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Abstract

The main goal of this work is to compare
standard object detectors with modern
self-supervised object detectors in the con-
text of vehicle driving. In the first part,
two data subsets are created. The first
subset consists of random video samples of
driving, while the second subset is gener-
ated using a designed pipeline for detect-
ing unusual events. These datasets are
then processed using both a standard ob-
ject detector and a self-supervised model.
The results are compared and analyzed to
determine whether objects undetected by
the common detector can affect vehicle
behavior.
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Abstrakt

Hlavnim cilem této studie je porovnat
bézné detektory objektd s modernimi
samo-ucicimi se detektory objekt v kon-
textu Tizeni vozidel. Nejprve jsou vytvo-
fene dvé datové sady: prvni sada obsa-
huje ndhodné videozdznamy z jizdy, za-
timco druhd sada je vytvorena pomoci
navrzeného postupu pro detekci neobvyk-
lych udélosti. Tyto datové sady jsou poté
zpracovany pomoci standardniho detek-
toru objektd a samo-uciciho se modelu.
Vysledky jsou porovnany a analyzovany,
aby se zjistilo, zda objekty, které nejsou
detekovany béznym detektorem, mohou
ovlivnit chovani vozidla.

Klicova slova: Algoritmy detekce
anomalii, poc¢itacové vidéni, samoucici se
modely

P¥eklad nazvu: Detekce vzacnych
udalosti pro autonomni auta
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Chapter 1

Introduction

The evolution of self-driving vehicles determined a new epoch in the auto-
motive field, with a new approach to control the vehicle. It promises time
efficient and safe drive. Nevertheless ensuring absolute safety still remains a
challenge. Unexpected deviations from normal behavior, so-called anomalies
can significantly reduce safety and can lead to road accidents causing vehicle
damages and passenger injuries. In the field of autonomous vehicles, a key
technology is the use of front-facing cameras. These cameras capture visual
data from the environment, which is then processed by computer algorithms
to inform the vehicle’s behavior. However, pre-trained models used for object
detection may not be able to identify all possible objects a vehicle might
encounter. This research project aims to address this limitation by focusing
on the detection of new and unexpected objects that could potentially impact
the safe operation of autonomous vehicles.

. 1.1 Problem formulation

The main idea is to compare objects detected by common object detectors and
self-supervised object detectors. Create two datasets with normal driving and
unusual driving events. Process both datasets with a common object detector
and self-supervised model. Select objects missed by the common object
detector and determine which of these objects can affect vehicle behavior.
For creating a dataset with unusual events, the next approach is used. A
vehicle is equipped with telemetry recording sensors that take snapshots of
the vehicle’s state with a frequency of 17Hz. Given a dataset of records from



1. Introduction

drives develop an automated system that identifies moments with deviations
from the normal behavior of the driver. Download videos corresponding to
the identified moments.



Chapter 2

Data

Continental has supplied a comprehensive dataset derived from cars driven
on various roadways. Each vehicle in this study is equipped with data
collectors, including a front-facing camera and a suite of sensors. These
sensors are designed to collect a wide array of data points, such as vehicle
velocity, acceleration, geographic position, turning angle, and other metrics
that contribute to understanding the vehicle’s performance and environmental
interaction.

The vehicles were driven in various locations, but the majority of the data
is concentrated in three main areas: Central Europe, North America, and
Southern Asia. Specifically, the main countries where data were collected are
Germany, the United States of America, Japan, and Italy.

—s “‘-:_‘—-ir_
b = -

S

Figure 2.1: Drive locations



2. Data

For a visual representation of the data, a map has been created where each
drive is indicated by a point. This map, illustrated in Figure 2.1, offers a
clear and immediate understanding of the distribution and density of the
recorded drives across the mentioned regions.

B 2.1 Raw data organization

In the server-side storage, data is systematically arranged within directories.
Each individual record is housed within its distinct folder, where the name of
the folder serves as a unique identifier for the corresponding drive. Within
these folders, these files are stored:

vdy__synchronized.json

device__urls.json
® cam_ pose_ calibration.json

B cam__ intrinsic_ synchronized.json

drive identificator.mp4

Data were collected from 2,941 drives, totaling approximately 993 hours of
driving. The total data size amounts to approximately 1.5 terabytes. Owing
to constraints in available disk space on the work laptop, a reduction in data
size was implemented during the download process. Specifically, only the
JSON data files with drive records, denoted as "vdy_ synchronized.json," were
downloaded and subsequently renamed according to with their respective
identifiers. Consequently, the resultant training dataset occupies 97 gigabytes
of storage space. Overall information about data is Records about each drive

Drives 2941

Overall length (hours) 993
Overall space 1.5 TB
JSON files space 97 GB

Table 2.1: Data information

are stored in separate JSON files identified by filename. These files contain
a collection of data points collected with a frequency of 17 Hz. Each data
point is labeled with the following information:

4



2.2. Subset sample

® Vehicle velocity (m/s).

® Vehicle acceleration (m/s?).

® Angle between front wheels and the direction of travel of a vehicle.
® Vehicle latitude (radians).

® Vehicle longitude (radians).

® gps_latitude - Vehicle latitude (radians) used only if gps_ gen pos_ fix_latitude
is unavailable.

® gps_longitude - Vehicle longitude (radians) used only if gps__gen_ pos_ fix_longitude
is unavailable.

B 2.2 Subset sample

Due to limited computing capabilities, processing all 993 hours would take
too long, so new smaller data subsets are created. First - with normal
driving videos. The second is with strange events. To get objects from videos
with normal driving, a new dataset called the Normal dataset is created by
sampling random 350 sub-videos from the original dataset. Each subvideo
has a length of 20 seconds, so the total amount of frames in this dataset is
119000. This dataset will be used in [5l.

Another dataset, Driver Intervention dataset will be created in Chapter 4,
section |4.3.5l This dataset will contain videos with unusual vehicle behavior.






Chapter 3

Related work

This chapter describes the existing solutions for object detection models.

B 31 Object detection

B 3.1.1 Detectron2

As a reference example of the existing object detector model, the Detectron2
model by Facebook Al research is taken. This research project
adopts Detectron2, a state-of-the-art object detection and segmentation
library developed by Facebook AI Research (FAIR), as a reference model. As
the Detectron2 GitHub repository states, "Detectron2 offers a suite of well-
established algorithms, including Faster R-CNN [RHGS16], Mask R-CNN
[AGDCG17], and RetinaNet [LGGT18|. These algorithms have demonstrated
high accuracy in various object detection tasks." The Detectron2 model offers
image tagging, object localization, and object segmentation functions. The
Detectron2 model includes implementations of models such as Mask R-CNN,
RetinaNet, Faster R-CNN, RPN [RHGS16], Fast R-CNN [Gir15], R-FCN
[DLHS23]. In this project, Mask R-CNN implementation is used. Mask
R-CNN stands for Mask region-based convolutional neural network. It is
an extension of Faster R-CNN adding an object mask to the output. It
processes an image in two stages. The first, called RPN (Region Proposal
Network) proposes bounding boxes, in which objects can be located. In the

7



3. Related work

next stage, all the proposed boxes are processed with RoIPool, and output
features are used to perform classification and bounding box regression. In
parallel, the second stage includes predicting a binary mask for each region
of interest defined by the bounding box. The mask branch outputs K masks
of size m x m. Then, a per-pixel sigmoid is applied, and L4 is defined
as the average cross-entropy loss. For each region of interest, only L,,qsk
associated with k-th class mask is considered. This allows to generate mask
without competition among classes. The mask is predicted using a fully
convolutional network [LSDI5]. This method requires Rol features to be well
aligned to preserve pixel-to-pixel correspondence. For this, mask R-CNN
uses the RolAlign [HGDG17] layer, which leads to large improvements. As
a backbone, Mask R-CNN uses either FPN or ResNet [HZRS16]

networks.

This project uses the Detectron2 model implementing mask R-CNN with
ResNet-50 and FPN backbone trained on the MS COCO dataset.
MS COCO is an object-detection, key-point detection, segmenta-
tion, and key-point detection dataset. COCO stands for Microsoft Common
Objects in Context and contains 328K images with per-instance labeled 91
object types.

B 3.1.2 YOLOv3

You Only Look Once version 3

(YOLOVg) ﬂmﬂ is a real-time Type Filters Size Output
object detection model known for Convolutional 32 3x3 256 x 256
. . . . . Convolutional 64 3x3/2 128x128
its time-efficient image inference. Convolutional 32 1 x1
YOLOv3 operates by predicting 1| Convolutional &4 3% 3

. . Residual 128 x 128
bounding boxes where potential ob- Convoluional 128 3x372 64x62
jects can be located using a single Convolutional 64 1 x 1

2x| Convolutional 128 3x 3
Residual 54 = 64
Convolutional 256 3x3/2 32 %32
Convolutional 128 1x 1

First, YOLOv3 predicts bound- ~ ¥| Genvoldtional 258 5 x3

forward pass through the network.

Residual 32 x 32
ing boxes and their associated ob- Convolutional 512 3x3/2 16% 16
. . Convolutional 256 1x1
Jectness scores. For this purpose, |- o0 T g
it uses dimension clusters as an- Residual 16x 16

chor boxes. The network predicts Comiohudionsl 1024 3x3/2 8x8
Convolutional 512 1x 1

four parameters for each bounding 4| Convolutional 1024 3 x 3

box: tg,ty, tw,tn, which represent it Bx8
A o . p Avgpool Global

the coordinates and dimensions of Connected 1000

the bounding box relative to the an- Softmax

chor box. The objectness score for  Figure 3.1: Darknet-53 network [RETR)



3.1. Object detection

each bounding box indicates the like-

lihood that the box contains an ob-

ject. This score is set to 1 if the box

overlaps a ground truth object more than any other box. If the box overlaps
a ground truth object by more than a certain threshold but not the most,
the prediction is ignored.

Each bounding box then predicts the classes it might contain using multi-
label classification, allowing for the possibility of multiple classes being
associated with a single box. For feature extraction, YOLOv3 employs a new
network called Darknet-53 shown at Figure 3.1, which has 53 convolutional
layers and utilizes residual connections to enhance performance and accuracy.

B 3.1.3 RetinaNet

RetinaNet [LGGT18| is a state-of-the-art object detection model designed to
achieve a balance between speed and accuracy. It is particularly known for
its ability to handle the class imbalance problem in object detection through
the use of the innovative Focal Loss function.

RetinaNet uses a single-stage architecture, meaning it predicts object
locations and classifications in one pass through the network. This network
is composed of a backbone network and two task-specific subnetworks. As
a backbone, the FPN network is employed. Translation-invariant anchor
boxes of areas 322 to 5122 on pyramid levels P; to P; are used. Then, the
classification subnet predicts the probability of presence of object for each of
A anchors and for each of K classes. The classification subnet is a small FCN
(Fully convolutional network) attached to each FPN level. Parameters of the
subnet are shared between all FPN layers. In parallel, another small FCN is
attached to detect the offset from the anchor box to a nearby object, if this
exists.
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B 32 Self-supervised models

Bl 3.2.1 DINOw2

DINOv2 is a recent advancement in self-supervised learning de-
veloped by Meta Al department. DINOv2 itself is an effective model training
method for variety of tasks in computer vision. In addition, DINOv2 authors
released a family of high-performance pre-trained models. DINOv2 is applying
the idea of using discriminative signals between images and group of images
to learn features.

Dataset preparation

DINOvV2 combines a large set of unlabeled data with images in a curated
dataset to get a large training data. The pipeline of data processing is shown
in Figure 3.2,

Uncurated Data )

Augmented Curated Data

!

Curated Data Embedding Deduplication | Retrieval

Figure 3.2: DINOv2 data preparation pipeline

Pre-training
The features from images are learned using a combination of DINO and
iBOT losses with the centering of SwAV [CMM™21]. Also, to spread features

regularizer is added.

Implementation

The DINOv2 architecture relies on a pre-trained ViT model for feature extrac-
tion. Subsequently, features are processed with the model head. Pre-trained
heads for depth estimation, semantic segmentation, and image classification
are provided within DINOv2 GitHub.

Semantic segmentationis a computer vision task that involves classifying
each pixel in an image into a predefined category. Unlike object detection,
which focuses on identifying and localizing objects within bounding boxes,
semantic segmentation provides a pixel-level understanding of the image,
allowing for a more detailed analysis of the scene.

10



3.2. Self-supervised models

This project uses DINOv2 with backbone model ViT-large [DBK™21] model
and head segmentator trained on ADE20K [BZT17] dataset.

ADE20K is a dataset used for semantic segmentation purposes. ADE20K
dataset spans different annotations of images including the whole objects and
object details and, in specific cases, parts of object details. The average scene
in the dataset includes 29 annotated segments. The dataset consists of 20210,
2000, and 3000 images in training, validation, and testing sets.

B 3.2.2 RAM++

For image tagging with unseen objects, the RAM++ open-set model is used.
RAM++ represents an advancement upon the foundational model RAM
[HHZ 23| [ZHM*23| (Recognize Anything Model), which has established
prominence in the domain of image tagging. The architecture of RAM
includes three principal modules: an image encoder, an image-tag recognition
decoder, and a subsequent text generation encoder-decoder. Specifically, the
Swin-transformer |[LLCT21] is employed as the image encoder, leveraging its
efficiency in capturing spatial dependencies across image features. The text
generation encoder-decoder comprises a 12-layer transformer architecture,
employing comprehensive contextual understanding and generation of textual
descriptions. Complementarily, a 2-layer transformer configuration serves as
the tag decoder, tasked with accurately identifying and decoding image tags.
This modular arrangement facilitates the nuanced processing of visual data,
culminating in the proficient recognition and interpretation of images within
the RAM++ framework. The RAM model is pre-trained on open-source
datasets widely used in the image processing field. Among these datasets,
there are MS COCO [LMB™15|, Visual Genome [Kril7], and Conceptual
Captions [CSDS21]. The output from the model is a list of tags both in
English and Chinese languages.

B 3.2.3 Grounding DINO

Grounding DINO [LZR23| Grounding DINO is an open-set object detec-
tor, which is obtained by combining transformer-based detector DINO with
grounded pre-training. In general, Grounding DINO takes the pairs of (Im-
age, Text) and detects objects from the Text on the Image. For each pair,
Grounding DINO extracts vanilla text and image features using image and a
text backbone. Then, features are processed with a feature enhancer module.

11



3. Related work

After obtaining cross-modality text and image features, a language-guided
selection module is used to select cross-modality queries from image features.
The output queries are used to predict object boxes for the corresponding
tags from the text.

. 3.3 Tools used

This section lists all the libraries and tools used in the project.

Python
Python is a widely used programming language. Being considered slow
among other programming languages, it still remains one of the most common
programming languages for data analysis and processing thanks to large
amount of easy-to-use tools and models written for Python.

NumPy
NumPy is a C-based Python module for data processing. In the project,
NumPy is used for interpretation of driving records, images and image features
as arrays.

OpenCV
OpenCYV is an open-source image processing library. In the project, it is used
for extracting frames from videos for their processing with models.

PyTorch
PyTorch is an open-source machine learning library developed primarily by
Facebook’s Al Research lab (FAIR). It provides a flexible and dynamic com-
putational graph, allowing for efficient experimentation and model building.
PyTorch is widely used for tasks such as deep learning, natural language
processing, computer vision, and reinforcement learning.

Google olaboratory
Google Colaboratory is a web-based IDE for performing data analysis and
data processing in Python. Providing a graphic runtime environment, it shows
efficiency in processing images with PyTorch models. RAM++, Ground-
ingDINO, and Detectron2 image processing was done in Google Colaboratory
with T4 GPU.

12



3.3. Tools used

Matplotlib
Matplotlib is a comprehensive plotting library for Python that produces
high-quality visualizations for various types of data. It offers a wide range of
customizable plots and can be integrated seamlessly with other libraries such
as NumPy.

13
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Chapter 4

Anomaly identification

B a1 Braking

Sudden brakings are considered unusual behavior on the road. In normal
conditions, the driver stops slowly, so the self-driving car is not supposed
to brake sharply. Hence sharp brakings can be taken as an anomaly in the
self-driving scenario. This chapter aims to present two approaches to finding
sudden braking scenes.

B 4.1.1 Acceleration minimum based approach

In the dataset, the braking action is presented by negative acceleration
values, hence the lower is acceleration, the sharper is braking. The primary
objective is to identify instances characterized by the lowest acceleration
values. However, due to noise in the raw data, determining the precise
acceleration at a specific moment poses a challenge. To address this, the
Kalman filter is used, processing data sequences one by one and predicting
subsequent values based on previous measurements. The Kalman filter returns
the sequence of accelerations closely oscillating around their real values.

At the moment the objective is to find local minima and subsequently
arrange them in ascending order. Because of oscillation after applying the

15



4. Anomaly identification

Kalman filter data is additionally flattened. In Figure [4.1] data before and
after processing is shown. Raw data (orange), Kalman filter result (blue),
additional flatted (red).

2 -
l -
0_
_1 -
-2 1 raw acceleration
== Kalman flattened acceleration
—— mean flattened acceleration

Figure 4.1: Processed acceleration

Next data is formatted into the two-dimensional array, with each row
containing the drive identifier (JSON filename), the frame number (relative
to the beginning of the record), and the acceleration value at that specific
moment. Sorting this array by acceleration allows us to identify the moments
with the most abrupt braking events. Upon the result of a single run, the
algorithm gets the first 50 instances of sharp brakings and appends them to
the main result list. After getting the main result list from all the files, the
algorithm sorts by acceleration value and writes to the Excel file. The outcome
is a table containing precise identification of every braking event. Next, it
can be used for manual or automated video research. The implementation
for this algorithm is stored in "accel _minimum_ multithread.py"'. The next
graph and image sequence 4.2 shows one of the moments identified by the
algorithm.

16



4.1. Braking

od — acceleration
» Identified moment

Figure 4.2: Braking sequence

B 4.1.2 Velocity pattern approach

Another approach to finding sudden brakings is finding a specific velocity
pattern. If the vehicle is braking at ¢; moment, v;, vehicle velocity is consid-
erably lower than the mean velocity one second before. median(E};:i_”vtk).
A new variable difference rate is created.
s —owam:| Next, it is written as d;. To calculate d; the
next formula is used.
di = v, — median(3%_, ;-vy). This vari-
able identifies how much velocity changed
during the previous second. The smaller is
d;, the sharper is the brake. To cut off the
moments, where the vehicle goes backward,
the negative velocity condition is used. If
vy, <=0, then d; = 0.

Figure 4.3: Velocity pattern

The image shows an example pattern the
algorithm is looking for. After the calcula-
tion of d; values, the moments with the smallest ones are chosen. Those

17



4. Anomaly identification

moments are then sorted ascending and pushed to the main result pool. The
output of an algorithm is an Excel file with records about braking moments.
Each record contains the unique drive identification (filename), moment
(number of frames), and difference rate.

The current dataset is stored with sensor

anomalies, where speed measurement is not [ ~———

recorded consistently, resulting in drops in . 4
velocity within a 1/17-second interval. The s

Kalman filter, used for data filtering, can o

not properly handle that sensor fails, so this s

approach leads to false positive outcomes. *°

In Figure |4.4] an example of such a velocity ** A — Wemravaody
fall is shown. T ES:::M |1;:0

Figure 4.4: Sensor fail example

B 42 Sudden steering wheel
rotation

B 4.2.1 Turn angle pattern

An algorithm described in this chapter uses the same approach as the algo-
rithm described in section 4.1.2 - "Velocity pattern approach". The main goal is
to find sudden changes in the steering angle. The algorithm processes steering
angle data extracted from the input JSON file, calculating the difference d; be-
tween the current steering angle and steering angle during the previous second.
Mathematically that could be written as: d; = |y, —median(3Z%_, -, )|
Here, « is the difference between the "zero" position of the steering wheel
and its actual position. The next step is to label difference rates with their
respective frame numbers.

During the next step, a velocity mask is calculated so only moments with a
velocity higher than 8m/s are considered. Given the intent to identify local
maximums in difference rates and considering the fact that the difference rate
can not be negative, the difference rate of moments with a velocity of less
than 8 is set to 0. After that, we reduce data so that only moments with local
maximums in difference rates will remain. The result array is then sorted
and appended to the main result array. That sequence is iteratively applied
to all the files. At the end, the main result array is written to an Excel file.
The script for this algorithm is stored in "turn_ pattern_ multithread.py"

18



4.3. Brake and turn combination

4 —— Steering angle
A A

® B
x C
e D

60 80 100

Figure 4.5: Turn sequence

. 4.3 Brake and turn combination

B 43.1 Algorithm

To measure overall danger at a specific moment, a new variable danger rate
is included. This variable is written as r. Also, velocity difference rate v and
turn difference rate ¢ are used. To calculate it I use the formula

Ty = U ookt

Then local maximums of r are chosen and appended to the result array.
Implementation of this algorithm is stored in file "turn_ accel multithread.py"

19



4. Anomaly identification

B 4.3.2 Alpha selection

Since « is not known, a comprehensive approach is taken by utilizing multiple
a values and comparing the corresponding results. The methodology aims
to retain the optimal a value, preventing the algorithm from overreacting
to either sharp turns or sudden brakes. Given that v, varies from 0 to
approximately -5 and t;, has values between 0 and 5, a value should be
around -1 for accurate computation of r;,. To evaluate the algorithm’s
performance across different alpha values, a set of [-2.5, -2, -1.5, -1, -0.8, -0.6,
-0.4, -0.2] is used. Analysis of outcomes from an algorithm with different «
values leads to the conclusion that « = —0.6 is an optimal choice. Algorithms
with a values exceeding -0.6 returned videos characterized by braking events,
while algorithms with o < —0.6 returned videos with low-speed scenarios,
such as videos from parking, and small streets, where anomalies are unlikely
to happen.

B 4.3.3 Dangerous places visualization

Following the computation of the danger rate for each frame within a recorded
dataset, the identification of locations characterized by repetitive hazardous
events and subsequent mapping thereof is undertaken. The main idea involves
marking the boundaries of the map, partitioning it into cells, and calculat-
ing the overall danger rate of each cell. The function accepts parameters
marking coordinates boundaries and the number of rows and columns for
cell segmentation. Then it detects which drive record lies in the boundaries.
A matrix sized according to number of rows and columns from the input
is initialized to zeros. This matrix will identify the overall danger rate of
the single square in the selected area. The position of the drive record is
given by the first coordinates recorded. Then it processes all the files the
way described in the Braking and turn combination chapter. After getting
the result list, the algorithm filters it, retaining only those frames, where the
difference rate surpasses a predetermined threshold. During the further step,
the records detected are allocated to their cells by adding the danger rate
to the corresponding cell in the matrix. The visual representation of these
results is depicted in the accompanying images. Following the analysis of
driving records, the two areas with the highest number of drives have been
identified. These areas are Detroit and Tokyo.
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4.3. Brake and turn combination

Figure 4.6: Visualization of dangerous places in Tokyo (left) and Detroit (right)

B 4.3.4 Video download

During the automated anomaly detection process, a complementary manual
approach was applied. Following each execution of the algorithm, a new
Excel file was created, containing drive identifiers, frame numbers within
the drive, and an associated "anomaly rate." Subsequently, to check the
existence of identified anomalies, a video downloader script was developed.
The methodology involves downloading the video from the server, extracting
only the pertinent moments (spanning 85 frames before and after the identified
moment), and subsequently deleting the original video. As a result, the
resultant folder exclusively contains video fragments representing the identified
anomalies.

B 435 Result

At the end of this chapter, a set of video samples containing anomalies
in driving are collected. These videos are forming a new dataset Driver
Intervention dataset. This set includes 97 videos 10s each, so it consists of
16490 frames. These videos will be processed and compared to the processed
Normal dataset |2.2| dataset in the subsequent steps to analyze objects that
could potentially affect vehicle behavior.
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Chapter 5

Object detector analysis

B 51 Object detector

B 5.1.1 Model description

To determine objects that are already identified by existing model,it is nec-
essary to directly process videos using the model. That helps to determine,
which objects are already detected, and which are ignored or misclassified.
As a reference model, the Detectron2 model is chosen.

B 5.1.2 Method description

The model offers detection and localization functions. To verify the detec-
tion (or potential non-detection) of objects, we will utilize the .pred__ classes
attribute within the model’s image processing output. In order to detect
objects, a procedural algorithm iterates through each video within a given
dataset. For each video, a nested loop iterates through its frames sequen-
tially. Detected objects are subsequently inserted into a map data structure,
wherein the count of occurrences of each object is incremented. To reduce
the probability of false positives, an object is appended to the result map
only if it is detected in the consequent frames. For this, a data structure
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5. Object detector analysis

queue is used. An array of objects detected is appended to the end of the
queue. Then, to keep information from only two consequent frames, queue
head is popped. After that, the queue returns the intersection of two arrays
of objects detected, hence only objects that appear in both consequent frames
are returned.

B 5.1.3 Objects detected

Videos processed are taken from two datasets: Normal dataset [2.2 and Driver
Intervention dataset 14.3.5.

Normal dataset

Table [5.1] shows object classes detected during processing frames from the
Normal dataset. Within objects that usually do not affect unusual behavior,
like "car" and "truck", there are "traffic light" and "stop sign" which can cause
sharp braking.

Name Count | Name Count | Name Count
car 84974 | fire hydrant 842 chair 229
truck 34125 | potted plant 732 parking meter | 182
person 19240 | sports ball 705 boat 159
traffic light 17973 | handbag 603 sheep 151
bus 7338 | clock 597 sink 146
bench 3258 | umbrella 521 dog 88
stop sign 1936 | tv 440 Ccow 82
motorcycle 1621 frisbee 434 kite 76
bicycle 1317 | airplane 318 bird 73
train 994 backpack 233 bottle 70

Table 5.1: Objects detected by the Detectron2 from Normal dataset

Driver Intervention dataset
The objects listed in Table [5.2| are extracted from Driver Intervention dataset
frames. The object classes are similar, but the frequency of "stop sign'
occurrences is higher - once at 28 frames in Driver Intervention dataset and
once at 61 frames in Normal driving dataset.

Name Count | Name Count | Name Count
car 8916 | bus 489 bicycle 51
truck 2436 clock 168 sink 51
traffic light 2002 potted plant 98 chair 46
person 1512 | motorcycle 94 train 41
stop sign 580 sports ball 83 fire hydrant 40
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5.2. Image features clustering approach

bench | 558 | kite | 56 | boat | 35

Table 5.2: Objects detected by the Detectron2 from Driver Intervention dataset

B 5.2 Image features clustering approach

This section includes the results of processing the set of videos using DINOv2
model.

B 5.2.1 Designed pipeline

DINOv2 provides capabilities for both semantic segmentation and image
labeling. The process involves a series of steps. Initially, semantic segmen-
tation of video frames is conducted utilizing a pre-trained DINOv2 model.
Simultaneously, feature vectors are extracted for each frame using the same
DINOv2 model. Following this, connected components are identified to gener-
ate individual masks for each class. Next, connected components are filtered
by their size. Too big components can symbolize noisy objects (like roads),
whereas too small can be misdetected detail of something bigger, so they also
add noise in the subsequent feature vectors array. Subsequently, for each

Figure 5.1: Connected components logics

connected component identified in the previous step, the mean feature vector
is computed. The final step involves clustering the mean feature vectors,
assuming that each vector corresponds to a distinct instance.
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5. Object detector analysis

Input image

Feature vectors
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"Mean"” feature
vector for each
segmented class

Assign image to
DINOv2Z model segmented class

Connected j—
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v

KMeans
clusterization

Segmented image Feature vector for
each object

Figure 5.2: Image processing pipeline with DINOv2

B 522 Result

Step 3. of the designed pipeline assumes that semantic segmentation segments
per instance, which would allow to correctly calculate and clusterize feature
vectors for each instance. For example, with per-instance segmentation for
the next input image, the output will be the image shows.
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5.2. Image features clustering approach

(a) : Input image

(b) : Actual semantic segmentation (c) : Expected per-instance output
output

Figure 5.3: DINOv2 output

After calculating the mean feature vector for each connected component, we
tried to cluster the vectors with KMeans and determine the optimal number
of clusters using the elbow method. However, the graph failed to preciously
show the number of instance classes on the selected frame.

le6
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Number of clusters

Figure 5.4: Clusterization error graph
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5. Object detector analysis

. 5.3 Image labeling approach

This section focuses on getting novel objects using self-supervised RAM+-+
and Grounding DINO models.

B 5.3.1 Method description

To effectively extract novel objects from videos, the process can be compart-
mentalized into two sequential steps. Initially, the task involves identifying the
objects depicted within the video frames, a task facilitated by the application
of a "recognize anything" (RAM++) model. Subsequently, localization of
the identified objects is undertaken, employing the GroundingDINO model
to precisely determine the spatial coordinates of the selected objects within
the video frames. This approach ensures a systematic and comprehensive
extraction of novel objects from video data, combining object recognition
with precise localization techniques for enhanced accuracy and effectiveness.

".—‘| GroundingDINC
| Tagged image
) A )
Tags

"1 car | crack | road | night

RAM++ model ‘ Manual tag seletion }7

Figure 5.5: Processing images with RAM++ and GroundingDINO models

Raw image

B 5.3.2 Excluded tags

Some tags are manually excluded due to misidentification or tag similarity.
Objects, that were detected can be divided into several categories. Some of
them are:

B "Snow" objects. Some frames are tagged by snow because of the low
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5.3. Image labeling approach

quality of the recording camera.
® Misdetected objects
® Non-object tags, like night, red, evergreen
® Too common objects (road, cat, drive, etc.)

® Objects with the number of occurrences less than 50

B 5.3.3 Objects detected

Objects detected by the RAM++ model are shown in the tables below. The
Normal dataset section reflects objects detected from 350 randomly chosen

video samples. Driving with anomalies shows results from video samples in
Chapter 4.

Normal dataset

After processing randomly sampled videos and excluding tags from the
previous chapter, the next objects occurred. Due to the vast diversity of
objects detected, only selected objects are shown. The full list of objects
detected is shown in the table in appendix B.

Name Count | Name Count
street sign 16087 | road sign 4698
tree 12173 | fence 881
traffic light 8012 | barrier 749
intersection 4845 zebra crossing | 406
pole 4752 | police car 149

Table 5.3: Object classes detected by RAM++ in Normal dataset

Driver Intervention dataset

Selected objects after processing video samples with driving anomalies are
shown in the table below. All the objects are in the table in appendix B.

Name Count | Name Count
tree 4035 | traffic light 741
street sign 3256 intersection 441
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5. Object detector analysis

road sign 1098

pole 1542
stop sign 119

motorcycle 162

Table 5.4: Objects detected by RAM++ in Driver Intervention dataset

Objects detected in videos with normal driving and in videos with abnormal
behavior are similar, but their frequency is different. The set Normal dataset
has 119000 frames, and Driver Intervention dataset has 16490 frames. In
Driver Intervention dataset, a tree occurs once in 16490/4035 = 4.08 frames,
whereas in Normal dataset its frequency is one tree per 9.7 frames. Street
and road signs also occur more frequently in the Driver Intervention dataset
dataset appearing once in 5 and 16.5 frames in videos with anomalies and
once in 7 and 25 frames in the Normal dataset dataset. Other objects with a
higher frequency are pole, stop light, fence. All these objects, especially road
signs, can lead to braking or changes in driving direction and may be the
reason why the video is included in the Driver Intervention dataset.

B 54 Object comparison

Lists of objects are manually processed and the next objects detected by
RAM++ but not by Detectron2 are listed:

B Road sign

® Fence

® Barrier

® Cone

B Zebra crossing
® Tractor

® Excavator

® Ambulance
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5.4. Object comparison

B 5.4.1 Undetected objects

Undetected objects refer to those that the current Detectron2 model fails
to recognize entirely. Certain categories of objects have a notably greater
impact on driver behavior compared to the classes predicted by the model.

Road sign

The road sign is an important class that can significantly affect the speed,
vector of movement, or overall driver’s behavior. However, only the "stop
sign" can be detected by the Detectron2 trained on the MS COCO dataset.

(a) : RAM++ and Grounding DINO. (b) : Detectron 2

Figure 5.6: Road sign

Fence

The "fence" class also can not be detected by the Detectron 2 model. However,
the presence of a fence signifies the absence of road infrastructure. Con-
sequently, an undetected "fence" object holds the potential to cause road
accidents.

(a) : RAM++ and Grounding DINO. (b) : Detectron 2

Figure 5.7: Fence

Barrier
The "Barrier" class is not included in the MS COCO dataset, it can not
be recognized by Detectron2. The barrier function is similar to the fence
function, but barrier can appear directly on the road, which has even larger
influence on the driver’s behavior.
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5. Object detector analysis

(a) : RAM++ and Grounding DINO. (b) : Detectron 2

Figure 5.8: Barrier

Cone
Cones placed on roads usually signal changes in road setup like lane divisions,
the end of a lane, or ongoing road construction. They’re brightly colored to
catch drivers’ attention, reminding them to be cautious and ready for any
surprises ahead. However, since Detectron2 doesn’t recognize cones, it can’t
process information about them accurately.

(a) : RAM++ and Grounding DINO. (b) : Detectron 2

Figure 5.9: Cone

Zebra crossing
A zebra crossing is a common feature on roads, designated for pedestrians
to cross a road safely. To avoid collisions with pedestrians, drivers must be
especially attentive and prepared to stop quickly if a pedestrian steps in front
of their vehicle.
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5.4. Object comparison

(a) : RAM++ and Grounding DINO. (b) : Detectron 2

Figure 5.10: Zebra crossing

B 5.4.2 Misclassified objects

This section displays items that the Detectron2 model identifies, but they
turn out to be different from the model output.

Tractor, excavator
The Detectron2 model mislabels tractors and excavators as "trucks," disre-
garding the distinct behavioral patterns exhibited by these vehicles. This
difference arises from variations in road regulations governing the operation of
tractors, excavators, and trucks, highlighting the need for precise classification
in accordance with established vehicle classifications and corresponding road
rules.

(a) : RAM++ and Grounding DINO. (b) : Detectron 2

Figure 5.11: Tractor
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5. Object detector analysis

(a) : RAM++ and Grounding DINO. (b) : Detectron 2

Figure 5.12: Excavator

Ambulance
An ambulance is mistakenly identified as a "truck,” which significantly affects
driver behavior. If an ambulance is correctly identified, the driver might need
to stop and give way to allow the ambulance to pass.

(a) : RAM++ and Grounding DINO. (b) : Detectron 2

Figure 5.13: Ambulance
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Chapter 6

Conclusion

In this project, we designed and implemented a system to detect unusual
events using data from car sensors. First, we identified anomalies by analyzing
telemetry data, and then we processed the videos related to these events.

We used two different models to analyze the videos: a standard object
detector called Detectron2 and a combination of the open-set RAM-++ model
and the self-supervised Grounding DINO model. We compared the results to
identify which object classes were missed by the Detectron2.

In Section 5.4, we presented the objects that were missed by Detectron2 but
detected by the RAM++ and Grounding DINO models and can potentially
have an impact on the driver’s behavior.

In summary, we resolved a set of object classes that can be added to
existing object detectors. This helps in improving systems for advanced driver
assistance and autonomous driving.
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Appendix B

Tables detailed

B B.0.1 Objects detected by RAM++ in Normal dataset

Name Count | Name Count | Name Count
street sign 16087 | traffic jam 901 mountain 229
headlight 12314 | fence 881 rail 220
tree 12173 | pick up 856 park bench 220
overpass 9368 pine 835 bicycle 219
trailer truck 8562 floor 756 garbage truck | 204
traffic light 8012 | barrier 749 hill 202
truck 7774 | path 725 ramp 189
park 7536 | house 682 side 169
blanket 7240 taxi 672 police 167
city 6561 decker bus 658 umbrella 163
intersection 4845 stop sign 591 police car 149
pole 4752 | motorbike 517 passenger train | 147
road sign 4698 | bus stop 517 store 145
traffic sign 4207 | jeep 514 trailer 138
suv 4173 | traffic 475 mound 127
city bus 4129 | stand 473 minibus 125
windshield 3987 | palm tree 431 scooter 123
van 3899 | tow truck 419 biker 111
bus 3509 | zebra crossing | 406 can 101
stop light 2910 | skateboarder 405 wood 95
sign 2681 sedan 403 excavator 87
bridge 2404 | telegraph pole | 400 garage 86
power line 2292 | barricade 390 water tower 86
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B. Tables detailed
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pillar 2070 | trolley 382 crosswalk 82
tunnel 2061 | fill 357 field 76
motorcycle 2015 | cypress tree 356 cone 73
person 1788 | crane 355 track 72
parking garage | 1777 | tank 355 bush 71
man 1696 cypress 330 stone building | 70
parking 1489 | dirt track 311 police van 69
ambulance 1472 | car window 306 skateboard 67
street light 1439 | neon light 281 officer 65
parking lot 1379 | woman 274 skier 65
train track 1332 grove 267 parking sign 62
minivan 1294 view mirror 253 airliner 61
office building | 1213 | tour bus 250 plane 58
walk 1186 | crack 249 dashboard 57
exit 1167 | railroad 249 construction 56
site
motorcyclist 927 desert road 248 bike lane 56
driveway 926 dirt road 244 recreational ve- | 53
hicle
Table B.1: Objects detected by RAM++ in normal drives
B B1 Objects detected by RAM++ in Driver
Intervention dataset

Name Count | Name Count | Name Count
tree 4035 | bridge 268 city bus 115
street sign 3256 man 268 minivan 111
park 1888 | car window 266 skateboarder 103
pole 1542 | wood 263 pine 102
headlight 1522 | van 249 bush 91
road sign 1098 | skier 238 hill 86
traffic sign 900 dirt road 221 walk 86
sign 864 train track 211 jeep 84
blanket 857 floor 203 driveway 82
traffic light 741 office building | 190 barrier 7
trailer truck 519 person 173 airport runway | 76
stop light 464 rail 170 motorcyclist 73
fence 464 dirt track 167 passenger train | 72
intersection 441 motorcycle 162 pick up 71
windshield 399 mountain 157 bus stop 71
truck 394 pillar 154 paling 63
parking lot 366 ramp 149 trolley 63




B.1. Objects detected by RAM++ in Driver Intervention dataset

street light 344 bus 147 cage 63

house 333 stand 136 garage door 63

overpass 305 field 131 graveyard 58

suv 293 parking garage | 129 container 57

path 279 stop sign 119 recreational ve- | 53
hicle

Table B.2: Objects detected by RAM++ in rides with anomalies
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