures and
classes they contain. The “includes” relation between some files A and B on this diagram
means that file A contains the “#include B” directive.

The Working Draft, Standard for Programming Language C++ [12] which can be found
on GitHub [13] says: “The text of the program is kept in units called source files in this
document. A source file together with all the headers and source files included via the
preprocessing directive #include, less any source lines skipped by any of the conditional
inclusion preprocessing directives, is called a translation unit.”. According to the standard
draft, these translation units compile completely independently from each other. The legacy
application has only one source file – main.cpp, and will have only one translation unit
formed from the main.cpp file and all files that it directly or indirectly includes. If changes
occur in any of those files, the entire translation unit must be recompiled, leading to longer
compilation times when any part of the application source code changes. Using a group of
logically separated source files, such as camera_reader.cpp, robot_controller.cpp, etc.,
will significantly reduce compilation time after source code changes.

The all source code of the legacy application is located inside *.h files. A *.h file,
commonly known as a header file, typically contains declarations of types and functions,
while .cpp files commonly contain their definitions. Bjarne Stroustrup, the inventor and
developer of C++ language, addresses this separation in his book “A Tour of C++” [14],
stating: “This can be used to organize a program into a set of semi–independent code
fragments. Such separation can be used to minimize compilation times and to strictly
enforce separation of logically distinct parts of a program (thus minimizing the chance of
errors)”. Therefore, to reduce the application compilation and recompilation times and
logically distinct declaration and definitions to minimize the chance of errors, the application
source code contained within .h files must be separated. Definitions of types and functions
should be placed in .cpp files, while declarations should remain in .h files.

17

4. Legacy tele-touch application analysis

Figure 4.1: Legacy files relations diagram.

The application’s classes are grouped by files. While camera_reader.h, robot_controller.h,
ui.h and kortex_controller.h files each contain only one class that is semantically sepa-
rated from others, the gui.h file contains several classes with various purposes that could
theoretically be reused in classes that are located in other files. However, grouping classes
by files leads to less reusability and more complex navigation compared to grouping them by
folders. For instance, the RenderTimer class may be used in GUI classes that are located in
other files, but including the entire gui.h file, which also contains less-reusable classes like
MyFrame, is redundant. Additionally, it may be challenging to locate the RenderTimer class
because there is no indication that gui.h contains it. To avoid redundancy and improve
navigation in the project, it is better to have one class per file and semantically group those
files into separate directories.

All the UI state processing logic is mainly located in the “update” method in the “Ui”
class, while the UI component drawing logic is located in the “render” method of the
“BasicDrawPane” class. Separating data processing logic and drawing logic is a useful
technique because it contributes to writing more isolated unit-test methods and enables

18

.....................................4.1. Architecture and design

switching graphical libraries by simply changing one GUI class to another. However, these
classes are designed in such a way that the “update” method (298 lines of code) and the
“render” method (131 lines of code) are large and include logic for processing every single
GUI application state and drawing every single GUI element. When encountering an issue
with how a rectangle is drawn during the experiment on the screen, it is much easier to
locate and fix the error in the small “DrawRectangle” method than within the large general
“render” method. As the application grows, these methods will grow too, making it more
difficult to implement new features and locate errors in the GUI. Therefore, the “render”
and “update” methods must be separated into several smaller, semantically separated
methods.

The GUI logic is spread between the ui.h and gui.h files, the purposes of which are not
clear from their names. The names of the BasicDrawPane and MyFrame classes are quite
incorrect. The BasicDrawPane contains the logic for drawing all scenes in the application,
so calling it “Basic” does not accurately reflect its complexity, and the name “MyFrame”
means nothing without context. As the application grows, such ambiguous class and file
names will lead to confusion because programmers will struggle to quickly determine the
purpose of each class. Class and file names should indicate the semantic purpose of the
class.

The GUI, camera, and robot classes are designed to communicate with each other
using shared data structures and mutex locks. For example, if the GUI object wishes to
indicate that the scene has changed, it modifies the “scene” variable in the “sharedDataUi”
data structure. However, it remains unclear which object will read this variable and
what consequences it will lead to. The lack of understanding of the effects of variable
changes during editing of shared data structures leads to difficulties in future application
support, development of new features, and debugging in case of errors. To avoid this, every
communication between UI and non-UI components should be done by calling methods
with names that represent their semantic.

Some parts of the application source code contain strong dependencies between unrelated
classes. For example, when the RobotController class needs to determine which action
it must perform, it reads the “scene” variable from the “sharedDataUi” shared data
structure and performs different actions based on the information read. This imposes a
requirement that the RobotController must know which scene the UI has and how to
react to every particular UI scene, which prohibits the RobotController from being used
in applications with other UIs. To change this, classes that are not responsible for UI logic
must be independent from the UI classes.

To reduce compilation time, achieve better navigation within the project, ensure class
reusability, minimize the chance of errors, and reduce the time required to implement
new features or fix errors, the application architecture must be entirely reworked, and
the application source code must be rewritten, taking into account the design and style
recommendations described above.

19

4. Legacy tele-touch application analysis
4.2 Familiarization block

Every experimental block requires participants to be familiarized with the experimental
setup and to be able to move their arm at approximately the same speed during every trial
to reduce the intra-subject and inter-subject movement variability in order to get coherent
data. Additionally, participants need to be taught that they may freely use all the range of
possible movement extents provided for them that also means end their movement at any
point on their right hand to ensure that their movements will be truly voluntary during the
experiment and to obtain data for most available distance values. To satisfy these criteria,
a familiarization block is used. In summary, the familiarization block has the following
goals:

. Familiarize participants with the experimental setup..Teach participants to move their hand at a close to constant speed during experimental
trials..Teach participants to use all the space provided for movement.

The logic of the familiarization block in the legacy application is primitive. During the legacy
familiarization block, participants can perform an unlimited number of trials. Each trial
consists of two scenes: the introduction scene informs the participant that the familiarization
block has been selected, and after the participant clicks, the countdown scene occurs. Right
after the countdown, the robot starts following the participant’ left hand and touches the
participant’ right hand.

These two scenes only familiarize the participant with the process of robot manipulation.
However, participants will not be able to learn how to perform movements at a close to
constant speed and explore all the available space for movement. Because of this, the
legacy familiarization block must be reworked by adding groups of new features that will
help participants acquire these important experimental skills. Specifications for the new
familiarization block are described in the Section 5.2.

4.3 Experiment parameters configuration
This section contains an analysis of how the legacy application works with participant data
and which parameters it allows to change in experiments and familiarization blocks.

Before the experiment starts, structured information about a participant must be gathered
and saved in a well-defined format. That information must identify by the participant’s
code name and must contain the participant’s age, gender, order of the AT, AM, PT, PM
blocks that will be performed during an experiment with the participant, and the length of
the participant’s forearm. This information will be used during further analysis of the data
gathered during the experiment with the participant.

To prevent format violations and maintain consistency in participant data across all
experiments, it is advisable to implement a user interface with functions for creating, editing,

20

................................ 4.4. Data logging for future evaluation

and accessing participant data within the application. However, the legacy application
doesn’t contain any logic for working with participant data.

Additionally, experiment and familiarization blocks have their own set of parameters that
may be adjusted before the block starts, at the experimenter’s discretion. In the legacy
application, experimenters can only modify a few basic application settings, such as screen
height in centimeters for correct GUI displaying, connection parameters for the motion
capture system and Kinova robot, and certain safety parameters like maximum joints
velocity and initial robot positions, by manually editing the settings.ini configuration
file. Any other customizations to experiment and familiarization blocks can only be made
by modifying the source code. This process requires specialists familiar with the source
code and time for recompilation of the application.

An example of source for possible customizations is an editable vertical line used to
provide participants with the possibility to evaluate extents in centimeters. The length
of that judgement line is randomly chosen from uniform distributions at the start of the
judgment scene. Participants can change the length of that line, and the final judgment
will be equal to the length of the vertical line on the screen. Sometimes, experimenters may
want to adjust the graphical line width for visually impaired participants, set boundaries
for uniform distributions of the judgment line to match participant arm length, or specify
the step of change in the judgment line.

To reduce time of changing experiment and familiarization block parameters and to
minimize the risk of errors that experimenters may encounter when working with participant
data, a new application screen with functions for managing participant data and customizing
experiment and familiarization block parameters must be developed. Specifications for that
graphical UI to configure the experiments are described in the Section 5.3.

4.4 Data logging for future evaluation
The legacy application has only one output file that is created after the application closes.
It is a file with information from the Qualisys motion capture system containing recording
parameters and frames with coordinates that represent the position of every marker during
the application work. Additionally, the legacy application sends a set of different events
to Qualisys as a strings with information about scene or block switching, trial end, gain
changing, arm length, and judgment line length. The output file also contains information
about all received events connected to the frame when Qualisys received that event. An
example of events that was logging during the legacy application run is shown on the Figure
4.2.

The legacy application’s output data file includes information for all trials that occurred
during the application work. During the data analysis process, the data must be separated
by the trials to analyze each one separately, and this separation requires human resources
and time.

The information from the motion capture system is not fully reliable because sometimes
during the capturing process the motion capture system may lose some markers or detect

21

4. Legacy tele-touch application analysis

Figure 4.2: Events from the legacy application output files containing all the information.
Figure from the “Real-Time Teleoperation of a Robot Arm for Self-Contact” work [3].

non-existent markers in reflections from the robot or rails. Therefore, additional and more
reliable sources of information are required. For example, the robot’s position could serve
as one of these sources.

Information about different legacy application values that the legacy application tries to
save are represented as part of the names of events in the motion capture system capture
that are commonly used to “mark something that is happening” [9] but not to store values.
Storing complex data structures in a set of events will lead to a more complex parsing
process during the output data analysis.

The graphical UI to configure the experiments logic, the need for which was described
in the previous section, assumes that the application will manage participant data and
customize experiment and familiarization block parameters, thus requiring saving this
information in order to analyze it later.

To reduce data parsing time and complexity, there should be a separate motion capture
system output file for each trial. Additionally, application information should be logged in
files separate from the Qualisys motion capture output data files. These files must include
participant data, customizable experiment and familiarization block parameters, as well as
information of the robot’s position during trials.

22

Chapter 5

Software application design

5.1 The new application architecture design
To satisfy all recommendations provided in the architecture analysis Section 4.1, a new
architecture has been created for the application. The description of the new architecture,
along with its main advantages over the previous program structure, is provided below as
description of several semantically separated application components with methods and
data that they can have.

All application definitions of types and functions will be placed in .cpp files and their
declarations will be placed in .h files. Each class representing an application component
will be represented by its own .cpp and .h files with names that reflect its purpose, and
these files will be grouped by directories with appropriate names to ensure comfortable
navigation for a programmer.

To preserve the possibility of easier UI library changes and to separate data processing and
drawing logic, the application’s UI logic has been divided into three main components: view,
view implementation, and presenter. Each semantically separated part of the application UI
will consist of its own presenter, view, and view implementation(s). For example, the appli-
cation will have ExperimentView, FamiliarizationView, and SetupView, along with their
implementations and corresponding ExperimentPresenter, FamiliarizationPresenter,
and SetupPresenter classes. This separation helps prevent the consolidation of all logic in
the GUI and UI classes.

A view is an application component represented by an interface that defines the necessary
UI-drawing functions used by the presenter. These functions must be implemented in the
view implementation. Utilizing this interface allows the application to have several different
implementations of the same view, for example with different graphics libraries, which will
work with the same presenter.

A View Implementation is an application component represented by a class that imple-
ments the view interface. It can utilize graphical libraries and utilities to draw the UI as
directed by the presenter. The View is designed to be maximally passive; it receives UI
events and directly passes those events which can significantly affect the application state
changes without processing them to the presenter by calling the presenter’s methods and
waits for presenter’s commands. Additionally, the View can only store the data needed
to draw the user interface and to utilize UI libraries. The logic behind the View can be

23

5. Software application design....................................
distributed among individual graphical components at the programmer’s discretion.

A presenter is an application component represented by a class that includes methods
and data to handle and react to events that can significantly affect application state changes
coming from the view or services. The presenter should not strictly depend on any graphical
libraries or components; the view is responsible for work with graphical elements. The
presenter can independently process received as a result of reacting to events from the view,
or it can utilize services and utilities for this purpose. Additionally, the presenter calls
functions of the view interface to draw the application state changes.

The presenter and view components are essentially the main components for drawing
semantically separated application UI parts. Services and utilities are designed with the
possibility of being used outside the application context, for example, in other applications,
and do not include application UI logic. This ensures that classes not responsible for UI
logic are independent from the UI classes.

A service is an application component represented by a class that includes semantically
separated non-UI methods, with names that reflect its purpose. These methods can be
called in various presenters and other application services. A service encapsulates the data
required for the operation of these methods and can also modify data that can be used
outside the application context, such as files on ROM, the motion capture system state,
robot states, and others. Only services can create new threads, with the operation logic
described in workers, and communicate with them using shared data. This ensures that
every communication between UI and non-UI components is done by calling methods with
names that represent their semantics.

A worker is an application component represented by a class that includes methods and
data designed to create new threads and work within them. Workers can only appear as
part of some services and may include utilities and services to perform certain operations.

A utility is an application component represented by a class that includes semantically
separated methods, which can be used in various presenters, views, services, workers and
other utilities. A utility can also encapsulate the data required for its methods, but can
modify data that can be used outside the application context only as a part of a service
and cannot spawn new threads.

Separating the application into small, semantically independent parts such as view
implementations, views, presenters, services, workers, and utilities not only provides the
benefits described above but also reduces the time required to implement new features and
identify and fix errors. This is because it is easier to find errors or implement methods in
small, semantically separated classes than in one large, general-purpose class.

The application components described above, along with all their connections, are
graphically represented in Figure 5.1. In the non-standard diagram, application components
are represented as rectangles. The “includes” relation between some components A and B
in this diagram means that file A contains the “#include B” directive. The “may include”
relation between some components A and B means that file A may contain the “#include
B” directive. An arrow pointing to one rectangle of component A indicates that some

24

.................................. 5.2. Familiarization block - design

component includes or may include only one such component A. An arrow pointing to one
rectangle and one rectangle behind component A indicates that some component includes
or may include many such components.

Figure 5.1: The new application architecture.

Specific and concrete examples of application components are given in the implementation
Chapter 6.

5.2 Familiarization block - design
The description and specifications that was used for further implementation of the new
familiarization block is provided below.

The Familiarization block was designed to fulfill the following goals:

. Familiarize participants with the experimental setup..Teach participants to move their hand at a close to constant speed during experimental
trials..Teach participants to use all the space provided for movement.

In order to achieve those goals, a participant is asked to perform several “good trials”
during the familiarization block. To perform a “good trial”, the participant must move their
hand by a distance that is approximately equals to a randomly chosen length for the current
trial and at a speed within the lower and upper bound speeds defined by experimenters.
To assist the participant, four lines must be displayed on the screen: one dynamically
representing the length of movement performed by the participant, a second serving as a
reference line continuously increasing on the screen at speeds within the lower and upper
bounds, until it becomes equal to randomly chosen length for the current trial, to help
the participant in imagining the required speed to perform a “good trial”. The third and

25

5. Software application design....................................
fourth lines represent the randomly chosen length as the gray zone that the participant
must achieve to perform a “good trial”.

Before the new familiarization block starts, the experimenter chooses values for parameters
of the entire familiarization block, such as the good trial speed lower bound, good trial
speed upper bound, required number of good trials, boundaries for the uniform distribution
of the final reference line length, and others parameters that are defined in the Section 5.3.

During the new Familiarization block, participants perform several trials with the robot
and motion capture system involved. The setup is similar to the experimental setup: during
trials, the participant moves their left arm, the robot repeats the participant’s movement,
and touches the participant’s right arm – this familiarizes participants with the experimental
setup.

At the start of every trial, the maximum length of the reference line for the given trial is
chosen from a uniform distribution of final reference line lengths. To teach participants
to use the entire range of possible movement lengths, during every trial participants must
follow a continuously growing reference line and traverse a distance that approximately
equals the maximum length of the reference line for the given trial. To teach participants to
move their hand at a close to constant speed during experimental trials, participants need
to move their hand within speed boundaries. If during a trial, the participant traverses a
distance that approximately equals the maximum length of the reference line for the given
trial and doesn’t cross the speed lower bound and speed upper bound, then the trial must
be considered as a “good trial”. When participants perform a certain number of good trials,
the familiarization block finishes. A formal and full description of the new familiarization
block is provided below as a set of functional requirements.

The new Familiarization block consists of the following scenes: UI familiarization, Capture
starting, Block information, 321+ countdown, Familiarization active trial, Familiarization
trial evaluation, Camera data saving, and Familiarization completed. Each scene is a
logically separated set of UI elements that the user sees on the screen. At any given
moment, only one scene may be active. Possible scene transitions are illustrated in Figure
5.2. The scenes that need to be implemented are described as a set of functional requirements
approved by experiment supervisors and provided in Table 5.1 below.

Figure 5.2: Familiarization block scene transitions.

26

.................................. 5.2. Familiarization block - design

Code Functional requirement

FFR–1 The following parameters must be set by the UI before the “UI familiarization”
scene starts: the participant speed lower bound, the participant speed upper
bound, the reference line speed, the reference line acceleration and deceleration
time, the smoothing rate, the transparency of lines and borders, the size of the
gray zone, the number of good trials, the maximum reference line length, the
minimum reference line length, and the width of the lines.

FFR–2 After the “UI familiarization” scene starts, the application must connect to
the robot and send the command to move to the “participant’s right hand
position”. This position is defined in the application configuration file. After
the robot reaches that position, the application must send the command to
start moving to a “position near the participant’s right hand”. At the “position
near the participant’s right hand” robot must not touch the participant hand.

FFR–3 During the “UI familiarization” scene, a participant must see on the screen all
UI elements from the “Familiarization active trial” scene and short description
to them.

FFR–4 During the “UI familiarization” scene, a participant may click on the left or
right mouse button to go to the “Capture starting” scene.

FFR–5 During the “Capture starting” scene, a participant must see on the screen the
text “Capture starting”.

FFR–6 After the “Capture starting” scene starts, the application must connect to the
motion capture system, open a new measurement, start a new capturing and
wait until the robot reaches a “position near the participant’s right hand”.

FFR–7 During the “Capture starting” scene, if the application is connected to the
motion capture system and a new capture is started and the robot reached the
position, then the scene must switch to the “Block information”.

FFR–8 During the “Block information” scene, a participant must see on the screen
the text that informs them that the familiarization block is running.

FFR–9 During the “Block information” scene, a participant may click on the left or
right mouse button to go to the “321+ countdown” scene.

27

5. Software application design....................................

FFR–10 During the “321+ countdown” scene, the application must perform the “3”,
“2”, “1” countdown and show it as the text on the screen.

FFR–11 During the “321+ countdown” scene, the application must send the command
to the robot to move to the “participant’s right hand position”. It is assumed
that at the “participant’s right hand position” the robot touch the participant
right hand.

FFR–12 During the “321+ countdown”, when the countdown finishes, the scene must
switch to the “Familiarization active trial”.

FFR–13 At the start of the “Familiarization active trial” scene, the application must
perform the following actions: it remembers the current participant’s left
hand position, which becomes the initial left hand position and then chooses
the maximum length of the reference line for the given trial from a uniform
distribution – after that trial begins.

FFR–14 During the “Familiarization active trial” scene, the robot must touch the par-
ticipant’s right hand and start to repeat the participant’s left hand movement
in 1D direction along the participant’s hand.

FFR–15 During the “Familiarization active trial” scene, a participant must see two
vertical lines on the screen: one of them is a reference line and another one is
the participant line.

FFR–16 During the “Familiarization active trial” scene, the reference line must con-
tinuously grow up with the constant speed that equals to the reference line
speed parameter until it reaches the reference line maximum length.

FFR–17 During the “Familiarization active trial” scene, the reference line has an
acceleration period when the speed increases from zero to certain constant
speed, a constant period when the speed is constant and a deceleration period
when the speed decreases from constant to zero.

FFR–18 During the “Familiarization active trial” scene, the participant line must
dynamically change to represent the current distance that the participant’s
left hand made from the initial left hand position.

FFR–19 During the “Familiarization active trial” scene, a participant must see on
the screen two bold horizontal borders which form the trial gray zone that
represent the reference line maximum length towards which the participant
line and the reference line must tend.

28

.................................. 5.2. Familiarization block - design

FFR–20 During the “Familiarization active trial” scene, a participant must see a cross
at the screen center.

FFR–21 During the “Familiarization active trial” scene, a participant may click the
left or right mouse button to switch the scene to the “Familiarization trial
evaluation”, thus ending the current trial. Participant’s and reference line
speeds must be recorded during the trial with certain smoothing applied. If,
during the movement at “Familiarization active trial” scene, the participant’s
line speed didn‘t cross the certain speed upper bound and the certain speed
lower bound, and the participant line reached the gray zone, then the current
trial must be considered as an good trial.

FFR–22 At the end of the “Familiarization active trial” scene, the application must
send commands to the robot to move away from the participant’s right hand
and then to start moving to a position near the participant’s right hand.

FFR–23 During the “Familiarization trial evaluation” scene, a participant must see
the following UI elements on the screen: the gray zone, the participant line,
the feedback text, the speed graph and the text with information about total
number of trials and the current good trial number. The feedback text must
inform whether the trial was considered as an good trial and provide reasoning
if not. The speed graph contains graphical representations of the speed lower
bound and the speed upper bound as well as smoothed participant line and
reference line speeds during the last trial.

FFR–24 During the “Familiarization trial evaluation” scene, a participant may click
the left or right mouse button to switch the scene to the “Camera data saving”.

FFR–25 During the “Camera data saving” scene, the application must stop the cur-
rent capture, save the current capture, close the current measurement, and
disconnect from the motion capture system.

FFR–26 During the “Camera data saving” scene, a participant must see the text with
the information about the data saving process on the screen.

FFR–27 During the “Camera data saving” scene, a participant may click on the left
or right mouse button to return to the “Capture starting” scene. If the
participant performs a certain number of good trials, the scene must switch to
the “Familiarization completed” instead of returning to the “Capture starting”
scene.

FFR–28 During the “Familiarization completed” scene, a participant must see “Famil-
iarization completed” text at the screen.

Table 5.1: Familiarization block functional requirements.

29

5. Software application design....................................
5.3 Graphical UI to configure the experiments - design

The new application screen that will allow managing participant data and customizing
experiment and familiarization blocks parameters will be called a “setup screen”. Before
writing the formal list with functional requirements for the new setup screen, participant
data structure and customizable experiment and familiarization blocks parameters need to
be defined.

Participant data files will be represented as CSV files and will contain headers and values
that were a priori chosen and described at the table 5.2 below.

Column
number
in a csv
file

Header Contents Can be
parsed
with
type

1 participant_codename Participant codename, 8 alphanu-
meric characters.

String

2 age Participant age. Int

3 gender Participant gender: male or female. String

4 length_of_forearm Arm length in cm as measured man-
ually by the experimenters.

Double

5 handedness Right-handed/Left-
handed/Ambidextrous.

String

6 sensitivity_to_tactile_test Value of detected Stoelting test [15],
e.g. 0.04 (grams).

Double

7 order_of_the_blocks One of the 24 possible orders of 4
types of blocks: AT, AM, PT, PM,
e.g. AT–>AM–>PT–>PM.

String

8 description The one short text line. String

Table 5.2: Participant data file CSV structure.

During the design of the familiarization block, several customizable parameters were
a priori preselected to be set by the UI before the familiarization block starts. These
parameters are described in Table 5.3 below.

30

......................... 5.3. Graphical UI to configure the experiments - design

Familiarization
block cus-
tomizable
parameter
name

Contents Data
type
in the
appli-
cation

Measure-
ment
units

Default
value

Speed lower
bound

The lower bound of the speed bound-
aries within which participants need
to move their hand during the famil-
iarization block.

Double cm/s 1.5

Speed upper
bound

The upper bound of the speed
boundaries within which partici-
pants need to move their hand dur-
ing the familiarization block.

Double cm/s 4.5

Reference line
speed

The speed of the reference line as
it grows during the constant speed
period.

Double cm/s 3

Reference
line accelera-
tion/deceleration
time

The reference line acceleration and
deceleration time defines the dura-
tion of its acceleration and decelera-
tion periods.

Double sec 1

Smoothing rate The size of the moving average ap-
plied to participant and reference
lines speed data before the familiar-
ization trial evaluation block starts.

Int – 10

Lines trans-
parency

Slight progressive transparency for
upper and lower borders of GUI
lines.

Boolean – true

Gray zone size The horizontal size of the borders
that represent the maximum length
of the reference line during the fa-
miliarization active trial.

Double cm 1.5

Good trials
number

The number of good trials that par-
ticipants must perform to finish the
familiarization block.

Int – 10

Minimum refer-
ence line length

The lower bound of the uniform dis-
tribution from which the application
selects the maximum length of the
reference line at the start of the fa-
miliarization active trial scene.

Double cm 10

31

5. Software application design....................................
Maximum refer-
ence line length

The upper bound of the uniform dis-
tribution from which the application
selects the maximum length of the
reference line at the start of the fa-
miliarization active trial scene.

Double cm 25

Lines width The GUI lines width. Double cm 2

Table 5.3: Familiarization block customizable parameters.

Following several customizable parameters of the experiments blocks (AT, AM, PM, PT)
were a priori preselected to be set by the UI before the familiarization block starts. These
parameters are described in Table 5.4 below.

Experiment
block cus-
tomizable
parameter
name

Contents Data
type
in the
appli-
cation

Measure-
ment
units

Default
value

Lines width The GUI lines width. Double cm 2

Trials number The number of trials that partici-
pants must perform to finish an ex-
periment block.

Int – 10

Judgement line
increasing step

The step of changing the judgment
line by participants during the ex-
periment judgement scene.

Double cm 0.325

Initial judge-
ment line min
height

The lower bound of the uniform dis-
tribution from which the applica-
tion selects the initial judgement line
length at the start of the experiment
judgement scene.

Double cm 5

Initial judge-
ment line max
height

The upper bound of the uniform
distribution from which the appli-
cation selects the initial judgement
line length at the start of the experi-
ment judgement scene.

Double cm 25

Table 5.4: Experiment blocks customizable parameters.

To formally describe the requirements for the setup screen, a set of functional requirements
has been created and described in Table 5.5.

32

......................... 5.3. Graphical UI to configure the experiments - design

Code Functional requirement

SFR–1 After starting the application, the user must see the setup screen, which
includes the following components: information about the currently selected
participant data, a button labeled “edit” next to the information about the
currently selected participant data, a drop-down list with selected and available
application blocks (familiarization block, AT, AM, PT, PM), an input form
with a set of customizable parameters related to the selected block, a menu bar
at the top of the screen containing one item with the text “participant”, the
“start the block” button.

SFR–2 The information about the currently selected participant data must consist of
headers and values that correspond to the participant data structure defined
above. After the application starts, no participant data must be selected by
default. If no participant data is selected, participant data headers must be
displayed on the setup screen, but any values of information about participants
must not be displayed.

SFR–3 If a user clicks the “edit” button, the participant edit dialog must appear above
the setup screen, and any interaction with the setup screen must be blocked
while the participant edit dialog is visible. A user can click the “edit” button
only if participant data is currently selected.

SFR–4 The participant edit dialog contains the “cancel” button and the “save button”,
an input form with a set of editable fields that represent the participant data
structure and is filled with information about the currently selected participant
data.

SFR–5 If a user clicks on the “cancel” button in the participant edit dialog, the dialog
must no longer be visible, and any interaction with the setup screen must be
unblocked.

SFR–6 If a user clicks on the “save” button in the participant edit dialog, the default
file saving dialog defined by the operating system on which the application
is running must appear on the screen. Additionally, any interaction with the
participant edit dialog must be blocked while the file saving dialog is visible.

SFR–7 If a user clicks the “save” button on the default file saving dialog, the participant
information entered in the participant edit dialog must be saved as a file. The
file will be saved at the path selected by the user with the name chosen by the
user. After saving, both the default file saving dialog and the participant edit
dialog must no longer be visible on the screen. The content of the saved file
must correspond to the CSV file structure described in Table 5.2.

SFR–8 If a user clicks the cancel button on the default file saving dialog, the default
file saving dialog must no longer be visible on the screen.

33

5. Software application design....................................

SFR–9 A user can change the currently selected block by using the drop-down list
with selected and available application blocks (familiarization block, AT, AM,
PT, PM), and the input form with a set of related customizable parameters
must be changed as well.

SFR–10 A user can click on the “participant” element in the menu bar, and then the
following elements must appear: “open”, “create”, “create and open”, “exit”.

SFR–11 If a user clicks on the “open” element, the default open file dialog defined by
the operating system on which the application is running must appear. After
the user chooses a file and clicks on the “open” button, if this file corresponds
to the CSV structure for the participant data described above, it must be
selected and displayed as the currently selected participant data.

SFR–12 If a user clicks on the “create” element, the participant edit dialog must appear
above the setup screen, and any interaction with the setup screen must be
blocked until the participant edit dialog is closed. The dialog should contain
editable fields that represent the participant data structure, but these fields
must not be pre-filled with any information.

SFR–13 If a user clicks on the “create and open” element, the participant edit dialog
must appear above the setup screen, and any interaction with the setup screen
must be blocked until the participant edit dialog is closed. The dialog should
contain editable fields that represent the participant data structure, but these
fields must not be pre-filled with any information. After saving the participant
data, it should be chosen and displayed as the currently selected participant
data.

SFR–14 If a user clicks on the “exit” element then the application must close itself.

SFR–15 If a user clicks on the “start the block” button and the familiarization block is
selected in the drop-down list, the application must close the setup screen, open
the familiarization screen, and provide the currently selected participant data
and the familiarization block customizable parameters to the corresponding
classes for the familiarization screen.

SFR–16 If a user clicks on the “start the block” button and an experiment block is
selected in the drop-down list, the application must close the setup screen,
open the experiment screen, and provide the currently selected participant
data and the experiment block customizable parameters to the corresponding
classes for the experiment screen.

Table 5.5: Setup screen functional requirements.

34

......................................5.4. Data logging - design

5.4 Data logging - design
The application will generate several output files:..1. The output file from Qualisys motion capture system for each trial;..2. The output file that contain information about the experiment block;..3. The output file with detailed information for every trial in the familiarization block;..4. The output file with information about every trial that was performed during an

experiment block.

Examples of each of these files are provided in the directory “./cpp/output_data_example”
on the project’s GitLab repository [11].

The fourth file from the list above will contain nothing more than information described
in Tables 5.2 and 5.3, therefore the presentation of its structure within this section is
redundant.

The Qualysys output file will be generated by default functions of the Qualysis Track
Manager application at the measurement close and will contain information about markers
positions and following events that were sent by the tele-touch application during a capture:
“3_2_1_scene_started”, “active_trial_scene_started”, “evaluation_scene_started”. These
events correspond to moments when the countdown scenes, hand tracking process, or
judgment and evaluation scenes start in the application.

All non-Qualisys output data files will be in CSV format, with structures defined in
Tables 5.6, 5.7, and 5.8 below.

Sometimes during a trial hand tracking period, a participant may make unexpected
back-and-forth movements. In such cases, the distance that the robot performed will be
higher than the difference between its start and end positions. To detect trials with such un-
expected movements, parameters “robot_initial_coordinates”, “robot_final_coordinates”,
“motion_windows_begin_coordinates” and “motion_windows_end_coordinates” are used
in the output file described in the Table 5.7. To clarify the purpose of those parameters,
three graphical representations of the trial with unexpected movement during the hand
tracking period are depicted in Figures 5.3, 5.4, and 5.5.

35

5. Software application design....................................

Column
number
in a csv
file

Header Contents Can
be
parsed
with
type

1 participant_codename Participant codename, at most 8
alphanumeric characters.

String

2 age Participant age. Int

3 gender Participant gender: male or female. String

4 length_of_forearm Arm length in cm as measured
manually by the experimenters.

Double

5 handedness Right-handed/Left-
handed/Ambidextrous.

String

6 sensitivity_to_tactile_test Value of detected Stoelting test
[15], e.g. 0.04 (grams).

Double

7 order_of_the_blocks One of the 24 possible orders of 4
types of blocks: AT, AM, PT, PM,
e.g. AT–>AM–>PT–>PM.

String

8 description The one short text line. String

9 block_type The chosen block type: AM, AT,
PM, or PT.

String

10 condition Active or passive motion condition
derived from a block type.

String

11 judgement_type Movement or touch judgement type
derived from a block type.

String

12 participant_arm_length_cm The arm length is measured by the
Qualisys motion capture system as
the difference between the marker
on the carpal and the marker on
the elbow.

Double

36

......................................5.4. Data logging - design

13 total_trials The total number of trials in this
block.

Int

14 trials_done The total number of completed tri-
als in the experiment block.

Int

15 no_of_cameras The number of motion capture sys-
tem cameras that were used during
the experiment block.

Int

16 no_of_markers The number of different markers
that were detected by the motion
capture system during the experi-
ment block.

Int

17 cameras_frequency The camera’s recording frequency
in Hz that was used for recording
during the experiment block.

Int

18 no_of_frames The number of frames that was
recorded during the experiment
block.

Int

19 lines_width_cm The customizable parameter of GUI
line width.

Double

20 initial_judgement_line
_max_height_cm

The upper bound of the uniform
distribution from which the appli-
cation selects the initial judgement
line length at the start of the exper-
iment judgement scene.

Double

21 initial_judgement_line
_min_height_cm

The lower bound of the uniform dis-
tribution from which the applica-
tion selects the initial judgement
line length at the start of the exper-
iment judgement scene.

Double

22 judgement_line_increasing
_step_cm

The step of changing the judgment
line by participants during the ex-
periment judgement scene.

Double

23 block_end_datetime The date and time of the block end-
ing.

String

Table 5.6: Experiment block output file CSV structure.

37

5. Software application design....................................

Column
number
in a file

Column name Contents Can be
parsed
with
type

1 participant_codename Participant codename, at most 8
alphanumeric characters.

String

2 age Participant age. Int

3 gender Participant gender: male or female. String

4 length_of_forearm Arm length in cm as measured man-
ually by the experimenters.

Double

5 handedness Right-handed/Left-
handed/Ambidextrous.

String

6 sensitivity_to_tactile_test Value of detected Stoelting test [15],
e.g. 0.04 (grams).

Double

7 order_of_the_blocks One of the 24 possible orders of 4
types of blocks: AT, AM, PT, PM,
e.g. AM–AT–PT–PM.

String

8 description The one short text line. String

9 block_type The chosen block type: AM, AT,
PM, or PT

String

10 trial_number The number of trials in the sequence
of all trials in the current block.

Int

11 total_trial_number The total number of trials in the
current block.

Int

12 gain The gain factor with which the
robot repeats the participant’s
movements.

Double

13 trial_start_datetime The date and time when the trial
started.

String

14 robot_participant_sync
_datetime

The date and time when the robot
started to repeat the participant’s
movements.

String

38

......................................5.4. Data logging - design

15 robot_participant_sync
_frame

The Qualysis motion capture sys-
tem frame when the robot started to
repeat the participant’s movements.

Int

16 judgement_start_datetime The date and time when the scene
was switched to the judgement
scene.

String

17 judgement_start_frame The Qualysis motion capture sys-
tem frame when the scene was
switched to the judgement scene.

Int

18 judgement_length_cm The judgement line length that was
set by a participant during the
judgement scene.

Double

19 robot_initial_coordinates The robot coordinates when the
robot started to repeat the partici-
pant’s movements.

String
with
coordi-
nates in
the fol-
lowing
format:
“x;y;z”

20 robot_final_coordinates The robot coordinates when the
robot ended the repetition of the
participant’s movements.

String
with
coordi-
nates in
the fol-
lowing
format:
“x;y;z”.

21 motion_windows_begin
_coordinates

Minimal coordinates that robot
reached in the current trial.

String
with
coordi-
nates in
the fol-
lowing
format:
“x;y;z”.

39

5. Software application design....................................
22 motion_windows_end _co-

ordinates
Maximal coordinates that robot
reached in the current trial.

String
with
coordi-
nates in
the fol-
lowing
format:
“x;y;z”.

23 trial_end_datetime The date and time of trial ending. String

Table 5.7: Experiment trials information output file CSV structure.

Column
number
in a file

Column name Contents Can be
parsed
with
type

1 timestamp The date and time at the moment
when the image redraws on the
screen.

String

2 frame_number The last received Qualysis motion
capture system frame number at the
moment when the image redraws on
the screen.

Int

3 participant Participant codename, at most 8
alphanumeric characters.

String

4 trial_number The number of the current trial. Int

5 good_trials The number of good trials that a
participant already made.

Int

6 participant_line_height
_cm

The participant line height at the
moment when the image redraws on
the screen.

Double

7 reference_line_height _cm The reference line height at the mo-
ment when the image redraws on
the screen.

Double

8 participant_line_speed
_cm_s

The current participant line speed
that computes the difference be-
tween previous participant line
height and the current participant
line height divided by difference be-
tween current time and last image
redraw time.

Double

40

......................................5.4. Data logging - design

9 smoothed_participant_line
_speed_cm_s

The current smoothed participant
line speed.

Double

10 reference_line
_speed_cm_s

The current reference line speed
that computes the difference be-
tween previous reference line height
and the current reference line height
divided by difference between cur-
rent time and last image redraw
time.

Double

11 smoothed_reference_line
_speed_cm_s

The current smoothed reference line
speed.

Double

12 reference_line_final_length
_cm

The final reference line length at the
current trial.

Double

Table 5.8: Familiarization trial information output file CSV structure.

Figure 5.3: Example of the robot movement start position.

41

5. Software application design....................................

Figure 5.4: Example of the robot movement intermediate position.

Figure 5.5: Example of the robot movement end position.

42

......................................5.4. Data logging - design

To formally describe the requirements for the logging of the data for evaluation of the
experiment process, a set of functional requirements has been created and described in
Table 5.9.

LFR–1 At the start of the familiarization block trial, the familiarization trial file with
structure defined in the Table 5.8 must be created.

LFR–2 At the end of the familiarization block, the output file with information
about every trial that was performed during the familiarization block must
be created.

LFR–3 During the familiarization active trial scene, when the image redraws on the
screen, the data line containing values that correspond to the structure defined
in Table 5.8 must be added to the familiarization trial file with the trial data.

LFR–4 At the start and the end of the experiment block, the experiment block info
output file must be created and filled with two CSV lines that must correspond
to the header and values described in the table 5.6.

LFR–5 At the start of the experiment block the experiment trials output file must be
created and filled with headers that correspond to structure defined in the
Table 5.7.

LFR–6 At the end of the experiment trial the data line with the trial information
that corresponds to structure defined in the Table 5.7 must be added to the
experiment trial output file.

LFR–7 Before every familiarization or experiment trial starts the application must
open a new measurement and start a new capturing in the Qualisys motion
capture system.

LFR–8 After every familiarization or experiment trial starts the application must stop
the current capture, save the current capture, close the current measurement
that must cause the motion capture output file creation in the Qualisys motion
capture system.

LFR–9 If the countdown scene has started, the application must send the event
“3_2_1_scene_started” to the Qualysis motion capture system.

LFR–10 If the familiarization active trial scene or active trial scene (from an ex-
periment block) has started, the application must send the event “ac-
tive_trial_scene_started” to the Qualysis motion capture system.

LFR–11 If the familiarization trial evaluation or judgement scene (from an exper-
iment block) has started, the application must send the event “evalua-
tion_scene_started” to the Qualysis motion capture system.

Table 5.9: Data logging functional requirements.

43

5. Software application design....................................
5.5 2D extension - design

The legacy application contains logic that allows participants to control the robot in 1D
space. However, for future experiments, the logic for controlling the robot in 2D space is
required. Since the specific design of these future experiments is currently unknown, it is
necessary to implement the basic logic for controlling the robot in 2D space to establish a
foundation for future experiments.

The 2D controlling logic must not interfere with the familiarization and experimental
application blocks, therefore this logic will be used only in the new application block that
will be called the “Test 2D” block. The “Test 2D” block will include the following scenes:
Capture starting, Click to start tracking, Movement is tracking, and the Error scenes. At
any given moment, only one scene may be active. Possible scene transitions are illustrated
in Figure 5.6.

Figure 5.6: Test 2D block’s scene transitions.

The safety of 2D robot controlling must be ensured by using the copy of the legacy
application functions that restricts robot movements within a defined boundary box and
check that the robot’s speed is below a specified maximum speed value. If those functions
detect that the application is attempting to exceed the boundary box limits or move the
robot at a speed higher than the maximum, the scene must switch to the error scene, and
the robot must stop hand tracking and return to the home position.

The logic that needs to be implemented is described as a set of functional requirements
provided in the Table 5.10 below.

44

..................................... 5.5. 2D extension - design

2DFR–1 After the “Test 2d” block starts, the application must connect to the robot
and the “Capture started” scene must start.

2DFR–2 After the “Capture starting” scene start the application must send the
command to the robot to start moving to the robot’s home position.

2DFR–3 During the “Capture starting” scene, a participant must see on the screen
the text “Capture starting”.

2DFR–4 After the “Capture starting” scene starts, the application must connect to
the motion capture system, open a new measurement, start a new capturing
and wait until the robot reaches the robot’s home position.

2DFR–5 During the “Capture starting” scene, if the application is connected to the
motion capture system and a new capture is started and the robot reached
the robot’s home position, then the scene must switch to the “Click to start
tracking”.

2DFR–6 During the “Click to start tracking” scene, a participant must see on the
screen the text “Click to start tracking”.

2DFR–7 During the “Click to start tracking” scene, a participant may click on the
left or right mouse button to go to the “Movement is tracking” scene.

2DFR–8 During the “Movement is tracking” scene, the robot must start to repeat the
participant’s left hand movement in 2D with movements in the x and y axis.

2DFR–9 If during the “Movement is tracking” scene, the application will try to send
coordinates that will result in robot movement outside the defined boundary
box to repeat the participant’s left hand movement, then the scene must
switch to the “Error” scene and those coordinates must not be sended.

2DFR–10 If during the “Movement is tracking” scene, the application will try to send
coordinates that will result in robot movement with higher than defined
maximum speed to repeat the participant’s left hand movement, then the
scene must switch to the “Error” scene and those coordinates must not be
sended.

2DFR–11 During the “Movement is tracking” scene, a participant may click on the
left or right mouse button to go to the “Click to start tracking” scene.

45

5. Software application design....................................

2DFR–12 At the end of the “Movement is tracking” scene, the application must send
commands to the robot to stop the hand tracking and start moving to the
robot’s home position.

2DFR–13 During the “Error” scene, a participant must see on the screen the text
“Error happened. The robot tried to move outside of the boundary box or
with higher than maximum speed.”.

2DFR–14 During the “Error” scene, a participant may click on the left or right mouse
button to go to the “Click to start tracking” scene.

Table 5.10: 2D block functional requirements.

46

Chapter 6

Software application implementation

During my work on the diploma thesis, I implemented the logic based on the specifications
provided in Chapter 5. This chapter contains a description of the results of the implemen-
tation process and describes all implemented logic, except for small utility classes that do
not contain complex logic.

In every section of this chapter, several main interfaces and classes that implement
the logic related to a section were identified and described by informal class descriptions.
These classes are also represented in the UML class diagram [16] and shown in a project
folder structure generated by “tree” command [17], to demonstrate the implementation of
recommended design principles and the architecture described in Sections 4.1 and 5.1.
In the UML class diagrams, classes that were built as a result of the refactoring process
during the implementation of the new architecture, but whose main logic remains the same
as in the legacy application or is mostly based on the legacy application logic, have an aqua
background. Other classes, which were written from scratch, have a white-gray background.
Methods arguments, class data members, and multiplicity denotations were removed from
UML class diagrams to reduce and simplify them. From the information provided by the
UML class diagrams and directory structures, it can be concluded that every implemented
class is represented by its own .cpp and .h files with names that reflect their purpose.
These files are grouped by directories with appropriate names. It can also be observed that
interfaces and classes are application components, and their names and methods indicate
their semantic purpose.

Screenshots of different scenes in the working application are provided as showcases in
every section with GUI logic. Examples of output files are provided as showcases in the 6.3
Section. All source code can be found in the tele-touch GitLab project’s main branch [11]
or in the attachment for the diploma thesis.

6.1 Familiarization block - implementation
The several interfaces and the one static class have an important role in familiarization
block implementation. Their descriptions is provided below:

. FamiliarizationView – the view that defines functions required for drawing the famil-
iarization block scenes that must be implemented by the view implementation.

47

6. Software application implementation................................
. Service – the empty marker interface to identify services.. SingletonServiceProvider – the special static class that contains logic for managing

singleton services. A singleton service is a service that can have only one instance during
the application’s runtime, which can be useful for avoiding unnecessary interference
while using APIs.

The familiarization block logic contains many different classes, but following classes were
identified as the core and most important classes of the familiarization block:

. RobotWorker – the application worker that holds all the logic for robot communication
via the Kortex API [18]. The worker operates in a separate thread created by the
RobotService and overloads the function call operator “operator()”. It receives and
sends data using shared memory. To receive commands, the RobotWorker’s shared
memory has a command list which is essentially a queue of commands of a certain
type that a robot can perform, defined in the ROBOT_INPUT_COMMAND_TYPE enum class.
Only the RobotService and RobotWorker have access to their shared memory.. PositionComputer – the application utility that contains the main critical methods for
computing robot trajectories during trials and ensuring safety during hand tracking.. RobotService – the singleton service that is provided by request of the Singleton
ServiceProvider. It contains service methods to operate the robot. All method names
represent their semantics and allow any presenter to easily use the RobotService for
robot controlling by calling service methods without worrying about shared data and
implementation details.. CameraWorker – the application worker that holds all the logic for robot commu-
nication via the Qualysis API [10]. Similar to the RobotWorker, it operates in a
separate thread created by the CameraService and overloads the function call opera-
tor “operator()”. It receives and sends data using shared memory, with a command
list for receiving commands defined in the CAMERA_INPUT_COMMAND_TYPE enum class.
Only the CameraService and CameraWorker have access to their shared memory.. CameraService – similar to the RobotService, this singleton service that is provided
by request of the SingletonServiceProvider. It contains service methods to operate
the Qualisys motion capture system. Method names represent their semantics and
allow any presenter to easily control the motion capture system without worrying
about shared data and implementation details.. FamiliarizationBlockLoggerService – the application services that contains methods for
logging information during the familiarization block. The structure of this information
was shown in Tables 5.8, 5.2 and 5.3.. FamiliarizationViewPresenter – This application presenter implements the logic for
reacting to events that happen in the view. It contains methods for orchestrating
robot and camera services, familiarization block data processing, and computing new
UI element states during screen updates.

48

.............................. 6.1. Familiarization block - implementation

. FamiliarizationFrame – the FamiliarizationView implementation that contains meth-
ods for drawing GUI elements during the familiarization block running. It uses
RenderTimer to update the screen at a frequency of 100 Hz (if the screen supports it),
CustomDrawer and GridDrawer utilities to draw GUI components, ScreenSetting
for computing the real size of familiarization lines that represent participant’s and
reference’s lengths of movement, and wxSpeedEvaluationGraphCtl to draw a graph
with participant’s and reference’s lines speed during the familiarization trial.. CustomDrawer – the view graphical component contains logic for drawing GUI objects
onto wxDC (“device context”) [19] component that is used for drawing custom GUI
elements in the wxWidgets library [20], which is the application’s basic graphical
library..GridDrawer – the view graphical component that inherits from CustomDrawer and
includes additional logic for aligning elements by an abstract grid with given sizes onto
the wxDC component..wxSpeedEvaluationGraph and wxSpeedEvaluationGraphCtl are view graphical compo-
nents that contain logic for drawing graphs in the application. These classes inherit
from the wxCharts library [21] classes and modify and improve some of their functions.
This was necessary because the library received its last update two years ago, and
some parts of its logic work in unexpected ways or don’t work at all. The library was
chosen because it provides the ability to draw various graphs that are best suited for
rendering speed graphs and look better compared to other free libraries.. RenderTimer – the view component that contains logic for generating update events
for a given view with a given frequency.. ScreenSettings – the application utility that provides information about the screen
parameters on which the application is displayed in order to draw GUI elements with
sizes defined in metric units.

The UML class diagram for interfaces and classes described above, along with all the
methods they contain, is shown in Figures 6.1, 6.2, and 6.3.

The directory structure diagram, presented as a directory tree with familiarization block
classes as leaves, is shown in Figure 6.4.

49

6. Software application implementation................................

Figure
6.1:

Fam
iliarization

block
class

diagram
.

Services,workers
and

utility.

50

.............................. 6.1. Familiarization block - implementation

Fi
gu

re
6.

2:
Fa

m
ili

ar
iz

at
io

n
bl

oc
k

cl
as

s
di

ag
ra

m
.

Se
rv

ic
es

,u
til

iti
es

,p
re

se
nt

er
an

d
vi

ew
.

51

6. Software application implementation................................

Figure
6.3:

Fam
iliarization

block
class

diagram
.

V
iew

,it
graphicalcom

ponents,utility.

52

.............................. 6.1. Familiarization block - implementation

Figure 6.4: Familiarization block directory structure.

Implemented scenes from the Figure 5.2 shown in the Figure 6.5 from left to right and
top to bottom in the following order: UI familiarization, capture starting, block informa-
tion, 321+ countdown, familiarization active trial, familiarization trial evaluation (with
information about crossing the speed lower bound and speed upper bound), familiarization
trial evaluation (with information about crossing the speed upper bound and not reaching
the border), familiarization trial evaluation (with good trial example), camera data saving,
familiarization completed.

Based on the application source code on GitLab [11] and the example of the familiarization
block running shown the Figure 6.5, it can be concluded that all the functional requirements
described in Table 5.1 have been fulfilled.

53

6. Software application implementation................................

Figure 6.5: Familiarization block scenes showcase.

54

..................... 6.2. Graphical UI to configure the experiments - implementation

6.2 Graphical UI to configure the experiments -
implementation

During the implementation of the graphical UI for configuring experiments, several appli-
cation components were created. Some of them were already described in the previous
section, and descriptions of others are provided below:

. ParticipantService – the singleton service that contains methods for opening, saving,
and editing participant information, with the structure defined in Table 5.2 in ROM.. SetupViewPresenter – the application presenter that processes and reacts to information
received as a result of participant info and customizable parameters management events
that occur in the view. It uses ParticipantService to save information on ROM.. SetupView – the view that defines functions required to draw the graphical UI for
configuring experiments that must be implemented by the view implementation.. SetupFrame – the view implementation that uses ParticipantInfoPanel, Experiment
ControlPanel and EditParticipantDialog view components to draw and operate
the GUI for the setup screen.. EditParticipantDialog – the view component that implements logic for showing the
input form as a dialog for editing and creating participant information.. ParticipantInfoPanel – the view component that implements logic for displaying
participant information.. ExperimentControlPanel – the view component that implements logic for block choosing
and for displaying and editing customizable parameters for experiment and familiariza-
tion blocks.

The main classes of the graphical UI for configuring experiments are shown in Figures
6.6 and 6.7. The directory tree structure for these classes is shown in Figure 6.8.

The example of setup screen different states during the application running is shown on
Figures 6.9, 6.10, 6.11, 6.12.

55

6. Software application implementation................................

Figure
6.6:

G
raphicalU

Ifor
configure

experim
ents

class
diagram

.
Services,presenter

and
view

.

56

..................... 6.2. Graphical UI to configure the experiments - implementation

Fi
gu

re
6.

7:
G

ra
ph

ic
al

U
If

or
co

nfi
gu

re
ex

pe
rim

en
ts

cl
as

s
di

ag
ra

m
.

V
ie

w
s

an
d

vi
ew

co
m

po
ne

nt
s.

57

6. Software application implementation................................

Figure 6.8: Graphical UI for configure experiments directory structure.

Figure 6.9: Graphical UI for configuring. The setup screen without participant information.
The active movement block selected.

58

..................... 6.2. Graphical UI to configure the experiments - implementation

Figure 6.10: Graphical UI for configuring. The setup screen with open “participant” menu bar
and without participant information. The active movement block selected.

Figure 6.11: Graphical UI for configuring. The edit participant dialog. The active movement
block selected.

59

6. Software application implementation................................

Figure 6.12: Graphical UI for configuring. The setup screen with participant information. The
familiarization block selected.

6.3 Data logging - implementation
The data logging logic is implemented in the application’s FamiliarizationLoggerService
and ExperimentLoggerService, which are used by FamiliarizationPresenter and Expe-
rimentPresenter, respectively. These services use methods for creating log files, imple-
mented in the FamiliarizationBlockInfoFile and ExperimentBlockInfoFile classes,
which can create files with the structure defined in Section 5.4. To make the file creation
logic available for any classes that need it, the following common classes were created:

. GenericFile — the application utility that contains methods for managing files without
any specific structure..DSVFile — the application utility that inherits from GenericFile and contains
methods for managing DSV files (files with the delimiter-separated values format).. HeadersAndValuesFile – the application utility that inherits from DSVFile and contains
methods for managing DSV files with two rows that represent certain defined headers
and values corresponding to those headers.

The implemented classes are shown as UML class diagrams in Figure 6.13. The directory
structure for these classes is represented in Figure 6.14. Examples of every output files
can be found in the “./cpp/output_data_example” directory on the project’s GitLab [11]
or in the attachment.

60

..................................6.3. Data logging - implementation

Fi
gu

re
6.

13
:

D
at

a
lo

gg
in

g
U

M
L

cl
as

s
di

ag
ra

m
.

61

6. Software application implementation................................

Figure 6.14: Data logging classes directory structure.

6.4 2D extension - implementation
To implement 2D logic, I created the “compute_2D_position” method in the RobotWorker
class to compute the 2D position of the robot during the hand tracking process, and the
“position_2d_speed_is_under_limits” method to check if the robot’s velocity and position
are within limits. These methods are based on legacy application methods for computing
robot position during 1D hand tracking, and all safety checks remain the same. However,
the requirements of future experiments that will use this 2D extension are not known.
Therefore, if any safety checks fail during the computation of the robot’s position in the
RobotWorker class, the application stops hand tracking and displays an error scene on the
screen, making robot movement even safer during 2D hand tracking. Despite this, the
robot’s 2D movement was tested remotely in an environment where it could not collide
with any objects. Risk assessment will be required once all details of a future experiment
that will use 2D tracking are known.

For easy control of starting and stopping robot 2D tracking, Start2DHandFollowing and
Stop2DHandFollowing methods were implemented in the RobotService class. Presenters
and views were also created to implement scenes described in Section 5.5. Graphical
representations of these scenes are shown in Figure 6.16. The UML class diagram with
classes related to the 2D extension is shown in Figure 6.15. The directory structure
containing these classes is represented in Figure 6.17.

62

................................. 6.4. 2D extension - implementation

Fi
gu

re
6.

15
:

2D
ex

te
ns

io
n

cl
as

s
di

ag
ra

m
.

63

6. Software application implementation................................

Figure 6.16: Familiarization block scenes showcase.

Figure 6.17: 2D extension classes directory structure.

6.5 Unit-tests
The most critical parts of the program are methods that check and limit the robot’s speed
and position during the hand tracking period and generate robot trajectories when it must
move from the initial position near the participant hand towards participant’s arm in order
to touch it and away from the arm towards the initial position near the participant hand.

64

...6.5. Unit-tests

After the refactoring process during the application architecture implementation, these
methods were moved to the PositionComputer class. These methods are:

. generate_linear_trajectory: This method receives the trajectory start timestamp,
current timestamp, trajectory duration, trajectory start position, and trajectory end
position. Based on these values, it computes the position on the linear trajectory,
which is later checked and sent to the robot.. compute_intergoal_position: This method receives moving windows, the goal position,
the time when the last robot position was received, a boolean parameter that indicates
if slow mode is enabled, and current application settings that affect the robot’s position
and speed computations. It returns the goal position if speed and boundary checks
are passed; otherwise, it enables slow mode and returns an “intergoal” position. The
“intergoal” position must always be inside a defined boundary box and will cause speed
limitation. This method is used during the hand tracking period.

Even though the logic of these methods wasn’t changed during this work, it may be
changed later and safety tests must be performed again. This means that after any change
affecting the critical parts’ logic, a developer must set up Qualisys cameras, turn on the
robot, remotely simulate several trials without any living objects inside the robot operation
zone, empirically ensure that the robot behaves as expected, and compute the robot’s speed
and position during those trials to ensure that they are within defined limits. To reduce the
time for all of these tests, I wrote several unit tests that automatically check the correctness
of the trajectory generation logic and emulate risky situations during the hand tracking
period.

For simplicity of writing unit tests there were a number of unit-test frameworks developed
such as: Google Test [22], Boost.Test [23], CppUnit [24], Cute [25] and Catch2 [26]. I chose
the Catch2 framework to use in the application because of its simplicity compared with
others: it is easy to install it and integrate into the project using CMake, and it provides
only one main assertion macro and one main test macro, which are easy to use.

The class that contains unit-tests is called CriticalPartsTests and is located at the
cpp/app/test directory at the project GitLab [11]. The ProjectSettings utility is located
in the same directory and was created to dynamically retrieve current application settings
from the setting.ini file for using them during tests. I wrote following unit-tests:

.Trajectory boundaries test for the generate_linear_trajectory method: Generates
the linear trajectory from the point [-1, 5.5, 3.5] to [10, -1, 3.4] and checks that the
trajectory points are always inside the boundaries defined in the application settings.
The mentioned coordinates for the start and end trajectory points were chosen a priori..Trajectory start and end position test for the generate_linear_trajectory method:
Generates the linear trajectory from the point [-1, 5.5, 3.5] to [10, -1, 3.4] and checks
that the trajectory starts and ends at the defined points. The mentioned coordinates
for the start and end trajectory points were chosen a priori.

65

6. Software application implementation................................
.Trajectory traversing speed test for the generate_linear_trajectory method: Em-

ulates situations where an object is traversing a generated trajectory and checks if
the object speed is always constant and consistent, indicating that the trajectory is
generated correctly.. Boundary box test for the compute_intergoal_position method: Emulates move-
ments inside and outside the boundary box defined in the application settings and sends
them to the compute_intergoal_position method. Checks if compute_intergoal_
position always returns a position inside the boundary box.. Slow mode test for the compute_intergoal_position method: Emulates extremely
fast movement and sends it to the compute_intergoal_position method. Checks if
compute_intergoal_position always returns a position that results in a speed not
exceeding 1 km/h (27.7778 cm/s).

No errors or unexpected behavior were found during the execution of these unit tests. All
tests were successfully passed, and the result of the unit-tests run is shown in Figure 6.18.

Figure 6.18: Example of the unit-tests run.

6.6 Project documentation
Project documentation is an important part of every application because it provides
descriptions of the project implementation details for developers. This diploma thesis
serves as comprehensive documentation for the logic implemented during the completion
of assignments. It provides motivation for implementing different parts of the application
logic in the Chapter 4, detailed logic specifications in the form of informal descriptions
and a set of functional requirements in Chapter 5, and descriptions of every important
implemented class in Chapter 6.

Although this should be sufficient for future developers to easily navigate and understand
the application, the readme file on the project’s GitLab [11] has also been updated. In
addition to instructions for compiling and launching the application, the readme now
contains a description of the main project directories, input and output files, a brief
introduction to the new project architecture with a description of the main components, a
description of the implemented unit tests, and links to the main libraries and frameworks
used in the project. The combination of the information provided in this thesis and the
readme file in the project’s GitLab offers comprehensive documentation to further support
the project.

66

Chapter 7

Risks assessment

The legacy application has several safety mechanisms that limit a robot’s position and
speed. The most important of them are described below:

. Dimension restriction: the robot follows only in one direction during the hand tracking
period of experiment and familiarization trials, and other directions are fixed.. 3D boundary box: limits the robot’s operating space.. Slow mode with reduced robot speed: activates if the robot would exceed the speed
limit.. Inner Kinova robot safety checks: shown in tables 70 and 71 in the Kinova manual [8].

None of these safety assurance methods were changed during the implementation of the
new architecture and features. The experiment setup remains essentially the same, and
therefore the risks in Adam Rojík’s risk assessment table must also remain unchanged.
However during the analysis of Adam Rojík’s work it appears that no data was collected to
precisely analyze the robot speed and position in the case of two of the more probable risks
to confirm their negligible severity value. Those risks are:

. Incorrect position from camera input (e.g., mismatched points when some are hidden).. Fast-moving end-effector, unexpected movement by the participant.

Therefore, I conducted tests to check if the robot position and speed will be within safe
limits in case those risks appear.

20 trials were performed remotely without any living objects in the robot operating zone
in a form of experiment AT block with random gains values and with a motion capture
system that was calibrated as worst as possible without any efforts to reduce residuals of the
cameras. The robot initial position for the trials was [0.12, -0.28, 0.18]; the boundary box
was defined by following parameters: x_min=.07, x_max=.50, y_min=-.36, y_max=-.24,
z_min=.16, z_max=.5, as during a normal experiment in order to restrict the robot’s
operating zone so that in any scenario it can only touch the participant’s right arm and
nothing else.

67

7. Risks assessment ..
In the first 10 trials, I simulated situations where the motion capture system couldn’t

detect the required marker for movement repetition. To do this, I randomly hid the marker
after the trial started, moved my hand, and then revealed the marker again. For the next
10 trials, I moved my hand as quickly as possible to test the slow mode. In each trial, I
also attempted to move my hand in different dimensions to test the boundary box and
dimension restrictions.

To evaluate the results, data from the motion capture system were used, and the speed of
markers on the robot and human hand was computed and analyzed. Merged data with the
human hand marker and the robot marker speed, and the motion capture system frames
corresponding to these values are presented in Figures 7.1 and 7.2 for the first 10 trials
and the last 10 trials respectively.

From the data, it can be seen that the maximum speed of the robot marker was 0.966
km/h and the maximum speed of the human hand marker was above 3 km/h. This indicates
that the robot’s speed did not exceed 1 km/h, a speed considered safe as brush bristles
moving at 1 km/h is considered as safe. When the robot tried to reach a speed near 1 km/h,
the application switched to slow mode with a reduced velocity of approximately 0.18 km/h.

Even when the human hand marker had a much higher speed, the robot’s speed did
not exceed 1 km/h, and from this it can be concluded that the robot’s speed is indeed
limited by a value computed from the settings parameters. Although there is no exact
parameter in the settings that clearly defines the maximum speed of the robot, making
it challenging to adjust safety parameters if needed. The robot speed limitation in the
legacy safety assurance methods is always based on the following parameters defined in the
settings.ini file:

. norm_cartesian_vel_max: Velocity limit (in m/s), computed from a moving window
average (the moving window is described in [3] on page 30)..max_vel_compensation_multiplier: The compensator for delays and inaccuracies.
The max_distance parameter is based on this, as norm_cartesian_vel_max *
max_vel_compensation_multiplier * time = max_distance, where time is the time
difference between now and when the joint angles were received to calculate the position
of the end-effector [3]..max_dist_recovery_multiplier: A constant in the range [0, 1]. If the robot goes
outside the max_distance, slow mode is activated. This is the threshold (max_dist *
this) to revert back to normal mode..max_vel_decrease_multiplier: A constant in the range [0, 1]. This is the speed
multiplier in slow mode (max_dist * this).

Clearly defining the robot’s maximum velocity as a setting parameter can provide flexibility
for safety assurance parameters, but editing this mechanism goes beyond the scope of the
current work.

68

.. 7. Risks assessment

The boundary box mechanism and dimension restrictions were also tested by analyzing
the robot marker position data from the 20 trials described below. The graphs representing
the XY robot marker position during all of these trials are shown in Figure 7.3. Empirically,
the robot’s position on the Z-axis did not change during any of the test trials. It can be
concluded that the robot did not exceed the boundary box limits during any of these trials,
and the Y position (with the robot as the origin of a Euclidean space) during hand tracking
was always approximately -66mm that is considered as safe.

In addition to the 20 conducted test trials, numerous other test trials were conducted
during application improvements. After multiple tests, no other risks were registered.

69

7. Risks assessment ..

Figure
7.1:

H
iding

m
arker

test
results.

70

.. 7. Risks assessment

Fi
gu

re
7.

2:
Fa

st
m

ov
em

en
ts

te
st

re
su

lts
.

71

7. Risks assessment ..

Figure 7.3: Robot’s gripper positions during safety tests.

Based on the information above, it can be concluded that the risk assessment described in
Table 4.2 of Adam Rojík’s work [3] remains the same, and experiments with real participants
may be performed.

72

Chapter 8

Conclusion

As a result of this thesis, the experiment investigating the interplay of tactile and motor
information in constructing spatial perception has been conducted, and as the result data
has been obtained for further analysis. Additionally, the tele-touch application has been fully
developed and now capable of conducting experiments utilizing the concept of tele-touch.

The application is essentially a platform with a clean architecture that already provides
the ability to track the hand movements and replicate it in 2D by using the robot. With
minor modifications, it will be possible to use this application to conduct other similar
experiments.

8.1 Meeting the Objectives
This section contains a summary of what was accomplished in accordance with the thesis
assignment.

“Familiarize yourself with the Kinova Gen3 robotic platform, Qualisys motion track-
ing system, psychological experiment procedures [CAT22], and previous implementation
[ROJ23]”: this task was fulfilled. I have read the Kinova® Gen3 Ultra lightweight robot
user guide (version r9.1), the Qualisys track manager manual, the diploma work "Real-Time
Teleoperation of a Robot Arm for Self-Contact", the scientific papers titled "Sensorimotor
Signals Underlying Space Perception: An Investigation Based on Self-Touch" and "Interplay
of Tactile and Motor Information in Constructing Spatial Self-Perception." The information
obtained from these sources is presented in the Chapter 2, which contains a description
of the Motion Capture system, the Kinova Gen 3 robotic platform, and psychological
experiment procedures. The analysis of previous application implementations is provided
in Chapter 4.

“Extend the existing implementation (and reimplement when necessary) by adding an
interface to configure the experiments (for non-programmers), a familiarization phase for
participants, and logging of the data for evaluation of the experiments. Extend the existing
GUI where necessary. Rework existing software architecture and use suitable architecture
and design patterns if needed.”: this task has been fulfilled. The existing implementation
was extended and most of its parts were reimplemented by specifications described in the
Chapter 5. The interface to configure experiments, designed for non-programmers, along
with a participant familiarization phase and data logging for experiment evaluation, were
implemented and presented in the Chapter 6. The legacy software architecture was fully

73

8. Conclusion...
reworked as it was described in Sections 4.1, 5.1 and results of the new architecture
implementation is shown in the Chapter 6.

“Analyze critical parts of the program and cover it by Unit-tests. Pay specific attention
to the safety of participants - see Risk assessment in [ROJ23]. It has to be guaranteed that
the robot arm does not leave the defined workspace, exceed set velocity limits, or contact
forces.”: this task was fulfilled. The critical parts of the program were analyzed in Section
6.5 and Chapter 7. Unit tests were implemented for these parts, as presented in Section
6.5. Safety assurance, ensuring that the robot arm does not leave the defined workspace,
exceed set velocity limits, or contact forces is provided in the Chapter 7.

“Together with the supervisors, run experiments with participants (1D version - par-
ticipants and robot moving on a line)”: this task has been fulfilled. The motivation for
replicating the experiment was provided in Chapter 3, and a detailed description of the
replicated experiment with five participants was presented in Chapter 3.

“Extend the setup to a plane (2D): Participant moves its arm on a plane which is
mapped to the motion of the robot arm (subject to manipulations), which then touches
the participant’s other arm.”: this task was partially completed. The block that allows a
participant to control the robot in a 2D space was implemented and described in Section
6.4. However, no tests were conducted with a participant in the robot operating zone.

“Provide comprehensive documentation.”: this task has been completed. Specifications
of the implemented logic and descriptions of the implemented classes were provided in
Chapters 5 and 6. The source code with a clean architecture, along with a readme file with
description of the main parts of the application, are available in the GitLab project [11].

74

Bibliography

[1] H. G. P. H. Antonio Cataldo, Lucile Dupin, “Sensorimotor signals underlying space
perception: An investigation based on self-touch,” Neuropsychologia, vol. 151, p.
107729, 2021.

[2] H. D.-J. H. G. P. H. Antonio Cataldo, Lucile Dupin, “Interplay of tactile and motor
information in constructing spatial self-perception,” Current Biology, vol. 32, no. 6,
pp. 1301–1309, 2022.

[3] A. Rojík, “Real-time teleoperation of a robot arm for self-contact - master thesis,”
2023.

[4] H. Lotze, Metaphysic: In Three Books, Ontology, Cosmology, and Psychology. Claren-
don Press, 1884.

[5] B. M. S. Ernst, Marc O., “Humans integrate visual and haptic information in a
statistically optimal fashion,” Nature, vol. 415, pp. 429–433, 2002.

[6] A. M. Melvyn A. Goodale, “Separate visual pathways for perception and action,”
Trends in Neurosciences, vol. 15, pp. 20–25, 1992.

[7] H. C. Dijkerman and E. H. F. de Haan, “Somatosensory processing subserving percep-
tion and action: Dissociations, interactions, and integration,” Behavioral and Brain
Sciences, vol. 30, pp. 224–230, 2007.

[8] Kinova inc., Kinova® Gen3 Ultra lightweight robot user guide r9.1, 2023.

[9] Qualisys, Qualisys Track Manager user manual, 2022.

[10] Qualisys, “QTM Real-time Server Protocol Documentation,” last accessed 18 May
2024. [Online]. Available: https://docs.qualisys.com/qtm-rt-protocol/

[11] O. Baryshnikov, “Real-time teleoperation of a robot arm for manipulating self-
localization in human participants project - git repository,” 2023-2024, last accessed
16 May 2024. [Online]. Available: https://gitlab.fel.cvut.cz/body-schema/tele-touch

[12] Working Draft, Standard for Programming Language C++, 2022, ch. 5, p. 13.

[13] “Working Draft, Standard for Programming Language C++,” last accessed 22 May
2024. [Online]. Available: https://github.com/cplusplus/draft

75

https://docs.qualisys.com/qtm-rt-protocol/
https://gitlab.fel.cvut.cz/body-schema/tele-touch
https://github.com/cplusplus/draft

8. Conclusion...
[14] B. Stroustrup, A Tour of C++. Addison Wesley, 2014, ch. 1, p. 4.

[15] “Stoelting™ Touch Test Sensory Probes,” last accessed 24 May 2024. [Online]. Available:
https://www.fishersci.com/shop/products/touch-test-sensory-probes/10000250

[16] G. Booch, J. Rumbaugh, and I. Jacobson, The Unified Modeling Language User Guide.
Addison Wesley, 1998, ch. 8.

[17] S. Baker, T. Moore, F. Rocher, F. Sesser, and K. Tokoro, “Tree package,” 1996-2018,
last accessed 16 May 2024. [Online]. Available: https://packages.ubuntu.com/focal/tree

[18] Kinova inc., “Kinova® kortex™ api reference - git repository,” 2019-2024, last accessed
18 May 2024. [Online]. Available: https://github.com/Kinovarobotics/kortex/releases

[19] wxWidgets, “wxDC Class Reference,” last accessed 18 May 2024. [Online]. Available:
https://docs.wxwidgets.org/3.2.0/classwx_d_c.html

[20] wxWidgets, “wxWidgets Cross-Platform GUI library,” last accessed 18 May 2024.
[Online]. Available: https://www.wxwidgets.org/

[21] Xavier Leclercq and the wxCharts contributors, “wxCharts - a library to create
charts in wxWidgets applications,” last accessed 18 May 2024. [Online]. Available:
https://github.com/wxIshiko/wxCharts

[22] “GoogleTest,” last accessed 22 May 2024. [Online]. Available: https://github.com/
google/googletest

[23] G. Rozental, “Boost Test Library,” last accessed 22 May 2024. [Online]. Available:
https://www.boost.org/doc/libs/1_49_0/libs/test/doc/html/index.html

[24] “CppUnit - C++ port of JUnit,” last accessed 22 May 2024. [Online]. Available:
https://sourceforge.net/projects/cppunit/

[25] “CUTE Framework,” last accessed 22 May 2024. [Online]. Available: https:
//www.cute-test.com/

[26] “Catch2 A modern, C++-native, test framework for unit-tests,” last accessed 22 May
2024. [Online]. Available: https://github.com/catchorg/Catch2/tree/devel

76

https://www.fishersci.com/shop/products/touch-test-sensory-probes/10000250
https://packages.ubuntu.com/focal/tree
https://github.com/Kinovarobotics/kortex/releases
https://docs.wxwidgets.org/3.2.0/classwx_d_c.html
https://www.wxwidgets.org/
https://github.com/wxIshiko/wxCharts
https://github.com/google/googletest
https://github.com/google/googletest
https://www.boost.org/doc/libs/1_49_0/libs/test/doc/html/index.html
https://sourceforge.net/projects/cppunit/
https://www.cute-test.com/
https://www.cute-test.com/
https://github.com/catchorg/Catch2/tree/devel

	Introduction
	Motivation and main goals
	Structure of the thesis

	Context analysis
	Experiments for investigation of interplay of tactile and motor information in constructing spatial perception
	Kinova Gen 3 robotic platform
	Qualisys motion tracking system

	Experiment replication
	Legacy tele-touch application analysis
	Architecture and design
	Familiarization block
	Experiment parameters configuration
	Data logging for future evaluation

	Software application design
	The new application architecture design
	Familiarization block - design
	Graphical UI to configure the experiments - design
	Data logging - design
	2D extension - design

	Software application implementation
	Familiarization block - implementation
	Graphical UI to configure the experiments - implementation
	Data logging - implementation
	2D extension - implementation
	Unit-tests
	Project documentation

	Risks assessment
	Conclusion
	Meeting the Objectives

	Bibliography

