Bachelor Project

Czech

Technical
University
in Prague

F 3 Faculty of Electrical Engineering
Department of Computer Science

Al voice-guided app for runners

Krystof Gartner

Supervisor: Ing. Karel Frajtak, Ph.D.
Field of study: Open Informatics
Subfield: Software

May 2024

ii

EvuT ZADANI BAKALARSKE PRACE

CESKE VYSOKE
UCENIi TECHNICKE
V PRAZE

I. OSOBNI A STUDIJNi UDAJE

4 R
PFijmeni: Gartner Jméno: Krystof Osobni &islo: 507396

Fakulta/Ustav: Fakulta elektrotechnicka
Zadavajici katedra/ustav: Katedra pocitactl

Studijni program: Oteviena informatika

Specializace: Software
k Y
Il. UDAJE K BAKALARSKE PRACI
\
Nazev bakalarské prace:
Bézecka aplikace s Al hlasovym priivodcem
Nazev bakalafské prace anglicky:
Al voice-guided app for runners
Pokyny pro vypracovani:
Bakalarska prace se zaméfuje na vyvoj prototypu mobilni aplikace uréené pro béZce. Hlavnim cilem prace je navrhnout
a vyvinout aplikaci, ktera b&éhem vykonu poskytuje kontextové relevantni a motivujici hlasové pokyny generované umélou
inteligenci. Tyto pokyny budou adaptabilni a schopné reagovat na realny vykon uZivatele, jako je tempo, vzdalenost a
Cas. Soucasti bude také dikladny vyzkum existujicich bézeckych aplikaci, stejné jako analyza potfeb cilové skupiny
uzivateld. Tyto informace budou slouzit jako zaklad pro design a funkénost aplikace.
Metodologicky bude prace zahrnovat vyvoj softwaru pomoci vhodnych programovacich nastroji a jazykd pro mobilni
platformy, navrh intutivniho uzivatelského rozhrani, implementaci backendové systému schopného obousmérné komunikace,
integraci TST technologie a NLP frameworku nebo napojeni na API textového Al modelu, a provedeni uzivatelskych testl
pro sbér zpétné vazby a iterativni vylepSeni aplikace.
Ocekavanym vysledkem je funkéni prototyp mobilni aplikace s adaptivnim Al hlasovym priivodcem, doprovazeny podrobnou
dokumentaci procesu vyvoje. Tato dokumentace bude zahrnovat popis designovych rozhodnuti, pfekonanych vyzev a
feSeni problému. Dale bude obsahovat analyzu uzivatelského testovani a doporuceni pro budouci vyvoj aplikace.
Seznam doporucené literatury:
JANSSEN, Mark, et al. Who uses running apps and sports watches? Determinants and consumer profiles of event runners’
usage of running-related smartphone applications and sports watches. PloS one, 2017, 12.7: e0181167.
VICKEY, Ted; BRESLIN, John; WILLIAMS, Antonio. Fitness--There's an App for That: Review of Mobile Fitness Apps.
International Journal of Sport & Society, 2013, 3.4.
SHEI, Ren-Jay. Competitive influences of running applications on training habits. The Physician and sportsmedicine, 2018,
46.4: 414-415.
Jméno a pracovisté vedouci(ho) bakalarské prace:
Ing. Karel Frajtak, Ph.D. laborator inteligentniho testovani systémt FEL
Jméno a pracovisté druhé(ho) vedouci(ho) nebo konzultanta(ky) bakalarské prace:
Datum zadani bakalaiské prace: 01.02.2024 Termin odevzdani bakalafské prace: 24.05.2024
Platnost zadani bakalarské prace: 21.09.2025
Ing. Karel Frajtak, Ph.D. podpis vedouci(ho) ustavu/katedry prof. Mgr. Petr Pata, Ph.D.
k podpis vedouci(ho) prace podpis dékana(ky))

CVUT-CZ-ZBP-2015.1 Stranalz?2 © CVUT v Praze, Design: CVUT v Praze, VIC

ll. PREVZETi ZADANI

Student bere na védomi, Ze je povinen vypracovat bakalafskou praci samostatné, bez cizi pomoci, s vyjimkou poskytnutych konzultaci.
Seznam pouZzité literatury, jinych prament a jmen konzultantd je tfeba uvést v bakalarské praci.

Datum pfevzeti zadani Podpis studenta

CVUT-CZ-ZBP-2015.1 Strana 2z 2 © CVUT v Praze, Design: CVUT v Praze, VIC

Acknowledgements

I would like to express my deepest grat-
itude to my supervisor, Ing. Karel Fra-
jtak, Ph.D., for his invaluable guidance
and insightful suggestions throughout this
project. I am also profoundly thankful to
my family for their unwavering support
and to my girlfriend for her dedication
during our thorough study sessions. I also
extend my appreciation to all the indi-
viduals who participated in testing my
application. Lastly, I am grateful to the
maintainers of the open-source libraries
and tools that were essential to my work.

Declaration

I hereby declare that I have elaborated
this thesis on my own and that I
mentioned all the information sources
and literature that have been used
in accordance with the Guideline for
adhering to ethical principles in the
course of elaborating an academic final
thesis.

In Prague on 23 May 2024

Krystof Gértner

Abstract

This bachelor’s thesis focuses on the devel-
opment of a mobile application designed
for runners, featuring a coach that pro-
vides contextually relevant and motivat-
ing voice narration during runs. These
coaching entrances are generated by ar-
tificial intelligence and can adapt to the
user’s real-time performance. The applica-
tion allows users to set various parameters
and save runs through a user account.

The text focuses on exploring market
alternatives and a comprehensive analy-
sis of application requirements, compar-
ing technological options, designing the
software system, and detailing the imple-
mentation itself. A significant portion of
the text is devoted to the integration of
large language models and the associated
challenges. A chapter is also dedicated to
the results of testing the application with
real users.

The implementation uses TypeScript
and React Native, Expo, NativeWind,
Node.js, tRPC, and Drizzle. The applica-
tion is connected to external services from

OpenAl, OpenRouter, Clerk, and AWS.

Keywords: Mobile Application
Development, AT Coaching, Running
App, Adaptive Technology, Large
Language Model, Text-to-speech
narration, Software project, API
Integration

Supervisor: Ing. Karel Frajtak, Ph.D.

vi

Abstrakt

Tato bakalarska prace se zaméruje na vy-
voj mobilni aplikace urcené pro bézce,
ktera disponuje koucem poskytujicim kon-
textové relevanti a motivujici hlasové po-
kyny béhem béhu. Tento doprovod je ge-
nerovan umeélou inteligenci a dokéze se
adaptovat zivé na realny vykon uzivatele.
Aplikace poskytuje moznost nastavovat
ruzné parametry a béhy ukladat pres dany
uzivatelsky tcet.

Text se zaméruje na pruzkum alterna-
tiv na trhu a celkovou analyzu pozadavku
aplikace, porovnani technologickych moz-
nosti, navrhu softwarového systému a de-
tailné samotné implementaci. Vétsi cast
textu je vénovana integraci velkych jazy-
kovych modelt a tiskalim s tim spojenymi.
Kapitola je téz vénovana vystupum testo-
vani aplikace na realnych uzivatelych.

Implementace vyuziva jazyku Type-
Script a knihoven React Native, Expo, Na-
tiveWind, Node.js, tRPC a Drizzle. Apli-
kace je napojena na externi sluzby od
OpenAl, OpenRouter, Clerk a AWS.

Kli¢ova slova: Vyvoj mobilnich
aplikaci, Al koucovani, Aplikace pro béh,
Adaptivni technologie, Velky jazykovy
model, Text-to-speech doprovod,
Softwarovy projekt, Integrace API

Pteklad nazvu: Bézeckd aplikace s Al
hlasovym privodcem

Contents

1 Introduction

2 Running applications

2.1 Existing alternatives
2.1.1 Nike Run Club
2.1.2Peloton
2.1.3 Zombies, Run!
2.1.4 Comparative Analysis Results

2.2 User requirements
2.2.1 Functional requirements
2.2.2 Non-Functional Requirements

3 Technology analysis

3.1 Mobile application

3.2 Server and communication

3.3 Large Language Model
3.3.1 State of the art
3.3.2 Privacy concerns
3.3.3 Open-source models
3.3.4 OpenRouter
3.3.5 Conclusion

4 Design

4.1 User interface
4.1.1 Low-fidelity prototyping
4.1.2 UI Components............
4.1.3 Color scheme

4.2 Software architecture..........

5 Implementation
5.1 Dependencies
5.1.1 Client-side dependencies
5.1.2 Server-side dependencies
5.2 Project structure
5.3 Client-Server communication . . .
5.4 Authentication
5.5 Persistence...................
5.5.1 Client-side state
5.5.2Redis.............. ...
5.5.3 Relational database
5.6 Location tracking
5.7 LLM Integration..............
5.7.1 Application logic...........
5.7.2 Settings.
5.7.3 Prompt Engineering
5.7.4 Potential issues
5.7.5 Measurements
5.8 Deployment
5.8.1 Mobile application

1l

HSREEEEREEEEREERENEEDN BEEEEANE BREREEH loe namas & nm@E

vii

5.8.2 Hosting services
5.83 Scaling

6 Testing

6.1 Methodology
6.2 Test group
6.3 User testing results
6.4 Prompt testing

7 Conclusion

7.1 Evaluation
7.2 Potential enhancements........
7.3 Future plans

Bibliography

A List of abbreviations

B Application demonstration
C LLM dialog transcript

D Software usage declaration

FEEEBREEHE BEELESE #EE

Figures
2.1 Nike Run Club screenshot of the
running screen
2.2 Nike Run Club screenshot of the
run starting screen
2.3 Screenshots from the Zombies,
Run! application.................

3.1 Overview of the React Native

architecture
3.2 LLM Quality comparison
3.3 LLM Speed comparison.
3.4 LLM Price comparison

4.1 Example of the low-fidelity
prototype

4.2 React Native Reusables demo .. [18
4.3 Button component with applied
color scheme

4.4 Component diagram of the system

architecture
4.5 Activity diagram of completing a

TUN © oottt e e e 21
5.1 Project’s directory structure ...

5.2 Example of a Redis entry from the

Redis Insight monitoring tool.
5.3 Deployment diagram
5.4 Output of Expo start command
5.5 Redis monitor dashboard on

Upstash

B.1 Application screenshots of running
screens
B.2 Application screenshots of running
history and run detail
B.3 Application screenshots of settings
and authentication

viii

Tables

5.1 Performance, token usage and costs

measurements for different LLMs . [35
6.1 Test participants
6.2 Uncovered issues or bugs found

throughout user testing..........

6.3 Suggestions, proposed
improvements and new features from
the testers

Chapter 1

Introduction

Mobile fitness applications offer a significant opportunity to promote exercise
among the general population. Although not everyone has the means to
attend coaching sessions or join a sports club, almost everyone has access to
a mobile phone, and downloading an application is straightforward. Fitness
apps offer significant psychological and behavioral benefits. They help users
establish and maintain healthy habits through regular reminders and progress
tracking, making it easier to stay committed to their fitness goals.

Running applications, in particular, have seen significant growth in the past
decade, with various features that positively enhance the intrinsic motivation
of runners[1]. One particularly interesting feature is the use of audio coaches,
often pre-recorded by real athletes, which guide users during their runs.
Building on this concept, there is potential to integrate artificial intelligence
in the coaching that can adapt to a user’s performance, thereby increasing
engagement levels and providing further incentives for runners.

Having personally used numerous running applications, the Nike Run
Club has been the most impactful for me. It introduced me to the world
of running and taught me many valuable lessons, particularly through its
guided audio runs, which helped me enjoy running in new ways. These guided
runs taught me how to avoid exhaustion and maintain a consistent running
habit. However, the pre-recorded nature of these audio guides means they
are static and always deliver the same messages at predefined points. This
lack of customization based on user needs and preferences (e.g., frequency
and intensity of guidance) and their inability to react to significant changes
in pace or elevation conditions limit their effectiveness.

Recognizing the potential for more dynamic coaching, I quickly found
that there were no existing applications with this capability. Furthermore,
there is currently limited research on integrating Al in fitness applications|2],
particularly in this manner. The primary goal of this project is to analyze
existing technology and develop a fully functional prototype of an application
with this feature. The result will be a comprehensive software project in the
form of a mobile application targeted at runners of various experience levels.

In this paper, I will perform an analysis of existing running applications and
user needs. Based on this analysis, I will make decisions on the appropriate
technology and create designs for the application’s functionality. Then, a

1. Introduction

detailed description of the final implementation is provided and user testing
is carried out to evaluate the quality of the implementation. Given the crucial
role of artificial intelligence in this project, I will also explore various options
in this space, address the privacy of user data related to Al providers, and
discuss techniques and pitfalls of integrating this technology.

This project aims not only to create a software application but also to
map the current landscape of artificial intelligence for software integrations
and to uncover the potential of using such technology in the fitness context.
A successful implementation may be able to transform the fitness industry
by making personalized coaching more accessible and effective. For users,
personalized real-time feedback and adaptive challenges offered by Al coaches
can enhance motivation, prevent injuries, and promote general wellness.
Ultimately, this project can change the way people engage in exercise by
fostering a more informed approach to health and exercise.

Chapter 2

Running applications

According to a study analyzing users of running apps and sport watches,
approximately 55% of runners reported using a dedicated running app.[3] For
casual runners who do not participate in many events, are not in any clubs,
and do not consider running their primary sport, maintaining motivation and
consistency can be challenging. Running apps are designed to address this
issue, helping casual runners stay engaged and avoid quitting. Compared to
sport watches, apps are a more economical option, although they lack built-in
heart rate measurement. The main advantages of using these apps are the
instant feedback and insights they provide, such as data on distance, pace,
and duration. Running technology can also educate users and reduce the
likelihood of injury.

To further motivate runners, some applications include coaching audio
tracks that play during the run. These coaches not only provide updates on
the run’s status (e.g., remaining time), but also offer tips on maintaining
proper running form and mental focus. They serve as positive distractions,
making the run more engaging and helping runners to reach the finish line.

B 21 Existing alternatives

The most popular running applications include Runkeeper, Strava, Adidas
Runtastic, and Nike Run Club. These apps track users’ locations with GPS,
save detailed run history logs, and provide maps of completed routes. In
addition to the general features they share, the specific functionalities and
user interface designs of these apps have inspired this project’s application.

Since most existing apps do not offer guided runs, this section will focus
on those that do to some extent. The rest only provide short, template audio
messages generated with live run data. Although dynamic, these messages
are hard coded (e.g. "The current pace is <x> min/km.") and primarily
serve to eliminate the need for runners to look at their watch or phone while
exercising.

2. Running applications

B 2.1.1 Nike Run Club

Nike Run Club (NRC)}is one of the most widely used running applications
and served as a primary model for this thesis. The application is completely
free with no in-app purchases. It features a polished, user-friendly interface
that changes accent color based on the overall run distance. The application
focuses on motivating runners through social participation, challenges, and
training plans primarily aimed at casual runners. It also allows users to
attach useful information to each run, such as custom notes, the shoes worn,
the terrain surface, and the effort level.

A standout feature of NRC are its already mentioned excellent guided
runs by renowned Nike coaches. These audio recordings are well-thought-out,
follow an overall theme, and have specific duration or distance goals. There
are even runs specifically designed for beginners. The main types of runs
include recovery runs, long runs, fartlekE], and interval training. Coaches
provide short monologues at predetermined points, often leaving the runner
with something to think about or a specific aspect of the run to focus on.
The audio transitions are smooth and not overly distracting.

Connect Music

Figure 2.1: Nike Run Club screenshot of the running screen

1lhttps ://www.nike. com/cz/en/nrc—appl
“Fartlek is an interval training method that alternates between fast and slow running.

4

https://www.nike.com/cz/en/nrc-app

2.1. Existing alternatives

22:329 all = @)

Run

Quickstart Guided Runs

00:10

Hours : Minutes

& | SHRT X

Time

0 2 & dll

Run

Figure 2.2: Nike Run Club screenshot of the run starting screen

B 2.1.2 Peloton

Peloton?| focuses more on indoor exercises such as cycling, yoga, rowing,
treadmill workouts, and stretching. It offers dedicated audio and video classes
by expert instructors for all activity categories, which can be combined to
create comprehensive training sessions. No Peloton equipment is required for
these classes, but a monthly subscription is necessary.

Recently, Peloton introduced outdoor walks and runs* similar to the guided
NRC runs. These classes are generally shorter than an hour and serve as
warm-ups or intense performance sessions. As Peloton is not solely a running
app, it lacks some dedicated features, and the overall experience may seem
incomplete (e.g., inaccurate distance tracking, high battery consumption).

3https://www.onepeloton.com/app
4https://www.onepeloton.com/classes/outdoor-workout

https://www.onepeloton.com/app
https://www.onepeloton.com/classes/outdoor-workout

2. Running applications

B 2.1.3 Zombies, Run!

Zombies, Run!’ takes a unique approach to increasing the user’s motivation
by gamifying the activity. Set in a post-apocalyptic world, the app narrates
runs as though the user were a survivor. Runners complete various tasks
while listening to voice actors playing other survivors describe scenes and
play out dialogues, almost as an audiobook.

The app involves rapid speed shifts during runs, with higher speeds leading
to the collection of items useful for building a survivor base and unlocking
new episodes. Occasionally, zombies "chase" the runner, and a slow pace
results in the loss of collected items. This clever mechanism immerses runners
in the fictional world even more, while it motivates them uniquely. Although
the voice-acted parts are static, this functionality is the closest instance of
application reacting to the runner’s performance that I found throughout this
research.

23:2%0C Box aw

This might just be the reason ty Dist ti
Istraction

0.00 km

Distance

t o
< Workaut, L®FBTownship at all. You piafed u

TIMELINE

Started
Jolly Alpha Five Niner

00:42 0'00"/km

Time Pace

Incoming transmission

%0 min Survived the crash.

Paused
for 1 min, 1sec

U SEVERKY

Mo,
. Rayg
kg

Collected supply

i min A Tool Box

Collected supply

#5 min A Tin Of Food

Incoming transmission
+ 6 min Heading for

®Maps Leosl. £l
Gryphon Tower <

Chamiiton

Incoming transmission

Collected supply Calling all Runners

+8min A Baseball Bat

Cnllartad ciinnliac

S (N =

End Run

Figure 2.3: Screenshots from the Zombies, Run! application

Shttps://zrx.app/

https://zrx.app/

2.2. User requirements

B 2.1.4 Comparative Analysis Results

There are many mobile applications for both iOS and Android that offer a
great experience for runners. Although more apps are beginning to incorporate
pre-recorded audio coaching, none yet dynamically generates audio content
in real time based on the user’s effort and specific settings. I believe that this
project is the first application with such features and should be considered
completely novel.

B 22 User requirements

The potential user base of the application is quite diverse. There is no
restriction on age, gender, or athletic form, as the settings and conditions can
be adjusted freely. More experienced and professional athletes will probably
see less value in both the accompanying background audio and motivational
aspects. Hence, the primary focus should first be on the wider group of
beginner to moderate runners.

The lists bellow model specific base requirements that the users will expect
the app to satisfy. Additional extra features will be discussed in later parts.
There is no point in including a use-case diagram, as there is only one user
role, and it would merely mirror the listed requirements.

B 2.2.1 Functional requirements

1. User Registration and Authentication: Users must be able to
register and log in to the application. The authentication part must also
allow for the reset of forgotten password, the change of password, and
the deletion of the account.

2. Performance Tracking: Precisely capture and display statistics such
as pace, distance, and time, while the run is ongoing.

3. User Interface: An intuitive and easy-to-navigate user interface will
be provided. The simple controls and clarity must be especially high on
the screen displayed during runs.

4. Voice Guidance: The application must provide contextually relevant
voice guidance in real time during runs.

5. Adaptive Feedback: Voice guidance must adapt based on user perfor-
mance metrics such as speed, distance covered, and running duration.
The system should adjust motivational messages based on the user’s
historical performance and goals.

6. Customizability: Settings will offer a variety of options for customizing
the audio guide, including the frequency of the voice entrances and the
topic of the run.

2. Running applications

7. Saving the data: Store historical performance data for user review.
Include all the important information and the map of the completed
route.

8. Transferability: Running data should not only be stored locally, but
also transferable to other devices with the user account.

B 2.2.2 Non-Functional Requirements

1. Performance: The app should have minimal latency and be responsive
to user actions. Quick loading times for user interfaces and during the
interaction must be ensured.

2. Usability: The application must be user-friendly and suitable for users
of various running experiences.

3. Reliability: The application must be reliable, with minimal downtime.
Voice guidance and tracking features should function under various
environmental conditions.

4. Scalability: The infrastructure should support an increasing number of
users and simultaneous connections.

5. Security: User data must be sufficiently protected by taking security
measures to ensure privacy. Compliance with data protection regulations
should not be neglected. The minimum amount of user data should be
transferred to the software external service.

6. Portability: The application should be compatible across different
mobile platforms (10S, Android) and with the major and future versions.

Chapter 3

Technology analysis

The crucial components of the proposed software system are a mobile ap-
plication serving as a presentation layer, a server handling persistence and
manipulation with external APIs, and a Large Language Model (LLM) for
generating the narration content. In this part, I will describe the main
technological choices to building such system and justify which ones are
the most appropriate. All the remaining individual libraries and other mi-
nor frameworks will be heavily influenced by the decision of those three
technologies.

B 3.1 Mobile application

The substantial part of the application logic will be solely on the client-side.
User interfaces for all the different screens and the navigation between them
must be created. It is also necessary to access the mobile’s local storage to
persist some application data without the need to fetch them from the server.
Many of the mobile’s APIs will be accessed, certainly the GPS location sensor,
the instantaneous speed sensor, and background audio playback.

When there is sufficient time and developer capacity, building dedicated
native apps for both major mobile operating systems should result in a superior
product. With removed abstractions, there is more room for optimization,
and the Ul can have a unified platform-specific feel. The leading programming
languages for native development on Android and iOS are Kotlin and Swift,
respectively. To cover the majority of users, it does not suffice to build only
for one of the operating systems. Furthermore, as a single developer and with
regard to the scope of this thesis, developing separate applications for both
platforms is neither suitable nor feasible.

The logical conclusion is to choose a cross-platform framework for building
applications. The required workload can be significantly reduced by sharing
a single codebase for multiple target environments. The most widely used
and stable solutions currently are React Native!| with 116k stars on GitHub
and Flutter?| with 162k stars.

Ihttps://react.dev/
“https://flutter.dev/

https://react.dev/
https://flutter.dev/

3. Technology analysis

React Native was released by Facebook in 2015. It is essentially a mobile
port of the React framework that is used to build reactive web applications
in JavaScript. It slightly modifies the original framework functionality and
creates a binding to the native rendering API, so the final application has
a native look. Due to its popularity, a large ecosystem of useful libraries
has grown around it. Additional development boost can be provided by
using Expo?, which is another platform built on top of React Native. It
substantially simplifies the development and testing process with dedicated
developer tools. Additionally, Expo offers an extensive suite of libraries in its
SDK [to make working with mobile subsystems easier.

App Platform OS
JavaScript : OEM < | Canvas ’
! Widgets
E & == Events l
@ :
b "
d_%;:fn @ : Location Camera
<—5—> Audio Sensors
Components :
Tree : Bluetooth etc.
JS Thread Native Thread

Figure 3.1: Overview of the React Native architecture[4]

Flutter is a Ul framework from Google released in 2018. It uses the Dart
language and takes a different approach to multi-platform. The code is
compiled ahead of time and later rendered on the device by an engine also
provided by the framework. Because of that, the application looks the same
in every environment. In this way, it is easier to optimize for performance and
eliminate bugs than with React Native. Thus, Flutter may perform better
with respect to CPU and memory usage. [5]

I decided to use React Native for this project, mainly because of the Expo
framework. It reduced the complexity of deploying a mobile application
while providing an extremely useful set of libraries. Moreover, as opposed to
Flutter, the newly learned skills can be directly translated to the React web
development environment.

As JavaScript is a dynamically typed language, where runtime errors due
to incorrect typing are a real danger, I determined that it would be beneficial
to use TypeScript®. It is a superset of JavaScript that adds a type system
layer. A new compiling build step is added, but in return, static analysis is
enabled and the chance of bugs is lowered.

3https://expo.dev/
4Battery, Map, Audio-Video, Location, Haptics, File System and many others.
Shttps://www.typescriptlang.org/

10

https://expo.dev/
https://www.typescriptlang.org/

3.2. Server and communication

. 3.2 Server and communication

The selection of the appropriate back-end technology for this project was
relatively straightforward. I decided to use Node.js® because of its efficient
performance and the ability to seamlessly integrate in various environments.
It can also be easily deployed across multiple hosting services, as it is a
popular choice in the back-end development space. My primary motivation
for choosing Node.js is the ability to maintain a consistent full-stack codebase
throughout the project by utilizing a single language, TypeScript. This
continuity ensures that both the client and the server side of the applica-
tion are developed using the same programming language, which simplifies
development and maintenance.

To facilitate communication between the client and the server, adopting
tRPC’ can be highly beneficial. tRPC allows for type-safe API calls, which
means that the types defined in TypeScript are preserved end-to-end from
the client to the server without requiring separate validation or data transfor-
mation layers. This type safety significantly reduced the risk of runtime type
errors and enhanced the overall reliability of the application. tRPC borrows
some concepts from both REST and GraphQL and tRPC integrates natu-
rally with Node.js and TypeScript environments. It provides a streamlined
development process and efficient data handling capabilities.

B 33 Large Language Model

The foundation of the application is the large language model responsible
for generating content for the audio coach. As this is a rapidly evolving
field, staying current with technology trends is crucial. The performance and
quality of responses from different models, both proprietary and open source,
can vary significantly. The required LLM does not need advanced capabilities
such as document querying or external function calls, which allows us to
choose from a wide range of models. However, several key factors must be
taken into account before making a selection.

The following is a detailed list of the primary parameters and requirements
for the LLM used in this application.

8 General quality of responses: Essential for the appeal of the appli-
cation, the quality of LLLM responses must engage the user effectively.
While not every response needs to be perfect, they should generally
be coherent and engaging. Occasional minor inaccuracies or variability
should not negatively impact the user experience or the functionality of
the application.

8 Throughput and latency: Immediate feedback is pivotal in a running
context, meaning response times should be short to prevent conveying

Shttps://nodejs.org/en
"https://trpc.io/

11

https://nodejs.org/en
https://trpc.io/

3. Technology analysis

outdated information during use. Although high-quality responses are
desired, the system should deliver them in a reasonable timeframe, ideally
under 30 seconds.

Cost: Cost-efficiency is important, typically calculated by the volume of
data in tokens processed and outputted by the LLM. Although higher
costs often correlate with better performance, finding a balanced solution
is vital. The costs should be taken into account with respect to the
potential future business model and scalability of the application.

® Privacy: The responsibility of handling sensitive user data, such as
geolocation, is paramount. The LLM solution chosen must ensure robust
data privacy measures to minimize risks.

® Ease of integration: The project prioritizes rapid development. So-
lutions that are simpler to integrate are favored, thus accelerating the
overall product development cycle.

® Reliability: Depending on third-party services introduces potential
risks, such as service outages or policy changes, which could disrupt the
functionality of the application.

The primary analysis of model performance and quality metrics is derived
from the Artificial Analysis@, which benchmarks the connectivity and per-
formance of models via API endpoints from various providers. This simulates
realistic end-to-end performance, although results may differ slightly in a
self-hosting setup. The benchmarks incorporate scores from Chatbot Arena
Elo, Massive Multitask Language Understanding (MMLU), and MT Bench.
However, these measurements are not flawless; factors such as server location
discrepancies between the US and EU and the models’ settings (e.g., tem-
perature) can affect results. Despite these limitations, the data provide a
valuable general overview, allowing for deeper analyses as needed.

Examinations can be conducted by comparing the most relevant LLM
models:

Figure 3.2: LLM Quality comparison[@]

12

3.3. Large Language Model

30
15
10.5 12
C II
1.2
N kM A & G N0 M & G kM & A
g X £ I LS ES
R 5 5) NS N v S O
™ e, T A S& S & Q ‘ ~ A
p & Mm o FEm F 0 N F ¥ 7
& E @ L) @ o { & < Ed &
¥ § S5 s E £ & & &
™ F 6 < < F G

Figure 3.4: LLM Price comparison (USD per 1M tokens)[@]

B 3.3.1 State of the art

Leading models in the current landscape as of year 2024 in terms of output
quality include Claude Opus by Anthropic{ﬂ and GPT-40 by OpenAIF_T]. Both
of these models are closed-source and available only through their respective
APIs. They are known for their extensive analytical capabilities and the
ability to solve a wide range of complex tasks in various domains.

Claude Opus stands out with its large input context window, which enhances
its understanding of lengthy texts or detailed conversation histories. Anthropic
also provides two smaller models, Haiku and Sonnet. Despite its advanced
reasoning abilities, Claude Opus is the most expensive option on the market,
and the additional cost may not be justifiable for this application’s needs
compared to GPT-4o.

8https://www.anthropic.com/claudel
https://openai.com/index/hello—gpt-404

13

https://www.anthropic.com/claude
https://openai.com/index/hello-gpt-4o/

3. Technology analysis

GPT-40 is a notable improvement over GPT-4 and GPT-4 Turbo in terms
of performance. It offers the highest-quality responses available at present
and does so at half the cost of its predecessor. OpenAl’s reputation in
software development and application integrations makes it a reliable long-
term choice. Although GPT-40 is marketed as a multimodal model, it
performs exceptionally well in text-based scenarios, similar to the previous
versions.

Although these models offer exceptional quality, they are accompanied by
higher costs and potential privacy concerns due to their proprietary nature
and single-company development.

B 3.3.2 Privacy concerns

In discussing OpenAl specifically, and applicable to other commercial providers
of LLM services, privacy issues are prominent. OpenAl’s privacy policy
acknowledges that it automatically collects linked account information, other
usage data, logs, and analytics, which may even be shared with third-party
entities. This policy makes the service problematic for use in environments
that handle sensitive data. The management and disposal of collected data by
OpenAl are opaque, with compliance with privacy and security laws such as
GDPR in the European Union unverifiable. OpenAl essentially operates as a
"black box," offering minimal transparency into its data handling processes.[7]

A significant concern with GPT models, including OpenAl, is their use of
reinforcement learning from user prompts, which has demonstrated privacy
risks. The risks of sensitive data being retrieved later with the involvement
of unreliable third parties or stolen from potentially insecure data centers are
present. Furthermore, malicious actors already managed to extract private
user data from the model by careful prompting[7].

One mitigation strategy is the use of a secured endpoint provided by
Microsoft!!| which claims that no inputs or outputs are shared with OpenAl,
external parties, or used to fine-tune the models, claiming stateless operation of
hosted GPTs. Although the data remain within the same Azure infrastructure
and regional confines, complete transparency on back-end operations is still
lacking, but it represents a safer option compared to others.

In our specific use case, the risk of misuse of running data is relatively
low, provided that the application does not include sensitive information,
such as usernames, in the prompts. Regardless, it is crucial for the app
to implement robust precautions when interacting with closed-model APIs,
ensuring minimal personal data exposure. Alternatively, the application
could consider using more transparent open-model options that typically offer
greater control over data privacy.

Ohttps://openai.com/policies/privacy-policy/
"https://learn.microsoft.com/en-us/legal/cognitive-services/openai/
data-privacy

14

https://openai.com/policies/privacy-policy/
https://learn.microsoft.com/en-us/legal/cognitive-services/openai/data-privacy
https://learn.microsoft.com/en-us/legal/cognitive-services/openai/data-privacy

3.3. Large Language Model

B 3.3.3 Open-source models

Open-source models present an alternative, with the main advantage being
the public availability of model weights for fine-tuning, though commercial
use often requires a license. These models generally fall short of proprietary
models in quality, but have been catching up recently.

One approach to optimizing these models is to replace a large general-
purpose model with a smaller task-specific model that still delivers comparable
quality. For instance, a model could be developed specifically for engaging
in conversations during physical activities, trained with the help of profes-
sional coaches, objectives of motivation, and in-depth knowledge of running,
nutrition, and biomechanics. However, this approach would require a deep
dive into the nuances of artificial intelligence, focusing more on the model’s
capabilities rather than simply delivering a complete software solution.

Closely related option is fine-tuning a selected model with a custom dataset,
which can specialize and enhance the model for specific applications. In return,
the responses are quicker and more relevant. However, the costs associated
with training and the need for a meticulously crafted dataset are significant.

Open-source models offer the possibility of local hosting, which guarantees
full privacy of user data but requires substantial investment in infrastructure
and maintenance. The simplest tool for interacting with locally hosted LLMs
is OLlama'? and even for smaller models, hardware capable of handling large
amounts of compute is necessary. Despite the appeal, the high initial costs
and lack of access to adequate computing resources exclude this option for the
project. Not viable at the moment, but in the future a capable model could
run offline directly on the device[8], which would achieve complete privacy of
user data.

An alternative is to utilize a hosted LLM service via an API provided
by a service provider. This approach simplifies the integration process, and
the costs associated with these services are generally lower than those for
closed-source models, as the competitive market allows multiple providers to
host similar models, driving down prices. The privacy issues also remain the
same as for the proprietary models.

Among the most notable and widely used models are Llama' by Meta
and Mistral/Mixtral'¥||!5. The latest release, Llama 3, is available in two
configurations: 8b and 70b parameters. These models provide quality nearly
matching that of the proprietary models from companies like OpenAl, but
at a significantly lower cost. The main limitation is their smaller context
window of 8k tokens, which should not be adequate for the needs of this
application. This makes Llama 3 one of the most suitable options.

2https://ollama.com/
3https://11lama.meta.com/
Yhttps://mistral.ai/

15Mixtral is a Mixture of expert version of Mistral.

15

https://ollama.com/
https://llama.meta.com/
https://mistral.ai/

3. Technology analysis

B 3.3.4 OpenRouter

OpenRoutern' offers a robust solution by providing a single API interface
that enables connectivity to most LLMs currently available. It functions as a
seamless drop-in replacement for interfaces like those provided by OpenAl.
With a single API key, it allows changing a parameter in the API call to
access various models across different cloud providers, adjusting for price,
latency, and throughput. OpenRouter also supports dynamic routing based
on current model performance, costs, or availability, and includes automatic
fallback routing when services are down.

Given the rapid advancements in LLM technology, it is likely that models
will continue to improve in capability and affordability. OpenRouter facilitates
easy adaptation to these advancements without requiring changes to the
application’s core logic or platform, enhancing the application’s flexibility.
This flexibility ensures that the application is not overly dependent on any
single service provider, reducing risk in the event of downtime.

OpenRouter allows users to opt out of logging Al completions, and since
each request is routed to potentially different providers, individual providers
cannot easily compile comprehensive user data.

B 3.3.5 Conclusion

Considering these factors, I have chosen to integrate GPT-40 due to the
quality of the responses and it being an established standard within the
industry. Additionally, OpenRouter will be employed to maintain operational
flexibility, enabling the use of open source models. This setup allows for quick
adaptation to the best available models as they evolve.

%https://openrouter.ai/

16

https://openrouter.ai/

Chapter 4

Design

. 4.1 User interface

B 4.1.1 Low-fidelity prototyping

The initial stage in designing the user interface involved the creation of low-
fidelity wireframes, which illustrate the basic layout and functionality of the
application. The wireframes were developed using the 'Basic UX/wireframing
elements’ library on Excalidrawm. I adhered to Nielsen’s Ten Usability Heuris-
tz’csﬂgl] and emphasized simplicity to maintain the straightforward nature
of the application’s functionality. These wireframes served as foundational
templates for subsequent development stages.

4 N

(© &)

15 ..

54 1.7
win/km km

xx
unit unit

N

(e)

History © detal
Duration: 4.32
Run #2

= & e)

Distance: A.2km

Run map

—

Figure 4.1: Example of the low-fidelity prototype

Bl 4.1.2 Ul Components

In modern development practices, efficiency is often prioritized by utilizing pre-
built component libraries rather than creating new components from scratch.
However, limitations in customization can arise when relying solely on module

1|https ://excalidraw. com/l

17

https://excalidraw.com/

4. Design

imports and parameter adjustments. To overcome this, a different approach
is often adopted, in which developers manually copy and paste component
files into their projects, thus retaining full control over customization. A
notable example of this approach is demonstrated by shaden/ui?, built on top
of Tailwind®| and compatible with various web frameworks, including React.

For mobile-specific development, I selected React Native Reusables?, a
robust library succeeding shaden/ui, geared toward native environments.
The implemented components include buttons, inputs, labels, switches, and
navigation elements, along with the capability to centrally configure the
application theme. This choice was influenced by my previous experience
working with Tailwind, which should provide a smoother Ul development
process compared to using plain CSS or style sheets.

~elect framewark

More important than your skills.

Required

If you were an email, which one would you be?
napoleon@dynamite.com

Hint: it is not the one you use.

() Enable notifications

We will send you spam

Date of hirth
B9 Pick a date
Required

B Accept terms & conditions

Figure 4.2: Screenshot from React Native Reusables [demo

Zhttps://ui.shadcn. com/
3https://tailwindcss.com/
4https://ror-docs.vercel.app/getting-started/introduction/

18

https://rnr-showcase.vercel.app/
https://ui.shadcn.com/
https://tailwindcss.com/
https://rnr-docs.vercel.app/getting-started/introduction/

4.2. Software architecture

B 4.1.3 Color scheme

The application color scheme features a dynamic primary yellow paired with
a secondary blueﬂ This distinctive palette is not only unique from the
application’s competitors, but also aims to energize and motivate users with
the vibrant visual appeal.

Primary Qutline Destructive

Figure 4.3: Button component with applied color scheme

. 4.2 Software architecture

The software architecture of this project is based mainly on the client—servelﬁ
model, which is a common structure for web applications. This architecture
is particularly suitable given the tools and technologies employed, which
are traditionally optimized for such an environment. Adopting this model
facilitates a more seamless user experience and simplifies the implementation
of security measures, notably authorization, since the server operates on an
external machine, separate from the user’s device.

The use of tRPC within the application introduces aspects of the Call and
Return architecture, which enhances the interaction between the client and
the server through defined procedural calls. This is evident in the server’s
structured approach to handling requests, which are segmented by distinct
responsibilities.

The architecture also exhibits characteristics of a layered design:

® The Presentation Layer consists of the JSX code that structures the
HTML within each TypeScript file in the client application.

8 The Business Logic Layer is distributed across both the client and the
server. On the client-side, business logic is handled within React hooks,
which manage state, data preprocessing, and validation. Offloading
some computations to the client-side is a deliberate choice to optimize
performance and minimize network traffic.

® The Data Access Layer is exclusively managed by the server, ideally
utilizing an Object Relational Mapping (ORM) library to facilitate
database interactions.

8 The Database Layer is implemented using either a self-hosted or
cloud-based relational database.

5Colors were selected and tested using |https://ui.j1n.dev/|
SHere, the term "client" refers to the mobile application developed using React Native.

19

https://ui.jln.dev/

4. Design

«external»

Auth
Service

Mobile
Application

Query/Mutation

r endpoint

Read/Write

D data

Core Server
Logic

Authorization
Layer

Generate
narration text

«external» «external»
Large Language O Text-to-speech
Model Service LLM API Service

Figure 4.4: Component diagram of the system architecture

Additionally, the system has the potential to evolve into a Microservices
Architecture. The clear division of responsibilities among the server’s routes
or procedures makes it feasible to decompose them into smaller, more manage-
able services. This modular approach could be advantageous for scalability,
especially in alignment with the use of external services like third-party au-
thentication systems. Transitioning to a more modular structure may offer

long-term benefits as the user base grows.

20

4.2. Software architecture

User Application Server

Set goal and
run preferences

Start the run

Compute narration
timestamps/distances

Generate run

narration structure

£ Goal achieved?

no

Y Yes [sending
no / Narration timestamp \ collected data]
/distance crossed?

Continue running Generate narration

text content

Convert text
to audio

Play the
narration audio

Display run
statistics

Save runin DB

Figure 4.5: Activity diagram of completing a run

21

22

Chapter 5

Implementation

B 51 Dependencies

This project leverages a variety of dependencies to streamline development,
avoiding the need to reinvent the solutions already provided by existing
packages. This approach not only saves time, but also enhances reliability,
as public packages typically undergo rigorous testing to mitigate potential
bugs and security vulnerabilities. However, it is still essential to be careful,
as excessive reliance on packages can inflate application bundle size and
introduce conflicts during version upgrades. An overview of key packages
with their specific integrations for this application is provided next.

Both the front-end and back-end are relying on packages provided by tRPC.
Maintaining consistency in versions across client and server for those is crucial,
because it ensures seamless functionality and eliminates unexpected behavior.

B 5.1.1 Client-side dependencies

® Base React Native Packages: Essential tools for animations, safe
area handling, maps, and media management.

8 Expo Ecosystem Packages: Using Expo’s robust ecosystem for loca-
tion services, secure storage, status bar management, multimedia support,
and deep linking. Expo’s CLI streamlines package management and
ensures version compatibility.

® Styling Tools: Utilizing Native Wind for styling, along with a tail-
wind class merging package for seamless integration with external Ul
components. In addition, the lucide library facilitates icon integration.

B State Management: Employing the minimalistic Zustand library for
efficient global state management.

® Data Fetching: Using TanStack Query ' for simplified fetch requests
to the server, integrated with tRPC.

!Formerly React Query

23

5. Implementation

B Authentication: Integrating with external authentication services via
the Clerk library for Expo.

B 5.1.2 Server-side dependencies

m Express: Serving as the foundation for creating the REST server,
integrated with tRPC.

B Zod for request validation: Zod facilitates request validation, while
automatically generating schemas and types for client-side arguments.

® External APIs: Using OpenAl and AWS Polly libraries to communicate
with external services.

® Database Management: Employing Drizzle ORM for relational database
operations. IORedis for efficient handling of a Redis key-value database.

The selection of these dependencies followed a deep evaluation. I prioritized
stability, maintenance, and suitability for future scalability. Later in this
chapter, we will delve into specific use cases of some of these packages,
providing comprehensive insights into their contributions to the project.

B 5.2 Project structure

The project adopts a monorepo structure, having both client and server
code within the same directory and Git repository. This approach enhances
maintainability and also aligns with the requirements of the tRPC package.
The client imports the type definitions of the tRPC router from the server’s
codebase, so there is seamless type-checking between client and server queries.

The client and server base directories contain a package. json file to man-
age dependencies and NPM configurations. In addition, various configuration
files for TypeScript, different frameworks, and libraries are present.

In the client root directory (client/app/), React screens, layout files, and
most of the logic are saved. Expo Router then uses file-based routing, so
directory structure and filenames dictate navigation within the application.
Within the server root directory (server/src/), the index.ts file initiates
the Express server setup, and neighboring files construct the main tRPC
router. The rest of the server-side code is divided into directories described
below.

24

5.3. Client-Server communication

run-app/
| _client/
| _app/ Root for Expo router
+
| _components/ Custom reusable JSX components
primitives/ UI library primitives
ui/ UI library components
| 1ib/ Functions and constants for libraries
| _utils/ Helper functions and constants
| server/
L,src/ Root for Node.js application
db/ Database schema and Drizzle ORM client
routers/ tRPC routers with their procedures
utils/ Helper modules (LLM, TTS, Redis)

Figure 5.1: Project’s directory structure

. 5.3 Client-Server communication

As previously mentioned, communication between the client and the server
is facilitated by tRPC . It establishes a Typescript binding between both
parts of the codebase and, in turn, ensures type checking consistency.

The foundation of the tRPC API is to define routers, each containing
procedures that act as individual endpoints. Procedures can either be queries,
returning responses, or mutations, performing side effects on the server such
as updating, creating, or deleting data.

To organize procedures logically, I created three distinct routers, subse-
quently merging them into a single main router. The client then imports the
type definition of this final router because it holds all the definitions of the
procedure, input, and output type definitions.

export const appRouter = createTRPCRouter ({
naration: narationRouter,
tracking: trackingRouter,
db: dbRouter

b

export type AppRouter = typeof appRouter

Procedures within these routers can be public or private and may include
inputs and schema declarations. Input validation is facilitated using Zod, as
demonstrated in the example below, where the procedure getRunPositions is
defined to accept a single argument representing the ID of a database object
and return the corresponding object:

2Typescript Remote Procedure Call

25

5. Implementation

getRunPositions: protectedProcedure
.input (z.number ())
.query (async ({ input: id }) => {
// Retrieve object from DB
return await

b

Although Express tRPC creates standard endpoints similar to REST, mak-
ing calls from the client via simple fetch requests is not ideal. The integration
of tRPC with TanStack Query’ enhances the developer experience by elimi-
nating a considerable amount of boilerplate code involved in manual fetching,
refetching, and error handling. The front-end query is thus streamlined, as
demonstrated here:

const { data, error, status } = trpc.db
.getRunPositions
.useQuery(id 7 id : skipToken, {
// ... settings
b

Moreover, queries are automatically cached and re-tried by TanStack Query.
This caching mechanism optimizes server calls by remembering previous
queries and retrieving cached results when applicable. Mutations can trigger
query invalidation and discard cached results, rerunning queries as needed. I
also leverage the prefetch function to load data in advance, which results in
instant screen loading when data would have to be fetched later.

. 5.4 Authentication

To use the application, users must create an account. This precautionary step
is necessary due to operational costs associated with running the application,
particularly the expenses related to the LLM service. Implementing user
accounts allows the server to enforce access limits, restrict unauthorized access
attempts, block potential attackers, and prevent abuse of the LLM service.
The authentication process is handled by Clerk®, a platform that offers APIs
for user management and session handling. Clerk provides a dedicated Expo
library that significantly simplifies authentication processes. The application
interacts with this library through normal function calls with actions such
as Log in, Sign in, or Log out. The underlying complexities are managed
automatically. Upon invocation, the connection to the Clerk service is
established seamlessly, with responses providing either rejection or successful
user data. Sessions are managed in the background, with JWT? access and
refresh tokens securely stored in local storage. Token expiration is handled

3https://tanstack.com/query/latest
4https://clerk.com/
Shttps://jwt.io/

26

https://tanstack.com/query/latest
https://clerk.com/
https://jwt.io/

5.5. Persistence

transparently and tokens are automatically refreshed in the background,
without the need for additional logic.

The authorization of requests on the server is managed through access
tokens attached to HT'TP headers by the client. tRPC features an authoriza-
tion middleware that intercepts requests before execution of the procedure.
The middleware first verifies the validity of the token with a dedicated crypto-
graphic key. Successfully verified tokens grant access to procedure execution
and provide access to relevant user context data. Decoded JWT tokens can
encapsulate user information such as ID, email, or current session ID.

Overall, the implemented authentication system ensures robust security
measures, adequately meeting the requirements of this application’s context.
Clerk offers various authentication options, including integration with different
OAuth providers, which can be added incrementally as needed. However, the
convenience of using an external service comes with costs. While the current
prototype operates on a free plan, scaling to more than 10,000 active monthly
users would necessitate upgrading to a Pro plan. Nevertheless, should future
requirements exceed Clerk’s capabilities, alternative authentication services,
including self-implemented solutions, can act as drop-in replacements. The
primary additional task in such a scenario would involve migrating user data
to the new service.

. 5.5 Persistence

B 5.5.1 Client-side state

The state of the application in the context of front-end frameworks like React
resides on the client-side and is manually synchronized with the backend. In
this setup, the application utilizes React Native’s default state management?,
combined with the Zustand library to handle global state. Zustand keeps
state management from being too complicated, offering stores’ with defined
properties and functions that act as global variables accessible from any part
of the application.

By default, the state is reset upon restarting the application. However,
middleware can be attached to stores to persist state in local storage®. For
example, application settings are stored and hydrated using AsyncStorage.
This ensures that the settings are loaded upon the start of the app and
instantly saved upon any settings changes.

B 5.5.2 Redis

To effectively handle concurrent user sessions, the server uses the Redis
in-memory database. Redis is favored for its extremely quick access times
and easy integration. Most saved values are stored in a key-value format as

5Via the useState hook
"In this project saved in client/utils/stores
Shttps://docs.pmnd.rs/zustand/integrations/persisting-store-datal

27

https://docs.pmnd.rs/zustand/integrations/persisting-store-data

5. Implementation

two strings. In this application, Redis” stores temporary data while users
are active, such as run data and LLM message history. This minimizes
access to the slower main database, improving performance. I also defined an
abstraction layer above the Redis object to safely query values and mitigate
risks associated with querying non-existent keys or data.

HASH user_data:user_2fMcgjraCUlu9IH1rb9eeVDw5ak

Key 3 Length: 10 TTL: No limit

Mindfullnes

Fermnale

limModel Llama-3

Figure 5.2: Example of a Redis entry from the Redis Insight monitoring tool

B 5.5.3 Relational database

For larger data requiring remote storage and scalability, the application
utilizes a PostgreSQL relational database accessed by the persistence layer
on the server. Drizzle ORM!Y facilitates database operations by offering
object relational mapping customized for different database types. This
ensures syntax consistency across databases, with SQL-like queries mirrored
by Drizzle functions. TypeScript’s integration with Drizzle also enables type
safety all the way from the database to the client, which has a potential of
largely reducing developer errors.

The crucial feature of Drizzle ORM is the schema definition in a special
TypeScript fild'!, from which the type definitions are derived. A CLI tool
provided by Drizzle can then generate migration SQL files from the schema
and push them to the database. With minimal setup, Drizzle handles all
database management tasks, requiring only the database URL.

9Specifically the joredis library for Node.js
Ohttps://orm.drizzle.team/
Nserver/src/db/schema.ts

28

https://orm.drizzle.team/

5.6. Location tracking

: Schema defintion for the Positions table

export const positions = mySchema.table(’positions’, {
id: serial(’id’).primaryKey(),
runId: serial(’run_id’) // foreign key
.references (() => rumns.id,
{ onDelete: ’cascade’ }),
lat: real(’lat’).notNull(),
long: real(’long’).notNull(),
alt: real(’alt’).notNull(),
instantSpeed: real(’instant_speed’).notNull(),
timestamp: bigint(’timestamp’, { mode: ’number’ }),
accuracy: real(’accuracy’)

b

: Querrying for users last run

await db.select ()
.from(runs)
.where (eq(runs.userId, userId))
.orderBy (desc(runs.serial))
.limit (1)

Currently, the database consists of two tables: runs and positions corre-
sponding to each run'?. The database primarily serves to store run data upon
completion and retrieve data, such as running history, as needed. Nonethe-
less, the infrastructure is prepared to accommodate new migrations and the
addition of new tables.

B 5.6 Location tracking

To accurately monitor the user’s activity, the application must track the user’s
location, enabling it to compute the covered distance, the pace of the runner
and later reconstruct the running route. This is achieved by subscribing
to the device’s location service, which provides GPS coordinates at regular
intervals. The distance is then calculated by adding the distances between
the individual points'3l

However, GPS locations provided by the device are often inaccurate. Even
with the highest accuracy settings, GPS can still fluctuate by up to 10
meters around the runner. These fluctuations result in a squiggly route
on the final map and, more importantly, an overestimated distance, as the
points differ more significantly. This issue is inherent in GPS itself and GPS
chips in mobile devices[10]. Other running applications face the same flaw,
each employing different algorithms to correct GPS data, leading to slight
variations in measured values.

Initially, I tested the app without any tracking adjustments. Using the
Android emulator, I uploaded noise-free GPX data and simulated the run

12Given the database’s simple structure, a class diagram is unnecessary.
13The Haversine formula is used due to the Earth’s curvature.

29

5. Implementation

in this way, which yielded correct and precise results. However, real-world
testing while running outside with a physical device resulted in distances
approximately 15% larger than expected'?.

The most common approach to address this issue is to smooth the location
data, typically using a Kalman filter. This method returns a smoothed
estimate that is more accurate than the raw GPS points. An adaptive
Kalman algorithm is known to provide great results with minimal performance
impact[11]. T implemented a simplified version of this filter based on an article
focused on tracking with Expd'®. This approach utilizes the GPS location,
the accuracy of each location, and the timestamp to compute the speed
and statistical variance. Despite fine-tuning the constants and adjusting the
algorithm, I was unable to smooth the data for any real runs. A more complex
Kalman filter, integrating signals from multiple sources, such as the device’s
gyroscope and acceleration sensor, might be necessary for this scenario.

Another issue is the location data subscription through the Expo location
library, which, according to its documentation, is not guaranteed to work in
all scenarios and is expected to be improved in the future. They recommend
using react-native-background-geolocation'®, the most advanced React Native
library for tracking, which has been already developed and researched for
many years. Although it is open-source, using this library in production
requires a license, which is currently not financially viable.

As an interim solution, I have continued using the Expo tracking library
and scaled down the measured distance with a specific coefficient. Although
this approach is not perfect, it yields values closer to the real distances. After
the run is finished, all running data and the route map'’| can be inspected in
detail. The squiggly lines on the route are only noticeable when zoomed in
significantly and are not distracting.

B 5.7 LLM Integration

The integration of a Large Language Model (LLM) is a key feature of this
application, ensuring that the coaching instructions are current and moti-
vational. This section outlines the integration process and the challenges
encountered. Both OpenAl models and open-source ones via OpenRouter
are utilized for this task. An example transcript of a single run is included in
the appendix |Cl

147 tracked the run simultaneously with other applications and compared the results.
Yhttps://blog.expo.dev/a-complete-guide-to-displaying
2Dand-normalizing-location-data-in-react-native-7e443c760fc2
“https://github.com/transistorsoft/react-native-background-geolocation
17 T T T T T T T T
Each device uses its native mapping option for displaying the map, with Google Maps
for Android and Apple Maps for iOS.

30

https://blog.expo.dev/a-complete-guide-to-displaying%2Dand-normalizing-location-data-in-react-native-7e448c760fc2
https://blog.expo.dev/a-complete-guide-to-displaying%2Dand-normalizing-location-data-in-react-native-7e448c760fc2
https://github.com/transistorsoft/react-native-background-geolocation

5.7. LLM Integration

B 5.7.1 Application logic

The goal is for the coach to provide input multiple times during the run,
reflecting on live data, and engaging the user. At the start of the run,
approximate timestamps or distances (based on the user’s goal) are computed
to determine when and how many times the LLM will be called. This allows
for planning ahead, which ensures that the coaching messages are cohesive
and flow well without repetitive phrases or ideas.

Thus, first the LLM generates an outline for all the monologues beforehand.
This structure is maintained in each subsequent LLM call for the given run.
All coaching entrances should start with an introduction, continue with a
main part that incorporates current data and contributes to the run’s overall
theme, and end with a teaser for the next part.

When the specified time during the run arrives, the LLM is called from
the server with instructions and context. The resulting text is returned and
immediately processed by the Text-to-Speech (TTS) model. AWS Polly’s'®
neural voices are used here for their quality and cost-effectiveness, as gener-
ating voice audio natively on the mobile device often results in low-quality
robotic sounds. The T'TS model processes text with SSML tags, including
breaks and volume adjustments. Then, only the URL link to the audio is
returned to the mobile device, which then plays it in the background.

The first audio plays at the start of the run, with subsequent narrations dis-
tributed regularly, and the last one during the final minute. The conversation
history is saved and always inputted into the LLM, as LLMs lack memory.
To minimize the delay between crossing a timestamp and playing the audio,
several optimizations were implemented for a seamless user experience.

From a coding perspective, OpenAl provides a dedicated TypeScript library
for their API, which also works with OpenRouter. The code for this and for
all interactions with the LLMs is located in /server/src/utils/1llm.ts.

B 5.7.2 Settings

To ensure that coaching monologues are varied and personalized, multiple
settings are introduced. They allow users to gain some control and promote
long-term use of the app. These settings include:

® Username (string): A user-defined name that the LLM may use to talk
directly to the user.

® LLM model (GPT-40/GPT-3.5/Llama 3 70B/ Mixtral 8x7B): Users can
choose their preferred model, which affects flavor, quality, and response
delay.

® Voice (male/female): Users can select the coaching voice. The most
enthusiastic ones were selected from AWS Polly.

¥https://aws.amazon.com/polly/

31

https://aws.amazon.com/polly/

5. Implementation

® Temperature (low/normal/high): This adjusts the randomness of the
LLM responses, with values between 0 and 2", Higher values may
provide more creative output, while lower values result in more precise
and factual texts. The available settings are 0.5, 1.0, and 1.3.

® Frequency (low/medium/high): Determines how often and how many
times the LLM will be called during the run. The formula scales, so the
intervals between the narrations stay approximately the same even when
the goals are very different.

® Private mode (on/off): This setting ensures maximum privacy when on.
In this mode, the data sent to the LLM only includes the run-segment
data, goals, and themes. Essentially, the LLM provider only knows that
someone is using the app to run and their performance, which does not
significantly affect user privacy. When more runners are using the app
simultaneously, it becomes nearly impossible to derive useful information.
When the setting is turned off, the LLM can achieve better adaptability
and overall response quality because of the larger context provided. In
this mode, the LLM will also use the runner’s name, start date/time,
previous efforts, starting location’s name [V, and current weather [

There are also settings for each run separately:

® Goal (value): Distance in km or duration in minutes, with a minimum
of 5 minutes or 1 km.

® Intent (base run/recovery run/long run/tempo run/race): Provides
context on running motivation and can change the overall feel of the
coaching.

® Topic: The main theme of the run, with around 50 predefined topics,
such as "Passion," "Technique," and "Running History." In each monologue
some information related to this topic will be included.

B 5.7.3 Prompt Engineering

Prompt engineering is the process of refining the input prompts for a language
model (LLM) to achieve optimal output. The general approach begins with
a one-shot method, which provides only a single instruction. If this does
not yield satisfactory results, a few-shot method is used, which includes
instructions along with examples. The final step, fine-tuning the model,
requires substantial computing power and extensive training data, such as
coaching transcripts, which are difficult to obtain online. However, the one-
shot approach gave very good results in this project, leading me to use it
with adjustments to the prompts to achieve the best results. Most prompting

19ChatGPT uses the temperature set at 0.7

29The display name of the location is reverse geocoded from GPS coordinates, using the
OpenStreetMap API.

21Received from OpenMeteo API. Includes temperature, wind speed, and other indicators.

32

5.7. LLM Integration

techniques revolve around deep reasoning, such as Chain of Thought, but
they are not necessary here. All prompting text and logic are located in
/server/src/utils/prompts.ts.

The basis for the prompts follows the RISEN framework|12], which stands
for Role, Instruction, Style, Examples, and Name. In our case, the prompt
construction includes the first three elements. Examples are usually used
with the few-shot approach, and the Name is relevant when multiple models
are used in the system. There are three types of messages saved in the
LLM dialog history: system (defining the LLM’s behavior), user (direct
input/instructions), and assistant (LLM’s responses). The crafted prompts
always include the following components:

® Role definition: Informs the LLM about its role as an assistant audio
coach, detailing what its speech should include, and specifying the desired
attitude and emotion.

® Style: Describes that the output should be directly readable by a TTS
model, avoiding emojis, and specifies which SSML tags can be used.

® Instruction: Simple sentences instructing the LLM to generate the
corresponding structure or narration.

B Context: Provides relevant contextual information to include in the
speech, such as

Run related information: goal, intent, topic
Personal information: username, starting location, date/time, ...

Last segments data: processed running data into readable segments
over hundreds of meters, including pace and distance, to identify
performance trends and current status.

Several prompting techniques and tactics can improve the quality of re-
sponses, as recommended in the OpenAl documentation®| ?? and other
research studies[12]. These were taken advantage of:

8 Clear messages: Prompts are simple and direct, with no ambiguities,
asking precisely what is needed.

® Splitting into simple subtasks (prompt chaining): First generating
an outline, then the corresponding narrations.

8 Avoiding negation: Prompts state what to do or avoid, rather than
what not to do (e.g., avoid using emojis).

#8 Clear separation: Context is separated from instructions with a clear

separator ("H##HH#").

*nttps://platform.openai.com/docs/guides/prompt-engineering
Zhttps://help.openai.com/en/articles/6654000%2Dbest,2Dpractices%2Dfor
2Dprompt/2Dengineering/2Dwith’,2Dthe/2Dopenai,2Dapi

33

https://platform.openai.com/docs/guides/prompt-engineering
https://help.openai.com/en/articles/6654000%2Dbest%2Dpractices%2Dfor%2Dprompt%2Dengineering%2Dwith%2Dthe%2Dopenai%2Dapi
https://help.openai.com/en/articles/6654000%2Dbest%2Dpractices%2Dfor%2Dprompt%2Dengineering%2Dwith%2Dthe%2Dopenai%2Dapi

5. Implementation

® Consistent input: Prompts maintain a consistent format across differ-
ent inputs.

An interesting idea to enhance response quality without extensive fine-
tuning is Priming, which involves ending the prompt with the beginning of the
desired output. In a study focused on the use of LLMs for activity coaching|2],
they used a randomly selected coaching introduction as the priming factor
and observed improved quality results.

B 5.7.4 Potential issues

There are certain pitfalls that can arise when dealing with LLMs.

B Hallucinations

These occur when the model generates factually incorrect or non-sensical
information. Although they can be mitigated, hallucinations are inherent in
the way LLMs are constructed[13]. In the scenario of this project, hallucina-
tions do not pose substantial danger. In the worst case, users might receive
factually incorrect narration or inconsistent text, leading to confusion but not
serious issues. Higher temperature values increase the risk of hallucinations by
causing the model to generate random token sequences and delaying stopping.
To avoid this, I lowered the temperatures in the settings, though there is a
slight chance hallucination could still occur, especially with smaller and older
models.

B SSML tags validation

The output must conform to the SSML tag structure used for adjusting TTS
on AWS Polly. Messages must be enclosed in the <speak> tag, and other
format rules apply to additional tags. To address this, the program uses a
library to check if the output is valid SSML. If not, it attempts to repair
it, and if that fails, it removes the SSML tags, sending plain text to AWS
Polly. This ensures that incorrect LLM output format does not break the
application while maintaining SSML format requirements when possible.

B Prompt injections

To mitigate the risk of prompt injections, which involve overriding the ap-
plication’s prompt with user-provided instructions, conscious decisions were
made during development to exclude long text areas allowing user input.
Although custom user-defined backgrounds and expectations could enhance
the application experience, they also introduce risks. Prompt injection could
be exploited by attackers in various ways[14]. This is typically mitigated by a
filtering layer that sanitizes user input. In the final application, the only user
text input is the username, limited to 15 characters without spaces, which is
restrictive enough to prevent LLM model jailbreaks.

34

5.7. LLM Integration

B 5.7.5 Measurements

I measured the performance and token usage for a single run to demonstrate
concrete numbers for using the app. I evaluated three LLM models and
compared their metrics. The measuring conditions for each model were
consistent: a single 15-minute session with a specified intention and topic,
private mode off, medium creativity, and medium frequency (four coaching
monologues per session). For each API call to the LLM, the time from sending
the request to receiving the response was measured, as well as the tokens used
for both prompts and responses. Note that the token count does not directly
correlate with the message length, as each model has a different tokenizer
that segments the messages into varying token counts. Furthermore, external
factors such as network conditions could have influenced the measurements.

The pricing for each LLM varies and is calculated based on the number
of tokens (in millions) consumed and generated. For GPT-/o, the costs are
$5 for the input tokens and $15 for output tokens. The costs of open-source
models differ by provider, but Liama 3 Instruct (70B) in the nitro variant
(faster throughput) costs $0.90, and Mixztral 8z7B Instruct typically ranges
from $0.25 to $0.50.

Prompt | Result | Single

Prompt | Result tokens | tokens | run

LLM Time tokens tokens

costs costs costs
GPT-40 | 4.77 5127 1031 0.0256 0.0154 | 0.0411
Llama 3 | 2.12 5810 1256 0.0052 0.0011 | 0.0063
Mixtral | 6.20 5646 1561 0.0013 0.0003 | 0.0017

Table 5.1: Performance, token usage and costs measurements for different LLMs
(the average time in seconds and the costs in dollars)

Both GPT-40 and Llama 3 deliver high-quality responses, with GPT-40
having a slight edge. However, Llama 3 is significantly more cost-effective and
faster. Mixtral’s performance is less consistent, probably due to its smaller
model size, which struggles with larger contexts and produces variable output.
In general, these results illustrate that LLM costs are not negligible and
should be carefully considered when developing the business model for the
application.

35

5. Implementation

B 538 Deployment

This section outlines the deployment strategies for the primary components
of the application, focusing on those directly managed and set up by me,
rather than external services that oversee their own infrastructure.

=<device>> <<device>>
Mobile phone Host server ¥ Render

<<0S5>> <<0S->
Android I 105 Linux

c;i:;"ﬂgﬂf:.‘,? EI <<executionEnvironment=>>
application JavaScript engine
nede
<<component>> E

Backend
li ion

HH

Frpress.|s - tRPC
adapter

r)

Database server Database server
\9) upstash NEON
Key-value Relational
database database
[i'lrecﬁs & PostgreSQL

Figure 5.3: Deployment diagram

B 5.8.1 Mobile application

The development of the mobile application was facilitated using the Expo
ecosystem, which provides a streamlined method for testing directly on devices.
A single command within the codebase generates a QR code. Scanning this
code compiles, bundles, and transfers the application to the device. This
process requires the installation of the Expo Go app?*, which acts as a sandbox
for the bundled JavaScript, allowing for immediate preview and testing.
However, this set-up should not be considered sufficient for production-level
testing.

As the project approaches full release, the deployment can be managed
manually or through Expo Application Services (EAS)?°. EAS simplifies the
build and submission process to app stores via command-line instructions,
which, for example, obviates the need for a Mac to compile iOS versions. The

2*https://expo.dev/go
2https://expo.dev/eas

36

https://expo.dev/go
https://expo.dev/eas

5.8. Deployment

npm run start

> run-app@l1.0.0 start
> expo start --port 19000

Starting Metro Bundler

> Metro waiting on exp://172.20.10.7:19000
> Scan the QR code above with Expo Go (Android) or the Camera app (i0S)

Figure 5.4: Output of Expo start command

demo versions of the apps can be distributed for internal testing through
Google Beta and iOS TestFlight. Paid developer accounts for both OS’s
app stores are required, but Expo handles the whole application submission
process. Similarly, EAS allows for app updates and provides analytics for
further insight.

B 5.8.2 Hosting services

The server-side components, including the Node server, Redis instance, and
PostgreSQL database, are hosted on platforms that were chosen for their
reliability and ease of integration. For instance, both database providers are
relied upon by various Vercel services.

The Node server is deployed on Render@ which supports both plain code-
bases and containerized applications. The deployment process is automated
through continuous delivery that triggers a redeployment on each commit to
the main branch. The deployment is then managed by the following simple
commands from package. json:

® build: npm install && npx tsc (compile TypeScript to JavaScript)

® start: node dist/index.js (start the node express server)

For databases, PostgreSQL is managed by Neon@ and Redis by Upstash@.
Both platforms specialize in their respective technologies and offer fully man-
aged services. They provide interfaces for easy instance creation and include
comprehensive monitoring dashboards that aid in traffic and performance
management.

2Onttps://render.com/

https://neon.tech/|
https://upstash.com4

27

N

37

https://render.com/
https://neon.tech/
https://upstash.com/

5. Implementation

B run-app

Pay as You Go AWS Frankfurt, Germany eu-central-1 Global

Details Usage CLI DataBrowser Backups Quickstarts

43K 15 MB 30 KB $0.00

® Writes 21184 It's all right. It's all right. It's all right.
® Reads 21,882

@ Upgrade @ Upgrade @ Upgrade & Change Budget

Figure 5.5: Redis monitor dashboard on Upstash

These server-side components are hosted on serverless platforms that are
activated only upon requests, thereby significantly reducing operational costs
due to their pay-for-what-you-use pricing models. Before the official launch,
it may be beneficial to consolidate these services under a single provider like
AWS or Render, to further reduce costs and simplify system management as
the application scale. The host migrations in the code are extremely simple
by just changing URLs in the .env file, without any intervention in the code
logic.

B 5.8.3 Scaling

As the user base and the number of simultaneous connections increase, scaling
the back-end system becomes critical to prevent overload and potential service
interruptions. Render offers automatic scaling®”| options by incorporating
a load balancer that distributes incoming requests across multiple server
instances. While our current external APIs, such as those for authentication
and OpenAl, have rate limits, they are generally capable of handling high
traffic volumes, so there should be no problem regarding those.

Over time, transitioning out of serverless setups to containerized systems
might be advantageous due to the latency associated with the startup times
of serverless services. This setup allows for running on any high-compute
server, either through a trusted provider or self-hosting, which can reduce
operational costs in the long term, although it requires a significant initial
investment. For highly successful applications, more complex orchestration
techniques, such as Kubernetes and deploying services on the edge (i.e. closer
to the user), can enhance performance significantly.

2%nttps://docs.render.com/scaling

38

https://docs.render.com/scaling

Chapter 6
Testing

To verify the quality and usability of the application, several user tests were
conducted. The primary focus was on usability testing, in which regular users
tested the application as they would in normal usage scenarios. This testing
process was summative and aimed at evaluating the prototype in its final state.
While it is also possible to conduct tests during the development phase to
influence the process more directly, the main goal here was to assess whether
the final implementation was well-made. The objective was to measure the
overall user response, evaluate whether ergonomics and Ul were simple and
intuitive, and determine if users felt that any features were missing.

B 61 Methodology

The testing methodology used was the observation method, in which users
tried the application with minimal assistance. This process involved con-
current thought listing, where potential users performed tasks and were
encouraged to verbally express their thoughts freely. The entire testing ses-
sion was audio recorded to allow for thorough analysis of user feedback and
identification of any issues.

Each test followed a similar procedure. I personally met with the par-
ticipants, provided a brief overview of the application, explained the tasks
they should perform, and encouraged them to express their thoughts openly.
The participants then carried out the tasks, voiced their ideas and received
help when needed. After completion of the tasks, we discussed possible
improvements and their overall experience with testing.

The test case tasks included:

1. Creating an account and logging into the application
Exploring the user interface

Adjusting settings on the settings screen

Setting parameters for the upcoming run

Completing the run while listening to the coaching audio

Sl B B B B

Reviewing the running history and run details screens

39

6. Testing

B 6.2 Test group

A small sample size of three testers was used, each bringing a slightly different
perspective to the use of the application. The only requirements were some
running experience and the ability to understand English.

Gender | Age | Running experience | Additional information
1 | Male 29 Beginner Previously used Strava
Knowledgeable in

SW development

2 | Male 21 Intermediate

3 | Female | 41 Beginner

Table 6.1: Test participants

It is important to note that the testing group was very small and lacked
variety. To draw scientifically based conclusions about the quality of the
application, more extensive testing with a diverse user base would be necessary.
Subject bias may also have influenced the results, as the testers had a
relationship with me, which could have affected the candor of their critiques.
Conducting larger-scale long-term testing with a more diverse group of users
before the application’s release would provide a more accurate overview of its
effectiveness.

B 63 User testing results

Overall, the tests yielded positive results. There were no performance issues or
crashes during testing. Testing on their devices revealed some new problems,
particularly with Android devices, which behave slightly differently from
the iOS and Android emulators used in initial tests. I compiled a list of
encountered issues and proposed improvements, sorted by severity / priority,
including the expected difficulty of implementing them.

Severity | Difficulty | Issue
High Medium Unlistenably quiet coaching audio on Android
Medium | Low Minor UT glitches (eg., input flickering)
Medium | Low Lack of confirmation when terminating the run
LLM not providing factually correct data
Low High (tester disagreed with a running tip
provided by the LLM)

Table 6.2: Uncovered issues or bugs found throughout user testing

40

6.3. User testing results

Priority | Difficulty | Suggestion

Support for application running in background

High Medium and in locked mode

High Medium Add more personalization
Make the LLM setting options more

High Medium understandable for regular users (or remove them)
and refine the setting hints

. . Add more authentication options
High Medium (tester expected Google sign-up option)
High Low Fine-tuned support for headphones

Add a way to interact with the coach

Medium | High (eg., speech to text)

Create multiple coach personalities with different

Medium | High name, characters, and tuned LLMs

More seamless integration with music players

Medium | High (could support dynamic playlists picked by AI)

Medium | Medium Add more animations throughout the application
Low High Czech language support, including for coaching
Low High Coach could assist with real-life navigation

Low Medium Dark mode support

Low Medium Integration with Google fit (save data to the app)

Add a setting for weight /height to compute burned

Low Low .
calories more accurately

Table 6.3: Suggestions, proposed improvements and new features from the testers

The aspect in which the application truly excelled was in maintaining
high levels of engagement among users. There was a noticeable "wow" effect
when test subjects listened to the coaching messages. They often found the
coaching humorous and even laughed at the jokes provided. The participants
especially appreciated the personalization aspect, where the coach addressed
them by name and mentioned relevant information, such as the current
outside temperature. This personalized approach significantly boosted their
motivation, indicating that this feature should be expanded in future iterations
of the app. For instance, one user suggested including favorite keywords or
topics for each user, which the coach could then incorporate into the messages.

Users reported that the app was quite simple to use and did not identify
significant issues with regard to its design and core functionality. From their
point of view, everything worked well and they struggled to find any notable
shortcomings. They also praised the clean look of the interface and found it
very understandable, with the hints in the settings being particularly helpful.

Overall, the testing indicates that the features included in the prototype
were well-designed and effectively implemented. Feedback was overwhelmingly
positive, with suggestions for new features far outweighing any issues with
the current state of the application. Most of the suggested improvements
were seen as enhancements rather than essential fixes, indicating that the
current core functionality of the app is complete enough.

41

6. Testing

B 6.4 Prompt testing

Prompt testing is important for effectively integrating LLMs. It enables the
creation of accurate and effective coaching instructions and improves the
reliability of LLM responses. Using the evaluation methods, can overcome
the limitations of subjective quality assessments. Aside from the general
prompt egineering principles, various strategies can be employed to refine the
prompts and ensure optimal performance and user experience in this project.

For example, regression testing|15] ensures that new changes do not dis-
rupt existing features. Contextual coherence testing maintains logical flow
throughout a run, ensuring that the prompts reference previous narrations
accurately. Stress and edge case testing evaluates system performance under
high-usage scenarios and rare conditions, identifying potential bottlenecks
and ensuring robustness. A/B testing compares different prompt versions to
optimize user engagement and satisfaction.

Measuring the quality of responses is challenging due to its subjective
nature. While other LLM models could be used for evaluations, a high-quality
data set would be required. User testing is another option, but requires
consistent surveying, time, and human resources.

Frameworks such as OpenAl Evald!|can be used to validate and benchmark
the results, potentially further improving the responses. Another related
and valuable tool is Promptfoo?. Users can define metrics to automatically
score the output, ensuring objective assessments. It enhances efficiency
by accelerating evaluations with caching, concurrency, and live reloading.
Although not essential for the program’s core functionality, these frameworks
offer additional layers of quality assurance.

The prompt testing methodologies and tools illustrate how prompts can
be rigorously tested and refined, leading to reliable high-quality coaching
messages. Combining automated and manual testing techniques optimizes the
integration of LLM for performance, user experience, and cost-effectiveness.
Employing these strategies would certainly be the next step in the development
process of this application.

"https://github.com/openai/evals
Zhttps://github.com/promptfoo/promptfoo

42

https://github.com/openai/evals
https://github.com/promptfoo/promptfoo

Chapter 7

Conclusion

. 7.1 Evaluation

Throughout this project, I navigated all stages of software development,
from analysis and design to implementation and testing. This was the most
complex project I have ever worked on. It involved precise coordination of
multiple components without causing any user and performance issues. I
started by creating a basic user interface to track location and to experiment
with fetching data from external APIs. Expo proved invaluable for quickly
starting the project and testing in an emulator. I then integrated the narration
functionality for a seamless run experience, gradually adding features like
settings and running history.

In future projects, I would rely less on external libraries as I spent consider-
able time resolving version conflicts. A forced upgrade to the Expo SDK once
broke many libraries, requiring waiting for fixes outside my control. tRPC
also presented problems, requiring version synchronization between client and
server and sometimes producing unclear errors linked to the protocol itself or
hosting issues, where the initial provider randomly blocked requests from my
IP address. One more challenge was that the server initially supported only
one connection at a time, which required the addition of an authentication
flow, server authorization, and Redis database for session management. De-
spite these challenges, I stabilized the app to work relatively reliably. Using
TypeScript across the codebase also saved significant debugging time and
preempted many issues that I probably would not have noticed without it.

During development, some advances in the field of AI were happening,
notably the releases of Llama 3 and GPT-40. These models changed the
initial assumptions I had about integrating LLMs. They helped significantly
reduce the cost and the coaching audio delay, with only minor server code
adjustments.

The finished application is more than a complete prototype. After sufficient
testing and verification that it works stably, it could even be released as
a working application as is. I managed to create a unified Ul look for the
application that is consistent and intuitive to use. The user running data
are persistent in a database and tied to the user account in case of changing
devices. Reliable technology was chosen so that the app would be easily

43

7. Conclusion

maintainable in the future and the server with its components were written
to accommodate for growing user base. I even tested the application myself
repeatedly outside and confirmed that it works correctly and provides a fun
experience. Overall, I completed all the goals for this project that were
established in the beginning and delivered a prototype with all main features
operational.

7.2 Potential enhancements

Several improvements could perfect the user experience even further and
transform the app into a full-fledged competitor to other running applications:

Many runners use running watches alongside apps to measure BPM and
view statistics without accessing their phones. This requires additional
work due to the different APIs exposed by running watches.

Mobile operating systems often halt app processes when in the back-
ground, affecting the location tracker and audio features. Implementing
background functionality and persistent notifications would address this,
though different settings are needed for Android and iOS.

Adding the ability to pause, resume, and extend runs would enhance
functionality of user controlling the run. While this requires significant
changes to the app logic, it is manageable to implement.

Implementing a more reliable algorithm for GPS data smoothing would
improve accuracy and make the data more reliable.

Aside from general optimizations and feedback from the testers, other
optional enhancements could further enrich the user experience:

Integrating with Strava, a popular running app, would prevent the dis-
persion of running statistics. Users could connect to their Strava account
to automatically save runs. Strava’s API allows for such integration.

Allowing users to provide images or videos and interact with the coach
in real-time via voice input could elevate the experience to a new level.
This multimodality has been demonstrated to be feasible by OpenAT’s
recent demonstration of GPT-4o0.

Incorporating a vector database for the LLM to query could provide ac-
curate and deep information, using the Retrieval Augmented Generation
technique.

Using sophisticated Al analysis to create personalized running plans
could improve user engagement. Some existing applications already offer
this service.

44

7.3. Future plans

® Pairing the app with a heartbeat monitor could enable it to detect poten-
tial dangers, such as sudden stops that indicate injury, and automatically
call for help or prompt user action.

® Enhancing the user interface with gamification and social interaction
options could further engage users.

B 73 Future plans

I believe that this application could be successful due to its novel concept
of integrating dynamic coaching narration and the quality of its execution.
However, releasing the app is a complex process. It requires applying to
Google Play and the iOS App Store with a developer account and passing their
acceptance processes. Before release, a business model should be established
to cover hosting and LLM service costs. This could involve offering limited
free usage, such as one run every two days, with unlimited access behind a
paywall.

The current LLM technology is very powerful, but has not yet been widely
integrated into many potential applications. This project can serve as a pioneer
in the integration of LLM technology into the fitness coaching sector. The
potential is clear: LLMs can provide a much more personalized user experience
that would be nearly impossible to achieve with traditional programming. As
AT technology continues to develop rapidly, the possibilities for expanding
this app are only increasing. With further advancements, this application
can grow and incorporate more exciting features to attract even more users,
solidifying its place in the market.

45

46

Bibliography

Dorothea Gute, Stephan Schlégl, and Aleksander Groth. “Keep on
Running! An Analysis of Running Tracking Application Features and
Their Potential Impact on Recreational Runner’s Intrinsic Motivation”.
In: Human-Computer Interaction. User Ezxperience and Behavior. Ed.
by Masaaki Kurosu. Cham: Springer International Publishing, 2022,
pp- 359-373. 1SBN: 978-3-031-05412-9.

Narayan Hegde et al. “Infusing behavior science into large language
models for activity coaching”. In: PLOS Digital Health 3.4 (Apr. 2024),
pp- 1-15. DOI1: [10.1371/journal .pdig.0000431 URL:
lorg/10.1371/journal.pdig.0000431]

M. Janssen et al. “Who uses running apps and sports watches? Determi-
nants and consumer profiles of event runners’ usage of running-related
smartphone applications and sports watches”. In: PLoS ONE 12 (2017),
e0181167.

Paolo Barsocchi. Detecting Proximity with Bluetooth Low Energy Bea-
cons for Cultural Heritage. 2023. URL: https://www.researchgate,
net / figure /Overview - of - the - React - Native - architecture |
fig8_355670705 (visited on 05/03/2024).

Gustav Tollin and Lidekrans Marcus. “React Native vs. Flutter: A
Performance Comparison Between Cross-Platform Mobile Application
Development Frameworks”. Bachelor’s thesis. Linkoping University,
Department of Computer and Information Science, 2023, p. 10.

Artificial Analysis. URL: https://artificialanalysis.ai/| (visited
on 05/16/2024).

Xiaodong Wu, Ran Duan, and Jianbing Ni. “Unveiling security, privacy,
and ethical concerns of ChatGPT”. In: Journal of Information and
Intelligence 2.2 (2024), pp. 102-115. 18SN: 2949-7159. DOI:
ldoi.org/10.1016/j . jiixd .2023.10.007. URL: https://www|
|sciencedirect.com/science/article/pii/S2949715923000707|

Sachin Mehta et al. OpenELM: An Efficient Language Model Family
with Open Training and Inference Framework. 2024. arXiv: [2404.14619
[cs.CL]

47

https://doi.org/10.1371/journal.pdig.0000431
https://doi.org/10.1371/journal.pdig.0000431
https://doi.org/10.1371/journal.pdig.0000431
https://www.researchgate.net/figure/Overview-of-the-React-Native-architecture_fig8_355670705
https://www.researchgate.net/figure/Overview-of-the-React-Native-architecture_fig8_355670705
https://www.researchgate.net/figure/Overview-of-the-React-Native-architecture_fig8_355670705
https://artificialanalysis.ai/
https://doi.org/https://doi.org/10.1016/j.jiixd.2023.10.007
https://doi.org/https://doi.org/10.1016/j.jiixd.2023.10.007
https://www.sciencedirect.com/science/article/pii/S2949715923000707
https://www.sciencedirect.com/science/article/pii/S2949715923000707
https://arxiv.org/abs/2404.14619
https://arxiv.org/abs/2404.14619

7. Conclusion

[14]

[15]

Jakob Nielsen. 10 Usability Heuristics for User Interface Design. Up-
dated January 30, 2024. 1994. URL: |https://www . nngroup . com/
articles/ten-usability-heuristics/ (visited on 05/04/2024).

Christine Bauer. “On the (In-)Accuracy of GPS Measures of Smart-
phones: A Study of Running Tracking Applications”. In: Dec. 2013. DOTI:
10.1145/2536853.2536893.

Christopher Hide, Terry Moore, and Martin Smith. “Adaptive Kalman
filtering for low-cost INS/GPS”. In: The Journal of Navigation 56 (Jan.
2003), pp. 143-152. por: [10.1017/50373463302002151]

Ayush Thakur. The Art of Prompting: Unleashing the Power of Large
Language Models. Mar. 2024. DOI:|10.13140/RG.2.2.18470.54089|

Ziwei Xu, Sanjay Jain, and Mohan Kankanhalli. Hallucination is In-
evitable: An Innate Limitation of Large Language Models. 2024. arXiv:
2401.11817 [cs.CL]L

Kai Greshake et al. Not what you’ve signed up for: Compromising
Real-World LLM-Integrated Applications with Indirect Prompt Injection.
2023. arXiv: [2302.12173 [cs.CR]L

Wangqgin Ma, Chenyang Yang, and Christian Késtner. (Why) Is My
Prompt Getting Worse? Rethinking Regression Testing for FEvolving
LLM APIs. 2024. arXiv:[2311.11123 [cs.SE].

48

https://www.nngroup.com/articles/ten-usability-heuristics/
https://www.nngroup.com/articles/ten-usability-heuristics/
https://doi.org/10.1145/2536853.2536893
https://doi.org/10.1017/S0373463302002151
https://doi.org/10.13140/RG.2.2.18470.54089
https://arxiv.org/abs/2401.11817
https://arxiv.org/abs/2302.12173
https://arxiv.org/abs/2311.11123

Appendix A

List of abbreviations

LLM
Large Language Model

Al
Artificial Intelligence

API
Application Programming Interface

TTS
Text-to-speech

tRPC
Typescript Remote Procedure Call

NRC
Nike Run Club

SW
Software

SSML
Speech Synthesis Markup Language

URL
Uniform Resource Locator

Ul
User Interface

ORM
Object Relational Mapping

49

50

Appendix B

Application demonstration

GitHub repository: https://github.com/lmnek/run-app|
Video demo: https://youtu.be/RuJs6ZCeMoo

22:08

< Fotoaparat

wl > @) 219 i

)
8

Run Run

Distance (km)
Time

25 1:20

Intent

Recovery run

0.18
(:) Topic Distance (km)
. 743
Altitude
Pace
Balance 10.26
- Instant pace
Personal Bests
11.15
Calories burned
Startarun
= o
(a) : Run starting screen (b) : Run status screen

Figure B.1: Application screenshots of running screens

o1

https://github.com/lmnek/run-app
https://youtu.be/RuJs6ZCeMoo

B. Application demonstration

2208 ol = @ 22:08 vie
<« Fotoapart <« Fotoaparat
History Detail
Run #6 16. 5. 2024 Run #4
10:00 1.76km 5.68 minkm Baserun
15. 5. 2024
14:25:28
Run #5 16. 5. 2024
10:00 1.80km 5.55 minkm 5:00 0.94 5.29 59
Duration Distance Pace Calories
Run #4 15.5. 2024 Run Route
5:00 0.94km 5.29 minkm
RKY Chomutov mésto. o«—‘“ﬂ
Run #3 14.5. 2024
5:00 0.25km 20.20 minkm S
% Hotel Bobr
> ¢ %M;ps Legal
(a) : List of users previous runs (b) : Specific run’s details

Figure B.2: Application screenshots of running history and run detail

22:08

S et wll ¥ @ 22139 w T mE
Settings >

Username KryStof krystoman@gmail.com

Sign in
AlModel ® GPT-4 <

Sign up
Frequency ® High

Forgot password
Voice Male Password has been found in an online
data breach. For account safety, please

use a different password

Creative Control ® Medium

Private Mode © ()

>

(a) : Application settings (b) : Login/Sign up auth form

Figure B.3: Application screenshots of settings and authentication

52

Appendix C
LLM dialog transcript

Example of application’s LLM message history for a single run, using GPT-4o,
high frequency, medium creativity setting, and private mode turned off:

System:

Role: You are an assistant audio coach accompanying a runner.
You dynamically adapt to the specific users available data.
During the rum, you’ll join in many times and reflect on
live data, like pace and covered distance. Inform about
important milestones and different stages of the run.
Discuss segments data as approximate values and trends.
Motivate the runner, provide tips, and offer encouragement.
Be kind, excited, and occasionally funny. Integrate as much
user data as possible, especially the not yet mentioned data

Ensure your responses smoothly transition from one to the
next, with an intro, main message (the longest), and a
teaser for the next part.

###

Context:

- Coach entrance count: 5

- Goal: 10 min (mention it!)

- Intent:Base run

- The main topic: Famous Runners

-> center all your monologues around this!

- Runners name: Christoph

- Last run: { 5 run, on 5/16/2024, 5:13:51 PM,1.80 km, 5.55 min/
km, 10.0 min, intent: Recovery run, topic: Running Technique
}

- Start date/time: 5/16/2024, 5:47:46 PM

- Weather: [temperature_2m: 16.4 C ; relative_humidity_2m: 59%;
apparent_temperature: 13.4 C ; is_day: 1; precipitation: Omm
; rain: Omm; showers: Omm; snowfall: Ocm; weather_code: 3wmo

code; cloud_cover: 100%; wind_speed_10m: 17.5km/h;]
- Starting location is Chomutov I, Chomutov, okres Chomutov,
steck kraj, 430 04, Czechia (type residential)

Crude outline for your entrances: {

> #### Entrance 1

- *xInitial Encouragement **

- Weather mention: 16.4 C , perfect running condition!

- Last run progress

- Training goals: 10 min mark

53

C. LLM dialog transcript

Entrance 2

- *xFamous Runner: Usain Bolt**

- Incredible sprint speeds

- Bolt’s training secrets

- Quick highlight: world’s fastest man

<Delete the rest of the outline to make the appendix shorter>

}

Style: Write text directly processable by AWS Polly neural text-
to-speech model. Avoid emojis. Use SSML tags for better
emotion expression. Allowed SSML tags: <break>, <p>, <s>, <w
>, <prosody> (only volume and rate). <speak> tag is
prohibited.

User:

Create the 1. audio entrance, runner is starting.

Assistant:

<break time="1s"/>

Hi Christoph!

<p>Perfect day for a run, isn’t it? The temperature is just
right at 16.4 degrees Celsius, and you’ve got a nice breeze
going.</p>

Last time you did a great job on your recovery run.

<s>Today, let’s aim for that 10-minute mark with a solid base
run.</s>

Let’s get going and enjoy the journey!

<p>Stay tuned, because I’ve got some cool stories about famous
runners coming up!</p>

User:

Create the 2. audio entrance.

Already run duration: 2:08

Last segments: [

- From 0 to 201 metres; Pace 7.69 min/km; 92.8 secs

- From 201 to 270 metres; Pace 8.70 min/km; 36.0 secs
1

Assistant:

<break time="2s"/>

Hey Christoph! You’re two minutes in.

<s>You’re doing great!</s>

<p>You’ve covered over 270 meters so far.</p>

Pace has varied a bit, but that’s normal as you settle into your
run.</p>

Let’s talk about Usain Bolt, the world’s fastest man! He’s known

o4

C. LLM dialog transcript

for his incredible sprint speeds, clocking in at 9.58
seconds for the 100 meters.

<p>Bolt’s secret? Intense training, consistent routine, and a
positive mindset.</p>

Keep that in mind as you keep pushing forward. You’re on your
way !

<p>In the next stretch, I’1l1l tell you about a truly inspiring
marathon runner.</p>

User:

Create the 3. audio entrance.

Already run duration: 4:15

Last segments: [

- From 270 to 467 metres; Pace 8.59 min/km; 101.5 secs
- From 467 to 502 metres; Pace 12.27 min/km; 25.8 secs
]

Assistant:

<break time="2s"/>

You’re doing fantastic, Christoph!

<s>Four minutes in and over 500 meters covered!</s>

<p>Your pace has had some fluctuations, but remember, it’s all
about maintaining that steady rhythm in a base run.</p>

Now, let’s talk about Paula Radcliffe, a marathon legend.

<s>She set a world record in 2003 with a time of 2:15:25.</s>

How did she achieve such greatness?

<p>Her training was rigorous, focusing on building endurance and

overcoming challenges, including injuries and setbacks.</p>

Keep her determination in mind and channel that spirit into your
run.

<p>Next up, I’1ll share insights about another legendary
marathoner.</p>

Keep going strong!

User:

Create the 4. audio entrance.

Already run duration: 6:23

Last segments: [

- From 502 to 685 metres; Pace 6.29 min/km; 69.0 secs
- From 685 to 841 metres; Pace 6.26 min/km; 58.6 secs
1

Assistant:

<break time="2s"/>

A1l right Christoph, you’re past the six-minute mark and
cruising!

<s>You’ve covered more than 840 meters now.</s>

55

C. LLM dialog transcript

Your pace in the last segments was fantastic, right around 6.3
minutes per kilometer.

<p>Nice and steady!</p>

Let’s talk about Eliud Kipchoge, the man who broke the two-hour
marathon barrier. His pacing strategy is legendary,
maintaining a consistent speed throughout the run.

<p>His focus and discipline are truly inspiring.</p>

So, channel some of that Kipchoge magic as you keep pushing
forward.

<p>You’re doing great, and the finish line is getting closer!</p
>

Get ready for that final motivational push in a bit!

User:

Create the 5. audio entrance.

Already run duration: 8:30

Last segments: [

- From 841 to 1047 metres; Pace 4.83 min/km; 59.7 secs
- From 1047 to 1247 metres; Pace 5.14 min/km; 61.7 secs
]

Assistant:

<break time="2s"/>

You’re almost there, Christoph!

<s>You’ve just hit the 8:30 mark.</s>

<p>Your pace has been stellar recently, around 5 minutes per
kilometer for the last segments.</p>

Way to pick up the speed in the final stretch!

<p>You’ve been maintaining a great rhythm just like last time.</
P>

Keep your eyes on that 10-minute goal, it’s right around the
corner.

<p>Stay strong and finish with the same determination and
consistency you’ve shown throughout.</p>

Let’s bring it home!

<s>You’re doing an amazing job.</s>

56

Appendix D

Software usage declaration

According to Methodological guideline No. 5/2023EL the following software
was used in the development of this thesis:

® ChatGPT (OpenAI)EI: for paraphrasing suggestions
[] Writefulﬂ: for grammar and spell checking

® LTEX LS (IWTEX language server)ﬂ for grammar and spell checking

Ihttps://www.cvut.cz/sites/default/files/content/

|[d1dc93cd-5894-4521-b799-c7e715d3c59¢e/en/20231003-methodological-guideline-no

-52023.

b

4

https://chatgpt.com/|
https://wuw.uritefull.com/|
https://github.com/valentjn/ltex—lq

o7

https://www.cvut.cz/sites/default/files/content/d1dc93cd-5894-4521-b799-c7e715d3c59e/en/20231003-methodological-guideline-no-52023.pdf
https://www.cvut.cz/sites/default/files/content/d1dc93cd-5894-4521-b799-c7e715d3c59e/en/20231003-methodological-guideline-no-52023.pdf
https://www.cvut.cz/sites/default/files/content/d1dc93cd-5894-4521-b799-c7e715d3c59e/en/20231003-methodological-guideline-no-52023.pdf
https://chatgpt.com/
https://www.writefull.com/
https://github.com/valentjn/ltex-ls

	Introduction
	Running applications
	Existing alternatives
	Nike Run Club
	Peloton
	Zombies, Run!
	Comparative Analysis Results

	User requirements
	Functional requirements
	Non-Functional Requirements

	Technology analysis
	Mobile application
	Server and communication
	Large Language Model
	State of the art
	Privacy concerns
	Open-source models
	OpenRouter
	Conclusion

	Design
	User interface
	Low-fidelity prototyping
	UI Components
	Color scheme

	Software architecture

	Implementation
	Dependencies
	Client-side dependencies
	Server-side dependencies

	Project structure
	Client-Server communication
	Authentication
	Persistence
	Client-side state
	Redis
	Relational database

	Location tracking
	LLM Integration
	Application logic
	Settings
	Prompt Engineering
	Potential issues
	Measurements

	Deployment
	Mobile application
	Hosting services
	Scaling

	Testing
	Methodology
	Test group
	User testing results
	Prompt testing

	Conclusion
	Evaluation
	Potential enhancements
	Future plans

	Bibliography
	List of abbreviations
	Application demonstration
	LLM dialog transcript
	Software usage declaration

