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Abstract
The field of robotics has experienced a

surge of advanced robots entering the mar-
ket in recent years. Many robots today
can perform tasks that were unimaginable
only a few years ago. Among the various
types of robots—such as drones, bipedal
robots, or hexapods —four-legged robots
have gained significant attention due to
their ability to navigate complex terrains
and perform dynamic movements.

In this work, we explore state-of-the-
art methods for controlling quadrupedal
robots. Specifically, we focus on im-
plementing four walking controllers for
the Anymal D robot, one of the most
advanced four-legged machines available.
These controllers include a model pre-
dictive controller (MPC) in combination
with a whole-body tracking controller,
a reinforcement-learning-based controller,
and two hybrid controllers that combine
an MPC controller with a neural-network
based tracking controller. We verify the
functionality and performance of these
controllers in the Gazebo simulator, eval-
uating their ability to effectively traverse
various types of terrains. Finally, we de-
velop a context-aware strategy that dy-
namically switches between two of the im-
plemented controllers based on the avail-
able information.

Keywords: Reinforcement Learning,
Model Predictive Control

Supervisor: Mgr. Martin Pecka, PhD.

Abstrakt
Robotika zažívá v posledních letech

prudký nástup pokročilých robotů na trhu.
Mnoho robotů dnes dokáže vykonávat
úkoly, které byly ještě před několika lety
nepředstavitelné. Mezi různými typy ro-
botů - jako jsou drony, humanoidi nebo
hexapodi - si čtyřnozí roboti získali znač-
nou pozornost díky své schopnosti pohy-
bovat se ve složitém terénu a dynamicky
se pohybovat.

V této práci zkoumáme nejmodernější
metody řízení čtyřnohých robotů. Kon-
krétně se zaměřujeme na implementaci
tří kontrolerů chůze pro robota Anymal
D, jednoho z nejpokročilejších čtyřnohých
robotů vůbec. Tyto regulátory zahrnují
MPC kontrolér v kombinaci s WBC regu-
látorem, dálé potom dva regulátory za-
ložené na posilovaném učení a hybrid-
ních regulátorech, který kombinují pre-
diktivní kontrolér s tracking regulátorem
založeným na neuronových sítích. Funkč-
nost těchto regulátorů ověřujeme v simulá-
toru Gazebo a hodnotíme jejich schopnost
efektivně překonávat různé typy terénů.
Nakonec vyvíjíme strategii zohledňující
kontext, která dynamicky přepíná mezi
dvěma implementovanými regulátory na
základě dostupných informací.

Klíčová slova: Posilované Učení,
Prediktivní řízení

Překlad názvu: Analýza pokročilých
řídicích algoritmů pro chůzi čtyřnohých
robotů se zaměřením na užití v simulaci
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Chapter 1
Introduction

The field of robotics has experienced a surge of new robots entering the
market over the last couple of years. Advancements have been made both
on the hardware and software side of things. Many robots these days can
perform stunts that were unimaginable only a few years back. There are
different types of robots, including drones, bipedal robots, quadrupedal robots
or hexapods, to name a few.

In this work, we will dive deep into some of the methods used to control one
type of these machines, namely the four-legged machines, implement three
different walking controllers, and verify their functionality in simulation.

1.1 Literature review

People have been building quadrupedal robots for a few decades now. Four-
legged machines of various shapes and sizes are being used for diverse industry
applications these days, ranging from simple inspection routines inside man-
ufacturing plants [1] to last-mile deliveries to homes in many cities [18].
Consequently, there are many robots available to perform testing on. In
this work, however, we will be using the Anymal robot [8], one of the most
advanced four-legged machines in the world at the time of writing this thesis.

(a) : Anymal B [3] (b) : Anymal D[2]

Figure 1.1: Anymal and two of its iterations

Anymal has twelve actuated joints, and because it is a floating-base robot,
it has an additional six unactuated degrees of freedom. Three of these define
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1. Introduction .....................................
the robot’s position with respect to a user-defined fixed frame, and the last
three define the robot’s orientation to this frame. These six unactuated
degrees of freedom make Anymal an underactuated robot [19], as they cannot
be driven independently of the 12 actuated joints.

Because of the underactuation and the high number of DOFs, performing
highly dynamic motions is challenging, and only applying PD regulators to
control the entire system will not suffice.

A relatively novel way of controlling Anymal was introduced in [4], where
Hutter et al. introduced, among other ideas, a whole-body controller built on
top of hierarchical quadratic programming.

Whole-body controllers generate control signals solely based on the current
state and thus do not consider the future when optimizing the next command
to be sent to the joint actuators. While these controllers are incredibly
useful for controlling highly dynamic robots, they are usually not used by
themselves, as performing dynamic movements requires the anticipation of
future contacts of the machine with the environment. This is where model-
predictive controllers come into play. MPC controllers are, in our settings,
reference trajectory generators for the WBC controllers. MPCs usually plan
hundreds of milliseconds into the future and produce reference trajectories
for the WBCs to track. This planning into the future comes at a cost,
which is smaller update frequencies. Generally, neither of the two controllers
mentioned above are used alone. It is the combination of the WBC’s high
update frequency and the MPC’s future planning that makes this duo so
powerful. The paper [17] succinctly describes how an MPC controller for four-
legged robots can be formulated as an optimization problem and summarises
centroidal dynamics, an efficient way of describing the motion of the robot’s
center of mass.

To safely and efficiently navigate the environment while performing a task,
legged robots generally need to use as much information as possible about
their state and local terrain. In [5], Fankhauser et al. proposed a method
to generate terrain maps in a Kalman-filter fashion, fusing state estimates,
point clouds from onboard depth cameras, and terrain map models from
the previous timestep. After its creation, a local terrain map can be further
analyzed, and many useful quantities can be computed, such as traversability
scores, signed distance fields, or surface normals.

Local terrain maps, or gridmaps, can be used for various purposes, and
the community has applied them in many successful projects. One such
project is TAMOLS [9], which uses quantities computed from gridmaps to
formulate terrain-aware trajectory optimization problems for legged machines.
The paper itself proposed many new ways of thinking about controlling
quadrupedal robots. There are quantities that MPCs cannot optimize over,
as including them in the MPC’s optimization problem formulation would lead
to orders of magnitude longer solve times. This paper proposed several ways
of pre-computing quantities necessary for generating naturally looking gaits,
including base position and base orientation with respect to the ground and
introduced an MPC formulation that takes these pre-computed quantities

2



................................... 1.1. Literature review

Figure 1.2: Gridmap [5]

into account.
In a follow-up project [7], Hutter et al. introduced the notion of a perceptive

nonlinear MPC. The biggest drawback of the work presented in [9] is that
the utilized MPC assumed the single rigid body dynamics (SRBD). For
highly dynamic motions, however, this assumption is not justified, as the leg
dynamics play a significant role in the evolution of the robot’s state.

Therefore, the authors used centroidal dynamics instead. Moreover, the
authors claimed that unintended collisions with the environment reduced the
overall performance of the MPC. Their solution to this problem was incorpo-
rating a signed distance field into the MPC formulation. More specifically,
the SDF was used in the formulation of a soft constraint incetivizing some of
the robot’s links to stay away from ground.

Finally, a better method for enforcing footholds had been sought after.
The authors used a method combining plane segmentation, convex region
extraction, and foothold inequality constraints.

So far, all the papers discussed have only used traditional means of con-
trolling quadrupedal robots, specifically, an MPC controller whose generated
trajectories are tracked using a low-level tracking controller, generally some
variant of the WBC controller. In the last couple of years, however, researches
have started experimenting with deploying neural networks to control their
four-legged machines. A key paper on the topic of controlling four-legged
robots with neural networks was [12], which proposed a blind walking policy
fully trained in simulation. The paper itself contributed to the research
community by describing important details pertaining both training and
deployment.

Building upon the work introduced in [12], another publication,[14], en-
hanced the walking policy by giving the neural network the ability to see
the local environment by retrieving the terrain heights around the robot’s
feet and using that information as an input to the underlying neural network.
The majority of training details stayed the same, though a new way of policy
distillation was introduced in this paper, removing the previously used CNN
and using an RNN instead.

3



1. Introduction .....................................
When training reinforcement learning agents, using vast quantities of data

is paramount. It used to be very difficult to simulate hundreds of robots in
parallel and perform all the training efficiently in the past. That changed in
2021 when Nvidia introduced its Isaac Gym framework, a physics simulator
fully implemented on GPU, aimed specifically to tackle many reinforcement
learning applications [13].

The authors of [12] and [14] took advantage of this simulator’s capabilities
and built a gym environment 1 for training quadrupedal robots on top of it.
Their work was summarized in [15] where they described and demonstrated
their claim that four-legged machines could be taught to walk in mere minutes
instead of hours or days, which had been the norm prior to this work.

Traditional control policies with MPCs exhibit great planning capabilities.
However, regular assumption violations during deployment in the real world
reduce their robustness. Reinforcement-learning-based controllers, on the
other hand, usually generate robust walking motions. Nevertheless, in situa-
tions where valid footholds are sparse, RL policies usually struggle, and their
performance is mostly inferior to that of MPC-based controllers.

In [10], Hutter et al. proposed a hybrid control architecture that combined
the merits of both worlds. The proposed control architecture is essentially
the same as that of an MPC-based controller with a WBC, except the WBC
is superseded with a neural network.

It is important to acknowledge that the papers discussed above represent
only a small fraction of the ongoing advancements in the field of quadrupedal
robotics. There are numerous other significant contributions that have not
been mentioned here, though their role in the development of four-legged
robotic systems is just as important. We only picked publications whose
influence on this work was the greatest.

1https://github.com/leggedrobotics/legged_gym
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Chapter 2
Implementation details

This chapter will first give a high-level overview of the project, introducing im-
portant pieces and notions, including that of a Controller, CentralController,
JointController, StatePublisher, and StateSubcriber. These are namely
the main building blocks on top of which the walking controllers introduced
and discussed in the previous chapter are implemented in this work. Sub-
sequently, having a general overview of the basic interactions between the
main parts, we will take a closer look at each of the implemented walking
strategies. Five different types of controllers have been implemented as part of
this work. We have called them the StaticController, the MpcController,
the BobController, the DtcController and lastly the JoeController. The
MpcController and the BobController have their corresponding blind and
perceptive variants, depending on whether the exteroceptive information from
Anymal’s cameras is considered during deployment or not. DtcController
and JoeController were implemented as a perceptive controllers only, unlike
the StaticController which is completely blind.

All the implementation is open-source and the following chapters are best
read while having the code open on the side. As the project is publicly
available on Github, improvement suggestions or even contributions are
welcome.. tbai - https://github.com/lnotspotl/tbai:

Repository containing main code for controller deployment in Gazebo. tbai_isaac - https://github.com/lnotspotl/tbai_isaac
Repository containing code for training reinforcement learning based
controllers - BobController, DtcController and JoeController. tbai_bindings - https://github.com/lnotspotl/tbai_bindings
Repository providing python bindings for the ocs21’s MPC implementa-
tion for use during training of DtcController and JoeController

The code, as it was at submission, can be found in the 24.5.2024 branch.

1https://leggedrobotics.github.io/ocs2/
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2. Implementation details.................................
2.1 High level overview

Before discussing the introduced building blocks, let us define two data
structures used to communicate details about the system’s (Anymal’s) state
and the control signals (joint torques). The first of these data structures is
named RbdState. Its declaration is in listing 2.1.

1 struct RbdState {
2 double rbd_state [36];
3 bool contacts [4];
4 };

Listing 2.1: RbdState declaration

RbdState consists of two lists, namely rbd_state and contacts. rbd_state
defines Anymal’s full state and is made of the following parts:. base link orientation w.r.t the world frame, XYZ euler angles, in rad (3). base link position w.r.t the world frame in m (3). base link angular velocity expressed in base frame in rad/s (3). base link linear velocity expressed in base frame in m/s (3). joint angles in rad (12). joint velocities in rad/s (12)

contacts defines four flags indicating whether Anymal’s individual feet
are touching the ground or not. Next, we declare JointCommandArray in
listing 2.2.

1 struct JointCommandArray {
2 struct JointCommand {
3 string joint_name ;
4 double desired_position ;
5 double desired_velocity ;
6 double kp;
7 double kd;
8 double torque_ff ;
9 };

10 JointCommand joint_commands [12];
11 };

Listing 2.2: JointCommandArray declaration

As shown, JointCommandArray comprises of a list with twelve JointCommands.
A JointCommand is a data structure composed of the following fields:. joint_name: name of the joint to be controlled. desired_position: desired joint position in rad. desired_velocity: desired joint velocity in rad/s

6



.................................. 2.1. High level overview

. kp: P value for the underlying PD regulator. kd: D value for the underlying PD regulator. torque_ff: feed-forward torque in N·m

Having the RbdState and JointCommandArray data structures defined, we
can now take a look at Figure 2.5, giving an overview of how the project’s
building blocks are structured and interconnected.

Figure 2.1: System overview

Let us now give a brief overview of the building blocks present in Figure 2.5.

2.1.1 CentralController

The entire control system consists of a feed-back loop made out of five blocks,
one of which is the Anymal robot itself. The central piece of this feed-
back loop is CentralController, a building block that communicates with
Controller instances and retrieves JointCommandArrays from them. It also
regulates the feed-back loop frequency, depending on the currently active
Controller instance. At every single point in time, only one Controller
instance is active. For instance, in Figure 2.5, Controller 2 is active, denoted
by the green color, and the rest of the Controller instances are inactive,
indicated by the red color.

2.1.2 Controller

The Controller class is an abstract class defining a unified interface for
all the controller realizations (e.g MpcController, BobController, etc.) to

7



2. Implementation details.................................
conform to. There are seven functions in total that each controller realization
needs to implement, as declared in listing 2.3.

1 class Controller {
2 public :
3 virtual JointCommandArray getCommandMessage ( double

currentTime , double dt);
4 virtual void visualize ();
5 virtual bool isSupported ( string controllerType );
6 virtual void changeController ( string controllerType ,

double currentTime );
7 virtual void stopController ();
8 virtual bool checkStability ();
9 virtual double getRate ();

10 };

Listing 2.3: Controller abstract class

Following is a brief explanation of the responsibility for each one of the
functions.. virtual JointCommandArray getCommandMessage(...):

Produce JointCommandArray. The arguments are currentTime, which
is the number of seconds from a specific point in time defined at program
start, and dt, time elapsed since the last feed-back loop iteration.. virtual void visualize():
Visualize controller-specific data, usually RbdState together with other
quantities.. virtual bool isSupported(...):
When switching between controllers, CentralController asks each of
the Controller instances whether it is of the desired type, represented
as a string. isSupported can return true for two or more distinct
inputs. This can be used to introduce aliases or make one Controller
have two different modes of operation, where the mode is encoded into
the argument. For example, StaticController’s isSupported method
returns true for two inputs - "SIT" and "STAND".. virtual void changeController(...):
Change to this controller. This function is mostly used for initialization
tasks when the CentralController switches to this controller. Note
that if this function is called it is assumed that isSupported evaluates
to true.. virtual void stopController():
Perform cleanup tasks when CentralController switches to a different
controller.. virtual bool checkStability() const:
Check whether controller is stable. If not, CentralController may
switch to a fallback controller, usually the StaticController.

8



................................2.2. Implemented controllers

. virtual scalar_t getRate() const:
Return desired feed-back loop frequency.

2.1.3 JointController

Another important block is the JointController. This block unpacks the lat-
est received JointCommandArray data structure from the CentralController
and produces torques to be set for each of the joints. The torque value for
every joint is internally computed as follows:

τ = clip(τff + kp · (θd − θ) + kd · (θ̇d − θ̇) | τmin, τmax) (2.1)

with clip defined as

clip(a | b, c) = max{min{a, c}, b} (2.2)

In equation 2.1 for calculating the joint torque, τ is the actual torque applied,
τff is set to torque_ff, kp and kd evaluate to kp and kd respectively. We
substitute position_desired for the symbol θd and velocity_desired for
θ̇d. The symbols θ and θ̇d are replaced with the numerical values of the current
joint position and joint velocity respectively. τmin and τmax represent the
minimum and maximum possible torques and are defined as τmin = −limit
and τmax = +limit with limit ≥ 0 being an effor limit specified in Anymal’s
URDF description.

2.1.4 StatePublisher

The StatePublisher block is a piece that directly communicates with the
simulator and produces RbdState instances. As of writing this work, there are
two distint ways how the RbdState instance gets populated with numerical
values. Either, we assume full observability and the data is taken directly
from the simulator, or partial observability as assumed and an extended
Kalman filter is utilized to produce the observation. The second of the two
options is still experimental as of writing this thesis.

2.1.5 StateSubscriber

The StateSubscriber’s job is to store the latest RbdState instance produced
by the StatePublisher and perform a few preprocessing steps before handing
the information about the robot’s state and contact flags to the active
controller. StateSubscriber does no more than that.

2.2 Implemented controllers

2.2.1 StaticController

The simplest of the implemented controllers is the StaticController. Inter-
nally, it stores the sit joint angles as well as the stand joint angles and when

9



2. Implementation details.................................
switched to, the controller linearly interpolates from the current joint position
to the requested joint position over a configurable period of time. Both the
torque_ff and the velocity_desired values are set to zero for each of the
JointCommand instances. The parameters kp and kd are set to high values.

(a) : Anymal D sitting (b) : Anymal D standing

Figure 2.2: Stand and sit joint angles

2.2.2 MpcController

StaticController was the simplest of the four implemented controllers.
However, it cannot produce the walking motions needed for our quadruped
to move around in space. That is where MpcController comes into the
picture. Even though there’s only the MPC part in its name, it is a controller
combining an MPC controller with a WBC tracking controller, as shown in
Figure 2.3.

Figure 2.3: Overview of MpcController’s architecture

The controller’s input is a reference linear velocity vB
x and vB

y for the
base as well as a reference yaw rate ωB

z , each expressed in the robot’s base
frame. Internally, based on the reference velocities, the quadruped’s state is
extrapolated using the Euler integration method. The generated trajectory
serves as a reference for an internal MPC controller, whose main purpose is
to fill in more details to the trajectory, taking dynamics, constraints and a
cost function into account. An example of a reference trajectory produced by
the MPC controller is depicted in Figure 2.4.

10



................................2.2. Implemented controllers

Figure 2.4: Reference trajectory produced by the MPC controller: SC(t) is
an optimized trajectory describing the robot’s base link motion, F(·)(t) is an
optimized ground reaction force, RF is an abbreviation for right-front, SRF (t)
is a trajectory describing the motion of the right-front foot. Note that not all
trajectories produced by the MPC are shown in this image.

The produced trajectory, which is a continuous function of time, is passed
to the WBC tracking controller that, based on the current time and state,
produces joint torques that are to be set for each of the joint controllers.

Figure 2.5: The WBC tracking controller is tasked to track the optimized state
trajectory S(·)(t), taking the current state Ŝ(·) and optimized ground reaction
forces into account.

Trajectories described by continuous functions can be paremeterized in a
myriad of different ways. The way trajectories are represented in this project
is as follows. We sample the trajectory (a function of time) at N+1 different
points, denoted as t0, t1, . . . , tN with ti < ti+1. The sampled values together

11



2. Implementation details.................................
with the sampling times are stored in an array. When we later want to
evaluate the trajectory at time T , we first find ti and ti+1 with ti ≤ T ≤ ti+1
and perform a linear interpolation between S(ti) and S(ti+1), where S(ti)
and S(ti+1) are the sampled values stored in our array. Extrapolation is not
defined. For T s satisfying T < t0 we simply return S(t0). The upper bound
can be handled in a similar manner.

To build the MpcController, we used a modified 2 implementation of an
MPC controller designed specifically to control Anymal built on top of the
ocs2 project3. The MPC controller is the same as described in [7].

We implemented two different types of a WBC tracking controller, more
specifically the Hierarchical Quadratic Program (HQP) WBC controller and
the Single Quadratic Program (SQP) WBC controller, each described in [4]
and [7], respectively. As the underlying QP solver, we are using qpOASES, a
high-performance optimizer implemented specifically for MPC applications
[6].

The optimized joint torques are packed into JointCommands with the desired
position and velocity set to the optimized values from the MPC controller.
The PD regulator constants are set to small numbers, meaning the robot is
mostly controlled using the computed torques.

2https://github.com/lnotspotl/ocs2/tree/tbai
3https://leggedrobotics.github.io/ocs2/
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................................2.2. Implemented controllers

2.2.3 BobController

BobController is the name of the controller we gave to the trained policy
implemented4 based on [14]. It is a combination of encoders, decoders, multi-
layer perceptrons and recurrent neural networks with proprioceptive and
exteroceptive information as an input. The model’s output is an action, a
vector of twelve joint angles, directly used to control Anymal. A high-level
overview of this control architecture is show in Figure 2.6.

Figure 2.6: Overview of BobController’s architecture

We used a PD regulator to track the joint angles produced by the neural
network and set the kp and kd values to be 80 and 2, respectivelly, as proposed
in the original paper [14]. Details about the training process as well a brief
description of the inputs to the underlying neural network can be found in
[11]. The whole training, a process combining teacher traininig and student
policy distillation, takes around ninety minutes on a single DGX A100 station,
which is significantly less than the time needed to train the DtcController
or the JoeController.

2.2.4 DtcController

The penultimate controller implemented in this work is the DtcController.
As stated in section 1.1, the idea for this controller was first proposed in [10].
We took the concepts from the original paper and implemented a controller
similar to the one proposed in [10], with a couple of modifications.

Figure 2.7: Overview of DtcController’s architecture

We trained in a simpler environment, the one used in [11], rather than
the one described in [10] with the intent that the training would not take
fourteen days as reported but just a fraction of that time. With the current

4Code for training the policy can be found under this link:
https://github.com/lnotspotl/tbai_isaac
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2. Implementation details.................................
implementation, a policy can be trained in just under 4 hours on a single
DGX A100 station, though more optimization can be done to reduce the
training time even futher.

The trained policy is a simple multi-layer perceptron, whose inputs are
briefly summarized in section 2.2.4 and the ouputs are twelve joint angles,
just as was the case for BobController. These are then tracked using a PD
regulator with the kp and kd constants set to 80 and 2, respectively.

Input Dimension
base linear velocity 3

base angular velocity 3
projected gravity 3

command 3
joint angles 12

joint velocities 12
last action 12

planar footholds 8
time left in phase 4

height samples 4x10
CPG information 8

Table 2.1: Observations for DtcController’s action neural network

The first 10 observations are succintly described in [10], the CPG infor-
mation is a piece we added with the intent it would help the action neural
network reason about which part of the gait cycle it is in at every point in
time. This observation was taken from [14].

We are using the PPO algorithm5 [16] to train our policy. PPO generally
uses two distinct neural networks, one which produces actions (joint angles
in our case) - actor - and one which estimates the value for each possible
observation - critic. Apart from the observations given as an input to the
actor, we are also providing the critic with information about the optimized
trajectory produced by the MPC controller. This additional information is
desired base pose, velocity and acceleration, desired joint angles and velocities
and finally optimized foot positions and velocities (calculated using forward
kinematics). Futhermore, ground reaction forces are given to the critic
network.

Details about the rewards are given in [10]. We added a couple more
rewards terms, namely negative rewards for not following the desired joint
angles and velocities as well as the optimized foot positions and velocities.
Additionally, to help Anymal stand up at the beginning of training, we added
an over time attenuated reward punishing base height deviations from a
predifined value.

5We are using a modified version of an open-source PPO implementation available at
https://github.com/leggedrobotics/rsl_rl
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................................2.2. Implemented controllers

2.2.5 JoeController

The final controller we came up with is the JoeController inspired by the
way the WBC tracking controller works. The inputs to the WBC controller
used in MpcController are optimized trajectories describing the base pose,
velocity and acceleration as well as joint angles and velocities. We decided
to take the controller architecture for the NN-based controller introduced in
section 2.2.4 and instead of giving the touched upon quantities to the critic
network, we decided to feed them directly to the actor network.

The rest of the details pertaining training stayed the same. The controller
architecture is given in Figure 2.8.

Figure 2.8: Overview of JoeController’s architecture
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Chapter 3
Controller benchmarking

Benchmarking and comparing two distinct walking controllers is impossible,
as the no-free lunch theorem applies to walking policies just as it does to
any other type of algorithms. At the end of the day, a walking policy is just
an algorithm whose sole purpose is to generate walking motions. There is
therefore no universal walking policy that would be better in every possible
regard than any other walking algorithm. In this chapter, we will be comparing
the implemented walking policies, all described in the previous chapter, for
one specific scenario, and thus when we say one policy is better than the
other, what we really mean is that this policy is better than the other on the
used benchmark we will briefly introduce now.

3.1 Benchmark map in Gazebo

We designed a simple obstacle course in Gazebo to test and compare the
implemented walking controllers. The entire Gazebo map is depicted in
Figure 3.1. The obstacle course consists of multiple stages, each testing the
controllers’ ability to handle different scenarios.

Let us now introduce a simple notation that we will use to discuss the
obstacle course. When we write X ⇒ Y , we refer to the course section in
which the robot is supposed to go from waypoint X to waypoint Y .

Some of the sections contain no obstacles whatsoever and only serve the
purpose of preparing the robot’s pose for traversing the next section, while
other sections do contain some obstacles and test our robot’s various abilities
to cope with different terrains.

Section 1⇒ 2 contains a ramp followed by a narrow section. This obstacle
tests the controller’s ability to reason about its footsteps, as the narrow
part cannot be traversed without placing the robot’s feet closer together.
Section 5⇒ 6 contains a couple of stationary cylinders, all scattered around
with varying orientations and distances to the nearest other cylinder. When
traversing section 8 ⇒ 9, the robot has to go over a pile of wooden logs
followed by two regions filled with wooden cubes. Both the cubes and the logs
are dynamic obstacles because they are floating body objects, the opposite
of static objects. Section 11 ⇒ 12 contains the obligatory stepping stones.
No real legged-robot benchmark can lack these. Lastly, section 12⇒ 1 is a

17



3. Controller benchmarking................................

(a) : Isometric view

(b) : Top view with annotated waypoints

Figure 3.1: Benchmark map

long stride where the robot’s ability to follow the commanded velocity can
be tested.

3.2 Reference twist generation

A simple policy was designed to generate twist commands (vx, vy and ωz:
desired velocity in X and Y directions and desired yaw rate, all expressed
in the robot’s base frame) for the robot to follow. A pseudocode for the
algorithm is given next.
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Algorithm 1 Twist generator for controller benchmarking
Input: simulation state
Output: vx, vy, ωz: all doubles

1: xc ← currentBasePositionX()
2: yc ← currentBasePositionY()
3: θc ← currentBaseYaw()
4: xd ← desiredBasePositionX()
5: yd ← desiredBasePositionY()
6: θd ← atan2(yd − yc, xd − xc)
7: θdiff ← anglediff(θd, θc)
8: vx ← 0
9: vy ← 0

10: if abs(θdiff) ≤ π
3 then

11: vx ← 0.7
12: end if
13: ωz ← clip(0.5 · θdiff,−0.7, 0.7)

The desired base position is set to be a point one meter ahead of the robot
on the track in the direction of the next waypoint.

3.3 Experiments

Using the reference velocity generator introduced above, we let each of the
implemented controllers autonomously traverse the abstacle course starting
at waypoint 1 a moving along the course as indicated by the arrows in
Figure 3.1b. For each of the course section involving obstacles, we measure
the time it takes for the robot to get from the start to the finish, i.e. from
waypoint X to waypoint X + 1 mod 12. Additionally, for the stride 12 ⇒ 1,
we also measure the mean joint power, that is the average value of

∑12
i=1 τi · θ̇i,

where τi is the i-th joint torque and θ̇i is the i-th joint velocity. We denote
this mean value by P12⇒1.
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3. Controller benchmarking................................
3.4 Results

Table 3.1 summarizes the results for experiments presented in the last section.1

Controller 1⇒2 5⇒6 8⇒9 11⇒12 12⇒1 P12⇒1

MpcController perceptive 14.1 15.9 - 15.6 10.9 181.1

MpcController blind - - - - 11.0 186.3

BobController perceptive 14.0 15.6 17.8 - 9.5 145.5

BobController blind - 15.3 16.4 15.1 9.4 148.3

DtcController perceptive 15.7 18.7 20.1 19.1 11.4 237.6

JoeController perceptive 16.9 22.7 - - 11.0 252.2

Table 3.1: Time taken to traverse course section, given in seconds. The last
column is the average joint power in watts on the stride 12⇒1. "-" means the
controller failed.

The results given in table 3.1 indicate that the blind BobController is
usually the fastest while the perceptive DtcController and JoeController
are the slowest. The distance between waypoints 12 and 1 is around 7 meters
and therefore, since the commanded velocity is 0.7 m/s, the controllers should
ideally take around 10 seconds to get from the starting point to the finish.
Both the perceptive and blind BobControllers are the closest to this quantity
and thus we can conclude that on flat terrain, these reinforcement-learning-
based controllers can track the commanded velocity the best.

Judging from the recorded videos1 made while conducting the above exper-
iments, the BobControllers usually push through and exhibit less visually
pleasing movements compared to the perceptive MpcController on some
parts of the course, especially the two containing the stepping stones and the
narrow passage. On those two, the MpcController performed better thanks
to its ability to plan into the future.

Overall, the BobControllers work the best in terrains where there are many
valid footholds or dynamic and slippery obstacles in the way. MpcControllers
do a great job in cases where planning of future footsteps is paramount, i.e.
in scenarios where valid footholds are scarce. On the other hand, when a slip
occurs during MpcController’s deployment, it often results in the controller’s
failure. The same goes for the JoeController that relies on the underlying
MPC controller to a large extent and fails to function when the tracked
reference trajectories are inconsistent. The DtcController is more robust
than JoeController in this regard as only desired footholds are extracted
from the otpimized trajectories generated by the MPC. These footholds are
essential for DtcController’s operation and give it a slightly better ability
to traverse terrains where valid footholds are mostly lacking while not making

1Videos are available here: https://github.com/lnotspotl/tbai/tree/thesis
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....................................... 3.4. Results

it too reliant on the MPC controller that can easily diverge in case some
unmodeled phenomenom happens.

Lastly, while not being trained for that specifically, our BobControllers use
the least power and are thus more energy efficient than the MpcControllers,
the DtcController and the JoeController, which ended up losing in this
regard.

For benchmarking other types of algorithms on quadrupedal platforms, some-
times the ability to traverse complex terrains is not as important as the
walking controller’s low computational requirements. Therefore, for each of
the implemented controllers, we tested its average CPU utilization. This
testing was performed on a machine with the AMD Ryzen 7 5800X 8-Core
3.8 Ghz processor using the atop utility. We summarized our findings in
table 3.2.

Controller Average CPU utilization [%]
MpcController perceptive 64

MpcController blind 64
BobController perceptive 265

BobController blind 11
DtcController perceptive 52
JoeController perceptive 53

Table 3.2: Controller CPU utilization. 100 % means full utilization of a single
core.

For each controller utilizing an MPC controller, around 45 % CPU uti-
lization is dedicated just for the MPC part (running at 30 Hz). The rest is
consumed by other calculations. For MPC-based controller, therefore, the
most heavy-lifting takes place on ocs2’s end.
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Chapter 4
Context-aware controller

Taking the results presented in the last chapter into account, we implemented
a simple context-aware strategy that, based on the circumstances, switches
between the perceptive BobController and the perceptive MpcController.
The strategy is as follows:

Start with the perceptive MpcController. If any foot slip is detected
along the way while going across the obstacles, switch to the perceptive
BobController and use it until the next waypoint has been reached. Upon
reaching the next waypoing, switch back to the MpcController if it is not the
currently active controller.

We detect foot slips using a simple heuristic and the algorithm is given
next:

Algorithm 2 Foot slip detection algorithm
Input: feet, simulation state
Output: slip: bool

1: slip← false
2: for each foot ∈ feet do
3: if foot not in contact then ▷ RbdState contains contact flags
4: continue
5: end if
6: vx ← getGlobalVelocityX(foot)
7: vy ← getGlobalVelocityY(foot)
8: if v2

x + v2
y ≥ T then ▷ T is a tunable threshold value

9: slip← true
10: break
11: end if
12: end for

The devised strategy was benchmarked1 in the same way as the individual
controllers themselves in the last chapter and the results are once again given
in the form of a table, table 4.1.

1Videos are available here: https://github.com/lnotspotl/tbai/tree/thesis
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4. Context-aware controller................................
Controller 1⇒2 5⇒6 8⇒9 11⇒12 12⇒1 P12⇒1

MpcController perceptive 14.1 15.9 - 15.6 10.9 181.1

MpcController blind - - - - 11.0 186.3

BobController perceptive 14.0 15.6 17.8 - 9.5 145.5

BobController blind - 15.3 16.4 15.1 9.4 148.3

DtcController perceptive 15.7 18.7 20.1 19.1 11.4 237.6

JoeController perceptive 16.9 22.7 - - 11.0 252.2

Context-aware 14.0 16.1 18.5 16.2 11.0 181.5

Table 4.1: Time taken to traverse course sections, given in seconds. The last
column is the average joint power in watts on the stride 12⇒1. The first five
rows (gray rows) are copied results from table 3.1 and are included here for easier
comparison.

Our Context-aware controller was able to get through the entire obstacle
course without a single failure. While not being the fastest, reliability might
be of more importance in many use-cases. The devised Context-aware
controller combined the advantages of both the perceptive MpcController
and the perceptive BobController, giving it an ability to better cope with a
wider range of terrains.
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Chapter 5
Conclusion

In this thesis, we explored, analyzed and tested state-of-the-art quadruped
locomotion controllers implemented for the Anymal D robot within the Gazebo
simulator. Four primary controllers were implemented: the MpcController,
combining model predictive control with a whole body tracking controller; the
BobController, a reinforcement learning-based control strategy; and finally
DtcController with JoeController, two hybrid architectures merging an
MPC controller with a neural network-based tracking controller.

Each of the controllers was benchmarked on a custom-built obstacle course
designed to test various aspects of quadrupedal locomotion. The results
showed that:. the MpcController excells in terrains where precise foot placements are

paramount, such as narrow passages or stepping stones. the BobController work best in terrains where precise footholds are not
important but robustness is, for instance slippery terrains or passages
with dynamic obstacles. the DtcController, a promising control architecture combining MPC
with a neural-network based tracking controller, having part of the
robustness exhibited by the BobController and part of the foresight
inherent in the MpcController. the JoeController, an architecture similar in nature to DtcController
relying more on the optimized trajectories from an MPC controller
making it a bit less robust

Taking the benchmark results into account, we created a simple context-
aware strategy switching between the perceptive MpcController and the
perceptive BobController dynamically. This strategy was benchmarked
and resulted in a superior performance on the obstacle course, enhancing
MpcController’s robustness by switching to the perceptive BobController
when foot slipping is detected.
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