
Bachelor’s Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Cybernetics

Geometrical consistency for object pose estimation
from images

Martin Malenický

Supervisor: Ing. Vladimír Petrík, Ph.D.
Study program: Cybernetics and Robotics
May 2024

ii

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

507632 Personal ID number: Malenický Martin Student's name:

Faculty of Electrical Engineering Faculty / Institute:

Department / Institute: Department of Cybernetics

Cybernetics and Robotics Study program:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Geometrical consistency for object pose estimation from images

Bachelor’s thesis title in Czech:

Geometrická konzistence při odhadu polohy a orientace objektu z obrázků

Guidelines:

1. Analyze the geometrical consistency of the scene composed of objects for which pose was estimated with
state-of-the-art pose estimation methods, e.g. [1, 2].
2. Use differential collision detection algorithm [3] for fixing geometrical inconsistency.
3. Analyze one of the BOP datasets [4] (e.g., YCB-V [5]) and extract information about the surrounding
environment that can be used to model additional geometry (e.g., use depth measurements to model the plane representing
the desk).
4. Compare the accuracy of the predictions (SE3 distance between the poses) with and without enforcing
the geometrical consistency on the selected YCB-V dataset.

Bibliography / sources:

[1] Labbé, Y., Manuelli, L., Mousavian, A., Tyree, S., Birchfield, S., Tremblay, J., Carpentier, J., Aubry, M., Fox, D. and
Sivic, J., 2022. Megapose: 6d pose estimation of novel objects via render & compare. arXiv preprint
arXiv:2212.06870.
[2] Labbé, Y., Carpentier, J., Aubry, M. and Sivic, J., 2020. Cosypose: Consistent multi-view multi-object 6d pose
estimation. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020,
Proceedings, Part XVII 16 (pp. 574-591). Springer International Publishing.
[3] Montaut, L., Le Lidec, Q., Bambade, A., Petrik, V., Sivic, J. and Carpentier, J., 2023, May. Differentiable collision
detection: a randomized smoothing approach. In 2023 IEEE International Conference on Robotics and Automation
(ICRA) (pp. 3240-3246). IEEE.
[4] Sundermeyer, M., Hodaň, T., Labbe, Y., Wang, G., Brachmann, E., Drost, B., Rother, C. and Matas, J., 2023. Bop
challenge 2022 on detection, segmentation and pose estimation of specific rigid objects. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 2784-2793).
[5] Xiang, Y., Schmidt, T., Narayanan, V. and Fox, D., 2017. Posecnn: A convolutional neural network for 6d object
pose estimation in cluttered scenes. arXiv preprint arXiv:1711.00199

© ČVUT v Praze, Design: ČVUT v Praze, VIC Page 1 from 2 CVUT-CZ-ZBP-2015.1

Name and workplace of bachelor’s thesis supervisor:

Ing. Vladimír Petrík, Ph.D. Intelligent Machine Perception CIIRC

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 24.05.2024 Date of bachelor’s thesis assignment: 26.01.2024

Assignment valid until: 21.09.2025

___________________________ ___________________________ ___________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
prof. Dr. Ing. Jan Kybic

Head of department’s signature
Ing. Vladimír Petrík, Ph.D.

Supervisor’s signature

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC Page 2 from 2 CVUT-CZ-ZBP-2015.1

Acknowledgements
I would like to express my grat-
itude to my thesis supervisor,
Ing. Vladimír Petrík, Ph.D., for his
excellent guidance, provision of ex-
pert advice, insightful feedback, and
great patience. I would like to thank
Dr. Méderic Fourmy for his brilliant
theoretical advice and practical ideas
without which this thesis could not have
been made. I would also like to thank
my colleagues at CIIRC RMP, especially
Mgr. Martin Cífka, for their help during
the development of this thesis. Finally,
I would like to thank my family, friends,
and girlfriend for the support they have
provided during my studies.

Declaration
I declare that the presented work was de-
veloped independently and that I have
listed all sources of information used
within it in accordance with the methodi-
cal instructions for observing the ethical
principles in the preparation of university
theses.

I further declare that the artificial intel-
ligence used for text translation (DeepL),
grammar checking (Writefull) and code
snippet generation (GithubCopilot) was
used in accordance with the Guidelines for
the use of Artificial Intelligence at CTU.

In Prague, 20. May 2024

Prohlašuji, že jsem předloženou práci
vypracoval samostatně a že jsem uvedl
veškeré použité informační zdroje v
souladu s Metodickým pokynem o do-
držování etických principů při přípravě
vysokoškolských prací.

Dále prohlašuji, že umělá inteligence
použitá pro překlad textu (DeepL),
kontrolu gramatiky (Writefull) a gen-
erování úryvků kódu (GithubCopilot)
jsem použil v souladu s Rámcovými
pravidly používání umělé inteligence na
ČVUT.

V Praze, 20. května 2024

v

Abstract
Object pose estimation from an image is
an important task in robotics required
for automatic interaction with an envi-
ronment. However, current methods for
pose estimation do not account for the
physical constraints of the real world, re-
sulting in physically infeasible estimates.
This work aims to improve the object pose
estimation from images by introducing
physical consistencies into the scene. The
desired consistencies include the applica-
tion of gravity and resolution of collisions
between objects in the scene. The poses
of the objects are either estimated by pose
estimators or are known a priori from the
model of the environment, e.g., the ta-
ble on which the objects are placed. We
formulate the physical consistency as an
optimization problem for which we de-
rive analytical gradients. Two synthetic
rendered datasets and three real-world
datasets from the BOP challenge were
used to analyze the effect of enforcing
physical consistency. Our approach im-
proves the BOP metrics on average by
27% on our synthetic datasets and by 13%
on the three BOP datasets. This shows
that physical consistency has a significant
effect on the BOP metrics for the object
pose estimation. To demonstrate the ef-
fect of physical consistency in robotic ap-
plications, we perform a pick-and-place
task on a Panda robot. Our approach re-
sults in a more stable operation, increas-
ing the grasping success rate from 20% to
80% on challenging grasps.

Keywords: object pose estimation,
physical consistency, geometrical
consistency, robotic manipulation, BOP
challenge

Supervisor: Ing. Vladimír Petrík, Ph.D.
Intelligent Machine Perception CIIRC

Abstrakt
Odhad polohy a orientace objektu z ob-
rázku je důležitou úlohou v robotice, která
je nutná pro automatizovanou interakci
s prostředím. Stávající metody odhadu
polohy a orientace však nezohledňují fyzi-
kální omezení reálného světa, což vede k
fyzikálně nerealistickým odhadům. Cílem
této práce je zlepšit odhad polohy a ori-
entace objektu ze snímků zavedením fyzi-
kálních konzistencí do scény. Požadované
konzistence zahrnují uplatnění gravitace
a odstranění kolizí mezi objekty ve scéně.
Polohy a orientace objektů jsou buď od-
hadovány pomocí pose estimatoru, nebo
jsou a priori známy z modelu robota a
prostředí, např. stůl na kterém jsou ob-
jekty umístěné. Fyzikální konzistenci for-
mulujeme jako optimalizační problém, pro
který odvodíme analytické gradienty. K
analýze vlivu fyzikální konzistence byly
použity dva syntetické datasety a tři re-
álné datasety z BOP Challenge. Naše me-
toda zlepšuje BOP metriky v průměru o
27% na našich syntetických datasetech a o
13% na třech použitých BOP datasetech.
To ukazuje, že fyzikální konzistence má
významný vliv na BOP metriky pro od-
had polohy a orientace objektu. Abychom
demonstrovali vliv fyzikální konzistence
v robotických aplikacích, provedli jsme
úlohu uchop a polož s robotem Panda. Náš
přístup vede ke stabilnějšímu fungování
a zvyšuje úspěšnost náročných úchopů z
20% na 80%.

Klíčová slova: odhad polohy a
orientace objektu, fyzikální konzistence,
geometrická konzistence, robotická
manipulace, BOP Challenge

Překlad názvu: Geometrická
konzistence při odhadu polohy a
orientace objektu z obrázků

vi

Contents
1 Introduction 1

1.1 Motivation . 1

1.2 Goals . 2

2 Related works 5

Collision avoidance in object pose
estimation . 5

Collision resolution in human hand
and body pose estimation 6

Rigid object collision resolution 6

3 Enforcing physical consistency 9

3.1 Problem formulation and
notation. 10

3.2 Optimization loop for physical
consistency . 11

3.3 Perception gradient 12

3.3.1 Perception cost and gradient 12

3.3.2 Covariance between pose
estimation error and the estimation
axis . 13

3.3.3 Perception Jacobian 15

3.4 Convex meshes and convex
decomposition 17

3.5 Collision gradient 18

3.6 Gravity gradient 20

4 Experiments 23

4.1 Experimental setup 23

4.2 Metrics . 25

4.3 Synthetic toy datasets 26

4.3.1 Results 27

4.4 BOP Datasets 31

4.4.1 BOP datasets description . . . 32

4.4.2 Table pose estimation 32

4.4.3 Results 33

4.5 Real robotic experiment 37

4.6 Ablation study 38

4.6.1 Qualitatively estimated
hyperparameters 38

4.6.2 Quantitatively estimated
hyperparameters 39

4.6.3 Collision derivative 40

5 Conclusions 45

Bibliography 47

vii

Chapter 1

Introduction

1.1 Motivation

Accurately estimating the position and orientation, i.e., 6D pose, of objects is a crucial
area in computer vision and robotics. Reliable pose estimation is essential for various
applications, such as autonomous vehicle control, robotic manipulation, motion tracking,
augmented reality, and many others. In this thesis, we focus on object pose estimation for
robotic manipulation.

Current state-of-the-art solutions, such as the render-and-compare approach used in
CosyPose [3] and MegaPose [2], or approaches that use both RGB and depth images, such as
FoundationPose [4], do not explicitly enforce the geometric and physical constraints between
the objects for which the pose estimation is performed. This results in geometric and

Figure 1.1: The left part of the image shows the input image taken from YCB-V dataset [1].
The right part of the image shows the object in estimated poses computed by MegaPose [2]. It
is clearly visible that the objects in the estimated poses are colliding with each other and with
the table.

1

1. Introduction ..
physical inconsistencies, as illustrated in Fig. 1.1. Objects in such estimated poses may float
above the floor on which they should properly lie or be in collisions with each other, or with
other objects in the scene, for which pose estimation has not been made but are modeled
based on the real environment. A typical example of a modeled environment is table-top
robotic manipulation. To compute the collision-free trajectory of the robot, a surrounding
environment needs to be accurately modeled. In table-top manipulation, pose estimation
is often done for objects lying on a table or other modeled surface. Our motivation is
to accurately perform this table-top robotic manipulation based on the monocular image
captured by the camera mounted on the robot. To achieve the desired accuracy, we propose
to enforce physical and geometrical consistency by optimization. This pick-and-place setup
is shown in Fig. 1.2.

1.2 Goals

The goal of this thesis is to use an iterative algorithm to enforce physical consistency in a
scene where the poses of objects have been predicted by a state-of-the-art pose estimator

(a) : Real robotic experiment: picking an YCB-V object with physically consistent estimation.

(b) : Simulated scenes showing a possible effect of physical inconsistencies.

Figure 1.2: Picking of an YCB-V object based on a monocular camera. The first row
illustrates the task we want to achieve, i.e., picking an YCB-V object based on the monocular
camera mounted on the robot arm. The robot first captures the image and then approaches
the object from the top based on the pose estimated from the image. If the predicted pose is
accurate, the picking is successful, as shown by the consecutive frames in the first row. However,
if we apply MegaPose to the captured image, the obtained pose might put an object into collision
with the desk, as shown in the first frame of the bottom row. The real execution would then
end up in collision with the object, as illustrated in the middle frame of the bottom row. If
our proposed approach is applied, the collision is resolved, and the robot approaches the object
correctly, as illustrated in the last frame of the bottom row. This physically consistent pose was
used to perform a real robot experiment shown in the top row.

2

...1.2. Goals

MegaPose [2]. The scene contains estimated objects, static environmental objects, and
a gravitational field. The geometric inconsistencies between pairs of objects are resolved
together with the "floating" of objects in the air. At the same time, we will not move the
objects too far away from their original estimates to keep the perceptual appearance of the
image.

We distinguish several variants of our algorithm, depending on the amount of a priori
information:

. if no information about the environment surface and gravity direction is known, we
enforce only geometrical consistency (i.e. resolve collisions) between objects;. if the environment is modeled, we consider also collisions between the static environment
and the objects; and. if the gravity direction is known we also enforce a gravitational field that resolves
"floating" objects.

We compare the standard BOP metrics [5] of the initial poses predicted by MegaPose [2]
and our geometrically and physically consistent poses. The comparison is performed on our
synthetically generated dataset and on standard BOP datasets.

The contributions of the thesis are:

.We enforce the physical consistency of the scene whose poses were estimated from
RGB images..We render a synthetic dataset for benchmarking..We benchmark the improvement in BOP metrics gained by enforcing physical consis-
tency on both our synthetic dataset and on real BOP datasets. Our approach increases
the BOP average recall by 13 % on average for 3 real datasets and by 27 % on average
for two synthetic datasets..We made the code open source [6].

3

4

Chapter 2

Related works

Pose estimation of rigid objects from images is a topic whose first solutions began to be
explored decades ago [7–10]. However, new methods based on different principles continue
to emerge. Earlier methods were based on 2D-3D correspondences computed by manually
designed algorithms [11–14], more recently, convolutional neural networks are used to
identify correspondences [1, 15–17]. Current state-of-the-art methods often use the render-
and-compare approach [2,3,18,19]. This approach renders meshes of objects in different
poses; these renderings are then compared with the image for which we want to perform the
estimation, and the pose in the rendering closest to the original image is chosen to be the
result. Our method is built on top of the output of the pose estimators and further refines
the poses to get physically consistent results. We use MegaPose [2] in our experiments.

For the purpose of benchmarking 6D pose estimation methods, there are many metrics
that test different aspects of the estimation. Hodan et al. [5] propose a standardized
methodology to compare pose estimation methods that has been used in the BOP Challenge
for several years [5, 20, 21]. This methodology tests pose estimators on a variety of metrics
and datasets to provide a broad comparison. We tested our method on the metrics and
several datasets used in the BOP Challenge.

Collision avoidance in object pose estimation

The collision is avoided in some methods that are based on point-pair-features [22]. These
methods compute the hash map of features from the meshes in an offline phase. Online
estimation is formulated as the matching of the depth map to the computed features.

Deng et al. [23] resolve duplicate estimates by rendering depth maps of objects in
estimated poses, then filtering out objects whose depth maps overlap, thus avoiding the
creation of a potential collision of an object with itself. Wang et al. [24] create a point
cloud from the depth map used for estimation, then the RANSAC [25] algorithm is used
to find the pose of the table. They use the table pose to down-sample the point cloud by
removing points that are below the table plane. This method implicitly avoids estimating

5

2. Related works ...
objects in poses that would collide with the table. Fu el al. [26] solves the same problem as
Wang et al. but explicitly. The pose of the table is also found using RANSAC. They then
estimate the pose of the objects and delete those estimates that are likely to collide with
the table based on the normal to the table.

However, these methods do not aim to resolve collisions directly; they only attempt to
avoid them, and if they do occur, they do not seek further solutions. On the other hand,
our method solves exactly this problem, i.e., resolves collisions if they arise from the initial
estimation.

Collision resolution in human hand and body pose estimation

Collisions are also widely studied in the field of human pose estimation and hand pose
estimation. Rong et al. [27] estimate not only the pose of the hand, but also its shape,
which is controlled by ten parameters. As a result, they are able to accurately resolve
collisions without changing the pose of the hand. Smith et al. [28] also estimate the pose of
the hand while considering collisions. However, the shape of the hand is not given by the
parameterization, but is created by a deformable model. This approach allows the collisions
to be solved by bending the fingers and compressing the skin.

Works on human pose estimation address collisions that can occur either between different
body parts of a single person (self-collision) or between a person and the environment.
Similarly to the estimation of hand pose, the shape of the body can also change. Some
solutions use soft constraints and introduce a collision-penalizing term into their loss
functions [29–32], thus creating a so-called collision-aware loss function. Other methods
directly prohibit collisions either by differential methods [33], or introduce a collision
potential between body parts [34].

These works directly address the collision problem, but they all use objects with parame-
terized shapes or elastic models. Our work focuses on the pose estimation of rigid objects
with 6 degrees of freedom for the purpose of the object pose estimation in robotics.

Rigid object collision resolution

Some works address collisions between rigid objects. Wada et al. [35] use differential collision
detection. They do not directly use meshes of objects to resolve collisions; they sample the
meshes into points, which they then voxelize and compute loss functions based on voxel
intersection. They then minimize the loss using gradient descent. Lee et al. [36] suggest
using the internal expanding algorithm to compute the distance between two convex sets. In
order to use it efficiently, they define the geometry of objects using support functions, from
which they express differentiable contact features. They then solve a gradient optimization
problem based on these derivatives. Landgraf et al. [37] trained a generative model to
predict segmentations and poses of multiple convex objects from a single RGBD image.

6

..2. Related works

They resolve collisions by fitting superquadratic shapes to a point cloud generated from the
mesh and minimizing a loss function penalizing collisions of these superquadratic shapes.

These methods resolve collisions for uncertain object poses. Each method takes a different
approach to representing objects and collisions. The previously mentioned methods use
voxelization, superquadratic fitting, and support functions. Our method works directly
with meshes and the derivative of their signed distance. Gravity was included only in
the [37] by training the model on the dataset in which a simulated physics was applied.
These methods also consider different use cases than we do.

7

8

Chapter 3

Enforcing physical consistency

C

O1 O2

S1

Image Capture
Physical Consistency

Optimization

A C D

Pose Estimation

B

Figure 3.1: The goal of our method is to refine the poses of objects by enforcing physical
consistency in the scene. A robot with an external camera, or a camera attached to a gripper
such as the one shown in A, captures an images of the scene, as shown in B. From this image,
we obtain an initial estimate of the object poses using a pose estimator. From these poses
and the poses of other known static objects, we create a virtual representation of the scene,
as in Figure C. There, we see that the three paper boxes are in collision with each other and
the blue pitcher is in collision with the table. We resolve these collisions and other physical
inconsistencies such as objects floating in the air using gradient optimization. Figure D then
shows a virtual scene with the object poses already optimized. These physically consistent poses
are then the output of our method.

The goal of this thesis is to enforce the physical consistency in a scene in which the poses
of the objects are initially estimated by pose estimator, in our case MegaPose [2]. In case
of no additional information about the scene, our goal is to find poses that minimize the
distances from their initial estimates and resolve collisions between objects. If additional
information about static objects is available for a given scene, collisions between objects
and static objects as well as gravity can be added to our optimization-based method. We
target robotics applications for which the static objects are often modeled, for example, for
collision free path planning. We illustrate the overall pipeline of the method in Fig. 3.1.

9

3. Enforcing physical consistency
3.1 Problem formulation and notation.

To achieve physical consistency, we formulate an optimization problem that is solved using
gradient descent (GD). In this section, we introduce the notation that is used in the rest
of the chapter to compute gradients for GD analytically. Several inputs are considered
for our method: the poses of movable objects, the poses of static objects, and spatial
representations of the objects.

Poses of movable objects. The proposed method takes as input the initial poses of
the objects; these are estimated using an external pose estimator that has predicted the
poses from an image captured by the camera. The poses of the objects are expressed in the
reference frame of the camera, denoted by the subscript C. The objects are then denoted
by a subscript O, i, where O stands for an object and i denotes the i-th object out of N
objects in the scene. The transformation from the camera frame to the i-th object frame,
estimated by the pose estimator, is then denoted by T̃C,Oi, where the tilde over T indicates
that it is the initial (measured) pose. We will often use the translation and rotation parts
of this transformation separately. These are successively denoted by t̃C,Oi and R̃C,Oi. The
conversion between the components of the transform and the whole transform can be done
by writing the transform in homogeneous coordinates, as follows:

T̃C,Oi =
[
R̃C,Oi t̃C,Oi

0T 1

]
. (3.1)

Poses of static objects. The next input to the method, the poses of static objects, are
denoted in a similar way: static objects are denoted by the subscript S, i, where i denotes
the i-th static object of M known static objects. Transformation from camera frame to
i-th static object frame is denoted as T̃C,Si and can again be expressed in homogeneous
coordinates as:

T̃C,Si =
[
R̃C,Si t̃C,Si

0T 1

]
. (3.2)

Spatial representation of objects. Another required inputs to the method are the
shapes of objects and static objects. We represent these shapes using meshes. Most
algorithms that work with collisions, including the one that we used called Diffcol [38],
require the meshes to be convex. This is mainly because of the high computational
complexity of working with non-convex meshes. Therefore, at the beginning of the method,
all meshes are converted to their convex representation; this is described in more detail in
Sec. 3.4.

Optimization. During the optimization process, the poses and thus the transformation
of the objects are gradually changed at each step until the last optimization step. We
denote the number of steps by the symbol K. We denote the transformation from the
camera frame to the i-th object frame at the j-th step by T j

C,Oi. This can be expressed as:

T j
C,Oi =

[
Rj

C,Oi tj
C,Oi

0T 1

]
. (3.3)

10

.............................3.2. Optimization loop for physical consistency

Note that this means that T 0
C,Oi = T̃C,Oi. And for static objects, T̃C,Si = T 0

C,Si =
T 1

C,Si = . . . = TK
C,Si, since their poses do not change during optimization. The result

of the method are the optimized poses of the objects in the last iteration of GD, i.e.,
TK

C,O1, T
K
C,O2, . . . , T

K
C,ON . We present more details on optimization using this notation in

Sec. 3.2.

3.2 Optimization loop for physical consistency

The gradient used in the GD method consists of three sub-gradients: the collision gradient
∇C, the gravity gradient ∇G and the perception gradient ∇P . These three gradients
represent the influence of collision resolution, the influence of the gravity term, and the
influence of the initial estimation. We can change the ratio between the gradients using
weight of the collision gradient ζC and weight of the gravity gradient ζG, the perception
gradient has a fixed weight of one. The weights ζC and ζG are considered to be hyperpa-
rameters that are tuned to achieve stable convergence and accurate physical consistency.
All presented gradients are represented by 6D vectors, where the first three components
describe translation and the last three rotation. Detailed descriptions of the cost functions,
the computation of the gradients, and the motivation for their use are presented in Sec. 3.3,
3.5, and 3.6. The computation of the entire gradient for the i-th object in the j-th iteration
goes as follows:

∇T j
C,Oi = ζC∇Cj

i + ζG∇Gj
i + ∇P j

i ∈ R6. (3.4)

Due to possible numerical inaccuracies, especially in the calculation of the collision
gradient, the entire gradient is clipped. It is then multiplied by the learning rate α. This
yields a vector representing an iterative step in 6D space:

dxj
i = −α clip(∇T j

C,Oi) ∈ R6. (3.5)

We do the gradient clipping separately for the translation and rotation parts to allow for
different clipping thresholds, ρt (translation threshold) and ρR (rotation threshold). This is
useful, for example, because translation and rotation are in different units. We do not clip
the vector by components, but by norm division to preserve the direction of the original
vector. For an arbitrary 6D vector v consisting of two three-dimensional vectors t and ω

such that v =
[
t ω

]T
the clipping looks like this:

clip(v) =
[

t′

ω′

]
,

t′ =

ρt
t

∥t∥ if ∥t∥ > ρt,

t otherwise.

ω′ =

ρR
ω

∥ω∥ if ∥ω∥ > ρR,

ω otherwise.

(3.6)

11

3. Enforcing physical consistency
The pose update of the i-th object in the j-th optimization iteration is computed by

multiplying the pose of the object with the update transformation based on iterative
step (3.5) in the following way:

T j+1
C,Oi = T j

C,Oi exp
(
dxj

i

)
∈ SE(3). (3.7)

The function exp [39] converts the 6D gradient to the form (3.3). All of the above calculations
are performed in each of the K iterations of GD for each of the N objects.

For simplicity, we will use the notation without the superscript j for the remainder of
this chapter, just note that all following calculations are performed in each iteration of the
optimization loop.

3.3 Perception gradient

Since the initial poses are the best initial estimate we have, we do not want to deviate
from it more than necessary to ensure physical consistency. For example, if the collision
gradient between two objects is large in a certain iteration, this could cause the objects to
suddenly move farther apart than needed to resolve the collision. The perception gradient
will gradually bring the objects closer together until they touch again, at which point the
collision gradient will begin to work against it. In this way, our aim is to find an equilibrium.

3.3.1 Perception cost and gradient

At each iteration step, we compute the perception gradient based on the perception cost.
The cost function underlying the perception gradient is given by the Mahalanobis norm [40]
of error. The error is computed as SE(3) difference [39] between the pose in the current
iteration and the estimated pose. The norm is scaled by a covariance matrix of the estimator
to allow for more divergence in the dimensions, where estimation is more difficult for image-
based pose estimators. Description of calculation of the covariance matrix is in Sec. 3.3.2.
We will denote the error for the i-th object as ei. Its calculation is as follows:

∆ti = tC,Oi − t̃C,Oi , (3.8)
R

Õi,Oi
= R̃−1

C,OiRC,Oi = R̃T
C,OiRC,Oi , (3.9)

∆ωi = log
(
R

Õi,Oi

)
, (3.10)

ei =
[

∆ti

∆ωi

]
. (3.11)

The translation vectors and rotation matrices used in Eq. (3.8) and (3.9) defines the object
pose in camera frame as defined in (3.1) and (3.3). In Eq. (3.10), an SO(3) logarithmic
mapping [41] of the rotation matrix to the rotation vector is used. The perception cost is

12

...................................... 3.3. Perception gradient

then half of the squared Mahalanobis distance of the calculated error (3.11):

Pi = 1
2∥ei∥2

ΣCi
= 1

2ei
T Σ−1

Ci ei = 1
2ei

THiei , (3.12)

where ΣCi is the covariance matrix we mentioned earlier and the Hi is a so-called precision
matrix [42], which can be calculated as inverse of the covariance matrix:

Hi = Σ−1
Ci . (3.13)

The precision matrix multiplies the error by a large number in the direction for which we
assume a good initial estimate of the pose and a small number in the direction in which
the estimate is typically flawed, e.g., depth direction.

Since the cost is a quadratic form, its derivative will depend on the size of the error, so if
the error is large, the derivative will also be large and vice versa. Now we calculate the
perception gradient, that is, the derivative of the perception cost with respect to the pose
of the object. We first decompose this as the derivative of the cost with respect to the error
and the derivative of the error with respect to the pose, as follows:

∇Pi = ∂Pi

∂TC,Oi
= ∂Pi

∂ei

∂ei

∂TC,Oi
. (3.14)

We call the derivative of the pose error ∂ei
∂TC,Oi

the Jacobian and denote it by Ji. The
Jacobian tells us how much the individual components of the error vector ei change as the
pose of the object changes. How the Jacobian is computed is described in Sec. 3.3.3, for
now we assume that the Jacobian is known. After substituting the cost (3.12) and the
Jacobian into formula (3.14), the derivative can be further adjusted:

∇Pi =
∂(1

2ei
THiei)
∂ei

Ji = 1
2ei

T (Hi +HT
i)Ji . (3.15)

The precision matrix is symmetric and therefore Hi +HT
i = 2Hi, which allows us to further

simplify the expression:

∇Pi = ei
THiJi . (3.16)

Equation (3.16) is the final form of the perception gradient used in the optimization
loop (3.4).

3.3.2 Covariance between pose estimation error and the estimation axis

Although we consider the initial estimation to be approximately correct, typically pose
estimators have more difficulty estimating depth than estimating rotation and position in
the image plane. Thus, we need to allow more freedom to move objects in axis where pose
estimators make larger errors. To achieve that, we model the covariance in a coordinate
frame shown in Fig. 3.2 in which the camera z-axis points toward the center of the estimated
object. We assumed diagonal covariance matrix for translation and rotation, i.e. we assume

13

3. Enforcing physical consistency
O2C'2

σxy

σz

O1

C'1

σxy

σz

C

Figure 3.2: 2D illustration of translation covariance error ellipses for two objects O1 and O2
in rotated camera frames C ′

1 and C ′
2. The standard deviation is larger along the axis pointing

to the object than along the axis perpendicular to it. This reflects the difficulty of estimating
depth using pose estimators. We therefore allow the objects more freedom of movement in this
axis.

uncorrelated error among the axes of translation and axes of rotations. As in [43], we
estimated the standard deviation σz for the z-axis error, together with the standard
deviation σxy for the x and y axis, and finally the single standard deviation σθ for all axis of
rotations. Together, these standard deviations form the covariance matrices for translation
and rotation.

Σt
C′i =

σ2
xy 0 0
0 σ2

xy 0
0 0 σ2

z

, (3.17)

ΣR
Oi =

σ2
θ 0 0

0 σ2
θ 0

0 0 σ2
θ

. (3.18)

The covariance matrix for translation is the same for all objects as long as it is expressed
in the C ′

i frame, i.e., the frame of the camera rotated towards the i-th object, as shown in
Fig. 3.2. Similarly, the covariance matrix for rotation is the same for all objects as long as
it is expressed in the frame of the objects in question.

Since all poses and therefore the perception gradient are expressed in the unrotated
camera frame, we have to transform the diagonal covariance matrices into it. To do this,
we use the initial poses of the objects T̃C,Oi for which the covariance matrix is measured.
We first find the axis and angle of rotation between the z-axis of the unrotated camera,
that is,

[
0 0 1

]T
, and the z-axis of the rotated camera pointing to the i-th object, that

14

...................................... 3.3. Perception gradient

is, the normalized translation t̃C,Oi. Therefore, the rotation axis and the relative angle are:

ω̂i =

0
0
1

 × t̃C,Oi∥∥∥t̃C,Oi

∥∥∥ , (3.19)

θi = arccos

0

0
1

 · t̃C,Oi∥∥∥t̃C,Oi

∥∥∥
. (3.20)

The Eq. (3.19) and (3.20) can be combined into an exponential representation [41], as
follows:

ωi = θiω̂i . (3.21)

Using the SO(3) exponential mapping [41], we convert the Eq. (3.21) into a rotation matrix:

RC,C′i = exp(ωi) . (3.22)

Using the rotation matrix (3.22) we can convert the translation part of the covariance
matrix (3.17) to the unrotated camera frame:

Σt
Ci = RC,C′iΣt

C′iR
T
C,C′i , (3.23)

in the same way, we can transform the rotation part of the covariance matrix (3.18) into
the camera frame by using the rotation of the object relative to the camera R̃C,Oi:

ΣR
Ci = R̃C,OiΣR

OiR̃
T
C,Oi . (3.24)

We can now combine the translation covariance (3.23) and the rotation covariance (3.24)
into a single covariance matrix of dimension 6×6:

ΣCi =
[
Σt

Ci 03
03 ΣR

Ci

]
, (3.25)

where 03 denotes 3×3 matrix full of zeros.

3.3.3 Perception Jacobian

In this subsection, we describe the computation of the Jacobian Ji used in Eq. (3.16). As
mentioned earlier, the Jacobian in our case is the derivative of the perception error of the
object pose (3.11) with respect to the pose. Since we can split the error into the translation
part (3.8) and the rotation part (3.10), we can split its derivative and hence the Jacobian:

Ji = ∂ei

∂TC,Oi
=
∂

[
∆ti ∆ωi

]T

∂TC,Oi
=

[
∂∆ti

∂TC,Oi

∂∆ωi
∂TC,Oi

]T
, (3.26)

we will calculate these components separately.

15

3. Enforcing physical consistency
Modification of the translation part of the Jacobian. We will modify the derivative

of the translation part using Eq. (3.8):

∂∆ti

∂TC,Oi
= ∂tC,Oi − t̃C,Oi

∂TC,Oi
= ∂tC,Oi

∂TC,Oi
− ∂t̃C,Oi

∂TC,Oi
= ∂tC,Oi

∂TC,Oi
. (3.27)

We can make this modification because t̃C,Oi is a constant. To compute the derivative of
the position with respect to the pose, we use [39], in this paper, Solà et al. deduced the
derivative:

∂Tp

∂T
= ∂Rp + t

∂T
=

[
R −R[p]×

]
, (3.28)

where T is an arbitrary frame transformation consisting of a rotation part R and a translation
part t, p is an arbitrary 3D vector and [p]× creates a skew-symmetric matrix from vector p.
For T := TC,Oi and p := 0, where 0 is a 3D zero vector, we can rewrite the equation (3.28)
as:

∂TC,Oi0
∂TC,Oi

= ∂RC,Oi0 + tC,Oi

∂TC,Oi
= ∂tC,Oi

∂TC,Oi
=

[
RC,Oi −RC,Oi[0]×

]
=

[
RC,Oi 03

]
. (3.29)

Note that the third term of Eq. (3.29) is the desired derivative from Eq. (3.27), so the
resulting translation part of the Jacobian is:

∂tC,Oi

∂TC,Oi
=

[
RC,Oi 03

]
. (3.30)

Modification of the rotation part of the Jacobian. The rotational part of the
Jacobian can be rewritten using equations (3.9) and (3.10):

∂∆ωi

∂TC,Oi
= ∂∆ωi

∂R
Õi,Oi

∂R
Õi,Oi

∂RC,Oi

∂RC,Oi

∂TC,Oi
=
∂ log

(
R

Õi,Oi

)
∂R

Õi,Oi

∂R̃T
C,OiRC,Oi

∂RC,Oi

∂RC,Oi

∂TC,Oi
. (3.31)

The calculation of the first term of the product, i.e., the derivative of the logarithmic mapping
with respect to its argument, is analytically implemented in the Pinocchio library [44] and
we consider this derivative to be known. Solà et al. [39] solved the other two terms of the
product as follows:

∂R̃T
C,OiRC,Oi

∂RC,Oi
= I3 , (3.32)

∂RC,Oi

∂TC,Oi
=

[
03 I3

]
, (3.33)

where I3 is a 3 × 3 identity matrix. Using the identities mentioned above, we modify the
equation (3.31) to form:

∂∆ωi

∂TC,Oi
=
∂ log

(
R

Õi,Oi

)
∂R

Õi,Oi

I3
[
03 I3

]
=

[
03

∂ log
(

R
Õi,Oi

)
∂R

Õi,Oi

]
. (3.34)

16

.............................3.4. Convex meshes and convex decomposition

Combining the equations (3.30) and (3.34) yields the formula for the Jacobian used in
(3.16):

Ji =

RC,Oi 03

03
∂ log

(
R

Õi,Oi

)
∂R

Õi,Oi

. (3.35)

3.4 Convex meshes and convex decomposition

Before we explain how collisions between meshes are computed, we need to describe how to
convert the original concave meshes to their convex representation. For this we use two
kinds of representation, convex hull and convex decomposition.

Figure 3.3: Visualization of object representation. From left to right: the original concave
mesh from the YCB-V dataset, its convex hull, and a convex decomposition consisting of ten
differently colored parts.

A convex hull is the smallest convex mesh that contains the entire original mesh. However,
it is only a very rough approximation of the original shape, which we will use for approximate
and fast computations. A major problem with the convex hull is the neglect of mesh details
such as holes and dips in the mesh, as seen in Fig. 3.3. When calculating the distance, or
derivative of collision, between meshes where some holes have been approximated in this
way, a large error would occur. For the conversion of the original mesh to a convex hull, we
use the Quickhull algorithm [45] implemented within HPP-FCL [46].

We use a convex decomposition of the meshes to obtain greater resemblance to the
original object. The convex decomposition algorithm produces a set of smaller convex
meshes whose union no longer needs to be convex, contains the entire original mesh, but is
"smaller" than the convex hull. This can be seen in Fig. 3.3 on the right. For this task, we
used a state-of-the-art method for convex decomposition CoACD [47].

We denote the convex hull of the i-th object out of N objects by Oi, and the convex hull
of the i-th static object out of M static objects by Si. The pose of these meshes is identical

17

3. Enforcing physical consistency
to that of their associated objects, i.e., the mesh Oi is located in TC,Oi and the mesh Si

is located in TC,Si. For the decomposition, we will use a convention in which the k-th
decomposed part of the i-th object will be denoted by Oik and the number of decomposed
parts of the i-th object is Ni. Similarly, the k-th decomposed part of the i-th static object
will be denoted by Sik and the number of decomposed parts of the i-th static object is Mi.
Individual decomposed parts have a coordinate system at the same location as the original
mesh, but the mesh vertices themselves are shifted to match the original undecomposed
mesh. The pose notation of the decomposed part is the same as that of the convex hull,
i.e., the part Oik is in the pose TC,Oi and Sik is in TC,Si.

3.5 Collision gradient

First, we introduce the notion of witness-points, in the same way as in Diffcol [38]. Witness-
points x∗

1 and x∗
2 are a pair of vertices of arbitrary meshes A1 and A2 that are closest to

each other among all pairs of vertices, i.e.:

x∗
1,x

∗
2 = argmin

x1∈A1,x2∈A2

∥x1 − x2∥2
2 . (3.36)

Next, we define the signed distance of two arbitrary meshes A1 and A2. The signed distance
of the meshes is the distance of their witness-points, the sign of the distance is positive if
the meshes are not in collision and negative if they are. We can write this as follows.

d(A1,A2) =
{

∥x∗
1 − x∗

2∥2 if A1 ∩ A2 = ∅ ,
−∥x∗

1 − x∗
2∥2 otherwise.

(3.37)

Collision cost for convex shapes. The collision cost function consists of two cost
functions, the first calculates collisions between pairs of objects and the second between
pairs of objects and static objects. The total cost for the i-th object is:

Ci = COi + CSi . (3.38)

The collision cost of movable objects is computed as

COi =
N∑

n=1
n ̸=i

1
ψ

exp(−ψmin(0, d(Oi,On))) (3.39)

and for static objects:

CSi =
M∑

m=1

1
ψ

exp(−ψmin(0, d(Oi,Sm))). (3.40)

Each of the two cost functions for the i-th object is the sum of exponentials of the negative
signed distances between the i-th object and all other objects (or static objects). The
negative sign ensures that the cost function is positive if the objects are in collision and

18

....................................... 3.5. Collision gradient

negative if they are out of collision, thus penalizing collisions. The distance is only included
in the cost function if the objects are in a collision, i.e., the signed distance is negative. If we
added the distance in both cases, the objects would endlessly drift apart when minimizing
the cost function. The exponential ensures that the cost increases rapidly as the collision
distance increases, preventing large penetrations. A hyperparameter ψ allows us to control
growth rate of the cost.

Collision cost for convex decompositions. In the previously proposed way, we
considered collision between convex hulls only. To achieve a finer collision resolution, we
refine the cost using a convex decomposition. This way, our final cost accounts for all
collisions between decomposed parts of all mesh pairs:

COi =
N∑

n=1
n ̸=i

1
ψ

exp

−ψ
Ni∑
l=1

Nn∑
k=1

min(0, d(Oil,Onk))

. (3.41)

Again, we write a similar cost function for static meshes:

CSi =
M∑

m=1

1
ψ

exp

−ψ
Ni∑
l=1

Mm∑
k=1

min(0, d(Oil,Smk))

. (3.42)

Differentiation through collisions. To partially differentiate the cost function with
respect to the object pose, we first need to calculate the partial derivative of the signed
distance with respect to the object pose. For this task, we use Diffcol [38]. Meshes consist of
vertices connected in triangles, and together they can form detailed curved shapes, but locally
around each vertex the mesh is made up of triangle faces that are flat, and this makes it hard
to get a good estimate of the derivative of the signed distance. Diffcol uses a randomized
smoothing approach to obtain more informative gradients. Randomized smoothing is a
technique that involves convolution of a function with a probability distribution in order
to approximate the function using a smoothed version of it. This is achieved by adding
noise to the function. The advantage of this technique is the detailed capture of the local
geometry and curvature of the mesh around the witness-point, which can be thought of as
a function of pose and shape of the mesh.

Knowing the derivatives of the signed distance, we can calculate the derivatives of the
cost functions (3.41) and (3.42) with respect to pose. First we show the derivative of (3.41):

∇COi =
N∑

n=1
n̸=i

exp

−ψ
Ni∑
l=1

Nn∑
k=1

min(0, δilnk)

 Ni∑
l=1

Nn∑
k=1

− ∂δilnk
∂TC,Oi

if δilnk < 0,
0 ∈ R6 otherwise,

(3.43)

where δilnk = d(Oil,Onk). Next is the derivative of (3.42):

∇CSi =
M∑

m=1
n̸=i

exp

−ψ
Ni∑
l=1

Mm∑
k=1

min(0, δilmk)

 Ni∑
l=1

Mm∑
k=1

− ∂δilmk
∂TC,Oi

if δilmk < 0,
0 ∈ R6 otherwise,

(3.44)

where δilmk = d(Oil,Smk).

19

3. Enforcing physical consistency
Although calculating the distances between meshes is not time consuming, calculating

the distances between all decomposed parts pairs of all meshes in the scene would result
in tens of thousands of calculations in a single iteration1. Therefore, we try to minimize
the number of these operations, and hence the computation does not proceed exactly as in
formulas (3.43) and (3.44). For two objects Oi and On, we first calculate the distance of
the convex hulls d(Oi,On), if the distance is positive, it means that they are not in collision
and thus their convex decompositions are not in collision either, the collision gradient is
zero in this case, and there is no need to continue calculating the distances of decomposed
parts. If the convex hulls are in a collision, the distances d(Oil,On) and d(Oi,Onk) are
pre-calculated, i.e. the distances of the decomposed part of the first object against the
convex hull of the second object and vice versa. Then the calculations of the distances
between the decomposed parts, as done in (3.43) and (3.44), are performed only for those
parts that are in collision with the convex hull because if the decomposed part is not in
collision with the convex hull, it is not in collision with the decomposed parts inside the
hull either.

In the end, we sum the gradients (3.43) and (3.44) to get the total collision gradient
containing collisions between objects and static objects.

∇Ci = ∇COi + ∇CSi ∈ R6. (3.45)

This gradient (3.45) is then used in gradient descent optimization loop, i.e. Eq. (3.4).

3.6 Gravity gradient

The last part of the total gradient is gravity. We simulate gravity by minimizing the
potential energy of objects relative to a selected static object. We denote the static object
(usually a table) to which the potential energy (and hence gravity) is related as the first
static object S1 in the scene. We define the gravitational cost function as the potential
energy of the object with respect to S1, for the i-th object this will be:

Gi,S1 = migzi , (3.46)

where mi is the mass of the object, but we usually do not have access to it and therefore
we consider it to be one, g is the gravitational acceleration and zi is the z translation
component of TS1,Oi transformation, i.e. the height of the object above S1. For simplicity,
we assumed that gravity acts against the z-axis of the local coordinate frame of the first
static object. This could be always achieved by rotating the frame of reference of the first
static object in an appropriate direction.

The derivative of this cost function for unit mass, with respect to the pose of the i-th
object in the S1 frame yields the gradient:

∂Gi,S1
∂TS1,O1

= ∇Gi,S1 =
[
0 0 g 0 0 0

]T
. (3.47)

1For 6 objects in a scene with 64 decomposed parts each, the number of distance calculations would be
61 440 in a single iteration. With 1000 iterations, the total number of calculations would then be more than
61 million

20

.. 3.6. Gravity gradient

S1

∇gi,S1

C
Oi

∇gi

Figure 3.4: Illustration of the gravity direction. The gravity direction is defined with respect to
the first static object S1, acting against z-axis of its coordinate frame. This coordinate frame
is usually defined on the ground or on the table desk. The gravity direction is independent
of camera frame (red) and it is also independent of object rotation (blue frame), i.e., gravity
always acts towards the ground (green frame). The direction of the gravity is shown in dashed
line.

Now we will transform the gradient into the object frame using known transformations.
Since the cost function does not depend on the rotation of the object, we will transform
only the translation part of the gradient, ∇gi,S1 =

[
0 0 g

]T
, as shown in Fig. 3.4. The

translational part of the gradient expresed in the i-th object coordinate frame is:

∇gi = RT
C,OiR̃C,S1∇gi,S1 . (3.48)

The 6D gradient is obtained by appending zeros representing rotation to the translation
part of the gravity gradient:

∇Gi =
[
∇gi

0

]
∈ R6 . (3.49)

We want to use gravity only for collision-free objects. If an object is in collision with
another object or with a static object, the gravity gradient for that object is equal to the
zero vector. This helps converge better after the objects have landed and prevents objects
from falling through each other or changing the order they were originally in before they
fell. The final version of the gravity gradient used in (3.4) is:

∇Gi =

[
∇gi

0

]
∈ R6 if i-th object is not in collision,

0 ∈ R6 otherwise.
(3.50)

21

22

Chapter 4

Experiments

In this chapter, we describe how we tested the functionality and performance of our method.
For initial coarse testing, we created two synthetic datasets. We then performed more
detailed tests on three real datasets from the BOP challenge [21] widely used for bench-
marking of pose estimation from images. Since our method contains 10 hyperparameters,
we performed an extensive ablation study to fine-tune them. We compared the set of
parameters that performed best on average on all datasets with a state-of-the-art method
for pose estimation called MegaPose [2].

4.1 Experimental setup

In order to consistently compare our method with the MegaPose method, we always followed
the same procedure. First, before running MegaPose, it is necessary to detect objects of
interest in the RGB image and obtain their bounding boxes and segmentation masks. The
bounding boxes are then input to MegaPose along with the RGB image. To eliminate the
influence of the external detector in order to compare only pose estimation methods, we used
ground-truth detection. We can obtain these for synthetic datasets during rendering, and
manually annotated ground-truth detections and segmentations are available for real BOP
datasets. However, these ground-truth detections have a drawback, objects are detected in
the image even if only a small part of them is visible. Therefore, we remove those detections
for which the ratio of the visible part of the object to the whole object is less than 50%; an
example of this is shown in Fig. 4.1. With these filtered detections and the original image,
we obtain the pose estimation using MegaPose.

Next, we need to select ten hyperparameters that can be tuned for our method. We will
evaluate our method for three different settings, using only collisions between objects, using
collisions between objects and between static objects, and using both types of collisions as
well as gravity. For each of these settings, we will select one set of ten parameters which we
will then use to evaluate all datasets, both synthetic and real. To find good combinations
of parameters, we performed an ablation study, described in Sec. 4.6. The parameters we

23

4. Experiments ..

Figure 4.1: This figure shows an example of low visibility detection in a real dataset. In the
left part we can see the original image, one of the badly visible objects is marked in red circle.
In the right part are the segmentation masks of the marked object. The modal segmentation
mask is colored gray and the amodal mask is colored white. The ratio of the number of pixels
of the modal to the amodal mask in this case is 0.424.

decided to use are shown in Tab. 4.1.

Coll Coll+Table Coll+Table+Gravity

K - number of iterations 1000 1000 1000
α - learning rate (LR) 0.0001 0.0001 0.0001
σxy - standard deviation in x,y axis 0.05 0.05 0.05
σz - standard deviation in z axis 0.49 0.49 0.49
σθ - standard deviation in rotation 0.26 0.26 0.26
ζC - weight of collision gradient 5 2 1
ζG - weight of gravity gradient 0 0 1
ψ - scale of distance exponent 10 0 0
ρt - translation clipping thresholds 100 100 100
ρR - rotation clipping thresholds 100 100 100

Table 4.1: Combination of parameters used for evaluation. Three sets of ten parameters are
selected for three different variants of our methods: (i) Coll - only collision between movable
objects, (ii) Coll+Table - collision between movable objects and between movable objects and
static table, and (iii) Coll+Table+Gravity - all collisions with gravity.

To achieve stable convergence, a three-step optimization procedure is designed for
situations involving gravity, i.e., if ζG > 0. This procedure consists of a sequential execution
of three optimization loops. In the first phase, i.e., the first optimization loop, only collisions
are solved. We do this by setting ζG = 0. This will resolve the large initial collisions that we
do not want to resolve when optimizing with gravity; if the objects were in large collisions
the gravity application might not get done in time. In the second phase, we include gravity
by setting ζG to the desired value and start the optimization. This will put the objects in
contact with the table and/or with each other. Finally, we start the third phase, in which
we again resolve only collisions that may have occurred during the application of gravity.

24

..4.2. Metrics

This will ensure that gravity does not push objects even into a small collision. Note that if
gravity is not considered (ζG = 0), we use a single optimization loop.

4.2 Metrics

To benchmark our algorithm, we used the same methodology as in the BOP Challenge. We
use the same error functions:

.MSSD (Maximum Symmetry-Aware Surface Distance): Consider mesh in two poses,
ground-truth and our estimated one. The MSSD is the largest distance between
the respective vertices of the two meshes in the given poses. If we have information
about the symmetry of the mesh, i.e., we know the poses such that the mesh in these
different poses is identical (or sufficiently similar), the MSSD will be the minimum of
all calculated MSSDs for symmetric mesh poses..MSPD (Maximum Symmetry-Aware Projection Distance): MSPD also calculates the
maximum vertex distance considering symmetries as in MSSD, but the distance is not
in 3D, it is the distance of the pixels on which the vertices are projected..VSD (Visible Surface Discrepancy): By rendering the mesh in ground-truth pose and
our estimated pose, we get two distance maps (not depth maps). We filter these
distance maps using the real distance map of the scene taken by the camera by keeping
only pixels in the rendered maps whose value is smaller, or up to a tolerance larger
than the value of the same pixels in the real depth map. This means that we remove
pixels that are occluded by another object in the real scene. Then we compare whether
the difference in the values of the same pixels of the two filtered distance maps is less
than a given threshold. VSD is the ratio of the correctly estimated distances to the
number of pixels in the intersection of the filtered distance maps.

A more detailed explanation and the exact calculation procedure can be found in [5,48]. In
addition, we calculate the following error functions:

.TE (Translation error): TE is the norm of the difference between the translations of
the ground-truth pose and our estimated pose.. RE (Rotation error): We convert the product of the ground-truth rotation matrix and
the inverse of our estimated rotation matrix into an axis-angle representation. Then
RE is the angle converted to degrees.

For these five types of errors, we compute the recall for different true-positive thresholds.
For each type of error, we obtain a single average recall for all the thresholds used. As
in the BOP Challenge, we will consider AVG as the most important metric. The AVG is
the average of the average MSSD, MSPD and VSD recalls. The AVG recall is therefore

25

4. Experiments ..
computed as an average over the metrics and over all the thresholds for the given metrics.
The tables presented within this chapter will always show the average recall of the error
function listed in the column label. We used the BOP Toolkit available as part of the BOP
Challenge to calculate the metrics.

4.3 Synthetic toy datasets

For testing purposes, we created two synthetic datasets. The first dataset is based on
objects from the YCB dataset [49], and the second contains objects from the T-LESS
dataset [50]. Each dataset consists of 500 images with a resolution of 640×480 pixels, each
image contains one object lying on the floor. There are five types of objects in each dataset,
each object is rendered on 100 images, while the texture of the floor changes every 10
images. The camera is from 0.75 m to 3.5 m away from the object and the angle between
the camera and the floor ranges from 20◦ to 90◦. Since the meshes from the T-LESS dataset
do not include textures, we used a random shade of gray as a mesh color during rendering.
We rendered the datasets using Blenderproc [51]. Since the datasets are synthetic, we have
complete information about the layout of each scene, i.e. the exact pose, segmentation, and
bounding-box of the objects, the pose of the floor, and the camera intrinsics and extrinsics.
An example of renders and a preview of all objects used is in Fig. 4.2.

(a) : Synthetic T-LESS dataset examples

(b) : Synthetic YCB-V dataset examples

Figure 4.2: The figures show an example of our rendered datasets. The left images show the
objects used to render the datasets. The images on the right show a sample of the renders.

26

..................................... 4.3. Synthetic toy datasets

4.3.1 Results

In this section, we present results and findings from the evaluation of synthetic datasets.
We first focus on the analysis of the physical inconsistencies predicted by MegaPose and
their subsequent correction by our method. We then look at the quantitative evaluation
using metrics from chapter 4.2.

For both synthetic datasets, we made initial pose estimates using MegaPose and then
refined these estimates using our method. From both our and MegaPose’s estimated object
poses and ground-truth floor poses, we computed the signed distances between the object
and the floor. As we described in the previous section 4.3, objects are always rendered
directly on the floor and therefore the signed distance should always be zero. We expect
the pose estimates, and hence the absolute value of the signed distance, to deteriorate as
the visibility of the object gets worse. In our case, the object is always fully visible, but its
size (number of pixels) decreases as the distance of the object from the camera increases.

The dependence of the object-floor signed distance on the object-camera distance for
both synthetic datasets is shown in Fig. 4.3. What we can see here is a comparison between
MegaPose and the subsequent refinement of the poses by our method using only the collision
and perception gradient, ζG is therefore zero. We can observe the expected behavior of
MegaPose, i.e., the magnitude of the signed distance increases as the distance of the object
from the camera increases. We can also notice that the T-LESS dataset has generally larger
signed distances than the YCB-V dataset; this is mainly due to two factors, the objects
from the T-LESS dataset are smaller than those from the YCB-V dataset and they do not
have textures, both of which contribute to worse pose estimation. Furthermore, we can see
that all collisions (negative values on the y-axis) have been resolved for both datasets using
our method.

However, using only the collision part, it is not possible to ensure complete physical
consistency; the objects still float above the floor without change using our method. This
is why we also included the gravity part of the gradient, so ζG is a positive value. For this
case, the results are shown in Fig. 4.4. We see that all object-floor collisions and all of the
objects floating above the floor are resolved.

We will now look at the results of the evaluation using the metrics from section 4.2. We
evaluated the output of MegaPose and our method using two different sets of parameters.
Although we mentioned in Sec. 4.1 that we will perform the evaluation for three different
sets of parameters, in this case we will only use the two that count with the floor. Since
the two synthetic datasets contain only one object per scene, it would be redundant to only
consider collisions between objects. The first parameter set used has the gravity gradient
weight fixed to zero, ζG = 0, and thus uses only collisions with the table for gradient pose
optimization. The second set uses both collision and gravity gradients.

The result of the evaluation is shown in Tab. 4.2. For both datasets, we can notice a large
improvement in the average recall when using the gravity gradient. On the other hand,
when using collisions only, the improvement is only marginal, the reason is that MegaPose
predictions were rarely in collision, the objects were mostly floating above the floor, as we

27

4. Experiments ..

1.0 1.5 2.0 2.5 3.0 3.5

Camera distance [m]

0.10

0.05

0.00

0.05

0.10

0.15

0.20

0.25

O
b

je
ct

-fl
o
o
r

si
g

n
e
d

 d
is

ta
n
ce

 [
m

]
Synthetic datasets containing one object

Megapose - YCB-Video

Megapose - T-LESS

Our method (Floor collisions) - T-LESS

Our method (Floor collisions) - YCB-Video

Figure 4.3: The graph shows the dependence of the signed distance of the object from floor
on the distance of the camera from the object for both synthetic datasets used in this thesis.
In this case, we used MegaPose and our method with collision and perception terms only (i.e.,
without gravity).

can see in Fig. 4.3 and Fig. 4.4, therefore, the room for improvement was small. We also
see little or no change in the average MSPD recall, but this is not surprising since MSPD
calculates the projection of the mesh vertices onto the image plane and is not strongly
affected by object depth estimation error. Rotation is not affected when applying gravity
and is often not needed to resolve collisions, so there is no change in RE recall. Instead,
the TE, MSSD and VSD recalls improve significantly, as they reflect the improvement in
depth estimation.

28

..................................... 4.3. Synthetic toy datasets

1.0 1.5 2.0 2.5 3.0 3.5

Camera distance [m]

0.10

0.05

0.00

0.05

0.10

0.15

0.20

0.25

O
b
je

ct
-fl

o
o
r

si
g
n
e
d
 d

is
ta

n
ce

 [
m

]

Synthetic datasets containing one object

Megapose - YCB-Video

Megapose - T-LESS

Our method (Floor collisions + Gravity) - T-LESS

Our method (Floor collisions + Gravity) - YCB-Video

Figure 4.4: The graph shows the dependence of the signed distance of the object from floor on
the distance of the object from the camera for both synthetic datasets used in this thesis. We
report MegaPose and our method that resolves collision and the gravity. The points marked
with black circles in the graph are visualized in the images at the bottom of the figure. The left
column shows the original images, the middle the physically inconsistent estimates by MegaPose,
and the right the estimates by our method.

29

4. Experiments ..

AVG MSPD MSSD VSD TE RE

MegaPose 0.6224 0.9892 0.4349 0.4430 0.5030 0.1145
Ours - Coll+Table 0.6387 0.9892 0.4614 0.4656 0.5217 0.1145
Ours - Coll+Table+Gravity 0.9170 0.9892 0.8807 0.8811 0.9747 0.1145

Improvement [%] 47.3 0.0 102.5 98.9 93.8 0.0

(a) : Average recalls for synthetic T-LESS dataset.

AVG MSPD MSSD VSD TE RE

MegaPose 0.8928 0.9981 0.8532 0.8271 0.7920 0.7909
Ours - Coll+Table 0.8934 0.9970 0.8559 0.8272 0.7947 0.7909
Ours - Coll+Table+Gravity 0.9515 0.9973 0.9502 0.9070 0.9536 0.7909

Improvement [%] 6.6 -0.1 11.4 9.7 20.4 0.0

(b) : Average recalls for synthetic YCB-V dataset.

Table 4.2: The tables show the output of the BOP evaluation for the two synthetic datasets.
The evaluation was performed for MegaPose and our method. Our method uses only table
collisions in one case and both collisions and gravity in the other case. The last row shows the
percentage improvement of our method using gravity compared to the MegaPose. If a column
has a strict maximum it is in bold.

30

...4.4. BOP Datasets

4.4 BOP Datasets

In addition to the two synthetic datasets, we also used three real datasets that capture
tabletop scenes. Each of these datasets has different specific characteristics that can affect
both the initial pose estimation from the images and our physical optimization. These
properties are described in the next section and shown in Fig. 4.5.

(a) : HOPE-Video dataset examples

(b) : T-LESS dataset examples

(c) : YCB-V dataset examples

Figure 4.5: The images show a sample of the used BOP datasets. The first row shows the
HOPE-Video dataset. In the left image of the first row, we can see blur caused by the camera
movement while taking the video; in the middle image, we can see that some objects are only
partially visible. In the second row, T-LESS dataset is shown and we can see the different
layouts of the scenes, these can have objects far apart like in the image on the left, on top of
each other, and inside each other like in the middle or laid on top of distractor objects like on
the right. The last row shows the YCB-V dataset. The left image shows a scene with poor
lighting conditions, and as in the image on the right, there are objects on top of each other. A
lot of camera noise can be seen in the middle image.

31

4. Experiments ..
4.4.1 BOP datasets description

The first dataset is Household Objects for Pose Estimation Video Dataset (HOPE-Video) [52].
It contains 10 video sequences taken by a camera attached to a robot gripper. In total, the
video sequences are divided into 2038 images. Because the images are taken by sampling
the videos, they tend to be blurry. In the scenes, the objects are never on top of each
other and are placed on a flat (table) or slightly deformed (couch) surface. There are 28
high-quality textured meshes available with the dataset. HOPE-Video features accurate
manually annotated ground-truth poses of objects.

Another used dataset is T-LESS [50]. It consists of 20 scenes with 50 images each. The
images in one scene are taken from different angles, mainly varying in the camera elevation.
In the scenes, objects can be directly on the table, on top of each other, inside each other
(sockets plugged into each other) or on other objects that are not part of the dataset
(distractor objects). There are 30 meshes available for the dataset produced using CAD,
the meshes do not have textures, which is what characterizes T-LESS.

The last dataset that we use is the Yale-CMU-Berkeley Video Dataset (YCB-V) [1],
which is based on 21 objects selected from the standardized object dataset YCB [49]. BOP
Challenge uses a manually selected subset of YCB-V to reduce computational burden. We
use the same subset as the BOP Challenge and refer to it as YCB-V. The subset consists
of 12 scenes with 75 images each. The images are usually affected by camera noise and/or
poor lighting. The objects are placed on a table or on top of each other. As mentioned
before, the dataset includes 21 objects and thus 21 meshes. The meshes were created using
laser scanning.

4.4.2 Table pose estimation

Since we know that all the datasets used are in tabletop layout, we can use this information
to add additional geometric constraints in the form of a table. We use the depth maps, the
ground-truth camera matrix, the object segmentation masks, and the object poses available
for the datasets to estimate the pose of the table. The ground-truth data are only used to
estimate the table pose, which is often available in robotic applications without estimating
it, i.e., we assume this is known a priori. In scenes containing distractor objects, such as
the right image in Fig. 4.5b, it is not advantageous to estimate the table pose at all; using
gravity, the objects would fall on the table plane without collision, but in a real scene they
would be in collision, which we cannot simulate without knowing the poses and meshes
of the distractor objects. For these scenes, the static object pose was not estimated, and
therefore collision checking with static objects and gravity was not used.

To estimate the plane of the table, we use depth maps, from which we filter out the points
corresponding to the objects. Ground-truth segmentations are used for the filtering. The
point cloud is calculated from the depth map and the table plane is fitted using the RANSAC
algorithm [25] implemented in Sklearn [53]. We ensure that the plane corresponding to
the table is fitted (instead of the walls, ground, etc.) by measuring the distance from the

32

...4.4. BOP Datasets

plane to the ground-truth object poses. The pose of the plane is further refined so that
ground-truth objects lie on top of it. With this approach, we use ground-truth data to
obtain the pose of the table. This is the only place where our method uses ground-truth
information. Note that this procedure is needed only to be able to evaluate on BOP
datasets; in a standard robotics setup, information about the table is often available.

4.4.3 Results

In this section, we will show and review the evaluation results of the three used BOP
datasets. To evaluate all three datasets, we first made an initial estimate using MegaPose
and then refined this estimate using our method. We compared three different approaches
for our refinement: the first approach did not account for the table; thus, neither gravity nor
collisions between objects and static objects were used, only collisions between objects were
considered; the second approach used the knowledge of the pose of the table, but we did
not apply gravity, so we only accounted for collisions (both object-object and object-table);
the last approach considered both collisions and gravity.

The results of the evaluations are shown in Table 4.3. We see that the best results
were obtained when using gravity, except for the YCB-V dataset, where a slightly better
result was achieved by using only collisions with a table. Our method that enforces gravity
achieved significant improvement with respect to MegaPose by 16.7% for HOPE-Video, 6.6%
for T-LESS and 15.8% for YCB-V. This validates the hypothesis that physical consistency
is an important property to consider for accurate pose estimation in robotics. As in our
analysis of synthetic datasets 4.2, we observe only slight changes in MSPD and RE recalls,
but a significant improvement in TE, MSSD and VSD recalls. This is caused by the small
influence of physical consistency on the MSPD and RE metrics and the significant influence
of physical consistency on depth refinement captured by the TE, MSSD and VSD recalls.
A selection of qualitative results of successful optimization is shown in Fig. 4.6.

Although the proposed refinement significantly improved the results, there are a few
failure cases that could arise. For example, false positive and false negative detections
can cause errors in our method. Other methods perform pose estimation for each object
separately, so correctly estimated objects are not affected by incorrectly estimated ones.
However, our method creates a scene from all objects and enforces the physical consistency
on it. If an object in a scene is detected as a false positive, the other objects cannot fill
the space where this false positive object is located, although the geometric consistency
would not be broken in reality. In contrast, it may violate physical consistency if this
false positive object was between another object and the floor. The other object would
float in air in reality. False negative detections cause the exact opposite, objects in the
virtual scene can get, either due to gravity or collisions with other objects, to the location
of this false negative object and thus break geometric consistency in reality. The wrongly
estimated object pose can affect the other poses in the same manner even in the cases where
the detections are correct. A sample of unsuccessful refinements is qualitatively shown in
Fig. 4.7.

33

4. Experiments ..

AVG MSPD MSSD VSD TE RE

MegaPose 0.6236 0.7170 0.5716 0.5823 0.6850 0.5970
Ours - Coll 0.6239 0.7170 0.5719 0.5828 0.6858 0.5970
Ours - Coll+Table 0.6234 0.7166 0.5714 0.5822 0.6882 0.5970
Ours - Coll+Table+Gravity 0.7275 0.7337 0.6972 0.7516 0.8681 0.5974

Improvement [%] 16.7 2.3 22.0 29.1 26.7 0.1

(a) : HOPE-Video

AVG MSPD MSSD VSD TE RE

MegaPose 0.8285 0.9625 0.7700 0.7530 0.8575 0.1500
Ours - Coll 0.8309 0.9650 0.7750 0.7527 0.8600 0.1500
Ours - Coll+Table 0.8307 0.9600 0.7800 0.7520 0.8575 0.1500
Ours - Coll+Table+Gravity 0.8829 0.9625 0.8600 0.8262 0.9300 0.1500

Improvement [%] 6.6 0.0 11.7 9.7 8.5 0.0

(b) : T-LESS

AVG MSPD MSSD VSD TE RE

MegaPose 0.6769 0.8414 0.6370 0.5524 0.6661 0.5670
Ours - Coll 0.6870 0.8423 0.6525 0.5662 0.6889 0.5670
Ours - Coll+Table 0.7914 0.8473 0.8067 0.7203 0.8320 0.5670
Ours - Coll+Table+Gravity 0.7836 0.8423 0.8033 0.7053 0.8331 0.5709

Improvement [%] 15.8 0.1 26.1 27.7 25.1 0.7

(c) : YCB-V

Table 4.3: The tables show the output of the BOP evaluation for the three BOP datasets.
The evaluation was performed for MegaPose and our method. Our method used only collisions
between objects in the first case, collisions between objects and collisions between objects and
table in the second case and all collisions and gravity in the third case. The last row shows the
percentage improvement of our method using gravity compared to the MegaPose. If a column
has a strict maximum it is in bold.

34

...4.4. BOP Datasets

Figure 4.6: This figure shows a qualitative comparison of the initial poses estimated by MegaPose
(middle column) and their subsequent refinement by our method (right column). The left column
shows the images for which the estimation was performed. In the first row, notice the collision
of the largest object in the middle with the floor, which was successfully resolved by our method.
In the second row, all objects except the sugar box are in collision with the floor for MegaPose
estimates. In the third row, the can and banana are in collision with the table. Also, notice the
incorrectly estimated orientation of the banana. Although our method resolves the collision, the
orientation of the banana is not changed and remains incorrect after our refinement, since a
change of the orientation is not needed for the collision to be resolved. In the last row, there is
a large collision between the wooden cube and the floor, and also between the cube and the
white bottle; all resolved by our method.

35

4. Experiments ..

Figure 4.7: This figure shows examples of failure cases for our method. Input image is shown
on the left, MegaPose predictions in the middle, and our refinement on the right. The first
row shows the pizza box (i.e. box behind the juice) in collision with the table and incorrectly
rotated after the MegaPose prediction. During the optimization this incorrect prediction caused
that the juice box is pushed towards the camera in order to resolve the collision. This can be
seen in the last column of the first row, where refined juice box is bigger after rendering. In the
second row, the wooden cube and the white bottle were predicted in a big collision by MegaPose.
During our refinement, these two objects switch order compared to the input image.

36

.................................... 4.5. Real robotic experiment

4.5 Real robotic experiment

In this section, we describe a real robotic experiment we performed on the Franka Emika
Panda robot with the panda-py controller [54]. We performed a pick-and-place experiment,
in which the task was to grasp an object and move it to the desired location.

We solved the task as follows: first, we moved the robot from the starting pose to a
pose from which the manipulation area is clearly visible. From there we take an image
and run the detection algorithm; specifically, we used the detector implemented in the
CosyPose framework pre-trained on the YCB-V dataset. We extract a bounding box from
the detection and pass it, along with the image, to the MegaPose input to estimate the
pose of the object. We then send the robot to a predefined pre-grasp pose that is few
centimeters above the object, and from there to a grasp pose in which we grasp the object
with the gripper. Next, we send the robot to the starting pose in which it releases the
object. Note that the grasp pose was defined approximately 5 mm below the top of the
object to make grasping challenging. We then place the same object in an identical location
which we mark in advance. We run our method on MegaPose prediction and perform the
same grasping sequence as for MegaPose. An example of successful and unsuccessful grasp
is shown in Fig. 4.8, and another is shown in Fig. 1.2.

Figure 4.8: The left image shows an unsuccessful attempt to grasp an object whose pose was
estimated using MegaPose. Because the MegaPose prediction was not accurate, robot closed the
gripper few millimeters above the object. The right image shows a successful grasp for which
the pose was estimated by refinement of the former pose using our method.

We performed the experiment five times for three different objects from the YCB-V
dataset. We placed the objects in such positions relative to the camera for which it typically
is difficult to make an accurate pose estimation. This is, for example, at the edge of the
camera’s field of view, where part of the object is not visible, directly under the camera,
or rotated with its narrower side to the camera. Images of the objects, as they were on
the MegaPose input, can be seen in Fig. 4.9. We defined the grasping poses on the edge
of the objects, so the pose estimate has to be accurate in order to successfully grasp the

37

4. Experiments ..
object. The grasp success rates are shown in Tab. 4.4. In it, we can see that our method
consistently improved the grasp success rate.

Figure 4.9: Images used as input to MegaPose in real robotic experiment. The first row depicts
the poses of Cracker box, the second row Mustard bottle, and the third row Sugar box.

Cracker box Mustard bottle Sugar box

MegaPose 0% 60% 0%
Ours 80% 80% 80%

Table 4.4: The table shows the grasp success rates for the three objects and the two methods
for pose estimation used in the robotic experiment. For each object, five grasping attempts were
made by each method.

4.6 Ablation study

In this section, we describe the procedure for selecting the different parameters we used for
inference. First, in Sec. 4.6.1 we describe how we qualitatively chose various hyperparameters
used in our method, and in Sec. 4.6.2 we describe the process of quantitatively choosing
the rest of the hyperparameters. Then, in Sec. 4.6.3, we describe how different approaches
for computing the signed distance derivatives can affect the methods performance.

4.6.1 Qualitatively estimated hyperparameters

Our method contains 10 adjustable hyperparameters. Most of them do not need to be
fine-tuned, as we can estimate a reasonable value directly, or we can measure them. The
numerical values are listed in Tab. 4.1.

The parameters whose values we measured include the standard deviations for the
perception cost σxy, σz and σθ, the procedure for finding them has already been discussed
in Sec. 3.3.2. The easily estimable parameters are the clipping thresholds ρt and ρR. For
these, we just need to determine the maximum gradient magnitude we will tolerate. The

38

...4.6. Ablation study

next estimated parameter is the number of optimization iterations K and the learning rate
α. For the parameter K, in general, a higher number leads to better convergence, but at the
cost of the runtime of the algorithm. Conversely, a higher α will reach the local minimum
faster but then oscillate around it with a large deviation. Therefore, we qualitatively chose
the largest value of α for which the oscillations are perceptually as small as possible and
K for which we can reach the minimum with a given α even for cases where objects are
farther away from the minimum.

4.6.2 Quantitatively estimated hyperparameters

Next, we need to find the optimal values for the remaining hyperparameters, these are the
weights ζC and ζG and the scale ψ. These values are harder to tune manually, and therefore
we performed an ablation study in which we selected the values maximizing the BOP AVG
recall. First we find the gradient weights ζC and ζG for three analyzed cases, in the first
case we use collisions between objects and the table and gravity, in the second case we use
collisions between objects and the table, and in the third case we use only collisions between
objects. We then determine the scale ψ for these three cases. We calculate AVG recall
for each parameter combination for all five (3 BOP and 2 synthetic) datasets and average
the resulting AVG recalls across datasets. The only exception is the case of resolving only
collisions between objects, in which synthetic datasets are not used, as they contain only a
single object per scene.

Ablation of the weights ζC and ζG. To determine the gradient scales, we analyze
seven values for the collision gradient weight and seven values for the gravity gradient
weight. For the first case with gravity, we evaluate all combinations of pairs of weight
values. For the other two cases (i.e., without gravity), we only evaluated the seven selected
weights for ζC . For now, we set the value of the ψ scale to zero; we will determine its value
later. The evaluation of the first two cases when the table is used is shown in Fig. 4.10. The
second case where gravity is not used is visible in the last row of the plot, where ζG = 0.
Using this plot, we can determine the optimal values of the gradient weights. The best
average recall for the first case is for ζC = 1 and ζG = 1 with a recall of 0.8525. For the
second case, it is for ζC = 2 and ζG = 0 with a recall of 0.7555. Next, we performed an
evaluation for the third case without using a table, this is shown in Fig. 4.11. Here we can
see that the largest average AVG recall is 0.7135 for ζC = 5 and ζG = 0.

Ablation of the scale ψ. For the scales ζC and ζG, for which we have already found
the optimal values, we now determine the scale ψ. We have selected ten values for ψ. For
the first case, using gravity we see the graph in Fig. 4.12 and for the second case using
collisions between objects and the table we see the graph in Fig. 4.13. In both cases, we
obtain the highest average recall for ψ = 0. This gives us two sets of parameters, the first
ζC = 1, ζG = 1, ψ = 0, and the second ζC = 2, ζG = 0, ψ = 0. The graph for the third
case, considering only collisions between objects, is shown in Fig. 4.14. Here we see that
the maximum average recall is achieved for ψ = 10. Thus, the last set of parameters is
ζC = 5, ζG = 0, ψ = 10.

39

4. Experiments ..

0 0.2 0.5 1 2 5 10

Collision gradient weight

10

5

2

1

0.5

0.2

0

G
ra

v
it

y
 g

ra
d
ie

n
t

w
e
ig

h
t

[-
]

0.7976 0.8364 0.8341 0.8283 0.8222 0.7907 0.7417

0.8095 0.8464 0.8447 0.8424 0.8388 0.8243 0.7978

0.8178 0.8500 0.8506 0.8494 0.8489 0.8427 0.8246

0.8204 0.8524 0.8524 0.8525 0.8516 0.8466 0.8359

0.8207 0.8522 0.8515 0.8519 0.8520 0.8506 0.8376

0.8149 0.8452 0.8456 0.8459 0.8466 0.8452 0.8398

0.7287 0.7531 0.7552 0.7549 0.7555 0.7530 0.7525

Recall heatmap for all datasets, =0.

[-]

0.74

0.76

0.78

0.80

0.82

0.84

R
e
ca

ll
[-

]

Figure 4.10: The graph shows evaluation for different values of ζC and ζG with ψ = 0. The
values in the graph are averages of AVG recall across all five datasets. The bottom row does
not use gravity and the left column does not use collisions. In the bottom left corner, is the
result for MegaPose. Maximum when using gravity is at ζC = 1 and ζG = 1. Maximum when
not using gravity (i.e. ζG = 0) is at ζC = 2.

4.6.3 Collision derivative

The computation of the derivatives of signed distances is the mainstay of this work. Finite
Differences-based algorithms are commonly used for this task, but these can fail to converge
well or lead to uninformative gradients. Therefore, we use a method to calculate the
first-order estimate of collision derivatives implemented by Montaut et al. in Diffcoll [38].
We have already described this method in Sec. 3.5. To smoothen the local geometry around
the mesh vertices, we use Gaussian noise implemented in the Diffcoll library; we therefore
call the method "First-order Gaussian" for short.

To compare the effect of the methods for computing the derivatives of the signed distances,
we executed our program with the same set of hyperparameters on three BOP datasets,
using different methods for computing the derivatives. The result of the evaluation is shown
in Table 4.5. In the tables for the HOPE-Video and YCB-V datasets, we see that the

40

...4.6. Ablation study

0 0.2 0.5 1 2 5 10
Collision gradient weight [-]

0.7095

0.7100

0.7105

0.7110

0.7115

0.7120

0.7125

0.7130

0.7135

R
e
ca

ll
[-

]

Average recalls for different collision gradient weights without use of table; =0

Figure 4.11: The graph shows evaluation for different values of ζC . In this case, the pose of the
table is unknown. Scale ψ is set to zero. Global maximum is achieved for ζC = 5.

difference between the methods is only in the region of 1% around zero for all metrics. In
contrast, for the T-LESS dataset, we see a significant improvement when using First-order
Gaussian. As we said in Sec. 4.4.1, working with the T-LESS dataset is different because
we use CAD models of the objects instead of meshes obtained by 3D scanning. These
CAD meshes are very accurate and thus have sharp edges and fewer vertices than if they
were obtained by 3D scanning. We hypothesis that this is the reason why the First-order
Gaussian outperformed the Finite Differences on the T-LESS dataset. Because of these
ablation results, we decided to use First-order Gaussian smoothing for the collision gradient
computation.

41

4. Experiments ..

0 10 25 50 75 100 125 150 175 200
Exponetial distance scale [-]

0.842

0.844

0.846

0.848

0.850

0.852

R
e
ca

ll
[-

]

=1 and =1 Average recalls for all datasets;

Figure 4.12: The graph shows evaluation for different values of ψ while using gravity. The
gradient weights used are ζC = 1 and ζG = 1. The global maximum is for ψ = 0.

0 10 25 50 75 100 125 150 175 200
Exponetial distance scale [-]

0.7525

0.7530

0.7535

0.7540

0.7545

0.7550

0.7555

R
e
ca

ll
[-

]

=2 and =0Averagte recalls for all datasets;

Figure 4.13: The graph shows evaluation for different values of ψ while not using gravity, but
the table is used for collisions. The gradient weights used are ζC = 2 and ζG = 0. The global
maximum is for ψ = 0.

42

...4.6. Ablation study

0 10 25 50 75 100 125 150 175 200
Exponetial distance scale [-]

0.7120

0.7125

0.7130

0.7135

0.7140

R
e
ca

ll
[-

]

Average recalls for different exponetial distance scales without use of table; =5

Figure 4.14: The graph shows evaluation for different values of ψ while table is not used. The
gradient weights used are ζC = 5 and ζG = 0. The global maximum is for ψ = 10.

AVG MSPD MSSD VSD TE RE

Finite Differences 0.7277 0.7339 0.6978 0.7514 0.8682 0.5978
First-order Gaussian 0.7268 0.7325 0.6975 0.7503 0.8688 0.5971

Improvement [%] -0.1 -0.2 0.0 -0.1 0.1 -0.1

(a) : HOPE-Video

AVG MSPD MSSD VSD TE RE

Finite Differences 0.8359 0.9575 0.7975 0.7528 0.8825 0.1500
First-order Gaussian 0.8723 0.9650 0.8425 0.8095 0.9250 0.1500

Improvement [%] 4.4 0.8 5.6 7.5 4.8 0.0

(b) : T-LESS

AVG MSPD MSSD VSD TE RE

Finite Differences 0.7831 0.8441 0.8021 0.7030 0.8303 0.5670
First-order Gaussian 0.7850 0.8408 0.8075 0.7068 0.8320 0.5728

Improvement [%] 0.3 -0.4 0.7 0.5 0.2 1.0

(c) : YCB-V

Table 4.5: The tables compares two approaches for collision derivative calculation: Finite
Differences and Diffcol implementation of First-order estimator using Gaussian noise. The
comparison is done for three real BOP datasets, the optimization is done using gravity. The last
line in each table shows improvement of First-order Gaussian with respect to Finite Differences.

43

44

Chapter 5

Conclusions

In this thesis, we presented a method for introducing physical consistency into a scene for
which object poses were estimated using an external pose estimator. We used gravity and
collisions between objects in the scene to achieve physical consistency. Our experiments
have shown that physical consistency has a significant impact on the standardized metrics
used in the BOP Challenge, i.e. average of MSPD, MSSD and VSD recalls. Although we
focused on the state-of-the-art pose estimator MegaPose, our method can be implemented
on top of output of an arbitrary pose estimator in order to refine the poses by enforcing
physical consistency.

To achieve consistency, we first defined three cost functions: collision, perception, and
gravity. The collision cost penalizes the poses of objects that cause the intersection of their
convex hulls. For better accuracy, we performed a convex decomposition of all the objects
used, which was also reflected in the cost function. The perception cost aims to keep the
estimate as it was initially predicted by the pose estimator since this initial estimate is the
best we have. However, this estimate is usually accurate only from a perceptual point of
view, i.e., after projecting the object onto the image plane; the depth estimate is often
wrong. Our formulation accounts for this imbalance of accuracy. The gravitational cost
function penalizes the potential energy of objects relative to a selected stationary object
from the scene, which is usually a table or floor. Then we analytically derived gradients for
these three cost functions, which we then used in the gradient descent method.

We evaluated our proposed method and its variants on two synthetically generated
datasets and on three standardized BOP datasets. Our method significantly improved
the BOP metrics on all datasets relative to the original poses estimated by MegaPose.
In addition, we conducted an experiment on a real Franka Emika Panda robot for a
pick-and-place task. Using our method, the robustness in grasping manipulated objects
was increased.

45

46

Bibliography

[1] Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox, “Posecnn: A convolutional
neural network for 6d object pose estimation in cluttered scenes,” arXiv preprint
arXiv:1711.00199, 2017.

[2] Y. Labbé, L. Manuelli, A. Mousavian, S. Tyree, S. Birchfield, J. Tremblay, J. Carpentier,
M. Aubry, D. Fox, and J. Sivic, “MegaPose: 6D Pose Estimation of Novel Objects via
Render & Compare,” in CoRL, 2022.

[3] Y. Labbe, J. Carpentier, M. Aubry, and J. Sivic, “Cosypose: Consistent multi-view
multi-object 6d pose estimation,” in Proceedings of the European Conference on
Computer Vision (ECCV), 2020.

[4] B. Wen, W. Yang, J. Kautz, and S. Birchfield, “FoundationPose: Unified 6d pose
estimation and tracking of novel objects,” in CVPR, 2024.

[5] T. Hodaň, M. Sundermeyer, B. Drost, Y. Labbé, E. Brachmann, F. Michel, C. Rother,
and J. Matas, “BOP challenge 2020 on 6D object localization,” European Conference
on Computer Vision Workshops (ECCVW), 2020.

[6] M. Malenický, “collision-pose,” 2024. [Online]. Available: https://github.com/
malenickymartin/collision-pose

[7] L. Roberts, “Machine perception of three-dimensional solids.” Ph.D. dissertation,
Massachusetts Institute of Technology, 1963.

[8] I. Sobel, “On calibrating computer controlled cameras for perceiving 3-d scenes,”
Artificial Intelligence, vol. 5, no. 2, pp. 185–198, 1974. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/0004370274900290

[9] R. Horaud, “New methods for matching 3-d objects with single perspective views,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-9, no. 3,
pp. 401–412, 1987.

47

https://github.com/malenickymartin/collision-pose
https://github.com/malenickymartin/collision-pose
https://www.sciencedirect.com/science/article/pii/0004370274900290

5. Conclusions ..
[10] D. G. Lowe, “Three-dimensional object recognition from single two-dimensional

images,” Artificial Intelligence, vol. 31, no. 3, pp. 355–395, 1987. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/0004370287900701

[11] H. Bay, T. Tuytelaars, and L. Van Gool, “Surf: Speeded up robust features,” in
Computer Vision–ECCV 2006: 9th European Conference on Computer Vision, Graz,
Austria, May 7-13, 2006. Proceedings, Part I 9. Springer, 2006, pp. 404–417.

[12] D. G. Lowe, “Object recognition from local scale-invariant features,” in Proceedings of
the seventh IEEE international conference on computer vision, vol. 2. IEEE, 1999,
pp. 1150–1157.

[13] A. Collet, M. Martinez, and S. S. Srinivasa, “The moped framework: Object recognition
and pose estimation for manipulation,” The international journal of robotics research,
vol. 30, no. 10, pp. 1284–1306, 2011.

[14] S. Hinterstoisser, S. Holzer, C. Cagniart, S. Ilic, K. Konolige, N. Navab, and V. Lepetit,
“Multimodal templates for real-time detection of texture-less objects in heavily cluttered
scenes,” in 2011 international conference on computer vision. IEEE, 2011, pp. 858–865.

[15] W. Kehl, F. Manhardt, F. Tombari, S. Ilic, and N. Navab, “Ssd-6d: Making rgb-
based 3d detection and 6d pose estimation great again,” in Proceedings of the IEEE
international conference on computer vision, 2017, pp. 1521–1529.

[16] S. Peng, Y. Liu, Q. Huang, X. Zhou, and H. Bao, “Pvnet: Pixel-wise voting network
for 6dof pose estimation,” in Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, 2019, pp. 4561–4570.

[17] K. Park, T. Patten, and M. Vincze, “Pix2pose: Pixel-wise coordinate regression
of objects for 6d pose estimation,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2019, pp. 7668–7677.

[18] Y. Li, G. Wang, X. Ji, Y. Xiang, and D. Fox, “Deepim: Deep iterative matching for
6d pose estimation,” in Proceedings of the European Conference on Computer Vision
(ECCV), 2018, pp. 683–698.

[19] S. Zakharov, I. Shugurov, and S. Ilic, “Dpod: 6d pose object detector and refiner,” in
Proceedings of the IEEE/CVF international conference on computer vision, 2019, pp.
1941–1950.

[20] M. Sundermeyer, T. Hodaň, Y. Labbé, G. Wang, E. Brachmann, B. Drost, C. Rother,
and J. Matas, “Bop challenge 2022 on detection, segmentation and pose estimation of
specific rigid objects,” Conference on Computer Vision and Pattern Recognition, pp.
2785–2794, June 2023.

[21] T. Hodaň, M. Sundermeyer, Y. Labbé, V. N. Nguyen, G. Wang, E. Brachmann,
B. Drost, V. Lepetit, C. Rother, and J. Matas, “BOP challenge 2023 on detection,
segmentation and pose estimation of seen and unseen rigid objects,” Conference on
Computer Vision and Pattern Recognition Workshops (CVPRW), 2024.

48

https://www.sciencedirect.com/science/article/pii/0004370287900701

...5. Conclusions

[22] B. Drost, M. Ulrich, N. Navab, and S. Ilic, “Model globally, match locally: Efficient
and robust 3d object recognition,” in 2010 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, 2010, pp. 998–1005.

[23] J. Deng, W. Qu, and S. Fang, “A high accuracy and recall rate 6d pose estimation
method using point pair features for bin-picking,” in 2022 34th Chinese Control and
Decision Conference (CCDC), 2022, pp. 6056–6061.

[24] H. Wang, H. Wang, and C. Zhuang, “6d pose estimation from point cloud using
an improved point pair features method,” in 2021 7th International Conference on
Control, Automation and Robotics (ICCAR), 2021, pp. 280–284.

[25] M. A. Fischler and R. C. Bolles, “Random sample consensus: a paradigm for
model fitting with applications to image analysis and automated cartography,”
Commun. ACM, vol. 24, no. 6, p. 381–395, jun 1981. [Online]. Available:
https://doi.org/10.1145/358669.358692

[26] H. Fu, X. Mei, Z. Zhang, W. Zhao, and J. Yang, “Point pair feature based 6d
pose estimation for robotic grasping,” in 2020 IEEE 4th Information Technology,
Networking, Electronic and Automation Control Conference (ITNEC), vol. 1, 2020, pp.
1803–1808.

[27] Y. Rong, J. Wang, Z. Liu, and C. C. Loy, “Monocular 3d reconstruction of interacting
hands via collision-aware factorized refinements,” in 2021 International Conference on
3D Vision (3DV), 2021, pp. 432–441.

[28] B. Smith, C. Wu, H. Wen, P. Peluse, Y. Sheikh, J. K. Hodgins, and T. Shiratori,
“Constraining dense hand surface tracking with elasticity,” ACM Trans. Graph.,
vol. 39, no. 6, nov 2020. [Online]. Available: https://doi.org/10.1145/3414685.3417768

[29] W. Jiang, N. Kolotouros, G. Pavlakos, X. Zhou, and K. Daniilidis, “Coherent recon-
struction of multiple humans from a single image,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), June 2020.

[30] Y. Hasson, G. Varol, C. Schmid, and I. Laptev, “Towards unconstrained joint hand-
object reconstruction from rgb videos,” in 2021 International Conference on 3D Vision
(3DV). IEEE, 2021, pp. 659–668.

[31] M. Hassan, V. Choutas, D. Tzionas, and M. J. Black, “Resolving 3d human pose
ambiguities with 3d scene constraints,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), October 2019.

[32] J. Y. Zhang, S. Pepose, H. Joo, D. Ramanan, J. Malik, and A. Kanazawa, “Perceiving
3d human-object spatial arrangements from a single image in the wild,” in Computer
Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020,
Proceedings, Part XII 16. Springer, 2020, pp. 34–51.

[33] A. Davydov, M. Engilberge, M. Salzmann, and P. Fua, “Cloaf: Collision-aware human
flow,” arXiv preprint arXiv:2403.09050, 2024.

49

https://doi.org/10.1145/358669.358692
https://doi.org/10.1145/3414685.3417768

5. Conclusions ..
[34] V. Belagiannis, S. Amin, M. Andriluka, B. Schiele, N. Navab, and S. Ilic, “3d pictorial

structures for multiple human pose estimation,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), June 2014.

[35] K. Wada, E. Sucar, S. James, D. Lenton, and A. J. Davison, “Morefusion: Multi-
object reasoning for 6d pose estimation from volumetric fusion,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June
2020, pp. 14 540–14 549.

[36] J. Lee, M. Lee, and D. Lee, “Uncertain pose estimation during contact tasks using
differentiable contact features,” arXiv preprint arXiv:2305.16778, 2023.

[37] Z. Landgraf, R. Scona, T. Laidlow, S. James, S. Leutenegger, and A. J. Davison,
“Simstack: A generative shape and instance model for unordered object stacks,” in
Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021,
pp. 13 012–13 022.

[38] L. Montaut, Q. L. Lidec, A. Bambade, V. Petrik, J. Sivic, and J. Carpentier, “Dif-
ferentiable collision detection: a randomized smoothing approach,” in 2023 IEEE
International Conference on Robotics and Automation (ICRA), 2023, pp. 3240–3246.

[39] J. Solà, J. Deray, and D. Atchuthan, “A micro lie theory for state estimation in
robotics,” arXiv preprint arXiv:1812.01537, 2021.

[40] H. Ghorbani, “Mahalanobis distance and its application for detecting multivariate
outliers,” Facta Universitatis, Series: Mathematics and Informatics, pp. 583–595,
2019.

[41] K. M. Lynch and F. C. Park, Modern Robotics: Mechanics, Planning, and Control,
1st ed. USA: Cambridge University Press, 2017.

[42] M. Taboga, “Precision matrix,” https://www.statlect.com/glossary/precision-matrix,
2021, lectures on probability theory and mathematical statistics. Kindle Direct Pub-
lishing.

[43] V. Priban, M. Fourmy, J. Sivic, and V. Petrik, “Temporally consistent object 6d pose
estimation for robot control,” in submission of IEEE RA-L, 2024.

[44] J. Carpentier, N. Mansard, F. Valenza, J. Mirabel, G. Saurel, and R. Budhiraja,
“Pinocchio - Efficient and versatile Rigid Body Dynamics algorithms,” Jul. 2021.
[Online]. Available: https://github.com/stack-of-tasks/pinocchio

[45] C. B. Barber, D. P. Dobkin, and H. Huhdanpaa, “The quickhull algorithm for convex
hulls,” ACM Trans. Math. Softw., vol. 22, no. 4, p. 469–483, dec 1996. [Online].
Available: https://doi.org/10.1145/235815.235821

[46] J. Pan, S. Chitta, D. Manocha, F. Lamiraux, J. Mirabel, J. Carpentier et al., “HPP-
FCL: an extension of the Flexible Collision Library,” https://github.com/humanoid-
path-planner/hpp-fcl, 2015–2022.

50

https://www.statlect.com/glossary/precision-matrix
https://github.com/stack-of-tasks/pinocchio
https://doi.org/10.1145/235815.235821
https://github.com/humanoid-path-planner/hpp-fcl
https://github.com/humanoid-path-planner/hpp-fcl

...5. Conclusions

[47] X. Wei, M. Liu, Z. Ling, and H. Su, “Approximate convex decomposition for 3d meshes
with collision-aware concavity and tree search,” ACM Transactions on Graphics (TOG),
vol. 41, no. 4, pp. 1–18, 2022.

[48] T. Hodaň, “Pose estimation of specific rigid objects,” PhD thesis, Czech Technical
University in Prague, Prague, February 2021, available at https://dspace.cvut.cz/
handle/10467/93910.

[49] B. Calli, A. Walsman, A. Singh, S. Srinivasa, P. Abbeel, and A. M. Dollar, “Bench-
marking in manipulation research: Using the yale-cmu-berkeley object and model set,”
IEEE Robotics and Automation Magazine, vol. 22, no. 3, pp. 36–52, 2015.

[50] T. Hodaň, P. Haluza, Š. Obdržálek, J. Matas, M. Lourakis, and X. Zabulis, “T-LESS:
An RGB-D dataset for 6D pose estimation of texture-less objects,” IEEE Winter
Conference on Applications of Computer Vision (WACV), 2017.

[51] M. Denninger, M. Sundermeyer, D. Winkelbauer, D. Olefir, T. Hodan, Y. Zidan,
M. Elbadrawy, M. Knauer, H. Katam, and A. Lodhi, “Blenderproc: Reducing the
reality gap with photorealistic rendering,” 2020.

[52] Y. Lin, J. Tremblay, S. Tyree, P. A. Vela, and S. Birchfield, “Multi-view fusion for
multi-level robotic scene understanding,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2021, pp. 6817–6824.

[53] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,”
Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[54] J. Elsner, “Taming the panda with python: A powerful duo for seamless robotics
programming and integration,” SoftwareX, vol. 24, p. 101532, 2023. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2352711023002285

51

https://dspace.cvut.cz/handle/10467/93910
https://dspace.cvut.cz/handle/10467/93910
https://www.sciencedirect.com/science/article/pii/S2352711023002285

	Introduction
	Motivation
	Goals

	Related works
	Collision avoidance in object pose estimation
	Collision resolution in human hand and body pose estimation
	Rigid object collision resolution

	Enforcing physical consistency
	Problem formulation and notation.
	Optimization loop for physical consistency
	Perception gradient
	Perception cost and gradient
	Covariance between pose estimation error and the estimation axis
	Perception Jacobian

	Convex meshes and convex decomposition
	Collision gradient
	Gravity gradient

	Experiments
	Experimental setup
	Metrics
	Synthetic toy datasets
	Results

	BOP Datasets
	BOP datasets description
	Table pose estimation
	Results

	Real robotic experiment
	Ablation study
	Qualitatively estimated hyperparameters
	Quantitatively estimated hyperparameters
	Collision derivative

	Conclusions
	Bibliography

