
Bachelor Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Cybernetics

Developing a Domain-Specific Differentiable
Functional Language

Jakub Kraus

Supervisor: Ing. Gustav Šír, Ph.D.
Study program: Open Informatics
Specialisation: Artificial Intelligence and Computer Science
May 2024

ii

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

499211 Personal ID number: Kraus Jakub Student's name:

Faculty of Electrical Engineering Faculty / Institute:

Department / Institute: Department of Cybernetics

Open Informatics Study program:

Artificial Intelligence and Computer Science Specialisation:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Developing a Domain-Specific Differentiable Functional Language

Bachelor’s thesis title in Czech:

Vývoj doménově specifického diferencovatelného funkcionálního jazyka

Guidelines:

The subject of this bachelor thesis is to develop a small, domain-specific, differentiable programming language building
upon simple functional programming principles. The language should support basic algebraic expressions and functions
commonly used in deep learning, and should be embedded within Python via suitable syntax and operator overloading.
Ultimately, it is to be used as a part of a wider framework for differentiable logic programming [1], with the aim to allow for
a more elegant and efficient encoding of advanced deep learning architectures [2]. The student is expected to:
1. Study up the core principles underlying modern deep learning architectures, and briefly review existing related frameworks
(e.g. [3]).
2. Get acquainted with the “NeuraLogic” framework [1] for differentiable logic programming, both the Java backend [4]
and Python frontend [5].
3. Propose suitable syntax and semantics of your new language, following the functional paradigm.
4. Implement the respective frontend and backend capabilities for parsing and interpreting expressions written in your
language.
5. Focus on computational efficiency of inference and learning, and propose solutions for improvements.

Bibliography / sources:

[1] Sourek, Gustav, et al. "Lifted relational neural networks: Efficient learning of latent relational structures." Journal of
Artificial Intelligence Research 62 (2018): 69-100.
[2] Šourek, Gustav, Filip Železný, and Ondřej Kuželka. "Beyond graph neural networks with lifted relational neural networks."
Machine Learning 110.7 (2021): 1695-1738.
[3] HaskTorch library introduction: https://github.com/hasktorch/
[4] NeuraLogic framework backend: https://github.com/GustikS/NeuraLogic
[5] PyNeuraLogic frontend: https://github.com/LukasZahradnik/PyNeuraLogic

Name and workplace of bachelor’s thesis supervisor:

Ing. Gustav Šír, Ph.D. Intelligent Data Analysis FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 24.05.2024 Date of bachelor’s thesis assignment: 10.01.2023

Assignment valid until: 22.09.2024

___________________________ ___________________________ ___________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
prof. Ing. Tomáš Svoboda, Ph.D.

Head of department’s signature
Ing. Gustav Šír, Ph.D.

Supervisor’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZBP-2015.1

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZBP-2015.1

Acknowledgements
I would like to thank my supervisor
Ing. Gustav Šír, Ph.D. for his never
ending patience, valuable guidance and
understanding, that made this thesis
possible.

I declare the use of ChatGPT 4.0,
https://chatgpt.com/, for formatting
the text, formulating my thoughts, and
brainstorming ideas throughout this the-
sis.

Declaration
I declare that the presented work was
developed independently and that I
have listed all sources of information
used within it in accordance with the
methodical instructions for observing the
ethical principles in the preparation of
university theses.

Prague, May 24, 2024

..................................
signed Jakub Kraus

v

https://chatgpt.com/
https://chatgpt.com/

Abstract
Deep Neural Networks have revolution-
ized many fields but often struggle with
capturing complex, irregular structures
found in real-world data. To address this,
relational graph neural network frame-
works were created, enabling processing
and learning even from such patterns.
This work aims to develop a new domain-
specific differentiable functional language
to support logic programming within one
such framework.

The proposed language simplifies and
enhances problem declaration, making it
more intuitive for users. It also expands
the expressive capabilities of relational
models, allowing for a richer and more flex-
ible data representation. Through multi-
ple case-specific examples, the effective-
ness of the new syntax is demonstrated,
showing that it retains the computational
efficiency of the original framework while
significantly improving user experience
and reducing development time. Result of
this work provides a robust foundation for
integrating logical reasoning with neural
network learning, facilitating more accu-
rate and interpretable models in various
applications such as natural language pro-
cessing, knowledge graph completion, and
bioinformatics.

Keywords: Lifted Relation Neural
Networks, Relational Logic

Supervisor: Ing. Gustav Šír, Ph.D.

Abstrakt
Hluboké neuronové sítě způsobily revoluci
v mnoha oborech, ale často mají problémy
se zachycením složitých, nepravidelných
struktur, které se vyskytují v reálných da-
tech. Pro řešení tohoto problému byly vy-
tvořeny frameworky relačních grafových
neuronových sítí, které umožňují zpraco-
vávat a učit se i z takových vzorů. Cílem
této práce je vyvinout nový doménově spe-
cifický diferencovatelný funkcionální jazyk
pro podporu logického programování v
rámci jednoho takového frameworku.

Navržený jazyk zjednodušuje a vylep-
šuje deklarování problémů a činí jej pro
uživatele intuitivnějším. Rozšiřuje také
vyjadřovací schopnosti relačních modelů,
což umožňuje bohatší a flexibilnější repre-
zentaci dat. Na několika konkrétních pří-
kladech je demonstrována efektivita nové
syntaxe, která zároveň zachovává výpo-
četní efektivitu původního frameworku a
zároveň výrazně zlepšuje uživatelský kom-
fort a zkracuje dobu vývoje. Výsledek této
práce poskytuje robustní základ pro inte-
graci logického uvažování s učením neuro-
nových sítí, což vede k přesnějším a lépe
interpretovatelným modelům aplikacích,
jako je zpracování přirozeného jazyka, do-
plňování znalostních grafů a bioinforma-
tika.

Klíčová slova: Lifted Relation Neural
Networks, Relační Logika

Překlad názvu: Vývoj doménově
specifického diferencovatelného
funkcionálního jazyka

vi

Contents
1 Introduction 1
2 Deep Learning 3
2.1 Neural Networks 3

2.1.1 Basic Concepts 3
2.1.2 Structure of Perceptron 3
2.1.3 Structure of Neural Networks . 4
2.1.4 Training of Neural Networks . . 4

2.2 Differentiable Programming 6
2.2.1 Automatic Differentiation 6
2.2.2 Applications 6

2.3 Dynamic Computation Graphs . . 6
2.4 Existing Frameworks 7

2.4.1 PyTorch 7
2.4.2 TensorFlow 7
2.4.3 Haskell . 8

3 Deep Relational Learning 9
3.1 Graph Neural Networks 9

3.1.1 Types of GNNs 10
3.2 Relational Logic 10

3.2.1 Uses in Machine Learning . . . 10
3.3 Lifted Relational Neural Networks 11
4 PyNeuraLogic 13
4.1 Introduction 13

4.1.1 Structure of Framework 14
4.2 Python Front End 14

4.2.1 Rule . 14
4.2.2 Dataset 15
4.2.3 Template 15
4.2.4 Query . 16
4.2.5 Example 17

4.3 Java Back End 18
4.3.1 Internal Structure 18

5 Functional Language Proposition 21
5.1 Need of New Syntax 21
5.2 Approach Analysis 22

5.2.1 Editing Python 22
5.2.2 File Encoding 23
5.2.3 Enhancing Python Syntax . . 24

5.3 Storing and managing input data 24
5.3.1 Functional Tree 25
5.3.2 Functional Container 25

5.4 Data Processing and Analysis . . 25
5.4.1 Functional Call Simulator . . . 26

5.5 Examples . 26
5.5.1 Example 1: Four Nodes 26

5.5.2 Example 2: Graph 27
6 Conclusions 31
Bibliography 33
Appendices 35
Contents of Attached CD 37

vii

Figures
2.1 Perceptron . 4
2.2 Activation functions 5

3.1 Node embedding update 10

5.1 Example 1: Template 27
5.2 Example 1: Dataset 28
5.3 Example 2: Templpate 29
5.4 Example 2: Dataset 29

Tables

viii

Chapter 1
Introduction

Artificial Intelligence (AI) has seen a remarkable boom in recent years, trans-
forming from a niche field to a crucial driving force in technology and society.
This surge in AI has been fueled by advances in machine learning, particularly
through the development and application of neural networks. Inspired by the
human brain, neural networks have enabled machines to recognize patterns,
learn from data, and make decisions in ways that were previously impossible.

The rise of neural networks began with the concept of artificial neurons,
which mimic the way biological neurons process information. These artificial
neurons are organized into layers, forming what is known as a neural network.
When these networks are deep, meaning they have many layers, they are
referred to as deep learning models. Deep learning has been at the heart
of many recent AI breakthroughs, powering applications such as image and
speech recognition, natural language processing, and even autonomous vehicle
development.

Several frameworks have been developed to facilitate the creation and
deployment of neural networks. Popular ones include TensorFlow1, PyTorch2,
and Keras3. These frameworks have made it accessible for developers and
researchers to leverage the power of neural networks, contributing to the rapid
growth and application of AI technologies across various domains. However,
as the complexity and demand for AI systems grow, there is a need to incor-
porate more sophisticated reasoning and decision-making capabilities. This
is where the concept of neural-symbolic integration comes into play, blending
neural networks with symbolic logic.

PyNeuraLogic4 is a framework that stands out in this context by inte-
grating symbolic logic with neural networks. Traditional neural networks
excel at pattern recognition and learning from data, but often struggle with
tasks requiring structured reasoning and understanding complex relationships.

1https://www.tensorflow.org/
2https://pytorch.org/
3https://keras.io/
4https://github.com/LukasZahradnik/PyNeuraLogic

1

https://www.tensorflow.org/
https://pytorch.org/
https://keras.io/
https://github.com/LukasZahradnik/PyNeuraLogic

1. Introduction
Symbolic logic, on the other hand, is adept at handling such tasks due to its
rule-based nature and ability to represent knowledge explicitly.

By combining these two paradigms, PyNeuraLogic allows for the creation of
models that benefit from the strengths of both neural networks and symbolic
logic. This integration enables more robust AI systems capable of handling
tasks that require both learning from data and logical reasoning. For example,
in areas like knowledge graph completion or relational learning, where under-
standing the relationships between different entities is crucial, PyNeuraLogic
can provide significant advantages.

The purpose of this thesis is to develop a new domain-specific differen-
tiable functional language to support the PyNeuraLogic framework. The new
language aims to make problem declaration more intuitive and expressive,
while also preserving computational efficiency. To achieve this, the thesis will
review existing deep learning frameworks, provide a detailed description of
PyNeuraLogic, propose a new syntax and semantics and implement the syntax.

The following chapters will delve into the various aspects of deep learning
and deep relational learning, setting the stage for understanding the advance-
ments proposed in this thesis. Chapter 2 will provide an in-depth overview of
deep learning, covering the fundamental concepts, structures, and training
processes of neural networks. It will also discuss differentiable programming,
dynamic computation graphs, and existing frameworks.

2

Chapter 2
Deep Learning

Deep learning is a type of machine learning that uses artificial neural networks
to model complex patterns in data. It has become increasingly popular in
recent years due to its success in many fields such as image generation1,
natural language processing 2, and game playing 3.

Deep learning models, like convolutional neural networks (CNNs) and
recurrent neural networks (RNNs), have achieved remarkable results in previ-
ously difficult tasks for computers. This chapter will explore the basics of
neural networks, the concept of differentiable programming, and dynamic
computational graphs, and will review some popular frameworks used in deep
learning, including Haskell and PyTorch.

2.1 Neural Networks

2.1.1 Basic Concepts

Neural networks are computational models inspired by the structure of the
human brain. They consist of layers of interconnected nodes or neurons. Each
neuron takes some inputs, processes them, and passes the output to the next
layer of neurons. The simplest type of neural network is the feed-forward
neural network, where connections do not form cycles.[10]

2.1.2 Structure of Perceptron

The building block of a neural network is the perceptron. A perceptron takes
several numbers as inputs and produces a single number as the output. It
does this by calculating a weighted sum of the inputs and bias (typically
notated as 0th or (n+1)th input), and then applying an activation function.[10]

1E.g.: https://www.midjourney.com/
2E.g. https://chatgpt.com/
3E.g. https://deepmind.google/discover/blog/agent57-outperforming-the-human-atari-benchmark

3

https://www.midjourney.com/
https://www.midjourney.com/
https://chatgpt.com/
https://chatgpt.com/
https://deepmind.google/discover/blog/agent57-outperforming-the-human-atari-benchmark
https://deepmind.google/discover/blog/agent57-outperforming-the-human-atari-benchmark

2. Deep Learning

Figure 2.1: Perceptron design from [10]

aj = g(
n∑

i=0
wi,j · ai) (2.1)

A mathematical definition of perceptron can be shown, see Eq. 2.1. aj

is the output of perceptron. g is the activation function. wi,j is the weight
of input i. And ai is the input. This notation of the perceptron is designed
to clearly illustrate how to connect the output of this perceptron (or more
precisely, a layer of perceptrons) to the next layer of perceptrons.

2.1.3 Structure of Neural Networks

Feed-forward neural networks are organized into layers. The input layer
receives the initial data, the hidden layers process the data, and the output
layer produces the final result. Hidden layers apply non-linear transformations
to the data using activation functions. Common activation functions include
the sigmoid function, hyperbolic tangent (tanh), rectified linear unit (ReLU),
and others, see Fig. 2.2.

Common Types of Neural Networks

Multilayer Perceptrons (MLPs): These are simple feed-forward neural net-
works with one or more hidden layers. They are good for basic tasks but
struggle with complex data like images and sequences.
Convolutional Neural Networks (CNNs): CNNs are designed for processing
grid-like data such as images. They use convolutional layers to detect features
like edges, textures, and objects.

Recurrent Neural Networks (RNNs): RNNs are designed for sequence
data. They use feedback connections to process data that comes in sequences,
making them ideal for tasks like language modeling and time series prediction.

2.1.4 Training of Neural Networks

The process has 2 key steps: forward pass and backpropagation. Forward
pass calculates the output given simply by layer formulas. Backpropagation

4

................................... 2.1. Neural Networks

Figure 2.2: Activation functions from https://www.v7labs.com/blog/
neural-networks-activation-functions

takes the difference (Error) between the output and the desired output. Using
differentiation and chain rule the error is backpropagated to the weights in
each layer. These weights can be updated in the direction to improve the
output. [1]..1. Initialize the weights and biases of the network to small random values..2. Present a training example to the network’s input layer..3. Propagate the input forward through the network to compute the output

of each layer..4. Compare the network’s output to the desired output and calculate an
error value for each output neuron..5. Propagate the errors backward through the network, from the output
layer to the hidden layers..6. Use the backward propagated errors to update the weights and biases of
the network..7. Repeat steps 2-6 for each example in the training set, then repeat the
entire process for multiple epochs until the network converges

This process can be improved by batching, connection drop-outs, and several
methods to enhance gradient descent (for example using momentum).[1]

5

https://www.v7labs.com/blog/neural-networks-activation-functions
https://www.v7labs.com/blog/neural-networks-activation-functions

2. Deep Learning
2.2 Differentiable Programming

Differentiable programming is defined as "a programming paradigm in which
complex computer programs (including those with control flows and data
structures) can be differentiated end-to-end automatically, enabling gradient-
based optimization of parameters in the program." [2]

In other words, the parameters (e.g. weights in Neural Network) are found
automatically using differentiation. This is essential in deep learning because
it enables the use of backpropagation to train neural networks.

But differentiable programming generalizes the idea of neural networks to
any differentiable program. This means that any program, not just neural
networks, can be trained using gradient descent if it is differentiable. [2]

2.2.1 Automatic Differentiation

Automatic differentiation (AD, also auto-diff [2]) is a key component of dif-
ferentiable programming. It calculates derivatives of functions efficiently
and accurately. There are two main modes of auto-diff: forward mode and
reverse mode. Reverse mode is particularly useful for deep learning because
it computes the gradient of the output with respect to all inputs in a single
pass, which is essential for backpropagation. [18]

Both forward-mode and reverse-mode auto-diff rely on the fact that all
numerical computations can be decomposed into a sequence of elementary
operations, for which the derivatives are known. By applying the chain rule,
the derivatives of the overall function can be computed efficiently. [2]

Before automatic differentiation (auto-diff), researchers had to manually
compute gradients for functions they wanted to optimize, which was tedious
and demanded repeating with every function change. Auto-diff revolutionized
this process by allowing users to quickly and creatively experiment with
functions without deriving gradients manually.[2]

2.2.2 Applications

Differentiable programming allows the integration of machine learning models
into larger systems. For example, it can be used to optimize control systems,
solve differential equations, and even train neural networks within physical
simulations.[5]

2.3 Dynamic Computation Graphs

Dynamic computational graphs (DCGs) are a type of computational graph
(Neura network architecture) where the structure can change during runtime.

6

................................. 2.4. Existing Frameworks

This contrasts with static computational graphs, where the structure is fixed
before execution. [7]

DCGs provide flexibility and allow for more complex models that can
adapt to different inputs. They are particularly useful for tasks where the
input size or structure can vary, such as natural language processing with
variable-length sentences or dynamic batch sizes or where the graph structure
changes over time, such as in social networks where friendships evolve or in
financial networks where trading relationships change [8]

Frameworks like PyTorch and TensorFlow (in eager execution mode) sup-
port dynamic computational graphs. This means that the graph is constructed
on-the-fly as operations are called, which makes debugging and model devel-
opment easier and more intuitive.4

2.4 Existing Frameworks

2.4.1 PyTorch

PyTorch is an open-source deep learning framework developed by Meta AI
Research lab. It is known for its flexibility, ease of use, and support for
dynamic computational graphs. PyTorch builds the computational graph
on-the-fly, which makes the programming intuitive and easy to debug.

It also has a rich ecosystem of libraries for various tasks like computer vision
(torchvision), natural language processing (torchtext), and reinforcement
learning (stable-baselines3). PyTorch has a large and active community, with
many tutorials, forums, and resources available.5

2.4.2 TensorFlow

TensorFlow, developed by Google Brain, is another popular open-source deep
learning framework. It originally used static computational graphs but now
supports eager execution, which allows for creating dynamic computational
graphs similar to PyTorch.

TensorFlow is designed to be highly scalable and to have multi-platform
availability, from mobile devices to large-scale distributed systems. It includes
TensorFlow Extended (TFX), a production-ready platform for deploying
machine learning models, and TensorFlow Lite, a lightweight version for
mobile and embedded devices.6

4https://www.geeksforgeeks.org/dynamic-vs-static-computational-graphs-pytorch-and-tensorflow/
5https://pytorch.org
6https://www.tensorflow.org

7

https://www.geeksforgeeks.org/dynamic-vs-static-computational-graphs-pytorch-and-tensorflow/
https://www.geeksforgeeks.org/dynamic-vs-static-computational-graphs-pytorch-and-tensorflow/
https://pytorch.org
https://pytorch.org
https://www.tensorflow.org
https://www.tensorflow.org

2. Deep Learning
2.4.3 Haskell

Haskell is a purely functional programming language known for its strong
type system and expressive syntax. While not as widely used as Python
for deep learning, Haskell has frameworks like Grenade for building neural
networks.[4]

Haskell’s functional nature ensures immutability and referential trans-
parency, which allows reasoning about programs easier. Haskell’s type system
can catch many errors at compile-time, improving reliability. Its lazy eval-
uation allows for efficient computation and the handling of infinite data
structures.7

7https://www.haskell.org

8

https://www.haskell.org
https://www.haskell.org

Chapter 3
Deep Relational Learning

Existing relations between elements in a given set can be used as powerful
additional information in machine learning. Enhancing effective deep learn-
ing techniques with relational data is an innovative approach called Deep
Relational Learning.

Unlike traditional deep learning, which often works with unstructured data
like images and text, deep relational learning deals with data that has explicit
relationships and structures, such as social networks, knowledge graphs, and
databases. By understanding and leveraging these relationships, models can
make better predictions and provide deeper insights. [16]

This chapter will cover Graph Neural Networks, Relational Logic, and Lifted
Relational Neural Networks, providing an overview of how these techniques
are used in deep Relational Learning.

3.1 Graph Neural Networks

Graph Neural Network (GNN) is a type of neural network designed to work
directly with graph data structures. GNNs process data represented as graphs.
That means sets of nodes (or vertices) and edges (connections between nodes).
GNNs are powerful because they can capture the dependencies and relation-
ships between different nodes in the graph, making them ideal for tasks where
data is naturally structured as a graph. [19]

In a GNN, each node in the graph can be represented by a feature vector,
which contains information about the node. The edges hold information about
the relationship between nodes and can be represented by feature vectors
as well. The goal of a GNN is to learn a representation (embedding) for
each node that captures both its features and the features of its neighbors. [19]

GNNs typically work in layers, where each layer updates the node em-
beddings by aggregating information from neighboring nodes. This process
is known as message passing or neighborhood aggregation. After several
layers, the final node embeddings possess complex information including the
relational data. This network is basically an optimizable transformation of

9

3. Deep Relational Learning

Figure 3.1: Node embedding update [12]

all graph properties. [12]

The resulting set has the same graph structure but additionally contains
comprehensive data that can be used for various tasks like node classification,
link prediction, and graph classification. [12]

3.1.1 Types of GNNs. Graph Convolutional Networks (GCNs): These networks apply a convolution-
like operation to the graph. Each node updates its embedding based on
its neighbors’ embeddings and its own features. GCNs are popular for
semi-supervised learning tasks. [17].Graph Attention Networks (GATs): GATs use attention mechanisms to
weigh the importance of neighboring nodes differently. This allows the
model to focus on more relevant nodes during the aggregation process. [17].Graph Recurrent Networks (GRNs or GRNNs): These networks use
recurrent neural network architectures to handle dynamic and temporal
graphs, where the graph structure or node features change over time.
GRNs combine the advantage of RNNs on temporal data and GNNs on
graph data. [6, 9]

3.2 Relational Logic

Relational Logic is an extension of Propositional Logic that incorporates lin-
guistic features like constants, variables, and quantifiers. Unlike Propositional
Logic, simple sentences in Relational Logic have more structure, allowing for
expressions about multiple objects without listing them and the existence of
objects meeting certain conditions without specifying them. [3]

3.2.1 Uses in Machine Learning

Relational Logic is applied in machine learning to incorporate prior knowledge
and constraints into models, particularly in domains where the relationships

10

........................... 3.3. Lifted Relational Neural Networks

between entities are crucial, such as recommendation systems, natural lan-
guage understanding, and the semantic web.

By using logic-based formalism, Relational Logic allows machine learning
models to represent and reason about relationships and structured data,
capturing complex relational structures and dependencies present in the
data. This capability enhances the model’s ability to understand and process
interconnected information effectively. [13]

3.3 Lifted Relational Neural Networks

Lifted Relational Neural Networks (LRNNs) combine relational logic with
deep learning, providing a framework for learning weights of latent relational
structures. This method bridges the gap between symbolic reasoning and
neural computation. LRNNs allow for the learning of complex patterns in
relational data by lifting the reasoning process to a higher level of abstraction.
LRNNs are designed to handle data with rich relational structures, making
them suitable for tasks that traditional neural networks struggle with. [14]

In LRNNs, the neural network components are used to process the features
of entities and relationships, while the relational logic components handle the
structure and dependencies. This combination allows LRNNs to learn both
the features and the relational patterns in the data.

For example, in a social network, an LRNN can learn to predict new
friendships based on both the features of individuals (like interests and ac-
tivities) and the existing friendship patterns. These physical network can
be transformed into relationship graphs to be processed by neural network. [15]

11

12

Chapter 4
PyNeuraLogic

The main subject of this thesis is enhancing the already existing framework
called PyNeuraLogic1. At the moment, the newly implemented differentiable
functional language has not been yet integrated into the official PyNeuraLogic
version for possible further development. Instead, a new GitHub project has
been created, as a forked version of PyNeuraLogic framework, and can be
found at https://github.com/krausjakub/PyNeuraLogicFork

The chapter aims to comprehensively explain the structure, workflow, fea-
tures, and usage of the original untouched framework since the enhancement
directly builds upon this concept later in Chapter 5.

4.1 Introduction

PyNeuraLogic is a framework, that builds upon the concept of Deep Learning
with Relational Logic Representations[13]. It combines the strengths of neural
networks and logical reasoning to tackle complex problem-solving tasks. It
allows for the seamless integration of logic programming with deep learning,
making it possible to build models capable of handling both structured and
unstructured data. This unique approach is particularly useful in fields such
as natural language processing, knowledge graph completion, and bioinfor-
matics, where there is a need to incorporate domain-specific knowledge along
with data-driven learning.

The primary motivation behind the development of PyNeuraLogic was to
create a framework that bridges the gap between symbolic AI and machine
learning. Traditional deep learning frameworks like TensorFlow2 and Py-
Torch3 are excellent for processing numerical data and learning from large
datasets. However, they often fall short when it comes to incorporating
logical rules and domain-specific knowledge. PyNeuraLogic addresses this
limitation by allowing users to define logical rules that guide the learning

1https://github.com/LukasZahradnik/PyNeuraLogic
2https://www.tensorflow.org/
3https://pytorch.org/

13

https://github.com/krausjakub/PyNeuraLogicFork
https://github.com/krausjakub/PyNeuraLogicFork
https://github.com/LukasZahradnik/PyNeuraLogic
https://www.tensorflow.org/
https://pytorch.org/

4. PyNeuraLogic
process, thereby enhancing the expressiveness and flexibility of the models.
This positions PyNeuraLogic uniquely among deep learning frameworks, offer-
ing a more holistic approach to solving complex problems that require both
reasoning and learning capabilities.

4.1.1 Structure of Framework

The framework itself can be in a way divided into two main parts. The
PyNeuraLogic front end (Python) and NeuraLogic back end (java). Neu-
raLogic was created first, but since most of AI development took place in
Python, the idea of creating Python front end, which would further enhance
the original framework, rose up. In following section, both parts will be
discussed separately.

4.2 Python Front End

In this section, we will discuss the most important structures of PyNeuraLogic.
Those will play crucial role later in Chapter 5.

4.2.1 Rule

Rules are fundamental in the PyNeuraLogic framework, serving as the pri-
mary method for defining relationships and transformations within the data.
In the context of neural-symbolic learning, rules are used to encode logical
relationships that govern how different entities in the dataset interact. These
rules are typically expressed in a declarative form, specifying what needs to
be done without detailing the procedural steps to accomplish it.

In PyNeuraLogic, rules can be used to capture both direct and indirect
relationships between entities. For instance, a simple rule might specify that
if entity A is related to entity B, and entity B is related to entity C, then
entity A should have some inferred relationship with entity C. This kind
of rule allows the framework to infer new relationships based on existing
ones, leveraging the power of logical reasoning to enhance the learning process.

The integration of rules into the neural network training process allows
PyNeuraLogic to combine symbolic reasoning with deep learning. This com-
bination is particularly powerful for tasks that involve structured data, such
as social network analysis or molecular property prediction, where the rela-
tionships between entities are as important as the entities themselves.

Rules also play a significant role in defining the model architecture in
PyNeuraLogic. By specifying how different parts of the model should interact,
rules help to guide the learning process and ensure that the learned repre-
sentations respect the underlying logical structure of the data. This leads

14

.................................. 4.2. Python Front End

to models that are not only more accurate but also more interpretable, as
the rules provide a clear explanation of how the model arrives at its predictions.

4.2.2 Dataset

The dataset component in PyNeuraLogic is designed to handle learning sam-
ples formatted in a logic-based manner, allowing users to fully leverage the
expressive power of logical constructs. The framework supports datasets that
include relational data, which can be represented using logical facts and rules.
This capability is particularly useful for domains where the data naturally
forms complex graphs or networks, such as social networks, biological net-
works, and knowledge graphs.

A PyNeuraLogic dataset is typically composed of samples that encapsulate
the relationships between entities. Each sample can include a set of facts that
describe the properties of individual entities and the relationships between
them. These facts are often represented as tuples or logical statements, pro-
viding a flexible and structured way to represent the data.

For instance, in a social network dataset, a sample might include facts
about individuals (nodes) and their friendships (edges). Each individual could
be described by a set of attributes, such as age, gender, and interests, while
friendships could be represented as binary relationships between nodes. This
structured representation allows the dataset to capture both the attributes of
entities and the complex web of relationships that connect them.

The PyNeuraLogic framework provides tools for managing and manipulat-
ing datasets, including functions for adding, removing, and querying samples.
These tools make it easy to preprocess the data, construct training and test
sets, and perform other common data management tasks.

One of the key advantages of using a logic-based dataset in PyNeuraLogic
is the ability to perform logical inference. By defining rules that govern the
relationships between entities, the framework can infer new facts from existing
ones, enriching the dataset and improving the performance of the learning
algorithms. This capability is particularly useful for tasks that require rea-
soning about the data, such as predicting missing links in a knowledge graph
or identifying hidden patterns in a social network.

4.2.3 Template

The template component in PyNeuraLogic is used to define the overall struc-
ture and architecture of the neural network model. A template specifies how
the different parts of the model should interact, providing a blueprint for
constructing the neural network. This allows users to design complex models

15

4. PyNeuraLogic
that leverage both logical reasoning and neural network learning.

Templates in PyNeuraLogic are designed to be flexible and modular, allow-
ing users to define custom architectures that suit their specific needs. Each
template can include a combination of neural network layers and logical rules,
providing a powerful way to integrate symbolic reasoning with deep learning.
By specifying the structure of the model in a template, users can ensure that
the neural network respects the logical relationships in the data and performs
the desired computations.

For example, a template might include a series of convolutional layers to
process the input features, followed by a set of rules to combine the features
and infer new relationships. This approach allows the model to capture both
the local patterns in the data and the global structure of the relationships,
providing a comprehensive representation of the input.

The framework provides tools for creating and managing templates, mak-
ing it easy to design and modify the model architecture. Users can define
templates using a simple and intuitive syntax, specifying the neural network
layers, logical rules, and other components that make up the model. This
allows for a clear and structured representation of the model architecture,
ensuring that the neural network is correctly configured and optimized for
the learning task.

Templates also play a crucial role in the training process, guiding the
learning process and ensuring that the model learns the desired patterns and
relationships. By defining the structure of the model in a template, users can
control how the different parts of the neural network interact and ensure that
the learned representations respect the logical relationships in the data.

4.2.4 Query

Queries in PyNeuraLogic are used to specify the learning targets or outputs
that the model is expected to predict. A query typically includes a logical
statement that defines the target relationship or property that the model
should learn to predict. By specifying the queries, users can guide the learning
process and ensure that the model focuses on the relevant aspects of the data.

In the context of neural-symbolic learning, queries are essential for defin-
ing the learning objectives and evaluating the model’s performance. They
allow the framework to connect the input data (examples) with the expected
outputs, providing a clear and structured way to represent the learning task.

For instance, in a social network analysis task, a query might specify that
the model should predict whether two individuals are friends based on their
attributes and connections. This query would be represented as a logical

16

.................................. 4.2. Python Front End

statement that relates the input facts (attributes and connections) to the
target relationship (friendship). By defining the queries in this way, PyNeu-
raLogic can use logical reasoning to infer the target relationships and guide
the learning process.

The framework provides tools for defining and managing queries, making
it easy to specify the learning targets and evaluate the model’s performance.
Users can define queries using a simple and intuitive syntax, specifying
the logical relationships and properties that the model should learn to pre-
dict. This allows for a clear and structured representation of the learning
objectives, ensuring that the model focuses on the relevant aspects of the data.

Queries are also used during the evaluation process to measure the model’s
performance. By comparing the predicted outputs with the true targets
specified by the queries, users can assess the accuracy and effectiveness of
the model. This provides a clear and objective way to evaluate the model’s
performance and identify areas for improvement.

4.2.5 Example

In the PyNeuraLogic framework, examples are used to represent the input
data that the model will learn from. An example typically includes a set
of logical facts that describe the properties and relationships of the entities
in the dataset. These facts are used to construct the input to the neural
network, providing the information needed to perform the learning task.

Examples in PyNeuraLogic are designed to be flexible and expressive, al-
lowing users to represent a wide range of data types and structures. Each
example can include facts about individual entities, such as their attributes
and properties, as well as relationships between entities. This allows the
framework to capture both the local features of entities and the global struc-
ture of the data.

For instance, in a knowledge graph, an example might include facts about
different entities (nodes) and their relationships (edges). These facts could
describe the types of entities, their attributes, and the connections between
them. By representing the data in this way, PyNeuraLogic can leverage the
power of logical reasoning to infer new relationships and improve the accuracy
of the model.

The framework provides tools for creating and managing examples, making
it easy to preprocess the data and construct the input for the neural network.
Users can define examples using a simple and intuitive syntax, specifying the
facts and relationships that make up each example. This makes it easy to
represent complex data structures and ensure that the input to the model is

17

4. PyNeuraLogic
accurate and consistent.

Examples are also used in the training process to provide the input data
for the neural network. During training, the model uses the facts in each
example to learn the patterns and relationships in the data. This allows
the model to make accurate predictions and perform well on the learning task.

4.3 Java Back End

The NeuraLogic back end is the core computational engine of the PyNeu-
raLogic framework. Written in Java, the back end is optimized for handling
the intensive processing tasks required for neural-symbolic learning. It is
responsible for the execution of logical inferences, the training of neural
networks, and the efficient management of large and complex datasets.

NeuraLogic’s back end processes include the evaluation and optimization of
logical rules, the execution of graph-based computations, and the application
of machine learning algorithms to extract patterns from data. The Java
implementation ensures that these tasks are performed efficiently, leveraging
Java’s robust performance capabilities and its well-established libraries for
data processing and parallel computation.

In addition to handling the core computational tasks, the NeuraLogic
back end also manages the integration of neural network components with
logical inference mechanisms. This involves combining symbolic reasoning
with sub-symbolic learning, allowing the framework to handle complex rela-
tional data and perform sophisticated inference tasks. The back end’s design
ensures that the computational workload is distributed effectively, providing
scalability and robustness for large-scale neural-symbolic learning applications.

By dividing the responsibilities between the front end and the back end,
PyNeuraLogic allows users to benefit from the ease of use and flexibility of
Python, while relying on the performance and computational power of Java
for the heavy lifting. This separation ensures that the framework can handle
both the complexity of logical reasoning and the demands of deep learning,
making it a versatile tool for advanced AI research and development.

4.3.1 Internal Structure

The NeuraLogic backend is organized into several modular packages, each
responsible for different aspects of the framework’s functionality, facilitating
efficient development, testing, and maintenance. The primary packages in-
clude Algebra, CLI, Drawing, Learning, Logging, Logic, Neural, Neuralization,
Parsing, Pipelines, Settings, Utilities, and Workflow. The Algebra package

18

....................................4.3. Java Back End

handles essential mathematical operations and data structures, forming the
foundation for numerical computations. The Logic package provides core
logic programming capabilities, including a subsumption engine for relational
logic grounding and logical reasoning. The Neural package focuses on neu-
ral network computations and deep learning tasks, while the Neuralization
package converts logical structures into neural networks, integrating symbolic
reasoning with sub-symbolic learning. The Parsing package uses ANTLR to
interpret the NeuraLogic language, ensuring correct integration of user-defined
logical rules. The Pipelines package offers tools for creating machine learn-
ing workflows, and the Workflow package provides components for typical
NeuraLogic tasks such as data preprocessing, model training, and evaluation.
Additional packages include CLI for command-line interaction, Drawing for
visualizations, Learning for supervised machine learning, Logging for utilities,
Settings for configuration, and Utilities for generic operations like serialization
and benchmarking.

Combination, Transformation and Aggregation

In the NeuraLogic framework, the concepts of Combination, Transformation,
and Aggregation play crucial roles in the processing and manipulation of data
within neural-symbolic learning models. These operations are fundamental
for defining how data is combined, transformed, and aggregated throughout
the learning process, enabling the integration of logical reasoning with neural
network computations.

Combination refers to the process of integrating multiple inputs or features
into a single cohesive representation. In NeuraLogic, this is often done using
logical rules that specify how different pieces of data should be combined.
For example, combining features from multiple nodes in a graph to form a
single node representation. This operation is essential for creating richer and
more informative representations from the input data, allowing the model to
capture complex relationships and dependencies.

Transformation involves applying a function to data to change its represen-
tation or structure. In NeuraLogic, transformations are used to map input
features to new spaces, often through neural network layers or other mathe-
matical functions. For instance, a transformation might involve applying a
linear transformation followed by a non-linear activation function to a feature
vector. This allows the model to learn and represent complex patterns in the
data. Transformations are key to the flexibility and power of neural networks,
enabling them to learn intricate mappings from inputs to outputs.

Aggregation is the process of combining multiple data points into a single
summary statistic or representation. In the context of NeuraLogic, aggrega-
tion might involve summing, averaging, or applying other statistical operations
to features from multiple nodes or edges in a graph. This is particularly
important in graph neural networks, where the information from neighboring

19

4. PyNeuraLogic
nodes needs to be aggregated to update the representation of a given node.
Aggregation allows the model to distill relevant information from a potentially
large and complex set of inputs, making it manageable and useful for further
processing.

20

Chapter 5
Functional Language Proposition

5.1 Need of New Syntax

Although PyNeuraLogic1 and its predecessor, NeuraLogic2, are highly effec-
tive frameworks, there is room for further enhancement. The existing syntax
is quite capable and supports essential features for integrating neural networks
with logical reasoning. However, improving it to be more user-friendly and
intuitive would greatly benefit users. The current syntax, while functional,
can sometimes be challenging for users to write and debug, especially for
those new to the framework.

To address these challenges, there was a need to develop a new syntax that
simplifies and enhances the user experience. This newly proposed syntax aims
to be more straightforward, making it easier to write and understand code.
It will introduce additional ways to evaluate expressions, offering greater
flexibility in model definition. Moreover, it will include better error correction
capabilities, helping users to quickly spot and fix simple input mistakes. These
improvements are expected to make the development process smoother and
aid in creating more reliable models.

Even though the primary goal is to reuse as much of the original source
code as possible, the proposed syntax will bring some changes to the internal
evaluation processes of the framework, not just its appearance. By optimizing
how expressions are evaluated, the new syntax will prepare the framework
for future enhancements and scalability. The well-organized structure of this
new syntax will ensure that PyNeuraLogic can easily adapt to new features
and improvements, making it more versatile for tackling various relational
logic learning problems.

Initially, there were multiple approaches considered for this new syntax. In
the following sections, we will look into these different approaches and discuss
their pros and cons, providing a comprehensive understanding of why the

1https://github.com/LukasZahradnik/PyNeuraLogic
2https://github.com/GustikS/NeuraLogic

21

https://github.com/LukasZahradnik/PyNeuraLogic
https://github.com/GustikS/NeuraLogic

5. Functional Language Proposition
chosen path is expected to be the most beneficial.

5.2 Approach Analysis

When developing a new syntax for a library, one of the core principles is
ensuring simple and efficient usage. This is particularly crucial for open-source
libraries, as they often begin with limited functionality and expand gradually
based on their popularity and user feedback. However, if the syntax is made
too simple, it might later pose challenges when adding new functionalities,
which could be difficult to address. Creating a syntax that balances simplicity
and future expandability is vital. For open-source projects, the initial design
choices can significantly impact how easily the library can grow and adapt
to new demands. Too much simplicity might limit the library’s capabilities
in the long run, making it harder to implement advanced features without
significant restructuring. On the other hand, a more complex initial design
might deter new users due to its steep learning curve.

5.2.1 Editing Python

One straightforward approach considered was to introduce completely new
operators (and possibly operands), that have currently no usage in Python.
For instance, let’s say, we would like to express, that certain state Y can be
computed from any state X, that already has an existing relation with the
state Y .

(State(X)R.relation(X, Y) → State(Y)

Then, such information could be encoded very intuitively in Python with
respect to the rest of the framework as follows.

((R.state(V.X), R.relation(V.X, V.Y)) → R.state(V.Y)

Apart from the right arrow, there are several other symbols that can be
easily typed on an English keyboard but currently have no specific use, mak-
ing them potential candidates for new operators.

The most significant advantage of this approach is its clarity within Python
code. Such operations would be unmistakable, and once would user un-
derstands their purpose, he would likely remember them. Since functional
programming syntax tends to be straightforward, only a few new operators
would be needed, preventing users from feeling overwhelmed.

While this option initially appears promising, implementation challenges
quickly become evident. To interpret code, Python first creates a parse tree

22

.................................. 5.2. Approach Analysis

using its parser PEG. The instructions for PEG are contained in a grammar
specification file, where new operators would have to be declared. Following
this, Python converts the parse tree into an Abstract Syntax Tree (AST) for
easier manipulation. This step would require modifying the AST structure
and defining new processes, which would involve using C, the language of
Python’s core.[11]

Then, the real troubles would begin with optimization. Python compiles
the AST into Bytecode for efficient execution. Creating a custom operator
necessitates custom Bytecode, which is a complex task requiring a deep un-
derstanding of Python’s compilation process. Additionally, modifications to
the Symbol Table would be necessary for the compilation process to recognize
and handle new operators properly.[11]

For those reasons, such an approach would not be suitable for developing
new Python syntax. Even if all the steps described above were implemented
successfully, the portability of the code would be ruined. Thus, we must
consider alternative approaches.

5.2.2 File Encoding

Another promising approach is to write the syntax into a non-executable
file and then create a custom parser to interpret and implement the desired
functionality. This method opens up many possibilities, as it removes the
limitations imposed by Python’s native syntax and allows us to define our
own. Additionally, all the code could be written in Python, requiring only
basic knowledge of the language internals, or we could use an existing parser
to streamline the process.

This approach, while advantageous, also presents its own set of negatives.
One major downside is that it can make using the library more cumber-
some. Modern Integrated Development Environments (IDEs) offer numerous
advanced features, such as auto-complete, error detection, and hover-hints,
which enhance the coding experience and efficiency. If we rely on custom syn-
tax in a non-executable file, we lose the immediate benefits of these features.
To address this, we would need to develop a new editor capable of supporting
our custom syntax, which would be a substantial undertaking.

Finally, we would have to ensure, that the custom syntax is integrated
seamlessly with the rest of the library. This involves thorough testing and
validation to ensure that the new syntax performs as expected and does not
introduce unexpected bugs or inefficiencies. While this approach requires
careful planning and execution, it offers a flexible and powerful way to extend
the capabilities of PyNeuraLogic without being constrained by Python’s
existing syntax.

23

5. Functional Language Proposition
5.2.3 Enhancing Python Syntax

The final approach considered for developing the new syntax for PyNeuraLogic
draws inspiration from other well-known deep learning libraries, partly de-
scribed in Chapter 5. This approach involves enhancing the existing Python
syntax by editing current operators and adding new functionality through
magic functions, also known as dunder methods. Magic functions are invoked
automatically by Python when specific operators are used, and they can be
customized for our own classes.

This method offers several advantages. Firstly, it maintains the user-
friendly nature of Python. Users are already familiar with this approach
and expect such functionality in advanced libraries. By leveraging magic
functions, we ensure that users can utilize the full range of IDE features, such
as auto-complete, error detection, and code hints, which enhance the develop-
ment experience. Moreover, this approach does not require any modifications
to Python’s internal functionalities, ensuring that the code remains easily
portable and compatible across different devices and environments.

A significant benefit of using magic functions is the preservation of the
correct order of operations. Python naturally handles the precedence of
common operators such as addition and multiplication, so developers do
not need to manually enforce these rules. This ensures that operations are
performed in the correct sequence without additional intervention.

However, this approach also has potential drawbacks. One notable disad-
vantage is that overloading operators can sometimes confuse users. The same
operators can behave fairly differently depending on the types on which they
are invoked. For example, an addition operator might perform numerical
addition on integers but could concatenate strings. This variability can lead
to misunderstandings and errors if users are not fully aware of how operators
are overloaded in specific contexts.

For all the reasons mentioned above, this last approach has been chosen as
most suitable for the needs of this thesis, and later in this chapter, we are
going to delve deeper into how this approach has been implemented while
exploring specific examples.

5.3 Storing and managing input data

One of the objectives of this thesis was to allow for more complex and general
data encoding. Originally, those data would be passed into list-like structures
and attached to specific data class (typically Template). Those would be
served into appropriate NeuraLogic3 core functions, where they would serve

3https://github.com/GustikS/NeuraLogic

24

https://github.com/GustikS/NeuraLogic

............................. 5.4. Data Processing and Analysis

as a template for creating the required neural network structure. A similar
approach has been preserved, but this time, entities would be first of all folded
into a tree structure, and then they would undertake further processing. The
main reason for that was the necessity of encapsulation of more complex
information.

5.3.1 Functional Tree

A tree structure is a widely-used data organization method that resembles
a hierarchical tree, with nodes representing elements connected by edges.
The core properties of a tree include a single root node, which acts as the
starting point, and child nodes that branch out from parent nodes, forming
a connected, acyclic graph. Since the tree structure was needed for elegant
encapsulation of data functional properties, it had been named Functional
Tree and in this thesis, we will refer to it as such. Its specific implementation
can be found in the framework in the file tree.py4.

Functional Tree has been implemented as a class, where each instance is
a node. Each node includes information, about the operation that needs to
be performed on its child nodes, as well as a reference to the left and right
ones. A new tree is created either by adding Rules, other trees, or by calling
a function from the Function Container.

5.3.2 Functional Container

Functional Container is another class, that can be found in the same file
as Functional Tree, and as its name suggests, it serves as a container for
all different mathematical operations applicable in the framework. Actually,
there are over thirty of them, even though this number contains some of those
more than once since they can be applicable to different stages of evaluation.

The container (in examples frequently referred to simply as F) also serves
as an indicator for the user, that functions from within the Java back end
are being used. That is important since one of the next steps in developing
the framework will be the addition of the possibility to use other evaluating
modules or packages, such as Torch5.

5.4 Data Processing and Analysis

The role of a Functional Tree is not only storing information but also analyzing
and handling it. Before anything else, a tree instance is inspected to assure
the correctly specified problem. If the user doesn’t follow syntax rules, an

4https://github.com/krausjakub/PyNeuraLogicFork/blob/master/neuralogic/
core/constructs/function/tree.py

5https://github.com/pytorch/pytorch

25

https://github.com/krausjakub/PyNeuraLogicFork/blob/master/neuralogic/core/constructs/function/tree.py
https://github.com/krausjakub/PyNeuraLogicFork/blob/master/neuralogic/core/constructs/function/tree.py
https://github.com/pytorch/pytorch

5. Functional Language Proposition
appropriate exception is raised with an additional explanation. During this
operation, some of the functions are automatically edited to match their role
in processed problems. And by that, it is meant the association of function
with Combination, Transformation, or Aggregation. The concept of those
three and their role in the framework was previously explained in Chapter
4.3.1. This would not be necessary if all functions had only one association
possible, but that is unfortunately not true. Just softmax by itself can be
present in any of those forms, or perhaps all of them at once. The right
association is determined by the recursive analysis of a given tree from root
to leaves.

5.4.1 Functional Call Simulator

When developing PyNeuraLogic, we aimed to provide the flexibility of calling
functions using both square brackets and parentheses, such as F.avg[] and
F.avg(), where F is an instance of Function Container. To achieve this, it was
necessary to create the Function Call Simulator class. Reasoning of this claim
would not be very beneficial for this thesis and thus is not described here,
but just mentioning the fact itself could be handy for anyone who tries to
understand the framework better. Finding out this information from the code
itself is quite challenging because the way the class is implemented represents
a certain trick in Python, that the average user rarely encounters.

5.5 Examples

There is a rich variety of beautiful examples described in detail in PyNeu-
raLogic6 and NeuraLogic7 GitHub as well as in its official documentation8.
Together, they cover a set of diverse complex problems and show where the
framework’s greatest strength lies. Due to the main purpose of the thesis, the
creation of a new language, in this chapter we will discuss two new smaller
examples because on those the syntax is easier to understand. Only snippets
of code will be displayed, but in the end of each example, there will be a
reference to the executable jupyter notebook with the rest of the code. All
figures in this chapter were created using PyNeuraLogic drawing functions.

5.5.1 Example 1: Four Nodes

Let’s say we have four nodes: A, B, C and D. We know the value of the first
three of those, and we want to know the value of the fourth. Example and
query must be added to the dataset.
dataset . add_example ([R.a[3], R.b[5], R.c[2]])
dataset . add_queries ([R.d[1]])

Listing 5.1: Example 1: Assignment

6https://github.com/LukasZahradnik/PyNeuraLogic/tree/master/examples
7https://github.com/GustikS/NeuraLogic/tree/master/Resources/datasets
8https://pyneuralogic.readthedocs.io/en/latest/index.html

26

https://github.com/LukasZahradnik/PyNeuraLogic/tree/master/examples
https://github.com/GustikS/NeuraLogic/tree/master/Resources/datasets
https://pyneuralogic.readthedocs.io/en/latest/index.html

...................................... 5.5. Examples

Following the logic paradigm, we declare, that value of D can be computed
using first three nodes. We can now decide the way, we want them to be
combined, if we want to transform the combined output somehow and how
are going to be all examples that match the demanded definition aggregated.
There is only one such occurrence in this example, so defining aggregation is
useless. The rule that contains all the information is handed to the template,
drawn in Figure 5.1.
template += (R.d <= (x:=R.a, y:= R.b, z:=R.c)) >> F.avg[F

.relu(x + y + z)]

Listing 5.2: Example 1: Definition

Figure 5.1: Example 1: Template

That being done, the problem is correctly defined and the dataset can be
built. The neuralogic evaluator will then call on it its train method, so the
neural network can hopefully learn appropriate weights. The structure of
neurons, their values and operations can be displayed using the dataset’s
ability to draw itself. In the following Figure 5.2 we can indeed see three
Fact neurons being combined into one Rule neuron using sum. On Rule,
neuron is applied ReLu function, which does not affect its value, and finally
non-linearity is applied to the final Atom neuron in the presence of hyperbolic
tangent. The final value of Neuron is as expected 1. v

5.5.2 Example 2: Graph

In the first example, there was no space to use the concept of Aggregation. In
the problem declaration, we specified exactly which elements should be used
to compute output. Example 2 will be declared truly in logic programming
paradigm, and relations between entities will be described by general variables.
The encoded structure is a directed graph with three nodes: A, B and C.
Some of the nodes are connected via edges.

train_dataset . add_examples (
[

27

5. Functional Language Proposition

Figure 5.2: Example 1: Dataset

[
R.node(C.A)[1], R.node(C.B)[2], R.node(C.C)

[3],
R.edge(C.A, C.B)[5], R.edge(C.B, C.A)[5], R.

edge(C.A, C.C)[5], R.edge(C.C, C.A)[5]
]

]
)

train_dataset . add_queries ([
R. predict (C.A)["w3": 1]

])

Listing 5.3: Example 2: Assignment

What also changed is the query. The value that we are trying to compute
is not node A, but some abstract representation prediction, which takes node
A as an argument (in a way). Let’s add evaluation rules to the template.

template += (R. predict (V.X) <= F.sum[F. identity (F.avg(
[R.node(V.Y)["w1": 1], R.edge(V.Y, V.X)["w2": 1]]))
])

Listing 5.4: Example 2: Definition

The Listing 5.4 is really just a logical rule, that can be in this example
applied to two neurons. Those are supposed to be aggregated by a sum. And
their individual values are computed by combining the right edges with the
right nodes using the function average. The relations and values got suddenly
much more complicated, but luckily, the framework drawing functions are
again able to capture all relations in a very clear way.

Now let’s try to calculate the value of representation predict(A).

28

...................................... 5.5. Examples

Figure 5.3: Example 2: Templpate

predict(A) = avg [(node(B) · w1), (edge(A, B) · w2)]
+ avg [(node(C) · w1), (edge(A, C) · w2)]

predict(A) = avg[2, 5] + avg[3, 5]
predict(A) = 3.5 + 4 = 7.5

As we can see in Figure 5.4, the value of Aggregation neuron truly matches
the predicted output.

Figure 5.4: Example 2: Dataset

Full example can be found at https://github.com/krausjakub/PyNeuraLogicFork/
blob/master/examples/MyExamples/VariableExample.ipynb.

29

https://github.com/krausjakub/PyNeuraLogicFork/blob/master/examples/MyExamples/VariableExample.ipynb
https://github.com/krausjakub/PyNeuraLogicFork/blob/master/examples/MyExamples/VariableExample.ipynb
https://github.com/krausjakub/PyNeuraLogicFork/blob/master/examples/MyExamples/VariableExample.ipynb
https://github.com/krausjakub/PyNeuraLogicFork/blob/master/examples/MyExamples/VariableExample.ipynb

30

Chapter 6
Conclusions

In this work, we proposed new language for a machine learning library, that
further enhances it’s Lifted Relational Neural Network’s properties. Several
new approaches of declaring computational problems were introduced, while
the old ones were kept preserved. Part of the unnecessary process of function
specification was left on automatic background analysis, yet again, the old
way stayed available. Instead of following strict declaration rules, users can
now use functions more dynamically, since the support for interaction between
different data types was hugely improved.

Altogether, the code is now clearer, more intuitive, super versatile, dynamic,
syntax forgiving and transparent. It’s computational efficiency stayed un-
harmed, and it’s tree structure is much more open to any future development,
including possible use of different, better optimized functions, which could
lead to computation speed up.

Smaller open source libraries usually require constant development, ideally
from multiple people, so they can keep up with their commercial rivals. For
that reason, it’s ability to quickly pick up stable audience is crucial. We kept
this idea in mind during the language development, and now we believe, that
any new user with basic deep learning knowledge, could figure out the syntax
at first glance.

Development of the framework turned out to be beneficial not only for
potential new audience, but especially for myself, since it’s cross platform
nature, deep roots in difficult scientific field, volume and versatility, led me
into number of great challenges, which only had been overcome with great
effort, using everything I have been taught in previous years. And for that
opportunity I am most thankful.

31

32

Bibliography

[1] Machine Learning For Artists. How neural networks are trained —
ml4a.github.io. https : / / ml4a . github . io / ml4a / how _ neural _
networks_are_trained/. [Accessed 24-05-2024].

[2] Mathieu Blondel and Vincent Roulet. The Elements of Differentiable
Programming. 2024. arXiv: 2403.14606 [cs.LG].

[3] Michael Genesereth. Introduction to Logic. 3rd ed. Synthesis Lectures on
Computer Science. San Rafael, CA: Morgan and Claypool Life Sciences,
Nov. 2016.

[4] Haskell, Grenade, and Deep Learning — Monday Morning Haskell —
mmhaskell.com. https://mmhaskell.com/machine-learning/deep-
learning. [Accessed 24-05-2024].

[5] Adrián Hernández and José Amigó. “Differentiable programming and
its applications to dynamical systems”. In: (Dec. 2019).

[6] Zhiyuan Liu and Jie Zhou. “Graph Recurrent Networks”. In: Intro-
duction to Graph Neural Networks. Cham: Springer International Pub-
lishing, 2020, pp. 33–37. isbn: 978-3-031-01587-8. doi: 10.1007/978-
3-031-01587-8_6. url: https://doi.org/10.1007/978-3-031-
01587-8_6.

[7] Franco Manessi, Alessandro Rozza, and Mario Manzo. “Dynamic Graph
Convolutional Networks”. In: CoRR abs/1704.06199 (2017). arXiv:
1704.06199. url: http://arxiv.org/abs/1704.06199.

[8] Franco Manessi, Alessandro Rozza, and Mario Manzo. “Dynamic graph
convolutional networks”. In: Pattern Recognition 97 (2020), p. 107000.
issn: 0031-3203. doi: https://doi.org/10.1016/j.patcog.2019.
107000. url: https://www.sciencedirect.com/science/article/
pii/S0031320319303036.

[9] Luana Ruiz, Fernando Gama, and Alejandro Ribeiro. “Gated Graph
Recurrent Neural Networks”. In: IEEE Transactions on Signal Process-
ing 68 (2020), pp. 6303–6318. issn: 1941-0476. doi: 10.1109/tsp.2020.
3033962. url: http://dx.doi.org/10.1109/TSP.2020.3033962.

[10] Stuart J Russell and Peter Norvig. Artificial intelligence: a modern
approach. Pearson, 2016.

33

https://ml4a.github.io/ml4a/how_neural_networks_are_trained/
https://ml4a.github.io/ml4a/how_neural_networks_are_trained/
https://arxiv.org/abs/2403.14606
https://mmhaskell.com/machine-learning/deep-learning
https://mmhaskell.com/machine-learning/deep-learning
https://doi.org/10.1007/978-3-031-01587-8_6
https://doi.org/10.1007/978-3-031-01587-8_6
https://doi.org/10.1007/978-3-031-01587-8_6
https://doi.org/10.1007/978-3-031-01587-8_6
https://arxiv.org/abs/1704.06199
http://arxiv.org/abs/1704.06199
https://doi.org/https://doi.org/10.1016/j.patcog.2019.107000
https://doi.org/https://doi.org/10.1016/j.patcog.2019.107000
https://www.sciencedirect.com/science/article/pii/S0031320319303036
https://www.sciencedirect.com/science/article/pii/S0031320319303036
https://doi.org/10.1109/tsp.2020.3033962
https://doi.org/10.1109/tsp.2020.3033962
http://dx.doi.org/10.1109/TSP.2020.3033962

6. Conclusions
[11] Pablo Galindo Salgado. Python Developer’s Guide. https://devguide.

python.org/internals/parser/. Accessed: 2024-05-23. 2023.
[12] Benjamin Sanchez-Lengeling et al. “A Gentle Introduction to Graph

Neural Networks”. In: Distill (2021). https://distill.pub/2021/gnn-intro.
doi: 10.23915/distill.00033.

[13] Gustav Šír. “Deep Learning with Relational Logic Representations”. In:
(2022). arXiv: 1706.03762 [cs.CL].

[14] Gustav Sourek et al. Lifted Relational Neural Networks. 2015. arXiv:
1508.05128 [cs.AI].

[15] Gustav Šourek, Filip Železný, and Ondřej Kuželka. “Beyond graph
neural networks with lifted relational neural networks”. In: Machine
Learning 110.7 (June 2021), pp. 1695–1738. issn: 1573-0565. doi: 10.
1007/s10994-021-06017-3. url: http://dx.doi.org/10.1007/
s10994-021-06017-3.

[16] Werner Uwents et al. “Neural networks for relational learning. an
experimental comparison”. In: Machine Learning 82.3 (2011), pp. 315–
349. issn: 0885-6125. doi: 10.1007/s10994-010-5196-5. url: http:
//link.springer.com/10.1007/s10994-010-5196-5.

[17] Petar Veličković et al. “Graph Attention Networks”. In: International
Conference on Learning Representations (2018). url: https://openreview.
net/forum?id=rJXMpikCZ.

[18] Fei Wang et al. “Demystifying differentiable programming: shift/re-
set the penultimate backpropagator”. In: Proc. ACM Program. Lang.
3.ICFP (July 2019). doi: 10.1145/3341700. url: https://doi.org/
10.1145/3341700.

[19] Lingfei Wu et al. Graph Neural Networks: Foundations, Frontiers, and
Applications. Singapore: Springer Singapore, 2022, p. 725.

34

https://devguide.python.org/internals/parser/
https://devguide.python.org/internals/parser/
https://doi.org/10.23915/distill.00033
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1508.05128
https://doi.org/10.1007/s10994-021-06017-3
https://doi.org/10.1007/s10994-021-06017-3
http://dx.doi.org/10.1007/s10994-021-06017-3
http://dx.doi.org/10.1007/s10994-021-06017-3
https://doi.org/10.1007/s10994-010-5196-5
http://link.springer.com/10.1007/s10994-010-5196-5
http://link.springer.com/10.1007/s10994-010-5196-5
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=rJXMpikCZ
https://doi.org/10.1145/3341700
https://doi.org/10.1145/3341700
https://doi.org/10.1145/3341700

Appendices

35

Contents of Attached CD

. pyneuralogic
The source code of the implemented library.. thesis. source

The source code of this thesis.. thesis.pdf
The thesis in PDF file.

37

	Introduction
	Deep Learning
	Neural Networks
	Basic Concepts
	Structure of Perceptron
	Structure of Neural Networks
	Training of Neural Networks

	Differentiable Programming
	Automatic Differentiation
	Applications

	Dynamic Computation Graphs
	Existing Frameworks
	PyTorch
	TensorFlow
	Haskell

	Deep Relational Learning
	Graph Neural Networks
	Types of GNNs

	Relational Logic
	Uses in Machine Learning

	Lifted Relational Neural Networks

	PyNeuraLogic
	Introduction
	Structure of Framework

	Python Front End
	Rule
	Dataset
	Template
	Query
	Example

	Java Back End
	Internal Structure

	Functional Language Proposition
	Need of New Syntax
	Approach Analysis
	Editing Python
	File Encoding
	Enhancing Python Syntax

	Storing and managing input data
	Functional Tree
	Functional Container

	Data Processing and Analysis
	Functional Call Simulator

	Examples
	Example 1: Four Nodes
	Example 2: Graph

	Conclusions
	Bibliography
	Appendices
	Contents of Attached CD

