
Czech Technical University in Prague

Faculty of Electrical Engineering
Department of Cybernetics

Multi-robot Systems

World management and

coverage path planning

in the MRS UAV System

Bachelor’s Thesis

Azat Mukhametshin

Prague, May 2024

Study programme: Open Informatics
Branch of study: Software

Supervisor: Ing. Pavel Petráček

ii

Acknowledgments

I would like to express my gratitude to my supervisor Ing. Pavel Petráček for his guid-
ance, responsiveness, and valuable improvements throughout the work on this thesis. I thank
my family for their unwavering support and encouragement during my studies. Also, I am
grateful to my friends, whose companionship and positivity brightened up my study time.
Last but not least, I want to thank me for believing in me, for doing all this hard work, for
never quitting and for being me at all times.

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

507203 Personal ID number: Mukhametshin Azat Student's name:

Faculty of Electrical Engineering Faculty / Institute:

Department / Institute: Department of Computer Science

Open Informatics Study program:

Software Specialisation:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

World management and coverage path planning in the MRS UAV System

Bachelor’s thesis title in Czech:

Správa světa a plánování cest s maximálním pokrytím v MRS UAV System

Guidelines:

The aim of this bachelor thesis is to extend the MRS UAV System [1] by adding (A) a world manager that allows for
configuring, visualizing, and interacting with a world and obstacles in the Robot Visualization (RViz) tool of ROS1, and (B)
planning of collision-free maximum coverage paths for UAVs [2-3] deployed in the world with obstacles (A). (C) The final
objective of the thesis is to perform an experiment with a UAV using (A) and (B) in an outdoor environment with obstacles.
The experiment shall be performed either in a virtual or real world (the domain will be specified by the supervisor based
on the availability of hardware UAV platforms).
(A) The world manager should:
1. contain a world representation using a non-convex polygonal structure in the horizontal plane and variable height bounds,
2. incorporate non-convex obstacles of different heights and sizes,
3. visualize GPS-based photomaps (in outdoor cases),
4. allow defining, loading, and saving of the world with the obstacles,
5. enable visualizing flight telemetry of UAVs,
6. allow interaction of both virtual and real UAVs within the same visualization (includes: individual and multi-UAV selection,
waypoint and key bindings navigation),
7. be integrated into the MRS UAV System [1].
(B) In addition, the task is to implement at least one path planning algorithm that maximizes the total coverage inside the
non-convex world specified in (A). This task should:
1. review and compare at least three state-of-the-art coverage path planning algorithms suitable for UAVs [2-3],
2. implement the most suitable coverage path planning algorithm within (A),
3. planning coverage paths inside the entire world (A) as well as in user-definable safe zones inside (A),
4. interactive specification and parametrization of the path planning algorithm inside RViz,
5. loading and saving the coverage paths for a given world,
6. offering the possibility for integration of other coverage path planning methods (e.g., [4]).
(C) Perform experiment with the MRS UAV System either in a virtual world using the Gazebo simulator or in the real world.
The experiment shall use (A) and (B) to fly an autonomous UAV along the planned path. The performance of the implemented
algorithm should be analyzed and discussed both qualitatively and quantitatively.

Bibliography / sources:

1. T. Baca, M. Petrlik, M. Vrba, V. Spurny, R. Penicka, D. Hert, and M. Saska, The MRS UAV System: Pushing the Frontiers
of Reproducible Research, Real-world Deployment, and Education with Autonomous Unmanned Aerial Vehicles, Journal
of Intelligent Robotic Systems, 2021.
2. E. Galceran, M. Carreras, A survey on coverage path planning for robotics, Robotics and Autonomous Systems, 2013.
3. T. M. Cabreira, L. B. Brisolara, P. R. Ferreira Jr., Survey on Coverage Path Planning with Unmanned Aerial Vehicles,
Drones, 2019.
4. D. Datsko, F. Nekovar, R. Penicka, M. Saska, Energy-aware Multi-UAV Coverage Mission Planning with Optimal Speed
of Flight, IEEE Robotics and Automation Letters, 2024.

© ČVUT v Praze, Design: ČVUT v Praze, VIC Page 1 from 2 CVUT-CZ-ZBP-2015.1

Name and workplace of bachelor’s thesis supervisor:

Ing. Pavel Petráček Multi-robot Systems FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 24.05.2024 Date of bachelor’s thesis assignment: 15.02.2024

Assignment valid until: 21.09.2025

___________________________ ___________________________ ___________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature

Head of department’s signature Ing. Pavel Petráček
Supervisor’s signature

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC Page 2 from 2 CVUT-CZ-ZBP-2015.1

v

Declaration

I declare that presented work was developed independently, and that I have listed all
sources of information used within, in accordance with the Methodical instructions for ob-
serving ethical principles in preparation of university theses.

Date

vi

Abstract

This thesis designs and implements a user interface for the MRS UAV System to
offer a more convenient way of interacting with the system. The user interface allows
managing (loading, changing, saving) world boundaries with inlying zones of danger
and safety without rebooting the system, controlling the Unmanned Aerial Vehi-
cles (UAVs) remotely, setting multiple navigation goals, visualizing UAV telemetry
and flight data, displaying satellite maps, and finally planning coverage paths in the
set-up zones defined as both convex and concave polygons with holes. In addition, the
thesis studies and compares four coverage path planning algorithms, further imple-
menting the three most suitable for UAVs and evaluating them on several problems
of varying complexity. The evaluation reveals the use cases of each algorithm and
helps better understand their advantages and drawbacks. The coverage path plan-
ning is integrated into the developed user interface and utilized in an experimental
deployment using a real UAV.

Keywords Unmanned Aerial Vehicles, Automatic Control, Coverage Path Planning

vii

Abstrakt

Tato práce navrhuje a implementuje uživatelské rozhrańı pro MRS UAV Systém,
které nab́ıźı pohodlněǰśı zp̊usob interakce se systémem. Uživatelské rozhrańı
umožňuje spravovat (nač́ıtat, měnit, ukládat) světové hranice s přilehlými zónami
nebezpeč́ı a bezpečnosti bez restartováńı systému, ovládat bezpilotńı prostředky na
dálku, nastavovat v́ıce navigačńıch ćıl̊u, vizualizovat telemetrii a letová data bezpi-
lotńıch prostředk̊u, zobrazovat satelitńı mapy a také plánovát cesty pokryt́ı v nas-
tavených zónách definovaných jako konvexńı i konkávńı polygony s d́ırami. Vedle
toho práce studuje a porovnává čtyři algoritmy plánováńı cest pokryt́ı, dále im-
plementuje tři z nich nejrelevantněǰśı pro bezpilotńı prostředky a vyhodnocuje je
na několika problémech r̊uznorodé komplexity. Vyhodnoceńı odhaluje př́ıpady užit́ı
každého algoritmu a pomáhá lépe pochopit jejich výhody a nevýhody. Plánováńı
trasy pokryt́ı je integrováno do vyvinutého uživatelského rozhrańı a využ́ıváno při
experimentálńım nasazeńı na skutečném bezpilotńım prostředku.

Kĺıčová slova Bezpilotńı Prostředky, Automatické Ř́ızeńı, Plánováńı Cesty Pokryt́ı

viii

Abbreviations

AI Artificial Intelligence

API Application Programming Interface

BFS Breadth-First Search

CPP Coverage Path Planning

DARPA SubT Defense Advanced Research Projects Agency Subterranean

DD Diagonal decomposition-based approach

DFS Depth First Search

EA Energy-aware algorithm

ENU East-North-Up

FCU Flight Controller Unit coordinate

GA Genetic Algorithm

GNSS Global Navigation Satellite System

GPS Global Positioning System

MD Morse decomposition-based approach

ROS Robot Operating System

RRT Rapidly-exploring Random Tree

RViz Robot operating system Visualization

SM Stride method

UAV Unmanned Aerial Vehicle

UI User Interface

UTM Universal Transverse Mercator

VRP Vehicle Routing Problem

ix

Contents

1 Introduction 1
1.1 Related works . 2
1.2 Statement on the usage of artificial intelligence tools 4

2 Coverage Path Planning 5
2.1 Exact cellular decomposition . 6

2.1.1 Diagonal decomposition-based approach 6
2.1.2 Morse decomposition-based approach . 8

2.2 Approximate cellular decomposition . 9
2.2.1 Energy-aware algorithm . 10
2.2.2 Strides-based approach . 11

3 Comparing CPP methods 12
3.1 Algorithmic analysis . 12
3.2 Performance . 14

3.2.1 Implementation details . 14
3.2.2 Evaluation . 14
3.2.3 Summary . 18

4 User Interface and World Manager 19
4.1 Safety Area Manager . 19
4.2 Control tool . 22
4.3 Waypoint planner . 23
4.4 UAV Status display . 24
4.5 Satellite overlay . 24
4.6 Coverage path planner . 25

5 Real-world experiments 28

6 Achieved objectives 31

7 Conclusion 32

8 References 33

CHAPTER 1. INTRODUCTION 1/34

Chapter 1

Introduction

Unmanned Aerial Vehicles (UAVs) attract a lot of attention for their omnipresent uti-
lization varying from capturing breathtaking aerial footage in the film industry and delivering
packages to monitoring agricultural fields for precision farming. One of the properties of UAVs
is the capability to obtain image surveys on a large area, which is highly useful in such fields,
as precision agriculture, ecological research and disaster management. The image-generating
problem is not trivial and can be decomposed into two different tasks: the coverage path
planning problem and map reconstruction from a set of overlapping geo-referenced images
recorded during the flight mission of the UAV. In this thesis, we focus on implementing dif-
ferent coverage path planning algorithms and comparing their efficiency and suitability for
integration into the MRS UAV System.

The MRS UAV System is multirotor UAV control and estimation system [8]. It makes
replicable research available through realistic simulations and real-world experiments. How-
ever, most of the interface provided by the system is represented by Robot Operating Sys-
tem (ROS) topics and services, which are extremely convenient to implement but not very
user-friendly for sending data to the program. For example, if a user wants to set a reference
point near an obstacle, they must know the coordinates of the reference precisely, or else an
UAV will fly in the wrong direction. This is where a convenient user interface plays a crucial
role. Since the user can see the position of set references or objects relative to others, the User
Interface (UI) lowers the risk of human error by reducing the cognitive load (see Fig. 1.1).
Furthermore, the user interface frees one from memorizing topic names and switching between
windows with complex and technical information.

(a) Setting point in the Robot operating system Visualization
(RViz).

(b) Setting the same point in a terminal
window.

Figure 1.1: Example of setting point in RViz and in a terminal

This thesis is organized as follows. In Sec. 2 the constraints of the MRS UAV System
and the considered algorithms are introduced. In Sec. 3 the analysis of the algorithms is pre-

CTU in Prague Department of Cybernetics

2/34 1.1. RELATED WORKS

sented, describing their advantages and drawbacks. Additionally, the implementations of the
algorithms are tested in the simulation. The results of the experiments are summarized and
discussed, revealing the most suitable algorithms in different cases. In Sec. 4 we design, imple-
ment and describe the functionality of the user interface, which allows for setting navigation
references and defining world boundaries as well as obstacles and objects within. It eliminates
the need for memorizing complex ROS topics. In Sec. 5 the behavior of the implemented
features is tested in real-world conditions. Finally, conclusions and further improvement op-
portunities are presented in Sec. 7.

1.1 Related works

The MRS UAV System is described in [8]. It is a highly modular, open-source system
streamlining replicable research in simulations as well as real-world experiments. The imple-
mentation is well-documented and actively maintained by the Multi-robot Systems Group at
the Faculty of Electrical Engineering at Czech Technical University. The system is comple-
mentary with hardware solutions presented in [3], [7]. It has been shown to be a particularly
powerful framework in multiple real-world applications, such as Defense Advanced Research
Projects Agency Subterranean (DARPA SubT) Challenge [5], decentralized swarming [11],
autonomous cooperative wall building [2], flying objects detection [6], and digital documen-
tation of large interiors [4].

Visualization of the MRS UAV System is built upon RViz. RViz [13] is a tool to visualize
robotic data and ROS-based systems (such as MRS UAV System) build on the ROS network
structure. RViz allows for adding different plugins, such as tools, displays, and panels. Tools
are focused on interacting with the RViz 3D world visualization, providing Application Pro-
gramming Interface (API) for processing mouse movements and key events. The purpose of
displays is to demonstrate custom data from topics in the visualization. Panels serve to hold
application-specific elements, such as buttons, image viewers and control inputs.

The plugin allows for community-based extensions and development of RViz, which
itself is an open-source project. One example of an RViz plugin is the rviz satellite [9], which
supports automatic placement of the loaded tiles as well as a manual definition for increasing
noise resistance. This plugin has been used to visualize map overlays in this thesis, as described
in Sec. 4.5.

A significant part of this thesis also focuses on Coverage Path Planning (CPP). CPP
methods are well summarized in [12], [18]. These works cover a large number of different
algorithms that can be used in varying environments, but most of them are not applicable in
the MRS UAV System due to the constraints introduced in Sec. 2. In the following summary,
the focus lies on the applicable approaches.

One of the major concerns about the CPP problem is to guarantee complete coverage.
To achieve this, the area of interest is splitted into cells in order to simplify the coverage. The
most common decomposition methods used in CPP involving UAVs are exact and approximate
cellular decompositions. Exact cellular decomposition divides the area of interest into sub-
areas, whose union exactly occupies the workspace. This approach reduces the CPP problem
to visiting every cell of the decomposition. Individual cells then can be covered using simple
motions such as back-and-forth [15], [26], [28]. Approximate cellular decomposition [14], [19],
[20] splits the workspace into a set of homogeneous-sized cells, that can be covered by taking
exactly one picture. This approach simplifies the CPP problem to visiting all the waypoints.

CTU in Prague Department of Cybernetics

CHAPTER 1. INTRODUCTION 3/34

Coverage path planning task using UAVs is sometimes simplified to deal with convex
polygons only as done in [25]. When considering a concave environment, researchers focus
on path construction regardless of the shape of an area as in [16], where the algorithm is
run recursively in sub-areas created by concavities. The method introduced in [21] deals with
concave polygons without holes, however, the path endpoint is given by the algorithm, which
does not need to be in the field of view of a human flying the UAV back. The algorithm
presented in [15] solves the problem of an unreachable finish point by defining the landing point
manually. More importantly though, [15] can plan coverage paths in polygons containing holes.
For polygon decomposition of concave polygons with holes, [15] uses diagonal decomposition
presented in [24]. This CPP approach and the decomposition are further discussed in Sec. 2.1.1.

The coverage path planning problem often contains the polygon decomposition as a
sub-problem. Since the greater amount of cells the decomposition produces, the less efficient
the resulting path is, it is crucial to decompose an area into the largest partitions possible.
The boustrophedon decomposition introduced in [28] does not require the partitions to be
convex, and thus results in a lower number of cells. The Morse decomposition presented in
[26] generalizes the boustrophedon decomposition by using Morse theory [29]. This approach
results in higher flexibility of the algorithm and therefore different coverage paths can be
generated for different environments, addressing the requirements of a particular mission.

Another CPP approach is presented in [22], which uses the approximate cellular de-
composition for coverage planning. The algorithm generates valid paths but does not con-
sider obstacles, which makes it disadvantageous with respect to other methods. An improved
algorithm to [22] was presented in [19], which avoids obstacles within the area of interest
while reducing the number of turning points. The improvement is achieved by introducing
Breadth-First Search (BFS) for searching the path to the nearest unvisited cell and prioritiz-
ing straight-line motions.

The approximate cellular decomposition transforms the coverage path planning prob-
lem into the motion planning problem. A large amount of motion planning strategies have
been studied, mostly focusing on optimality and obstacle avoidance. To tackle this problem,
the Rapidly-exploring Random Tree (RRT) algorithm was presented in [27]. However, this ap-
proach did not guarantee any optimality, and therefore RRT* was introduced in [23], resulting
in a more efficient path search but requiring much more memory. The memory usage problem
was solved in the Fixed Nodes RRT* algorithm, retaining the same probabilistic guarantees
on optimality and completeness as RRT*. This approach was used in [14] to plan a coverage
path in three steps. First, Fixed Nodes RRT* is used to find the shortest path to the neighbors
avoiding obstacles. Second, Genetic Algorithm (GA) is used to plan the shortest path visiting
every cell. Third, the savings-based Vehicle Routing Problem (VRP) algorithm divides the
path into a minimal set of the shortest paths.

CTU in Prague Department of Cybernetics

4/34 1.2. STATEMENT ON THE USAGE OF ARTIFICIAL INTELLIGENCE TOOLS

1.2 Statement on the usage of artificial intelligence tools

Artificial Intelligence (AI) tools (in particular ChatGPT) have been used in the following
ways. Firstly, to address specific problems that require a detailed understanding of library,
command, or programming language documentation. For example, converting a roll-pitch-
yaw rotation into a quaternion using a specified class or generating an explanation for a
Bash command with numerous typographical symbols. Secondly, to name chapters, services,
variables, and other elements to ensure their names reflect their purposes while remaining
concise. Finally, to generate key discussion points to verify whether essential details have
been covered. All of the information provided by AI tools has been critically analyzed and(or)
tested.

CTU in Prague Department of Cybernetics

CHAPTER 2. COVERAGE PATH PLANNING 5/34

Chapter 2

Coverage Path Planning

This chapter delves into the review and comparison of four coverage path planning
algorithms suitable for UAVs. The selection of these algorithms was guided by several key
criteria aimed at identifying solutions that address the characteristics of the World Manager
(see Sec. 4.1) and the MRS UAV system in general. Among the criteria considered during the
selection process were:

1. Rotary-wing UAVs. The MRS UAV System is designed with multi-rotor helicopters,
which can perform maneuvers with low turning radius.

2. Non-convex polygons with holes. The World manager enables adding obstacles to the
environment, therefore the algorithm must be able to avoid no-flight zones and yet
complete the coverage.

3. Shared workspace and zones of interest. Many algorithms assume a UAV can fly outside
of the zone of interest (typically in a rectangular zone), which is undesirable in the
proposed methodology.

4. Full knowledge of the workspace. An algorithm must take the polygonal area as input
and compute the coverage path before a mission starts.

Considering the mentioned constraints, the following coverage path planning algorithms
are introduced and compared:

1. Diagonal decomposition-based approach (DD) is described in Sec. 2.1.1.
2. Morse decomposition-based approach (MD) is described in Sec. 2.1.2.
3. Energy-aware algorithm (EA) is described in Sec. 2.2.1.
4. Stride method (SM) is described in Sec. 2.2.2.

As it has been mentioned, one of the major metrics when considering the CPP problem,
is coverage completeness. To guarantee completeness, the target area is divided into a set of
partitions in order to simplify the coverage. The algorithms described in this thesis use two
decomposition approaches: exact and approximate cellular decomposition. The exact cellular
decomposition splits the workspace into sub-areas, also known as cells, whose union exactly
occupies the workspace. Resulting partitions of exact cellular decomposition methods can not
be covered using a fixed focal length camera, therefore different motion patterns, such as
back-and-forth, are used to cover the partitions. On the other hand, the approximate cellular
decomposition decomposes the area of interest into a homogeneous-sized set of partitions,
that can be covered by taking pictures of the whole cell. This way the problem is simplified to
visiting each waypoint represented by cells. The selected methods of exact and approximate
decompositions are described below in Sec. 2.1 and Sec. 2.2 respectively. To improve the clarity
of the descriptions, the mathematical notation introduced in Table 2.1 is used hereafter.

CTU in Prague Department of Cybernetics

6/34 2.1. EXACT CELLULAR DECOMPOSITION

Symbol Description

vi A vertex of a polygon or a hole within it.
hi A vertex of a hole within a polygon.

e = vivj An edge of a polygon joining vertices vi and vj .
d = vivj A diagonal of a polygon joining vertices vi and vj .

cp
A critical point of a function, i.e., a point where
the function takes its extremum.

p A 2D point, p ∈ R2.

Table 2.1: Overview of the mathematical notation.

2.1 Exact cellular decomposition

2.1.1 Diagonal decomposition-based approach

An exact cellular decomposition approach, considering concave polygonal areas, is ex-
plored in [15]. Although the presented decomposition is only suitable for concave polygons
without holes, the algorithm is suitable for polygonal areas with holes once the decomposition
into convex partitions is done. The authors refer to [24], where such an algorithm is provided.

The decomposition algorithm tries to generate as big a convex partition as possible,
iterating through the border of a polygon. The partition is defined by a diagonal d = v1vn.
In case the partition contains a hole or a part of it, the diagonal d = v1vn is changed to d =
v1h1, where h1 is the closest1 vertex of the holes inside the partition. Then the list of vertices
{h1, ... , hn, v1} is placed right after the vertex v1 and the operation starts from the next
notch vertex. That way, several diagonals, that decompose the polygon into convex parts,
are created. However, redundant diagonals may occur and can be removed without violating
convex decomposition. To decrease the number of partitions, merging is performed as the
last step of the algorithm. Such an approach is proven to find a solution with the number
of diagonals no more than four times greater than the optimal solution [24]. However, in the
computations on polygons without holes provided by the authors, the ratio of the number of
generated partitions to the optimal one is within 1.18, which is far from the upper bound of
4.0.

After the decomposition, DD determines the best sweep direction, which results in four
optimal coverage paths (see Fig. 2.1) per partition. To find the minimal path length, all per-
mutations of polygons are generated and the optimal solution is selected. This approach leads
to O((k!/2) · 4k) time complexity, where k is the number of partitions after the decompo-
sition. This complexity is enormous and therefore, if the number of cells is too big, Depth
First Search (DFS) is used to find a sub-optimal permutation. The DFS only considers ad-
jacent cells as long as it is possible. If all adjacent cells are visited, the algorithm moves to
each of the remaining cells. This approach reduces time complexity to O(bd) where b is the
branching factor of the graph and d is the number of edges in the shortest path through the
graph. Combined with polygon decomposition, the total time complexity of the algorithm is
O(bd +NR2(N2 −R+ 5

2)− 3R2 +Nn2H), where N is equal to number of all vertices including
holes, R is number of notches from the point of view of the polygon to be decomposed and
nH is number of vertices of holes.

1View procedure DrawTrueDiagonal in [24].

CTU in Prague Department of Cybernetics

CHAPTER 2. COVERAGE PATH PLANNING 7/34

Figure 2.1: Coverage alternatives of a partition [15].

CTU in Prague Department of Cybernetics

8/34 2.1. EXACT CELLULAR DECOMPOSITION

2.1.2 Morse decomposition-based approach

An analytical approach to decompose area and plan coverage path is described in [26].
To determine the cell decomposition, the methodology of [26] sweeps a slice through the target
space, where the slice is a codimension one manifold. As the slice is swept, it is separated into
smaller pieces (see Fig. 2.2a) when it encounters an obstacle or smaller pieces are merged
into larger ones (see Fig. 2.2b) as it passes an obstacle. It is proven, that changes in the
connectivity of the slice (i.e., the change in the number of pieces) occur at critical points
of a Morse function2 limited to the boundaries. According to Morse theory [29], no obstacle
occurs between the critical points, therefore the space between them can be trivially covered
by motions corresponding to the slice. Once the decomposition is complete, the task simplifies
to finding an exhaustive walk through the adjacency graph (see Fig. 2.3).

x

y

cp2 cp3

cp1 cp4

h(cp2)

(a) Splitting.

x

y

cp2 cp3

cp1 cp4

h(cp3)

(b) Merging.

Figure 2.2: The restriction of the slice function h(x) = x1 to the obstacle boundaries takes a
local minimum at cp2 and a local maximum cp3. Since h(x) takes its extremes at cp2 and cp3,
they are the critical points.

Figure 2.3: Example of Morse decomposition using h(x) = x1 function and its adjacency graph
[26].

In the MRS UAV System, all the boundaries are non-smooth, and thus the critical
points must be found algorithmically. The algorithm for finding critical points is described in
Alg. 1. Since the critical points can lie not only on the border but also on hole boundaries,

2A Morse function is one whose critical points are nondegenerate, i.e., critical points are isolated from one
another. An example of a non-Morse function is x5 · cos(1

x
), as it has the infinite number of critical points on

interval [−ε; ε] where ε > 0.

CTU in Prague Department of Cybernetics

CHAPTER 2. COVERAGE PATH PLANNING 9/34

Alg. 1 must be run both on the border and the holes of the polygon. Since critical points of
simple functions (that are most commonly used for Morse decomposition) such as h(x) = x1
or h(x) = x21 + x22 can be found in constant time using an analytical approach, the time
complexity of finding critical points and thus cellular decomposition is O(n) where n is the
number of vertices of all boundaries. Combined with DFS for an exhaustive walk through the
adjacency graph, the total time complexity is O(n + bd), where b is the branching factor of
the graph and d is the number of edges in the shortest path through the graph.

Algorithm 1 Search for critical points

1: Input:
2: P . input polygon without holes (array of vertices)
3: M(p) : R2 → R . Morse function for a 2D point p ∈ R2

4: M ′(e = vivj) : R4 → {p} . function that returns critical points of the
Morse function bounded to the edge

5: Output:
6: CPs = {p} . critical points

7: Begin:
8: CPs← ∅
9: L← [] . array of potential critical points and their function values

10: I Fill the list of potential critical points
11: for vi in P do . iterate each vertex exactly once
12: L.append(vi)
13: j ← (i+ 1)%|P |
14: e← vivj
15: for each cp ∈M ′(e) do . compute critical points of the Morse function bounded

to the edge and iterate them exactly once
16: if cp 6= vi and cp 6= vi+1 then
17: L.append(cp)
18: end if
19: end for
20: end for
21: I Filter the critical points
22: for each i ∈ Z, 0 ≤ i < |L| do . iterate potential critical points exactly once
23: cpi−1 ← L[i− 1] . if (i− 1) < 0, the last value is taken
24: cpi ← L[i]
25: cpi+1 ← L[i+ 1] . if (i+ 1) ≥ |L|, the first value is taken
26: if (M(cpi) > M(cpi−1) and M(cpi) > M(cpi+1)) or

(M(cpi) < M(cpi−1) and M(cpi) < M(cpi+1)) then
27: CPs.append(cpi)
28: end if
29: end for
30: return CPs

2.2 Approximate cellular decomposition

In contrast with land robot coverage, the size of cells does not fit the dimensions of a
vehicle when considering aerial coverage using UAVs. In this case, the size of cells is equal to

CTU in Prague Department of Cybernetics

10/34 2.2. APPROXIMATE CELLULAR DECOMPOSITION

the footprint of a UAV camera (see Fig. 2.4a). Assuming the camera footprint is square, the
side of the taken image is

s = 2H · tan(
α

2
), (2.1)

where s (m) is the size of the cell side, α (rad) is the camera angle of view and H (m) is
the flight altitude from the ground (see Fig. 2.4). To ensure the image overlap, the distance
between cells is adjusted to D = s − w (see Fig. 2.4). Since w = rs where r ∈ [0, 1] is the
overlap rate, the final distance between cells is

D = (1− r)s (2.2)

(a) A projection footprint of the UAV
camera field of view.

α

H

(b) Front view of the UAV.

D w

(c) Parameters of the overlapping images.

Figure 2.4: Camera-related parameters of the coverage path planning.

2.2.1 Energy-aware algorithm

An optimal CPP algorithm with a quadrotor UAV is presented in [14]. The mission is
planned in two steps. In the first phase, the path from pi to pj for every i and j is computed
using RRT-based algorithm named Fixed Nodes RRT*. Considering that the vehicle must
return to the initial position, the problem is treated as the traveling salesman problem and
the shortest path is computed using GA and the savings-based VRP algorithm. GA results
in O(n2 + gnm) time complexity, where n is number of waypoints, g is number of generations
in GA, and m is the GA population size. The savings-based VRP algorithm has at least
quadratic in the number of waypoints time complexity.

CTU in Prague Department of Cybernetics

CHAPTER 2. COVERAGE PATH PLANNING 11/34

2.2.2 Strides-based approach

The authors of [19] present a coverage path planning algorithm that increases efficiency
by reducing the number of turns. The main concept of the algorithm is a stride — a sequence
of consecutive adjacent cells with no turns. Stride starts at the current cell and several con-
ditions determine, where it ends. The algorithm starts at the defined cell, moves along the
longest stride and iterates if any unvisited cell exists. In case a dead end is reached (i.e., all
4 neighboring cells are either not reachable or already visited), we employ a BFS to find the
nearest unvisited cell adjacent to a visited one. As a final step of the algorithm, the clean-up
is performed on the generated path. If the path contains a sequence of revisited cells that
connect two adjacent cells, the sequence of revisited cells is removed from the path. Assuming
that the algorithm does not end up at dead ends frequently, the time complexity is O(n),
where n is the total number of cells.

Figure 2.5: Example of coverage path computed by the Stride-based algorithm [19].

CTU in Prague Department of Cybernetics

12/34

Chapter 3

Comparing CPP methods

3.1 Algorithmic analysis

A properly implemented exact cellular decomposition approach guarantees the complete
coverage of the workspace and near-optimal coverage path. On the other hand, it has a more
difficult implementation and higher computation complexity than the approximate cellular de-
composition approach. Meanwhile, the approximate cellular decomposition approach trades
off accuracy for reduced implementation and computation complexity. Choosing between ex-
act and approximate cellular decomposition results in searching for a compromise. Since the
world configurations in the MRS UAV System tend to remain simple (i.e., the vast majority
of vertices do not represent reflex angles and the number of obstacles remains low), the time
complexity does not play a crucial role. Moreover, since paths can be precomputed and saved,
the problem of time-consuming computations can be solved for complex environments by pre-
computation. Taking everything into consideration, exact cellular decomposition approaches
are more suitable for our usage and therefore prioritized over approximate decompositions.

In contrast with DD, MD has several advantages. Firstly, MD is much faster in polygon
decomposing and searching for the optimal path. MD has exponential time complexity for path
search and decomposition time complexity is linear in the number of vertices Meanwhile, DD
takes a quadratic time for decomposition. However as it has been mentioned, time complexity
does not play a big role in our case. Secondly, MD is flexible, as different Morse functions
result in different decompositions (see Fig. 3.1). It is also possible to rotate the function to
obtain a better decomposition. Thirdly, using the linear Morse function in MD results in paths
similar to the DD if individual partitions are considered. Moreover, MD does not require the
partitions to be convex, which may result in a better path.

DD also has its advantages. The flexibility of MD results in a need to test different Morse
functions and their variants to find the optimal one. Moreover, MD requires a start point,
where the decomposition is started from, whereas DD finds the optimal start point in a given
decomposition. The diagonal decomposition-based coverage algorithm finds the best coverage
path for individual convex partitions, while the approach based on Morse decomposition may
follow the worst sweep direction of partition (see Fig. 3.2).

To sum up, both DD and MD have their advantages and drawbacks. The efficiency
of the algorithms depends on different parameters, such as the number of reflex angles in
the polygon, the number of holes and their positioning relative to each other. Therefore, to
decide which one suits the conditions of the MRS UAV System, both algorithms have been
implemented and quantitatively compared in the Sec. 3.2

Among the approximate decomposition-based methods, SM has low time complexity
in contrast with EA. Therefore it is suitable for fast path planning on large areas. However,
the advantage of the two-step algorithm is that it considers waypoints instead of cells. This

CTU in Prague Department of Cybernetics

CHAPTER 3. COMPARING CPP METHODS 13/34

(a) Decomposition. (b) Coverage path.

Figure 3.1: Cellular decomposition for h(x) = (x1)
2 + (x2)

2 Morse function and its associated
spiral coverage pattern. The slices are the circles that are the pre-images of h. At the critical
points, demarked with little circles (not to be confused with the slices), the circle-shaped
slices become tangent to the obstacles. Rather than moving along circular paths and stepping
outward, the robot follows a spiral pattern [26].

x

y

Figure 3.2: Example of MD with function h(x) = x1 choosing the worst sweep direction for a
cell.

provides new ways of generating them (e.g., random generation or adding a few points man-
ually for better coverage). Also, EA always generates a path that lies within the safety area
thanks to RRT-based algorithm, whereas SM assumes, that all adjacent cells can be reached
with straight line movement, which does not have to be always true and therefore has to be
explicitly handled. Finally, EA considers energy limitations and divides the path into a set of
paths, that can be covered either by single UAV or by several UAVs. The energy limitation
can be worked around as SM can be extended for multiple UAV usage [20], but the number
of paths has to be set manually in order to both achieve a minimal set of paths and stick to
the limitations.

CTU in Prague Department of Cybernetics

14/34 3.2. PERFORMANCE

3.2 Performance

3.2.1 Implementation details

It is important to point out, that the implementations do not fully correspond to the
mentioned algorithms and the list of changes is presented below. The reason is that the algo-
rithms are challenging to implement due to many hidden caveats and paper-omitted details.
Although our implementations are suboptimal, the algorithms can still be compared and inte-
grated into the MRS UAV System. If the implementations are discussed, the ending “-impl”
is added, so that the reader does not confuse them with the strictly theoretical algorithms.

The differences between theoretical descriptions and our implementations are as follows.
SM-impl [19] lacks the heuristic on which direction to choose in case two or more strides in
different directions have equal lengths, SM-impl also lacks final clean-up of the path. DD-
impl [15] uses the corrected search algorithm regardless of the number of partitions. When
generating permutations of paths of individual partitions, only the path that starts closest
to the last point of the generated path is considered. As for the decomposition algorithm,
DD-impl uses the Mp3 algorithm introduced in [24]. Mp3 algorithm was modified to start
from the first vertex of the polygon and not from the last considered one. The MD-impl [26]
uses h(x) = ax1 + bx2 Morse function, where a and b are scalars. The only change MD-impl
has is that the vertices of the polygon are slightly shifted in the range [-0.02; 0.02] to avoid
edge cases of searching for critical points. The distances between cells in SM-impl and between
sweeps in DD-impl and MD-impl are computed according to Eq. (2.2).

3.2.2 Evaluation

Several illustrative examples have been developed to compare the outputs of the al-
gorithms. In the first one (see Fig. 3.3), the coverage path over a simple environment with
two obstacles is shown. In the second example (see Fig. 3.5) coverage path is planned in a
complex concave polygon without holes. The third world configuration (see Fig. 3.6) is taken
from [15]. The last one (see Fig. 3.7) demonstrates the extremes of different methods. We
use the number of turns in the path as the metric of optimality. As stated in [15], for fixed
distances, the time is increased when the rotor-craft turns because it has to completely stop
before it starts moving in a different direction. The wastes time while the robot slows down
and accelerates. Additional acceleration also increases energy consumption, which is a crucial
parameter in rotary-wing UAVs.

The blue circle on the images (see Fig. 3.3, 3.5, 3.6, 3.7) is the drone’s position, where
the coverage path starts. If the start point of SM-impl is not set on the edge of a polygon,
the algorithm follows a straight line to the edge, marking the cells as visited. Since visited
cells are equivalent to invalid ones when computing a stride, this generates an unnecessary
obstacle, that can propagate and require a larger number of turns in the path. Therefore the
start position is set on an edge, which significantly decreases the required number of turns.

CTU in Prague Department of Cybernetics

CHAPTER 3. COMPARING CPP METHODS 15/34

The coverage path for a simple polygon with two holes generated using exact cellular
decomposition methods is shown in Fig. 3.3. The total number of turning maneuvers is the
following: 47 for DD-impl, 36 for MD-impl and 41 for SM-impl (all the quantitative results
are summarized in Table 3.1). One can see that some regions are missed out by DD-impl.
This happens because of acute angles being formed by the decomposition (see Fig. 3.4).
However, this can be partially solved by either decreasing the indent from partition bound or
by introducing a merging process.

(a) World configuration. (b) Diagonal decomposition. (c) Morse decomposition.

(d) Coverage path generated by
SM-impl.

(e) Coverage path generated by
DD-impl.

(f) Coverage path generated by
MD-impl.

Figure 3.3: Polygon decompositions (b, c) and coverage paths (d-f).

2m

D

A
B

C

(a) An acute angle causes incompleteness by leaving the
triangle ABC uncovered.

D

A B

C

(b) Obtuse angle does not cause
coverage incompleteness.

Figure 3.4: Example of a partition with angle ABC. The image overlap rate is zero, the camera
footprint (denoted by the grey shadow) is 4 m square and the boundary indent is equal to the
distance between sweeps, the rightmost position of the drone following a sweep is point D.

CTU in Prague Department of Cybernetics

16/34 3.2. PERFORMANCE

Another environment covered with each of the implemented algorithms is shown in
Fig. 3.5. The number of turning maneuvers is 92 for DD-impl, 95 for MD-impl and 132 for
SM-impl. As it can be noticed, no partition in Fig. 3.5b can be merged with any other in
order to make a bigger partition. Therefore, the only way to get rid of gaps in coverage is to
decrease the indent. In contrast, MD-impl does not leave visible gaps if proper parameters
are set. Furthermore, diagonal decomposition results in 17 cells, while Morse decomposition
has only 11 cells, and this leads to a significant difference in computation time. Our DFS-
based exhaustive walk search algorithm iterates over 23k permutations in MD-impl and 107mil
permutations in DD-impl. Note that the search algorithm is the same in both cases and only
the number of partitions and their neighbors matter. Therefore Morse-based coverage path
planning can take more time in particular cases.

(a) World configuration. (b) Diagonal decomposition. (c) Morse decomposition.

(d) Coverage path generated by
SM-impl.

(e) Coverage path generated by
DD-impl.

(f) Coverage path generated by
MD-impl.

Figure 3.5: Polygon decompositions (b, d) and coverage paths (c, e, f).

The next example shown in Fig. 3.6 is taken from [15] and [21]. DD-impl generated a
path with 53 turns, MD-impl required 52 turns and SM-impl turned 70 times. Although the
turn number is almost equal between the first two algorithms, it is clear that DD-impl misses
even larger parts of the polygon due to the higher number of triangular partitions and acute
angles. As it was mentioned, the merge process can decrease the number of partitions and
thus the coverage percentage, however the next example will demonstrate, that sometimes the
problem cannot be solved with merging only.

CTU in Prague Department of Cybernetics

CHAPTER 3. COMPARING CPP METHODS 17/34

(a) World configuration. (b) Diagonal decomposition. (c) Morse decomposition.

(d) Coverage path generated by
SM-impl.

(e) Coverage path generated by
DD-impl.

(f) Coverage path generated by
MD-impl.

Figure 3.6: Polygon decompositions (b, d) and coverage paths (c, e, f).

(a) World configuration. (b) Diagonal decomposition. (c) Morse decomposition.

(d) Coverage path generated by
SM-impl.

(e) Coverage path generated by
DD-impl.

(f) Coverage path generated by
MD-impl.

Figure 3.7: Polygon decompositions (b, c) and coverage paths (d-f).

CTU in Prague Department of Cybernetics

18/34 3.2. PERFORMANCE

The last example shown in Fig. 3.7 is provided in order to show the drawback of the
Morse-based coverage planning. In case the polygon can be decomposed into ”long” convex
partitions that are perpendicular to each other, the MD-impl (which can only cover a partition
using one pre-defined sweep direction) requires too many turning maneuvers (see Fig. 3.7f).
DD-impl finds the best sweep direction for each partition and therefore can find paths with
fewer turns (Fig. 3.7e). The number of turns is the following: 24 for DD-impl, 56 for MD-impl
and 23 for SM-impl. However, in this particular example using f(x) = |x1|+ |x2| function in
Morse decomposition can generate a coverage path that will leave no gaps and yet have the
number of turning maneuvers similar to DD-impl.

3.2.3 Summary

Turn number Path length (meters) Visible gaps

Polygon DD MD SM DD MD SM DD MD SM

Simple 47 36 41 1343 1500 1647 Yes No No
Concave 53 52 70 1058 1170 1288 Yes No No
Complex 92 95 132 1229 1458 1890 Yes No No

Ring 24 56 23 895 908 1157 No No No

Table 3.1: Performance summary for the implemented algorithms.

The quantitative data of the four presented problems are summarized in Table 3.1.
Simple polygon is shown in Fig. 3.3, concave polygon in Fig. 3.6, complex polygon in Fig. 3.5
and ring polygon in Fig. 3.7. As the reader can see, MD-impl on average generates more
efficient paths with a bigger coverage percentage. Certainly, it does not mean that the MD-
impl coverage is always complete, but in our system, where the polygon tends to have a small
number of large edges, MD-impl demonstrates the best results. In contrast, the path that is
generated by SM-impl is far from optimal in the complex polygon. However, SM-impl is useful
if an environment is complex enough and a user does not have time to plan the path using
any other method, as the time complexity of this algorithm is linear.

CTU in Prague Department of Cybernetics

CHAPTER 4. USER INTERFACE AND WORLD MANAGER 19/34

Chapter 4

User Interface and World Manager

Defining safety areas for drones, i.e., the zones a drone is allowed to fly within, is crucial
for preventing the drones from colliding with each other or with other objects as well as
for complying with legal regulations. Therefore, the Control Manager [30] of the MRS UAV
System has point and line verifications ensuring that a drone flies within the safety area.
However, the implementation of the boundaries was not flexible and was hard to maintain,
which resulted in simplifying the safety zone by deleting obstacles from it. Moreover, every
change in the safety area needed a rebooting of the entire system. To solve these problems, the
Safety Area Manager was implemented, taking on the responsibility of controlling the world
configuration and verifying the positions of a drone.

As has been mentioned in Sec. 1, ROS topics and services constitute a great API, but
they are not convenient for a person to use from outside of a program. RViz plugins aim
to increase the convenience of the MRS UAV System usage by introducing the UI to the
safety area management. Together with visualizing data from various topics, the UI simplifies
mission planning and increases situational awareness during missions.

The World Manager tool (discussed in Sec. 4.1) is an RViz plugin aimed to simplify user
communication with the Safety Area Manager. It allows for adding, deleting and modifying
the world boundaries as well as obstacles within. Furthermore, saving and loading world
configurations are implemented. Other plugins implemented within this thesis are:

� Control tool for controlling UAVs remotely (discussed in Sec. 4.2)
� Waypoint Planner for setting multiple navigation goals (discussed in Sec. 4.3)
� Status display for monitoring UAV telemetry (discussed in Sec. 4.4)
� Satellite Overlay display for visualizing map tiles (discussed in Sec. 4.5)
� Coverage Path Planner (discussed in Sec. 4.6)

An example of the plugin usage in simulation is added to [1] to demonstrate the imple-
mented UI.

4.1 Safety Area Manager

The Safety Area Manager operates with prisms and so-called inlying polygons. The
inlying polygon is a polygon without holes and can be located at a specified height. The
polygon does not influence point validity but can be used by other tools, such as the coverage
path planner described in Sec. 4.6. A prism is a polyhedron with 2 parallel polygonal bases
which are connected by parallelograms. The bases of a prism are strictly horizontal and the
side edges are strictly vertical. There are two kinds of prisms: a safety zone and an obstacle.
For a point to be considered valid, it must lie within the safety zone and must not lie within
any obstacle. All of the prisms and inlying polygons can be customly changed using several
kinds of interactive markers that are described below.

CTU in Prague Department of Cybernetics

20/34 4.1. SAFETY AREA MANAGER

First, the vertex interactive marker (shown in Fig. 4.1) enables moving and deleting a
vertex of a figure. To prevent computation errors, a vertex cannot be moved in a way that
makes the polygon of a prism or inlying polygon invalid. A polygon is valid, if it has no
internal intersections, its vertices are defined in clockwise order and it has at least 3 vertices.
If a user tries to perform the action that makes the prism invalid, the prism stays in the last
valid state until a new action is performed.

(a) A prism before moving the ver-
tex.

(b) The same prism, after moving
the vertex.

(c) Delete menu option.

Figure 4.1: Examples of interacting with a vertex marker.

Second, the edge interactive marker (shown in Fig. 4.2) displays individual edges and
allows adding a new vertex in the middle of the horizontal edge. This functionality allows for
defining complex prisms and inlying polygons, including setting convex polygons or approxi-
mating smooth shapes.

(a) Add vertex option. (b) Added vertex.

Figure 4.2: An example of interacting with an edge marker.

Third, bound interactive markers (shown in Fig. 4.3) handle the height of the prisms.
Each prism has two interactive markers responsible for lower and upper bounds. These markers
can be used to set the height of a prism or to move the whole figure in a 2D plane. Markers
also provide the ”Delete prism” option. However, the safety zone prism cannot be deleted, as
no point is considered valid without it. Note that bound interactive markers are not used to
visualize and configure inlying polygons, as the polygons do not have minimal and maximal
height.

Fourth, the center interactive marker (shown in Fig. 4.4) enables rotating the entire
figure, setting its height, moving it in a 2D plane, and deleting the entire prism or inlying
polygon. Similar to the bounds interactive markers, the center interactive marker does not
allow deleting the safety zone prism.

Fifth, a static edge marker complements all of the above to provide pure interactionless
visualization. Since the interactive marker server implemented in ROS does not allow pub-
lishing a marker if it has not been changed, the static edge marker overcomes this issue by
continuously publishing the markers to the network. The static edge marker mimics the state
of the interactive elements and visualizes it cleanly.

CTU in Prague Department of Cybernetics

CHAPTER 4. USER INTERFACE AND WORLD MANAGER 21/34

(a) A prism before changing its upper
bound.

(b) The same prism after an adjust-
ment.

Figure 4.3: An example of interacting with a bounds marker.

(a) Delete an inlying polygon option. (b) Delete a prism option. (c) If a prism cannot be deleted, the
info message occurs.

Figure 4.4: An example of interacting with a center marker.

To avoid setting world properties from scratch every time the system has been rebooted,
Safety Area Manager provides a service for saving a current configuration into a file. Saved
configuration can be loaded later as well as set as default configuration on the system start. A
configuration file is a .yaml file, that includes the following parameters: (i) world origin, which
defines the coordinate frame representing the Global Navigation Satellite System (GNSS)-
based frame, (ii) coordinates of the vertices of the prisms and their upper and lower bounds.
The data of the prisms are split into 2 sections: safety zone and obstacles. The safety zone
section must be present in every world configuration, while the obstacles are optional.

The Safety Area Manager provides several ROS services for adding an obstacle, adding
an inlying polygon, saving configurations and loading them. To avoid using them directly
through a terminal, we implemented an RViz tool. The tool provides a menu with the
services on right-click (see Fig. 4.5). Additionally, since the tool’s class inherits from the
rviz::InteractiveTool, it can also be used to interact with interactive markers (e.g., for
setting up the prisms and the inlying polygons). Several examples of world configurations set
up by this tool are presented in Fig. 4.6.

CTU in Prague Department of Cybernetics

22/34 4.2. CONTROL TOOL

Figure 4.5: An example of a tool menu for the World Manager tool.

(a) Concave world with one simple obstacle. Supporting
markers are turned on.

(b) Convex world with a concave obstacle.

(c) World that has been configured according to satellite
maps. The building is considered to be an obstacle.

(d) Convex world with many obstacles.

Figure 4.6: Several examples of worlds configured with the Safety Area Manager and the
World Manager tool. Supporting markers are turned off for (b-d), so the demonstrations are
not overloaded.

4.2 Control tool

The Control tool enables controlling an UAV remotely through RViz. To control a drone,
it must be first selected with a click-and-drag movement. The selection of multiple drones is

CTU in Prague Department of Cybernetics

CHAPTER 4. USER INTERFACE AND WORLD MANAGER 23/34

available. Due to the numerous keyboard bindings (see Table 4.1), convenient informational
messages inform the user within the RViz status (located at the bottom left of the window).

Key Action

’wasd’ or ’hjkl’ Fly laterally.
’qe’ Change UAV’s heading.
’rf’ Fly up and down.
’R’ Turn the remote mode on/off.
’G’ Turn the global mode on/off.

Table 4.1: Control tool key bindings.

While in the remote mode, a user can fly the selected UAVs with the keyboard. By
default, UAVs follow the commands in their Flight Controller Unit coordinate (FCU) frame,
also known as the body frame of the UAV. If the global mode is activated, the commands
are interpreted in the current world frame, i.e., X and Y axes are independent of the UAV
heading.

A drone menu is available on right click. If the UAV is flying, a user can call the “land” or
“land home” services. If the UAV is on the ground, a user can call the “takeoff” service. Also,
a user can change the controller, tracker, estimator, controller gains and tracker constraints.
Furthermore, one can add custom services to the drone’s menu by publishing a message to
the topic mrs uav status/set trigger service. The message is a std msgs/String type and has
to consist of two entries separated by spaces: a service name (uav manager/land home) and
a name to be displayed in the menu (Land Home). Unless the service name begins with
“/”, the namespace of the UAV will be added automatically (uav manager/land home will be
remapped to /uav1/uav manager/land home).

If several UAVs were selected, the common menu occurs on “m” key pressing. The
common menu only shows the services that are common for all the selected UAVs, excluding
custom services. The remote mode works the same as for one UAV.

(a) Fly forward. (b) Fly right. (c) Drone menu example.

Figure 4.7: Examples of using Control tool.

4.3 Waypoint planner

The Waypoint planner is an RViz tool that allows sending a sequence of waypoints to
a drone. The click-and-pull input supplies a 2D position with a heading (a waypoint). The

CTU in Prague Department of Cybernetics

24/34 4.4. UAV STATUS DISPLAY

tool options allow for changing the flight height, fixing the UAV heading, generating looping
waypoint paths and waiting for an operator trigger to start the flight.

(a) Setting looped references.

(b) A drone following the looped trajectory.

Figure 4.8: Example of usage of the Waypoint Planner.

4.4 UAV Status display

UAV Status display brings the functionality of mrs uav status package [31] into
the RViz. The plugin displays useful information about the UAV state and sensors (see
Fig. 4.9). It also can show custom std msgs/String messages published to the topic
mrs uav status/display string. Finally, the plugin can monitor the rates of different ROS top-
ics and warn the user if the topic is published less or more frequently than required, or not
published at all.

4.5 Satellite overlay

To make configuring the world even more convenient, we added visualization of worlds
overlaid on Global Positioning System (GPS)-specified OpenStreet maps [9] (see Fig. 4.10).
This plugin displays satellite maps loaded from the internet and is highly customizable. The
plugin receives sensor msgs/NavSatFix messages and loads corresponding map tiles. The map
tiles are cached to $HOME/.cache/rviz satellite and therefore the display can be used even
without the Internet connection. Transformation of tiles to RViz fixed frame can be done in
two ways that are configured using the Map Transform Type option:

CTU in Prague Department of Cybernetics

CHAPTER 4. USER INTERFACE AND WORLD MANAGER 25/34

Figure 4.9: Example of Status display.

� Specify a Map frame, which is an East-North-Up (ENU)-oriented frame in which your
robot localizes.

� Specify Universal Transverse Mercator (UTM) frame (and possibly UTM zone). In this
mode, no map frame is required and the tiles are directly placed on their UTM positions.
The subscribed NavSatFix messages are only used to determine the tiles to download, so
small inconsistencies between the NavSatFix frame and the measured latitude/longitude
are not a big problem.

Additionally, plugin options allow for changing tile transparency, resolution, number of ad-
jacent blocks to load and the offset of displayed tiles in the Z coordinate. Finally, the tile
server has to be specified using the form http://server.tld/{z}/{x}/{y}.jpg, where the to-
kens {z}, {x}, {y} represent the zoom level, x coordinate, and y coordinate respectively.
If an API requires a pair of latitude and longitude values instead of x and y tile coor-
dinates, the form http://server.tld/{z}/{lat}/{lon}.jpg is required, where {lat} and {lon}
represent the latitude and longitude values of the requested location. It was decided to use
https://mt1.google.com/vt/lyrs=y&x={x}&y={y}&z={z} as it has the most recent tiles and
our usage is in line with the terms of usage [10].

4.6 Coverage path planner

One of the tasks that can be performed using UAVs is obtaining geo-referenced high-
resolution aerial images. For that purpose, a proper CPP algorithm must be applied. The
Coverage Path Planner implements several most suitable CPP algorithms, which are discussed
in Sec. 2 and Sec. 3, and enables planning and visualizing the coverage missions. Saving and
loading of a computed path is possible, as computations can take a long time in particular
cases. Several parameters can be set in tool properties, such as the used method, height of the
flight, view angle of a camera, photo overlap rate and start point. Furthermore, each of the
methods can have parameters that influence the computation and affect the path optimality.

To plan a coverage path over a part of the world, a user can define an inlying polygon
using the World Manager tool (described in Sec. 4.1) and choose it in Coverage Path Planner
tool properties (see Fig. 4.11b). The intersection of the chosen inlying polygon and the safety
area is computed and the resulting polygon is sent to the chosen coverage method. An example
of partial world coverage is shown in Fig. 4.12.

CTU in Prague Department of Cybernetics

26/34 4.6. COVERAGE PATH PLANNER

Figure 4.10: Example of the satellite display.

Coverage methods are loaded using ROS pluginlib package [17]. The base class is
mrs rviz plugins::CoverageMethod and therefore it offers the possibility for integration of
other coverage path planning methods. The plugin requests the Safety Area Manager for a
safety polygon at a defined height and sends it to the chosen coverage method. As computa-
tions can take a long time, the ”Update polygon” button was added, so a user can verify, if
the current world configuration and coverage parameters generate the required coverage zone.
The menu and configuration options are demonstrated in Fig. 4.11.

(a) Right-click menu. (b) Tool properties.

Figure 4.11: Coverage path planner example.

CTU in Prague Department of Cybernetics

CHAPTER 4. USER INTERFACE AND WORLD MANAGER 27/34

(a) The polygon considered for coverage

(b) The planned coverage path.

Figure 4.12: Coverage path planned over a part of the world using MD-impl algorithm (see
Sec. 2.1.2 and Sec. 3.2.1).

CTU in Prague Department of Cybernetics

28/34

Chapter 5

Real-world experiments

In order to test the robustness of Safety Area Manager and thus capability of the
plugin to plan coverage paths in real-world environments, we performed experiments with a
real drone. Also, other plugins mentioned in Sec. 4 were used in order to control the UAV
and monitor its parameters. Waypoint planner (see Sec. 4.3) was used to navigate the UAV
around the field, Control tool (see Sec. 4.2) was used for landing and remote control, and
Status display helped to keep track of the flight parameters of the vehicle.

Safety Area Manager and RViz plugins performed admirably. Several bugs causing un-
expected behavior have been found during the experiments but none of them was critical or
made the drone fall. All of these software issues have been corrected in the final implementa-
tions. However, the coverage path planning algorithms had errors in their computations, which
resulted in non-optimal paths during real-world experiments. The errors have been fixed and
therefore each experiment is supplemented by paths generated by correct algorithms (marked
as “(corrected)” in the following figures). These corrected paths were generated later on the
same worlds. Moreover, each experiment was recorded on camera and the videos can be found
in [1]. Links to particular experiments are added to the corresponding figures.

(a) Diagonal decomposition (flown). (b) Stride method (flown). (c) Morse decomposition (not
flown).

(d) Diagonal decomposition (cor-
rected).

(e) Stride method (corrected).

Figure 5.1: Experiment 1.

CTU in Prague Department of Cybernetics

https://www.youtube.com/watch?v=Ohoqhq70_QY&list=PLfx6k2M6m6ZtDqIQdiLLMV4UiLHTEWuja&index=1
https://www.youtube.com/watch?v=Bicmf1uI7X4&list=PLfx6k2M6m6ZtDqIQdiLLMV4UiLHTEWuja&index=2

CHAPTER 5. REAL-WORLD EXPERIMENTS 29/34

(a) Diagonal decomposition
(flown).

(b) Stride method (flown). (c) Morse decomposition
(not flown).

(d) Diagonal decomposition
(corrected).

(e) Stride method (cor-
rected).

Figure 5.2: Experiment 2.

(a) Diagonal decomposition
(flown).

(b) Stride method (flown). (c) Morse decomposition (not
flown).

(d) Diagonal decomposition
(corrected).

(e) Stride method (cor-
rected).

Figure 5.3: Experiment 3.

CTU in Prague Department of Cybernetics

https://www.youtube.com/watch?v=DB6O9RpvXh8&list=PLfx6k2M6m6ZtDqIQdiLLMV4UiLHTEWuja&index=3
https://www.youtube.com/watch?v=DB6O9RpvXh8&list=PLfx6k2M6m6ZtDqIQdiLLMV4UiLHTEWuja&index=3
https://www.youtube.com/watch?v=YRoG5v6P8CE&list=PLfx6k2M6m6ZtDqIQdiLLMV4UiLHTEWuja&index=4
https://www.youtube.com/watch?v=XKPvyKOOPQo&list=PLfx6k2M6m6ZtDqIQdiLLMV4UiLHTEWuja&index=5
https://www.youtube.com/watch?v=XKPvyKOOPQo&list=PLfx6k2M6m6ZtDqIQdiLLMV4UiLHTEWuja&index=5
https://www.youtube.com/watch?v=hLKs7l4OZf4&list=PLfx6k2M6m6ZtDqIQdiLLMV4UiLHTEWuja&index=6

30/34

The coverage flight time (in seconds) is presented in Table 5.1. The postfix “-old”
corresponds to the algorithms used to paths in the real-world experiments, i.e., subfigures
a-b in Fig. 5.1, 5.2, 5.3. The algorithms with “-impl” are corrected algorithms presented in
subfigures c-d in Fig. 5.1, 5.2, 5.3.

DD-old SM-old MD-impl SM-impl DD-impl

Experiment 1 155 199 98 95 140
Experiment 2 89 148 55 53 118
Experiment 3 111 156 96 85 113

Table 5.1: Coverage time for performed experiments.

To sum up, the designed UI remarkably improves the user experience, eliminating the
need to memorize ROS services and their parameters. Interactive safety area boundaries en-
abled the performing of the series of experiments on different world configurations without
rebooting the UAV. The implemented plugins have shown high robustness and therefore can
be used in other mission planning.

CTU in Prague Department of Cybernetics

CHAPTER 6. ACHIEVED OBJECTIVES 31/34

Chapter 6

Achieved objectives

In this thesis, the following objectives have been achieved:

(A) Multiple plugins and the Safety Area Manager were implemented, which
1. contain a world representation using a non-convex polygonal structure in the hor-

izontal plane and variable height bounds (described in Sec. 4.1),
2. incorporate non-convex obstacles of different heights and sizes (described in

Sec. 4.1),
3. visualize GPS-based photomaps in outdoor cases (described in Sec. 4.5),
4. allow defining, loading, and saving of the world with the obstacles (described in

Sec. 4.1),
5. enable visualizing flight telemetry of UAVs (described in Sec. 4.4),
6. allow interaction of both virtual and real UAVs within the same visualization, in-

cluding individual and multi-UAV selection, waypoint and key bindings navigation
(described in Sec. 4.3 and Sec. 4.2),

7. are integrated into the MRS UAV System (described in Sec. 1 and Sec. 4).
(B) In addition, several path planning algorithms that maximize the total coverage inside

the non-convex world are implemented. This task included:
1. reviewing (see Sec. 2) and comparing (see Sec. 3) four state-of-the-art coverage

path planning algorithms suitable for UAVs,
2. implementing three most suitable coverage path planning algorithms (described in

Sec. 3.2),
3. enabling planning coverage paths inside the entire world (A) as well as in user-

definable safe zones inside (A) (described in Sec. 4.6),
4. enabling interactive specification and parametrization of the path planning algo-

rithm inside RViz (described in Sec. 4.6),
5. enabling loading and saving the coverage paths for a given world (described in

Sec. 4.6),
6. offering the possibility for integration of other coverage path planning methods

(described in Sec. 4.6).
(C) Finally, the experiments with the MRS UAV System in the real world are performed

(see Sec. 5). During the experiments, (A) and (B) are used to fly an autonomous UAV
along the planned path. The performance of the implemented algorithm are analyzed
and discussed both qualitatively and quantitatively (see Sec. 3.2).

CTU in Prague Department of Cybernetics

32/34

Chapter 7

Conclusion

In summary, the implemented features significantly enhance the functionality and us-
ability of the MRS UAV System. We have introduced numerous tools for configuring world
properties, remotely controlling UAVs, setting multiple navigation goals, and efficiently visu-
alizing on-board UAVs’s data on remote stations. The display of satellite maps, which was
included in the plugin list, allows the mentioned features to be used with greater precision.
Stand-alone Safety Area Manager improves the maintainability and usability of the MRS
UAV System. Additionally, several most suitable coverage path planning algorithms were
implemented and compared. To the extent of our knowledge, our plugin is the first open-
source non-discrete implementation of Morse decomposition, that can be extended with any
other Morse function. Last but not least, we tested the implemented features in real-world
experiments, which showed the high robustness of the Safety Area Manager as well as the
implemented plugins.

There are still opportunities to improve the user experience of the MRS UAV System.
For example, the Rviz Satellite display waits for GPS data to be received from a drone. Since
not all of the drones are equipped with such hardware and the world position is set in advance,
the plugin could request such data from the Safety Area Manager directly in order to initialize
the image. Moreover, inlying polygons are not currently a part of the world config. This is left
for future development.

CTU in Prague Department of Cybernetics

CHAPTER 8. REFERENCES 33/34

Chapter 8

References

[1] A. Mukhametshin. (2024). Additional materials to the thesis, [Online]. Available: https://mrs.
fel.cvut.cz/theses/mukhametshin2024 (visited on May 17, 2024).

[2] T. Baca, R. Penicka, P. Stepan, M. Petrlik, V. Spurny, D. Hert, and M. Saska, “Autonomous
Cooperative Wall Building by a Team of Unmanned Aerial Vehicles in the MBZIRC 2020 Com-
petition,” Robotics and Autonomous Systems, vol. 167, p. 104 482, Sep. 2023.

[3] D. Hert, T. Baca, P. Petracek, V. Kratky, R. Penicka, V. Spurny, M. Petrlik, M. Vrba, D. Zaitlik,
P. Stoudek, V. Walter, P. Stepan, J. Horyna, V. Pritzl, M. Sramek, A. Ahmad, G. Silano, D.
Bonilla Licea, P. Stibinger, T. Nascimento, and M. Saska, “MRS Drone: A Modular Platform
for Real-World Deployment of Aerial Multi-Robot Systems,” Journal of Intelligent & Robotic
Systems, vol. 108, pp. 1–34, 64 2023.

[4] P. Petracek, V. Kratky, T. Baca, M. Petrlik, and M. Saska, “New Era in Cultural Heritage
Preservation: Cooperative Aerial Autonomy for Fast Digitalization of Difficult-to-Access Interiors
of Historical Monuments,” IEEE Robotics and Automation Magazine, pp. 2–19, 2023.

[5] M. Petrlik, P. Petracek, V. Kratky, T. Musil, Y. Stasinchuk, M. Vrba, T. Baca, D. Hert, M.
Pecka, T. Svoboda, and M. Saska, “UAVs Beneath the Surface: Cooperative Autonomy for
Subterranean Search and Rescue in DARPA SubT,” Field Robotics, vol. 3, pp. 1–68, 2023.

[6] M. Vrba, V. Walter, V. Pritzl, M. Pliska, T. Báča, V. Spurný, D. Heřt, and M. Saska, On onboard
LiDAR-based flying object detection, 2023. arXiv: 2303.05404.

[7] D. Hert, T. Baca, P. Petracek, V. Kratky, V. Spurny, M. Petrlik, M. Vrba, D. Zaitlik, P. Stoudek,
V. Walter, P. Stepan, J. Horyna, V. Pritzl, G. Silano, D. Bonilla Licea, P. Stibinger, R. Penicka, T.
Nascimento, and M. Saska, “MRS Modular UAV Hardware Platforms for Supporting Research in
Real-World Outdoor and Indoor Environments,” in 2022 International Conference on Unmanned
Aircraft Systems (ICUAS), IEEE, 2022, pp. 1264–1273.

[8] T. Baca, M. Petrlik, M. Vrba, V. Spurny, R. Penicka, D. Hert, and M. Saska, “The MRS UAV
System: Pushing the Frontiers of Reproducible Research, Real-world Deployment, and Education
with Autonomous Unmanned Aerial Vehicles,” Journal of Intelligent & Robotic Systems, vol. 102,
no. 26, pp. 1–28, 2021.

[9] G. Cross and A. Schröder. (2020). Rviz satellite, [Online]. Available: https://github.com/
nobleo/rviz satellite (visited on May 17, 2024).

[10] Google. (2020). Google maps platform terms of service, [Online]. Available: https://cloud.
google.com/maps-platform/terms? gl=1*l38tlk* ga*NDEzMzc2MDE4MC4xNjg4MzMxMDkx* ga
NRWSTWS78N*MTcwNjYxMjUzNC4xLjEuMTcwNjYxMzAyOC4wLjAuMA.. (visited on May 17, 2024).

[11] P. Petráček, V. Walter, T. Báča, and M. Saska, “Bio-Inspired Compact Swarms of Unmanned
Aerial Vehicles without Communication and External Localization,” Bioinspiration & Biomimet-
ics, vol. 16, no. 2, p. 026 009, 2020.

[12] T. M. Cabreira, L. B. Brisolara, and P. R. Ferreira Jr., “Survey on coverage path planning with
unmanned aerial vehicles,” Drones, vol. 3, no. 1, 2019.

[13] D. Hershberger, D. Gossow, J. Faust, and W. Woodall. (2018). Rviz package, [Online]. Available:
http://wiki.ros.org/rviz (visited on May 17, 2024).

CTU in Prague Department of Cybernetics

https://mrs.fel.cvut.cz/theses/mukhametshin2024
https://mrs.fel.cvut.cz/theses/mukhametshin2024
https://arxiv.org/abs/2303.05404
https://github.com/nobleo/rviz_satellite
https://github.com/nobleo/rviz_satellite
https://cloud.google.com/maps-platform/terms?_gl=1*l38tlk*_ga*NDEzMzc2MDE4MC4xNjg4MzMxMDkx*_ga_NRWSTWS78N*MTcwNjYxMjUzNC4xLjEuMTcwNjYxMzAyOC4wLjAuMA..
https://cloud.google.com/maps-platform/terms?_gl=1*l38tlk*_ga*NDEzMzc2MDE4MC4xNjg4MzMxMDkx*_ga_NRWSTWS78N*MTcwNjYxMjUzNC4xLjEuMTcwNjYxMzAyOC4wLjAuMA..
https://cloud.google.com/maps-platform/terms?_gl=1*l38tlk*_ga*NDEzMzc2MDE4MC4xNjg4MzMxMDkx*_ga_NRWSTWS78N*MTcwNjYxMjUzNC4xLjEuMTcwNjYxMzAyOC4wLjAuMA..
http://wiki.ros.org/rviz

34/34

[14] Y. Bouzid, Y. Bestaoui, and H. Siguerdidjane, “Quadrotor-uav optimal coverage path planning
in cluttered environment with a limited onboard energy,” in 2017 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), 2017, pp. 979–984.

[15] M. Torres Anaya, D. Pelta, J. Verdegay, and J. Torres, “Coverage path planning with unmanned
aerial vehicles for 3d terrain reconstruction,” Expert Systems with Applications, vol. 55, Feb. 2016.

[16] C. Di Franco and G. Buttazzo, “Energy-aware coverage path planning of uavs,” in 2015 IEEE
International Conference on Autonomous Robot Systems and Competitions, 2015, pp. 111–117.

[17] E. Marder-Eppstein, T. Foote, D. Thomas, and M. Shah. (2015). Pluginlib package, [Online].
Available: http://wiki.ros.org/pluginlib (visited on May 17, 2024).

[18] E. Galceran and M. Carreras, “A survey on coverage path planning for robotics,” Robotics and
Autonomous Systems, vol. 61, no. 12, pp. 1258–1276, 2013.

[19] E. Santamaria, F. Segor, I. Tchouchenkov, and R. Schönbein, “Path planning for rapid aerial
mapping with unmanned aircraft systems,” in ICONS 2013 : The Eighth International Confer-
ence on Systems, Feb. 2013, pp. 82–87.

[20] E. Santamaria, F. Segor, and I. Tchouchenkov, “Rapid aerial mapping with multiple hetero-
geneous unmanned vehicles,” in International Conference on Information Systems for Crisis
Response and Management, 2013.

[21] Y. Li, H. Chen, M. Joo Er, and X. Wang, “Coverage path planning for uavs based on enhanced
exact cellular decomposition method,” Mechatronics, vol. 21, no. 5, pp. 876–885, 2011, Special
Issue on Development of Autonomous Unmanned Aerial Vehicles.

[22] F. Segor, A. Bürkle, M. Kollmann, and R. Schönbein, “Instantaneous autonomous aerial recon-
naissance for civil applications,” in International Conference on Systems (ICONS) 2011, Jan.
2011.

[23] S. Karaman and E. Frazzoli, “Optimal kinodynamic motion planning using incremental sampling-
based methods,” in 49th IEEE Conference on Decision and Control (CDC), 2010, pp. 7681–7687.

[24] J. Fernández, B. G.-Tóth, L. Cánovas, and B. Pelegŕın, “A practical algorithm for decomposing
polygonal domains into convex polygons by diagonals,” TOP: An Official Journal of the Spanish
Society of Statistics and Operations Research, vol. 16, pp. 367–387, Feb. 2008.

[25] I. Maza and A. Ollero, “Multiple uav cooperative searching operation using polygon area de-
composition and efficient coverage algorithms,” in. Jan. 2007, vol. 6, pp. 221–230.

[26] E. Acar, H. Choset, A. Rizzi, P. Atkar, and D. Hull, “Morse decompositions for coverage tasks,”
I. J. Robotic Res., vol. 21, pp. 331–344, Apr. 2002.

[27] S. LaValle, “Rapidly-exploring random trees: A new tool for path planning,” Research Report
9811, 1998.

[28] H. Choset and P. Pignon, “Coverage path planning: The boustrophedon decomposition,” in
Proceedings of 1st International Conference on Field and Service Robotics (FSR ’97), 1997,
pp. 216 –222.

[29] J Milnor, “Morse theory.,” Princeton, New Jersey: Princeton University Press., 1963.

[30] T. Baca. (). Control manager, [Online]. Available: https://github.com/ctu- mrs/mrs uav
managers (visited on May 17, 2024).

[31] D. Hert. (). Mrs uav status, [Online]. Available: https://github.com/ctu-mrs/mrs uav status
(visited on May 17, 2024).

CTU in Prague Department of Cybernetics

http://wiki.ros.org/pluginlib
https://github.com/ctu-mrs/mrs_uav_managers
https://github.com/ctu-mrs/mrs_uav_managers
https://github.com/ctu-mrs/mrs_uav_status

	Introduction
	Related works
	Statement on the usage of artificial intelligence tools

	Coverage Path Planning
	Exact cellular decomposition
	Diagonal decomposition-based approach
	Morse decomposition-based approach

	Approximate cellular decomposition
	Energy-aware algorithm
	Strides-based approach

	Comparing CPP methods
	Algorithmic analysis
	Performance
	Implementation details
	Evaluation
	Summary

	User Interface and World Manager
	Safety Area Manager
	Control tool
	Waypoint planner
	UAV Status display
	Satellite overlay
	Coverage path planner

	Real-world experiments
	Achieved objectives
	Conclusion
	References

