
Bachelor thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Computer Science

Cloud-Native and Microservice Application
Development

Přemek Bělka

Supervisor: Ing. Martin Komárek
Field of study: Software Engineering and Technologies
May 2024

ii

Acknowledgements
I would like to thank my thesis supervisor
Martin Komárek from the Czech Techni-
cal University for his help with the writing
of this thesis. I am also very thankful to
my co-supervisor Chun-Wei Tsai from the
National Sun Yat-sen University for his as-
sistance with this thesis and for extending
a very warm welcome to Taiwan.

Declaration
I hereby declare that I have prepared
the submitted work independently and
that I have indicated all information
sources used in accordance with the
Methodological Guidelines on ethical
principles in the preparation of university
theses.

Kao-Siung, 21st May 2024.

iii

Abstract
The thesis is concerned with an exten-
sion of a demo application built using mi-
croservice and cloud-native architecture
styles on the platform CodeNOW. It de-
scribes every phase of a typical software
project. Starting with analysis, design
proposal, implementation, testing, and
deployment. Additionally, related theory
is introduced and several microservice pat-
terns are demonstrated.

Keywords: Microservices, Event
Sourcing, Domain Driven Design,
Event-Driven Architecture

Supervisor: Ing. Martin Komárek
E-431,
Karlovo Náměstí 13,
12000 Praha 2

Abstrakt
Práce se zabývá rozšířením ukázkové apli-
kace postavené pomocí mikroslužeb a
cloud-native architektury na platformě
CodeNOW. Popisuje všechny fáze typic-
kého softwarového projektu. Počínaje ana-
lýzou, návrhem designu, implementací,
testováním a nasazením. Kromě toho je
představena související teorie a demon-
strováno několik mikroservisních vzorů.

Klíčová slova: Mikroservisy, Event
Sourcing, Domain Driven Design,
Event-Driven Architecture

Překlad názvu: Mikroservisní a
cloud-native vývoj aplikací

iv

Contents
1 Introduction 1
1.1 Aim of the Work and Text

Structure . 1
1.2 CodeNOW . 2
1.3 Iterative Development 2
2 Analysis and Solution Design 3
2.1 AS-IS State Analysis 3

2.1.1 Components 3
2.1.2 Persistent Data Model 4
2.1.3 Create Reservation Process . . . 7
2.1.4 Cancel Reservation Process . . . 7

2.2 TO-BE State Design Proposal . . . 9
2.2.1 New Requirements 9
2.2.2 Components 10
2.2.3 Persistent Data Model 10
2.2.4 Top Up Account Balance

Process . 13
2.2.5 Create Reservation Process . . 13
2.2.6 Cancel Reservation Process . . 13
2.2.7 User Interface 17

3 Related Theory 21
3.1 Domain Driven Design 21
3.2 Microservice and Cloud-Native

Architecture 22
3.2.1 Advantages and disadvantages 22
3.2.2 Decomposition Using Domain

Driven Design 23
3.2.3 Database Per Service 23
3.2.4 Communication 23
3.2.5 API Gateway 24
3.2.6 Distributed Tracing 24
3.2.7 Log Aggregation 25
3.2.8 Contract Tests 25

3.3 12-Factor Application 26
3.4 Containerized Applications 27
3.5 Event-Driven Architecture 28
3.6 Eventual Consistency 28
3.7 Object-Based Storage 29
4 Implementation 31
4.1 Used Technologies 31
4.2 Credit Microservice 32

4.2.1 Project and Code Structure . 32
4.2.2 Domain Driven Design 34
4.2.3 Event Sourcing 36
4.2.4 Snapshot pattern 37

4.2.5 Integration with the Stripe
Payment Gateway 38

4.3 PDF Microservice 41
4.3.1 Project and Code Structure . 41
4.3.2 PDF Ticket Generation 41
4.3.3 Interaction with MinIO 45

4.4 Integration with the Rest of the
System . 47
4.4.1 Messaging 47
4.4.2 Notification Application 48
4.4.3 API Gateway 50
4.4.4 Data Replication 50
4.4.5 Front-End. 51

4.5 Distributed Tracing
Instrumentation 53

4.6 Configuration 54
5 Tests 57
5.1 Unit Tests 57
5.2 Integration Tests 59

5.2.1 Karate Tests 59
5.2.2 Contract Tests 60

5.3 End-to-End Tests 60
5.4 Usability Tests 64
5.5 Testing Environment 65
6 Deployment 67
6.1 Terminology 67
6.2 Containerization 68
6.3 MinIO . 68
6.4 Credit and PDF Microservice . . 71
6.5 Log Aggregation 71
6.6 Distributed Tracing 72
6.7 Configuration Management 73
6.8 Cluster Monitoring 73
7 Conclusion 75
7.1 Future Work 76
Bibliography 77
Project Specification 81

v

Figures
1.1 Iteration phases [15, Chapter 1] . . 2

2.1 Component diagram AS-IS 5
2.2 Data model AS-IS - Entity diagram 6
2.3 Data model AS-IS - Reservation

state machine diagram 6
2.4 Create Reservation AS-IS -

Sequence diagram 7
2.5 Cancel Reservation AS-IS -

Sequence diagram 8
2.6 Component diagram TO-BE . . . 11
2.7 Data Model TO-BE - Entity

diagram . 12
2.8 Data model TO-BE - Reservation

state machine diagram 12
2.9 Top up account balance TO-BE -

Sequence diagram 14
2.10 Create reservation TO-BE -

Sequence diagram 15
2.11 Cancel reservation TO-BE -

Sequence diagram 16
2.12 Homepage 17
2.13 Buy credits page 18
2.14 Reservation list page 18
2.15 Account topped up successfully

page . 19
2.16 Failed to top up the account

page . 19
2.17 Reservation completed page . . . 20

3.1 Types of contracts visualized
[21][Chapter 3.1.2.5] 26

4.1 Credit microservice project
structure . 33

4.2 Credit microservice model 34
4.3 Snapshot [1, Chapter-6.1.5] 37
4.4 PDF microservice project

structure . 41
4.5 PDF ticket 44
4.6 Data replication visualization . . 51

6.1 Query for retrieving logs from the
Credit microservice using Loki 72

6.2 Jaeger visualization of a refund
reservation request 72

6.3 Deployment configuration
example . 73

6.4 ArgoCD dashboard 74

vi

Chapter 1
Introduction

1.1 Aim of the Work and Text Structure

This work aims to extend an already existing demo application focused on
buying bus tickets with new functionality through the addition of new com-
ponents. The objective of these components is to enable payment processing
within the application and the generation of example tickets in PDF format,
which can later be retrieved by the user. Secondly, the aim is to introduce a
contemporary approach to application development, focusing on cloud-native
and microservice architecture. This serves to lay a solid theoretical foundation
for understanding how the extension will be executed

The text is organized in the following way. The rest of Chapter 1 briefly
introduces the CodeNOW platform and the concept of iterative development.

Chapter 2 provides an analysis of the Ticket Reservation Application in its
current state, determines the exact scope of the functionality, by which it is
to be extended, and then proposes a solution.

Chapter 3 explains the necessary theoretical concepts to achieve a successful
extension of the application. The focus is laid on cloud-native and microservice
architecture.

Chapter 4 focuses on the implementation of the newly added microservices.
It describes the technologies used and key points of the implementation.
Furthermore, it explains the changes necessary on the part of the other,
already existing microservices.

Chapter 5 describes the testing approaches to verify the correct behavior
of the newly added functionality and the system.

Chapter 6 introduces the platform CodeNOW in more detail by describing
the deployment process of the MinIO service and showcasing the application
of some of the principles mentioned in the theoretical chapter.

The last chapter summarises the output of this work and evaluates the
fulfillment of the goals set in the beginning. It also proposes the next steps
for further development.

1

1. Introduction
1.2 CodeNOW

The work on this thesis was done in cooperation with the company Stratox
developing the Platform as a Service CodeNOW. According to the description
on the official website, CodeNOW is a platform that integrates commonly
used open-source technologies for cloud-native, DevOps, and microservices
development. CodeNOW allows developers to easily manage, version, and
deploy their applications without the need to delve into the details of the
infrastructure on which the applications are deployed. CodeNOW can also
be seen as an alternative to other major Platform As A Service providers,
such as Azure or AWS. The main advantage of CodeNOW over these services
is its much faster learning curve and absence of vendor lock-in. [5]

1.3 Iterative Development

The work on extending the Ticket Reservation Application was done iteratively
instead of proceeding in a waterfall fashion. Iterative development is a
methodology, in which the development cycle is conducted in repeating
iterations. An iteration in this context can be defined as: “A self-contained
mini-project, with a well-defined outcome: a stable, integrated, and tested
release.”[15, Chapter 1]

Such iteration usually encompasses all of the usual phases of a software
engineering project as seen in Figure 1.1

Figure 1.1: Iteration phases [15, Chapter 1]

2

Chapter 2
Analysis and Solution Design

The application being analyzed and developed in this text carries the name
Ticket Reservation App. Its purpose is to provide an example to future users
of the CodeNOW platform on how certain features of the platform can be
utilized. Another goal is to demonstrate the use of several patterns and
concepts, which can very often be found in cloud-native and microservice
applications. This is shown in the process of searching for bus connections
across cities in Europe and then creating a reservation for seats.

In the first part of this chapter, the emphasis is laid on analyzing the
current state of the application. Namely the processes relevant to this work.
The latter part formulates requirements for the extension of the application’s
functionality and then proposes a solution to fulfill them.

2.1 AS-IS State Analysis

The work on the application described in this thesis is a continuation of
the bachelor’s thesis “Cloud Native Application Development” by Robin
Vávra. [13]. Chapter 3 of the thesis explains the transition of the application
from a monolithic architecture to a microservice architecture. It provides a
component diagram [13][Figure 3.18] of the new architecture. Unfortunately,
this diagram does not represent reality anymore, as further undocumented
development on the application has been done since the publication of the
thesis. A more recent component diagram of the application’s current state
was provided during the writing of this thesis, which was used after several
adjustments (Figure 2.1). Apart from this, no further documentation was
provided, therefore, the analysis in this section is the result of reverse engi-
neering the application’s functioning from the code itself and the information
available from the deployment on the CodeNOW platform.

2.1.1 Components

The application currently consists of 6 microservices divided into two applica-
tions - Reservation application and Notification application. This division is,
however, only of significance for the deployment process on the CodeNOW
platform and would not play any important role if the application was to be

3

2. Analysis and Solution Design..............................
deployed on another platform. Despite that, the diagrams and the following
text still considered it for completeness.

The list of microservices in the Reservation application, with a brief expla-
nation of their functionality, is as follows.

Backend-logic microservice Contains most of the business logic regarding
creating reservations. Owns the reservation entity.

FE microservice Provides a React UI to create reservations.

API microservice Is supposed to provide an entry point to the system for
the FE microservice. However, it is not the only entry point, as the FE
microservice also directly retrieves data from the Schedules microservice.

Schedules microservice Contains the business logic concerned with gen-
erating bus schedules and managing the number of available seats on
given dates.

CJOB microservice Periodically executes a bash script that directly in-
serts new entities into the relevant database tables owned by the Schedules
microservice, so that new seat reservations can be created in the future.

The Notification application consists of only a single microservice.

Notification microservice Enables the system to send emails without
attachments.

The microservices employ an asynchronous communication style utilizing
the messaging technology Kafka. The exception is the FE microservice that
uses a synchronous REST API exposed by the API microservice and Schedules
microservice.

The component diagram (Figure 2.1) omits the integration with old versions
of the application in the backend-logic microservice, as shown in the diagram
in the previous thesis [13][Figure 3.18]. This decision was made due to the
lack of significance for the current thesis’s scope.

2.1.2 Persistent Data Model

Only two of the microservices own persistent data (Figure 2.2). Throughout
its lifecycle, the reservation entity goes through 4 states (Figure 2.3). The API
microservice regularly replicates the last 50 reservations from the Backend-
logic microservice.

4

................................. 2.1. AS-IS State Analysis

Figure 2.1: Component diagram AS-IS

5

2. Analysis and Solution Design..............................

Figure 2.2: Data model AS-IS - Entity diagram

Figure 2.3: Data model AS-IS - Reservation state machine diagram

6

................................. 2.1. AS-IS State Analysis

2.1.3 Create Reservation Process

The process of creating a reservation is the only process available to the user
from the UI. The sequence diagram in Figure 2.4 describes the communication
and operations in the system from the point of requesting a new reservation
by the user.

2.1.4 Cancel Reservation Process

In the AS-IS state, the application does not expose a UI to the user to cancel
their reservation, nonetheless, it contains code within the relevant services to
do so.

The business logic also contains a bug where the number of available
seats maintained by the schedules service is not changed upon a reservation
cancellation.

Figure 2.4: Create Reservation AS-IS - Sequence diagram

7

2. Analysis and Solution Design..............................

Figure 2.5: Cancel Reservation AS-IS - Sequence diagram

8

............................. 2.2. TO-BE State Design Proposal

2.2 TO-BE State Design Proposal

The functionality specified by the thesis assignment was decomposed into two
separate microservices - Credit microservice and PDF microservice.

Also, an additional integration of a Keycloak component into the system
was requested as a follow-up to a previous thesis “Cloud Native Application
Development” written by Alena Suvorova [18]. The thesis was concerned
with the correct configuration of the Keycloak application for the Ticket
Reservation Application.

This section gives an overview of the requirements for the new services
and proposes a solution to achieve integration with the Ticket Reservation
Application. The relevant diagrams also include the Keycloak service, however,
the process of authentication and authorization is not described in detail as
it was the subject of Alena Suvorova’s work and the code supporting this
functionality was created by her. However, this code had to be modified,
merged and manually tested by the author of this thesis.

The sequence diagrams in this section assume that an authorized user is
making the requests.

2.2.1 New Requirements

Based on the thesis assignment and then further discussion with the thesis
supervisor, the following functional and non-functional requirements were
formulated during the iterative work on the application. The requirements
determine the scope of the functionality to be added to the system.

FR01: Topping up the account balance The system must allow clients
to top up their account balance using a credit card.

FR02: Money deduction from the account balance after a purchase
The system must allow clients to deduct money from their account bal-
ance after a purchase.

FR03: Payment refund The system must allow clients to cancel the de-
duction of money from their account balance for a purchase.

FR04: Account balance retrieval The system must enable clients to re-
trieve their current account balance.

FR05: PDF boarding ticket generation The system must generate a
PDF boarding ticket upon the successful creation of a new reservation.
The PDF ticket must contain the departure date, departure time, depart-
ing destination, arrival time, arrival destination, amount of passengers,
and the owner’s name. The PDF ticket must contain a QR code referring
to the unique reservation ID.

FR06: PDF boarding ticket persistence The system must persist the
boarding ticket after generation to a persistent data store.

9

2. Analysis and Solution Design..............................
FR07: PDF boarding ticket retrieval The system must allow clients to

retrieve the PDF boarding ticket.

FR08: Notification component integration The system must be inte-
grated with the notification component. It must notify the component to
dispatch an email containing a PDF ticket to the email address contained
in the reservation.

FR09: User registration The system must allow clients to create a new
account.

FR10: User login The system must allow clients to authenticate.

NFR11: Stripe payment gateway The system must be integrated with
the Stripe payment gateway.

NFR12: MinIO storage The system must use a MinIO storage as its
persistent data store to save the PDF tickets.

NFR13: CodeNOW platform The system must be integrated and de-
ployed on the CodeNOW platform. (This requirement specifies that the
technologies must be accessible and compatible with CodeNOW.)

2.2.2 Components

Two new microservices will be added with their own persistent data stores and
a Keycloak service. The separate SQL database for the Credit microservice
was added to further maintain the database per service pattern, which pro-
motes isolation between the services. This pattern is discussed in more detail
in the Related Theory Chapter 3.2.3. Additionally, the Frontend microservice
will not fetch data from the Schedules microservice directly; instead, the API
microservice will serve as an intermediary point. This approach is used due
to the API gateway pattern, which is discussed in Subsection 3.2.5.

The functionality determined in the functional requirements will be mainly
implemented by the respective microservices as follows.

Credit microservice FR01 - FR04

PDF microservice FR05 - FR08

Keycloak microservice FR09 - FR10

2.2.3 Persistent Data Model

Both new microservices will have their own persistent data. The Credit
microservice in the form of events. The events will represent an account
balance change at a given time. Also, an optimization technique called
Snapshot will be used. The AccountBalance class is a representation of such
Snapshot. The PDF service will only persist the PDF ticket data. A further
explanation can be found in the implementation chapter. (Chapter 4)

10

............................. 2.2. TO-BE State Design Proposal

As far as the reservation entity is concerned, a new FAILED state will be
added to represent a situation where payment for the reservation could not
be successfully made due to an insufficient account balance.

The API microservice will also keep a data replica of all account balances.
The replica is introduced to reduce synchronous communication between the
Credit and API microservices. The replicated data is not shown in the data
model diagram.

Figure 2.6: Component diagram TO-BE

11

2. Analysis and Solution Design..............................

Figure 2.7: Data Model TO-BE - Entity diagram

Figure 2.8: Data model TO-BE - Reservation state machine diagram

12

............................. 2.2. TO-BE State Design Proposal

2.2.4 Top Up Account Balance Process

Based on the requirements, namely FR01 and NFR11, a new process to top
up account balance must be added. The API microservice will first redirect
the user to the Credit microservice, which will then redirect the user to the
Stripe payment gateway. After successfully filling in the necessary payment
information, the user will be redirected back to the Ticket Reservation
Application. The account balance will get incremented once the Stripe
gateway sends a confirmation about the payment being successful via a
webhook API endpoint.

If the user cancels the payment, then they will also get redirected back to
the Ticket Reservation Application, but to a screen showing a failure message.

2.2.5 Create Reservation Process

In the new modified reservation creation process, both new microservices
need to be involved. The most important changes to the process are the
following..The involvement of the Credit service before a reservation changes the

state from REQUESTED to ACTIVE. This can only happen once the payment
succeeds and the Credit service dispatches an appropriate event. To
prevent a failure from happening due to an insufficient account balance,
a front-end validation check will be performed. Were this validation to
be bypassed, another validation would take place in the API service.
This service’s data can, however, be in an inconsistent state (more in
Section 3.6) because it uses a data replica to perform the validation. If
this validation falsely succeeds, then the reservation will change its state
to FAILED after the payment fails directly in the Credit service.. Creation, persistence, and email delivery of a PDF ticket after a successful
reservation creation..The API microservice will update its local account balance replica.

2.2.6 Cancel Reservation Process

In the TO-BE version, the changes will be as follows..The Credit microservice will refund a matching payment..The Schedules microservice will now correctly adjust the amount of
available seats..The API microservice will update its local account balance replica.

13

2. Analysis and Solution Design..............................

Figure 2.9: Top up account balance TO-BE - Sequence diagram

14

............................. 2.2. TO-BE State Design Proposal

Figure 2.10: Create reservation TO-BE - Sequence diagram

15

2. Analysis and Solution Design..............................

Figure 2.11: Cancel reservation TO-BE - Sequence diagram

16

............................. 2.2. TO-BE State Design Proposal

2.2.7 User Interface

In total, five different new pages will be added, and changes will be made
to the navigation bar to enable navigation between the new pages and to
display the current account balance to the user. The page used to search for
reservations will validate whether the user’s account balance is sufficient to
create a new reservation. To plan the changes, low fidelity prototypes were
created (Figures 2.12 - 2.17).

The asynchronous nature of the system also needs to be considered in
the UI design. Certain operations may not produce instant results to be
shown to the user. For this reason, the intermediary pages (Figures 2.15, 2.16,
2.17) were added to inform the user that their request is being processed
and may take some time to be completed. Under a light load, the operation
(reservation creation, topping up the account balance) should produce a result
before the user is automatically redirected or changes the page by themselves.
A more complex approach to tackling this issue would involve keeping a local
data model on the frontend part.

Figure 2.12: Homepage

17

2. Analysis and Solution Design..............................

Figure 2.13: Buy credits page

Figure 2.14: Reservation list page

18

............................. 2.2. TO-BE State Design Proposal

Figure 2.15: Account topped up successfully page

Figure 2.16: Failed to top up the account page

19

2. Analysis and Solution Design..............................

Figure 2.17: Reservation completed page

20

Chapter 3
Related Theory

In order to effectively implement the solution outlined in the preceding chapter,
it’s imperative to grasp several key theoretical concepts. This chapter provides
a concise overview of the most essential topics, offering a brief description of
each.

3.1 Domain Driven Design

Domain Driven Design (DDD) is a technique of delivering software that
mainly focuses on understanding the underlying business and its domain. It
does so by advocating for the application of several key concepts.

Domain Model Model, which captures all the important entities and the
relationships between them in a domain. [44]

Ubiquitous Language A common language in a domain used between
developers, domain experts, and other stakeholders. It should reflect the
domain as well as possible, therefore, making communication between
all parties more effective and easier by striving to remove any ambiguity.
[43]

Subdomain To manage a big domain model, it can be split into smaller
subdomains, which target specific areas of expertise within a domain.
[1][Chapter 2.2.3]

Bounded context A bounded context is a part of the software where par-
ticular terms, definitions, and rules apply consistently. [42]

These concepts can be used for specifying high-level architecture, as men-
tioned in the next section. However, DDD can also be applied to code design
as described in an example in the Credit microservice implementation part of
this work (Subsection 4.2.2). For this purpose, several more DDD concepts
need to be introduced.

Entity Objects that have a distinct identity that runs through time and
different representations. Such as a car or a person. [40]

21

3. Related Theory....................................
Value object Objects that matter only as the combination of their at-

tributes. Two value objects with the same values for all their attributes
are considered equal. For example, a money object or a date object. [40]

Aggregate Within the domain, an aggregate is a collection of objects in the
model that can be accessed as a single unit. [1][Chapter 5-2-2]

Domain event Is a class that captures the memory of something interesting
happening that affects the domain. [41]

3.2 Microservice and Cloud-Native Architecture

Microservice architecture is an architectural style for developing applications.
As opposed to a traditional monolithic architecture, it splits an application
into a collection of independent microservices with their own responsibilities.
In microservice architecture, an application request is processed by multiple
small cooperating applications called microservices instead of just one bigger
application. [34]

The world of microservices is very closely related to the concept of cloud-
native architecture - a methodology that utilizes cloud services such as AWS,
Azure, or CodeNOW to allow for applications to be developed in a more agile
and dynamic way. These cloud services typically offer special support for
creating microservice applications. [38]

The most relevant topics for this work are explored in this section.

3.2.1 Advantages and disadvantages

Applying microservice architecture has the following advantages:. It makes continuous delivery possible..The services are smaller and easier to maintain..The services can be independently deployed. This allows the system to
be scaled more easily..The services give a higher level of autonomy to teams. A whole service
can be owned by one team..The services can be developed using various programming languages and
technologies.

However, certain drawbacks also have to be considered. The most important
ones are the following: [1][Chapter 1]. It is difficult to correctly decompose a system into a set of services..A microservice system is a distributed system. Distributed systems are

complex and come with their own set of challenges.

22

....................... 3.2. Microservice and Cloud-Native Architecture

.The communication between services is more complicated than commu-
nication within a monolithic application..Transitioning a monolithic system to a microservice system is difficult
and can be very costly.

3.2.2 Decomposition Using Domain Driven Design

One of the biggest challenges when designing a microservice system is the
process of determining the services the system will consist of and their
communication boundaries. This process is called decomposition.

One of the approaches is the decompose-by-subdomain technique. This
technique works with two concepts taken from the DDD methodology: sub-
domains and bounded context. The whole application domain is split into
subdomains, which all have their own domain models and terminology. The
subdomains are specified by looking at the different areas of expertise within
a business.

The models defined in each subdomain can represent bounded contexts
for respective microservices. [39] An example of such separation determined
by bounded contexts can, for example, be found in the TO-BE data model
Figure 2.7.

3.2.3 Database Per Service

The database per service pattern advocates for each microservice to possess its
own dedicated database, which is inaccessible to other microservices directly.
Instead, data exchange occurs through APIs provided by the data-owning
microservice. This architectural approach offers numerous advantages:

Scalability It is easier to scale one service based on the current needs along
with its database.

Use of various technologies Each microservice can use a different kind
of database most suitable to its data needs.

Reduced coupling The use of this pattern further promotes the reduction
of coupling between the microservices. A change made to the database
of one microservice does not affect the others.

The main drawback of this approach is the complicated implementation
of queries, which need to join data owned by several microservices. Also,
business transactions spanning data in various services become more difficult
to implement. [48]

3.2.4 Communication

In traditional monolithic applications, operations between different parts of
the system are typically executed by simply invoking methods on objects.

23

3. Related Theory....................................
In microservices, this may not always be possible as different functionality
resides in different microservices, which have to communicate with each other
over a network.

When the communication takes place synchronously, the requesting side
expects an answer to be returned before proceeding with its operations. This
is very often done by exposing an API modeled with the use of the REST
philosophy, which exposes URL endpoints designed as hierarchically organized
resources. Operations on them are performed using corresponding HTTP
methods. [12] One of the major downsides to this communication model is
the reduction of the system’s availability, due to the operation not being able
to proceed until a response is returned. [1][Chapter 3.4.1]

The synchronous interactions can be replaced by using asynchronous com-
munication instead. When a request is sent in an asynchronous communi-
cation, there’s no anticipation of an immediate response, therefore none of
the services are blocked, which results in higher system availability. The
transition from synchronous interactions to asynchronous communication
can be achieved by employing a message broker like Kafka to facilitate the
exchange of messages between services. [1][Chapter 3.4.2]

3.2.5 API Gateway

In an application made out of many microservices, it would be very inconve-
nient for the clients to access their APIs directly. The API gateway pattern
dictates that there should be a dedicated microservice that serves as a single
entry point into the system for all external clients. This has the benefit of
encapsulating the system’s complexity. Also, in many cases, the microservices’
APIs must not always be compatible with the clients. In such case, the API
gateway can fulfill the function of an adapter. The API Gateway can also
additionally be responsible for request routing, performing API composi-
tion, authentication and authorization, logging, caching, and load balancing.
[1][Chapter 8]

3.2.6 Distributed Tracing

An important part of the development and maintenance of applications is
the ability to understand their internal state and behavior from an outside
perspective. In microservice applications, this can pose a significant challenge
as a single request can pass through multiple microservices before a response
is returned. To tackle this challenge, the pattern called distributed tracing
can be applied.

The point of distributed tracing lies in instrumenting the code in such
a way that at the start, each request is assigned a unique ID. The ID is
propagated to each service responsible for handling the request. Important
information, such as start time, end time, and operations invoked within a
given service get saved into an external storage. Afterwards, this data can be
queried to gain insights about the system’s behavior, by being able to track
a request’s path as it got processed by various microservices. Additionally,

24

....................... 3.2. Microservice and Cloud-Native Architecture

each segment of processing within a service is encapsulated as a span. A span
represents a unit of work within a trace, capturing timing information and
metadata about that specific operation. [47]

3.2.7 Log Aggregation

Typically, each microservice generates large amounts of data in the form
of logs. External storage is necessary to save and query this data for the
whole application. Log aggregation is a pattern used to collect and store log
messages from multiple sources in a centralized location. [51]

3.2.8 Contract Tests

A contract between microservices could be defined as a situation in which
two services create an agreement on how to communicate with each other.
Each contract has two sides: a providing side and a consuming side. Contract
testing aims to test that both sides have the same understanding of what the
contract is, or, in other words, that they have the same expectations about
the form of the communication. [21]

In general, the contracts can be split into three categories. [21][Chapter
3.1.2.5]

Producer Contracts Producer contracts define what business function-
alities a provider side offers externally, including message structures,
interface operations, and service attributes like availability and security.

Consumer Contracts Consumer expectations of a Provider Contract are
captured in a Consumer Contract. If the consumer and provider are
compatible, the Consumer Contract is considered a subset of the Provider
Contract, as only a portion of the available business functionality may
be expected and used by the consumer. A provider may have multiple
Consumer Contracts directed toward them, depending on the number of
associated consumers.

Consumer-Driven Contracts Consumer-Driven Contracts can be seen as
the union of all the expectations expressed by the Consumer Contracts for
a provider. It is therefore a subset of Provider Contracts, as consumers
do not have to take advantage of all the exposed functionality. There
is always exactly one Consumer-Driven Contract per producer, which
defines what functionality is being consumed and which is not.

25

3. Related Theory....................................

Figure 3.1: Types of contracts visualized [21][Chapter 3.1.2.5]

3.3 12-Factor Application

A 12-factor application is a document created by the founder of the Platform-
as-a-Service Heroku. It contains recommendations and best practices to use
for building modern web applications, sometimes also called Software-as-a-
Service applications. The recommendations are split into 12 topics. The
following list briefly summarizes the main point of each recommendation. [3]

Codebase A version control system should be used to develop an application.
There should be only one codebase per application.

Dependencies An application should not rely on the implicit existence of
pre-installed system libraries and dependencies.

Configuration Configuration should be stored in environment variables,
not directly in code.

Backing services The application should not make a distinction between
local and third-party services. Such as between a locally managed
database and a mail server managed by a third party. Both should be
attached resources accessible by a stored URL in the config.

Build, release, run The application should strictly separate the build, re-
lease, and run phases.

Processes The application processes should be stateless and should not
share anything. Any persistent data should be saved to an external
service.

26

...............................3.4. Containerized Applications

Port binding The application should be completely self-contained and only
expose its functionality as a service by binding to a port. For example,
a web application can expose its service by binding to an HTTP port.

Concurrency The application should be able to scale horizontally by being
able to easily add new processes.

Disposability The application processes should try to minimize their startup
time and shut down gracefully upon receiving a SIGTERM signal. A
graceful shutdown in the case of an HTTP service means not listening
anymore on the exposed port and letting ongoing requests finish. The
application should also be durable in case of sudden shutdowns.

Dev/prod parity Different application environments, such as the dev, stag-
ing, and prod environments should be kept as similar as possible.

Logs Logs should be treated as event streams. The application should not
concern itself with their routing and storage. Instead, they should be
written into the standard output stream and then handled specifically
based on the environment.

Admin processes Admin tasks should be run as separate one-off processes
in an identical environment as the main application processes. The
execution’s environment bundled tool should be used to run them if
possible.

3.4 Containerized Applications

Modern-day applications typically require a wide range of dependencies to run,
it could be different libraries, programming language runtimes, configurations,
and more. Migrating applications across diverse environments—say, from
one developer’s local setup to another’s—can pose considerable challenges.
To make the deployment of applications easier containerization can be used.
Containerization makes it possible to package applications into so-called
containers that contain all the necessary dependencies and can be run in any
environment. [33]

Containerization aligns closely with microservice architecture, primarily due
to the necessity for fast and efficient deployment of services. By encapsulating
each microservice within its own container, organizations can achieve greater
agility and scalability. This decoupling enables independent development,
testing, and deployment of microservices, facilitating quick iteration and
updates without disrupting the entire application. Additionally, container
orchestration platforms like Kubernetes further enhance the management and
scalability of microservices by automating deployment, scaling, and service
discovery across a cluster of containers. [34]

27

3. Related Theory....................................
3.5 Event-Driven Architecture

In an Event-Driven architecture, components initiate actions that lead to
the generation of events. These events are then transmitted through a
message broker, enabling any component to subscribe to and react to them.
A fundamental aspect of events is their immutable nature, as they represent
occurrences that have already happened and cannot be changed or revoked.
[35][Chapter 4]

A typical sign of Event-Driven systems is the use of an asynchronous style
of communication. An important example of this found within the Ticket
Reservation Application is the interaction with the Stripe payment gateway.
Once a checkout is requested and the user is redirected to the gateway, then
no immediate response is expected. Only if the user correctly fills in their data
and confirms the payment, the Ticket Reservation application receives an
asynchronous response containing the CHECKOUT_SESSION_COMPLETED event (Figure
2.9).

3.6 Eventual Consistency

According to the Encyclopedia of Database Systems, Eventual Consistency
could be defined in the following way: “In a replicated database, the consis-
tency level defines whether and how the values of the replicas of a logical
object may diverge in the presence of updates. Eventual consistency is the
weakest consistency level that guarantees useful properties. Informally, it
requires that all replicas of an object will eventually reach the same, correct,
final value, assuming that no new updates are submitted to the object.” [36]

When working with replicated data, especially in distributed systems, the
BASE (Basically Available, Soft state, Eventually consistent) model could
be used for understanding the trade-offs involved in maintaining consistency
and availability.

BASE transactions contrast with the ACID (Atomicity, Consistency, Isola-
tion, Durability) transactions commonly associated with traditional databases.
While ACID transactions prioritize strong consistency, BASE transactions
prioritize availability and eventual consistency.

In the context of the definition provided by the Encyclopedia of Database
Systems, eventual consistency, a key component of the BASE model, ensures
that over time, all replicas of a data object will converge to the same correct
value, assuming no new updates are introduced to the object. This aligns with
the notion of a “soft state” in BASE, where the system tolerates temporary
inconsistencies between replicas with the expectation that they will eventually
reconcile.

BASE transactions reflect the reality of distributed systems, where achieving
immediate consistency across replicas may be impractical due to factors like
network latency, partition tolerance, and the need for high availability. By
prioritizing availability and eventual consistency, BASE transactions enable

28

.................................3.7. Object-Based Storage

systems to remain responsive even in the face of network failures, while still
ensuring that data consistency is eventually achieved as updates propagate
through the system. [37]

3.7 Object-Based Storage

Object-Based Storage systems offer a way to solve the problem of saving a
large amount of unstructured data, such as images or audio files. Saving such
data in a relational database or on the local filesystem becomes unsustainable
with growing application traffic and increasing amounts of files. [16][Chapter
8]

In Object-Based Storage systems, the data is organized into buckets and
objects. Buckets could be thought of as disks with an endless storage capacity
that store the data. These buckets, can in reality, be replicated across several
disks, ensuring high levels of availability and durability. Objects are files with
unique names stored in buckets. [16][Chapter 8.1.1]

In contrast to relational databases, the ability to query data is greatly
reduced. The Object-Based Storage systems typically offer a simple, almost
key-value API for retrieving data. However, this is greatly compensated for
by the scalability and performance benefits of Object-Based Storage. Since
objects are stored with unique identifiers, retrieval is typically done through
simple find-by-ID queries. This type of storage is especially well-suited for
systems where availability and scalability play an important role. This,
however, comes at the cost of sacrificing the ACID properties of a typical
relational database. [16][Chapter 8.10]

29

30

Chapter 4
Implementation

This chapter focuses on the implementation of the new requirements and the
proposed solution in Section 2.2. The first part introduces the used techno-
logical stack. Then the implementation of the newly added microservices is
presented. The next part gives an overview of the work required to be done in
the rest of the system. Lastly, distributed tracing and configuration handling
are mentioned.

4.1 Used Technologies

The technologies for the PDF and Credit microservices were chosen based on
the capabilities of the CodeNOW platform and the special support it provides
for them — the most important one being predefined templates. The list of
the most important technologies is the following.

Spring Boot Both the credit and PDF microservices were developed in Java
using the open-source Spring Boot framework. This framework enables
rapid development of web applications using the Spring framework. The
main advantages that Spring Boot offers compared to Spring are auto-
configuration, easier dependency selection and management, and an
automatically embedded Tomcat server. [7]

PostgreSQL The database used for the Credit microservice was PostgreSQL.
It is an open-source, object-relational database management system that
can be communicated with by using the SQL query language. [11]

MinIO MinIO is an open-source object storage server that is compatible
with Amazon S3 cloud storage service. It is commonly used for storing
large amounts of unstructured data such as images, videos, and log files.
In this project, MinIO was utilized for storing and serving generated
PDF documents. [57]

Kafka Kafka is an open-source distributed messaging platform commonly
referred to as a messaging queue. Its main advantages include broad sup-
port through libraries for most commonly used programming languages,
fast processing of published events, scalability, and high availability. [10]

31

4. Implementation....................................
In a microservices architecture, it can be utilized for implementing asyn-
chronous communication between individual microservices. [1][Chapter
3-3]

Docker For simplifying local development and eliminating the need for local
installation of individual external services, Docker was utilized. Docker
is an open-source platform that enables developers to package software
into so-called containers, which contain all the necessary dependencies
for running the software. [6]

Stripe Stripe is an online platform offering a wide range of services for
processing not only online financial transactions. [9] For the project
purposes, the Java library provided by Stripe was used, facilitating the
use of the Stripe payment gateway for processing one-time payments
from payment cards.

Flyway Flyway is a library used for versioning the schema of a relational
database. Versions are created using migration files, which contain SQL
scripts for migrating the database to a specific version. [8]

4.2 Credit Microservice

The Credit microservice adds the ability to keep users’ account balance and
process payments and refunds within the system. In this section, the code
structure, the application of Domain Driven Design, Event Sourcing and
the Snapshot pattern are explained. Lastly, the integration with the Stripe
payment gateway is shown.

4.2.1 Project and Code Structure

The list and the Figure 4.1 below describe the structure of the project and
the code within it.

Codenow Contains a .yaml Spring configuration file.

Config Contains Java configuration classes.

Controller Contains REST controllers.

Dto Contains Data Transfer Objects used for sending and receiving data.

Exception Contains custom exceptions and exception handlers defining the
controller response if a certain exception occurs.

Factory Contains LineItemFactory, which simplifies the creation of a Stripe
specific object.

Fixtures Contains classes, which insert data upon application startup in a
local development environment.

32

.................................. 4.2. Credit Microservice

Kafka Contains Kafka consumers, producers, and events sent into the queue.

Model Contains domain entities, which contain most of the core business
logic.

Repository Contains data access layer classes, which are used for commu-
nicating with the SQL database.

Scheduled Contains a class defining a CRON job, which periodically runs
to persist an event snapshot into the database. More in the Snapshot
Section 4.2.4.

Service Contains classes, which can be considered a sort of facade in the
code. They contain methods, that perform important business func-
tions, however, they only delegate to other classes and aggregate the
functionality. More in the subsection Domain Driven Design 4.1.

Tracing Contains distributed tracing instrumentation. More in Section 4.5.

Util Contains classes with helper static methods.

Resources Contains Flyway .sql migration scripts to version the database.
In the case of test resources test configurations are included.

Integration Contains Karate integration tests.

Unit Contains unit tests.

Figure 4.1: Credit microservice project structure

33

4. Implementation....................................
4.2.2 Domain Driven Design

In designing the model and organizing business logic, some principles from
the Domain Driven Design methodology were utilized. A crucial concept in
designing the object model according to DDD is the notion of an aggregate.
Within the domain, an aggregate is a collection of objects in the model that
can be accessed as a single unit. [1][Chapter 5-2-2] In the model, there aren’t
many objects involved, so it cannot be said that this aggregate is a collection,
as there are only two unrelated entities (AccountBalance, Refunded) and several
types of events (AccountBalanceChanged) (Figure 4.2). Nevertheless, the entity
AccountBalance will be referred to as an aggregate in the text, as other principles
related to this methodology were used.

One way to organize business logic in an application is by using the
transaction script design pattern. This pattern is based on placing all business
logic into procedural scripts called services. Conversely, the model itself
contains minimal business logic and typically consists only of classes with
private attributes, getters, and setters. Such a model is sometimes referred
to as anemic. [1][Chapter 5-1-1]

However, this approach is not utilized in this microservice. Instead, the
domain model design pattern was employed. In this case, most of the business
logic was placed within the domain classes. [1][Chapter 5-1-2] Still, some
operations remain in service classes, such as publishing events or database
storage interactions (Code Snippet 4.1). In the Code Snippets, the symbol of
the three dots “...” is used to signify that part of the code was left out.

The factory design pattern was also applied to creating certain classes.
It is implemented as a static method of a class and has the advantage of
not allowing the creation of a class with business-invalid data. In DDD
terminology - it makes sure all the object invariants are upheld (Code Snippet
4.2). [1][Chapter 5-1-3]

Figure 4.2: Credit microservice model

34

.................................. 4.2. Credit Microservice

@Service
public class CreditService {
...
public void spendCredits(Long creditsToSpends, Integer userId) throws

ExecutionException, InterruptedException {
CreditBalanceChangedEvent event = CreditBalanceChangedEvent.createCreditsSpent

(
userId,
creditsToSpends,
creditBalanceChangeEventRepository,
accountBalanceSnapshotRepository

);

creditBalanceChangeEventRepository.save(event);
creditBalanceChangedProducer.publish(event);

}
...
}

Code Snippet 4.1: A service method example

@Entity
@Table(name = "credit_balance_changed_event")
public class CreditBalanceChangedEvent {
...

private CreditBalanceChangedEvent(Integer userId, Long balanceChange,
CreditBalanceChangeType messageType) {

this.id = UUID.randomUUID();
this.userId = userId;
this.balanceChange = balanceChange;
this.messageType = messageType;
timestamp = LocalDateTime.now();

}

public static CreditBalanceChangedEvent createCreditsRefunded(UUID
paymentToRefund, CreditBalanceChangeEventRepository
creditBalanceChangeEventRepository, RefundedRepository refundedRepository) {

CreditBalanceChangedEvent event = creditBalanceChangeEventRepository.findById(
paymentToRefund).get();

if (event.messageType != CreditBalanceChangeType.CREDITS_SPENT) throw new
NoSuchElementException("No such payment exists.");

if (event.wasRefunded(refundedRepository)) throw new PaymentAlreadyRefunded("This
payment has already been refunded.");

return new CreditBalanceChangedEvent(event.getUserId(), -event.getBalanceChange(),
CreditBalanceChangeType.CREDITS_REFUNDED);

}
...
}

Code Snippet 4.2: An event factory method example

35

4. Implementation....................................
4.2.3 Event Sourcing

For tracking purchases, cancellations, and topping up the account balance,
the Event Sourcing design pattern was employed. This design pattern involves
not storing aggregates directly in the database; instead, they are stored as a
series of events representing state changes. These events are also published in
a messaging queue, where they can be consumed by other microservices. The
aggregate is then not read directly from the database but is reconstructed by
applying events backward, as demonstrated in Code Snippet 4.3.

In this specific implementation, events were modeled as an entity mapped
to a single table in the database. The data it contains can be seen in Code
Snippet 4.4 below. Upon relevant operations, the resulting event is stored in
the database and then published to Kafka (Code Snippet 4.1).

This approach brings countless advantages compared to the traditional
method, where aggregates are stored directly in the database and mutating
operations are performed directly on them. The main advantage is that the
entire history of operations is stored in the form of events, which can be
used to reconstruct the aggregate’s state at any given time. This may, for
example, be needed for auditing purposes. Another important advantage,
especially in microservice architecture, is that events can be published for
other microservices, for which they may be relevant in some way. [1, Chapter-
6.1] This has the advantage of potentially replacing necessary synchronous
communication with asynchronous communication, which in turn results in
higher system availability, as described in Subsection 3.2.4.

However, Event Sourcing also brings along with it a number of disadvan-
tages. The most significant ones include the fact that it is an unfamiliar
programming approach for many, increased memory requirements, and slower
and more complicated read operations on the aggregate. [1, Chapter-6.1] The
issue of slower reading has been mitigated using the Snapshot design pattern
in the following chapter.

public class AccountBalance {
...

public static AccountBalance recreateFromEvents(
Integer userId,
CreditBalanceChangeEventRepository creditBalanceChangeEventRepository
) {

AccountBalance accountBalance = new AccountBalance(userId);

creditBalanceChangeEventRepository.findAllByUserId(userId)
.forEach(accountBalance::apply);

accountBalance.setTimestampToNow();

return accountBalance;
}

private void apply(CreditBalanceChangedEvent event) {
balance += event.getBalanceChange();

}
}

Code Snippet 4.3: Reacreating the AccountBalance agreggate

36

.................................. 4.2. Credit Microservice

@Entity
@Table(name = "credit_balance_changed_event")
public class CreditBalanceChangedEvent {

@Id
@Getter
private UUID id;

@Getter
private Long balanceChange;

@Getter
private Integer userId;

@Enumerated(EnumType.STRING)
private CreditBalanceChangeType messageType;

@Column(name = "timestamp", columnDefinition = "TIMESTAMP")
private LocalDateTime timestamp;

...
}

Code Snippet 4.4: Domain event structure

4.2.4 Snapshot pattern

Snapshot is a design pattern that allows for optimizing the speed of creating
an aggregate from events. The principle lies in periodically calculating the
state of the aggregate at some point in time, let’s call it X, and storing it
together with this time point X. During subsequent read operations, it is
not necessary to recreate the aggregate from all stored events, but only from
those whose publication time is greater than X. According to the attached
image (Figure 4.3), this means that if we place point X between Event N
and Event N+1, then during each subsequent read operation, the aggregate
can be created from the Snapshot of version N and events greater than N.
This way, the processing of N events can be saved. [1, Chapter-6.1.5]

In this specific implementation, a separate table is created in a relational
database for Snapshots, which contains information about the time point X,
the state of the credit account, and the user ID to which the account belongs.
Snapshots are recalculated once daily at midnight using a CRON job.

In the example (Code Snippet 4.5), there is an optimized method for
reading the AccountBalance aggregate that utilizes Snapshots.

Figure 4.3: Snapshot [1, Chapter-6.1.5]

37

4. Implementation....................................
public class AccountBalance {
...

public static AccountBalance recreateFromEventsAndSnapshot(
Integer userId,
CreditBalanceChangeEventRepository creditBalanceChangeEventRepository,
AccountBalanceSnapshotRepository accountBalanceSnapshotRepository

) {
AccountBalance accountBalance = getSnapshot(userId,

accountBalanceSnapshotRepository);

if (Objects.isNull(accountBalance)) {
return recreateFromEvents(userId, creditBalanceChangeEventRepository);

}

else {
creditBalanceChangeEventRepository.findAllByUserIdAndTimestampAfter(userId,

accountBalance.getTimestamp())
.forEach(accountBalance::apply);

}

accountBalance.setTimestampToNow();

return accountBalance;
}

...
}

Code Snippet 4.5: Recreating the AccountBalance from a Snapshot

4.2.5 Integration with the Stripe Payment Gateway

An official Stripe Java client library was used for the integration.1
As the first step of the integration, an HTTP API endpoint was exposed,

which starts the payment process and redirects the user to the Stripe gateway.
The method validates the amount of money the client wants to top up. Then
the provided redirect URLs are validated. At the end of the method, a
Checkout Session object is created, and the user is redirected to the Stripe
server to manually fill in their payment data. The payment is later linked to
a specific user by parsing the user ID information from the Checkout Session
metadata (Code Snippet 4.7).

The Checkout Session is an important concept when working with the
Stripe gateway. It is an object that contains all the crucial information about
the ongoing payment, including how the payment itself should proceed. It
can be configured using a builder available in the provided Java library. [2]

If the payment is successful, then the Stripe service answers asynchronously
by calling a Webhook HTTP endpoint. Although HTTP communication
is synchronous, the answer is asynchronous relative to the completion of
the payment, as the Ticket Reservation Application does not wait for the
answer after the user fills in their payment data because the user is redirected
immediately back to a page with information about his payment being
processed. The webhook controller method validates the signature and
deserializes the received data. If it contains information about a successful

1Stripe java client library, available at https://github.com/stripe/stripe-java

38

https://github.com/stripe/stripe-java

.................................. 4.2. Credit Microservice

payment, then it is passed to the StripeService class for further processing by
the application’s business logic (Code Snippet 4.6).

@PostMapping(path ="/webhook", consumes = "application/json")
public Mono<String> webHook(ServerHttpResponse response, ServerHttpRequest request,

@RequestBody String payload) {
String sigHeader = request.getHeaders().get("Stripe-Signature").get(0);
Event event = null;

try {
event = Webhook.constructEvent(

payload, sigHeader, endpointSecret
);

} catch (JsonSyntaxException e) {
response.setStatusCode(HttpStatus.resolve(400));
log.warn("Invalid Stripe webhook payload.");
return Mono.just("");

} catch (SignatureVerificationException e) {
response.setStatusCode(HttpStatus.resolve(400));
log.warn("Invalid Stripe webhook signature.");
return Mono.just("Invalid signature.");

}

EventDataObjectDeserializer dataObjectDeserializer = event.
getDataObjectDeserializer();

StripeObject stripeObject = null;
if (dataObjectDeserializer.getObject().isPresent()) {

stripeObject = dataObjectDeserializer.getObject().get();
} else {

log.warn("Invalid nested object.");
return Mono.just("");

}

switch (event.getType()) {
case "checkout.session.completed": {

stripeService.handleCheckoutSessionCompleted(event);
break;

}
default:

return Mono.just(("Unhandled event type: " + event.getType()));
}

response.setStatusCode(HttpStatus.resolve(200));
return Mono.just("Invalid signature.");

}

Code Snippet 4.6: Stripe webhook controller method

39

4. Implementation....................................

@GetMapping("/{userId}/buy-credits")
public Mono<Void> buyCredits(ServerHttpResponse response,

ServerHttpRequest request,
@RequestParam("amount") Long amount,
@RequestParam(required = false, name = "success_url") String

successUrl,
@RequestParam(required = false, name = "failure_url") String

failureUrl,
@PathVariable String userId) throws StripeException,

URISyntaxException {
log.info("Received request for buying credits for user: " + userId + " amount: " +

amount + " successUrl: " + successUrl + " failureUrl: " + failureUrl);

if (amount < 1 || amount > 100_000) {
throw new InvalidInputException("Minimal amount of credits to purchase is 1.

Maximal amount is 100.000.");
}

if (successUrl != null && !allowedRedirectDomainName.contains(URLUtil.
extractDomainName(successUrl)))

{
throw new NotAllowedRedirectUrl(successUrl + " Is not an allowed redirect URL.

" +
"Allowed hostname: " + allowedRedirectDomainName);

}

if (failureUrl != null && !allowedRedirectDomainName.contains(URLUtil.
extractDomainName(failureUrl)))

{
throw new NotAllowedRedirectUrl(failureUrl + "Is not an allowed redirect URL.

" +
"Allowed hostname: " + allowedRedirectDomainName);

}

String defaultSuccessUrl = URLUtil.getBaseUrl(request.getURI()) + "/stripe-
payment/buy-credits/success";

String defaultFailureUrl = URLUtil.getBaseUrl(request.getURI()) + "/stripe-
payment/buy-credits/cancel";

SessionCreateParams params = SessionCreateParams.builder()
.setMode(SessionCreateParams.Mode.PAYMENT)
.setSuccessUrl(successUrl != null ? successUrl : defaultSuccessUrl)
.setCancelUrl(failureUrl != null ? failureUrl : defaultFailureUrl)
.addLineItem(lineItemFactory.createCreditsLineItem(amount))
.putMetadata("userid", userId)
.build();

Session session = Session.create(params);

response.setStatusCode(HttpStatus.PERMANENT_REDIRECT);
response.getHeaders().setLocation(URI.create(session.getUrl()));
response.getHeaders().setCacheControl(CacheControl.noCache().getHeaderValue());
log.info("Redirecting " + userId + " to: " + session.getUrl());
return response.setComplete();

}

Code Snippet 4.7: Top up account controller endpoint

40

.................................. 4.3. PDF Microservice

4.3 PDF Microservice

The PDF microservice is responsible for generating and managing PDF
documents. This section explores the project structure, key libraries used for
PDF ticket generation, and the integration with the storage MinIO.

4.3.1 Project and Code Structure

The project structure of this microservice is similar to the Credit microservice
(Subsection 4.2.1), therefore, the package contents are not described in detail.

Figure 4.4: PDF microservice project structure

4.3.2 PDF Ticket Generation

Two libraries were evaluated for generating tickets: Apache PDFBox2 and
iText3. After comparing their documentation, iText was selected due to its
more high-level and straightforward interface for PDF document generation.
This choice was deemed adequate for the task at hand, given the simple
structure of the PDF ticket.

The Code Snippet 4.8 demonstrates the process of instantiating a PDF
document in the iText library. In the beginning, an output stream in memory
is instantiated and passed to a PdfWriter object. This object is afterwards used

2PDFBox, available at https://pdfbox.apache.org
3iText API documentation, available at https://itextpdf.com/resources/

api-documentation

41

https://pdfbox.apache.org
https://itextpdf.com/resources/api-documentation
https://itextpdf.com/resources/api-documentation

4. Implementation....................................
as a dependency for the Document object itself. After writing the ticket content,
the document is closed. This flushes the actual data into the output stream,
which can then be converted to a byte array. At the end of the method, the
document is sent into Kafka as a part of a PdfTicketCreatedEvent object.

public PdfTicket createPdfTicket(ReservationDTO reservationDTO) throws IOException,
WriterException {

ByteArrayOutputStream fos = new ByteArrayOutputStream();
PdfWriter pdfWriter = new PdfWriter(fos);
PdfDocument pdf = new PdfDocument(pdfWriter);
Document document = new Document(pdf);

writeTicketContent(document, reservationDTO);

document.close();

PdfTicket pdfTicket = new PdfTicket(reservationDTO.getId() + ".pdf",
reservationDTO.getEmail(), fos.toByteArray());

pdfTicketCreatedProducer.publish(new PdfTicketCreatedEvent(pdfTicket));

return pdfTicket;
}

Code Snippet 4.8: PDF creation using the iText library

In the next Code Snippet 4.9, the actual content of the document is defined
in the writeTicketContent method. The snippet demonstrates loading a custom
font from the resources folder and then using it within the PDF document.
After that, the CodeNOW logo is added. Finally, a paragraph with the user’s
name and the number of passengers the ticket is for is added. At the end, a
line separating the paragraph is appended.

The ticket contains a QR code that encodes the reservation ID. In a
hypothetical real-world scenario, it could be used to validate the ticket by a
ticket inspector. To generate a QR code for the ticket, the library Google
ZXing 4 was used. It was also chosen for the simplicity of its API. The Code
Snippet 4.10 below shows the method used to generate the QR code. It
instantiates an output stream and the QR code writer, which creates the QR
code, writes it to the output stream and then returns the resulting byte array
from the output stream. The resulting PDF ticket can be seen in the Figure
4.5.

4Google ZXing, available at https://github.com/zxing/zxing

42

https://github.com/zxing/zxing

.................................. 4.3. PDF Microservice

private void writeTicketContent(Document document, ReservationDTO reservationDTO)
throws IOException, WriterException {

initFont(document);

addCodenowLogo(document);

Paragraph section1 = new Paragraph();
addBoldTextToParagraph(section1, reservationDTO.getFirstName() + " " +

reservationDTO.getLastName() + "\n");
addBoldTextToParagraph(section1, "Amount of passengers: ");
section1.add(String.valueOf(reservationDTO.getPassengers()));
section1.setFontSize(17f);
section1.setMarginBottom(0f);
section1.setPaddingBottom(0f);
document.add(section1);

addLineSeparator(document);
...
}

private void initFont(Document document) throws IOException {
byte[] robotoMono = getClass().getResourceAsStream(ROBOTO_MONO_PATH).readAllBytes

();
FontProgram fontProgram = FontProgramFactory.createFont(robotoMono);
document.setFont(PdfFontFactory.createFont(fontProgram, PdfEncodings.IDENTITY_H));

}

private void addCodenowLogo(Document document) throws IOException {
byte[] codenowLogo = getClass().getResourceAsStream(CODENOW_LOGO_PATH).

readAllBytes();
ImageData imageData = ImageDataFactory.create(codenowLogo);
Image image = new Image(imageData)

.setHeight(81)

.setWidth(165)

.setFixedPosition(1, 409, 745);
document.add(image);

}

Code Snippet 4.9: Writing the PDF content using the iText library example

public byte[] createQrCode(String text) throws WriterException, IOException {
ByteArrayOutputStream outputStream = new ByteArrayOutputStream();

QRCodeWriter barcodeWriter = new QRCodeWriter();
BitMatrix bitMatrix =

barcodeWriter.encode(text, BarcodeFormat.QR_CODE, 400, 400);

MatrixToImageWriter.writeToStream(bitMatrix, "PNG", outputStream);

return outputStream.toByteArray();
}

Code Snippet 4.10: QRCode library ZXing code example

43

4. Implementation....................................

Figure 4.5: PDF ticket

44

.................................. 4.3. PDF Microservice

4.3.3 Interaction with MinIO

To interact with the MinIO object storage, the official Java client library was
used. [30] The Code Snippet 4.11 shows the use of the library. The first
method is concerned with saving a PDF ticket in a bucket. The method first
checks if a bucket with a given name exists. If not, then a new bucket is
created. After that, a ticket is persisted in the bucket. The second method
retrieves ticket data from a bucket. The tickets in the bucket are uniquely
identified by the reservation ID, as every file is named according to this rule:
filename = reservationID + ".pdf".

45

4. Implementation....................................
public class MinioStorageServiceImpl implements StorageService {
...

@Override
public void savePdf(PdfTicket pdfTicket) throws FailedToSaveException {

try {
log.info("Saving pdf to Minio. Bucket name: " + bucketName);
boolean bucketExists = client.bucketExists(

BucketExistsArgs.
builder().
bucket(bucketName).
build()

);

if (!bucketExists){
client.makeBucket(

MakeBucketArgs
.builder()
.bucket(bucketName)
.build());

}

client.putObject(
PutObjectArgs.

builder().
bucket(bucketName).
object(pdfTicket.name).
stream(new ByteArrayInputStream(pdfTicket.data), pdfTicket.

data.length, -1).
contentType(PDF_CONTENT_TYPE).
build()

);
}
catch (Exception e) {

throw new FailedToSaveException("Failed to save pdf to Minio. Bucket name:
" + bucketName + "\n"

+ e.getMessage()
);

}
}

@Override
public byte[] getTicketData(UUID reservationId) throws PdfNotFoundException {

try {
GetObjectResponse response = client.getObject(

GetObjectArgs.builder()
.bucket(bucketName)
.object(reservationId.toString() + ".pdf")
.build()

);
return response.readAllBytes();

} catch (Exception e) {
throw new PdfNotFoundException("Failed to retrieve ticket data from Minio

for reservationId: " + reservationId.toString() + "\n" + e.getMessage
());

}
}

}

Code Snippet 4.11: MinIO interaction

46

......................... 4.4. Integration with the Rest of the System

4.4 Integration with the Rest of the System

To integrate the newly implemented microservices into the system and to
support the redesigned processes, several changes had to be made on the
part of other microservices. This section highlights the most important ones,
beginning with the processing of new events, integration with the notification
microservice, implementation of the API gateway and the data replication
pattern, and lastly, the changes in the frontend microservice.

4.4.1 Messaging

As visualized in Section 2.2, all of the microservices in the system have to
either consume or produce new messages. An example of such a producer
and consumer class can be found below.

@Service
public class PdfTicketCreatedProducer {

private static final Logger log = LoggerFactory.getLogger(
PdfTicketCreatedProducer.class);

private final String topic;

@Qualifier("mailkafkatemplate")
private final KafkaTemplate<String, PdfTicketCreatedEvent> template;

public PdfTicketCreatedProducer(@Qualifier("mailkafkatemplate") KafkaTemplate<
String, PdfTicketCreatedEvent> template,

@Value("${spring.kafka.pdf.topic.pdf-ticket-created}"
) String topic) {

this.template = template;
this.topic = topic;

}

public void publish(PdfTicketCreatedEvent event) {
template.send(topic, event);
log.info("Published event to kafka: " + event.toString());

}
}

Code Snippet 4.12: PdfTicketCreatedProducer class in the PDF microservice

47

4. Implementation....................................
@Service
public class PdfTicketCreatedConsumer {

private static final Logger log = LoggerFactory.getLogger(
PdfTicketCreatedConsumer.class);

private final MailServiceImpl mailService;

public PdfTicketCreatedConsumer(MailServiceImpl mailService) {
this.mailService = mailService;

}

// listen to new messages(mail requests) from kafka
@KafkaListener(topics = "${spring.kafka.topic.pdf-ticket-created}",

containerFactory = "pdfTicketCreatedKafkaListenerContainerFactory")
public void mailListener(@Payload PdfTicketCreatedEvent pdfTicketCreatedEvent,

Acknowledgment ack) throws InterruptedException {
log.info("Pdf ticket created consumed.");
log.info("Request: \n" + pdfTicketCreatedEvent);

mailService.sendEmail(pdfTicketCreatedEvent);

ack.acknowledge();
}

}

Code Snippet 4.13: PdfTicketCreatedConsumer class in the Notification
microservice

4.4.2 Notification Application

To fulfill the FR8 (Section 2.2.1), the notification application had to be
extended to allow adding attachments to emails being sent. This was done by
adding a Kafka consumer for the PdfTicketCreatedEvent. Adding a new model
Attachment class (Code Snippet 4.14) and then modifying the service’s business
logic to transform the PdfTicketCreatedEvent into the original MailRequestDTO object.
The final modification to the business logic involves parsing an attachment
and appending it to an email (Code Snippet 4.15).

48

......................... 4.4. Integration with the Rest of the System

public class Attachment {
public byte[] data;

public String mimeType;

public String filename;

public Attachment() {
}

public Attachment(byte[] data, String mimeType, String filename) {
this.data = data;
this.mimeType = mimeType;
this.filename = filename;

}

public InputStreamSource getInputStreamSource() {
return new ByteArrayResource(data);

}
}

Code Snippet 4.14: New Attachment model class

public class MailServiceImpl implements MailService {
@Override
public void sendEmail(MailRequestDTO mail) {
...

Attachment attachment = mail.getAttachment();
if (attachment != null) {

mimeMessageHelper.addAttachment(
attachment.filename,
attachment.getInputStreamSource(),
attachment.mimeType

);
}

mailSender.send(mimeMessageHelper.getMimeMessage());
}

@Override
public void sendEmail(PdfTicketCreatedEvent pdfTicketCreatedEvent) {
MailRequestDTO mailRequestDTO = new MailRequestDTO(

pdfTicketCreatedEvent.getUserEmailAddress(),
"",
PDF_TICKET_EMAIL_SUBJECT,
PDF_TICKET_EMAIL_BODY,
new Attachment(

pdfTicketCreatedEvent.getData(),
PdfTicketCreatedEvent.MIME_TYPE,
"eticket.pdf"

)
);
sendEmail(mailRequestDTO);
}

}

Code Snippet 4.15: Modified business logic

49

4. Implementation....................................
4.4.3 API Gateway

The work implemented in this thesis is attempting to follow one of the very
important philosophies contained in the API gateway pattern. In particular, it
is the philosophy that application clients should not know about the structure
of the system or the location of microservices themselves. Instead, all their
requests should be processed by the API gateway (in this case, the API
microservice) and routed to an appropriate place. Additionally, the API
microservice in this instance also bears the responsibility for authenticating
and authorizing users.

Code Snippet 4.16 shows a controller method in the API microservice
used to download a PDF ticket. Firstly, authorization is performed in the
@PreAuthorize() annotation. If it is successful, then the user gets redirected to
the PDF microservice that retrieves the ticket from a MinIO storage and
returns it in a response.

The implementation in this thesis serves just as a demonstration of the
basic application of the pattern. In a real-life scenario, it would be preferable
to use one of the many more sophisticated solutions, for example, the Spring
Cloud Gateway. Which offers advanced routing support and several other
features. [56]

@RestController
@RequestMapping("/reservation")
public class ReservationControllerImpl {
...

@Value("${custom.pdf-service.url}")
private String PDF_SERVICE_URL;

@GetMapping("/{id}/pdf-ticket")
@PreAuthorize("hasRole(’customer’)")
public Mono<ResponseEntity<Void>> getPdfTicket(@PathVariable UUID id) {

String redirectUrl = PDF_SERVICE_URL + "/reservation/" + id + "/pdf-ticket";
return Mono.just(ResponseEntity

.status(HttpStatus.PERMANENT_REDIRECT)

.header(HttpHeaders.LOCATION, redirectUrl)

.build()
);

}
...
}

Code Snippet 4.16: API service authorization and redirect

4.4.4 Data Replication

The communication between the services in this thesis was designed to happen
asynchronously, except for the front-end client. Although this brings a lot
of advantages, it can also create a range of complicated situations. Such as
when the front-end client requires a synchronous API to be able to show the
account balance to the user. The API microservice can expose an HTTP
endpoint, however, an HTTP endpoint would also have to be exposed at the
side of the Credit microservice, to which the client would then be redirected.
This approach is demonstrated in the previous section. Alternatively, the API

50

......................... 4.4. Integration with the Rest of the System

microservice could send a GET request to the endpoint by itself and then just
return the response to the client. Another solution to this problem, which
does not involve synchronous communication with the Credit microservice is
applying the data replication pattern.

Upon the API microservice deployment or every 12 hours, a snapshot of all
user account balances is requested through Kafka from the Credit microser-
vice. This data replica is persisted by the API microservice. The replica is
then kept up-to-date by consuming events about all balance changes that
occurred in the Credit microservice. This makes it possible to provide the
data synchronously to the front-end client without introducing synchronous
communication with the Credit microservice. However, this approach also
brings several disadvantages, primarily because certain code, including the
business logic for processing events, had to be duplicated in the API microser-
vice. Also, according to the Eventual Consistency definition, the data may be
in an inconsistent state at times (Section 3.6). Therefore, a reservation could
be created for a user who does not have enough funds in their account. To
prevent this situation from happening, a secondary validation is taking place
in the Credit microservice, which owns the data, during the processing of this
payment. If this validation fails, an event in a FAILED state is emitted, and
the alternative flow of the topping up account balance process is executed
(Figure 2.10). [36]

Figure 4.6: Data replication visualization

4.4.5 Front-End

The last step of integrating the new changes into the system involved extending
and modifying the React front-end part of the application. This is visualized
on the wireframes in the solution design Subsection 2.2.7.

The described example is concerned with the implementation of a React
component showing information about an existing reservation (Figure 2.14).

As an input, the component receives a ReservationComponentProps object, which
contains all necessary information about the reservation to be displayed. The
input is passed as a prop. Props are an important concept in the React

51

4. Implementation....................................
framework, which is used to pass data between components. Props could be
briefly described as component input arguments passed in a unidirectional
manner. An important aspect of working with props is that they are treated
as immutable by the component that receives them. [31]

type ReservationComponentProps = {
reservation: ReservationResponse;

};

export const ReservationComponent = ({reservation}: ReservationComponentProps) => {
...
}

Code Snippet 4.17: Reservation component declaration

The component defines two methods (Code Snippet 4.18). The method
cancelMutation is used to send a request to refund a reservation. After sending
the request, the user is either informed that the request is being processed
or that it failed. The second method, onDownload, handles the process of
downloading a PDF ticket. It first requests the data, if the request is
successful and the data is received, then a BLOB object is created, and a
browser download is triggered by clicking an unrendered helper link element.
If the download button links directly to the API service URL, then the user
would get redirected. Therefore, this approach is used to prevent the redirect.

export const ReservationComponent = ({reservation}: ReservationComponentProps) => {
const cancelMutation = useCancelReservation(reservation.id, {

onSuccess: () => {
enqueueSnackbar("Reservation is being cancelled", {variant: "success"});

}, onError: () => {
enqueueSnackbar("Error cancelling reservation", {variant: "error"});

}
});

const onDownload = (reservationId: string) => {
// @ts-ignore
const baseUrl = window.env.API_BACKEND_URL;
const url = ‘${baseUrl}/reservation/${reservationId}/pdf-ticket‘;
HttpService().cacheAxios.get(url, { responseType: ’blob’ })

.then(response => {
if (response.status === 200) { // File exists

const blob = new Blob([response.data], { type: ’application/pdf’ });
const url = window.URL.createObjectURL(blob);
const link = document.createElement(’a’);
link.href = url;
link.download = ’eticket.pdf’;
link.click();

} else {
enqueueSnackbar("Error downloading ticket", {variant: "error"});

}
})
.catch(() => {

enqueueSnackbar("Error downloading ticket", {variant: "error"});
})

};

Code Snippet 4.18: Reservation component methods

The last part of the component (Code Snippet 4.19) defines the structure
of the rendered component in the JSX markup language. JSX is a syntax
extension for JavaScript that makes it possible to write HTML-like code

52

.......................... 4.5. Distributed Tracing Instrumentation

within JavaScript files. [32] The provided snippet renders the refund and
download button within the grid of the reservation element. Upon clicking
the buttons the respective methods described in the previous paragraph are
called.

return (
...
<Grid item xs={4} sx={{ display: ’flex’, flexDirection: ’column’, justifyContent: ’

flex-end’ }}>
<Stack spacing={0.5} direction="row" alignItems="flex-end">

<Button
variant="contained"
onClick={() => cancelMutation.mutate(null)}
disabled={reservation.status != "ACTIVE"}
sx={{minWidth: 75}}

>
<Typography fontWeight="bold" color="white">

Refund
</Typography>

</Button>
<Button

variant="contained"
disabled={reservation.status != "ACTIVE"}
onClick={() => onDownload(reservation.id)}
sx={{minWidth: 75}}

>
<Typography fontWeight="bold" color="white">

Download ticket
</Typography>

</Button>
</Stack>

</Grid>
...
)

Code Snippet 4.19: Reservation component JSX

4.5 Distributed Tracing Instrumentation

To instrument the code for distributed tracing, the library Spring Cloud
Sleuth included in the CodeNOW templates was used. One of its very useful
features is its auto-configuration capability. This feature makes it possible to
integrate distributed tracing into Spring Boot applications without the need
for extensive manual setup. [52]

The only manual setup that needed to be done was the following:.The URL of an external storage for collecting the traces had to be
specified. More about the Jaeger project can be found in the Deployment
Chapter 6.6..The propagation of the trace ID had to be enabled for Kafka messages.
It is achieved by appending the trace ID to a B3 header for each message.
The B3 header is a widely spread propagation standard for messaging
systems. [53].An aspect class was added to create spans for each interaction with a
Spring repository (Code Snippet 4.21). The aspect intercepts calls to

53

4. Implementation....................................
methods within Spring Data repositories, starts a tracing span before
the method execution, and ends the span after the method execution.

zipkin:
enabled: true
baseUrl: http://tracing-jaeger-collector.tracing-system:9411

sleuth:
propagation:

type: B3
tag:

enabled: true
messaging:

kafka:
enabled: true

Code Snippet 4.20: application.yaml Sleuth

@Aspect
@Component
public class RepositoryTracingAspect {

private static final String TRACING_TYPE = "repository";
private TracingHelper tracingHelper;

@Autowired
public RepositoryTracingAspect(final TracingHelper tracingHelper) {

this.tracingHelper = tracingHelper;
}

@Around("within(org.springframework.data.repository.CrudRepository+)")
public Object traceRepositoryCalls(ProceedingJoinPoint joinPoint) throws

Throwable {
String className = joinPoint.getSignature().getDeclaringTypeName();
String targetMethod = joinPoint.getSignature().getName();

Span span = tracingHelper.createClientSpan(targetMethod, TRACING_TYPE,
className);

Object proceed = joinPoint.proceed();

span.end();

return proceed;
}

}

Code Snippet 4.21: RepositoryTracingAspect

4.6 Configuration

During the development of any application, it is crucial to manage config-
uration variables correctly for different environments. For example, data
for connecting to external services or the configuration of the application
server. The configuration management was based on the 12-Factor Appli-
cation recommendation that advises using environment variables (Section
3.3).

The example showcases a part of the application.yaml configuration file (Code
Snippet 4.22) that Spring Boot utilizes for configuring various aspects of the
application. Three values regarding a Stripe service connection are injected

54

.................................... 4.6. Configuration

into the file from environment variables. In the next step, these values are
injected into the actual Java code, as can be seen in the next snippet of the
StripePaymentController class (Code Snippet 4.23).

custom:
stripe:

webhook: ${STRIPE_CREDIT_WEBHOOK_SECRET}
secret-key: ${STRIPE_CREDIT_SECRET_KEY}
allowed-redirect-domain-name: ${STRIPE_CREDIT_ALLOWED_REDIRECT_DOMAIN_NAME}

Code Snippet 4.22: application.yaml ENV variables

@RestController
@RequestMapping("/stripe-payment")
public class StripePaymentController {

@Value("${custom.stripe.secret-key}")
private String stripeSecretKey;

@Value("${custom.stripe.allowed-redirect-domain-name}")
private String allowedRedirectDomainName;

...

Code Snippet 4.23: StripePaymentController with injected configuration values

55

56

Chapter 5
Tests

5.1 Unit Tests

Unit test is a type of test that tests a single unit of code in isolation. The
unit tested in the case of this project is a single public method. In total, 22
unit tests were developed in the PDF and Credit microservices to cover the
business logic in domain entities and service classes.

The JUnit5 testing framework in combination with Mockito library was
used as both of these tools are included and recommended in the CodeNOW
Spring Boot microservice template.

The example (Code Snippet 5.1) shows a unit test that controls whether
an event with correct data would be published to Kafka when the method
spendCredits in a CreditService is called. Because unit tests require isolation
from other components, the dependency on Kafka and other external services
is removed using the so-called mock objects, and only the core logic of the
method is tested. A mock object is an object that imitates the behavior of
an object with which the class under test has an association. They are used
to assist with unit testing. [17] The Mockito library makes it possible to
easily create such objects and also define their behavior. The example (Code
Snippet 5.1) follows an ARRANGE-ACT-ASSERT method of structuring
unit tests, which divides the test into three parts to allow for faster reading
and easier future maintenance. The respective parts perform these tasks:

ARRANGE A setup method is called before executing a test case to con-
struct the CreditService class using mocked dependencies. Then, the
behavior of these mocked dependencies is defined. Additionally, on the
3rd and 4th lines of the test, setup is performed to intercept the event
created within the method, ensuring later that its data are correct.

ACT The tested method spendCredits is called, and its output is saved to a
local variable.

ASSERT The intercepted event is retrieved, the correctness of its data is
asserted, and that the publish method was called with it.

57

5. Tests ..
@TestPropertySource(locations = "classpath:application.yaml")
public class CreditServiceImplTest {
...

@BeforeEach
public void setup() {

creditBalanceChangeEventRepositoryMock = Mockito.mock(
CreditBalanceChangeEventRepository.class);

refundedRepositoryMock = Mockito.mock(RefundedRepository.class);
accountBalanceSnapshotRepositoryMock = Mockito.mock(

AccountBalanceSnapshotRepository.class);
creditsSpentProducerMock = Mockito.mock(CreditsSpentProducer.class);
creditsRefundedProducerMock = Mockito.mock(CreditsRefundedProducer.class);
creditsBoughtMock = Mockito.mock(CreditBalanceChangedEvent.class);
creditService = new CreditServiceImpl(

creditBalanceChangeEventRepositoryMock,
refundedRepositoryMock,
accountBalanceSnapshotRepositoryMock,
creditsSpentProducerMock,
creditsRefundedProducerMock

);
}

@Test
public void

spendCredits_spendPositiveCreditsForCorrectUser_creditsSpentEventPersisted()
throws ExecutionException, InterruptedException {

Mockito.when(creditsBoughtMock.getBalanceChange()).thenReturn(100L);
Mockito.when(creditBalanceChangeEventRepositoryMock.findAllByUserId("user1")).

thenReturn(List.of(creditsBoughtMock));
ArgumentCaptor<CreditBalanceChangedEvent> creditChangedEventCaptor =

ArgumentCaptor.forClass(CreditBalanceChangedEvent.class);
doAnswer(invocation -> {

CreditBalanceChangedEvent event = invocation.getArgument(0);
return event;

}).when(creditBalanceChangeEventRepositoryMock).save(creditChangedEventCaptor.
capture());

UUID returnedEventId = creditService.spendCredits(100L, "user1");

CreditBalanceChangedEvent capturedCreditChangedEvent =
creditChangedEventCaptor.getValue();

Mockito.verify(creditBalanceChangeEventRepositoryMock, Mockito.times(1)).save(
capturedCreditChangedEvent);

Assert.assertEquals(-100L, (long) capturedCreditChangedEvent.getBalanceChange
());

Assert.assertEquals("user1", capturedCreditChangedEvent.getUserId());
Assert.assertEquals(returnedEventId, capturedCreditChangedEvent.getId());

}
}

Code Snippet 5.1: Unit test example

58

................................... 5.2. Integration Tests

5.2 Integration Tests

Integration tests are types of tests that focus on testing the interactions
between components in system. [19]

5.2.1 Karate Tests

In the early stages of the work on the thesis, a REST API was implemented
for the Credit microservice. The Karate testing framework was used to
implement integration tests for the REST interface. Later, it was decided
that all communication with the service would asynchronously take place
using a messaging queue. The tests were still included in this version since
the application is supposed to mainly serve as a reference and the tests still
verify the core business logic nonetheless.

Karate is an open-source framework for writing automated API and UI
tests. One of the big advantages of the framework is that it uses the Gherkin
language to write tests, which allows tests to be written in an almost natural
language and requires almost no prior programming knowledge (Code Snippet
5.2). These technologies were chosen based on the successful demonstration of
implementing UI tests in the Ticket Reservation Application in the previous
thesis by Robin Vávra [13]. However, as an alternative to Karate, the
framework JBehave, which offers similar functionality, could also be potentially
used. [20]

To make the tests run in any environment and not depend on external
services, it was necessary to fulfill the dependency on the database and
messaging queue. For this purpose, the H2DB and Spring Kafka Test libraries
were used, which allow the services to be temporarily turned on locally during
testing, replacing the connection to the actual instances of these services.

Feature: PaymentController

Scenario: 100 credits successfully spent for user id: 1.

Given url baseUrl + ’/payment’
And request {userId: 1, amount: 100}
When method POST
Then status 201

...

Code Snippet 5.2: Sample test written in Gherkin

59

5. Tests ..
@SpringBootTest(webEnvironment = SpringBootTest.WebEnvironment.RANDOM_PORT)
@EmbeddedKafka(partitions = 1, brokerProperties = { "listeners=PLAINTEXT://localhost

:9092", "port=9092" })
@TestPropertySource(locations = "classpath:application.yaml")
public class PaymentControllerTest {

@LocalServerPort
private String localServerPort;

@Karate.Test
Karate feature() {

return Karate
.run("PaymentController")
.relativeTo(getClass())
.systemProperty("karate.port", localServerPort);

}
}

Code Snippet 5.3: Karate Java testing class

5.2.2 Contract Tests

For lack of time, no contract tests were implemented as a part of this work.
However, it is still described how such a test could be implemented, as contract
testing poses an important concept for testing microservice applications. It
is also theoretically introduced in the Subsection 3.2.8.

An example in the case of this application could be a PDF microservice
being the producing side of the PdftTicketCreatedEvent. And the Notification
microservice being the consuming side of the event. A Consumer-Driven
Contract could be specified by the Notification microservice, which would
define what data it needs to be able to deliver an email message. In this case,
it would be the PDF ticket data, an email address, and the name of the file.

A tool that could be used to implement a contract test for the PDF and
Notification microservices is the Pact framework. It is an open-source tool
that makes it possible to develop Consumer-Driven Contract tests for HTTP
APIs as well as for asynchronous APIs using messaging queues. [22]

Pact utilizes a broker, which contains all of the Consumer Contracts defined
by the consumer sides. At first, these contracts are published to the broker and
used for the execution of tests by the consumer side, where a message created
by a mocked producer is sent to the consuming service to validate correct
processing. In the next stage, the contracts are fetched by the targeted
producer sides and it is validated that the messages they send fulfill the
expected requirements imposed by the contracts. The broker also contains
information on whether the contract was successfully used in tests on both
the consuming and producing sides, since the test results are sent back to
the broker after the tests are run. [23][Chapter 2.4.2]

5.3 End-to-End Tests

End-to-End tests (E2E tests) are types of tests, in which business processes
are tested from start to finish under production-like circumstances. [24]

60

...................................5.3. End-to-End Tests

To test the application, one E2E test was implemented using the Selenium
framework. Selenium is a popular testing framework used for automating
browsers. The framework makes it possible to write automatic E2E tests by
specifying the interactions a browser should execute on a given web page.
[26] Another very popular alternative is the Cypress framework, which offers
similar functionality in regards to automating web browsers. [27]

The test focuses on testing the process of creating and then refunding
a reservation. It executes the following steps. The Code Snippet 5.4 is
shortened and does not contain the setup and login parts...1. Open the index page, navigate to the login page, fill in the login infor-

mation, and click the login button...2. Navigate to the buy credits page, click the button to pay 200 euros, and
fill in the testing stripe payment information...3. Wait up to 30 seconds until the payment is processed and the account
balance shows the according number...4. Search for a seat from Prague to Berlin and create a reservation...5. Wait up to 30 seconds until the reservation is processed and the account
balance shows the according number...6. Navigate to the reservations page and click the button to refund the last
reservation...7. Wait up to 30 seconds until the refund is processed and the account
balance shows the according number...8. Wait for 15 seconds, then fetch the last two unread emails from a testing
mailbox belonging to the test user. Verify their subject and the fact that
the reservation creation email also has a file attached (the ticket). Flag
the emails as read.

Also, certain preconditions have to be met before executing the test..The whole application (all microservices) is running, including all of its
external dependencies..A testing user is present in the system..The price of a trip from Prague to Berlin is 200 euros or less, and there
is at least one empty seat.

61

5. Tests ..
@Test
public void createReservationE2E() throws InterruptedException, MessagingException,

IOException {
IndexPage indexPage = new IndexPage(driver);
Integer initialAccountBalance = indexPage.getAccountBalance();
indexPage.goToBuyCredits();

BuyCreditsPage buyCreditsPage = new BuyCreditsPage(driver);
buyCreditsPage.clickBuyTwoHundredCredits();

StripePage stripePage = new StripePage(driver);
stripePage.payTwoHundredEuro();
Integer expectedAccountBalanceAfterTopUp = initialAccountBalance + 200;

indexPage = new IndexPage(driver);
WebDriverWait wait = new WebDriverWait(driver, Duration.ofSeconds(30));
wait.until(ExpectedConditions.textToBePresentInElement(

indexPage.getAccountBalanceSpan(), "Account Balance : " +
expectedAccountBalanceAfterTopUp + " euro")

);
indexPage.search("Prague", "Berlin");

ReservationsSearchedPage reservationsSearchedPage = new ReservationsSearchedPage(
driver);

reservationsSearchedPage.clickFirstReservationButton();

ReservationCreatePage reservationCreatePage = new ReservationCreatePage(driver);
reservationCreatePage.clickCreateReservationButton();
Integer reservationPrice = reservationCreatePage.getReservationPrice();
Integer expectedAmountLeft = expectedAccountBalanceAfterTopUp - reservationPrice;
wait.until(ExpectedConditions.textToBePresentInElement(

indexPage.getAccountBalanceSpan(), "Account Balance : " +
expectedAmountLeft + " euro")

);

indexPage = new IndexPage(driver);
indexPage.goToReservations();

ReservationsPage reservationsPage = new ReservationsPage(driver);
reservationsPage.clickRefundLastReservation();
wait.until(ExpectedConditions.textToBePresentInElement(

indexPage.getAccountBalanceSpan(), "Account Balance : " +
expectedAccountBalanceAfterTopUp + " euro")

);

Thread.sleep(15000);
List<MailMessage> mails = MailReader.getLastTwoUnreadEmails();
Assertions.assertEquals("Reservation canceled", mails.get(0).subject);
Assertions.assertEquals("Ticket for your reservation.", mails.get(1).subject);
Assertions.assertTrue(mails.get(1).hasAttachments);

}

Code Snippet 5.4: Create reservation E2E test

62

...................................5.3. End-to-End Tests

The Page Object Model (POM) pattern is applied in the test. The pattern
is used to model single UI pages as separate classes. These classes then expose
an interface, which allows the client to interact with elements on the page.
The main benefits of the pattern are avoiding code duplication and improving
code reusability. [25][Chapter 7] The code example shows the POM for a
Keycloak login page. The login input elements are found using the @FindById

annotation, and then they are initialized in the constructor. Furthermore, it
contains a login method that fills in the fields and clicks the login button.

public class LoginPage {
private WebDriver driver;
@FindBy(id = "kc-login")
private WebElement loginButton;

@FindBy(id = "username")
private WebElement usernameInput;

@FindBy(id = "password")
private WebElement passwordInput;

private String username;

private String password;

public LoginPage(WebDriver driver, String username, String password) {
this.driver = driver;
this.username = username;
this.password = password;

PageFactory.initElements(driver, this);
}

public void login() {
usernameInput.sendKeys(username);
passwordInput.sendKeys(password);

loginButton.click();
}

}

Code Snippet 5.5: Login page POM

To retrieve the emails from the mailbox, a JavaMail API reference imple-
mentation was used. The library provides a simple way for Java applications
to communicate with mail servers. [28] The provided example shows how,
by using the library, a connection is created, and then the last two unread
emails are fetched and marked, as seen in Code Snippet 5.6.

63

5. Tests ..
public static List<MailMessage> getLastTwoUnreadEmails() throws MessagingException,

IOException {
Properties props = new Properties();
props.setProperty("mail.store.protocol", PROTOCOL);
props.setProperty("mail.imaps.host", HOST);
props.setProperty("mail.imaps.port", PORT);
props.setProperty("mail.imaps.starttls.enable", STARTTLS);
props.setProperty("mail.imaps.auth", AUTH);

Session session = Session.getDefaultInstance(props, null);
Store store = session.getStore(PROTOCOL);
store.connect(EMAIL_ADDRESS, PASSWORD);

Folder inbox = store.getFolder("INBOX");
inbox.open(Folder.READ_WRITE);

FlagTerm ft = new FlagTerm(new javax.mail.Flags(javax.mail.Flags.Flag.SEEN),
false);

Message[] messages = inbox.search(ft);

// Fetch only the last two unread messages
int count = messages.length >= 2 ? 2 : messages.length;
List<MailMessage> mails = new ArrayList<>();
for (int i = messages.length - 1; i >= messages.length - count; i--) {

mails.add(new MailMessage(messages[i].getSubject(), hasAttachments(messages[i
])));

messages[i].setFlag(Flags.Flag.SEEN, true);
}

inbox.close(false);
store.close();

return mails;
}

private static boolean hasAttachments(Message message) throws MessagingException,
IOException {

return message.getContent() instanceof Multipart;
}

Code Snippet 5.6: JavaMail API

5.4 Usability Tests

Usability tests aim to test the functionality of an application by observing
real users interacting with it as they are trying to complete assigned tasks.
[29]

The usability testing was performed with three independent testers. They
were asked to complete the following task.

Berlin to Prague trip You need to travel to Prague from Berlin on 25.4.2024
with your friend. Book a ticket for two passengers and download it from
your email mailbox.

After completing this scenario, they were presented with an additional
task.

Trip refund Your friend cannot travel with you anymore. Refund the ticket

64

................................. 5.5. Testing Environment

and book the same trip, but only for you. This time, download the ticket
directly from the website.

After collecting their feedback, several problems were identified.

Tester 1 Could not top up the account, because they overlooked the testing
Stripe card information on the buy credits page.

Tester 2 Did not encounter any problems.

Tester 3 Noticed the emailed PDF ticket contained wrong information. The
arrival and departure stations were the same.

In response to the feedback, the testing Stripe card information was made
more visible and the PDF ticket information was corrected. After retests, no
further defects and problems were discovered.

5.5 Testing Environment

The unit and Karate tests are implemented in such a way that they do not
depend on the environment in which they are run. Thus, they can be run
both on CodeNOW and locally during development. On CodeNOW, running
them and getting a successful result is a prerequisite for creating a .jar file
that can then be deployed. They are triggered using the Maven tool, which
integrates them into the build process.

The E2E tests were not integrated into CodeNOW’s deployment process.
In the current state, they were only run locally. To do so, it was necessary to
manually start all of the microservices and their external dependencies using
a docker-compose file.

The usability tests were performed on the deployed version of the application
on CodeNOW.

65

66

Chapter 6
Deployment

This chapter introduces the necessary terminology used on the CodeNOW
platform. The basic process of containerizing an application using Docker is
explained. Then the intricacies of deploying a MinIO service are described.
The rest of the chapter is focused on selected features that implement patterns
mentioned in the related theory part of this work.

6.1 Terminology

To be able to use CodeNOW, certain terminology used by the platform needs
to be understood. [46]

Component A single microservice in an application. Can be created using a
predefined template that contains preconfigured libraries and frameworks
to be able to quickly start the development. Such as the template Java
17 and Spring Boot 3.1.0 with Maven 3.9.1.

Application A collection of components.

Package A collection of versioned artifacts built from components that can
be deployed to an environment together with a deployment configuration.

Deployment configuration A set of configuration files containing environ-
ment variables. A deployment configuration is always associated with
an environment and a package.

Environment A Kubernetes namespace. On a conceptual level, it is a place
for an application to be deployed. Such as a production environment or
a development environment.

Managed service An instance of a pre-configured service, such as Apache
Kafka that can be requested and created automatically. The components
can be then easily connected to such a service.

67

6. Deployment
6.2 Containerization

Before deploying a microservice to a Kubernetes cluster, it must first be
containerized. This can be achieved by encapsulating it within a Docker
container. Below are the steps to containerize either the Credit or PDF
microservice using Docker.

Building an artifact First, it is necessary to build a .jar file for the Spring
Boot application using Maven. This creates a packaged version of the
application that can be run.

Defining a Dockerfile A Dockerfile is a text document that contains all
the commands and Docker-specific instructions, which are necessary to
call to create a Docker image. It encompasses elements such as the
necessary dependencies to include in the container, the ports to expose
and their mapping in the container, shell commands to run, the definition
of environment variables, and much more. [58]

A Docker image After the Dockerfile is defined, it can be built using the
docker build command. Additionally, it can be published to a remote
repository, from which it can later be retrieved. The image can be used
to create and run a container by using the docker run command.

The whole process is automatically handled by the CodeNOW platform
when a component release is being made. This, however, only applies to
components created using the standard predefined templates. As seen in the
next section about MinIO a custom Dockerfile definition had to be provided.

6.3 MinIO

Formerly, MinIO used to be provided at CodeNOW as a managed service.
Therefore, deploying and using a MinIO instance in an application required
minimal effort. Unfortunately, at the start of writing of this thesis, MinIO
was no longer provided as a preconfigured managed service, therefore, a
custom deployment had to be made using a generic Docker component option.
The deployment of the MinIO database on CodeNOW posed a significant
challenge as it required an understanding of certain parts of the Kubernetes
container orchestrating technology.

As a first step, a Dockerfile based on the MinIO image had to be defined.

68

....................................... 6.3. MinIO

Inherit all the files, configurations, and environment settings present in the
MinIO base image.

FROM minio/minio

Copy the codenow config file
COPY codenow/config/config.yaml /

Expose ports
EXPOSE 9000 9001

Set the data directory as the volume
VOLUME /data

Command to start MinIO server and the admin console
CMD ["server", "--console-address", ":9001", "/data"]

Code Snippet 6.1: MinIO Dockerfile

By creating the generic Docker component, a repository with default
template files gets generated. The files contain default values to deploy
the containerized application specified in the Dockerfile to the Kubernetes
cluster. However, several adjustments had to be made to achieve a successful
deployment. The live and ready probe paths had to be specified accordingly.
Also, it had to be specified that the MinIO database will be exposed to the
other pods internally at port 9000 using the ClusterIP Service. This port is
also used for the Istio Virtual Service resource, which exposes the service to
the outside of the Kubernetes cluster.

The configuration values are specified in a Values.yaml file and then get
injected into the actual definition files with the use of the Helm templating
engine. Only the values shown in the Values.yaml snippet had to be changed;
the rest was left as pre-generated.

69

6. Deployment

...
liveProbePath: /minio/health/live
readyProbePath: /minio/health/ready

service:
type: ClusterIP
port: 9000
externalEndpointEnabled: true

...

Code Snippet 6.2: Values.yaml snippet

apiVersion: v1
kind: Service
metadata:

name: {{ .Values.codenow.componentRuntimeName }}
namespace: {{ .Release.Namespace }}
labels:

app.kubernetes.io/name: {{ .Values.codenow.componentRuntimeName }}
spec:

type: {{ .Values.service.type }}
ports:

- port: {{ .Values.service.port }}
protocol: TCP
name: minio

selector:
app.kubernetes.io/name: {{ .Values.codenow.componentRuntimeName }}

{{- if .Values.service.externalEndpointEnabled }}
apiVersion: networking.istio.io/v1beta1
kind: VirtualService
metadata:

name: {{ .Values.codenow.componentRuntimeName }}-service
namespace: {{ .Release.Namespace }}

spec:
hosts:
- {{ .Values.codenow.componentRuntimeName }}-{{ .Release.Namespace }}.{{ .Values.

codenow.domainName }}
gateways:
- istio-system/public-gateway
http:
- match:

- uri:
prefix: /

route:
- destination:

host: {{ .Values.codenow.componentRuntimeName }}.{{ .Release.Namespace }}.svc.
cluster.local

port:
number: {{ .Values.service.port }}

{{- end }}

Code Snippet 6.3: Service.yaml

70

..............................6.4. Credit and PDF Microservice

Additionally, for the data to be persistent in case of a redeployment, a new
cluster resource of the type PersistentVolumeClaim had to be defined. It represents
a request for storage to be provisioned dynamically by the Kubernetes cluster.
[45]

apiVersion: v1
kind: PersistentVolumeClaim
metadata:

name: pvc
spec:

accessModes:
- ReadWriteOnce

resources:
requests:

storage: 1Gi
storageClassName: standard

Code Snippet 6.4: PersistentVolumeClaim definition

6.4 Credit and PDF Microservice

Together with the MinIO service, two more components in the existing
application had to be created. The Credit and PDF microservice components
were created using a pre-configured Java and Spring Boot template. Their
configuration and deployment followed a standard step-by-step procedure
described in the CodeNOW manual. Therefore it won’t be further detailed
here. 1

6.5 Log Aggregation

To be able to easily obtain insights into the operations of a deployed appli-
cation, the tool Loki is integrated into the CodeNOW platform. Loki is a
log aggregation system that makes it possible to store and query logs from
applications. [49]

Loki makes it easy to query and see logs based on several factors, such as
the source microservice, time, severity level, and custom labels, facilitating
efficient troubleshooting and analysis.

Since the 12-Factor application recommendation about logging (Section 3.3)
was followed, it is possible to store the logs into Loki when the application is
deployed on CodeNOW. While also ensuring that the logs can still be output
to a terminal during local development.

1Step-by-step CodeNOW deployment, available at https://docs.codenow.com/
admin-manuals/deploy-application

71

https://docs.codenow.com/admin-manuals/deploy-application
https://docs.codenow.com/admin-manuals/deploy-application

6. Deployment

Figure 6.1: Query for retrieving logs from the Credit microservice using Loki

6.6 Distributed Tracing

Another tool integrated by CodeNOW to facilitate better observability is
Jaeger. It is an open-source distributed tracing system that gathers data
about the flow of requests through a distributed system, providing insights
into performance bottlenecks, latency issues, and dependencies between
microservices. [50]

Since the application has been instrumented accordingly (Section 4.5), the
request flow can be inspected by providing a trace ID, which can be found in
the logs or by viewing stored messages in Kafka.

Figure 6.2: Jaeger visualization of a refund reservation request

72

.............................. 6.7. Configuration Management

6.7 Configuration Management

As microservice applications grow, it may be difficult to keep track of the
configuration of each service in different versions. For this reason, CodeNOW
associates a deployment configuration with each package for each environment.
This feature makes it possible to easily rollback to an older version of a package
because the deployment configuration for different environments is versioned
and saved with it. The deployment configuration is created each time a new
package version is deployed to an environment it has previously not been
deployed to. In the event that an older version of the package is deployed,
the new deployment configuration is automatically based on it. CodeNOW
allows users to modify the configuration files directly from the browser UI.
The platform also allows users to inspect what exact configuration files were
used with which service after it was deployed.

Figure 6.3: Deployment configuration example

6.8 Cluster Monitoring

To oversee the status of Kubernetes resources associated with a deployed
application, the tool ArgoCD is available on CodeNOW. ArgoCD is a tool
used to manage and automate the deployment of applications on Kubernetes
clusters. It follows the GitOps philosophy that the desired application state
and infrastructure should be declaratively defined in a Git repository. ArgoCD
actively monitors the deployed application’s state in the Kubernetes cluster
and compares it to the definition in the git repository. This information
is presented to the user in a user-friendly dashboard interface, allowing for
easy tracking of any discrepancies and facilitating efficient management of
application deployments. [54]

73

6. Deployment

Figure 6.4: ArgoCD dashboard

74

Chapter 7
Conclusion

The main goal of this work was to iteratively extend an already existing
demo cloud-native application by adding an additional functionality, thus
demonstrating selected microservice patterns. The most important tasks
that led to the addition of the required functionality are summarized in the
following points below. A more detailed description can be found in the
Subsection New Requirements 2.2.1..Addition of a Credit microservice with the use of a Domain Driven Design

philosophy for payment processing.. Integration of the Credit microservice with the Stripe payment gateway
to process topping up the user’s account balance..Addition of a PDF microservice to generate PDF tickets with reservation
information.. Integration of the PDF microservice with MinIO object storage to save
the generated tickets.. Extension of the Notification microservice to allow sending emails with
a PDF attachment.. Refactoring of all the other original microservices to support the newly
added functionality E2E.. Deployment of the whole application to the CodeNOW platform.

Also, additional work was undertaken beyond the initial thesis assignment
and requirements.. Integration of a Keycloak component was introduced to the system.

This made it possible to add authentication and authorization to the
application. The integration was a follow-up of a previous thesis written
by Alena Suvorova. [18].At the start of writing this thesis, MinIO was no longer available at
CodeNOW as a standard managed component. Therefore, a custom
Kubernetes Helm configuration files had to be created, to achieve its
deployment and consequent use in this thesis.

75

7. Conclusion......................................
Lastly, the following architectural patterns and methodologies typical for

microservice applications were applied and demonstrated.. Domain Driven Design. Event-Driven Architecture and Messaging. Event Sourcing and Snapshot. Data replication. Distributed tracing. Log aggregation.API Gateway. Database per service

The result of this work is a demo application deployed on the CodeNOW
platform that is available to future developers as a reference point. It is also
this thesis with an explanation of the necessary theoretical foundations and a
description of the E2E process of delivering the required solution.

7.1 Future Work

In its current state, the application does not support the creation of reser-
vations for users, who are not logged in. In real-life scenarios, this feature
is essential for enhancing user accessibility and convenience. Therefore, I
believe that implementing this functionality should be the next step in the
development of the application. Another possible improvement could also
include using a more sophisticated approach to the implementation of the API
Gateway pattern as discussed in the API Gateway implementation Section
4.4.3.

76

Bibliography

[1] Richardson, Chris. Microservices Patterns: With examples in Java. Simon
and Schuster, 2018.

[2] Stripe Checkout Session API. https://stripe.com/docs/api/checkout/sessions.
Accessed 10 January 2024

[3] 12 Factor App. https://12factor.net. Accessed 10 January 2024

[4] CodeNOW configuration. https://docs.codenow.com/admin-
manuals/deployment-configurations. Accessed 20 January 2024

[5] What is CodeNOW. https://docs.codenow.com/what-is-codenow. Ac-
cessed 28 April 2024

[6] Docker. https://aws.amazon.com/docker/. Accessed 22 January 2024

[7] Spring Boot. https://www.ibm.com/topics/java-spring-boot. Accessed 22
January 2024

[8] Flyway. https://flywaydb.org. Accessed 22 January 2024

[9] Stripe. https://stripe.com/gb/payments/checkout. Accessed 10 January
2024

[10] Kafka. https://kafka.apache.org. Accessed 10 February 2024

[11] PostgreSQL. https://www.postgresql.org/docs/current/intro-
whatis.html. Accessed 25 January 2024

[12] REST. https://www.codecademy.com/article/what-is-rest. Accessed 25
January 2024

[13] Vávra, Robin. Cloud Native Application Development. 2022,
dspace.cvut.cz/handle/10467/101026. Accessed 26 Jan. 2024.

[14] Decompose by subdomain. https://microservices.io/patterns/decomposition/decompose-
by-subdomain.html. Accessed 25 March 2024

[15] Bittner, Kurt, and Ian Spence. Managing Iterative Software Development
Projects. Addison-Wesley Professional, 2006.

77

7. Conclusion......................................
[16] Wolohan, J. T. Object Storage across the Cloud. Manning, 2020.

[17] Mock Object Models for Test Driven Development.
https://ieeexplore.ieee.org/document/1691384. Accessed 10 2024

[18] Suvorová, Alena. Cloud-Native Application Development. 2024,
dspace.cvut.cz/handle/10467/113414. Accessed 28 Feb. 2024.

[19] Integration testing. https://glossary.istqb.org/en_US/term/integration-
testing-3-2. Accessed 10 April 2024

[20] What is JBehave. https://jbehave.org. Accessed 10 April 2024

[21] Quast, Felix. Testing Microservice Integration with
Consumer-Driven Contract Tests. 2022, oss.cs.fau.de/wp-
content/uploads/2022/01/quast_2022.pdf. Accessed 1 Apr. 2024.

[22] What is Pact. https://docs.pact.io. Accessed 15 April 2024

[23] Maanonen, Tuomas. Consumer-Driven Contract Testing for Microser-
vices. 2024, aaltodoc.aalto.fi/server/api/core/bitstreams/e035e9e7-b7a8-
43c2-8c37-8020ae36dfee/content. Accessed 1 Apr. 2024.

[24] What is E2E testing. https://istqb-glossary.page/e2e-testing/. Accessed
15 April 2024

[25] Garcia, Boni. Hands-on Selenium WebDriver with Java: A Deep Dive
into the Development of End-To-End Tests 1st Edition. O’Reilly, 2022.

[26] Selenium. https://www.selenium.dev. Accessed 15 April 2024

[27] Cypress. https://www.cypress.io. Accessed 15 April 2024

[28] JavaMail. https://javaee.github.io/javamail/. Accessed 15 April 2024

[29] Usability testing. https://www.hotjar.com/usability-testing/. Accessed
20 April 2024

[30] Minio Java Client Library. https://min.io/docs/minio/linux/developers/java/API.html.
Accessed 22 April 2024

[31] React props. https://react.dev/learn/passing-props-to-a-component. Ac-
cessed 25 March 2024

[32] JSX. https://legacy.reactjs.org/docs/introducing-jsx.html. Accessed 25
March 2024

[33] Containerised applications. https://cloud.google.com/discover/what-are-
containerized-applications. Accessed 28 March 2024

[34] Microservice architecture and containerisation.
https://cloud.google.com/learn/what-is-microservices-architecture,
Accessed 28 March 2024

78

.....................................7.1. Future Work

[35] Moises Macero, Learn Microservices with Spring Boot: A Practical
Approach to RESTful Services using RabbitMQ, Eureka, Ribbon, Zuul
and Cucumber, 2017

[36] Liu, Ling, et al. Encyclopedia of Database Systems. Springer New York,
2019, doi.org/10.1007/978-0-387-39940-9_1366. Accessed 28 Mar. 2024.

[37] BASE and ACID transactions. https://aws.amazon.com/compare/the-
difference-between-acid-and-base-database/. Accessed 30 March 2024

[38] What is cloud native architecture. https://www.appdynamics.com/topics/what-
is-cloud-native-architecture. Accessed 30 March 2024

[39] Bounded Context. https://martinfowler.com/bliki/BoundedContext.html.
Accessed 5 April 2024

[40] DDD definitions. https://martinfowler.com/bliki/EvansClassification.html#: :text=Entity

[41] Domain Event. https://martinfowler.com/eaaDev/DomainEvent.html.
Accessed 5 April 2024

[42] Bounded context. https://www.infoq.com/news/2019/06/bounded-
context-eric-evans/. Accessed 5 April 2024

[43] Ubiquitous language. https://martinfowler.com/bliki/UbiquitousLanguage.html.
Accessed 5 April 2024

[44] Domain Model. https://martinfowler.com/eaaCatalog/domainModel.html.
Accessed 6 April 2024

[45] Persistent Volume Claim. https://kubernetes.io/docs/concepts/storage/persistent-
volumes/. Accessed 25 April 2024

[46] Basic concepts CodeNOW. https://docs.codenow.com/glossary#deployment-
environment. Accessed 25 April 2024

[47] Distributed tracing. https://microservices.io/patterns/observability/distributed-
tracing.html. Accessed 27 April 2024

[48] Database Per Service. https://microservices.io/patterns/data/database-
per-service.html. Accessed 27 April 2024

[49] Loki. https://grafana.com/oss/loki/. Accessed 27 April 2024

[50] Jaeger. https://www.jaegertracing.io. Accessed 27 April 2024

[51] Log aggregation. https://microservices.io/patterns/observability/application-
logging.html. Accessed 28 April 2024

[52] Spring cloud sleuth. https://spring.io/projects/spring-cloud-sleuth. Ac-
cessed 28 April 2024

79

7. Conclusion......................................
[53] B3. https://github.com/openzipkin/b3-propagation#. Accessed 28 April

2024

[54] ArgoCD, https://argo-cd.readthedocs.io, Accessed 28 April 2024

[55] Step-by-step CodeNOW deployment. https://docs.codenow.com/admin-
manuals/deploy-application. Accessed 28 April 2024

[56] Spring Cloud Gateway. https://spring.io/projects/spring-cloud-gateway.
Accessed 3 May 2024

[57] MinIO, https://min.io, Accessed 7 May 2024

[58] Dockerfile, https://docs.docker.com/reference/dockerfile/, Acessed 7
May 2024

80

ZADÁNÍ BAKALÁŘSKÉ PRÁCE​

I. OSOBNÍ A STUDIJNÍ ÚDAJE

499007 Osobní číslo:​Přemek Jméno:​Bělka Příjmení:​

Fakulta elektrotechnická Fakulta/ústav:​

Zadávající katedra/ústav: Katedra počítačů

Softwarové inženýrství a technologie Studijní program:​

II. ÚDAJE K BAKALÁŘSKÉ PRÁCI

Název bakalářské práce:​

Rozšíření mikroservisní a cloud-native aplikace

Název bakalářské práce anglicky:​

Cloud-Native and Microservice Application Development

Pokyny pro vypracování:​
Rozšiřte o nové funkce stávající ukázkovou cloud-native aplikaci “Rezervace lístků“[1] a implementaci několika​
vzorů/technologií typických pro architekturu mikroslužeb a cloud-native architektur[2].​
1. Integrujte platební bránu Stripe do aplikace. Využijte vzory/technologie: Event-Driven Architecture (Kafka), Event sourcing​
+ snapshot, Domain Driven Design, Containerization (Docker),​
1.1 Umožněte zpracovávání plateb při nakupování jízdenek.​
1.2 Udržujte stav kreditového konta uživatele a poskytujte asynchronní API pro ostatní mikroslužby. 2. Přidejte podporu​
pro generování, odesílání a ukládání jízdenek v PDF formátu.​
2.1 Integrujte se na stávající notifikační komponentou.​
2.2 PDF dokument uložte do MinIO uložiště.​
Využijte vzory/technologie: MinIO, Event-Driven Architecture (Kafka), Containerization (Docker). Při vývoji používejte​
relevantní mikroservisní vzory a postupujte iterativně. Vše průběžné testujte, nasazujte na Value Stream Delivery Platformu​
CodeNOW[3] a dokumentujte. Získejte zpětnou minimálně od tří nezávislých uživatelů.​

Seznam doporučené literatury:​
[1] Vávra Robin. Vývoj cloud native aplikací v praxi. B.S. thesis, České vysoké učení technické v Praze. Výpočetní a​
informační centrum., 2022. Dostupné z: http://hdl.handle.net/10467/101026.​
[2] Chris Richardson. Microservices patterns: with examples in Java. Manning Publications, 2018. Dostupné z:​
https://learning.oreilly.com/library/view/microservices-patterns/9781617294549/.​
[3] CodeNOW. CodeNOW Documentation, 2022. Dostupné z: https://docs.codenow.com/.​

Jméno a pracoviště vedoucí(ho) bakalářské práce:​

Ing. Martin Komárek kabinet výuky informatiky FEL

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) bakalářské práce:​

Termín odevzdání bakalářské práce: 24.05.2024 Datum zadání bakalářské práce: 25.01.2024

Platnost zadání bakalářské práce: 21.09.2025

___________________________​___________________________​___________________________​
prof. Mgr. Petr Páta, Ph.D.​

podpis děkana(ky)​
podpis vedoucí(ho) ústavu/katedry​Ing. Martin Komárek​

podpis vedoucí(ho) práce​

© ČVUT v Praze, Design: ČVUT v Praze, VIC Strana 1 z 2 CVUT-CZ-ZBP-2015.1

III. PŘEVZETÍ ZADÁNÍ
Student bere na vědomí, že je povinen vypracovat bakalářskou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v bakalářské práci.

.
Datum převzetí zadání Podpis studenta

© ČVUT v Praze, Design: ČVUT v Praze, VIC Strana 2 z 2 CVUT-CZ-ZBP-2015.1

	Introduction
	Aim of the Work and Text Structure
	CodeNOW
	Iterative Development

	Analysis and Solution Design
	AS-IS State Analysis
	Components
	Persistent Data Model
	Create Reservation Process
	Cancel Reservation Process

	TO-BE State Design Proposal
	New Requirements
	Components
	Persistent Data Model
	Top Up Account Balance Process
	Create Reservation Process
	Cancel Reservation Process
	User Interface

	Related Theory
	Domain Driven Design
	Microservice and Cloud-Native Architecture
	Advantages and disadvantages
	Decomposition Using Domain Driven Design
	Database Per Service
	Communication
	API Gateway
	Distributed Tracing
	Log Aggregation
	Contract Tests

	12-Factor Application
	Containerized Applications
	Event-Driven Architecture
	Eventual Consistency
	Object-Based Storage

	Implementation
	Used Technologies
	Credit Microservice
	Project and Code Structure
	Domain Driven Design
	Event Sourcing
	Snapshot pattern
	Integration with the Stripe Payment Gateway

	PDF Microservice
	Project and Code Structure
	PDF Ticket Generation
	Interaction with MinIO

	Integration with the Rest of the System
	Messaging
	Notification Application
	API Gateway
	Data Replication
	Front-End

	Distributed Tracing Instrumentation
	Configuration

	Tests
	Unit Tests
	Integration Tests
	Karate Tests
	Contract Tests

	End-to-End Tests
	Usability Tests
	Testing Environment

	Deployment
	Terminology
	Containerization
	MinIO
	Credit and PDF Microservice
	Log Aggregation
	Distributed Tracing
	Configuration Management
	Cluster Monitoring

	Conclusion
	Future Work

	Bibliography
	Project Specification

