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Abstrakt / Abstract

Zvyšování bezpečnosti chodců poblíž
silnice je často diskutované téma mezi
výrobci automobilů a regulačními or-
gány. Když chodec vstoupí do silnice,
řidiči obvykle trvá dlouhou dobu, než
zareaguje a učiní potřebné kroky k
tomu, aby nehodě předešel. To lze však
zlepšit tím, že se automobil přepne do
tzn. stavu ostražitosti, ve kterém je
brzdový systém dopředu připraven na
prudké brždění, což snižuje celkový čas
mezi rozpoznáním chodce na silnici a
zastavením vozidla. Tato práce předvádí
algoritmus zaměřený na retrospektivní
analýzu zaběrů z přední kamery auta
a automatické nalézání momentů, kdy
chodci vstupují do vozovky. Takto
označená data mohou dále sloužit k
učení klasifikátoru zaměřeného na pre-
dikci, zda chodec v danou chvíli vstoupí
do vozovky nebo ne. Algoritmus byl
schopný na BDD100k datasetu najít
případy chodců stupujících do vozovky
v 70.75% všech případů, kdy se tak
stalo. Následně byl s těmito daty nau-
čen klasifikátor, schopný predikovat až
1.3 vteřiny dopředu, zda daný chodec
vstoupí do vozovky nebo ne. Na ručně
anotovaném datasetu dosáhl klasifikátor
70.08% přesnosti.

Klíčová slova: Autonomní řízení, Au-
tomatické označování dat, Klasifikace,
Počítačové vidění, Detekce objektů,
Semantická segmentace, Sledování ob-
jektů

Increasing the safety of pedestrians
near the road is a highly discussed topic
amongst the car manufacturers and
regulators. When a pedestrian steps
into a road, the driver usually takes a
long time to react and act accordingly
to prevent an accident. However, this
can be improved by putting the car into
an alert state in which the breaking
system is prepared for a rapid breaking,
decreasing the overall time between rec-
ognizing the pedestrian in the road and
actually stopping the car. This work
proposes an algorithm focused on a
retrospective analysis of the recordings
from the car’s front monocular camera
and automatically labeling scenes in
which pedestrians step into the road.
The labeled data can further serve for
training a classifier aimed at predicting
whether each individual intends to enter
the road in the near moment. Leverag-
ing the BDD100k driving dataset, the
developed algorithm was able to label
cases of pedestrians crossing the road
with a recall of 70.75%. Additionally, a
custom classifier was developed aimed
at predicting whether a given pedestrian
will step into the road in the next 1.3
seconds or less. The labeled data were
used for training the classifier, leading
to an accuracy of 73.08% on the ground
truth manually annotated dataset.

Keywords: Autonomous Driving, Au-
tomatic Data-Labeling, Classification,
Computer Vision, Object Detection, Se-
mantic Segmentation, Object Tracking
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Chapter 1
Introduction

1.1 Description of the problem
Detection of pedestrians in the road is one of the crucial problems in autonomous driv-
ing. When a random person steps into a road, the autopilot needs to react accordingly
in the best interest of both the driver and the pedestrian.

Before the advent of autonomous driving, computer vision was not utilized in this
field. Nowadays, with advancements in sensors and cameras, the field of autonomous
driving is rapidly growing. However, cars do not need to be fully autonomous. Many car
manufacturers have already implemented various systems that assist drivers, helping
them drive more efficiently and safely.

One example is an assisting system for breaking. During emergencies where the
driver needs to swiftly stop the car in order to prevent an accident, he is often limited
by factors such as slow reaction time of himself and slow response of the breaking
system. The slow response of the breaking system can be improved by transitioning
the car into an “alert” state, in which the breaking system becomes prepared for rapid
breaking.

This thesis focuses on contributing to the development of a system, capable of iden-
tifying scenarios, in which the car should be put into the “alert” state. Specifically,
this thesis focuses on developing an auto-labeling algorithm, aimed to retrospectively
identify cases in which a pedestrian entered the road. by developing such algorithm it is
possible to automatically process current driving datasets and create a custom training
dataset with cases of pedestrians entering a road. With this newly created dataset, it
is possible to subsequently train a classifier aimed at predicting whether an individual
will enter the road in the near moment.

1.2 Goals of the thesis
This work specifically aims to:

. Develop a robust method for the creation of training data suitable for training a
classifier. This classifier aims to detect pedestrians intending to step into the road.. Manually create a small testing dataset containing images of pedestrians labeled as
“crossing/not crossing the road”.. Train the classifier by leveraging the created data.. Evaluate the proposed method using manually created testing dataset.

1



Chapter 2
Preliminaries

2.1 Datasets
In order to perform the necessary steps in this thesis, there is a need for data to work
with.

2.1.1 KITTY-360

The dataset named KITTY-360 was chosen in the initial stage of the research. This
dataset is accessible as an open source. It was created by faculty members of the
Karlsruhe Institute of Technology and Toyota Technological Institute at Chicago. The
dataset was created using a recording platform (a car) equipped with multiple types of
sensors including grayscale cameras, color cameras, or LIDAR. The output images from
the color camera were captured at 10 frames per second and then cropped to 1382 x 512
pixels. After the rectification, the frames were slightly smaller. Despite using only the
front monocular camera data, the dataset comprises several categories of benchmark
data. Some examples are stereo flow, optical flow, scene flow, depth completion, 2D/3D
object detection, multi-object tracking, pixel-level segmentation benchmarks, and many
more. The dataset was captured in the Karlsruhe area located in Germany. Because of
this, the dataset contains data representing an average European infrastructure. [1]

2.1.2 BDD-100K

BDD-100K is a large-scale diverse dataset containing driving video data. It contains
over 100 000 videos which makes it one of the biggest driving datasets that are publicly
available for academic and research purposes. The data were obtained in a crowd-
sourcing manner uploaded by thousands of drivers. Mainly, the data were captured in
metropolitan areas in the United States such as San Francisco, Bay Area, Los Angeles
and New York. The videos are split into 70 000 training videos, 20 000 testing videos
and 10 000 validation videos. Many previous datasets suffered from the lack of variety
in the data. However, BDD100K provides diverse scenes captured in different weather
conditions as well as different times of the day. This makes it a suitable source of
training data, since the trained models can benefit from the variety of scenes, become
more robust, and generalize well. Each video is 40 seconds long with 30 frames per
second captured in a high resolution (720p). The high-quality imagery is beneficial
for tasks such as object detection and tracking which will be utilized further in the
thesis. The data were captured only by monocular cameras attached to the cars’ front
windshield.

The dataset also provides variety of benchmark annotations. These annotations
provide necessary information for supervised learning algorithms to train and learn
from the visual content of the video frames. Some of the tasks are object detection,
semantic segmentation, instance segmentation and more. [2]

2
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2.2 Object Detection
Object detection is a process of identifying and classifying objects belonging to a cer-
tain class in an image. Object detection approaches are typically separated into two
categories: generative methods and discriminative methods.

The generative methods consist of a pose variability model, an appearance model,
and a background model. The pose variability model describes the range of potential
poses an object can take in an image. The appearance model describes, how an object
typically looks in the image. That includes characteristics such as shape, color, texture,
or other features. The model for the background helps differentiate between the the
objects of interest and a background.

The discriminative method typically consists of building a classifier that can differ-
entiate (discriminate) between images (or sub-images) that contain an object belonging
to a certain class and those that do not. The parameters of a classifier are adjusted
during the training process performed to minimize the error between the predictions
and the ground truth data.

Convolutional neural networks are widely used for this kind of task. They fall into the
discriminative category. These networks consist of layers processing the image pixels
and extracting image features together with applying nonlinear transformations such
as max-pooling, normalization, dropout, skip connections, or activation functions. For
object detection tasks there are two main designs. One and two-stage methods. Both
use a sliding-window approach. In both cases, there are two parallel sub-networks. The
first method is used to estimate the object’s position in the image and the second is to
classify the object. In other words, the window predicts whether a certain area contains
an object and refines its position. The two-stage method first identifies regions that
might contain the specified classes and then performs detailed position refinement and
classification of these objects. In the one-stage method the sliding window classifier
tries to make a prediction directly when processing a selected area. [3]

2.2.1 Detectron2

This open-source deep-learning framework/library was developed by Facebook AI Re-
search (FAIR) primarily focused on building, training, and deploying state-of-the-art
object detection, instance segmentation, and related models. It is built on top of the
PyTorch deep learning library [4], thus leveraging PyTorch’s flexibility, ease of use, and
GPU acceleration capabilities. Detectron2 offers a modular architecture that makes it
possible to assemble different components, to create custom object detection and seg-
mentation models. It includes pre-trained models that have been trained on large-scale
datasets such as COCO (Common Objects in Context) [5], enabling users to perform
transfer learning by finetuning these models on their specific datasets. Detectron2
provides implementations of various state-of-the-art models. This framework also em-
phasizes efficiency and scalability. Some examples of this include distributed training
across multiple GPUs and optimizations for faster training and inference. [6]

2.2.2 Mask R-CNN R-50 FPN

The Mask R-CNN R-50 FPN model [7] [8] trained on the COCO dataset from Detec-
tron2 was selected for the detection of pedestrians due to its robustness and accurate
performance. Its architecture, built on the ResNet-50 backbone fused with the feature
pyramid network (FPN), offers a balance between computational efficiency and accurate
performance. The following description is focused mainly on the part of architecture

3



2. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
responsible for object detection (bounding boxes), and not the semantic segmentation
masks, since it is the part of the model output that is used in this project.

Figure 2.1. The architecture of Mask R-CNN ResNet-50 FPN. FPN is the feature pyramid
network. RPN [9] is the region proposal network. RoIAlign (region of interest align) [10]

is the layer that is properly aligning the features. (Image source: [11])

The Feature pyramid network (FPN) enhances the backbone by efficiently capturing
features at multiple scales. By putting together information from different levels of the
feature pyramid, the model provides effective detection of objects regardless of their
size within the image. [12]

The region proposal network (RPN) [9] works as a two-stage method described in
2.2

The architecture also utilizes the ResNet-50 backbone. The number 50 in its name
stands for the 50-layer depth. Together with residual connections, it is responsible for
extracting hierarchical features from the input images. The residual connections are
a fundamental component designed to address the issue of vanishing gradient during
the training of very deep neural networks. It is represented as skip connections that
introduce shortcuts to enable a smoother flow of gradients during training. Instead of
attempting to learn the exact mapping of the input to the output at a certain layer,
residual connections allow the network to learn residual functions, representing the
difference between the input and the desired output.

4
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Figure 2.2. “In a regular block (left), the portion within the dotted-line box must directly
learn the mapping 𝑓(𝘅). In a residual block (right), the portion within the dotted-line box
needs to learn the residual mapping 𝑔(𝘅) = f(𝘅) − 𝘅, making the identity mapping 𝑓(𝘅) = 𝘅

easier to learn.”[13] (Image source: [13])

In a typical neural network layer/block, the output is calculated as:

Output = Activation(Weights ×Input) (1)

In a residual block (a building block of ResNet architectures), the output is formu-
lated as:

Output = Activation2(Weights2 × Activation1(Weights1 × Input) + Input) (2)(2). 𝗜𝗻𝗽𝘂𝘁: The original input to the block.. 𝗪𝗲𝗶𝗴𝗵𝘁𝘀𝟭: Parameters of the first weight layer.. 𝗪𝗲𝗶𝗴𝗵𝘁𝘀𝟮: Parameters of the second weight layer.. 𝗔𝗰𝘁𝗶𝘃𝗮𝘁𝗶𝗼𝗻𝟭: First activation function (ReLU or another non-linear function).. 𝗔𝗰𝘁𝗶𝘃𝗮𝘁𝗶𝗼𝗻𝟮: Second activation function (ReLU or another non-linear function).
Connecting multiple residual blocks in a series forms what is known as a Residual

Network (ResNet) [14].

Figure 2.3. Simplified representation of ResNet. Each rectangle represents a layer consist-
ing of the weight layer together with the activation function.

5
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2.3 Object Tracking
Object tracking is a computer vision task aimed at locating and following objects across
a sequence of images or a video stream. Each new object is assigned a unique ID and
tracked across different frames of a video. This task has various different applications
such as traffic monitoring, robotics, human activity recognition and also in autonomous
vehicle tracking.

The task of tracking objects presents various challenges that are tackled by numerous
algorithms. When designing such algorithm, there are certain aspects that are being
considered. Some of them are listed below.

. Accuracy: Accuracy refers to how the tracking algorithm performs compared to
ground truth benchmark data.. Robustness: A robust algorithm is capable of tracking the target object even in bad
conditions such as busy or cluttered background, occlusion, scale variation, similar
appearance of objects and more.. Real-time processing of information: Processing each frames takes certain time. The
computational overhead presents challenges. When designing a tracking algorithm,
there often arises a need for trade-off between accuracy and speed. [15]

There are multiple sub-tasks in the object tracking, each incorporating the tracking in
a different way. Some of them are: single object tracking (SOT), multi-object tracking
(MOT), visual object tracking and online multi-object tracking.

2.3.1 Multi-Object Tracking (MOT)
Multi-object tracking involves tracking more than one object in consecutive frames of
a video. The object can be of the same or different class. The main challenge arising
is that it is substantially harder to track multiple objects, especially in environments
with multiple objects of the same class.

2.3.2 ByteTrack
ByteTrack is a powerful, yet simple state-of-the-art multi-object tracking algorithm.
The algorithm combines outputs from an object detection algorithm together with a
data association method named BYTE. Its main feature lies in keeping all the de-
tected objects, including those with low detection scores. These are further used in the
two-stage association process with the saved tracklets from the previous frame. track-
lets1 Τ are the output of the ByteTrack algorithm. They consist of the bounding box
coordinates together with an ID of the object.

For each frame in a video sequence, new objects are detected using an object detection
algorithm. The detected bounding boxes are separated into high confidence and low
confidence ones based on the score threshold 𝜏. Bounding boxes with a score below the
low confidence are discarded. In the next step, a Kalman filter is used to predict new
locations for tracklets Τ from previous frames.

During the first association stage, the high confidence bounding boxes detected in
the current frame are associated with the tracklets Τ from previous frames (Including
the lost tracklets, that are lost for less than a set number of frames). The matching
is done using the linear assignment (Hungarian Algorithm [16]) that uses either IoU
(intersection over union) or Re-ID feature distances. The second association stage works
with the remaining unassociated tracklets from the previous frames and matches them
1 �Tracklets are only parts of the full tracks/trajectories of the examined objects�

6
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with the low confidence bounding boxes detected in the current frame. The matching is
done in the same manner as in the first association stage, only the matching threshold
is set lower. It is considered important to use the IoU in the second association stage
when performing the linear assignment, since the low confidence bounding boxes often
suffer from motion blur, occlusion and thus appearance features are not as reliable as
in the first association stage.

To adress occlusion and disappearance of an object during the video, the remaining
tracklets from the previous frames that were not matched with any of the bounding
boxes in the current frame are considered as lost and stored as lost tracklets Τ for a
defined amount of frames. If the object does not reappear and its corresponding tracklet
happens to not match any new detection in this defined number of frames, it will be
deleted.

The unmatched detection boxes from the current frame with a confidence lower than
the score threshold 𝜏 are deleted. On the other hand, unmatched high confidence
detection boxes are initialized as new tracklets [17].

Figure 2.4. ByteTrack uses both high and low score detections during reassociation stages.
(Image source: [17])

2.4 Semantic Segmentation
Semantic segmentation is a subset of image segmentation. Its goal is to assign each pixel
in an image a certain class. This makes it possible to differentiate between objects or
regions within an image and provides a detailed understanding of the scene. A popular

7
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approach for this task is to use an encoder/decoder structure. The encoder down-
samples the spatial resolution of the input image. This creates lower-resolution feature
maps which proved to be very efficient for feature segmentation. On the other hand,
the decoder up-samples the feature maps back into a full-resolution segmentation map
[18].

2.4.1 Segformer

This framework from NVIDIA research combines a novel hierarchically structured
Transformer encoder which outputs multiscale features, together with a simplified mul-
tilayer perceptron (MLP) decoder.

Figure 2.5. The proposed SegFormer framework consists of two main modules: A hierar-
chical Transformer encoder to extract coarse and fine features, and a lightweight All-MLP
decoder to directly fuse these multi-level features and predict the semantic segmentation

mask. “FFN” indicates a feed-forward network. (Image source: [19])

At its core, Segformer leverages transformer-based architecture with vision trans-
formers (ViTs) [20]. It gains the ability to capture long-range dependencies by applying
self-attention mechanisms across input patches.

One of the key distinguishing features of Segformer is its ability to handle high-
resolution images effectively. Traditional CNN-based models [21] often require a deeper
architecture to capture contextual information. However, deeper networks often suffer
from the vanishing gradient problem. As a result, CNNs struggle to effectively prop-
agate and update gradients across numerous layers, making it challenging to achieve
good results in larger images. Segformer, on the other hand, divides an input image
into smaller patches and applies attention mechanisms across these patches.

Moreover, this framework employs a hierarchical architecture that combines local
and global features. The model extracts detailed local information from smaller patches
while also capturing broader context from the entire image through a multi-scale pro-
cessing. This significantly enhances the model’s ability to comprehend how different
parts of the picture are related to each other in a more detailed manner. Therefore
the model is able to handle different sizes of input images compared to the ones it was
trained on.
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The simplified MLP Decoder is less complex. It gathers information from various
layers of the transformer-based encoder, utilizing both local and global attention mech-
anisms. This approach results in strong representations2 without needing an overly
complex decoder [19].

2.4.2 EfficientNet

EfficientNet is a convolutional neural network architecture that has been designed to
achieve state-of-the-art performance while maintaining high computational efficiency.

The core idea behind EfficientNet lies in its efficient scalability. In the original paper,
the authors proposed a new scaling method called “compound scaling”. this method
uses a coefficient 𝜙 that uniformly scales the network’s depth, width and resolution in
the following manner:

depth: 𝑑 = 𝛼𝜙

width: 𝜔 = 𝛽𝜙

resolution: 𝑟 = 𝛾𝜙

such that 𝛼 ⋅ 𝛽2 ⋅ 𝛾2 ≈ 2
𝛼 ≥ 1, 𝛽 ≥ 1, 𝛾 ≥ 1

(3)

The 𝛼, 𝛽, and 𝛾 are constants that can be determined by a small grid search. The
𝜙 is a coefficient defined by user, used for defining the amount of resources available.
Hence, the higher the 𝜙, the more resources are available and thus allowing for an
overall bigger architecture scaled in all depth, width and input image resolution. The
𝛼, 𝛽 and 𝛾 parameters specify, how to distribute the compute resources across all three
dimensions.

The idea of scaling all three dimensions at once comes from an intuitive idea that
when an input image is bigger, the network needs more channels to capture more
patterns that are present in the higher amount of pixels an image has. It also needs
more layers to increase its receptive field.

Another key idea behind EfficientNet’s architecture lies in using multi-objective neu-
ral architecture search (NAS) techniques, specifically AutoML [22], that automatically
search and evaluate a large search space of candidate architectures to identify the most
effective configurations.

Putting this together, the baseline EfficientNet model, namely EfficientNet-B0, was
designed using the neural architecture search, using the AutoML MNAS framework.
The goal was to optimize both accuracy and computational efficiency. Instead of tar-
geting specific hardware latency, the efficiency was measured in FLOPS (floating point
operations per second). This ensures the model performs well across different hardware
configurations. The model utilizes a mobile inverted bottleneck convolutional block
similar to MobileNet V2 [23] but with added squeeze-and-excitation optimization.

The next models were created by leveraging the base Efficient-B0 model and using
the robust scaling method. In the first step, the 𝜙 was fixed to 𝜙 = 1 assuming twice
more resources available. A small grid search was performed that found values 𝛼 = 1.2,
𝛽 = 1.1, 𝛾 = 1.15 for the base Efficient-B0 model, with the constraint 𝛼 ⋅ 𝛽2 ⋅ 𝛾2 ≈ 2.
In the second step, The 𝛼, 𝛽, and 𝛾 were fixed as constants and the baseline network
architecture was scaled by changing 𝛾, using the equations in (3). That made it possible
to develop the EfficientNet-B1 to B7 [24].

2 �representations are learned features or patterns that the model extracts from the input data�
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2.5 Loss Function

The machine learning model learns to map inputs to outputs. In order to get better
in this mapping, it needs to adjust its parameters. This is done with a help of a loss
function that takes the predicted model output y_pred and compares it with the ground
truth y_true. The choice of loss function has to match the type of the problem the
model aims to solve [25].

2.6 Optimizers

Optimizer utilizes the computed loss in order to alter the model parameters with a
goal to minimize the loss function. There are two main types of optimizers. Adap-
tive optimizers and gradient descent optimizers. The gradient descent optimizers such
as Stochastic gradient descent (SGD) and Mini-batch gradient descent update the pa-
rameters based on gradients computed from the training data. On the other hand,
the adaptive optimizers such as Adagrad, Adadelta, RMSprop, and Adam, are able to
adjust (adapt) the learning rate during the training process based on past gradients
[26].

2.6.1 Stochastic Gradient Descent

Unlike traditional Gradient descent, the SGD requires only a random sample from the
dataset to compute the gradient, instead of a whole dataset. This introduces random-
ness to the learning process and also makes it both more memory and computationally
efficient. This makes SGD suitable to be used on large datasets. The SGD is also faster,
because it updates the parameters after each sample, compared to the classic Gradient
descent that updates the parameters after processing a whole set of data.

The SGD starts by initializing random model parameters 𝜔. Next, it chooses a
random data sample, compares it with the ground truth and calculates the loss. Next,
it calculates the gradient of the loss function with respect to each parameter 𝜔. Because
the gradient represents the direction of the fastest increase in the loss function value,
the goal is to go in the opposite direction to reach the local minimum of the loss
function. The formula for computing the Stochastic gradient descent in each iteration
is as follows:

𝞈: = 𝞈 − 𝜂 ⋅ ∇𝑄(𝜔) (4)

where 𝑄 is the objective function, often represented only by the loss function, that
is being minimized. However, the objective function can be also represented by a loss
function together with a penalty term such as L2 norm. The 𝜼 represents the learning
rate that determines the size of steps taken when adjusting the model parameters 𝜔.
The formula shows how the vector of parameters 𝞈 is being updated by subtracting the
gradient of a loss function that is scaled by a learning rate from the parameters 𝜔 [27].

10
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Figure 2.6. The Stochastic gradient descent iteratively updates the model parameters in
order to reach the loss function minimum. It benefits from not having to process the whole
dataset for computing the gradient. It converges quicker than a classic Gradient descent
but is more prone to oscilations. This can be fixed by updating the learning rate. (Image

source: [28])

2.7 Regularization

The regularization prevents the model from performing great on the training data but
poorly on the testing and real-world data. It adds a penalty to the loss function to
discourage the model from becoming overly complex, thereby promoting simpler models
that generalize better.

2.7.1 Dropout

The dropout method temporarily drops out some of the nodes in the layer during the
training process. This is done with a probability 1 − 𝑑𝑟𝑜𝑝 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦. The greater
the drop probability, the more connections will be dropped. The overfitting happens,
when the model learns the statistical noise. During training, the model parameters
in each neuron/node are optimized to minimize the loss. However, some neurons can
change in a way that they fix the mistakes of other neurons. This can lead to complex
interactions between neurons and failure to generalize on unseen data. If the dropout
is introduced, it prevents some neurons to fix the mistakes of other neurons. This is
because in each batch/iteration, the connections between neurons are different and a
presence of a specific neuron is highly unreliable [29].

Figure 2.7. Dropout applied to a standard neural network. (Image source: [30])

11



2. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.7.2 Weight Decay

The main objective of the weight decay is to regularize the size of weights of parameters
that are very large. It is also known as the L2 regularization, because it penalizes
weights based on their L2 norm. By using the regularization technique, the objective
function that is being minimized changes from just the loss function to a loss function
together with an L2 norm of model’s weights:

𝑄(𝜔, 𝑏) = 𝐿(𝜔, 𝑏) + 𝜆
2

1
𝑚

𝑚
∑
𝑖=1

𝜔2
𝑖 (5)

The 𝑄(𝜔, 𝑏) is the objective function being minimized during the training process,
together with weights 𝜔 and biases 𝑏 as parameters. 𝐿(𝜔, 𝑏) is the loss function and 𝜆
is the weight decay parameter scaling the L2 norm of the weights.

The addition of the L2 norm forces the model to focus more on adjusting the smaller
parameters and learning simpler functions that are less likely to lead to overfitting.
During the training, the optimizer now uses a modified objective function such that the
gradient is not only based on the training data, but also on the weight decay term [31].

2.8 Image Preprocessing

Image preprocessing is a crucial step in the computer vision tasks. It involves altering
the raw image data into a format that is suitable for the model that is being fed with the
data. The preprocessing steps have a significant influence on the model performance,
reduce the influence of outliers and ensure the data are scaled the same.

2.8.1 Histogram Equalization

Historgram equalization is an image preprocessing technique used to improve the con-
trast in images. A color histogram of an image represents the number of pixels in each
intensity level (a standard grayscale image has intensity levels ranging from 0 to 255).
The histogram equalizer spreads the most frequent intensity levels. This method in-
creases the global contrast of an image as the areas of lover contrast gain higher contrast
[32].
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Figure 2.8. Histogram equalization applied to a grayscale image. (Image source: [32])

2.8.2 Standardization
Another preprocessing step, contributing to better model performance involves Stan-
dardization, also referred to as Z-normalization. It is very useful when the data features
(pixel intensities) have large differences between their ranges. This process alters the
data to have zero mean and the resulting distribution to have a unit standard deviation.
Standardization is especially helpful, when the data follows Normal distribution, also
known as the Gaussian distribution. The formula for standardization is:

𝑋′ = 𝑋 − 𝜇
𝜎

(6)

In which 𝑋′ is the altered image, 𝑋 is the original image, 𝜇 is the meadian of
image pixel values computed from the image or the whole dataset and 𝜎 is a standard
deviation of pixel intensity values computed either from the single image or from the
entire dataset. Computing the median and standard deviation values from the entire
dataset provides better noise reduction and generalization by capturing the overall
distribution of the data [33].

2.8.3 Normalization
Next technique is normalization. This method alters the data to bring the values of
the features to a common scale. Specifically in this case, it involves scaling the features
(pixel values) of the data to be inside a range between 0 and 1. This method is also
known as min-max scaling. The formula for performing normalization is as follows:

𝑋′ = 𝑋 − 𝑋𝑚𝑖𝑛
𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛

(7)
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The 𝑋 refers to an original image and 𝑋′ to a modified image. The 𝑋𝑚𝑖𝑛 and 𝑋𝑚𝑎𝑥

represent the minimum and maximum ranges of values for a given image respectively
[34].

2.8.4 Padding
Padding is a process of adding layers of zeros or other values outside the actual data
in the input matrix. Its primary goal is to alter the image to the desired shape while
preserving its content. A standard padding involves adding more layers to all left, right,
bottom, and upper sides of the image symmetrically [35].

Figure 2.9. Example of applying a padding of size one on a 3x3 image. (Image source:
[36])
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Chapter 3
Training Data Preparation

3.1 Detection of Pedestrians

The first problem to solve was to detect pedestrians in each video frame. An opti-
mal solution for this kind of problem was to use an object detection machine learning
model. This type of model aims to identify and locate objects within images, thus
automating the process. The selected model named Mask R-CNN R-50 FPN was firstly
run on Google Colab, mainly because Google Colab provides a free GPU which is very
handy. Because the dataset is just a sequence of images that form a video together,
the detection has to be done on each frame separately. The Mask R-CNN R-50 FPN
model takes a frame as an input and returns:

. Prediction classes - Each class is represented with an integer.. Bounding box coordinates - They are of form (x1, y1, x2, y2) with (x1, y1) describing
the upper left corner point and (x2, y2) being the lower right corner point of the
bounding box.. Prediction scores - This represents the probability of how likely the predicted object
falls into the predicted class.. Binary segmentation mask of the detected object.

Figure 3.1. Output of the Mask R-CNN R-50 FPN model. Each object is assigned the
most probable class together with being highlighted by a bounding box and a semantic

segmentation mask.

The classes relevant to this task are the person, bicycle and motorcycle classes. The
bicycle and motorcycle classes are needed in order to identify a cyclist and a motorcyclist
in a frame so that they can be excluded from the analysis, since the focus is put only
on pedestrians.
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3.2 Tracking Pedestrians
Because the detection of individuals is performed on each frame separately, there is
no direct way to know that the detected person on the next frame is the same as the
one detected on the frame before. Therefore another problem to be solved emerged.
Additionally the problem is more complex than tracking a single person, since all people
in a video need to be tracked. This problem is called multi-object tracking (MOT) in
the computer vision field.

3.2.1 Tracking Using a Set of Rules

This approach involves maintaining a dictionary that keeps track of detected pedestrians
along with their unique IDs, which are continuously updated in each frame of the
video sequence. Initially, every identified person is assigned a new ID. As each new
frame is processed, a comparison is made between the newly detected people and all
previously identified individuals from the preceding frame. By calculating the distance
between the centers of bounding boxes of a newly detected person and a person from the
previous frame, if the distance falls below a specific threshold, the algorithm considers
the detected person to be the same individual as in the previous frame. The coordinates
of the person with the corresponding ID in the dictionary are then updated. If any newly
detected individuals were not associated with any of the existing IDs from the previous
frame, they are considered as new figures, and new IDs are assigned to them.

Figure 3.2. Pedestrians with corresponding IDs above their bounding box.

As it turned out, this method has two substantial downsides. The first occurs in
scenarios when one individual occludes another. A typical scenario when this occurs
is at a crosswalk when multiple people cross the road. Because this method only uses
comparison based on distance, it is not possible to distinguish between two people where
one occludes the other. Therefore the IDs of the two people can be assigned randomly
and ID switches can occur. The second scenario occurs when a person gets out of the
view of the camera and then reappears. This method automatically assigns a new,
different ID when the person reappears again, which is not a desired behavior.

There are algorithms already developed that do not suffer from these inconveniences
and that are able to solve these issues better. One of them is an algorithm called
ByteTrack.
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3.2.2 Tracking Using ByteTrack

As a second method, the state of the art multi-object tracking algorithm named Byte-
Track was implemented. It addresses many of the shortcomings of the simplier rule-
based tracking algorithm. Unlike the initial approach, ByteTrack utilizes more advanced
techniques.

Compared to the initial tracking with a set of rules, the ByteTrack algorithm proved
to be more robust. Even during low lightning conditions, the algorithm was able to
correctly assign new detections to the existing tracklets. This is mainly due to the fact
that the algorithm utilizes a two-stage association method. This enables reassociating
even the low probability detections during the second association stage. When a person
escapes the camera’s field of view and then reappears again, the algorithm is able to
assign the person the same ID again. This is done by keeping the lost tracklets for a
certain period before they are discarded. During the experiments, ByteTrack excelled
in scenarios where the tracked objects changed their position significantly across frames.
This is largely due to the integration of Kalman filter that predicts the future position
of objects based on their past motion.

During testing, the ByteTrack showed a limited performance in handling occlusions
of pedestrians. Since the used implementation of the algorithm used only IoU during
the linear assignment and did not leverage the appearance-based features, it was more
prone to ID switches during these scenarios.

Despite the limitations, while the initial rule-based method mainly used the dis-
tance between bounding box centers for tracking, ByteTrack’s use of both high and low
probability detections, together with a sophisticated reassociation method resulted in
significant improvement in tracking accuracy. The algorithm was better able to handle
challenging scenarios and serve as a reliable component in the data creation pipeline
described in section 3.4.

3.3 Determining Road Area and Pedestrian
Classification

One of the core parts of this task is to accurately determine the location of the road
area in frames. This part is crucial for determining whether the tracked individual is
inside a road and represents a potential threat to the driver and themselves or if he is
outside of the road where the risk of an accident with a car is not as high.

3.3.1 Detection of Pedestrians within a Road Using a Trapezodial
Method

The first approach to detecting whether a pedestrian stepped into a road was by using
a simple trapezodial method. The core idea is that a trapezodial area of a fixed size was
defined for the separation of what is and what is not a road in an image. If the bottom
middle point of the pedestrian bounding box was inside this trapezoid, the person was
considered as being inside the road and vice versa. There is a function in the cv2 library
[37] that is able to classify whether a given point lies inside a trapezoid. This function is
called “cv2.pointPolygonTest” and it was applied in the function determining whether
a given person stands inside the road.
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Figure 3.3. Classification of pedestrians inside (red) and outside (green) of the road. The
trapezoid area is enclosed by the purple line.

This method has obvious drawbacks. Each road has a different width and structure.
Therefore this solution is unable to generalize well. Another pitfall occurs during turns.
The defined trapezoid does not match the road’s curvature, leading to an incorrect
classification of the road area. As it turned out, this method is prone to fail during other
than usual scenarios. It fails to generalize across different road shapes and settings, thus
making it a non-favourable option. This method initially served as a minimum viable
solution that made it easier to work on other parts of the project.

3.3.2 Implementing Semantic Segmentation for Road
Segmentation

Semantic segmentation stands out as a great tool for identifying the location of a road
within an image. This provides the opportunity to combine the detection of pedestrians
using an object detection model and segmented road using semantic segmentation. With
these two results, it is possible to determine whether a pedestrian is inside/outside of
the road. Because there are many semantic segmentation models already available, an
established model was employed. Several semantic segmentation models were tested
including Upernet from OpenMMLab. [38] The initial criterion was for the model to
be compact enough for local execution. Unfortunately, it was not possible to reach the
desired level of precision. Therefore larger model with better benchmarks had to be
selected.

The next model employed was the Segformer developed by NVIDIA Research.
Thanks to RCI cluster, it was possible to perform inference on the largest model
Segformer-b5, that was trained on the Cityscapes dataset [39]. The PyTorch [4] model
size is approximately 400 MB, comprising of the trained weights and biases of the
model. The inference was performed on an NVIDIA Tesla A100 GPU utilizing RCI
cluster, providing access to over 100 powerfull GPUs.

3.3.3 Classifying Whether a Person Is Inside a Road or Not

The road is represented by the class 0. The decision on whether a person is inside
a road was based on whether the bottom middle point of the pedestrian bounding
box intersects with the road segmentation mask. Unfortunately, during testing, there
were many cases where this approach failed. The segmentation model also segments
pedestrians, leading them to cover the road area.

As a result, the person segmentation mask can cover the road area and lead to a
wrong classification. Thus, saying that the pedestrian is not inside the road, even
though the person actually is inside the road. Only its segmentation mask covers the
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road area and the person’s bounding box intersects with the person’s segmentation
mask. Hence, an alternative approach was required.

The new classification method whether a given pedestrian is within or outside of
the road was based on two rules and at least one had to be met. Either 10% of the
bounding box area had to contain pixels classified as a road or 20% of pixels in a small
rectangle area around the bottom of the bounding box had to also be classified as a
road. This method resulted in a sub-optimal performance during testing. In some cases,
the classification inside/outside of the road failed because the segmentation output from
the model was wrong compared to the ground truth. In other cases the approach failed
because the pedestrian inside a road was surrounded by other objects (bike, scooter,
wheelchair) that covered the road area during segmentation and therefore there were
not enough pixels classified as a road around the pedestrian bounding box.

In the third method, a new solution was adopted. To tackle the issue of pedestrian
segmentation mask covering the road segmentation mask, the algorithm analyzes a
rectangle right under the person detection bounding box. The rectangle is of the same
width and stretches 1/7 of the bounding box length down. If at least 50% of pixels
in this area contain the road segmentation mask, the pedestrian is classified as being
inside the road. This method significantly improved the performance and minimized
the amount of false negative cases.

Figure 3.4. Classification of two pedestrians inside of the road. The road, sidewalk, and
person classes are represented by purple, pink, and red colors respectively. In this figure,

the pedestrians standing inside the road were successfully classified as inside the road.
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Figure 3.5. Classification of pedestrians inside (red) and outside (green) of the road. The
road, sidewalk, and person classes are represented by purple, pink, and red colors respec-
tively. In this figure both the right and left sides of the sidewalk are wrongly segmented

as a road by the Segformer semantic segmentation model.

3.4 Data Creation Pipeline
The section 4 focuses on training a classifier, capable of predicting, how likely is a given
person going to step into a road in the near moment. In order to be able to train such
classifier, appropriate training data is needed. This section proposes a data creation
pipeline that analyzes videos and outputs automatically labeled training data. The
BDD100k dataset was chosen as a data source. Its contents comprising of 100 000
videos provide a wide scope of scenes, which make it easier to find appropriate training
data. It contains scenes captured in different weather conditions as well as different
times of the day. This ensures the extracted data will be diverse enough and make the
classifier immune against failure thanks to its ability to generalize well.

The data at the output of the pipeline are in a form of a bounding box containing a
person that is cut out of the original image. It is labelled as either a positive sample
(the person is going to step into the road in the near future) or a negative sample
(almost all other cases in which a person is not going to step into a road. This includes
cases in which the pedestrian is already in the road, or where the pedestrian is going
out of the road).

3.4.1 Algorithm for Filtering and Selecting Data
Since each video contains a different scene, it is necessary to analyze each video from the
dataset separately. Initially, it is necessary to perform an object detection to know the
exact position of every person in each frame. As a next step, a semantic segmentation
is performed. This provides the necessary segmentation mask of a road, containing a
pixel-wise information about which pixels in the frame are considered as a road. In
order to classify, whether a person is going to step into a road, it is necessary to find
the person in each frame of a video. For this, a tracking algorithm named ByteTrack
was employed.

With the necessary information extracted from each frame, it is possible to classify
whether a person is either directly inside or outside of the road. As explained in the
section 3.3.3 the classification is performed by looking below the person’s bounding
box. If majority of the area below the person’s bounding box is classified as a road, the
person is considered to be inside the road and vice versa. This is performed for each
person in each frame of a video to get the necessary information for further processing.
This information is further utilized for determining, whether a given person is intending
to step inside the road.

3.4.2 Positive Data Selection
The proposed method consists of counting the number of frames in which the person
is inside or outside of the road. Firstly, the person has to be outside of the road for
at least 40 frames. Because the classification of the road is not always accurate and
the classification can be wrong, there can be up to three consecutive frames in which a
person is classified as being inside the road. After exceeding this threshold, the count
of the frames in which the person is outside of the road is reset to zero. This means the
person has to be again outside of the road for at least 40 frames. On the other hand,
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if the person is inside the road in the next frame, the count targeting the number 40
continues. After reaching the desired threshold and the person is outside of the road
for at least 40 frames, the algorithm checks, whether the person is inside the road for
at least 30 frames. The same rule for interruption applies here. There can be up to
three consecutive frames, in which the person is classified as being outside of the road.
This accounts for mistakes in the road classification output in scenarios in which the
person is very close to a road border. If these conditions are met, the person is then
labeled as an individual that is going to step into the road.

Considering the task’s objective of predicting, whether a person intends to step into
a road, the most valuable data consist of frames right before a person’s road entry
moment. To determine the exact frame in which the pedestrian stepped into a road,
one can simply get the frame in which the condition for being 30 frames inside the
road was met and subtract the thirty frames together with all the frames in which an
interruption occurred. To get the training data, one can simply extract frames, before
the person steps into the road.

3.4.3 Negative Data Selection

In order for the classifier to be accurate, a same number of negative data samples
is needed for training, thus a need for negative data arises. The negative data should
represent the opposite. Those are simply moments in which a pedestrian is not planning
to enter a road. Because of the nature of the task, the occurrence of pedestrians entering
a road is usually low. This makes it much easier to obtain negative data. Considering
the binary selection in which every non positive data frame would be a desired negative
data frame, this approach presents a potential risk of extracting frames with moments
very close to positive data frames or frames that have been just slightly missed during
the extraction of the positive data. Therefore, an alternative approach was proposed.

Pedestrians detected outside of the road for more than 95% of their presence in the
video were selected as valid negative data samples. The same condition was applied
for pedestrians inside the road. Meaning if the person spent more than 95% of their
presence inside the road, they were selected. In order to keep the dataset balanced,
40 random consecutive frames, featuring given pedestrians, were selected. The random
selection of 40 frames was performed on a set of frames in which a given pedestrian
manages to be tracked and appears in the video.

To introduce diversity into the negative data, an additional scenario was added. Indi-
viduals transitioning from inside the road outside, were deemed as suitable candidates
for negative data. This condition involved verifying that a person remained inside the
road for at least 45 frames, before moving outside of the road and staying there for
at least 60 frames. The relaxing condition of allowing up to three frames of different
classification, whether a person is or is not inside the road was not introduced in this
case. Since there is way more cases with negative data, this condition was still met
enough times.

3.4.4 Algorithm add-ons

As it turned out during the evaluation of created positive data, there was a number
of cases in which the extracted bounding boxes did not meet the necessary quality
requirements. Some bounding boxes contained just a part of the pedestrian, others
were widely distorted from resizing to the uniform size. Some bounding boxes included
cyclists and motorcyclists. To tackle these issues, new preprocessing methods were
introduced.
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Detections with too small bounding boxes showed low accuracy in representing per-

son’s features. Due to the smaller size of the bounding box, there was not enough pixels
to represent the person accurately and thus making it challenging for further process-
ing. To tackle this issue, a new threshold for a minimum bounding box dimensions was
introduced. This conditions checks the width and height of the bounding box area with
thresholds of 10 and 25 pixels respectively. This condition excludes bounding boxes
that are too small.

In some cases, the bounding boxes did not contain the whole pedestrian’s body. This
happens in cases when the person is occluded by some object such as a car or other
vehicle. This can also happen if the individual partially stands in a shadow. The
object detection algorithm can wrongly annotate only the part of the body that is more
visible and is not in the shadow. To address the problem, a condition for checking the
aspect ration of the person’s bounding box was introduced. A typical aspect ratio for
a standing human being (width divided by the height) is between 0.35 to 0.5 regarding
the results of the object detection algorithm. The checking condition filters out all the
detected and tracked people, whose bounding box aspect ratio exceeds the value of 1
to eliminate the extreme cases.

Because the object detection algorithm detects only instances of discrete classes such
as person, motorcycle and bicycle, there is no direct way for the algorithm, do distin-
guish between a pedestrian and a cyclist, motorcyclist or a person on any other vehicle.
To tackle this issue, a new method filtering out cyclists and motorcyclists was proposed.
The core idea of the method is to use IoU (intersection over union) of the person’s and
vehicle’s bounding box. If the intersecting area is greater than a certain threshold,
the person is deemed a cyclist or a motorcyclist and can be filtered out, based on the
vehicle they are intersecting with. A standard approach would be to compare each
bicycle/motorcycle bounding box with each person in the frame. To make the process
less computationally demanding, a shortcut is introduced in a form of making the IoU
calculation between the vehicle and the person that is closest to it. In order to find
the closest person to a given vehicle, a KD-tree algorithm for the nearest neighbor was
implemented.

The algorithm consists of constructing a KD-tree data structure which organizes
points in multi-dimensional space into a binary tree. In this case, the points in the
binary tree would be represented by the center-points of pedestrians’ bounding boxes.
Given a query point depicting the center point of the analyzed vehicle, a search in the
KD-tree is performed [40].

After finding the nearest person and calculating the IoU with the vehicle, if the
person is deemed a cyclist or a motorcyclist based on the intersection threshold, it is
excluded from the list of potential individuals that are going too enter the road.

3.5 RCI Cluster

In order to carry out extensive computational tasks involved in data preparation and
classifier training, an external source of compute power was needed. For this task,
the RCI (Research Center for Informatics) cluster was chosen. It is a HPC (High
Performance Computing) Infrastructure intended to foster the collaboration between
fundamental scientists in application driven researchers from Faculty of Electrical En-
gineering, Faculty of Informatics and Faculty of Nuclear Sciences and Physical Engi-
neering at CTU. The cluster is located at Charles Square at the Faculty of Electrical
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Engineering. It consists of CPUs, GPUs and SMPs,1 together with a data storage inter-
connected by a 100Gbit ethernet network. All the tasks are managed and scheduled by
the SLURM [41] workload manager. This ensures that each GPU or CPU can be used
by only one person at a time, preventing the unwanted interruption of workloads. The
SLURM also ensures fair distribution of resources between users and job prioritization.

Regarding the specific hardware, there are original Intel nodes from 2019 and added
AMD nodes from 2021. The Intel nodes comprise of Intel Xeon Scalable Gold CPUs
and NVIDIA Tesla V100 GPUs. The AMD nodes consist of AMD EPYC CPUs and
Tesla A100 GPUs.

3.5.1 GPU utilization
In order to speed up the object detection model, it was possible to utilize Cuda drivers
that facilitate the communication between the CPU and the GPU. To enable the GPU
acceleration, both model and data for processing have to be uploaded to the GPU.
After this, it is possible to process the data using GPU, accelerating the processing
speed by a significant factor.

The same process was applied to the Segformer semantic segmentation model. Since
the model is built upon the PyTorch framework, it was necessary to upload both the
model and the data to the GPU using Cuda drivers. To enhance the processing speed
even further, batch processing was introduced. Instead of performing a model inference
for each frame separately, a group of images was grouped together before being fed into
the model. This method decreased the processing time by approximately 40%.

During the processing of the BDD100k dataset, the semantic segmentation procedure
proved to be the most computationally demanding task. To tackle the still too long
inference times considering the size of the dataset, the semantic segmentation was
performed only on every second frame of each video. This meant that for a 30 fps
video, the information about whether an individual resides inside or outside of the road
was updated only 15 frames every second. The frames in between the segmented ones
inherited the value from the previous frame.

To decrease the inference time even further, a smaller version of the Segformer model
was used, namely Segformer-B3. This decreased the computational time significantly
while preserving almost the same quality of the semantic segmentation output.

3.5.2 CPU utilization
The entire data creation pipeline was ran on the AMD EPYC 7543 CPU. It leveraged
the already extracted information from the object detection and semantic segmentation
models. Thanks to the workload manager and scheduler, it was possible to submit
the processing task for the entire BDD100k dataset at once and the task scheduler
automatically allocated CPU resources for the job.

3.6 Experiments and Evaluation
This section focuses on evaluating the developed data creation pipeline for auto-labeling
pedestrian road-crossing. Considering the nature of the problem in which the goal is
to find cases in which a pedestrian steps into a road, it is much more difficult to find
the positive scenarios in which a person actually steps into a road. The conditions that
have to be met are altogether quite complex and since there are not as much cases in

1 �symmetric multiprocessing units�
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which a person enters the road, the focus is centered on the algorithm for extracting
the positive data. On the other hand, finding the negative cases in which a pedestrian
does not enter the road are occurring several times more often. Because of that, it was
possible to obtain enough false samples even with making the algorithm for extracting
negative samples very strict. This ensured the algorithm extracted negative cases with
a very high accuracy.

The following sections will focus on evaluating two distinct methods for data-labeling.
Both utilize the Detectron 2 [6] for detecting pedestrians, ByteTrack [17] for tracking
pedestrians and both utilize the same algorithms for positive and negative data selec-
tion. However, the first method utilizes the trapezoidal method for road area selection,
while the second method leverages the semantic segmentation for detecting the road.

3.6.1 Validation Dataset
In order to quantify how accurately the data creation pipeline works, a small validation
dataset was created, containing ground truth data extracted from the BDD100k dataset.
It contains 106 positive cases in which the individual steps into the road and 106 negative
cases in which the individual does not enter the road. Each positive case captures a
moment of approximately 1.3 seconds or 40 frames before a person steps into a road.
Each negative case also consists of 40 frames. This dataset will be used throughout this
thesis in all experiments in order to ensure consistency of the results.

3.6.2 Evaluation of the Method Using trapezoid area
To evaluate the first method, all the 212 cases (106 positive and 106 negative cases)
were taken from the validation dataset 3.6.1. These cases were then processed by the
data creation pipeline using the auto-labeling algorithm for extracting cases in which
the individual enters the road. The results were finally compared with the ground
truth labels and relevant metrics were calculated. The method using the trapezoid for
defining the road area demonstrated a poor performance. Since it classifies the road
area solely on a predefined trapezoid, it cannot detect cases, such as pedestrian entering
the road on the right side or the left side of a crossroad, in turns and many more.
However, this method still managed to capture certain amount of the positive cases.
Those were mostly cases where vehicles were driving along straight roads, particularly
when individuals entered from designated crosswalks. The results are presented in the
following table.

Type of Data num. of cases [-]

True positives (TP) 24
False negatives (FN) 82
True negatives (TN) 98
False positives (FP) 8

Table 3.1. Evaluation of the trapezoidal method for generating positive data on the ground
truth manually annotated dataset.

The obtained metrics are:

Recall = 22.64%
Precision = 75.00%
F1 score = 34.78%

24



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.6 Experiments and Evaluation

The results were obtained by running the first method for labeling positive cases
in which pedestrians step into a road on the 106 positive ground truth cases and 106
negative ground truth cases. Out of the 106 positive cases, the method managed to
capture 24 cases in which the pedestrian entered the road. This means the recall of
the method is 22.64%. This reveals that this method struggles to find all the relevant
cases effectively. Additionally, out of the 106 negative cases in which the individual
does not step into the road, the algorithm selected 8 of those cases as positive. Hence,
the resulting precision is 75%, highlighting that when the algorithm labeled a positive
case, it was right in every three out of four cases. The F1 score combines the recall and
precision and gives a more brief overview of how the algorithm generally performs.

3.6.3 Evaluation of the Method Using Semantic Segmentation
The second method tested involves utilizing semantic segmentation to extract the road
area. This method provides a more detailed selection of the road area, making it possi-
ble to overcome the limitations of the initial trapezoidal method. To comprehensively
evaluate the performance of this method, a similar evaluation process was used. Lever-
aging the small evaluation dataset, this method showed impressive results. Since it was
able to leverage a more detailed information about the road, it captured cases that
were previously missed by the trapezoidal method. The results are presented in the
following table.

Type of Data num. of cases [-]

True positives (TP) 75
False negatives (FN) 31
True negatives (TN) 103
False positives (FP) 3

Table 3.2. Evaluation of the semantic segmentation method for generating positive data
on the ground truth manually annotated dataset.

The obtained metrics are:

Recall = 70.75%
Precision = 96.15%
F1 score = 81.52%

The metrics obtained from the results signify an improvement in all areas. The
precision increased to 96.15% compared to the previous 75% when using the trapezoidal
method. This means that when the method extracts a positive case, it is right in 96.15%
of the cases. The recall of 70.75%, compared to 22.43% for the trapezoidal method,
demonstrates an increased performance in effectively capturing a large portion of all
positive cases.
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Chapter 4
Classifier Development

To leverage the developed auto-labeling algorithm and data creation pipeline and to
put them into practice, a classifier was made. This section proposes a newly developed
classifier focused on the binary classification of whether a given person is intending to
enter a road or not. The classifier input comprises of a bounding box image containing
a person. This image is ran through the classifier and the output is a probability
distribution across two classes representing the likelihood of whether the person is
intending or not intending to enter the road in the near moment. The model was
developed using the PyTorch framework.[4] This framework was chosen because of its
popularity amongst the research community. Its flexibility, ease of experimentation,
and hardware acceleration support make it a great choice.

4.1 Architecture
In order to achieve better performance, it is possible to perform transfer learning.
That involves leveraging an already trained model, that has been trained on a similar
task. These models have been already trained on large datasets, which enables them
to learn the underlying features well. In deep learning computer vision tasks, a model
tries to learn the basic features in the early layers such as edges and corners. In the
middle layers, it focuses on more complex patterns and shapes. In the final layers, the
model learns features that are more task specific and contribute to the classification
decision.[42] Because of this, it is possible to leverage the already trained features in
the lower and middle layers and add a custom classifier head. This new model with a
custom classifier head can be then fine-tuned on the task specific labeled data.

For this task, the EfficientNet model was selected as a base feature extractor. The
model is pretrained on large-scale datasets such as ImageNet [43]. The model has
already learned complex feature representations that can be generalized for the specific
task of this thesis.

In order to tailor the desired model to the task requirements, a custom classifier
head was designed. It is a substitute for the last fully connected layers in the Effi-
cientNet model, which were removed. The image is initially processed by the modified
EfficientNet model. Its output then goes into an adaptive average pooling layer. This
layer serves for resizing the feature maps to smaller dimensions while trying to preserve
the important features. This step is usually done at the end of convolutional neural
networks to make it easier for the fully connected layers to process the data and reduce
the computational complexity. The average pooling uses a kernel of certain size that
slides over the image and computes the average of pixel values in the kernel window.
This is done for each channel of the input image and reduces the spatial dimension of
each channel.[44] Next, the output from the adaptive average pooling layer goes into a
flattening layer. This layer takes the input multi-dimensional tensor and rearranges its
elements into a one dimensional (1D) tensor so that it can be fed into subsequent fully
connected layers. This is due to the fact that convolutional and pooling layers operate
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with multidimensional tensors, but the fully connected layers operate with one dimen-
sional tensors. The flatten layer reduces the dimensionality of the feature maps. This
leads to reducing the number of parameters in the subsequent fully connected layers
which can reduce model complexity and make the model less prone to overfitting.[45]
The flattened output then goes into the fully connected layer. Since using PyTorch
framework, the fully connected layer is named as linear layer, referring to the linear
transformations this layer performs.

The classifier head is made out of fully connected layers, preceded by a dropout that
is applied during the training process and followed by an activation function. Each fully
connected layer downsamples the dimensionality of the feature map. At the end of the
network, the dimensionality is reduced to just two nodes, where each node represents
one out of two classes: “person is going to enter the road soon” and “person is not
going to enter the road soon”.

4.1.1 Loss Function and Optimizer
The choice of loss function has to match the type of the problem the model aims to
solve. For this classification task, the cross entropy loss proved to be the most suitable.
It calculates the difference between the predicted probabilities and the ground truth
labels for each class. To calculate the cross entropy loss, the formula is:

𝐶𝐸 = − 1
𝑁

∑
𝑖

𝑦𝑖 − log(𝑦pred) (8)

in which 𝑦𝑖 is the ground truth label and 𝑦pred is the predicted label.
Regarding the optimizer, both Adam and SGD were tested during the implemen-

tation. The Adam optimizer did not perform poorly. However, the SGD performed
better by a few percent as demonstrated in section 4.2.2. Because of that, the Stochas-
tic gradient descent optimizer was selected. Additionally, the optimizer was enhanced
by incorporating a learning rate scheduler that decreases the learning rate each epoch,
making it easier for the model to converge to the local minimum by finding the param-
eters that minimize the loss function the most.

4.1.2 Regularization
In order to prevent overfitting, regularization techniques were employed. These prevent
the model from performing great on the training data but poorly on the testing and
real-world data. The first regularization technique was to use the dropout method
described in section 2.7.1. Next, the weight decay described in section 2.7.2 was used.

4.2 Training Process
During the training process, the training data were extracted from the BDD100k dataset
using the data creation pipeline presented in section 3.4. The extracted data were then
split into 90% for training and 10% for validation.

4.2.1 Image Preprocessing
The preprocessing steps have a significant influence on the model performance, they
reduce the influence of outliers and ensure the data are scaled the same.

Each image is initially augmented. This is done using several operations. One is
horizontally flipping each image. Because the input image is a bounding box of a
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pedestrian, it does not matter whether the person is aiming to the right or to the
left. This can reduce the chances of learning just the specific scenarios in which people
always hold a certain position aiming to the same side. Next augmentation is done
by cropping the pedestrian image and selecting just a part of the original image. This
helps the model to better generalize by exposing it to a wider variety of appearances
of a pedestrian within a bounding box. It can help the model to classify images,
in which pedestrians may not be centered or fully visible. Another augmentation is
introduced by adding a “jitter” to the images. This means changing the brightness,
contrast, saturation and hue of the image. By incorporating these changes into the
data, the model can become more invariant to these changes and thus be more robust.
It is almost certain that the model will encounter scenarios with completely different
lightning, weather, and environmental conditions.

Next, a histogram equalization is applied. The original image is in RGB format.
However, histogram equalization can not be applied to each component as it leads to
dramatic changes. To resolve this issue, the image can be initially converted to a HSV
(hue, saturation, value) format and histogram equalization can be applied only to the
value component, keeping the hue and saturation components untouched. The altered
image can be subsequently converted back to the RGB format.[32]

Another preprocessing step, contributing to better model performance involves Stan-
dardization. The newly created training dataset extracted from the BDD100k dataset
is very large and computing the mean and standard deviation for the whole dataset
would be computationally demanding and difficult. Hence, the mean and the standard
deviation for the ImageNet [43] dataset was used. The dataset comprises of images
with similar features, therefore the computed values do not differ too much from the
values, that would be computed from the custom training dataset.

Next, each image was normalized using the normalization method described in section
2.8.3.

The above modifications were primarily focused on data enhancements. This im-
proves the overall performance, robustness, and generalization capabilities of the model.
The next part focuses on preparing the data for model input.

Since using the EfficientNet model for the initial extraction of features, it is necessary
to transform the image into a format, that is compatible with the model’s requirements.
This step is essential to ensure that the images can be successfully inputted into the
EfficientNet model that represents the initial part of the overall developed model.

Regarding the input shape, each EfficientNet model architecture ranging from B-0
to B-7 is built for different input image shapes. This is due to the fact that each
model was designed using compound scaling which scales the depth, width and input
image resolution proportionally [24]. Therefore the input image needs to be resized
according to the model input shape requirements. The model accepts only square
shaped images. However, a typical training image represented by a person bounding
box has a rectangular shape. To transform the bounding box into a square shape, a
padding was used. In this case, the additional padding layers were added only to the
left and right sides of the image to increase the width of the image to reach the desired
square shape.

4.2.2 Hyperparameters Tuning

In order to make the most out of the developed model and to achieve the best results
possible, tuning of hyperparameters was introduced. The testing was conducted using
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a systematic and controlled approach to understand the impact of each hyperparameter
on the model’s performance.

Initially, a model with a basic configuration was created. The base model was chosen
to have a set of hyperparameters that are commonly used for similar tasks. The base
model configuration consists of the following:

. Feature Extractor: EfficientNet-B0 (pre-trained on ImageNet)

. Optimizer: SGD

. Learning Rate Scheduler: StepLR with step size of 2 and gamma of 10−1

. Initial Learning Rate: 10−2

. Weight Decay: 10−4

. Loss Function: Cross-Entropy Loss

. Batch Size: 32

. Num. of Epochs: 6

. Dropout Rate: 0.5 in the classifier head layers

. Layers in the Classifier head: 9

. Data augmentation technique: One random out of three total for each image

In order to understand the impact of each hyperparameter on the model’s perfor-
mance, a one-at-a-time approach was used. This method involves altering only one
hyperparameter at a time, while keeping the others fixed at their default values. The
idea behind this approach is to isolate the impact of each hyperparameter, making it
easier to interpret the results and identify the most influential hyperparameters as well
as finding the best value for each hyperparameter.

The tuning procedure consisted of selecting a hyperparameter to tune. Next, a set
of models were initialized, each with a different values of the chosen hyperparameter.
These models were then trained and evaluated on the data created by the data creation
pipeline.

The first tuning involved finding the most suitable optimizer. The evaluation involved
three setups: Adam, Stochastic gradient descent (SGD), and Stochastic gradient de-
scent with a declining learning rate. Each setup was tested with different learning rates
ranging from 10−2 to 10−5. For the SGD with the declining learning rate, the learn-
ing rate value denotes the starting rate. Since Adam optimizer adjusts the learning
rate adaptively during training, the learning rate value serves as a baseline from which
the optimizer begins the optimization process. To prevent overfitting, a regularization
technique, namely weight decay, was used with every setup with a value of 10−4.
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a) b)

c) d)

Figure 4.1. The graphs represent the a) training accuracy b) training loss c) validation
accuracy d) validation loss of the Adam optimizer over successive training steps. Graphs

generated using [46].

Analyzing the results, the Adam optimizer showed signs of overfitting for all learning
rates. The model was memorising data rather than learning to generalize from it. This
can be seen through increasing performance on the training dataset and a decreasing
performance on the validation dataset. The setup with a learning rate of 10−2 was too
high and lead to a gradient explosion, therefore was omitted from the metrics.

The next setup contained the Stochastic gradient descent optimizer.
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a) b)

c) d)

Figure 4.2. The graphs represent the a) training accuracy b) training loss c) validation
accuracy d) validation loss of the SGD optimizer over successive training steps. Graphs

generated using [46].

The SGD lead to very distinct results. The learning curve on the training dataset
shows that the model learned the underlying features in the first and second epoch and
became stagnant afterwards. Analyzing the validation results, the model also showed
signs of stagnancy, improving the most during the first training epoch.

The third setup consisted of SGD together with a learning rate scheduling. The
learning rate was decreased every second epoch. This makes it possible to make big
steps at the beginning of the training and slowly decrease the size of steps, ensuring
that the model converges to a desired local minimum.
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a) b)

c) d)
Figure 4.3. The graphs represent the a) training accuracy b) training loss c) validation
accuracy d) validation loss of the SGD optimizer with a decreasing learning rate over

successive training steps. Graphs generated using [46].
Reflecting on the results, the gradual decrease of learning rate slightly improved the

performance. However, is many cases, the validation loss increased. Only the learning
rate of value 10−2 decreased while also leading to the best accuracy. Comparing the
results, the best performing optimizer proved to be the SGD with a decreasing learning
rate starting at 10−2 reaching an accuracy of 69.24%.

Another important hyperparameter is the batch size. Experimenting with values 32,
64, 128, and 264, with each larger size, the train accuracy improved. On the other hand,
the validation accuracy got worse with each larger batch size. This can be due to the
fact that a smaller batch size results in a noisier gradient. This acts as a regularization
technique, helping the model escape suboptimal local minima and potentially find better
solutions. The batch size is often strongly correlated with a learning rate. To reach
good performance, a small learning rate typically requires a larger batch size, while a
larger learning rate might require smaller batch size.[47] This proved right since the
used learning rate was starting at 10−2.
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Next step was to test different feature extractors. The base model contained the
EfficientNet-b0 model as a feature extractor together with a custom classifier head.
Testing each type of the EfficientNet from b0 to b7, the test results showed no signs of
improvement. The performance was almost the same for each EfficientNet model. This
can be due to a lack of diversity in the dataset or a task simplicity. The EfficientNet-b0
is already a very complex model, increasing the complexity of this feature extractor
might not bring any significant improvement.

Data augmentation plays a vital role in enhancing the generalization of a model. The
next experiment was conducted for two setups. The first setup randomly chose one out
of three possible transformations. Random horizontal flip, random resize and crop, and
altering the image brightness, contrast, saturation, and hue. The second setup applied
all three transformations on each sample. Applying only one transformation per image
resulted in validation accuracy of 69.71% compared to 68.93% when applying all three
transformations. Reflecting on the results, applying milder augmentation resulted in
better performance.

The base dropout rate was set to 0.5, meaning that half of the connections be-
tween the layers are dropped during training. This method was implemented to tackle
overfitting and serve as a regularization technique. However, during testing of other
hyperparameters, the model often showed signs that are usually associated with under-
fitting. One of these signs was that the model accuracy started to stagnate after first
two epochs. This means that the model struggles to learn from the training data. In
order to find out, several smaller dropout values were tested, ranging from 0.2 to 0.5.
Reviewing the results, the validation accuracy did improve from 69.64% for dropout
rate of 50% to 69.67% for a dropout rate of 30%. The small magnitude of change
is mainly due to the fact, that the classifier head, in which the dropout rate was de-
creased, consisted of only 9 layers, thus the impact on the overall performance was not
as significant.

Figure 4.4. Change of dropout rate in the model’s classifier head. (Graph generated using
[46])

Taking into account the results obtained during the hyperparameters tuning, The
model showed signs of underfitting. A possible solution lies in increasing the complexity
of the model and thus helping it to learn and generalize better. Therefore the next
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test focused on developing more complex classifier heads. There were three setups
in total. The base classifier head consisted of 9 layers with 3 fully connected layers,
each with a preceding dropout and a following activation ReLU function. The second
model included a classifier head with 5 fully connected layers. In order to preserve
more information from the feature extractor, the average pooling layer kernel size was
increased to size 4. The third model additionally contained 6 fully connected layers,
totaling to 17 layers in the whole classifier head architecture.

a) b)

Figure 4.5. The graphs represent the a) validation accuracy b) validation loss of the model
with different architecture of the classifier head. Graphs generated using [46].

Reflecting on the results, making the classifier head more complex did not result
in any significant improvement. For a more accurate measurement, training for more
epochs is needed.

Putting the hyperparameters tuning results together, the final model configuration
differs from the initial setup in:

. Number of training epochs that was increased to 12.. Dropout rate, that was decreased to 0.3.. Number of layers in the classifier head was increased to 17 layers.

4.3 Performance Evaluation

The final model was trained over 12 epochs. It reached a training accuracy of 72.35%
and training loss of 0.553. Performing inference on the validation data, the model
reached a validation accuracy of 69.7 and a validation loss of 0.585. The small difference
between the values of training and validation accuracy signify, that the model is most
likely not overfitting and learned to generalize well on the unseen data.
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a) b)

c) d)
Figure 4.6. The graphs represent the a) training accuracy b) training loss c) validation ac-
curacy d) validation loss during the training process of the final model. (Graphs generated

using [46].)
Comparing the results with the initial configuration, the tuning of hyperparameters

did not change the final accuracy by a large amount. This can be due to the fact that
the initial configuration was already well chosen as the tuning process showed. In the
end, only three hyperparameters were changed.

Measuring the model accuracy on the validation data provides a good metric. How-
ever, it is important to note that this data was generated using the data creation
pipeline with an algorithm for generating both positive and negative data. The method
for automatically extracting training data from the BDD100k dataset showed an 96.15%
accuracy. This means the training data might contain some portion of wrongly labeled
cases.

In order to objectively measure the accuracy of the model to see, how it might perform
in the real-world scenarios, the same small manually annotated benchmark dataset from
section 3.6.1 was utilized. This establishes a baseline performance metric. Altogether,
the dataset comprises of 106 positive, and 106 negative cases, totaling 212 cases. Each
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positive case captures a moment of approximately 1.3 seconds or 40 frames before a
person steps into a road. Each negative case also consists of 40 frames.

The evaluation was performed in the following way. Each positive and negative case,
consisting of 40 frames, was processed by extracting 5 representative frames from each
case. To ensure the evaluation is consistent across all samples, the predictions made
on the positive ground truth data were made on the frames −1, −10, −20, −30, and
−40, where the indices indicate frames leading up to the individual stepping into the
road. The frame −40 means, that this frame captures the person 40 frames before they
entered the road, frame −30 captures the person 30 frames before they entered the road
and so on. For negative cases, the naming follows the same rules. The only difference is
that it does not represent the number of frames before the individual enters the road,
but simply which frame is which from the 40 frame sequence for each negative case. This
reduces variability caused by different timings and allows for a fair comparison. This
also allows for observation, whether the predictions get better, the closer individuals
are to the moment of road entry.

Type of Data frame −40 frame −30 frame −20 frame −10 frame −1

True positives (TP) 84 84 86 87 84
False negatives (FN) 22 22 20 19 22
True negatives (TN) 72 72 71 63 68
False positives (FP) 33 33 34 42 37

total num. of cases 212 212 212 212 212

Accuracy (%) 73.93 73.93 74.41 71.10 72.04

Table 4.1. Measuring the classifier performance using the ground truth manually annotated
data.

The classifier shows a good performance with an average accuracy between 71.10%
and 74.41% on the ground truth manually annotated dataset.

The precision of the classifier on the ground truth data is slightly higher than on the
data generated by the data creation pipeline that were used for training. Namely, the
accuracy on the benchmark dataset is between 71.10% and 74.41%, while the accuracy
on the validation data generated by the data creation pipeline is 69.7% as showed on
the graph for the validation accuracy in figure 4.6. This suggests, that the classifier
generalizes well on unseen data. The overall accuracy reflects the classifier’s ability to
correctly classify between 71.10% and 74.41% of the cases.

Reflecting on the results in the table 4.1, there seems to be no evidence that the
classifier would perform better, the closer the pedestrian is to the road entry. This is
most likely due to the reason, that the training data contained all 40 frames of both
positive and negative cases. Hence, the classifier should perform uniformly the same as
each moment from frame 0 to frame 40 is represented by the same amount of samples in
the training dataset. Another reason can be the small size of the validation dataset with
only 212 cases. With such a limited number of samples, the dataset may not sufficiently
eliminate statistical noise, leading to less reliable and less accurate performance metrics.
The differences in results are all within approximately 3%, which is too small to draw
meaningful conclusions. A larger validation dataset would be needed for more accurate
measurement and to reduce the impact of statistical noise.
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Chapter 5
Conclusion

This bachelor’s thesis focused on developing an algorithm capable of auto-labeling mo-
ments in which pedestrians enter the road. This was further utilized in the data creation
pipeline capable of automatically extracting cases in which pedestrians enter the road.
To leverage the auto-labeling algorithm, a custom classifier was developed and trained
leveraging the data creation pipeline. Both the performance of the auto-labeling al-
gorithm as well as of the model were then evaluated on a manually annotated ground
truth dataset.

Regarding the development of the auto-labeling algorithm, two major methods were
tested. The first method used a predefined trapezoidal area for classifying the road
area. The second method leveraged the state-of-the-art semantic segmentation model
named Segformer. The first method demonstrated a poor performance with recall of
22.43%. However, the second method showcased a significant improvement, reaching
the precision of 96.15% and recall of 70.75%. This demonstrates that the auto-labelling
algorithm achieves good results and can serve as the baseline for further development.

The developed classifier, trained on the data generated by the data creation pipeline,
focused on classifying whether a given person is/is not going to enter the road in the
next 40 frames. It reached an overall accuracy that ranged between 71.10% and 74.41%
(depending on the index of the frame for each case) on the manually annotated ground
truth dataset, compared to an accuracy of 69.70% reached on the validation data during
training. This demonstrated classifier’s ability to generalize well on unseen data.

Looking ahead, several improvements and extensions can be made to enhance the
performance of the auto-labeling algorithm. The following can serve as suggestions
for future work. Since the data creation pipeline extracts only bounding boxes of
individuals as training data, the model can only extract a limited amount of features
from the image. By enlarging the bounding box by a few pixels on all four sides, the
model might be able to extract more relevant features and thus improve its classification
performance. During the experiments, the ByteTrack tracking algorithm showed a sub-
optimal performance during occlusion. The ID switches occurred quite often in crowded
scenes. Experimenting with different algorithms that also utilize appearance-based
features could enhance the tracking performance. These features can be particularly
beneficial during the reassociation stage in cases, where individuals are close to or are
occluding each other. As the experiments in section 3.6 showed, the quality of road
area selection significantly influences the performance of the auto-labeling algorithm.
The current semantic segmentation method showed a mediocre performance along the
edges of a road. Since the current algorithm relies heavily on the transition that occurs
at the edge of the road, being able to find the road edge with better precision could
result in an increase of the algorithm performance.
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