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A B S T R A C T

This thesis explores various concepts extending Nash equilibrium in
two-player zero-sum games with compact strategy spaces and possi-
bly nonconvex-nonconcave loss functions. We discuss the theoretical
characteristics of local and approximate Nash equilibria, as well as
their optimality conditions. The main focus of the thesis is on the
min-max critical point, which is a first-order solution concept extend-
ing Nash equilibrium. We prove some characteristics of the min-max
critical point. We propose the implementation of the StayOnTheRidge
algorithm for finding min-max critical points in Julia and compare the
results of the algorithm with the results obtained by other algorithms
on various examples. We also present an extension of the STON’R
to hyperrectangle and discuss a general challenge of the algorithm’s
modification to operate on the cartesian product of simplices. The
theoretical result of this thesis is the introduction of the concept of
the generalized min-max critical point, which extends the min-max
critical point to locally Lipschitz functions. We prove the existence of
the solution to the corresponding generalized variational inequality
and show some properties of the generalized min-max critical points.

keywords : Two-player zero-sum games, Nash equilibrium, Min-max
critical point, Variational inequality, Clarke analysis
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A B S T R A K T

Tato práce zkoumá různé koncepty Nashových ekvilibrií dvouhráčo-
vých her s nulovým součtem a kompaktními prostory strategií, při-
čemž ztrátové funkce mohou být nekonvexně-nekonkávní. Diskutu-
jeme teoretické vlastnosti lokálních a aproximovaných Nashových
ekvilibrií a jejich podmínky optimality. Hlavním zaměřením práce
je koncept min-max kritického bodu, který představuje řešení prv-
ního řádu rozšiřující Nashovo ekvilibrium. Dokazujeme některé cha-
rakteristiky min-max kritického bodu. Představujeme implementaci
algoritmu StayOnTheRidge pro nalezení min-max kritického bodu v
jazyce Julia a porovnáváme kvalitu výsledků s jinými algoritmy na
různých příkladech. Dále popisujeme rozšíření algoritmu STON’R na
hyperobdélník a je nastíněna výzva zobecnění algoritmu na obecnější
množiny, jako je kartézský součin simplexů. Teoretickým výsledkem
této práce je zavedení pojmu zobecněného min-max kritického bodu,
který rozšiřuje koncept min-max kritického bodu na lokálně Lipschi-
tzovské funkce. Dokazujeme existenci řešení odpovídající zobecněné
variační nerovnice a ukazujeme některé vlastnosti zobecněných min-
max kritických bodů.

keywords : Dvouhráčové hry s nulovým součtem, Nashovo ekvilib-
rium, Min-max kritický bod, Variační nerovnice, Clarkova analýza
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1
I N T R O D U C T I O N

Identifying the Nash equilibrium is a significant challenge in game
theory. It can be difficult even for two-player zero-sum games with
compact strategy spaces when the loss function is not convex-concave.
Although the mixed Nash equilibrium is guaranteed to exist under
the continuity of the loss function, the pure Nash equilibrium may
not exist even for simply behaved functions. And if it exists, finding
it is NP-hard [1].

Therefore, first-order solution concepts of Nash equilibrium have
been introduced, referred to as min-max critical point [2], first-order
Nash equilibrium [3], [4], or game-stationary solution [5]. These points
represent solutions to a specific non-monotone variational inequality
and are assured to exist for smooth functions. They correspond to the
fixed points of the projected gradient descent-ascent dynamics and
hence their computational complexity lies in the PPAD [6] class.

The STON’R algorithm [2] for finding min-max critical points is
based on a topological argument, leveraging the equivalence between
the fixed points of the projected gradient descent-ascent dynamics
and min-max critical points. Other algorithms for finding first-order
solutions have also been proposed [3], [4]. This is because finding
(relaxed) Nash equilibria has practical applications in various fields
such as signal and data processing, GANs training, and robust ma-
chine learning, to mention only a few [5].

1.1 summary of the thesis

• This thesis examines various notions extending Nash equilib-
rium, such as local Nash equilibrium, approximate local Nash
equilibrium, or the first order-solution concept named min-max
critical point. We formulate and show some properties of the
min-max critical points (Proposition 7, Proposition 9).

• Since the loss functions are not smooth in some applications,
we extend the notion of the min-max critical point and the first-
order Nash equilibrium to locally Lipschitz functions (Defini-
tion 14, Definition 15) and prove that the corresponding gener-
alized variational inequality has a solution (Proposition 10). We
also show some properties of the generalized min-max critical
points (Proposition 12).

• We develop the implementation of the STON’R algorithm in
Julia and demonstrate its results on various examples.
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We also formulate an extension of the algorithm to the general
hyperrectangle and outline the challenge of the algorithm’s ex-
tension to the cartesian product of simplices.

• The numerical experiments compare the quality of the results
produced by three algorithms: STON’R [2], RNI-SGD [3], and
DO [7]. We measure the quality of the solutions by exploitability,
which is defined as the sum of the differences between each
player’s strategy and their optimal strategy.
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2
S T R AT E G I C G A M E S

In this chapter, we focus on solution concepts for two-player zero-
sum games. These games involve two players with directly opposing
interests, so the total sum of their losses is always zero. One common
example is the rock-paper-scissors game, represented by the follow-
ing matrix.

Rock Paper Scissors

Rock 0 1 -1

Paper -1 0 1

Scissors 1 -1 0

Table 2.1: Rock-paper-scissors game matrix

The table shows the losses for the row player. Each player chooses
from three pure strategies. The optimal mixed strategy for both play-
ers is to select each option with a probability 1/3.

Nevertheless, our focus will shift towards more complex games
where players have an infinite number of pure strategies to choose
from. We call these games continuous games and formally define them
in the following section.

2.1 continuous games

Min-player and Max-player select strategies θθθ = (x1, . . . , xd1
) ∈ Θ

and ωωω = (xd1+1, . . . , xd1+d2
) ∈ Ω, where Θ ⊆ Rd1 and Ω ⊆ Rd2 are

compact convex sets. Let n = d1 + d2 be the dimension of the game
and K = Θ×Ω ⊆ Rn be the joint strategy space. The loss function for
Min-player, denoted by f : K → R, is continuous (unless otherwise
stated). The loss function for Max-player is −f. We call such strategic
game a continuous game. 1 The function f may not be convex-concave,
i.e., it may fail to be convex in θθθ for some ωωω, or it may fail to be
concave in ωωω for some θθθ.

For example, viewing rock-paper-scissors as a continuous game,
players select their strategies θθθ = (x1, x2, x3) and ωωω = (x4, x5, x6)
from 2-dimensional simplices with vertices corresponding to the rock,

1 To simplify, we define the game as continuous. We will introduce additional assump-
tions for f as needed throughout this thesis, although continuity will be assumed in
all cases.
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paper, and scissors strategies, respectively. The loss function for Min-
player is a multilinear function

f(θθθ,ωωω) = θθθT

 0 1 −1

−1 0 1

1 −1 0

ωωω.

The pure strategy Nash equilibrium exists for this game and corre-
sponds to the θθθ∗ = (13 , 1

3 , 1
3) =ωωω∗.

2.2 nash equilibria

In this section, we describe various notions of Nash equilibria for
continuous games and discuss their properties. Nash equilibrium is a
stable state in which no player has motivation to unilaterally change
their strategy.

2.2.1 Global Nash equilibria

The global Nash equilibrium is a solution concept where both players
adopt strategies that are optimal over their entire strategy spaces. Let
us start with the definition.

Definition 1 The Nash equilibrium (NE) of a continuous game is a pair
(θθθ∗,ωωω∗) ∈ Θ×Ω such thatAlso called saddle

point.
f(θθθ∗,ωωω) ⩽ f(θθθ∗,ωωω∗) ⩽ f(θθθ,ωωω∗)

holds for all θθθ ∈ Θ and ωωω ∈ Ω.

This definition implies that θθθ∗ is a global minimum of f(·,ωωω∗) for
fixed ωωω∗, and ωωω∗ is a global maximum of f(θθθ∗, ·) for fixed θθθ∗.

We outline two characterizations of Nash equilibria.

Proposition 1 The continuous game has a Nash equilibrium if, and
only if,

min
θθθ∈Θ

max
ωωω∈Ω

f(θθθ,ωωω) = max
ωωω∈Ω

min
θθθ∈Θ

f(θθθ,ωωω).

If f has a NE, it corresponds to the solution to min
θθθ∈Θ

max
ωωω∈Ω

f(θθθ,ωωω).

Proposition 1 implies that the set of solutions to min
θθθ∈Θ

max
ωωω∈Ω

f(θθθ,ωωω) and

the set of solutions to max
ωωω∈Ω

min
θθθ∈Θ

f(θθθ,ωωω) are either identical or have an

empty intersection. The second characterization needs the notion of
exploitability.
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Definition 2 Define exploitability e(x∗) ∈ R at point x∗ = (θθθ∗,ωωω∗) ∈ K

as the sum of differences between each player’s strategy and their
optimal strategy:

e(x∗) = max
θθθ∈Θ

(−f(θθθ,ωωω∗)) − (−f(θθθ∗,ωωω∗)) + max
ωωω∈Ω

f(θθθ∗,ωωω) − f(θθθ∗,ωωω∗)

= max
ωωω∈Ω

f(θθθ∗,ωωω) − min
θθθ∈Θ

f(θθθ,ωωω∗).

Proposition 2 Let x∗ = (θθθ∗,ωωω∗) ∈ K. A point x∗ is a Nash equilibrium
if, and only if, e(x∗) = 0.

Proof ⇒ The right implication is trivial. From the definition of NE,
we have max

θθθ∈Θ
(−f(θθθ,ωωω∗)) + max

ωωω∈Ω
f(θθθ∗,ωωω) = −f(x∗) + f(x∗) = 0.

⇐ We know that e(x∗) ⩾ 0. Assuming the point x∗ is not a NE,
at least one player does not play optimally. This implies that either
max
θθθ∈Θ

(−f(θθθ,ωωω∗)) − (−f(x∗)) > 0, or max
ωωω∈Ω

f(θθθ∗,ωωω) − f(x∗) > 0, or both.

Hence, e(x∗) > 0.

The concept of exploitability will be essential in Chapter 4, where we
will compare it across solutions obtained from different methods.

If f is convex-concave, the existence of Nash equilibrium is guaran-
teed [8]. Recall that our area of study is the scenario when f may fail
to be convex-concave. This setting yields substantial challenges, as the
existence of Nash equilibria is not assured, and determining whether
such a point exists is an NP-hard problem [1]. Nash equilibrium may
not exist even for well-behaved functions; one such example is a con-
vex function f(θ,ω) := (θ−ω)2 over Θ = Ω = [0, 1].

The generalization of Nash equilibrium is a mixed strategy Nash
equilibrium. The concept of mixed strategy allows every player to
randomize with respect to any probability measure on their strategy
set. We will define concepts exclusively for Min-player; the definitions
for Max-player are analogous.

Definition 3 The set of all mixed strategies for Min-player is defined
as the set of Borel probability measures over Θ, denoted by ∆(Θ).

The mixed strategies allows us to associate each pure strategy θθθ ∈ Θ

with a Dirac measure from ∆(Θ). Put ∆ := ∆(Θ)× ∆(Ω). If players
adopt a mixed strategy profile (p,q) ∈ ∆, the expected loss L : ∆ → R

for Min-player is defined as

L(p,q) :=
∫

Θ×Ω

f d(p× q).

The mixed strategy Nash equilibrium occurs when no player wants
to change their mixed strategy. In continuous games, its existence is
guaranteed by Glicksberg’s theorem [9].
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Definition 4 A mixed strategy profile (p∗,q∗) ∈ ∆ is a mixed strategy
Nash equilibrium if

L(p∗,q) ⩽ L(p∗,q∗) ⩽ L(p,q∗) (1)

holds for all (p,q) ∈ ∆.

2.2.2 Local Nash equilibria

As mentioned, finding Nash equilibrium is a very difficult problem.
This has led to the study of the local/approximate solutions. One
such notion is the local Nash equilibrium [10].

Definition 5 Let δ > 0. The point (θθθ∗,ωωω∗) ∈ Θ×Ω is called a local
Nash equilibrium if it satisfies:

f(θθθ∗,ωωω∗) < f(θθθ,ωωω∗) for all θθθ ∈ Θ such that ∥θθθ−θθθ∗∥ ⩽ δ,

f(θθθ∗,ωωω∗) > f(θθθ∗,ωωω) for all ωωω ∈ Ω such that ∥ωωω−ωωω∗∥ ⩽ δ.

In this definition, each player is required to play optimally only within
the δ neighborhood around their selected strategy.

We formulate the optimality conditions for a local NE. Let us focus
on the interior of K first, assuming that it is nonempty [10].

Proposition 3 (First-order necessary condition) If f is differentiable,
any local Nash equilibrium x∗ ∈ int(K) satisfies ∇Θf(x∗) = 0 and
∇Ωf(x∗) = 0.

Proposition 4 (Second-order necessary condition) Assuming that f

is twice-differentiable, any local Nash equilibrium x∗ ∈ int(K) satis-
fies ∇2

ΘΘf(x
∗) ⪰ 0 and ∇2

ΩΩf(x∗) ⪯ 0.

Proposition 5 (Second-order sufficient condition) Assuming that f is
twice-differentiable, any stationary point x∗ ∈ int(K) satisfying the
following condition is a local Nash equilibrium: ∇2

ΘΘf(x
∗) ≻ 0 and

∇2
ΩΩf(x∗) ≺ 0.

We now outline the first-order optimality condition for the entire set
K [11].

Definition 6 We call a set NC(x) = {d ∈ Rm | ⟨d, x − x ′⟩ ⩾ 0, ∀x ′ ∈ C}

the normal cone at point x ∈ C, where C is a compact convex subset of
Rm.

Proposition 6 (First-order necessary condition) Assuming f is differ-
entiable, any local Nash equilibrium x∗ = (θθθ∗,ωωω∗) ∈ K satisifes
−∇Θf(x∗) ∈ NΘ(θθθ

∗) and ∇Ωf(x∗) ∈ NΩ(ωωω∗).

In the interior of K, the condition reduces to the condition in Propo-
sition 3 because the normal cone at any point within int(K) contains
only the zero vector.
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Since every normal cone contains the zero vector, also all local min-
ima/maxima meet this condition, making it indistinguishable from
the min-min or max-max condition. The distinction arises at the bound-
ary because the directions of ∇Θ(x∗) and ∇Ω(x∗) remain consistent
in min-min or max-max problems but diverge in the min-max prob-
lem. These distinct directions make the min-max problem non-trivial.
A significant drawback of local Nash equilibria, similar to Nash equi-
libria, is their possible nonexistence, even when dealing with well-
behaved functions [10]. Additionally, establishing the existence of
such points is also an NP-hard problem [2].

Transitioning to the approximate notion of a local Nash equilib-
rium, it’s worth noting that it is defined in a very similar manner.

Definition 7 Let ϵ, δ > 0. The point (θθθ∗,ωωω∗) is called an approximate Also called
(ϵ, δ)-local min-max
equilibrium [1].

local min-max equilibrium if it satisfies:

f(θθθ∗,ωωω∗) < f(θθθ,ωωω∗) + ϵ for all θθθ ∈ Θ such that ∥θθθ−θθθ∗∥ ⩽ δ,

f(θθθ∗,ωωω∗) > f(θθθ∗,ωωω) − ϵ for all ωωω ∈ Ω such that ∥ωωω−ωωω∗∥ ⩽ δ.

The condition says that when Min-player changes their strategy within
the δ-neighborhood, their loss function can increase only by ϵ. Analo-
gous statement applies to Max-player. The advantage of this concept
is that the solution is guaranteed to exist under some assumptions
for f and for the locality parameter δ [1]. Specifically, the assumptions
are:

1. f is G-Lipschitz, i.e., there exists G ⩾ 0 such that

|f(x) − f(y)| ⩽ G · ∥x − y∥ holds for all x, y ∈ K,

2. f is L-smooth, i.e., there exists L ⩾ 0 such that

∥∇f(x) −∇f(y)∥ ⩽ L · ∥x − y∥ holds for all x, y ∈ K,

3. δ ⩽
√

2ϵ
L . This regime is also

referred to as the
local regime [1].Approximate local min-max equilibria correspond to the approximate

fixed points of the projected gradient descent-ascent dynamics (see
[1, Theorem 5.1]). Let ΠC : Rm → C denote the Euclidean projection
onto a nonempty and compact convex set C ⊆ Rm. In this context,
we define the projected gradient descent-ascent dynamics as follows:

Definition 8 The projected gradient descent-ascent dynamics is defined
as the map FGDA : K→ K

FGDA(x) :=

(
ΠΘ(θθθ−∇Θf(x))

ΠΩ(ωωω+∇Ωf(x))

)
for all x = (θθθ,ωωω) ∈ K.

The projection acts separately on vectors θθθ−∇Θf(x) and ωωω+∇Ωf(x).
It is equivalent to projecting the pair (θθθ−∇Θf(x),ωωω+∇Ωf(x)) jointly
onto K, as can be observed from the equivalence between items 4. and
5. in Proposition 7.
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2.3 min-max critical points

Due to the possible nonexistence and complexity of finding (local)
Nash equilibria, researchers focus on first-order solutions. We will
outline a first-order solution concept for Nash equilibrium, which has
been proposed in various articles by different authors. Thus, it does
not have a unified name. We will adopt the term min-max critical point
used in [2]. Alternatively, it is also referred to as the first-order Nash
equilibrium [3], [4], or the game-stationary solution [5]. The definitions
in [3], [4], and [5] are identical but differ slightly from that of the min-
max critical point. We will prove that the concepts are equivalent (see
the equivalence between items 1. and 2. in Proposition 7).

Min-max critical points are solutions to a specific non-monotone
variational inequality. The variational inequality problem VI(F,K) is to
find a point x∗ ∈ K such that

⟨F(x∗), x∗ − x⟩ ⩾ 0 for all x ∈ K,

where F : K → Rn is any continuous mapping. Problem VI(F,K) is
in general extremely difficult to solve if the mapping F fails to be
monotone. In this context, we call F monotone if

⟨F(x) − F(y), x − y⟩ ⩾ 0 for all x, y ∈ K.

In this section we assume f to be a continuously differentiable func-
tion. Denote the set {1, . . . ,n} by [n]. Each coordinate 1 ⩽ i ⩽ d1 and
d1 + 1 ⩽ j ⩽ n is called a minimizing and maximizing coordinate, re-
spectively. Now we can describe the min-max critical point. Define
the mapping V = (V1, . . . ,Vn) : K→ Rn by

Vi(x) =

−
∂f(x)
∂xi

i is minimizing,
∂f(x)
∂xi

i is maximizing,
i ∈ [n].

Definition 9 A point x∗ ∈ K is called a min-max critical point if it is a
solution to the variational inequality

⟨V(x∗), x∗ − x⟩ ⩾ 0 for all x ∈ K. VI(V ,K)

We present a simple example to demonstrate the nature of the min-
max critical points.

Example 1 Let f(θ,ω) = (θ−ω)2, (θ,ω) ∈ [0, 1]2. This function has
no local Nash equilibria. Min-max critical points of f are all points on
the diagonal connecting the points (0, 0) and (1, 1).

When the function f is (strongly) convex in θθθ and (strongly) con-
cave in ωωω, the mapping V is (strongly) monotone 2, therefore, classi-
cal methods for solving variational inequalities can be applied [12].

2 A strongly monotone mapping F(·) satisfies ⟨F(x) − F(y), x − y⟩ ⩾ σ∥x − y∥2 for all
x, y ∈ K, where σ > 0. If it satisfies this inequality for σ = 0, the corresponding VI is
monotone.
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However, in the general case when f may fail to be convex-concave,
the monotonicity property of V can no longer hold. The continuity
of V ensures the existence of a solution to VI(V ,K), as it corresponds
to the fixed point of the projected gradient descent-ascent dynamics
(see the equivalence between items 1. and 4. in Proposition 7). The
existence of this fixed point is guaranteed by Brouwer’s fixed point
theorem. Under the assumptions for f stated below Definition 7, the
solution to VI(V ,K) also represents an approximate local min-max

equilibrium whenever δ ⩽
√

2ϵ
L . The complexity of computing min-

max critical points is equivalent to Brouwer’s fixed points computa-
tion, which lies in the PPAD [6] class. However, verifying if a point is
min-max critical is easy and can be done in linear time.

Let us outline the definition of the first-order Nash equilibrium.

Definition 10 The first-order Nash equilibrium (FNE) is a point
x∗ = (θθθ∗,ωωω∗) ∈ K which satisfies the following conditions:

⟨∇Θf(x∗),θθθ−θθθ∗⟩ ⩾ 0, ∀θθθ ∈ Θ,

⟨∇Ωf(x∗),ωωω−ωωω∗⟩ ⩽ 0, ∀ωωω ∈ Ω.

One can verify that this is equivalent to the first-order necessary con-
dition for a local NE (Proposition 6). For x ∈ K and i ∈ [n], define
the set Ki(x) = {x ′

i ∈ R | (x1, . . . , xi−1, x ′
i, xi+1, . . . , xn) ∈ K}. We con-

solidate the properties of the min-max critical point in the following
proposition.

Proposition 7 Let x∗ = (θθθ∗,ωωω∗) ∈ K. The following are equivalent.

1. The point x∗ is min-max critical.

2. The point x∗ is a first-order Nash equilibrium.

3. For each i ∈ [n] and every xi ∈ Ki, Vi(x∗)(x∗i − xi) ⩾ 0.

4. x∗ = ΠK(x∗ + V(x∗)).

5. θθθ∗ = ΠΘ(θθθ
∗ −∇Θf(x∗)) and ωωω∗ = ΠΩ(ωωω∗ +∇Ωf(x∗)), i.e.,

x∗ = FGDA(x∗)

Proof 1. ⇒ 2. Consider an arbitrary θθθ ∈ Θ. Choose x = (θθθ,ωωω∗) ∈ K.
Then

⟨−∇Θf(x∗),θθθ∗ −θθθ⟩ = ⟨V(x∗), x∗ − x⟩ ⩾ 0,

which is equivalent with ⟨∇Θf(x∗),θθθ−θθθ∗⟩ ⩾ 0. Consider an arbitrary
ωωω ∈ Ω. Choose x = (θθθ∗,ωωω) ∈ K. Then

⟨∇Ωf(x∗),ωωω∗ −ωωω⟩ = ⟨V(x∗), x∗ − x⟩ ⩾ 0,

which is equivalent with ⟨∇Ωf(x∗),ωωω−ωωω∗⟩ ⩽ 0.
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2. ⇒ 1. Let x = (θθθ,ωωω) ∈ K. We know that ⟨−∇Θf(x∗),θθθ∗ − θθθ⟩ ⩾ 0

and ⟨∇Ωf(x∗),ωωω∗ −ωωω⟩ ⩾ 0. After summing up the two inequalities
we get ⟨V(x∗), x∗ − x⟩ ⩾ 0.

1.⇒ 3. Let i ∈ [n] and xi ∈ Ki. Define x ∈ K by xj = x∗j for all j ̸= i

and xj = xi when j = i. Then

Vi(x∗)(x∗i − xi) = ⟨V(x∗), x∗ − x⟩ ⩾ 0.

3.⇒ 1. This follows directly from the assumption,

⟨V(x∗), x∗ − x⟩ =
n∑

i=1

Vi(x∗)(x∗i − xi) ⩾ 0.

1. ⇔ 4. The wellknown characterization of projection says that 4.
holds true if, and only if, the inequality

⟨x∗ + V(x∗) − x∗, x − x∗⟩ ⩽ 0

is valid for every x ∈ K, which is equivalent with the definition of the
min-max critical point x∗.
4.⇔ 5. By the definition of the Euclidean projection,

ΠΘ×Ω

(
θθθ∗ −∇Θf(x∗)

ωωω∗ +∇Ωf(x∗)

)
= argmin

(θθθ,ωωω)∈Θ×Ω

∣∣∣∣∣
∣∣∣∣∣
(

θθθ∗ −∇Θf(x∗) −θθθ

ωωω∗ +∇Ωf(x∗) −ωωω

)∣∣∣∣∣
∣∣∣∣∣
2

= argmin
(θθθ,ωωω)∈Θ×Ω

 d1∑
i=1

(θ∗i −∇Θf(x∗)i − θi)
2 +

d1+d2∑
i=d1+1

(ωi +∇Ωf(x∗)i −ωi)
2


= argmin

(θθθ,ωωω)∈Θ×Ω

(
∥θθθ∗ −∇Θf(x∗) −θθθ∥2 + ∥ωωω∗ +∇Ωf(x∗) −ωωω∥2

)
.

Since the two summands do not contain θθθ, ωωω simultaneously, it is
equal to argmin

θθθ∈Θ

∥θθθ∗ −∇Θf(x∗) −θθθ∥2

argmin
ωωω∈Ω

∥ωωω∗ +∇Ωf(x∗) −ωωω∥2

 =

(
ΠΘ(θθθ

∗ −∇Θf(x∗))

ΠΩ(ωωω∗ +∇Ωf(x∗))

)
.

The equivalence between items 1. and 4. indicates that the min-max
critical point corresponds to the fixed point of the projected gradi-
ent descent-ascent dynamics with a step size 1. This equivalence also
holds for a step size α > 0, which can be proved by using a similar
argument as in the proof above.

We will use a particular description of the min-max critical points
in the case of a unit hypercube K = [0, 1]n [2].
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Definition 11 Let x ∈ [0, 1]n. The coordinate i ∈ [n] is satisfied at x if
one of the following conditions hold:

1. Vi(x) = 0.

2. Vi(x) < 0 and xi = 0.

3. Vi(x) > 0 and xi = 1.

In case that item 1. is satisfied, then i is called zero-satisfied at x. If 2.
or 3. are true, then i is called boundary-satisfied at x.

In Definition 11 and
Proposition 8, we
consider K = [0, 1]n

because the method
STON’R, presented
in Chapter 3,
operates on the unit
hypercube.

Proposition 8 Let x∗ ∈ [0, 1]n. The following are equivalent.

1. The point x∗ is min-max critical.

2. Each coordinate i ∈ [n] is satisfied at x∗.

Proposition 8 is the consequence of the equivalence between items 1.
and 3. of Proposition 7.

Let K be a compact convex set. We will need the approximate coun-
terparts of the concepts introduced above.

Definition 12 We say that a point x ∈ K is an α-approximate solution
to VI(V ,K) for some α > 0 if

⟨V(x), y − x⟩ ⩽ α for all y ∈ K.

Clearly, for every α > 0 any min-max critical point x is an α-approximate
solution to VI(V ,K).

Definition 13 We call a point x ∈ K an α-approximate fixed point of
the projected gradient descent-ascent dynamics for some α > 0 if
∥FGDA(x) − x∥ ⩽ α.

Proposition 9 If x ∈ K is an α-approximate solution to VI(V ,K), then
it is an

√
α-approximate fixed point of the projected gradient descent-

ascent dynamics.

Proof Let x ∈ K be an α-approximate solution to VI(V ,K) and let
z ∈ K be defined as z = ΠK(x + V(x)). We have

α ⩾ ⟨V(x), z − x⟩ = ⟨z − x + x + V(x) − z, z − x⟩
= ∥z − x∥2 − ⟨x + V(x) −ΠK(x + V(x)), x −ΠK(x + V(x))⟩
⩾ ∥z − x∥2 = ∥ΠK(x + V(x)) − x∥2.

The last inequality follows from the property of the Euclidean projec-
tion. Therefore, ∥ΠK(x + V(x)) − x∥ ⩽

√
α.

The converse proposition also stands: an α-approximate fixed point
is a (cα)-approximate solution to VI(V ,K), where the constant c de-
pends on both the diameter of the strategy set and the maximum
norm of V [13, Proposition 3.1]. We will utilize Proposition 9 in the
discrete dynamics of the STay-ON-the-Ridge algorithm.
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2.4 generalized min-max critical points

In this section, we will extend the concept of the min-max critical
point to locally Lipschitz functions. These functions are continuous,
and by Rademacher’s theorem, they are also differentiable almost
everywhere. That is, the set of points where the function is not differ-
entiable has Lebesgue measure zero. We will need the tools of Clarke
nonsmooth analysis [14].

Let us start by introducing the Clarke generalized derivative and
gradient [14]. Let f : Rn → R be Lipschitz near a given point x ∈ Rn,
that is, for some l, ϵ ⩾ 0, we have

|f(y) − f(z)| ⩽ l∥y − z∥

for all y, z in Rn such that ∥y − x∥ ⩽ ϵ and ∥z − x∥ ⩽ ϵ. The Clarke
generalized directional derivative of f at x in the direction h, denoted as
f◦(x, h), is defined as follows:

f◦(x, h) = lim sup
x ′→x
t↓0

f(x ′ + t · h) − f(x ′)

t
,

where x ′ ∈ Rn and t > 0. Then, using the above definition of f◦, the
Clarke generalized gradient ∂Cf(x) of f at x (also called Clarke subdiffer-
ential) is given as

∂Cf(x) = {y ∈ Rn | ⟨y, h⟩ ⩽ f◦(x, h), ∀h ∈ Rn}.

We have therefore

f◦(x, h) = max{⟨y, h⟩ |y ∈ ∂cf(x)} ∀h ∈ Rn.

The Clarke generalized gradient is a set-valued function (multifunc-
tion). The following theorem [14] states that the Clarke generalized
gradient ∂Cf(x) can be derived from the values of ∇f(u) at nearby
points u where f ′(u) exists. Moreover, the construction remains unaf-
fected by points u belonging to any set of measure zero.

Theorem 1 (Gradient formula) Let x ∈ Rn and f : Rn → R be Lips-
chitz near x. Let E be any subset of zero measure in Rn, and let Ef be
the set of points at which f fails to be differentiable. Then

∂Cf(x) = co
{

lim
i→∞∇f(xi) | xi → x, xi /∈ E∪ Ef

}
,

where co denotes the convex hull.

We also need to outline generalized variational inequalities, draw-
ing upon the formulation provided in [15]. Consider a set-valued
function γ from some subset C of Rn to the family of subsets of Rn.
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The Generalized variational inequality problem GVI(γ,C) is to calculate
a solution (x, y) satisfying the following:

1. x ∈ C,

2. ⟨y, x − x ′⟩ ⩾ 0, for each x ′ ∈ C,

3. y ∈ γ(x).

GVI(γ,C)

Next, we introduce the definitions of contractibility and upper-
semicontinuity. A subset S of Rn is contractible, if there is an x◦ ∈ S

and a continuous function g : S× [0, 1]→ S, such that

g(x, 0) = x and g(x, 1) = x◦, for each x ∈ S.

If S is convex, then S is contractible, since g(x, t) = (1− t)x + tx◦ has
the described property for any x◦ ∈ S. A multifunction γ on C ⊆ Rn

is upper-semicontinuous if the following holds: if a sequence of vectors
xk in C converges to x ∈ C and a sequence of vectors yk ∈ γ(xk)
converges to y, then y ∈ γ(x). We are now prepared to state the
existence theorem.

Theorem 2 (Hartman-Stampacchia, Saigal) Assume that

1. C is a nonempty, compact and convex set in Rn,

2. γ is an upper-semicontinuous mapping from C to the family of
subsets of Rn,

3. γ(x) is a nonempty, compact, and contractible set in Rn for each
x ∈ C.

Then there is a solution to the variational inequality GVI(γ,C).

We establish a generalized version of the mapping V introduced in
Section 2.3. Recall that K is a convex compact set. Define a mapping
V : K ↠ Rn as the composition of the Clarke subdifferential and a
linear function L = (L1, . . . ,Ln) : Rn → Rn given by

Li(y) =

−yi i is minimizing,

yi i is maximizing,
i ∈ [n].

Let x ∈ K. Define V(x) as
⋃

y∈∂Cf(x)
{L(y)}.

The mapping V is indeed a generalization of V . In the case when f is
continuously differentiable, the Clarke generalized gradient reduces
to a single point, representing the standard gradient. Now, we can
define the generalized version of the min-max critical point.

Definition 14 A point x∗ ∈ K is called a generalized min-max critical
point if there exists a point y∗ ∈ V(x∗) such that

⟨y∗, x∗ − x⟩ ⩾ 0 for each x ∈ K. GVI(V,K)

13



Similar to the smooth min-max critical point, within the interior of K,
the point y∗ must be the zero vector to satisfy condition GVI(V,K).

Now we show that the GVI(V,K) has a solution.

Proposition 10 There exists a generalized min-max critical point, i.e.,
there exists a solution to GVI(V,K).

Proof Utilizing Theorem 2, we establish the existence of the general-
ized min-max critical point by setting C := K and γ := V. This leads
us to assert that each of the conditions stated in items 1-3 is indeed
fulfilled.

1. The condition holds directly from the assumptions for K.

2. The Clarke generalized gradient ∂C is an upper-semicontinuous
set-valued function [16]. The linear function L is continuous,
and therefore also upper-semicontinuous. Since the mapping V

is the composition of ∂C and L, it is also upper-semicontinuous
[17, Theorem 17.23].

3. Considering an arbitrary point x ∈ K, the set V(x) is nonempty
due to the nonemptiness of ∂Cf(x) [14, Proof of Theorem 10.27].
The compactness of V(x) is derived from the compactness of
∂Cf(x) and the continuity of L, a consequence of its linearity.
This follows directly from a well-known theorem in analysis
stating that the continuous image of a compact set remains com-
pact. To show contractibility, we use the property that every
convex set contracts. We now establish convexity of V(x) for an
arbitraty x ∈ K. Consider arbitrary points r ′ and s ′ in V(x). Then
there exist r and s in ∂Cf(x) such that r ′ = L(r) and s ′ = L(s).
Let λ ∈ [0, 1]. We want to prove that λr ′ + (1 − λ)s ′ ∈ V(x).
Since ∂Cf(x) is convex, it holds λr + (1 − λ)s ∈ ∂Cf(x). From
the linearity of L we get L(λr + (1− λ)s) = λL(r) + (1− λ)L(s) =
λr ′ + (1− λ)s ′ ∈ V(x).

Now we can proceed to define and investigate analogous properties
that hold for the smooth min-max critical point. Let xmin and xmax be
the restrictions of a vector x ∈ Rn to the minimizing and maximizing
coordinates, respectively.

Definition 15 A point x∗ = (θθθ∗,ωωω∗) ∈ K is called a generalized first-
order Nash equilibrium (GFNE) if there exists a point y∗ ∈ ∂Cf(x∗) such
that

⟨y∗
min,θθθ−θθθ∗⟩ ⩾ 0, ∀θθθ ∈ Θ,

⟨y∗
max,ωωω−ωωω∗⟩ ⩽ 0, ∀ωωω ∈ Ω.

In this context we can establish a first-order necessary condition for a
local Nash equilibrium (Definition 5) for nondifferentiable functions.
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Proposition 11 (First-order necessary condition) Any local Nash equi-
librium x∗ = (θθθ∗,ωωω∗) ∈ K meets −y∗

min ∈ NΘ(θθθ
∗) and y∗

max ∈ NΩ(ωωω∗)

for some y∗ ∈ ∂Cf(x∗), where NΘ(θθθ
∗) and NΩ(ωωω∗) are normal cones

(see Definition 6).

Proposition 11 is derived from [18]. Analogous to the first-order Nash
equilibrium for differentiable functions (Definition 10), the condition
in Proposition 11 is equivalent to the generalized first-order Nash
equilibrium.

Proposition 12 Let x∗ = (θθθ∗,ωωω∗) ∈ K. The following are equivalent.

1. The point x∗ is generalized min-max critical.

2. The point x∗ is a generalized first-order Nash equilibrium.

3. For each i ∈ [n] and every xi ∈ Ki, y∗
i (x

∗
i − xi) ⩾ 0,

for some y∗ ∈ V(x∗).

4. x∗ = ΠK(x∗ + y∗), for some y∗ ∈ V(x∗).

5. θθθ∗ = ΠΘ(θθθ
∗ + y∗

min) and ωωω∗ = ΠΩ(ωωω∗ + y∗
max),

for some y∗ ∈ V(x∗).

Proof The proof follows a similar line of reasoning in the proof of
Proposition 7.

1. ⇒ 2. There exists some y∗ ∈ V(x∗) such that ⟨y∗, x∗ − x⟩ ⩾ 0 for
all x ∈ K. Let z∗ = (−y∗

min, y∗
max) ∈ ∂Cf(x∗). Consider an arbitraty

θθθ ∈ Θ. Choose x = (θθθ,ωωω∗) ∈ K. Then

⟨y∗
min,θθθ∗ −θθθ⟩ = ⟨y∗, x∗ − x⟩ ⩾ 0,

which is equivalent with ⟨z∗min,θθθ − θθθ∗⟩ ⩾ 0. Consider an arbitrary
ωωω ∈ Ω. Choose x = (θθθ∗,ωωω) ∈ K. Then

⟨y∗
max,ωωω∗ −ωωω⟩ = ⟨y∗, x∗ − x⟩ ⩾ 0,

which is equivalent with ⟨z∗max,ωωω−ωωω∗⟩ ⩽ 0.
2.⇒ 1. Let x = (θθθ,ωωω) ∈ K. There exists some z∗ ∈ ∂Cf(x∗) such that
⟨−z∗min,θθθ∗−θθθ⟩ ⩾ 0 and ⟨z∗max,ωωω∗−ωωω⟩ ⩾ 0. After summing up the two
inequalities we get ⟨y∗, x∗ − x⟩ ⩾ 0, where y∗ = (−z∗min, z∗max) ∈ V(x∗).
1. ⇒ 3. Since the point x∗ is generalized min-max critical, there

exist some y∗ ∈ V(x∗) such that (x∗, y∗) is a solution to the GVI(V,K).
Let i ∈ [n] and xi ∈ Ki. Define x ∈ K by xj = x∗j for all j ̸= i and
xj = xi when j = i. Then

y∗
i (x

∗
i − xi) = ⟨y∗, x∗ − x⟩ ⩾ 0.

3.⇒ 1. This follows directly from the assumption,

⟨y∗, x∗ − x⟩ =
n∑

i=1

y∗
i (x

∗
i − xi) ⩾ 0.

15



1. ⇔ 4. The wellknown characterization of projection says that 4.
holds true if, and only if, the inequality

⟨x∗ + y∗ − x∗, x − x∗⟩ ⩽ 0

is valid for every x ∈ K, which is equivalent with the definition of the
generalized min-max critical point x∗.

4.⇔ 5. By the definition of the Euclidean projection,

ΠΘ×Ω

(
θθθ∗ + y∗

min

ωωω∗ + y∗
max

)
= argmin

(θθθ,ωωω)∈Θ×Ω

∣∣∣∣∣
∣∣∣∣∣
(

θθθ∗ + y∗
min −θθθ

ωωω∗ + y∗
max −ωωω

)∣∣∣∣∣
∣∣∣∣∣
2

= argmin
(θθθ,ωωω)∈Θ×Ω

 d1∑
i=1

(θ∗i + y∗
i − θi)

2 +

d1+d2∑
i=d1+1

(ω∗
i + y∗

i −ωi)
2


= argmin

(θθθ,ωωω)∈Θ×Ω

(
∥θθθ∗ + y∗

min −θθθ∥2 + ∥ωωω∗ + y∗
max −ωωω∥2

)
.

Since the two summands do not contain θθθ, ωωω simultaneously, it is
equal to argmin

θθθ∈Θ

∥θθθ∗ + y∗
min −θθθ∥2

argmin
ωωω∈Ω

∥ωωω∗ + y∗
max −ωωω∥2

 =

(
ΠΘ(θθθ

∗ + y∗
min)

ΠΩ(ωωω∗ + y∗
max)

)
.

The equivalence between items 1. and 4. imply that we can solve
GVI(V,K) by computing fixed points of the mapping ϕ : K ↠ Rn,
where ϕ(x) = {ΠK(x + y) |y ∈ V(x)}. A point x ∈ K is considered
a fixed point of ϕ if x ∈ ϕ(x). This equivalence also extends to cases
with a positive step size α > 0, confirmed through a similar reasoning
as in the proof above.

The following example shows that the generalized min-max critical
points capture the saddle points of nonsmooth fucntions.

Example 2 Consider a two-variable piecewise affine function over the
unit square K = [0, 1]n from [19, Example 3.2]. We note that the first
coordinate is maximizing and the second minimizing. The function is
defined as follows:

f(x) =



2x1 − x2 for x ∈ A = {x | x2 ⩾ x1 and x1 ⩽ 1
2 }

−2x1 − x2 + 2 for x ∈ B = {x | x2 ⩽ −x1 + 1 and x1 ⩾ 1
2 }

1− x1 for x ∈ C = {x | x2 ⩾ −x1 + 1 and x2 ⩽ x1}

−2x1 + x2 + 1 for x ∈ D = {x | x2 ⩾ x1 and x1 ⩾ 1/2}

2x1 + x2 − 1 for x ∈ E = {x | x2 ⩾ −x1 + 1 and x1 ⩽ 1/2}

x1 for x ∈ F = {x | x2 ⩾ x1 and x2 ⩽ −x1 + 1}.
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Figure 2.1: Regions of f

The Nash equilibrium of f is
(
1
2 , 1

2

)
, which can be seen from the graph

below.

Figure 2.2: f(x)
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The function meets the Lipschitz condition as it is piecewise affine.
The boundaries of sets A,B,C,D,E, and F together form a set of mea-
sure 0. If x does not lie in this set, f is differentiable at x, and ∇f(x) is
one of the points (2,−1), (−2,−1), (−1, 0), (−2, 1), (2, 1), or (1, 0). The
gradient formula implies that ∂Cf(

1
2 , 1

2) forms a rectangle with ver-
tices (−2,−1), (2,−1), (2, 1), (−2, 1) obtained as a convex hull of these
four points. Since this rectangle contains the origin (0, 0), the point
(12 , 1

2) is indeed a solution to the GVI(V,K). One can verify that this
is the only generalized min-max critical point of f.
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3
S TAY- O N - T H E - R I D G E

We describe a second-order method, called STay-ON-the-Ridge, pro-
posed in [2]. This algorithm is guaranteed to converge to the min-max
critical point (Definition 9) given that the corresponding strategy sets
are unit hypercubes. STON’R requires the mapping V (Definition 9)
to be L-Lipschitz and Λ-smooth. This means

∥V(x) − V(y)∥ ⩽ L∥x − y∥, for all x, y ∈ [0, 1]n, and (2)

∥J(x) − J(y)∥F ⩽ Λ∥x − y∥, for all x, y ∈ [0, 1]n, (3)

where J is the Jacobian matrix of V , and ∥A∥F denotes the Frobenius
norm of the matrix A.

3.1 continuous dynamics

The objective of the algorithm is to find a point x ∈ [0, 1]n such that
each coordinate i ∈ [n] is satisfied at x according to Definition 11. It
is initialized at x(0) = (0, . . . , 0) and aims to satisfy all coordinates
one-by-one.

The algorithm starts epoch (i,S) at point x if all coordinates in the set
S ⊆ [i− 1] are zero-satisfied, all coordinates in [i− 1] \S are boundary-
satisfied, and the algorithm’s goal is to find a point x ′ ∈ [0, 1]n that
satisfies all coordinates ⩽ i. Assume that the algorithm starts epoch
(i,S) at point x(t) at time t. It tries to achieve the goal of epoch (i,S)
starting at x(t) as follows:

• It tries to find a point inside the connected subset
Si(x(t)) ⊆ [0, 1]n that contains all points z s.t. (a) all coordi-
nates in S are zero-satisfied and all coordinates in [i− 1] \ S are
boundary-satisfied and (b) for all j ⩾ i+ 1, zj = xj(t).

• It navigates Si(x(t)) in the hopes of satisfying also the coordi-
nate i. It runs a continuous time dynamics {z(τ)}τ⩾0 that is ini-
tialized at z(0) = x(t) and moves inside Si(x(t)) in the direction
captured in the following definition.

Definition 16 Let i ∈ [n], S ∈ {s1, . . . , sm} ⊆ [i− 1], and x ∈ [0, 1]n.
Unit vector d ∈ Rn is a direction at point x if:

• dj = 0, for all j /∈ S∪ {i}, and

• ⟨∇Vj(x), d⟩ = 0, for all j ∈ S, and
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• the sign of

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂Vs1(x)
∂xs1

∂Vs2(x)
∂xs1

· · · ∂Vsm(x)
∂xs1

ds1

...
...

...
...

...
∂Vs1(x)
∂xsm

∂Vs2(x)
∂xsm

· · · ∂Vsm(x)
∂xsm

dsm

∂Vs1(x)
∂xi

∂Vs2(x)
∂xi

· · · ∂Vsm(x)
∂xi

di

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
equals the

sign of (−1)|S|.

If there is a unique unit direction satisfying the above constraints, it
is denoted by Di

S(x). We will also need the notion of exit points.

Definition 17 Suppose i ∈ [n], S ⊆ [i− 1], and x ′ ∈ [0, 1]n is a point
where coordinates in S are zero-satisfied and coordinates in [i− 1] \ S

are boundary-satisfied. Then x ′ is an exit point for epoch (i,S) if it
satisfies one of the following:

• Good exit point: Coordinate i is satisfied at x ′.

• Bad exit point: For some j ∈ S∪ {i}, it holds that ((Di
S(x

′))j > 0

and x ′
j = 1), or ((Di

S(x
′))j < 0 and x ′

j = 0).

• Middling exit point: For some j ∈ [i− 1] \ S it holds that
(Vj(x ′) = 0) and ((⟨∇Vj(x ′),Di

S(x
′)⟩ > 0 and x ′

j = 0) or
(⟨∇Vj(x ′),Di

S(x
′)⟩ < 0 and x ′

j = 1)).
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Algorithm 1 : STON’R (Continuous Dynamics)

1 Initially x(0)← (0, . . . , 0), i← 1, S← ∅, t← 0.
2 while x(t) is not a VI(V , [0, 1]n) solution do
3 Initialize epoch (i,S)’s continuous-time dynamics,

ż(τ) = Di
s(z(τ)), at z(0) = x(t).

4 while z(τ) is not an exit point as in Definition 17 do
5 Execute ż(τ) = Di

s(z(τ)) forward in time.
6 end while
7 Set x(t+ τ) = z(τ) for all τ ∈ [0, τexit] (τexit is the time z(t)

became an exit point).
8 if x(t+ τexit) is a (good exit point) as in Definition 17 then
9 if i is zero-satisfied at x(t+ τexit) then
10 Update S← S∪ {i}.
11 end if
12 Update i← i+ 1.
13 else if x(t+ τexit) is a (bad exit point) as in Definition 17

for j = i then
14 Update i← i− 1 and S← S \ {i− 1}.
15 else if x(t+ τexit) is a (bad exit point) as in Definition 17

for j ̸= i then
16 Update S← S \ {j}.
17 else if x(t+ τexit) is a (middling exit point) as in

Definition 17 for j < i then
18 Update S← S∪ {j}.
19 end if
20 Set t← t+ τexit

21 end while
22 return x(t).
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The following state diagram shows the high level overview of the al-
gorithm’s behaviour for two variables. It focuses solely on individual
epochs and transitions between them, which are determined by the
various exit points outlined in Definition 17.

Figure 3.3: Schematic of the STON’R for two variables

3.2 discrete dynamics

While the continuous dynamics targets exact solutions to VI(V , [0, 1]n),
the discrete dynamics targets an α-approximate solution to VI(V , [0, 1]n)
(see Definition 12). In Proposition 9, we stated that the α-approximate
solution x∗ to VI(V , [0, 1]n) is an

√
α-approximate fixed point of the

PGDA dynamics. According to [1, Theorem 5.1], an
√
α-approximate

fixed point corresponds to the (ϵ, δ)-local min-max equilibrium (see
Definition 7) as follows:

1. Choose ϵ > 0 and 0 < δ <
√

2ϵ
L .

2. If
√
α ⩽

√
(G+δ)2+4(ϵ−L

2δ
2)−(G+δ)

2 , then x∗ is also an (ϵ, δ)-local
min-max equilibrium of f.

When δ =
√

2ϵ
L , substituting it into item 2 yields

√
α = 0, indicating

that the fixed point should be exact.
Let us now describe the discrete dynamics. In comparison to Algo-

rithm 1, the updates in line 5 do not happen in continuous time but
in discrete steps z(k+1) ← z(k) +DS

i (z
(k)). Then there is also a need

to revise the definition of the exit points.
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Definition 18 Let ϵ,γ > 0. Suppose i ∈ [n],
S ⊆ [i− 1] and x ′ ∈ [0, 1]n is a point where coordinates in S are zero-
satisfied and coordinates in [i− 1] \ S are boundary-satisfied. Then x ′

is an (ϵ,γ)-exit Point for epoch (i,S) if it satisfies one of the following:

• Good exit point: Coordinate i is almost satisfied at x ′, i.e.,
|Vi(x ′)| ⩽ ϵ, or x ′

i = 0 and Vi(x ′) < ϵ, or x ′
i = 1 and Vi(x ′) > −ϵ.

• Bad exit point: For some j ∈ S ∪ {i}, it holds that (Di
S(x

′))j > 0

and x ′
j = 1, or (Di

S(x
′))j < 0 and x ′

j = 0.

• Middling exit point: Let x ′′ = x ′ + γDi
S(x

′) and for some
j ∈ [i− 1] \ S, one of the following holds: Vj(x ′′) > 0 and x ′

j = 0,
or Vj(x ′′) < 0 and x ′

j = 1.

Then the dynamics is updated as follows:

Algorithm 2 : STON’R (Discrete Dynamics)

1 Initially x(0)← (0, . . . , 0), i← 1, S← ∅, t← 0, m← 0.
2 while x(m) is not an α-approximate VI(V , [0, 1]n) solution do
3 z(0) ← x(m), k← 0

4 while Π[0,1]n(z(k)) is not an (ϵ, δ)-exit point as in
Definition 18 do

5 z(k+1) ← z(k) + γ ·Di
S(z

(k))

6 k← k+ 1

7 end while
8 x(m+1) ← Π[0,1]n(z(k))
9 if x(m+1) is a (good exit point) as in Definition 18 then
10 if i is zero-satisfied at x(m+1) then
11 Update S← S∪ {i}.
12 end if
13 Update i← i+ 1.
14 else if x(m+1) is a (bad exit point) as in Definition 18 for

j = i then
15 Update i← i− 1 and S← S \ {i− 1}.
16 else if x(m+1) is a (bad exit point) as in Definition 18 for

j ̸= i then
17 Update S← S \ {j}.
18 else if x(m+1) is a (middling exit point) as in
19 Definition 18 for j < i then
20 Update S← S∪ {j}.
21 end if
22 Set m← m+ 1.
23 end while
24 return x(m)
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The discrete dynamics produces a point where each coordinate is
almost satisfied according to Definition 18. Theorem 39 of [2] estab-
lishes that for every α > 0 there exist constants ϵ,γ,M,K such that
Algorithm 2 with step size γ and error ϵ finish after M ⩽ M iterations
of the while loop at line 2 and it holds that x(M) is an α-approximate
solution to VI(V , [0, 1]n) and for every iteration m ⩽ M of the while
loop at line 2, the while loop at line 4 does at most K iterations.

3.3 extension to hyperrectangle

One drawback of STON’R is its restriction to operate over the unit
hypercube. However, it is possible to extend the constraint set to a
general convex set K by following the strategy outlined in the paper
[2, Appendix B]. The strategy requires a maping H from the unit
hypercube to K that is bijective and smooth, and its inverse is also
smooth.

Let us examine the case when K is a hyperrectangle, K =
n×

i=1
[ai,bi]

for some real numbers ai < bi with i = 1, . . . ,n. Let f : K → R

be a function which ensures that assumptions (2) and (3) for V are
satisfied. Let K ′ = [0, 1]n and H : K ′ → K be the affine mapping

H(x) = (c1x1 + a1, . . . , cnxn + an),

where x ∈ K ′ and ci = bi − ai. Define g : K ′ → R as g = f ◦H. For
some 1 ⩽ ℓ < n define the map f̂ = (f̂1, . . . , f̂n) : K→ Rn by

f̂i(x) =

− ∂f
∂xi

(x) i ⩽ ℓ

∂f
∂xi

(x) i > ℓ.
i ∈ [n], x ∈ K.

It follows from the chain rule that, for every x ∈ K ′,

g ′(x) = f ′(H(x))H ′(x) = f ′(H(x))diag(c1, . . . , cn)

=

(
c1

∂f

∂x1
(H(x)), . . . , cn

∂f

∂xn
(H(x))

)
.

Further, define ĝ = (ĝ1, . . . , ĝn) analogously as

ĝi(x) =

−ci
∂f
∂xi

(H(x)) i ⩽ ℓ

ci
∂f
∂xi

(H(x)) i > ℓ.
i ∈ [n], x ∈ K ′.

Then, for each i ∈ [n] and every x ∈ K ′, we get

ĝi(x) = cif̂i(H(x)). (4)
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Proposition 13 Let x ∈ K ′. The following are equivalent.

1. x is a solution to VI(ĝ,K ′).

2. H(x) is a solution to VI(f̂,K).

3. x = ΠK ′(x + ĝ(x)).

4. H(x) = ΠK(H(x) + f̂(H(x))).

5. x is a solution to VI(G(x) − x,K ′),
where G(x) = H−1(ΠK(H(x) + f̂(H(x)))) and x ∈ K ′.

Proof 1. ⇒ 2. We need to prove that f̂(H(x))T (H(x) − y) ⩾ 0 for all
y ∈ K. Using (4) the left-hand side equals

n∑
i=1

f̂i(H(x))(Hi(x) − yi) =

n∑
i=1

ĝi(x)
ci

(Hi(x) − yi)

=

n∑
i=1

ĝi(x)(xi +
ai − yi

ci
).

Let z ∈ Rn be vector with coordinates zi =
yi−ai

ci
, where 0 ⩽ zi ⩽ 1.

Then the last term above equals ĝ(x)T (x − z) and it is nonnegative by
the assumption 1. Implication 2. ⇒ 1. is proved similarly. The equiv-
alences 1. ⇔ 3. and 2. ⇔ 4. follow from Proposition 7. Implication
4. ⇒ 5. is trivial since item 4. implies G(x) − x = 0 for all x ∈ K ′.
Let 5. be satisfied. Then pick y = G(x) in VI(G(x) − x,K ′), so that
0 ⩽ (G(x) − x)T (x −G(x)) = −∥G(x) − x∥2. Hence, G(x) = x, which
implies 4.

The first two equivalences in Proposition 13 show how to compute the
solution to VI(f̂,K) by reducing it to computing a solution to VI(ĝ,K ′).
Indeed, any solution x ∈ K ′ to VI(ĝ,K ′) can be transformed by H to
the solution H(x) ∈ K for VI(f̂,K).

3.4 implementation

We developed the first publicly available implementation of the dis-
crete dynamics (Algorithm 2) of the STON’R algorithm. The algo-
rithm was implemented in Julia (version 1.9) and the source code can
be found at

https://gitlab.fel.cvut.cz/kosohmar/StayOnTheRidge.jl.

The main function run_dynamics(conf::Config) is defined in the file
src/algorithm.jl. The function takes a Config object as an input,
which contains all the necessary information for executing the dy-
namics, including the function, number of variables, and approxima-
tion parameters.
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The Config type is the supertype of Config_FD and Config_sym. These
two configurations specify how the differentiation for computing the
gradient and Hessian matrix will be performed. Config_FD enables
automatic differentiation using ForwardDiff.jl, while Config_sym

enables symbolic differentiation using Symbolics.jl. Symbolic dif-
ferentiation has the advantage that the gradient and Hessian are com-
puted once before the dynamics execution. The symbolic regime is
convenient for debugging the code and observing the behavior of
the algorithm with simple functions. However, it is not practical for
processing complex functions with a large number of parameters.
Hence, automatic differentiation is also available through Config_FD.
Config_sym and Config_FD are defined in src/config.jl file.

The function compute_direction(point,i,S,conf::Config), which
is defined in src/algorithm.jl, is important because it is called mul-
tiple times. It implements the direction computation according to Def-
inition 16. Certain rows and columns are removed from the trans-
posed Hessian matrix to obtain a new matrix. Next, the nullspace of
this matrix is computed using the LinearAlgebra.jl package. If the
resulting subspace has dimension 1, the direction is uniquely deter-
mined, and its polarity is determined by computing the sign of the
determinant of this matrix.

The examples folder contains numerous example functions, along
with their results and sources. In the test folder, there are unit tests
for the package, covering both the algorithm’s functionality and in-
correct user inputs. More details can be found on GitLab.
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4
N U M E R I C A L E X P E R I M E N T S

4.1 matrix games

Many algorithms designed to find Nash equilibria are analysed on
their performance for matrix games. This is because matrix games
are commonly used and easy to create. The loss function for Min-
player is a multilinear function defined over the cartesian product of
simplices, also known as a simplotope. Since the multilinear function
is convex-concave, the Nash equilibrium corresponds to the min-max
critical point [11]. Additionally, all Nash equilibria share the same
loss value.

Using STON’R to solve matrix games is not straightforward since
it would require a mapping H from the unit hypercube to the simplo-
tope, which can be challenging to find due to the strong assumptions
outlined in Subsection 3.3. We may ask if STON’R executed over the
unit hypercube can give a solution outside the simplotope. We answer
in the affirmative in this section.

Consider a matrix game with the matrix A ∈ Rm×n, where the first
player (rows) has m pure strategies and the second player (columns)
has n pure strategies. Matrix A has entries which are losses of the
first player. The sets of mixed strategies are ∆m and ∆n, respectively.
The expected loss of the first player is determined by the multilinear
polynomial l : ∆m ×∆n → R, where

ℓ(θ̂θθ,ω̂ωω) = θ̂θθ
T

Aω̂ωω =

m∑
i=1

n∑
j=1

aijθiωj, θ̂θθ ∈ ∆m,ω̂ωω ∈ ∆n.

Since mixed strategies are elements of the standard simplices, we can
express θm = 1− (θ1 + · · ·+ θm−1) and ωn = 1− (ω1 + · · ·+ωn−1),
and consider the multilinear polynomial f with m+n− 2 indetermi-
nates θθθ = (θ1, . . . , θm−1), ωωω = (ω1, . . . ,ωn−1) given by

f(θθθ,ωωω) = ℓ((θθθ, 1− (θ1 + · · ·+ θm−1)), (ωωω, 1− (ω1 + · · ·+ωn−1))).

We can view f as a real function over K = [0, 1]m−1× [0, 1]n−1, where
θθθ ∈ [0, 1]m−1 and ωωω ∈ [0, 1]n−1. Observe that such θθθ corresponds to a
mixed strategy θ̂θθ ∈ ∆m iff ∥θθθ∥1 ⩽ 1. Let Θ = {θθθ ∈ [0, 1]m−1 | ∥θθθ∥1 ⩽ 1},
Ω = {ωωω ∈ [0, 1]n−1 | ∥ωωω∥1 ⩽ 1}. Finding a solution over the simplo-
tope is now reduced to finding a solution over the polytope Θ×Ω.
Executing STON’R over Θ×Ω would require a mapping H from the
unit hypercube K to the polytope Θ×Ω.
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We tried to run STON’R over K. A point in Θ×Ω returned by STON’R
is a solution to a given matrix game. This is because it lies in the
correct set, and as an equilibrium over K, it is also an equilibrium
over Θ×Ω. As we mentioned, STON’R can return a point outside
Θ×Ω. We compare the results given by STON’R and LP for this case.
We used LP solver [20].

Example 3 STON’R gives a lower loss than LP.

A =

 8.3 3.3

4.77 5.92

8.1 4.13



Method θθθ ωωω f(θθθ,ωωω)

STON’R (1, 0.98) (0.35) 5.05

LP (0.19, 0.81) (0.43) 5.43

Table 4.1: Comparison of the STON’R and LP

Example 4 LP gives a lower loss than STON’R.

A =

4.39 7.15 2.23

2.94 6.72 5.9

4.99 6.46 3.02



Method θθθ ωωω f(θθθ,ωωω)

STON’R (0, 0.4) (0.05, 1) 6.56

LP (0, 0) (0, 1) 6.46

Table 4.2: Comparison of the STON’R and LP

These two examples show that the optimal strategies given by STON’R
and LP can differ. This is because LP’s constraint set is a polytope,
while STON’R’s constraint set is a unit hypercube.
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4.2 comparison of the methods

We compare three methods: STay-ON-the-Ridge (STON’R) [2], Dou-
ble Oracle (DO) [7], and Regularized Nikaido-Isoda Stochastic Gra-
dient Descent (RNI-SGD) [3]. While STON’R and RNI-SGD converge
to an approximate solution to VI(V ,K), DO converges to an approxi-
mate mixed strategy Nash equilibrium (1) with a finite support. We
compare the exploitability of the results according to Definition 2.
The exploitability of a mixed strategy profile is computed similarly,
but the input function is the expected loss for Min-player. We use the
following implementations for computations:

• STON’R: https://gitlab.fel.cvut.cz/kosohmar/StayOnTheRidge.jl,

• RNI-SGD: https://gitlab.mff.cuni.cz/pijalekj/rni-sgd-solver,

• DO: https://github.com/sadda/Double_Oracle.

The results of RNI-SGD were provided by Jan Pijálek, a student at the
Faculty of Mathematics and Physics, Charles University.
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Nonconvex-nonconcave 2D function [21, Example 3]

f(x) = g(x1) +Ax1x2 − g(x2), where

g(z) = (z+ 1)(z− 1)(z+ 3)(z− 3), A = 11

x ∈ [−4, 4]2

STON’R parameters: γ = 10−4, ϵ = 0.1.

STON’R RNI-SGD

x∗ (−5.28 · 10−4, 1.24 · 10−4) (0, 0)

e(x∗) 50.014 50

Table 4.3: STON’R and RNI results

DO

p∗ 0.5 · δ−2.236 + 0.5 · δ2.236

q∗ 0.5 · δ−2.236 + 0.5 · δ2.236

e(p∗,q∗) 7.01 · 10−8

Table 4.4: DO results

Figure 4.1: STON’R trajectory

The point (0, 0) is the only point with zero gradient. It is not a local
min-max equilibrium since the point 0 is a local maximum in x1 and
a local minimum in x2.
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Nonconvex-nonconcave 2D function [21, Example 2]

f(x) = x21 + 3sin2(x1)sin
2(x2) − 4x22 − 10sin2(x2)

x ∈ [−10, 10]2

STON’R parameters: γ = 0.001, ϵ = 0.01.

STON’R RNI-SGD

x∗ (7.11 · 10−15, 7.11 · 10−15) (3.05 · 10−33, 0)

e(x∗) −1.15 · 10−27 9.29 · 10−66

Table 4.5: STON’R and RNI results

DO

p∗ δ0

q∗ δ0

e(p∗,q∗) 0

Table 4.6: DO results

Figure 4.2: STON’R trajectory

The point (0, 0) is the only saddle point of f.
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Convex-nonconcave 2D function [22, Example 17]

f(x) = 2x21 + x22 + 4x1x2 +
4

3
x32 −

1

4
x42

x ∈ [−1, 1]2

STON’R parameters: γ = 0.001, ϵ = 0.01.

STON’R RNI-SGD

x∗ (0.0016,−0.0016) (0, 0)

e(x∗) 2.096 2.083

Table 4.7: STON’R and RNI results

DO

p∗ 0.822 · δ−0.308 + 0.178 · δ−0.315

q∗ 0.609 · δ1 + 0.391 · δ−0.761

e(p∗,q∗) 2.51 · 10−5

Table 4.8: DO results

Figure 4.3: STON’R trajectory

The point 0 is a global minimum in x1 and a local minimum in x2.
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Nonconvex-concave 2D function [5, Example 3]

f(x) = x31 + 2x1x2 − x22

x ∈ [−1, 1]2

STON’R parameters: γ = 10−4, ϵ = 10−4.

STON’R RNI-SGD

x∗ (−1,−1) (−1,−1)

e(x∗) 2.089 2.089

Table 4.9: STON’R and RNI results

DO

p∗ 0.583 · δ−1 + 0.417 · δ0.5

q∗ 0.512 · δ−0.37 + 0.488 · δ−0.38

e(p∗,q∗) 2.19 · 10−5

Table 4.10: DO results

The point −1 is a local minimum in x1 (but not global, which in-
creases the exploitability) and a global maximum in x2.
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Nonconvex-nonconcave 6D function [23, Example 6.3 i]

f(x) =
3∑

i=1

(xi + x3+i) −

3∏
i=1

(xi − x3+i)

x ∈ [−1, 1]6

Coordinates 1-3 are minimizing and coordinates 4-6 are maximizing.
STON’R parameters: γ = 10−4, ϵ = 0.1.

STON’R RNI-SGD

x∗ (−1,−1, 1, 1, 1, 1) (1.5 · 10−8, 1.5 · 10−8, 1.5 · 10−8, 1, 1, 1)

e(x∗) 0 2

Table 4.11: STON’R and RNI results

DO

p∗ δ(−1,−1,1)

q∗ δ(1,1,1)

e(p∗,q∗) 0

Table 4.12: DO results

The point (−1,−1, 1, 1, 1, 1) is a (not unique) saddle point of f, while
the point (0, 0, 0, 1, 1, 1) is only min-max critical.
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Nonconvex-nonconcave 6D function [23, Example 6.3 ii]

f(x) = −x21−x22−x23+x24+x25+x26+x1x5−x2x4+x1x6−x3x4+x2x6−x3x5

x ∈ [−1, 1]6

Coordinates 1-3 are minimizing and coordinates 4-6 are maximizing.
STON’R parameters: γ = 10−4, ϵ = 0.01.

STON’R RNI-SGD

x∗ (−1,−1,−1,−1,−1,−1) (−1, 1,−1, 1,−1, 1)

e(x∗) 8 0

Table 4.13: STON’R and RNI results

DO

p∗ δ(−0.004,0,0.004)

q∗ δ(0.002,0.005,0.002)

e(p∗,q∗) 10−4

Table 4.14: DO results

The point (−1, 1,−1, 1,−1, 1) is a (not unique) saddle point of f, while
the point (−1,−1,−1,−1,−1,−1) is only min-max critical.
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Convex-nonconcave 2D function [24, Example 1]

f(x) = −2x1x
2
2 + x21 + x2

x ∈ [−1, 1]2

STON’R parameters: γ = 0.001, ϵ = 0.01.

STON’R RNI-SGD

x∗ (0.394, 0.632) (0.397, 0.630)

e(x∗) 1.05 · 10−7 ≈ 0

Table 4.15: STON’R and RNI results

DO

p∗ 0.736 · δ0.398 + 0.264 · δ0.395

q∗ 0.526 · δ0.631 + 0.474 · δ0.629

e(p∗,q∗) 1.83 · 10−6

Table 4.16: DO results

Figure 4.4: STON’R trajectory

The point ( 3

√
1
4 , 3

√
1
42 ) is the only saddle point of f.
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Nonconvex-nonconcave 2D function [25, Figure 1]

f(x) = (x1 − 0.5)(x2 − 0.5) +
1

3
exp

(
−

(
x1 −

1

4

)2

−

(
x2 −

3

4

)2
)

x ∈ [0, 1]2

STON’R parameters: γ = 0.001, ϵ = 0.01.

STON’R RNI-SGD

x∗ (0.419, 0.607) (0.403, 0.597)

e(x∗) 0.056 0.074

Table 4.17: STON’R and RNI results

DO

p∗ 0.707 · δ1 + 0.293 · δ−1

q∗ 0.896 · δ0.445 + 0.104 · δ0.452

e(p∗,q∗) 1.65 · 10−6

Table 4.18: DO results

Figure 4.5: STON’R trajectory

The point ≈ (0.4, 0.6) is not a saddle point of the function f according
to Definition 1. However, it does satisfy 1 when considering a rotated
coordinate system.
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Convex-nonconcave 2D function [25, Example 2.2]

f(x) = (x41x
2
2 + x21 + 1)(x21x

4
2 − x22 + 1)

x ∈ [−1, 1]2

STON’R parameters: γ = 0.001, ϵ = 0.01.

STON’R RNI-SGD

x∗ (−0.002,−0.002) (0, 0)

e(x∗) 8 · 10−6 0

Table 4.19: STON’R and RNI results

DO

p∗ δ0

q∗ δ0

e(p∗,q∗) 0

Table 4.20: DO results

Figure 4.6: STON’R trajectory

The point (0, 0) is the only saddle point of f.
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5
C O N C L U S I O N

5.1 ston’r implementation and extensions

We developed an implementation of the STON’R algorithm in Julia.
We run STON’R over a wide range of examples, available on GitLab:
https://gitlab.fel.cvut.cz/kosohmar/StayOnTheRidge.jl.
Moreover, we formulated an extension of STON’R to the hyperrect-
angle and discussed the challenge of extending the algorithm to the
more general convex sets. We tried to run STON’R over the unit hy-
percube to solve matrix games and discovered that it may produce
results which don’t represent probabilities. Building upon this work
could involve exploring the potential of applying STON’R to large
matrix games, and more broadly, to games with simplex strategy
space for each player.

5.2 comparison of the methods

We presented results given by three methods: STON’R, RNI-SGD,
and DO. The method DO achieved low exploitability across all ex-
amples as it is designed to minimize exploitability. The results given
by STON’R and RNI-SGD were similar in almost all cases, except the
6D examples. When the methods identified a saddle point, the ex-
ploitability of the results was zero. Conversely, if the methods found
a min-max critical point that is not a saddle point, the exploitability
was nonzero.

5.3 generalized min-max critical points

We extended the concept of the min-max critical point to locally Lip-
schitz functions, proved its existence over convex compact set, and
showed similar properties that hold for the smooth min-max critical
point. This extension is motivated by the practical problems, such as
those encountered in deep neural networks, where the loss functions
may not be differentiable at a set of points with measure zero. Further
research could explore the game-theoretical perspective of the gener-
alized min-max critical points, investigating whether they represent
an approximate local min-max equilibrium, or developing methods
for finding these points.

39

https://gitlab.fel.cvut.cz/kosohmar/StayOnTheRidge.jl


B I B L I O G R A P H Y

[1] Constantinos Daskalakis, Stratis Skoulakis, and Manolis Zam-
petakis. “The complexity of constrained min-max optimization.”
In: Proceedings of the 53rd Annual ACM SIGACT Symposium on
Theory of Computing. 2021, pp. 1466–1478.

[2] Constantinos Daskalakis, Noah Golowich, Stratis Skoulakis, and
Emmanouil Zampetakis. “Stay-on-the-ridge: Guaranteed con-
vergence to local minimax equilibrium in nonconvex-nonconcave
games.” In: The Thirty Sixth Annual Conference on Learning The-
ory. PMLR. 2023, pp. 5146–5198.

[3] Ioannis Tsaknakis and Mingyi Hong. “Finding first-order nash
equilibria of zero-sum games with the regularized nikaido-isoda
function.” In: International Conference on Artificial Intelligence and
Statistics. PMLR. 2021, pp. 1189–1197.

[4] Maher Nouiehed, Maziar Sanjabi, Tianjian Huang, Jason D Lee,
and Meisam Razaviyayn. “Solving a class of non-convex min-
max games using iterative first order methods.” In: Advances in
Neural Information Processing Systems 32 (2019).

[5] Meisam Razaviyayn, Tianjian Huang, Songtao Lu, Maher Nouiehed,
Maziar Sanjabi, and Mingyi Hong. “Nonconvex min-max opti-
mization: Applications, challenges, and recent theoretical ad-
vances.” In: IEEE Signal Processing Magazine 37.5 (2020), pp. 55–
66.

[6] Constantinos Daskalakis, Paul W Goldberg, and Christos H
Papadimitriou. “The complexity of computing a Nash equilib-
rium.” In: Communications of the ACM 52.2 (2009), pp. 89–97.

[7] Lukáš Adam, Rostislav Horčík, Tomáš Kasl, and Tomáš Kroupa.
“Double oracle algorithm for computing equilibria in continu-
ous games.” In: Proceedings of the AAAI Conference on Artificial
Intelligence. Vol. 35. 6. 2021, pp. 5070–5077.

[8] J v. Neumann. “Zur theorie der gesellschaftsspiele.” In: Mathe-
matische annalen 100.1 (1928), pp. 295–320.

[9] Irving L Glicksberg. “A further generalization of the Kakutani
fixed theorem, with application to Nash equilibrium points.”
In: Proceedings of the American Mathematical Society 3.1 (1952),
pp. 170–174.

[10] Chi Jin, Praneeth Netrapalli, and Michael Jordan. “What is local
optimality in nonconvex-nonconcave minimax optimization?”
In: International conference on machine learning. PMLR. 2020, pp. 4880–
4889.

40



[11] R Tyrrell Rockafellar and Roger J-B Wets. Variational analysis.
Vol. 317. Springer Science & Business Media, 2009.

[12] Francisco Facchinei and Jong-Shi Pang. Finite-dimensional varia-
tional inequalities and complementarity problems. Springer, 2003.

[13] Giancarlo Bigi, Lorenzo Lampariello, Simone Sagratella, and
Valerio Giuseppe Sasso. “Approximate variational inequalities
and equilibria.” In: Computational Management Science 20.1 (2023),
p. 43.

[14] Francis Clarke. Functional analysis, calculus of variations and opti-
mal control. Vol. 264. Springer, 2013.

[15] SC Fang and EL Peterson. “Generalized variational inequali-
ties.” In: Journal of Optimization Theory and Applications 38 (1982),
pp. 363–383.

[16] Frank H Clarke. “Generalized gradients and applications.” In:
Transactions of the American Mathematical Society 205 (1975), pp. 247–
262.

[17] A Hitchhiker’s Guide. Infinite dimensional analysis. Springer, 2006.

[18] Frank H Clarke. Optimization and nonsmooth analysis. SIAM, 1990.

[19] Tomáš Kroupa and Ondrej Majer. “Optimal strategic reasoning
with McNaughton functions.” In: International journal of approx-
imate reasoning 55.6 (2014), pp. 1458–1468.

[20] David Avis, Gabriel D Rosenberg, Rahul Savani, and Bernhard
Von Stengel. “Enumeration of Nash equilibria for two-player
games.” In: Economic theory 42 (2010), pp. 9–37. url: http://
banach.lse.ac.uk.

[21] Taoli Zheng, Linglingzhi Zhu, Anthony Man-Cho So, José Blanchet,
and Jiajin Li. “Universal Gradient Descent Ascent Method for
Nonconvex-Nonconcave Minimax Optimization.” In: Advances
in Neural Information Processing Systems 36 (2024).

[22] Leonard Adolphs, Hadi Daneshmand, Aurelien Lucchi, and
Thomas Hofmann. “Local saddle point optimization: A curva-
ture exploitation approach.” In: The 22nd International Confer-
ence on Artificial Intelligence and Statistics. PMLR. 2019, pp. 486–
495.

[23] Jiawang Nie, Zi Yang, and Guangming Zhou. “The saddle point
problem of polynomials.” In: Foundations of Computational Math-
ematics (2021), pp. 1–37.

[24] Tomáš Kroupa and Tomáš Votroubek. “Multiple Oracle Algo-
rithm to Solve Continuous Games.” In: International Conference
on Decision and Game Theory for Security. Springer. 2022, pp. 149–
167.

41

http://banach.lse.ac.uk
http://banach.lse.ac.uk


[25] Panayotis Mertikopoulos, Bruno Lecouat, Houssam Zenati, Chuan-
Sheng Foo, Vijay Chandrasekhar, and Georgios Piliouras. “Opti-
mistic mirror descent in saddle-point problems: Going the extra
(gradient) mile.” In: arXiv preprint arXiv:1807.02629 (2018).

used software

The following software was used in the development of this thesis:

• ChatGPT (OpenAI)1 for text feedback and rephrasing suggestions

• Grammarly2 for grammar and spelling checking

1 https://openai.com/
2 https://www.grammarly.com/
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