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Abstract

Doors serve as important landmarks
within spaces, facilitating the connection
of separate areas and providing access
through navigational manoeuvres. Con-
sequently, detecting doors is becoming a
key tool for solving various navigation
and wayfinding problems. Such applica-
tions range from helping visually impaired
people navigate various rooms to deploy-
ment in autonomous robotic navigation
systems. This research focuses on using
door detection for the navigation of au-
tonomous drones. The drone is expected
to be very small, so a Micro Aerial Ve-
hicle (MAV) is considered. By specify-
ing this domain, places inaccessible to
humans can be reached. The question
of this work is whether it is possible to
accurately detect open doors in unfamil-
iar indoor environments, having a MAV
with only a monocular camera and relying
on off-board computational resources (a
constraint imposed due to MAV’s cargo
capacity). This study presents an orig-
inal approach for detecting open doors
and their doorways in unknown indoor
environments for autonomous robot navi-
gation or any other appropriate use. The
proposed algorithm is unique due to its
integration of modern techniques with the
highest precision, which involves combin-
ing depth and colour data with the state-
of-the-art neural network of single-image
depth estimation. To test the robustness
and generalisability of this approach, the
algorithm is thoroughly evaluated on the
collected dataset.

Keywords: door detection, monocular
depth estimation, autonomous robot
navigation
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Abstrakt

Dveře slouží jako důležité orientační body
v prostorech, usnadňují spojení odděle-
ných oblastí a poskytují přístup prostřed-
nictvím navigačních manévrů. V důsledku
toho se detekce dveří stává klíčovým ná-
strojem pro řešení různých problémů s
navigací a hledáním cesty. Tyto aplikace
se pohybují od pomoci lidem se zrakovým
postižením orientovat se v různých míst-
nostech až po nasazení v autonomních ro-
botických navigačních systémech. Tento
výzkum se zaměřuje na využití detekce
dveří pro navigaci autonomních dronů.
Očekává se, že dron bude velmi malý,
takže se uvažuje o Micro Aerial Vehicle
(MAV). Zadáním této domény se lze do-
stat na místa nepřístupná lidem. Otáz-
kou této práce je, zda je možné přesně
detekovat otevřené dveře v neznámých
vnitřních prostředích, mít MAV pouze s
monokulární kamerou a spoléhat se na
externí výpočetní zdroje (omezení způ-
sobené kapacitou nákladu MAV). Tato
studie představuje originální přístup k de-
tekci otevřených dveří a jejich vchodů v
neznámých vnitřních prostředích pro auto-
nomní navigaci robotů nebo jakékoli jiné
vhodné použití. Navržený algoritmus je
jedinečný díky integraci moderních tech-
nik s nejvyšší přesností, která zahrnuje
kombinaci hloubkových a barevných dat
s nejmodernější neuronovou sítí odhadu
hloubky jednoho snímku. Pro testování
robustnosti a zobecnitelnosti tohoto pří-
stupu je algoritmus důkladně vyhodnocen
na shromážděných datech.

Klíčová slova: detekce dveří,
monokulární odhad hloubky, autonomní
navigace robota
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Chapter 1

Introduction

Correct interaction with an environment leads to safe and efficient autonomous
robot navigation. It can be employed in different modern high-end tasks (e.g.
exploration, inspection and mapping). Navigating within an unfamiliar indoor
environment is a complex issue that includes various tasks such as localisation,
mapping, simultaneous localisation and mapping (SLAM), path planning, and
also object recognition. This research primarily concentrates on the detection
of open doors, a critical aspect in facilitating autonomous robot navigation.
Doors serve as key transition points demarcating distinct sub-areas within a
given spatial environment. Accurate door detection facilitates robots’ adaptive
navigation in unfamiliar and potentially dynamic environments in real-time.

Selection of a Micro Aerial Vehicle (MAV) as a camera platform offers
many benefits, including increased manoeuvrability, reduced visibility, and
comparatively lower costs. However, these drones also have certain disad-
vantages due to their miniature size (typically <100g), which limits their
payload to just grams. Consequently, only conventional monocular cameras
can be placed on board, and more advanced technologies such as lidar or
3D depth cameras are not compatible with devices of this class due to their
large size. This constraint places significant limitations on the methods
applicable to door detection. Additionally, such a drone cannot have a lot
of computing power, so all operations must be carried out in real-time on
some powerful system. It could be some kind of desktop, cloud or something
else. Using external computing power allows resource-intensive methods to
be used and even combined to achieve better results. Thereby the utilisation
of a resource-intensive neural network for single-image depth estimation can
be incorporated as a component within the algorithm.

3



1. Introduction .....................................
The rest of the work is organised as follows. Chapter 2 provides an overview

of state-of-the-art door detection methods. The selected single image depth
estimation method is presented in Chapter 3. Chapter 4 presents the door
detection algorithm. The estimate obtained by the method applied to the
collected dataset is presented in Chapter 5. Chapter 6 presents the conclusion
and possible future improvements of the method. Appendix A contains
attachments.

1.1 Statement of Contributions

Although the subject of door detection has been considered in previous studies,
this paper proposes a unique approach that:..1. Combines RGB image with state-of-the-art depth estimation technique...2. Provides a comprehensive solution for open door detection, including

doorway detection mechanisms...3. Does not require pre-scanning of the area.

In the subsequent chapters, it will be demonstrated how the proposed
algorithm combines the various aspects delineated in points 1-3.

4



Chapter 2

Related Work

The problem of door detection within indoor settings is not new today. There
are two main areas of door recognition: firstly, within the realm of wayfinding
systems designed to aid individuals with visual impairments, and secondly, in
the extensive domain of robotic navigation with social or assistive applications.
Methodologies employed for door recognition can typically be classified based
on the dimensional scope of data utilised as input. Predominantly, such
data comprises either 2D RGB images or 3D data, supplemented by depth
information corresponding to each pixel or region of the image (e.g. Lidar,
depth camera or laser may be employed). Methods can also be categorised
based on their classification capabilities, as not all methods are designed to
distinguish between closed, open and semi-open doors.

2.1 Detailed Method Comparison

Table 2.1 provides a summary of cutting-edge research in computer vision-
based systems dedicated to door detection.

Starting a detailed analysis with methods utilising both RGB data and
depth data, several fundamental techniques can be identified. Foremost among
these is Machine Learning (ML), representing a state-of-the-art approach
deployed in [1], [4], [5], [6] works.

5



2. Related Work.....................................
Method Input data Applicability Result

RGB RGB
+ depth info Closed Open Semi-

Open
[1] X X X F1 - 96.53%
[2] Depth only X X X -
[3] X DND acc. - 91%
[4] X X X -
[5] X X X X acc. - 90.9%

[6] X X X X F1 - 99.05%
prec. - 98.6%

[7] X DND rec. - 90%
[8] X X -

[9] X DND F1 - 86.9%
prec. - 97.2%

[10] X X prec. - 97.46%
[11] X DND prec. - 89.4%
[12] X DND rec. - 83%
[13] X X prec. - 97.18%

Table 2.1: Door detection methods comparison.
DND - Does not distinguish, acc. - accuracy, prec. - precision, rec. - recall.

In the most recent work [1], authors based their technique on the deep
machine learning system YOLO [14], with an adopted specific model YOLOv8.
Two approaches have been tried. Firstly, the model pre-trained on the COCO
dataset [15] was taken and then fine-tuned on the Roboflow doors dataset [16].
It showed satisfactory performance working with real data, but its effectiveness
with the Habitat simulator [17] was found to be insufficient. Therefore, the
second model was trained on the dataset made from Habitat Simulator scenes.
Consequently, an impressive F1-score 96.53% is achieved when evaluating
the algorithm on Habitat Simulator scenes. This method demonstrates good
performance, but the training and testing data in the simulator are shown to
differ from the real data.

In the paper [4] authors used Faster R-CNN Inception [18] the v2 model,
which underwent training using a dataset compiled from web images, each
manually labelled by hand. The Softmax function is utilised to map the output
probability distribution to predicted output classes. A similar approach was
employed in the work [5]. The algorithm uses PointNet classifier [19] for 3D
door detection. Despite studies [4], [5] show good results, they both rely on a
large RGB-D camera.

Additionally, modern techniques such as Artificial Intelligence (AI) have
been employed in door detection problems. In the work [7] authors used
Convolutional Neural Networks (CNN). The algorithm begins its operation by

6



............................. 2.1. Detailed Method Comparison

focusing on the retrieval of a region of interest (ROI) through the employment
of CNN. Following this initial step, it proceeds to visual segmentation and
planar model extraction. Finally, the algorithm integrates fusion techniques,
derives key features, and extracts handle grasping, as the objective is to
identify the handle on the door. The algorithm under consideration exhibits
interest, although its applicability to the autonomous navigation of drones
appears limited. This constraint arises from its primary focus on handle
detection, rather than the precise identification of doors and doorways, which
are essential for effective navigation in such contexts.

Proceeding with techniques that incorporate geometric features of the
doors, such as their quadrangular shape. These attributes may be derived
from the image data through a combination of vertical and horizontal lines
or corners, augmented by depth information obtained from the sensor. This
technique is used in studies [2], [6] and [8]. The majority of these algorithms
necessitate a pre-scanning of the environment, as they rely on point cloud
maps.

The methodology outlined in the referenced study [2] starts with the
plane extraction using depth data segmentation, based on RANdom SAmple
Consensus (RANSAC) [20] reconstruction. Subsequently, the corner points
of the planes are calculated using the edges associated with each plane. This
information is then merged with feature constraints to categorise both door
and wall components. Then straight lines are fitted based on the projection
on the disordered and discontinuous boundary points. Finally, the door state
is determined by analysing the angle formed between the straight lines of the
wall and the door. As a result, the algorithm is solely dependent on depth
data and shows commendable performance. However, the potential benefits
of integrating RGB data with a similar approach can be considered.

The work [6] combines RGB data with depth information obtained from the
scanned environment. This methodology comprises two primary stages: initial
identification of door openings followed by the subsequent detection of doors
in general. In the process of detecting door openings, a trinary orthoimage
is generated and utilised for voxel clustering. This involves constructing all
possible rectangles from two horizontal and two vertical lines, subsequently
identifying the optimal candidate by assessing the largest number of voxel
overlaps within each cluster. Following this step, the door is categorised as
either open or semi-open based on an angle, which is determined by taking
a horizontal half-elevation section of the door data and identifying the line
that best fits the points on the door leaf using RANSAC. For door detection,
gradient images derived from both the RGB image and depth map are
combined using the bitwise OR operator. Subsequently, vertical and horizontal
lines are detected using a lateral histogram algorithm [21]. Further, all possible

7



2. Related Work.....................................
rectangles are generated as previously described. Subsequently, the algorithm
evaluates each rectangle against various criteria, including colour and depth
consistency, door frame occlusion, wall overlap, and the determination of
the smallest rectangle satisfying the above conditions. Therefore, using this
methodology, the algorithm achieves one of the best results observed in recent
years. The limitation arises in that it still requires pre-scanning the area to
create the point cloud.

In the study [8] authors used a RANSAC-based algorithm for the plane
detection, akin to the approach outlined in [2]. Following plane detection,
all empty regions are checked as potential candidates for door openings. To
ensure that the found region is a real door opening, a pre-trained detector
based on Aggregate Channel Features [22] is used. This detector employs a
sliding window technique on regions within the RGB image that correspond
to the identified candidate openings. If a door is found within this area, it
is annotated as such in both the depth and RGB images. This algorithm is
trivial, its limitation being its ability to solely identify open doors.

In the work [3], authors have integrated two methodologies. Initially, the
algorithm employs multi-layer thresholding to convert a point map into a
roaster depth map. Subsequently, door candidates are selected from segments
with local minimum elevations. Following this, the section of the point cloud
corresponding to the potential door is isolated and examined by applying
component histograms to its coordinates, determining the presence of a door.
Although this method is highly accurate, it does not address the detection of
semi-open doors.

The second part of the table presents a comparison among methods ex-
clusively reliant on 2D image processing. Modern approaches in the field
such [9], [10] and [13] are also based on machine learning.

The latest study [9] adopts MobileNet-SSD v2 model [23] in a TensorFlow
environment. Training and evaluation were carried out on the dataset created
from proprietary and web images, which were manually labelled. The primary
objective was to optimise the method for lightweight execution, suitable for
deployment on resource-constrained wearable devices. This approach achieves
a high F1-score 86.9%. Nevertheless, this approach prioritises the detection
of doors in a broad sense, rather than pinpointing their precise locations.

In the work [10], authors trained a CNN model on the collected SRIN
dataset [24]. The CNN, in this context, distinguishes the presence or absence
of a doorway behind the robot. A notable aspect of this study is the use of
door detection to facilitate autonomous robot navigation. This is achieved by

8



............................. 2.1. Detailed Method Comparison

estimating the depth of an image using the Depth Dense network [25]. The
algorithm implemented in this study incorporates a module for selecting a
pixel within the door region, identified as the area with the greatest depth in
the image, to compute the subsequent rotation angle of the robot. After angle
determination, fundamental action primitives are executed. It is noteworthy
that this algorithm operates exclusively with open doors, predicated on the
assumption that the door is situated within the region of maximum depth.
Enhancements to this algorithm could be added by integrating predicted
depth within the CNN processing pipeline.

The researchers cited in the study [13] additionally undertook training
CNN employing a substantial dataset comprising 20,500 images. Taking into
account the time context of the publication of the study in 2014, it is worth
noting that no machine learning model has been adopted as the basis for CNN.
The method has a favourable outcome, achieving a precision rate of 97.18%
in door detection. However, it is noteworthy that the model is restricted to
detecting closed doors exclusively.

Studies [11], [12] are based on segmentation of door geometry features.

In the work [11], a standardised door model is defined. The methodology
begins by employing the Line Segment Detection (LSD) [26] algorithm for
line detection. Subsequently, the algorithm initiates the search for two
vertical line segments and a head line segment. Finally, all potential door
candidates undergo scoring and filtering processes. The algorithm proposed
in the study [12] is based on edge and corner detection. Initially, all edges
are identified using the Canny edge detector [27], and a search space for
corners is constructed. Subsequent to corner detection, lines are generated
by connecting pairs of corners with the edge map. Only lines surpassing a
predetermined threshold are considered for polygon construction. Finally, the
search space for quadrilateral polygons, formed from the identified lines, is
matched with the standard geometric model of a door. It should be noted
that algorithms [11], [12] might prove ineffective, if certain parts of the door’s
edges or corners are obstructed, making it challenging to acquire the accurate
geometric representation of the door.

Summarising all the algorithms discussed above, it becomes evident that
methods reliant on the processing of RGB-D data exhibit superior performance
in door detection. However, such methods typically necessitate pre-scanning
of the environment. To date, no algorithm using 2D input data demonstrates
the capability to classify all possible door states. The proposed approach
aims to use efficient techniques using 3D data as input. Yet, it operates
exclusively with conventional 2D images, emulating the depth dimension
through state-of-the-art depth estimation methodology. This approach aims

9



2. Related Work.....................................
to detect open doors and their doorways.
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Chapter 3

Depth Estimation Method

As shown in the previous chapter, the most effective door detection methodolo-
gies include additional depth data to increase the accuracy of door detection.
As originally envisioned, the proposed method also uses depth data to achieve
better results, this data is estimated from a 2D RGB image by applying a
modern Neural Network (NN).

3.1 Method Choice

ZoeDepth Network [28] has been selected as the Single Image Depth Estima-
tion (SIDE) method. The reason for this choice is that it is the most modern
and currently one of the most effective SIDE methods available.

3.1.1 Models Configuration

ZoeDepth Network has three main model configurations for Relative Depth
Estimation (RDE) & Metric Depth Estimation (MDE). The first configuration
is ZoeD-M12-N, which is pre-trained on 12 datasets for relative depth and
then metric fine-tuned on the NYU Depth v2 dataset. The second one is
ZoeD-M12-K, which is pre-trained on 12 datasets for relative depth as the
previous one and then metric fine-tuned on the KITTI dataset. The third

11



3. Depth Estimation Method ...............................
and flagship architecture is ZoeD-M12-NK. It is relatively pre-trained on 12
datasets combined with metric fine-tuning on indoor and outdoor datasets
(NYU Depth v2 and KITTI). Figure 3.1 illustrates the results of applying a
neural network to images containing doors.

(a) : RGB (b) : Zoe-M12-N (c) : Zoe-M12-K (d) : Zoe-M12-NK

(e) : RGB (f) : Zoe-M12-N (g) : Zoe-M12-K (h) : Zoe-M12-NK

Figure 3.1: Images processed using different ZoeDepth models.

3.1.2 Model Choice

As shown above, the ZoeD-M12-K tuned on the outdoor dataset performs
relatively poorly on the indoor samples. Given the objective of identifying
doors within indoor settings, the selection process is limited to two models:
ZoeD-M12-N and ZoeD-M12-NK. Notably, the flagship model, ZoeD-M12-NK,
distinguished by its superior MDE, has been selected for depth estimation
within the proposed methodology. This decision is based on the necessary
reliance of the proposed algorithm on both RDE and MDE accuracy.
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Chapter 4

Door Detection

The proposed algorithm for door detection aims to identify open doors
across various configurations. It relies on geometric features inherent to
the door, particularly focusing on the door shape and depth consistency
within the door opening region. In contrast to algorithms solely reliant on
detecting a geometric door model within RGB images, the proposed approach
acknowledges the potential overlap of certain edges. Respectively, to enhance
robustness, it concurrently operates on both RGB and computed depth data.
The door detection algorithm includes three primary stages: line detection,
assembly of the door model, and model validation.

4.1 Definition of the Door Geometry Model

Since the proposed approach is based on the geometric features of the door, the
door model should be determined by taking into account several assumptions:..1. At least 1 segment of the vertical edge of the door outline is visible in

the depth gradient image. This is valid for at least 2 vertical edges of
the door...2. At least 1 segment of the horizontal upper edge of the door is visible in
the depth gradient image...3. Vertical edges of doorframes are almost perpendicular to the horizontal
axis of the image (an angle of 80-90° is allowed).

13



4. Door Detection......................................4. Horizontal upper edge of doorframes is almost perpendicular to the
vertical axis of the image (an angle of 60-90° is allowed)...5. The doors in the image have at least a certain width and a certain length.

In the subsequent discussion, the term "rectangle" will refer to a convex
quadrilateral polygon that closely approximates a true rectangle. This usage
is adopted for its intuitive appeal, as it more readily evokes the familiar shape
of a door, rather than an abstract quadrilateral.

4.2 Line Detection

Given that the door is typically delineated by a rectangular shape that can
be formed by straight lines, the algorithm is concerned with locating it.
Within this domain, several gradient-based algorithms have been selected and
evaluated as the most popular approach in the field. The detection process
itself consists of several parts.

4.2.1 Depth Estimation

Image depth estimation is done by applying the ZoeDepth network to the
input image. The results obtained using the flagship ZoeD-M12-NK model
demonstrate satisfactory accuracy in all common scenarios. Figure 4.1 illus-
trates the network output.

14



.................................... 4.2. Line Detection

Figure 4.1: Outcome of the ZoeDepth applied to images.

4.2.2 Gradient Computation

Since the proposed algorithm simultaneously works on both RGB and com-
puted depth images, it requires the computation of two gradient images. This
process involves the utilisation of Canny Edge Detection, which is imple-
mented in the OpenCV library [29]. For the RGB image, the initial step
involves deriving a grayscale representation, whereas for the depth image,
normalisation of depth data is performed to fit the applied Canny filter. The
result of Canny Edge Detection is shown in Figure 4.2 and Figure 4.3.

Figure 4.2: Estimated colour gradient image.
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4. Door Detection....................................

Figure 4.3: Estimated depth gradient image.

4.2.3 Segment Extraction

With the computed gradient images at hand, the line detection algorithm
may be employed. Initially, four algorithms were evaluated: the Hough
Line Transform [30], Probabilistic Hough Line Transform [31], and Line
Segment Detection, all of which are implemented within the OpenCV library,
along with the open-source Enhanced Line SEgment Drawing (ELSED) [32]
algorithm. These algorithms can be categorized into two distinct groups:
global and local methods. Global methods possess the capability to identify
complete lines within the image, whereas local methods selectively exclude
pixels with strong gradients and incrementally include neighbouring pixels
based on gradient information. Consequently, local methods tend to return
line segments rather than complete lines.

Method Choice

Global methods: The Hough Line Transform algorithm presents several
drawbacks. First and foremost, it often returns straight lines that are too
long, it tends to combine several lines following each other into a singular,
disregarding their discontinuity. Additionally, the algorithm is very sensitive
to parameter settings, resulting in variable efficacy across different scenes
when employing a single set of predefined parameters. Furthermore, due to its
requirement to traverse a high-dimensional parameter space and use a voting
process for each pixel within the image, this algorithm is characterised by a
high computational complexity. Figure 4.4 displays the results of applying
the Hough Line Transform to images. The outcome is calculated using the
depth gradient image, which is employed throughout all subsequent figures in
this section, given its significant role within the algorithm.

16



.................................... 4.2. Line Detection

Figure 4.4: Output of the Hough Line Transform.

The Probabilistic Hough Transform for line detection represents an optimi-
sation of the conventional Hough Transform method. It notably mitigates
computational demands in contrast to its traditional counterpart. However,
it is accompanied by several drawbacks. Initially, the probabilistic approach
aims to strike a balance between speed and accuracy. By sampling a subset
of edge points, it gains efficiency but may lose some accuracy. Furthermore,
it also requires careful tuning of parameters such as the threshold for line
detection, the minimum line length and the number of iterations. This tuning
process can be non-trivial and vary depending on the specific image. Following
Figure 4.5 shows the Probabilistic Hough Line Transform applied to images.

Figure 4.5: Output of the Probabilistic Hough Line Transform.

Additionally, it is common for such methods to generate false positives in
regions of high edge density.

Local methods: The Line Segment Detection algorithm excels due to its
robustness and efficiency in detecting line segments within images. This
algorithm employs a combination of gradient information and probabilistic
techniques to efficiently extract line segments making it a preferred option
for real-time applications. However, a notable drawback of this method is its
necessitation of additional post-processing to derive complete lines from the
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4. Door Detection....................................
identified line segments. Figure 4.6 presents the results of applying the LSD
to images.

Figure 4.6: Output of the LSD.

ELSED represents a modern approach for identifying line segments within
an image. Although it is still based on gradient pixel change it uses an
enhanced routing algorithm for neighbour region growth. This method is
characterised by its notable speed and efficiency. However, there is a notable
limitation in its design since it is designed to operate directly on image
data, thereby computing gradients internally. Figure 4.7 below illustrates the
ELSED applied to images.

Figure 4.7: Output of the ELSED.

Following an evaluation process, the LSD algorithm has been selected for
the identification of line segments within both depth and RGB images.

4.2.4 Clustering

Given the selection of LSD, the proposed algorithm necessitates getting
complete lines from the detected segments. This process involves the use of a
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.................................... 4.2. Line Detection

clustering algorithm applied to the identified line segments, followed by line
prototyping for each cluster.

Pre-Clustering Filtering

To optimize cluster formation, a pre-clustering process is executed, comprising
the filtration of line segments based on vertical, horizontal, and outlier criteria.
The procedure is performed according to the angles specified in section 4.1.
This allows clusters to be found independently for vertical and horizontal
lines. Figure 4.8 shows the outcome of angle filtering.

Figure 4.8: Result of filtering based on line angles.

Method Choice

In the context of segment clustering, various methods were considered. Dy-
namic K-means [33] was abandoned due to its inherent disadvantages. The
dynamic adjustment of cluster count can significantly increase the computa-
tional complexity of the algorithm, thereby leading to longer processing time
and increased resource requirements. Furthermore, this algorithm is known
to overfit and it lacks efficacy in handling noisy datasets.

The Density-Based Spatial Clustering of Applications with Noise (DB-
SCAN) [34] algorithm has been chosen for several reasons, Firstly it can
identify noise points and does not force every point into a cluster, making
it robust to outliers. Secondly, unlike certain other clustering algorithms,
DBSCAN does not require specifying the number of clusters beforehand.
Lastly, It is relatively efficient for large datasets because it only needs to
calculate distances between points within ϵ-distance. However, DBSCAN
has a few drawbacks. Similar to numerous clustering algorithms, DBSCAN’s
performance can degrade in high-dimensional spaces due to the curse of
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4. Door Detection....................................
dimensionality. Nonetheless, this limitation is minor in the case of lines
within two-dimensional space. Additionally, it may struggle with datasets
where clusters have significantly varying densities or where the density of
points within clusters changes substantially, but it is supposed that the LSD
algorithm will yield a sufficient number of line segments for each line, thereby
ensuring nearly uniform distances between them.

Algorithm Modification

The standard DBSCAN implementation served as the foundation for evaluat-
ing the algorithm’s performance. However, given its original design for point
data in a 2D space, several adjustments were necessary. Initially, the calcu-
lation of Euclidean distances between points was adapted to the Euclidean
norm of the perpendicular vector extending from one line to the endpoint of
another line. This modification offered a clear, geometrically intuitive, and
mathematically sound approach for measuring the separation between lines.
While initially effective, this approach encountered challenges in accurately
handling wider discontinuities between segments of the same line that lay on
a shared straight trajectory.

Consequently, a modification to the algorithm was added. Line segments
may now be clustered together only if the variance in their angles does not
exceed 10 degrees. This criterion is established based on the assumption
that line segments belonging to the same line tend to have a nearly parallel
orientation. Additionally, the distance between lines is now determined as
the minimum value between the perpendicular distance and the Manhattan
distance. The utilisation of the Manhattan distance serves to measure the
relaxed distance between the endpoints of lines, taking into account potential
changes along the axis of the intended line (horizontal axis for horizontal
lines and vertical axis for vertical lines). The following Figure 4.9 shows the
change in distance measurement as described.

Figure 4.9: Distance measurement methods.
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Subsequently, the modified algorithm was evaluated on the dataset, con-
taining five tests with synthetic data. Each evaluation test is located within
the chapter A. The following Table 4.1 presents the aggregated results of this
assessment averaged over the entire dataset.

Performance Measures DBSCAN Modified DBSCAN
Precision 97.9% 98.3%

Recall 52.3% 60.9%
F1-score 61.7% 69.0%

Table 4.1: DBSCAN modification comparison.

As shown in the table, the modified DBSCAN algorithm provides better
results, making it the preferred choice for integration within the proposed
algorithm. The following Figure 4.10 illustrates the real-world data output
generated by the modified method.

Figure 4.10: Result of the adapted DBSCAN algorithm.

4.2.5 Prototyping

Once the clusters have been identified, the subsequent stage for the algorithm
involves obtaining the original line prototypes. This task can be likened to
the construction of a linear regression model, with the primary distinction
being that line segments, rather than individual points, define the original
line. Conventionally, solving this problem using real data involves using
the RANSAC algorithm. Known for its efficacy, robustness, and flexibility,
RANSAC operates by iteratively sampling subsets of the data, enabling the
identification of inliers and the exclusion of outliers during the model fitting
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4. Door Detection....................................
process. This characteristic renders RANSAC more robust than classical
methods for linear regression construction (e.g. Least Squares Method).
Additionally, due to its iterative nature, RANSAC often converges to a
solution quickly, making it computationally efficient.

Method Application

Each line segment within each cluster is interpolated by uniformly spanning
points along it. The quantity of points generated is directly proportional to
the segment length. This approach allows the use of an existing RANSAC
implementation: RANSACRegressor implemented in the sklearn library [35]
is used to compute the original line prototypes. After receiving the lines, they
go through a filtering process, where lines shorter than a set threshold are
excluded from further consideration. The outcome of this line prototyping
process combined with length filtering is shown in Figure 4.11.

Figure 4.11: Lines fitted by the RANSAC algorithm.

In this phase, lines derived from both colour and depth images are obtained.
These prototypes will henceforth be referred to as colour and depth lines in
subsequent investigations.

4.3 Door Model Assembly

Upon identifying line prototypes, the next step of the algorithm can be
employed. This section describes the process of constructing potential door
models from the identified lines. It is based on a series of controls to omit
obvious non-door candidates, thereby easing the workload for the subsequent
model validation module.
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.................................4.3. Door Model Assembly

4.3.1 Edge Grouping

The search algorithm groups all identified lines into separate categories. In
the following section, the algorithm will work exclusively with lines derived
from the depth gradient image.

First, the algorithm identifies the potential door upper edge by iterating
over all horizontal lines and applying the is_horizontal_edge method im-
plemented within the Line class. This method determines whether a line is a
potential edge based on the depth difference above and below it. The method
begins by interpolating the given line with points at specified intervals. For
each point, the depth difference above and below it, within a defined distance,
is calculated and compared to a threshold value. If this value exceeds the
threshold, the point is flagged as a top edge point, if it falls below the negative
threshold, it is flagged as a bottom edge point, otherwise, it is flagged as not
an edge point. These flags are recorded in a control array. The algorithm then
evaluates whether the number of top edge flags exceeds a given proportion
of the control array length. If it does, the line is confirmed as a top edge,
otherwise, it is flagged as not an edge. Each horizontal line flagged as a top
edge is added to the top edges group. The following Figure 4.12 shows the
top edges highlighted with red along with all other horizontal lines.

Figure 4.12: Top edges identified.

Second, the algorithm identifies potential door left and right edges by
iterating over all vertical lines and applying the is_vertical_edge method,
which operates similarly to the is_horizontal_edge method. The primary
difference is that it compares depth on the left and right sides of the given line.
This method returns flags for left edge, right edge, or no edge. The algorithm
then creates groups for left edges and right edges accordingly. Figure 4.13
below shows the left and right edges highlighted with red and blue accordingly
along with all other vertical lines.
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4. Door Detection....................................

Figure 4.13: Left and right edges identified.

4.3.2 Model Construction

The algorithm initiates the assembly of each door from the left edge. For each
left edge, it iterates over all right edges. During this process, the appropriate
right edge is selected based on its position relative to the left edge, ensuring
it is located to the right.

Construction of the Door Upper Edge Search Boundaries

The coordinate boundaries for the door upper edge search are established
through the formation of specific points. Initially, from the left edge’s mini-
mum x-axis coordinate, a distance of α is subtracted to determine the xα−left
coordinate. Similarly, a distance of β is subtracted to obtain the xβ−left coor-
dinate. The same y-axis value for these two points is calculated by adding the
α value to the top y-axis coordinate of the left edge, resulting in the creation of
α − left and β − left points, both having the yα−left coordinate. The process
is mirrored on the right edge, where α and β values are added to the right
edge’s maximum x-axis coordinate, generating the α − right and β − right
points, which share the yα−right coordinate. The following Figure 4.14 shows
boundaries for the upper edge search.
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.................................4.3. Door Model Assembly

Figure 4.14: Upper edge search boundaries.
The green dotted line indicates the region above which the door’s upper edge is
examined.

Search for the Door Upper Edge

The search for a suitable door upper edge is conducted by iterating over
the group of top edges and evaluating their positional conditions. First, the
y-axis coordinates of the left and right endpoints are checked to ensure they
are less than the corresponding yα−left and yα−right values, respectively. This
verification essentially guarantees that the upper edge is located within the
upper part of the door model.

Door State Identification

The algorithm subsequently continues by evaluating whether the upper edge
is suitable with parallel potential door state extraction. There exist multiple
outcomes of interest that are mutually exclusive regarding the specified upper
edge location to the defined search boundaries Figure 4.15.
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4. Door Detection....................................

(a) : Configuration 1. (b) : Configuration 2.

(c) : Configuration 3. (d) : Configuration 4.

Figure 4.15: Possible upper edge positions...1. Upper edge within the xα−left and xα−right interval:. If the edge does not protrude from either side, it is flagged as
suitable, indicating that the door coincides with its doorway...2. Upper edge within the xβ−left and xα,right interval, covering

xα−left:.The edge is flagged as suitable, suggesting that the door is located
to the right of the doorway...3. Upper edge within the xα−left and xβ−right interval, covering

xα−right:.The edge is flagged as suitable, suggesting that the door is located
to the left of the doorway...4. Upper edge within the xβ−left and xβ−right interval, covering

both xα−left and xα−right:.The edge is flagged as unsuitable. This indicates a potential central
door configuration or the absence of a door, as the upper edge is
disproportionately wide relative to the door’s vertical edges. Thus,
the algorithm disregards this upper edge.
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If none of the conditions above are met, the upper edge is marked as
inappropriate. If configurations 2 or 3 occur, the lines derived from the colour
gradient image are utilised.

For configuration 2: The algorithm progresses by first identifying the
upper edge of the doorway from the provided horizontal lines, which should
be in close proximity to the previously detected upper edge of the door. If
such an edge is found, it is assigned with the upper edge of the doorway,
otherwise, the upper edge of the door is assigned with the upper edge of
the doorway. Subsequently, it iterates through vertical lines to locate the
nearest line below either the left endpoint of the previously detected upper
edge of the door or the determined upper edge of the doorway. This process
involves defining search boundaries for the line. The identified line has the
potential to establish the left edge of the doorway. Upon finding such a line,
its uniqueness is assessed. If no comparable line exists among the depth lines,
the identified line is assigned as the left edge of the doorway for utilisation
in the doorway assembly phase. Conversely, if a similar line is present, it is
disregarded.

For configuration 3: The algorithm performs a similar procedure as
described above, but searches for the right doorway edge instead of the left.
If a unique line is found (with no similar line in the depth lines), it is assigned
as the doorway right edge and used in the doorway assembling phase.

Door Corners Determination

In this step, the algorithm verifies whether the difference between the lower
y-axis coordinates of the left and right door edges is less than a predefined
threshold. If the difference is within this threshold, it is interpreted as a
minor error in line prototyping or a result of perspective distortion. In such
cases, a single door will be assembled using the detected left, right, and upper
edges, along with a newly constructed bottom edge.

The bottom edge is determined by taking the maximum of the two endpoint
coordinates (the lowest point in the image) and mirroring the upper edge line
along the x-axis from this point. This method is based on the intuition that
perspective distortion is typically mirrored along the horizontal axis of the
image. Consequently, the four door corners are identified by calculating the
intersections of each pair of lines. Once these steps are completed, the door
model is constructed.
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4. Door Detection....................................
If the difference between the lower y-axis coordinates exceeds the predefined

threshold, two door models will be constructed in the same manner. In this
case, the bottom edge is determined separately for both the left and right
edge bottom endpoints.

After completing these steps, one or two door models are assembled in each
iteration of the algorithm. The validation module is then applied to check
whether the constructed door model(s) represent actual doors. Figure 4.16
shows corner determination. The bottom line is always drawn to the left
side, since in practice only its direction vector is needed to calculate the
intersection.

Figure 4.16: Determining corners through intersection line calculations.

4.4 Model Validation

The validation module comprises several checks, each designed to filter out
inappropriate door models based on different criteria.

4.4.1 Geometric Validation

The validation process begins with assessing the door model’s geometry. It
ensures that the upper-left corner is positioned above the bottom left corner,
and similarly for the right corners, thereby guaranteeing the door rectangle’s
convexity. Subsequently, it verifies that the door rectangle’s width and height
exceed minimum length requirements.

28



...................................4.4. Model Validation

4.4.2 Edge Validation

Following geometric validation, the module proceeds to verify the left and
right edges of the constructed door model. Since the corners of the rectangle
model are determined by the intersections of the original edges, the lines
may have changed their lengths. Therefore, it is necessary to revalidate edge
consistency.

Firstly, the left line is examined to ensure it remains an edge line by
applying the is_vertical_edge method with a reduced majority parameter,
which yields a left edge flag. Next, the midpoint of the left line is calculated
and used to create a new left half-line, with the original bottom endpoint
and the newly calculated midpoint. The is_vertical_edge method is then
applied to this new half-line with the default majority parameter but a
lowered depth difference threshold. These two checks ascertain whether the
new door line remains aligned with the real edge in the image and whether
the edge is not excessively long, as the checks assess line protrusions on both
sides. The same validation procedures are applied to the right line, using the
is_vertical_edge method to obtain the right edge flag.

Subsequently, the rectangle’s bottom line is checked to ensure it is an
edge. The is_horizontal_edge method is initially used with a small depth
difference threshold and the default majority value to confirm it is a line at
the bottom part of the door, as minor depth variations are expected due
to floor perspective changes in an open door. The method is then applied
again with the default threshold and a smaller majority value, where it is
anticipated to yield a non-edge flag, as a significant difference would indicate
the bottom edge is likely the window edge, not the door.

As a result, all door models failing to meet these conditions are excluded.

4.4.3 Door Model Rectangle Validation

In the subsequent step, the algorithm verifies the absence of edges of the left,
right, and top edge groups in the door model that are comparable in length
to the door rectangle’s width or height (for the upper, left, and right edges,
respectively). It also ensures that there are no edges from these groups that
originate inside the rectangle and intersects it to the outside. Edges that are
too close to the rectangle lines are disregarded, as multiple line prototypes
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4. Door Detection....................................
may exist for a single line forming the rectangle, which are in close proximity
to each other.

4.4.4 Doorway Integration

In the subsequent step, the algorithm verifies whether the door has a status 2
or 3 indicated in section 4.3, and whether the outer doorway edge is identified.
If these conditions are met, the doorway, which is distinct from the open
door, is constructed in the following section and subsequently integrated into
the door model, which is then appended to the array of doors. If both of
these conditions are not met, the door is directly appended to the array.

4.4.5 Doorway Assembling

This process is described for the doorway configuration from point 3 of
section 4.3. Initially, the top left and right corners of the doorway are set by
calculating the intersections of the right doorway edge, the upper doorway
edge, and the left door line from the existing door model. Then, the bottom
doorway edge, which mirrors the upper doorway edge in the x-axis, is laid
from the lowest point chosen from the right doorway edge bottom point, the
bottom left corner of the door model, and the bottom endpoint of the door
model’s original left edge. The intersections for the bottom left and right
corners are then calculated. The resulting doorway rectangle, defined by four
points, is added to the door model instance. The same process applies to
the doorway configuration from point 2 of section 4.3, with the difference
of utilising the left doorway edge instead of the right, and the door model’s
right edge. Figure 4.17 illustrates the doorway assembly process.
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Figure 4.17: Doorway assembly for the 3rd configuration.
Green line: door model’s left line.
Red line: original door’s left edge found in the image.
Lilac vertical line: doorway’s right edge.
Lilac horizontal line: doorway’s top edge.
Blue line: doorway’s bottom edge, mirrored from the upper edge.

4.4.6 Door Filtering

In the final step, the proposed algorithm examines the array of doors to ensure
their uniqueness in terms of their positions. If one door overlaps another by
more than 90%, the largest door is chosen. This method is applied to all
doors in the array, ensuring that the array contains unique doors without
multiple doors occupying the same position in the image.
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Chapter 5

Results

This chapter presents the results of the evaluation of the proposed door
detection algorithm on the collected dataset. Extensive experiments have
been conducted to vary the algorithm’s performance, robustness, and real-
world applicability. First, the steps taken to create the dataset are explained
to ensure data quality. In addition, metrics for evaluating the effectiveness of
the chosen algorithm are provided. Subsequently, the evaluation results and a
comparative analysis are presented, highlighting progress and contextualizing
challenges.

5.1 Dataset Description

The dataset used in the evaluation process was manually created. It consists
of various doors in different states to encompass a wide range of possible
scenarios. The dataset includes both horizontal and vertical images. Initially,
21+1 images underwent preprocessing, which involved resizing to the intended
dimensions of 600×400 pixels for horizontal orientations and 400×600 pixels
for vertical orientations. Subsequently, the precise locations of the door
ground truths were manually extracted from each photo, resulting in the
creation of an array of ground truth door corners.
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5.2 Performance Evaluation Metrics

Precision, recall, F1-score, and accuracy are essential metrics for evaluating
algorithm performance. The standard formulas for precision 5.1, recall 5.2,
and F1-score 5.3 are used. In visual detection problems, the conventional
accuracy formula is modified to exclude True Negatives 5.4, resulting in the
Intersection over Union (IoU) metric.

Precision = True Positives
True Positives + False Positives (5.1)

Recall = True Positives
True Positives + False Negatives (5.2)

F1-score = 2 × Precision × Recall
Precision + Recall (5.3)

Accuracy = True Positives
True Positives + False Positives + False Negatives (5.4)

Each metric has a distinct significance. Precision ensures the algorithm
does not mistakenly identify a wall as a door, thereby preventing erroneous
actions. Recall measures the proportion of correctly recognized open doors.
The F1-score, a statistical measure, provides a comprehensive assessment
of the algorithm’s overall efficiency. Accuracy, in the context of visual
recognition tasks, is a spatial measure that directly evaluates the overlap
between predicted and ground truth regions.

These metrics are utilized to assess the dataset images through the im-
plementation of door overlap calculation for the ground truth and predicted
door models. The shapely.intersection method within the Shapely library [36]
is employed, as it provides a suitable approach for computing polygonal
intersections.
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5.3 Results Analysis

The visual results for each image, including both the ground truth and
predicted door annotations, are presented in the Appendix A of this work.
The ground truth door is represented with a green outline, while the predicted
open door is illustrated with a pink outline. In cases where the doorway
differs from the open door, the doorway is indicated with a violet outline. To
avoid confusion, the ground truth doorway is not shown in these instances.
Table 5.1 below provides the performance evaluation for each image in the
dataset.

Image Accuracy Precision Recall F1-score
5.1a 89.9% 98.2% 91.4% 94.7%
A.6 91.7% 96.9% 94.5% 95.7%
A.7 93.4% 99.7% 93.6% 96.6%
5.2a 0% 100% 0% 0%
A.8 89.3% 97.7% 91.3% 94.4%
A.9 89.2% 98.2% 90.7% 94.3%
5.4b 0% 100% 0% 0%
A.10 88.7% 99.1% 89.4% 94%
A.11 92.7% 99.8% 93% 96.2%
5.2b 0% 100% 0% 0%
5.1b 85.8% 100% 85.8% 92.4%
A.12 86.9% 98.5% 88% 93%
A.13 72.9% 72.9% 100% 84.3%
A.14 93.9% 99.9% 94% 96.9%
5.3b 96.5% 99% 97.5% 98.2%
A.15 89.8% 98.5% 91.1% 94.6%
A.16 91.5% 93.1% 98.1% 95.5%
A.17 94.3% 99.5% 94.7% 97.1%
A.18 89.3% 96.8% 92% 94.3%
5.3a 92.4% 98.9% 93.3% 96%
5.4a 83.5% 90.1% 91.9% 91%

Table 5.1: Detection evaluation results.

As can be seen from the presented table, the algorithm shows noticeable
changes in performance depending on the input image. Therefore, to provide
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a comprehensive overview of its results, it is necessary to highlight several
key points from the assessment.

(a) : Image 1 outcome. (b) : Image 11 outcome.

Figure 5.1: Algorithm’s high-performance output.

Figure 5.1 shown above is an example of high-performance cases. The open
doors exactly match their doorways, indicating a minimal difference between
the predicted geometric model and the ground truth configuration. Notably,
the primary variation observed between the models in most images is in the
location of the lower edge of the doorway, leading to lower recall rates and
consequently lower F1 and accuracy metrics.

(a) : Image 4 outcome. (b) : Image 10 outcome.

Figure 5.2: Showcase of the algorithm’s incapability to recognize doors.

The following Figure 5.2, shown above, illustrates cases where the algorithm
fails to detect doors. This deficiency primarily results from the constraints
related to the lower edge of the door that are enforced during the execution
of the validation module described in Section 4.4. Because the algorithm
must distinguish between doors, windows, and glass components of the door,
the threshold value set for the depth disparity between the bottom of the
door and the surrounding environment does not allow the increased values
observed in these examples. As a result, the algorithm incorrectly interprets
these doors as windows.

36



................................... 5.3. Results Analysis

(a) : Image 20 outcome. (b) : Image 15 outcome.

Figure 5.3: Algorithm’s prediction of doors different from their doorways.

Figure 5.3 shown above presents an example of open doors, which differ
from their corresponding doorways. Figure 5.3a shows near-flawless door
recognition with precise open door identification and precise doorway recog-
nition, resulting in high performance. Meanwhile, Figure 5.3b shows precise
open door recognition along with low recall in doorway identification, which
in turn leads to reduced F1 and accuracy values. This deficiency is due to
the inaccurate location of the lower edge of the doorway.

(a) : Image 21 outcome. (b) : Image 7 outcome.

Figure 5.4: Algorithm’s output for partially overlapped doors.

Figure 5.4 shown above, shows cases where the door is partially overlapped
by objects. As can be seen in these images, the vertical edge of the door
remains distinguishable and is not completely obscured by overlapping ele-
ments in both images, as mentioned in point 1 of section 4.1. In Figure 5.4a,
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5. Results .......................................
the overlap is minimal, which allows the algorithm to detect open door.
Conversely, in Figure 5.4b, the extent of overlap along the vertical edge is
considerable, resulting in the inability of the algorithm to predict the presence
of a door.

Figure 5.5: Algorithm’s outcome for True Negative data.

Figure 5.5 shown above is for supplementary purposes and is not included
in the dataset used for performance evaluation. Due to the absence of doors
in this figure, its sole purpose is to make sure that the algorithm refrains from
predicting doors in True Negative cases. As a result, the algorithm concludes
its evaluation of this image without any door predictions, in accordance with
the expected result.

The following Table 5.2 presents the aggregated performance results aver-
aged over the entire dataset.

Accuracy Precision Recall F1-score
76.7% 97% 75.8% 80.9%

Table 5.2: Results of the proposed algorithm.

The proposed algorithm demonstrates high precision, thereby enhancing
safety in guiding drone navigation through door detection. However, the
recall rate is relatively low because the lower edge of the door is often detected
at a significant distance from its actual position in most evaluated scenarios
and the inability of the method to predict doors in certain scenarios. This
discrepancy of the first arises from inaccuracies in the coordinates of vertical
edges along the y-axis. While these limitations may not critically impact
autonomous drone navigation, as drones typically do not operate close to the
ground and might skip certain doors, the limitations make the algorithm less
suitable for other robotic platforms or alternative applications. Consequently,
this inconsistency results in a lower F1-score and reduced accuracy.
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Chapter 6

Conclusion

This research aims to enhance autonomous robot navigation by focusing on
the detection of open doors, which are crucial for navigating unfamiliar indoor
environments. Using a MAV as the camera platform provides some benefits
like increased manoeuvrability and lower costs, despite its limited payload
capacity restricting advanced sensors.

To address these limitations, conventional monocular cameras and off-
board intensive processing to powerful external systems are employed. By
integrating a neural network for Single Image Depth Estimation with an
original RGB image, precise and efficient real-time door detection based on
geometric features is enabled.

6.1 Summary of Key Findings

Based on the results discussed in Chapter 5, the suggested algorithm performs
well only in situations where the door has a clear depth separation from the
background environment. In such cases, the algorithm demonstrates excellent
precision and high recall, resulting in high overall metrics such as F1-score
and accuracy. When comparing the proposed algorithm with existing ones,
it performs worse than one of the best algorithms in the field [6]. However,
this comparison is not entirely valid, as the referenced algorithm requires
pre-scanning of the environment, which is not feasible for autonomous drone
navigation. Therefore, the algorithm suggested in this research should be
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6. Conclusion......................................
compared with algorithms that do not require any pre-processing.

When compared to RGB-D data-based methods [1], [4], and [5], which
does not require pre-scanning, the suggested algorithm performs worse, as
expected, due to the superior performance of modern ML techniques in
visual detection problems. However, when compared to 2D input data ML-
based methods [9], [10], and [13], the suggested approach shows similar
precision, with its F1-score not being far off. Additionally, when compared to
methods [11], [12] based on geometric features using only RGB images, the
proposed method demonstrates higher precision and similar recall.

In summary, the algorithm is not outstanding, particularly in non-standard
door configurations. Nonetheless, it should be noted that the approach of
combining SIDE techniques for door recognition has the potential to yield
better results, even when used in methods based solely on the geometric
features of doors.

6.2 Limitations of the Study

As discussed in the previous section 6.1, the proposed algorithm encounters
limitations when the door configuration deviates from a simple structure.
The algorithm performs poorly in unconventional door situations, particularly
when parts of the door are obscured by objects that cover the vertical edge
of the door or when the door does not have a clear depth separation from
the background environment.

6.3 Future Work

Considering the potential for improvement of the suggested method to achieve
better results, the proposed algorithm can be enhanced by incorporating
advanced model validation techniques. This enhancement can lead to higher
recall in certain door configurations, as the current algorithm tends to struggle
in difficult scenarios, often opting to predict no door to maintain higher
precision.

A potential research direction to achieve superior performance in door
detection from monocular camera data is to explore a Machine Learning-
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based method. This method would combine the predicted depth map and
the given 2D image as input. Such an approach holds significant promise for
achieving exceptional performance.

6.4 Contributions to the Field

The proposed algorithm has practically broadened the research field by
providing a solution that integrates a 2D image with a predicted depth map
to address the problem of door recognition without requiring any additional
pre-processing. This approach is also extended to detect doorways in special
door configurations. Although the solution is not perfect, it is innovative due
to the combination of these elements.

6.5 Final Remarks

This research journey has been both challenging and enlightening. Navigating
through limitations, the integration of Neural Network for SIDE required
extensive experimentation and optimisation in the context of door recognition.
Various approaches were tested at each step of the algorithm, ultimately
leading to the proposed method.

In conclusion, this research demonstrates the potential of using MAVs and
advanced computational techniques to enhance autonomous navigation. By
focusing on open door detection and leveraging off-board processing, the
approach of combining predicted depth data with the original RGB image
has been shown to improve the performance of recognition algorithms. This
work advances the field of single-image door recognition and paves the way
for further innovations.
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Appendix A

Attachments
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A. Attachments.....................................

(a) : Ground Truth: 20 clusters.

(b) : Prediction: 29 clusters.
Precision = 98.4%, Recall = 53.8%, F1-score = 62%.

(c) : Modified algorithm’s prediction: 29 clusters.
Precision = 100%, Recall = 60.2%, F1-score = 69.5%.

Figure A.1: DBSCAN results for 1st test.
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..................................... A. Attachments

(a) : Ground Truth: 20 clusters.

(b) : Prediction: 28 clusters.
Precision = 98.2%, Recall = 59.8%, F1-score = 68.4%.

(c) : Modified algorithm’s prediction: 24 clusters.
Precision = 98.5%, Recall = 70.9%, F1-score = 77.1%.

Figure A.2: DBSCAN results for 2nd test.

45



A. Attachments.....................................

(a) : Ground Truth: 20 clusters.

(b) : Prediction: 36 clusters.
Precision = 99.2%, Recall = 44.8%, F1-score = 56.2%.

(c) : Modified algorithm’s prediction: 28 clusters.
Precision = 99%, Recall = 60.5%, F1-score = 69.4%.

Figure A.3: DBSCAN results for 3rd test.
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(a) : Ground Truth: 20 clusters.

(b) : Prediction: 34 clusters.
Precision = 99%, Recall = 47.6%, F1-score = 58.8%.

(c) : Modified algorithm’s prediction: 31 clusters.
Precision = 98.8%, Recall = 51.7%, F1-score = 61.1%.

Figure A.4: DBSCAN results for 4th test.
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A. Attachments.....................................

(a) : Ground Truth: 20 clusters.

(b) : Prediction: 24 clusters.
Precision = 94.6%, Recall = 55.4%, F1-score = 62.9%.

(c) : Modified algorithm’s prediction: 24 clusters.
Precision = 95.2%, Recall = 61.3%, F1-score = 68%.

Figure A.5: DBSCAN results for 5th test.
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Figure A.6: Image 2 outcome.
Accuracy = 91.7%, Precision = 96.9%, Recall = 94.5%, F1-score = 95.7%.

Figure A.7: Image 3 outcome.
Accuracy = 93.4%, Precision = 99.7%, Recall = 93.6%, F1-score = 96.6%.
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A. Attachments.....................................

Figure A.8: Image 5 outcome.
Accuracy = 89.3%, Precision = 97.7%, Recall = 91.3%, F1-score = 94.4%.

Figure A.9: Image 6 outcome.
Accuracy = 89.2%, Precision = 98.2%, Recall = 90.7%, F1-score = 94.3%.
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Figure A.10: Image 8 outcome.
Accuracy = 88.7%, Precision = 99.1%, Recall = 89.4%, F1-score = 94%.

Figure A.11: Image 9 outcome.
Accuracy = 92.7%, Precision = 99.8%, Recall = 93%, F1-score = 96.2%.
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A. Attachments.....................................

Figure A.12: Image 12 outcome.
Accuracy = 86.9%, Precision = 98.5%, Recall = 88%, F1-score = 93%.

Figure A.13: Image 13 outcome.
Accuracy = 72.9%, Precision = 72.9%, Recall = 100%, F1-score = 84.3%.
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Figure A.14: Image 14 outcome.
Accuracy = 93.9%, Precision = 99.9%, Recall = 94%, F1-score = 96.9%.

Figure A.15: Image 16 outcome.
Accuracy = 89.8%, Precision = 98.5%, Recall = 91.1%, F1-score = 94.6%.
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Figure A.16: Image 17 outcome.
Accuracy = 91.5%, Precision = 93.1%, Recall = 98.1%, F1-score = 95.5%.

Figure A.17: Image 18 outcome.
Accuracy = 94.3%, Precision = 99.5%, Recall = 94.7%, F1-score = 97.1%.

54



..................................... A. Attachments

Figure A.18: Image 19 outcome.
Accuracy = 89.3%, Precision = 96.8%, Recall = 92%, F1-score = 94.3%.
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