
CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

F3 Faculty of Electrical Engineering
Department of Computer Science

Bachelor’s Thesis

Mobile application for
self-evaluation of skin lesions

Tereza Lemáková

May 2024
Supervisor: Ing. Ivo Malý, Ph.D.

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

507222 Personal ID number: Lemáková Tereza Student's name:

Faculty of Electrical Engineering Faculty / Institute:

Department / Institute: Department of Computer Science

Open Informatics Study program:

Software Specialisation:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Mobile application for self-evaluation of skin lesions

Bachelor’s thesis title in Czech:

Mobilní aplikace pro samovyhodnocení kožních lézí

Guidelines:

Analyze the bachelor thesis [2] that implements detection, classification, and matching of skin lesions. Further analyze
the requirements for self-examination of skin lesions using a camera on a mobile phone. Focus on the frequency of
examination, the method of photography, and the characteristics of the resulting photographs, as well as the question of
security and privacy protection on sensitive photographs. Based on the analysis, create a list of requirements for a mobile
client application and also server application using results of thesis [2]. Also, describe user scenarios for using the
applications.
Based on the analysis, design the architecture of a mobile client application that will collect user data (photographs) and
process them using a server application. Furthermore, design the user interface of the application, at least at the level of
a low-level prototype.
Implement mobile client application and also server application based on their designs. For implementation use suitable
technologies and frameworks. Implement mobile client application for Android devices.
Test final solution on realistic data/photos.

Bibliography / sources:

[1] Android Developer Portal, https://developer.android.com/
[2] Šúr S., Detekce, klasifikace a hledání korespondencí kožních lézí, ČVUT FEL, bakalářská práce, 2023,
https://dspace.cvut.cz/handle/10467/109023
[3] Fosu et al.: Mobile melanoma detection application for Android smart phones, NEBEC 2015
[4] Esteva et al.: Dermatologist-level classification of skin cancer with deep neural networks, Nature, 2017

© ČVUT v Praze, Design: ČVUT v Praze, VIC Page 1 from 2 CVUT-CZ-ZBP-2015.1

Name and workplace of bachelor’s thesis supervisor:

Ing. Ivo Malý, Ph.D. Department of Computer Graphics and Interaction FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 24.05.2024 Date of bachelor’s thesis assignment: 02.02.2024

Assignment valid until: 21.09.2025

___________________________ ___________________________ ___________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature

Head of department’s signature Ing. Ivo Malý, Ph.D.
Supervisor’s signature

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce her thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC Page 2 from 2 CVUT-CZ-ZBP-2015.1

Acknowledgement / Declaration

I want to thank my supervisor
Ing. Ivo Maly Ph.D. for his support
and patience during the preparation
of this thesis.

I would also like to thank my fam-
ily and friends for their support dur-
ing my studies, and all my testers
and models for making this project
possible.

I declare that the presented work
was developed independently and
that I have listed all sources of infor-
mation used within it in accordance
with the methodical instructions for
observing the ethical principles in
the preparation of university theses.

In Prague, 24 May 2024

. .

v

Abstrakt / Abstract

Tato práce se zaměřuje na vytvo-
ření dostupného nástroje pro sekun-
dární prevenci rakoviny kůže. Apli-
kace je rozšířením práce [1] a pou-
žívá vytvořený algoritmus založený
na konvoluční neuronové síti pro de-
tekci a vyhodnocení obrázků kůže.

Cílem je poskytnout podrobnou
analýzu požadavků a přínosů samo-
vyšetření kůže a technik fotogra-
fování, které přispívají k dosažení
co nejpřesnějších výsledků konečné
aplikace.

Na základě analýzy jsem na-
vrhla a vyvinula nativní aplikaci
pro Android s jednoduchým a
srozumitelným uživatelským roz-
hraním, implementovaným pomocí
frameworku Jetpack Compose, a
serverovou Spring Boot aplikaci,
která zprostředkovává ukládání dat
a vyhodnocování pomocí algoritmu.

Dále bylo provedeno testování
uživatelské přívětivosti aplikace,
které přineslo převážně pozitivní
zpětnou vazbu. Na základě odpo-
vědí účastníků jsem navrhla úpravy
pro zlepšení aplikace a implemento-
vala některá z nich.

Klíčová slova: prevence rakoviny
kůže, mobilní aplikace, Android,
CNN, architektura klient-server,
Spring Boot, Jetpack Compose,
e-health

This thesis focuses on creating an
accessible tool for secondary preven-
tion of skin cancer. The application
is an extension of the thesis [1] and
uses the created convolution neuron
network (CNN) based algorithm to
detect and evaluate images of skin.

It aims to provide a detailed
analysis regarding requirements
and benefits of self-assessment of
skin, and techniques of photogra-
phy that can be used to get the best
result from the final application.

Based on the analysis, I designed
and developed a native Android
client application with a simple
and comprehensible user interface
implemented using Jetpack Com-
pose framework, and a Spring Boot
server application that provides
data storage and runs the CNN
algorithm.

Furthermore, usability testing
was conducted and yielded mostly
positive feedback from the users.
Based on the testers’ responses
I suggested improvements to the
application and implemented some
of them.

Keywords: skin cancer preven-
tion, mobile application, Android,
CNN, client-server architecture,
Spring Boot, Jetpack Compose,
e-health

vi

Contents /

1 Introduction 1
1.1 Objective . 1
1.2 Structure . 1

2 Analysis . 3
2.1 Prevention and Screening. . . 3

2.1.1 Identifying High-
Risk Groups 3

2.1.2 Visual Self-
Examination 3

2.1.3 Technology-
Assisted Self-
Examination 4

2.2 Existing Algorithm 5
2.2.1 Inputs 5
2.2.2 Outputs 6
2.2.3 Diagnosis Interpre-

tation 7
2.2.4 Drawbacks 8

2.3 Photography 9
2.3.1 User Study 10

2.4 Functional Requirements . . 11
2.5 Use-Cases 11

2.5.1 Login/Registration. . . 11
2.5.2 Create Single

Record 11
2.5.3 Create New

Record from Ex-
isting (Update a
Record) 12

2.5.4 Create a Complete
Mapping 13

2.5.5 Discontinue
Record (Mark
Record as Outdat-
ed) . 14

3 Design . 15
3.1 Datamodel 15
3.2 Architecture 16
3.3 Server. 17

3.3.1 Database 17
3.3.2 Interface 17

3.4 Mobile Client. 18
3.4.1 User Interface 18

4 Implementation 23
4.1 Security. 23
4.2 Project Management. 23

4.3 Server. 23
4.3.1 Languages and

Technologies. 23
4.3.2 Project Structure 24
4.3.3 Authentication 24
4.3.4 Authorisation 25
4.3.5 REST API Defini-

tion 27
4.3.6 Data Storage 28

4.4 Client . 29
4.4.1 Language and

Technologies. 29
4.4.2 Project Structure 30
4.4.3 Security 30
4.4.4 User Interface Def-

inition 31
5 Testing . 35
5.1 Usability Testing 35

5.1.1 Questionnaire 35
5.1.2 Observations 37
5.1.3 Summary 38

5.2 Development Testing 38
6 Conclusion . 41
6.1 Results . 41
6.2 Possible extensions 41

References . 43
A List of Abbreviations 47
B List of Electronic Appen-

dices . 48
B.1 Source Code 48
B.2 User Manual 48

C Placement Photography
List . 49

vii

Listings / Figures

4.1. Okta dependency to en-
able Auth0 on the server. . . 25

4.2. Customised Filter Chain
definition 25

4.3. Definition of the list of
protected URLs 25

4.4. Method for photographs
access authorisation 26

4.5. Method for Mapping ac-
cess authorisation 26

4.6. Method for PhotoRecord
access authorisation 26

4.7. Example of the usage on
preAuthorize annotation . . . 26

4.8. Auth0 dependencies for
working with the univer-
sal login page 31

4.9. Definition of the client
AuthInterceptor 31

5.1. Example of Mockito us-
age in testing Authoriza-
tionService 38

5.2. Example of tests for au-
thorisation accuracy 39

2.1. Example output of the
CLI application 6

2.2. Example output.csv file 6
2.3. Original result cut-out 7
2.4. Modified result cut-out 7
2.5. False positive identifica-

tion example. 7
2.6. Example of failed detec-

tion of bigger lesions 8
2.7. Back and front camera

image quality comparison . . . 9
2.8. Illustrative image from

the photography study 10
3.1. Diagram of the general

datamodel 16
3.2. General client-server ar-

chitecture diagram 16
3.3. Lo-Fi design of My Body

screen . 19
3.4. Lo-Fi design of History

screen . 19
3.5. Lo-Fi design of Settings

screen . 19
3.6. Lo-Fi design of the Show

Record screen 20
3.7. Lo-Fi design of the New

Record screen 20
3.8. Lo-Fi design of the New

Mapping screen. 21
3.9. Lo-Fi design on the Log

In screen . 21
4.1. Example of using DBRef. . . 28
4.2. Example of combining

different referencing
methods . 29

4.3. Example of storing in-
complete entities 29

4.4. Screenshots of My body
screens . 32

4.5. Screenshot of the record
overview . 32

4.6. Screenshot of the record
overview with detected
lesions. 32

4.7. Screenshot of the record
info dialogue 33

viii

4.8. Screenshot of the related
records review 33

4.9. Screenshot of the start-
ing screen 33

4.10. Screenshot of the login
page . 33

ix

Chapter 1
Introduction

According to the International Agency for Research on Cancer, which is a part
of the World Health Organization, around 1.5 million new cases of skin cancer
were diagnosed worldwide in 2022.1 This makes skin cancers2 the most common
group of cancers in the world. Unfortunately, professionals expect the number
of people suffering from this type of condition to only increase in the future [2].

Early diagnosis of these conditions can vastly decrease the severity and the
mortality. Technological advancements in e-health, particularly through mo-
bile applications, offer a promising solution to this challenge. It can provide
accessible, efficient, and reliable tools for regular self-examination, potentially
leading to earlier detection and better outcomes.

1.1 Objective
The primary goal of this thesis is to conduct a detailed analysis and design of a
simple yet efficient tool for mapping and screening for potentially harmful skin
conditions. The result should be a comprehensive native Android application.

The format of a mobile application was selected, because according to the
Global System for Mobile Communications Association [3], as of 2023 a major-
ity of people globally own smartphones. The reason for selecting Android as
the primary platform for this project is it is generally more commonly used [4].
Additionally, during the research was discovered that there are several appli-
cations with similar premises available for iOS devices.

The uniqueness of this application lies in the fact, that it not only provides
a tool to store and compare skin lesions for a longer time, but it also uses a
CNN algorithm to evaluate presented photographs. This algorithm can classify
not only melanomas but also other types of potentially harmful lesions [1]. It
also provides a detection algorithm, that enables bigger sections of skin to be
analysed at once. (This topic is elaborated in sections 2.1.3 and 2.2.2.)

1.2 Structure
This work is composed of six main chapters the first one being the introduc-
tion. The second chapter is dedicated to the analysis of the topics related to
the application. It regards both the medical and technical side of the project
as it provides insight into skin cancer prevention and screening, analysis of
the used algorithm [1], and techniques of photography. The third chapter dis-
cusses the design of the application. It specifies the selected architecture of
the application and describes the interface of the server and the user interface
1 https://www.iarc.who.int/cancer-type/skin-cancer/#summary
2 in context of including both melanoma and nonmelanoma skin cancers

1

https://www.iarc.who.int/cancer-type/skin-cancer/#summary

1. Introduction .
(also called just UI) of the Android client. The fourth chapter summarizes the
technologies and approaches chosen for the development of both parts of the
application. Chapter five mostly describes the user testing and the sixth chap-
ter provides a summary, a comparison with the original assignment, as well as
some suggestions of possible future extensions for the implemented application.

2

Chapter 2
Analysis

This chapter provides a complex analysis regarding general skin cancer preven-
tion, provided CNN algorithm from [1], and techniques of photography.

2.1 Prevention and Screening
WHO defines primary prevention as a set of actions aimed at avoiding the man-
ifestation of a disease, whereas secondary prevention deals with early detection
and improves the chances for positive health outcomes [5].

In association with skin cancer, an example of primary prevention can be
limiting exposure to UV rays by covering up or using sunscreen. Regular
check-ups with a dermatologist can be considered a secondary preventative
measure.

Annual professional skin checks supported by self-checks every 2 to 3 months
are recommended to most of the general population. However, for certain
people, this frequency of screenings might be excessive. On the other hand,
individuals with elevated risks of skin cancer might benefit from more frequent
visits.

2.1.1 Identifying High-Risk Groups
Many factors can elevate the risk of skin cancer. Some of them are non-
modifiable such as age over 40, skin phototype I – II1, or family and personal
history of skin cancer. Other factors are environmental, these might include for
example immunosuppression (most frequently associated with an organ trans-
plant), usage of solariums [6], jobs necessitating a higher sun exposure (e.g.
construction workers, farm workers), or jobs with higher exposure to UV radi-
ation (e.g. flight attendants, radiology workers) [7].

People who are part of these high-risk groups might benefit from more fre-
quent self-checks, such as once every month.

2.1.2 Visual Self-Examination
Self-examination is a useful tool for secondary prevention that is available to
anyone. The techniques generally used in self-assessment include the inspection
of the whole body with the use of mirrors.2 If a suspiciously looking lesion is
identified, the individual is advised to seek a professional opinion.

However, the distinction of a suspicious lesion might not be so straightfor-
ward. One of the most well-known methods is called the ABCD rule that has
been originally introduced in 1985 [8] and can be used to distinguish between
benign and malignant skin lesions. The rule was originally based on the asym-
metry, border irregularity, colour, and differential structure of the lesion [9].
1 https://dermnetnz.org/topics/skin-phototype
2 https://www.cancer.org/cancer/risk-prevention/sun-and-uv/skin-exams.html

3

https://dermnetnz.org/topics/skin-phototype
https://www.cancer.org/cancer/risk-prevention/sun-and-uv/skin-exams.html

2. Analysis .
Most modern sources use an extended version of this rule, called the ABCDE,
where D is changed to diameter and E stands for evolution. Optionally, even
the letter F can be added, which denotes Funny looking, meaning that the most
suspicious lesions are those with atypical appearance [8].

The main drawback of self-examination is that in healthy people it can easily
result in misdiagnosis and overtreatment. It is also insufficient as a preventative
measure, if not combined with professional diagnosis. For this, the effectiveness
of this practice is controversial [10].

2.1.3 Technology-Assisted Self-Examination

Using a smartphone application is an easy and accessible way to improve the
quality and credibility of self-examination. There are many approaches to how
to utilise smartphones in skin mapping and cancer prevention.

Some applications connect users with medical professionals who help them di-
agnose the conditions from photographs. An example of this service is iDoc241

or First Derm2. These applications can be especially beneficial for people with
mobility issues and people with limited access to specialised facilities (for ex-
ample due to distance). The main downside of this type of service is that it
typically does not provide the doctor with sufficient background on the patients’
health. This may result in a lengthy diagnosis or sometimes even misdiagno-
sis [10]. The usage of these applications is also usually quite costly, as the users
are effectively seeking the help of a private medical professional. This might
make this service inaccessible for some people.

Other applications focus on the importance of regular skin checks. These
applications typically provide a place to store and compare images of skin for
a longer time. They don’t usually provide any kind of analysis or diagnosis of
the lesions. An example of such an application is MoleMapper3. This type of
application is beneficial because it stores user data for future review. However,
it does not automate any processes, and if the user has multiple suspiciously
evolving areas on the body, the process of reviewing the past records can be
lengthy and tiring, especially for elderly people.

The last notable approach is the usage of Artificial Intelligence (referred to
as AI) to classify the lesions. An example of this approach might be cureskin4

application which focuses on diagnosing a broader spectrum of skin and hair
conditions with an AI tool and suggests medical treatments as well as dietary
changes and supplements. A different type of AI is used for example by the
application AI Dermatologist5 which provides a tool to assess close-up images
of a single lesion. The main problem with this technology is that AI is not
yet accurate enough to make a reliable diagnosis. This can cause misdiagnosis
which can result in unfounded stress in the users.

Some applications combine the first two mentioned approaches as they pro-
vide tools for continuous mapping with the possibility of submitting an image
to be seen by a medical professional. This is, for example, the Miiskin6 applica-

1 https://idoc24.com/
2 https://www.firstderm.com/
3 https://molemapper.org/
4 https://cureskin.com/
5 https://ai-derm.com/
6 https://miiskin.com/app/

4

https://idoc24.com/
https://www.firstderm.com/
https://molemapper.org/
https://cureskin.com/
https://ai-derm.com/
https://miiskin.com/app/

. 2.2 Existing Algorithm

tion which contains an advanced imaging system to improve the photo quality
and make the process as easy as possible.

In this thesis, I am aiming to develop an application that will combine the
latter two approaches by evaluating all created images with AI and providing
the user with the ability to create and continuously update records of the skin
(photographs), and see their progression in time.

2.2 Existing Algorithm
One of the main features of the application is going to be the detection and
classification of skin lesions using the CNN algorithm. To be able to integrate
the preexisting algorithm into the application it is necessary to thoroughly
analyse the inputs and outputs of the Python pipeline.

The aim is to be able to modify the code of the original algorithm as little
as possible to prevent any possible inconsistencies while receiving an output
that is as compatible with the new application as possible. To use the provided
code to the fullest extent, I will be using the command line interfaced (usually
referred to as CLI) application that simplifies access to the algorithm [1].

We are also presented with the question of how should the final output of the
algorithm be presented to the end user. This quite sensitive topic is expanded
on in section 2.2.3.

2.2.1 Inputs
The algorithm itself takes an input of a NumPy array in RGB colour format.
But CLI application needs a path of an image in the .jpg or .jpeg format. The
requirements for the provided image are stated in the [1] as follows:

. Minimal resolution of the image is at least 24 mp.. The quality of the image is at least 60 points of the BRISQUE score.

In the original CLI application, this image assessment is a part of the pro-
cess of lesion detection. To increase the usability and accessibility of the new
application it was decided to divide these processes. When the image quality
and resolution are evaluated first, the user does not have to wait for the lesion
detection and classification to finish, before using the application further.

1. Resolution
The resolution of the provided image can be easily determined in code.

Because some smartphone cameras, especially on older devices, might not be
able to provide images with the required resolution, the photographs can be
programmatically resized. This can be achieved by using functions provided
by an external library for altering photographs, such as Java Image-Scaling
Library imgscalr1.

2. Quality
In the original implementation, the quality check is provided by the Python

PIQ library. It uses the BRISQUE algorithm, that provides a no-reference2

image quality assessment [11]. During the research, I could not find any
suitable libraries for Java or Kotlin, that would provide the desired quality

1 https://github.com/rkalla/imgscalr
2 also called object blind

5

https://github.com/rkalla/imgscalr

2. Analysis .
evaluation. Because of that, I suggest the assessment be provided by a
Python script, run on the server side of the application.

2.2.2 Outputs

The CLI application provides multiple outputs. For compatibility with the new
application, it needs to be determined which outputs will be used and how will
those need to be modified.

As of now, all the newly created files are being inserted into a /results
folder. When calling the detection and classification script from the Java code,
the result folder will be created in the base project folder.

When using the provided application, the main output one would use is
what is displayed in the command line. As can be seen in Figure 2.1, the
formatting of the text output is clear and well-arranged to be legible by the
human eye. However, it contains multiple spaces between each value and other
graphical features. Therefore, it would be rather challenging to parse between
the programs. It also duplicates the data, presented in other possible sources.

For these reasons, the command line output will not be used in this case.

Figure 2.1. Example output of the CLI application

For easier referencing in this text, the other outputs will be divided into
three parts CSV file, image cut-outs, and modified original image.

1. CSV File
One of the outputs of the CLI application is a file named output.csv. This

file contains a header line and then a line for each lesion that has been
detected. This provides a strong and easily parsable source of the data that
needs to be extracted from the pipeline. An example of the contents of the
output.csv file can be seen in Figure 2.2.

Specifically, information that is relevant for the user is the image of the
lesion (the first value on each line), whether the lesion was able to be iden-
tified (the 12th value), and in case the identification was successful, how it
was classified (the 13th value).

Figure 2.2. Example output.csv file

2. Image Cut-outs
Another output of the algorithm is a series of cut-outs of the original

images, containing the detected lesions. In the original form, these cut-outs
are completed with the final classification and the percentage regarding the
probability of the classification.

For reasons that are expanded on in section 2.2.3, the end users cannot
be presented with a precise diagnosis, as is presented in the original image.

6

. 2.2 Existing Algorithm

Figure 2.3. Example of an original
cut-out.

Figure 2.4. Example of a newly mod-
ified result cut-out.

Removing the label from the cut-out will also help with the legibility of the
image, as can be seen in Figures 2.3 and 2.4.

3. Modified Original Image
The last output of the Python script is an image with drawn-on boxes, of

the detected lesions. This form of output is not going to be very legible to
the user due to the size of the detected lesions. However, it is going to be
important in identifying incorrectly detected lesions1 (as is demonstrated in
Figure 2.5). These are formations that were misinterpreted by the detection
algorithm as a skin lesion, while not being a part of the users’ skin.

Figure 2.5. Example of how the modified image can be used to identify incorrectly
detected lesions.

2.2.3 Diagnosis Interpretation

The AI algorithm can yield one of the following classifications: AK, BCC, NV,
BKL, SCC, DF, MEL, VASC, or Unknown. All the presented abbreviations
are associated with a certain type of lesion. However, even if the users are
presented with full-name classification, most of the general population will not
know the ramifications of the diagnosis. The results of the provided algorithm
are also not medically proven to be accurate.

1 also called False Positives [1]

7

2. Analysis .
The goal is to make the application output as comprehensible as possible,

whilst refraining from misdiagnosing users with some severe medical condi-
tions such as skin cancer. For these reasons, it was decided to divide these
classifications into generalised groups corresponding to harmless, suspicious,
and unrecognised. Lesions that were marked as suspicious are mostly those
classified as cancerous or potentially precancerous.

The presented classifications were decided to be mapped as follows:

. Actinic keratosis (AK): Suspicious [12]. Basal cell carcinom (BCC): Suspicious [13]. Melanocytic nevus (NV): Harmless [14]. Benign keratosis-like lesions (BKL): Harmless [15]. Squamous cell carcinoma (SCC): Suspicious [16]. Dermatofibroma (DF): Harmless [17]. Malignant melanoma (MEL): Suspicious [14]. Vascular lesion (VASC): Suspicious [18]

2.2.4 Drawbacks

During the testing of the algorithm behaviour, it was discovered that there were
some issues with the outputs. These matters mainly concern lesion detection
and they might hinder the usability of the final product.

The first problem is the inability to detect bigger lesions. As can be seen in
Figure 2.6 the algorithm fails to detect the most obvious lesions on the image.
Even if it is specified in the User Manual (appendix B.2) that wider areas
should be photographed instead of close-ups on single lesions, users are still
the most interested in analysing the prominent lesions.

Figure 2.6. Example of failed detection, comparison of detected lesions (blue
square) and most prominent lesions (red circles)

The other downside of the algorithm usage is so-called false positives. This
topic was already touched upon in the section 2.2.2 where it was discussed how
to help users identify them. In the User Manual (appendix B.2), users are
advised on which kinds of backgrounds are not ideal for the photographs. This
way the number of incorrectly detected lesions can be limited, but they can
not be eliminated.

8

. 2.3 Photography

2.3 Photography
Taking photos of skin is a crucial part of mapping skin conditions. For some
people, this might involve taking pictures of body parts that are not easily ac-
cessible. If these images are not taken properly, this might result in undetected
or misdiagnosed lesions.

This section will explain what are some good and bad practices in photog-
raphy. To relay this information to the user, I use a User Manual (provided in
appendix B.2)

Modern smartphones are mostly made with front and back cameras. If a
smartphone owner is asked to take a photo of their face, they would intuitively
use the front camera as it is more comfortable than the back camera. The reason
why this kind of behaviour is not supported by the application is that front
cameras typically provide lower resolution [19]. This can be seen in Figure 2.7.
As mentioned in section 2.2.1, it is important that the resolution and quality
of the image are maximised.

Figure 2.7. Comparison of quality and resolution between a photo of the same
placement taken by the front camera (left) and back camera (right).

Some basic tips regarding taking photos of the skin are:1

. Clean your lens. – Wipe your phone’s camera lens/es off with a wipe of a
cotton piece of cloth before starting your mapping.. Use back camera. – With most smartphones, the quality of photos, taken by
the back camera is a lot better than the selfie/front camera.. Remove your phone case. – If you have a closable phone case, it can get in
the way of you comfortably holding your phone. Removing it might help you
get a better grip on your phone.. Ask for help. – Some places may be hard to reach, especially for people with
a limited range of motion. If possible, ask your friend, relative, roommate,
or any other person to help you with the photography.. Photograph wider areas. – Taking a close-up photo of a single lesion seems
like a good idea, but it might not be the best. The AI used for this application
works better when a bigger area of skin is presented. It is also easier to spot
any changes in the size and shape of a lesion when you can compare it to its
surroundings.

1 These tips have been mostly compiled during user testing and interviews. The formulation
is straight taken from the manual B.2.

9

2. Analysis .
. Adjust the light. – Remember to take your photos in a well-lit area. If it is

dark outside, turn the light on. But be aware that deeper shadows can make
the AI analysis less accurate.. Be aware of your surroundings. – Darker spots in your background can con-
fuse the AI. Reconsider taking photos with dotted or wooden surfaces as
those are likely to be interpreted as lesions.. Take your time. – Taking a lot of photos in a quick succession might be tiring
and the quality can increase during the mapping. Remember that you can
always take the pictures in advance, even during various hours or days, and
then upload them into the application.

2.3.1 User Study
A test was conducted on 3 able-bodied individuals ages from 17 to 22. They
were provided with a list of parts of their bodies (as can be seen in C), an
Android smartphone, a wall mirror, a selfie stick1, and a chair. The participants
were asked to use the back-facing camera of the device to take photos of all the
body parts on the list. The progress of their work was observed and documented
and the quality of taken photographs was monitored.2

Based on the outcome, it was determined that people with high mobility are
capable of photographing most of their bodies on their own. The only places
that were determined to be inaccessible are the lower back, buttocks, back of
the neck and some places on the head3.

In Figure 2.8 a participant is using a combination of the mirror and the selfie
stick to take a photo of the back of their tights.

Figure 2.8. An image of a participant trying to take a photo in a difficult location
taken during the photography study.

1 compatible with the provided device
2 All the participants agreed to take photographs during the study, and for these photographs

to be used in this thesis.
3 depending on how much and how long hair one has

10

. 2.4 Functional Requirements

2.4 Functional Requirements

. FR01. The user should be able to create a new user account.. FR02. The user should be able to log into an existing account.. FR03. The user should be able to create a new record containing an image
and a description.. FR04. The user should be able to create a new record containing an image
but no description.. FR05. The user should be able to create a record using an existing image.. FR06. The user should be able to create a record by taking a new photograph.. FR07. The user should be able to see the image of the evaluated record.. FR08. The user should be able to see the result of the evaluation of a sub-
mitted image.. FR09. The user should be able to see detected lesions.. FR10. The user should be able to compare images of two or more related
records.. FR11. The user should be able to update the image for a selected record.. FR12. The user should be able to comprehensively create a new mapping
(meaning, create an updated version of all up-to-date records in the current
mapping).. FR13. The user should not be able to access data (photographs, records,
mappings etc.) that were not created by them and are not linked to their
account.

2.5 Use-Cases
This section provides specific use cases and scenarios to describe the intended
usage of the application.

2.5.1 Login/Registration
Precondition: The application has been successfully downloaded from a sup-
ported provider and installed.

1. The user opens the application.
2. The system displays declarations and asks the user if they wish to accept

and continue.
3. IF the user confirms the usage, the system redirects to the centralised login

page provided by a third party. IF the user does not wish to continue they
may leave the application.

4. IF the login/registration process is successful, the system is notified by the
third party and the user is redirected to the home page of the application.

2.5.2 Create Single Record
Possible scenarios:

. The user has been suggested/decided to start using the application and they
want to start mapping their skin.. The user of the application has noticed a possibly suspicious lesion on a part
of their body they are not yet mapping via the application.

11

2. Analysis .
Precondition: The user has spotted a potentially suspicious lesion or wants

to start mapping a new part of their body. The user is registered and logged
in as specified in 2.5.1.

1. The user clicks the button to create a new record.
2. The system displays the form to create a record.
3. The user chooses a placement from the provided list and optionally adds a

verbal description of the placement. The user clicks the button to add an
image.

4. The system displays a dialogue to ask the user whether they want to use an
existing photo or take a new one.

5. The user chooses their preferences.
[EXISTING IMAGE]

1. The system displays a simple data picker only containing photos (no
videos).

2. The user chooses the preferred photo and the process continues at point
6.

[NEW IMAGE]

1. The system displays a camera.
2. The user takes a photo of the desired area.
3. The system displays the photo and asks the user whether they want to

use the image.
4. IF the user chooses to retake the photo, they start back at the point [NEW

IMAGE] 1. ELSE the process continues at point 6.

6. The system displays a preview of the photo on the form page and adds a
button to submit the photo for a quality check.

7. IF the user wants to use a different photo, the process goes back to point 5.
ELSE user clicks the button to submit the photo for a quality check.

8. The system disables the button for the quality check and sends the photo to
the server to evaluate the quality.

9. IF the quality of the image is insufficient, the system displays a dialogue and
prompts the user to start back at point 5. ELSE the user is navigated back
to the home page and a new record is sent to the server to be created and
evaluated.

10. After the evaluation, the newly created record is added to the mapping and
displayed on the home screen.

11. The user can (but does not have to) navigate to see the results of the photo
evaluation.

* In steps 3 and 7, IF the user chooses to cancel the creation of the record,
the data is discarded and they are navigated back to the home page.

2.5.3 Create New Record from Existing (Update a Record)
Possible scenarios:

. The user of the application has noticed a possibly suspicious development
of one or more lesions on a part of their body they are already mapping
via the application. However, they do not find it important to proceed with
updating all of the existing records.

12

. 2.5 Use-Cases

. A certain part of the user’s body has become more risky (for example they
sunburned some section of their body), so they want to monitor it more
closely and more frequently.

Precondition: The user has previously created at least one record as specified
in 2.5.2.

1. The user opens the application and selects the record they wish to create an
update. The user selects the option to create a new record from an existing
one.

2. The system displays the form to create a new record with preselected place-
ment and prefilled description (if any is present in the original record).

3. Optionally, the user can update the record description.
4. The user follows to add an image as specified in 2.5.2 points 4 – 9.
5. After the evaluation, the system removes the original record from the map-

ping and substitutes it with the updated one.
6. The user can (but does not have to) navigate to see the results of the photo

evaluation. They can also navigate to see the comparison between the pre-
vious and current photos.

2.5.4 Create a Complete Mapping

Possible scenarios:

. The user was notified that the time (usually 2 to 3 months) has passed and
they should create a new complete mapping.. The user was/is about to be subjected to some behaviour that increases the
risk of skin cancer and wants to create a new mapping of their body so they
could monitor the evolution of their skin more closely from that point.

Precondition: The user has previously created at least one record as specified
in 2.5.2.

1. The user opens the application and chooses the option to create a new map-
ping.

2. The system displays a screen with instructions on how to create a mapping
successfully and the first record to replicate

3. User reads the instructions and either decides to replicate the record or to
skip it.

4. IF the user chooses to skip the record, the process continues at point 6. IF
the user chooses to replicate the record, they are presented with a prefilled
form for record creation, which they fill in as specified in 2.5.2 points 4 – 8.

5. IF the quality of the image is insufficient, the system displays a dialogue
and the user is prompted to retake/choose a new photo. ELSE the process
continues at point 6.

6. The system creates the new record locally. IF there are any more records
to be replicated, the system displays a preview of the following record. And
the process resumes at point 3. ELSE the process continues at point 7.

7. The system sends the list of new records to the server to be stored and
evaluated.

8. After the evaluation of all the new records a new mapping is created and
displayed on the home page.

13

2. Analysis .
9. The user can (but does not have to) see the newly created mapping and

review the records.

2.5.5 Discontinue Record (Mark Record as Outdated)
Possible scenarios:

. The selected area has not had any development in a very long time so the
user wants to stop mapping it.. Because of some external reason (e.g. lesion removal, skin injury) mapping
the selected area is no longer relevant or necessary for the user.

Precondition: The user has previously created at least one record as specified
in 2.5.2.

1. The user opens the application and navigates to a selected record. The user
chooses to discontinue the record.

2. The system marks the record as discontinued and visually removes it from
the current mapping.

3. The user can access a discontinued record via the history tab. IF the user
wants to update the record even after it has been discontinued, they can
choose to update the archived record.

14

Chapter 3
Design

This chapter provides a detailed design of the application. It contains a defi-
nition of the data model, describes the intended architecture, shared interface,
and Low Fidelity (referred to as Lo-Fi) design of the User Interface (also called
UI).

3.1 Datamodel
In this section, I define basic entities that are in some variations going to be
used in implementation. The UML diagram is shown in Figure 3.1.

. Mapping

. Defines a specialised collection for objects of the PhotoRecord datatype.
As a whole, it defines one user’s skin mapping in a certain period of time.

. Attributes: unique identifier, note (optional)

. This class provides getters 1, a method for adding one or multiple records,
retrieving dates when the oldest and the newest record in the collection was
created, and a method to retrieve the AI result of the complete mapping.

. PhotoRecord

. Represents one record of an image.

. Attributes: UID, compressed image, placement (defined by the enumera-
tive type), String note for placement specification, date of record creation,
number of related records, list of PhotoSpecifications

. Provides a method to get the analysis result of the record.

. PhotoSpecification

. Represents an image cut-out (as defined in section 2.2.2) combined with
the result of the AI analysis.

. Attributes: AID, AI result, image cut-out containing a single lesion

. Enumerated types:

. Placement – specifies the general placement of the image
Values: chest, stomach, upper back, lower back, buttocks, right upper

arm, right lower arm, right hand, left upper arm, left lower arm, left hand,
right thigh – front, right thigh – back, right calf, right shin, right foot,
left thigh – front, left thigh – back, left calf, left shin, left foot, neck, face,
head

. AIResult – specifies the result of the AI analysis of the selected lesion (as
define in section 2.2.2)

Values: ok, unrecognised, suspicious

1 methods for retrieving attributes in a safe and controlled manner

15

3. Design .

Figure 3.1. Diagram of the general data model

3.2 Architecture

This project aims to create a mobile application that stores and evaluates user
images. However, the evaluation process is rather lengthy and storing many
high-quality photographs can be memory-intensive. Therefore, this project is
going to use the Client-Server architecture.

Client-server architecture typically features multiple users’ workstations,
PCs, or other devices, connected to a central server via an Internet connection
or other network. (As is illustrated in Figure 3.2.) The client sends a request
for data, and the server accepts and accommodates the request, sending the
data back to the user who requested them [20].

In this case, the server mainly going to store the data and provide operations
with images. The client, which is to be represented by an Android application,
is going to fetch and display selected data and collect data from the users.

Figure 3.2. An illustrative diagram of client-server type architecture taken from
[21]

16

. 3.3 Server

3.3 Server
The main task of the server application is to store and evaluate user data. In
this section, both of these goals will be explained and defined.

3.3.1 Database
When it comes to storing data on a server, there are two main options. You
can either use a SQL database (such as PostgreSQL) or NoSQL database (such
as MongoDB).

Many things need to be taken into consideration when choosing how to store
your data. In this case, the main indicator is going to be the type of data that
is going to be stored. Looking at the general data model in section 3.1, it is
apparent that most of the data used in this application is heavily nested and
would be rather challenging to store in a table. Another thing that needs to
be taken into account is that images need to be stored on the server.

Seeing that it is rather complicated to use SQL databases to store unstruc-
tured data (as explained in [22] and [23]), this project is leaning towards a
NoSQL database.

3.3.2 Interface
To communicate with the client application, the server needs to implement an
Application Programming Interface usually referred to as API. This interface
needs to provide the following features:

. Image quality assessment
Evaluating image quality (as specified in section 2.2.2). After the image

is evaluated it is also saved into the database.
Input: image in the JPEG format
Output: image quality assessment result (true/false), image UID. Single record creation
Evaluating a single record with AI algorithm and saving it into the current

mapping. This process requires some time.
Input: corresponding image UID, placement specifications
Output: record UID. Creation of a related record
Creating a record that is to be marked as related to an existing record.
Input: existing record UID, UID of the image that the record is being

created for, placement specification (the default value here is the same as
the existing record)

Output: new record UID. Multiple record creation
Evaluating a list of records that are all related to existing records. This

process should also create a new mapping.
Input: list of image UIDs, placement specifications, and related records’

UIDs
Output: UID of the new mapping. Reevaluate record
Rerun the AI analysis and update the selected record.
Input: UID of the record to be reevaluated
No output is necessary here.

17

3. Design .
. Extract stored data

Retrieving the following data from the database:
. historical mappings (by username)
. related record (by original record ID)
. record (by id)
. the newest mapping (by username)

3.4 Mobile Client
The main objective of the client application is to comprehensibly display and
collect user data. It needs to be able to communicate with the server to access
stored data and create new images, records, and mappings.

3.4.1 User Interface
This section provides a detailed breakdown of the Lo-Fi model of the UI.

The main structure of the UI consists of three screens. You can navigate
between those using the bottom navigation bar. The home page is called My
Body and it represents the current mapping. The second page is named History
and it provides a list of all existing mappings (the current one and all previously
created mappings). The last page is called Settings and it shows basic user
information and enables them to customise their preferences.

. My Body
As can be seen in Figure 3.3, the Lo-Fi design of the My Body page shows

a list of placements that contain some record in the current mapping. Each of
the placements consists of an expandable list of record previews. On clicking
on a record preview a full record with detailed information is displayed.

This page is also able to show a dialogue with details regarding the map-
ping, such as the number of records in the mapping.

The final component of this screen is a floating action button that on click
displays a bottom sheet that enables the user to create a new record or start
a new mapping.. History The Lo-Fi design of the History page can be seen in Figure 3.4. It
shows a list of all existing mappings with basic information and by clicking
on any selected mapping preview a complete mapping will be displayed on
a page similar to the My Body screen.. Settings

The Settings page is supposed to enable users to customise their prefer-
ences and see their account details. The sections are visibly separated to
keep the design comprehensible as can be seen in Figure 3.5. To turn the no-
tifications on and off it is suggested to use switch buttons as it is an intuitive
way to set boolean values.. Record

This page is designed to display information about a photo record clearly
and concisely. The biggest portion of the screen is taken by the photo of
the described area. By clicking on the image, the user is shown a list of
specifications with the layout as depicted on the second frame from the right
in Figure 3.6.

18

. 3.4 Mobile Client

Figure 3.3. Lo-Fi design of My Body screen

Figure 3.4. Lo-Fi design of History
screen

Figure 3.5. Lo-Fi design of Settings
screen

In case the user wants to compare multiple images of the same location,
they can use the button in the detailed information dialogue to see the list
of images from the related records. (As can be seen in the rightmost frame
of Figure 3.6.) This feature provides a fast and intuitive option to study
lesions over time.

This page also provides buttons for discontinuation (as defined in use-case
2.5.5), rerunning the analysis and creating a related record (updating the
image of an existing record).. New Record

This page provides a form to create a new single record (as defined in
use-case 2.5.2). It is composed of a drop-down menu, containing a list of
predefined general areas, and a text box for other notes and descriptions as

19

3. Design .

Figure 3.6. Lo-Fi design of the Show Record screen and the specification list

is depicted in Figure 3.7. In case the record is created from an existing one,
these fields are prefilled based on the original record. There are two options
to add an image to the record, the user can either use an image from the
gallery or take a new picture (as defined in FR5 and FR6 in section 2.4).

If an image has been added a button for image evaluation is displayed
as is shown in the second frame from the left in Figure 3.7. In case the
image quality is not determined to be sufficient (based on the rules defined
in section 2.2.1) a dialogue notifying the user is to be displayed. The design
of the dialogue is presented on the second frame from the left in Figure 3.7.

Figure 3.7. Lo-Fi design of the New Record screen

. New Mapping
In case the user wants to start a new mapping they are met with a guide

on how to proceed with recreating images. The process follows the use-case
defined in 2.5.4. The notes on previews of the records encourage the user
to try to replicate the existing photographs as closely as possible as can be
seen in both frames of Figure 3.8.

20

. 3.4 Mobile Client

Figure 3.8. Lo-Fi design of the New Mapping screen

. Log In
The design of the login page helps the user to intuitively create an account

or sign in. The screen with the form to create an account also contains a dis-
claimer that the application is not a reliable source and it is for preventative
purposes only (this can be seen in the middle frame of Figure 3.9.

Figure 3.9. Lo-Fi design on the Log In screen

21

Chapter 4
Implementation

This chapter provides insight into how the application was developed. As ex-
plained in the section 3.2, this project is following the client-server architecture.
Therefore, the client and the server application were first developed indepen-
dently and later they were connected via a secured RESTful interface.

For this reason, this chapter is divided into two main sections Server and
Client each explaining the development of the respective component of the
project.

4.1 Security
Security of the communication is very important in this case, as the application
handles sensitive data in the form of personal photographs. That is why the
application should not only limit the usage of its features to authenticated
users but also secure access to each specific image and record. In this case, it is
going to be achieved by usingJSON Web Tokens. JWT is an open standard that
defines a compact and self-contained way for securely transmitting information
between parties as a JSON object1.

Auth0 by Okta was selected as an authentication and authorisation provider
for the project. This is mainly because it provides support for both Android
Jetpack Compose and Java Spring Boot and has extensive documentation.

4.2 Project Management
For this project, Git was used as a source code management tool. All source
code for the application is available via the GitLab platform at the address
provided in the appendix B.1.

For static code analysis, I used the SonarLint2 extension which connects
to the SonarQube server and is available in both IntelliJ IDEA and Android
Studio.

4.3 Server

4.3.1 Languages and Technologies
In the implementation of the server were mainly used two programming lan-
guages:

. Python 3.10.4:

1 https://jwt.io/introduction
2 https://docs.sonarsource.com/sonarcloud/improving/sonarlint/

23

https://jwt.io/introduction
https://docs.sonarsource.com/sonarcloud/improving/sonarlint/

4. Implementation .
The provided CNN algorithm is written mainly in Python. As a part

of this project, the original code was slightly adjusted to provide better
compatibility with the server application. The code written in Python is
being run from the Java code as an external process. A more recent version
of Python cannot be used because of compatibility issues with some external
libraries used in the provided code.. Java 21:

The server part of the application is written in Java 21. Java is a popular
object-oriented language and is also widely compatible with Kotlin.1 Java 21
is currently the most recent version with long time support (also known as
LTS).
Technologies that were used for the development of the server application

are:. Operating System: The server application was developed and run on a device,
running on Windows 11.. Development Environment:

For modifying the Python algorithm, it was initially used VisualStudio
Code. The Java application was mostly developed in IntelliJ IDEA from
JetBrains.. Server Framework:

The server-side application is developed using Spring Boot, a Java frame-
work for building Spring applications. Additionally, it provides support for
data management and helps deal with security issues.. Build Automation Tool:

Maven was used for dependency management and build automation of the
server part of the project as it is optimised for Java applications.

4.3.2 Project Structure
The server is composed of a single module that contains the Java source code
as well as the Python algorithm source code. The Java application follows the
Controller-Service-Repository pattern. If implemented correctly, this pattern
aims to separate responsibilities between the presented layers to create a com-
prehensive and safe code [24]. Each of the layers can be found in a respective
package. In addition to the Controllers, Services, and Repositories, the server
application also contains a data model, data transfer objects (also called DTOs)
with corresponding mappers, security configuration (as is described in sections
4.3.3 and 4.3.4), custom exception definitions, and other utils regarding image
management and Python script output readings.

4.3.3 Authentication
Identity authentication is the process of verifying the identity of a user or
service. Based on this information, a system then provides the user with the
appropriate access [25].

For server-side authentication was used the following dependency (Listing
4.1) was used to enable the Spring boot application to work with Okta via
OAuth 2.0 as suggested in the Auth0 documentation2.
1 https: / / kotlinlang . org / docs / faq . html / is-kotlin-compatible-with-the-java-

programming-language
2 https://auth0.com/docs/quickstart/webapp/java-spring-boot/interactive

24

 https://kotlinlang.org/docs/faq.html/is-kotlin-compatible-with-the-java-programming-language
 https://kotlinlang.org/docs/faq.html/is-kotlin-compatible-with-the-java-programming-language
https://auth0.com/docs/quickstart/webapp/java-spring-boot/interactive

. 4.3 Server

<dependency>
<groupId>com.okta.spring</groupId>
<artifactId>okta-spring-boot-starter</artifactId>
<version>3.0.5</version>

</dependency>

Listing 4.1. Okta dependency to enable Auth0 connection on the server applica-
tion

The security chain was set up as can be seen in Listing 4.2, which enables
unauthorised access to health check and documentation endpoints. General ac-
cess to all user data-related endpoints is restricted to authenticated users. Any
requests out of the predefined addresses are automatically denied to prevent
accidental data leaks.

@Bean
public SecurityFilterChain filterChain(HttpSecurity http)
throws Exception {

return http.authorizeHttpRequests(it -> it
.requestMatchers(

SecurityURLs.PERMIT_ALL_URLS)
.permitAll()

.requestMatchers(
SecurityURLs.PROTECTED_URLS)

.authenticated()
.anyRequest()
.denyAll())

.httpBasic(withDefaults())

.oauth2ResourceServer(oauth2 ->
oauth2.jwt(withDefaults()))

.cors(withDefaults())

.build();
}

Listing 4.2. Customised Filter Chain definition for server API

The list of protected URLs is currently defined in Listing 4.3.

static final RequestMatcher PROTECTED_URLS =
new OrRequestMatcher(

new AntPathRequestMatcher("/mapping/**"),
new AntPathRequestMatcher("/photo/**"),
new AntPathRequestMatcher("/record/**")

);

Listing 4.3. Definition of the list of protected URLs

4.3.4 Authorisation
Authorisation is the security process that determines a user or service’s level of
access. In technology, we use authorisation to give users or services permission
to access some data or perform a particular action [25].

Potentially sensitive images might be handled while using the application.
For this reason, access to each mapping, record and image needs to be au-

25

4. Implementation .
thorised to prevent data leaks. For this reason, a service to provide pre-
authorisation for GET requests with an ID parameter was created.

As the PhotoWrapper and Mapping entity directly store the name of the
owner, the access to those types of objects can be simply authorised as shown in
the authorizePhotoAccess (Listing 4.4) and authorizeMappingAccess (List-
ing 4.5).

public boolean authorizePhotoAccess(String photoId)
throws EntityNotFoundException, InvalidIdException {

PhotoWrapper photoWrapper =
photoService.getPhotoWrapperById(photoId);

return photoWrapper.getUsername().equals(getUsername());
}

Listing 4.4. Method defined in AuthorizationService for access to photographs
authorisation

public boolean authorizeMappingAccess(String mappingId)
throws EntityNotFoundException, InvalidIdException {

Mapping m = mappingService.getById(mappingId);
return m.getUsername().equals(getUsername());

}

Listing 4.5. Method defined in AuthorizationService for Mapping access au-
thorisation

The PhotoRecord entity does not directly store the owner’s name, so
they need to be authorised either via the Mapping they belong to, or
the PhotoWrapper that they access. The current implementation of the
authorizeRecordAccess method is seen in Listing 4.6.

public boolean authorizeRecordAccess(String recordId)
throws EntityNotFoundException, InvalidIdException {

PhotoRecord r = recordService.getById(recordId);
Optional<Mapping> m = mappingService

.getMappingContaining(r);
return m.map(a -> a.getUsername().equals(getUsername()))
.orElse(authorizePhotoAccess(r.getPhotoId()));

}

Listing 4.6. Method defined in AuthorizationService for PhotoRecord access
authorisation

These authentication methods are applied to the requests with an annotation
as so:

@PreAuthorize(value ="@authorizationService
.authorizePhotoAccess(\#id)")

Listing 4.7. Example of the usage on preAuthorize annotation

26

. 4.3 Server

4.3.5 REST API Definition
There are two principal approaches to creating REST interfaces code-first and
design-first. A design-first approach involves creating a detailed API definition
before writing any code, whereas a code-first approach involves writing code
first and then documenting it after the fact [26].

While design-first is more beneficial for projects that need the API to be
easily comprehensible and legible for the stakeholders, code-first is a faster and
perfectly logical pick in the case of this application [26].

To modify or specify the endpoint definitions, swagger annotations such as
@Operation or @ApiResponse were used in the code.

The API is composed of three main endpoints that provide access to the
most significant entities: mapping, record and photo.. /mapping

. GET – Returns an overview (data transfer object without the list of
records) of all mappings owned by the logged-in user.

. GET /{mappingId}, parameters: boolean withDisconnected – Re-
trieves complete mapping (DTO with the list of records) by the id
if the mapping belongs to the logged-in user. Depending on the
withDisconnected value, records marked as disconnected might be
included.

. GET /newest – Returns a complete mapping marked as newest, if it exists.
If no such mapping exists for the user, it returns null.

. POST /new – Creates a new mapping marked as newest if no mapping
marked as newest exists for the user, or if the mapping currently marked
as newest contains any records. Returns the String id of the mapping
marked as newest.. /record

. GET /{recordId}/related – Retrieve the records marked as related to
the selected one. This operation is only possible if the logged-in user is
the owner of the selected record.

. PUT /{recordId}/rerun – Rerunning the AI analysis on the selected
record, if the record belongs to the logged-in user.

. POST – Creating a new single record from an existing image.

. POST /{recordId} – Creating a new record based on an existing record
if the existing record belongs to the logged-in user. This operation marks
the two records as related.

. POST /batch – Creating new mapping with multiple new records that are
all related to an existing record. Each of these pairs of records is marked
as related.. /photo

. GET /{photoId} – Retrieves a compressed Base64 encoded String of an
compressed image.

. GET /{photoId}/result – Retrieves a compressed result image, if it
exists. If no such an image exists, the response status is 204 (meaning no
content).

. POST – Saving a new image passed in Base64 encoded string with image
quality check while returning the String ID of the newly created image

27

4. Implementation .
wrapper. If image quality is not sufficient the image is not saved and an
empty String is returned.

4.3.6 Data Storage

As explained in section 3.3.1 this project is using a NoSql database. As men-
tioned in section 4.3.1 this also is a Spring boot application and Spring boot
provides limited support for NoSql databases. According to the official docu-
mentation [27], Spring boot includes repository support for MongoDB, Neo4j,
Cassandra, and Couchbase.

I decided to choose MongoDB as it is one of the most popular options. It
also provides various alternatives regarding storing images as binary large ob-
jects, usually referred to as BLOBs, such as images. For example, the GridFS
specification provides an opportunity to store binary objects, that are bigger
than 16MB.1 This technology can become useful if the application is used on
smartphones with cameras with higher resolution.2

In MongoDB, there are three approaches on how to represent relations be-
tween objects.

The first is a database reference. String data provides an annotation @DBRef
that can be used to automatically link and retrieve related objects. In the
database, the references are stored as DBRef(’_class’, ’id’). This approach
is used with classes Mapping and RecordHistory to reference PhotoRecord, and
in Specification class to refer to respective PhotoWrapper. Database documents
using this approach can be seen in Figure 4.1.

Figure 4.1. Example of using database reference in storing instances of class Map-
ping (left) and in RecordHistory (right)

The second possibility is to manually reference the ID of an object. In this
project, this option is used to connect a PhotoRecord entity with the respective
PhotoWrapper. This approach was chosen here mainly because the contents of
the wrapper are hardly accessed on the server with relation to the record and
from the client side they are retrieved separately from the actual entity.

The last option that will be mentioned here is the opportunity to nest enti-
ties. This approach is used in the PhotoRecord entity to store Specifications.
The reason for this is that the Specification objects do not have any significance
unless they are a part of the record. There is also no use for these objects to
be accessed or referenced from outside the related PhotoRecord instance.
1 https://www.mongodb.com/docs/manual/core/gridfs/
2 The device that was used for testing this application did not produce images over 4MB.

28

https://www.mongodb.com/docs/manual/core/gridfs/

. 4.4 Client

Figure 4.2. Example of how different methods of referencing objects can be used.

All the mentioned approaches can be combined based on the use cases for
different circumstances. The usage of multiple referencing options in a single
entity can be seen in Figure 4.2.

The users’ photographs are stored as instances of the PhotoWrapper class.
This class can hold the original image, a compressed version of the image (this
is the one being retrieved by client devices), and a result image (as defined in
section 2.2.2). However, as can be seen in Figure 4.3 the PhotoWrappers also
store the image cut-outs (as defined in section 2.2.2). These only contain the
original image cut-out as any of the other image variants are not necessary. This
demonstrates another benefit of storing the user data as a document instead of
a table.

Figure 4.3. Example of two instances of the same class with different attributes

4.4 Client

4.4.1 Language and Technologies
The client application is written in Kotlin 1.9.20. The main reason is the usage
of Jetpack Compose which is not compatible with any other programming
languages1. Version 1.9.20 was the most recent as of the beginning of the
development of this application.
1 https://developer.android.com/develop/ui/compose/kotlin

29

 https://developer.android.com/develop/ui/compose/kotlin

4. Implementation .
Following is the list of technologies used in the development of this applica-

tion:

. Development Operating System:
The application was developed on a device, running on Windows 11.. Testing Device Operating System
For testing the application I first used an emulated device using Android

14 and later a physical device with Android 10.. Development Environment:
The client application was developed in the Android Studio which is an IDE

specifically designed for the development of applications for Google Android
created by collaboration between Google and JetBrains.. UI Toolkit:

The client-side UI was built using Jetpack Compose, a modern toolkit for
building native Android UIs in Kotlin from Google.. Build Automation Tool:

Gradle was used for the client application because it is highly compatible
with Kotlin and Android1.

4.4.2 Project Structure

The client project is composed of two modules, the frontend module and the
logic module. The application follows the Model-View-View-Model architecture
(usually referred to as MVVM).

The frontend module defines the view and the view-model components. In
the ui package, the UI (view component) is created using Jetpack Compose.
The viewmodel package contains two view models: the MainViewModel which
moderates the access to services from the logic module and the UserViewModel
which primarily handles the login and logout processes.

In this case, the model is represented by the logic module.
The logic module is composed of the services and REST clients where the

services mediate the client calls. The clients are created using the open-api
generator gradle plugin2 and modelled with the retrofit2 library3.

4.4.3 Security

There are two main approaches on how to authenticate the users when accessing
the application, an embedded login or a universal login.

For this project, I decided to use a universal login page, as based on [28],
OAuth 2.0 authorization requests from native apps should only be made
through external user agents, primarily the user’s browser. Furthermore, it is
more secure and easier to use for both the developer and the end user.

To facilitate the authentication of the user via the Auth0 server, I followed
the documentation4 and used the WebAuthProvider (available from the Auth0
Android library, with dependencies from Listing 4.8) to redirect the user to
login page and collect the user credential.

1 https://gradle.org/kotlin/
2 https://github.com/OpenAPITools/openapi-generator/tree/master/modules/openapi-

generator-gradle-plugin
3 https://square.github.io/retrofit/
4 https://auth0.com/blog/android-authentication-jetpack-compose-part-2/

30

https://gradle.org/kotlin/
https://github.com/OpenAPITools/openapi-generator/tree/master/modules/openapi-generator-gradle-plugin
https://github.com/OpenAPITools/openapi-generator/tree/master/modules/openapi-generator-gradle-plugin
https://square.github.io/retrofit/
https://auth0.com/blog/android-authentication-jetpack-compose-part-2/

. 4.4 Client

implementation("com.auth0.android:auth0:2.10.2")
implementation("com.auth0.android:jwtdecode:2.0.2")

Listing 4.8. Auth0 dependencies for working with the universal login page

class AuthInterceptor(private val getToken: () -> String) :
Interceptor {

override fun intercept(chain: Interceptor.Chain): Response {
val requestBuilder = chain.request().newBuilder()

requestBuilder.addHeader("Authorization",
"Bearer \${getToken.invoke()}")

return chain.proceed(requestBuilder.build())
}

}

Listing 4.9. Definition of the AuthInterceptor class

To authenticate and authorise the request to the server (as described in
sections 4.3.3 and 4.3.4) a request interceptor was added to a Authorization
header with the Bearer token (as defined in Listing 4.9).

4.4.4 User Interface Definition

As mentioned in section 4.4.1 the framework Jetpack Compose1 was used to im-
plement the UI for the Android application. Jetpack Compose uses composable
functions to define the UI programmatically.

While defining the UI, I mostly followed the Lo-Fi design and navigation,
explained in section 3.3.2, using components from the Material 3 design sys-
tem2.

The My body screen (original design in Figure 3.3) is implemented as a Lazy-
Column of expandable bars corresponding to the values of the Placement enum
(only values for which exists at least one record are displayed). When expanded,
a list of custom RecordPreview components is displayed. (This can be seen in
the leftmost screen of Figure 4.4.) The FloatingActionButton in the bottom
right corner of the main screen opens a ModalBottomSheet with buttons (as
seen on the rightmost screen of Figure 4.4). The button that enables the start
of a new mapping is only visible if there is at least one existing record in the
current mapping.

To extend the original design (Figure 3.6) I added a Switch for switching
between the original image and the resulting image. The reason for this exten-
sion is mentioned in section 2.2.2. (The use of this switch is demonstrated in
Figures 4.5 and 4.6.) I also decided to expand the buttons and text strings on
this screen to make the application more accessible.

The related records are implemented as a LazyColumn of custom Relate-
dRecordsItem components which are composed of an Image component and
custom DefText lines, that are components, defined in the TextUtils class and
used all around the project, to provide a simple way to manipulate the text size

1 https://developer.android.com/develop/ui/compose
2 https://m3.material.io/

31

https://developer.android.com/develop/ui/compose
https://m3.material.io/

4. Implementation .

Figure 4.4. Screenshots of the My body screen with expanded placement bar (left),
dialogue with detailed information about the mapping (middle), and expanded

bottom sheet (right)

Figure 4.5. Screenshot of the record
overview screen

Figure 4.6. Screenshot of the record
overview with detected lesions

and other attributes all around the UI. The list items are divided by Horizon-
talDividers. (As can be seen in Figure 4.8). Related records can be accessed
via the button in the information dialogue of a record as is shown in Figure
4.7.

32

. 4.4 Client

Figure 4.7. Screenshot of the dialogue
with detailed information about the

record

Figure 4.8. Screenshot of the list of
the photos related to the selected

record

The only part of the application that is vastly different from the original
design is the login page. The reason for these changes was that the application
is now using a universal login page as explained in 4.4.3

Therefore, a start screen (in Figure 4.9) was created to inform the user and
get their consent with a button to redirect the user to the slightly customized
universal login page (in Figure 4.10).

Figure 4.9. Screenshot of the final
version of the starting screen

Figure 4.10. Screenshot of the cus-
tomised universal login page

33

Chapter 5
Testing

5.1 Usability Testing
Usability testing is the practice of testing the intuitiveness of the application
on a group of potential users.

In this case, a qualitative testing was conducted. Qualitative testing is usu-
ally performed on a smaller group of participants and includes close observation
of the users’ actions and expressions.

The target audience for this application is very wide as it is aimed to be used
by people of all different ages and backgrounds. Therefore, the participants
were from different age groups (ages from 12 to 53 years old) and technology
comprehension skills.

Six testing sessions were conducted. Each participant was initially handed a
printed copy of the user manual (appendix B.2) and asked to read through it
intentively first. The participants were provided with a smartphone with the
application and a list of objectives to be achieved. They were also notified,
that the UI was only a Lo-Fi prototype and some features were not visible, and
encouraged to ask questions and speak their mind. After the objectives were
accomplished the users were asked to fill out a questionnaire.

5.1.1 Questionnaire

Note that all of my responders were native Czech speakers so they were encour-
aged to fill out the questionnaire in Czech if that was the language they could
express themselves the best. The following answers were manually translated
into English.

While I am trying to relay the provided information and opinions as closely
as possible, I do not guarantee that some changes to the original intent did not
happen unintentionally.

If a multiplicity of the answer is greater than 1, it is denoted behind the
answer as so: “possible answer – 5x“.

1. Age:

. 53

. 22

. 50

. 12

. 23

. 18

2. Have you ever used any application for skin monitoring and mapping?

. No – 6x

35

5. Testing .
3. How di�cult was it to register in the application? (1 – very easy, 5 – very

difficult)
. 1 – 5x
. 2

4. How di�cult was it to create a new record? (1 – very easy, 5 – very difficult)
. 1 – 2x
. 2 – 3x
. 3

5. How di�cult was it to create a new complete mapping? (1 – very easy, 5 –
very difficult)
. 1
. 2 – 4x
. 3

6. How intuitive was the navigation and general design of the application? (1 -
very intuitive, 5 - nonsensical)
. 1 - 2x
. 2 - 4x

7. What did you like the most about the application?

. colours and simplicity

. The application is quite intuitive

. I liked the colour of the UI and when you opened the record preview
you could see the photo which means that the way of saving records is
systematic and well-arranged. I also liked that you could see the result
of the analysis without it shown on the record page and I didn’t need to
open each lesion.

8. What did you like the least about the application?

. The algorithm did not function properly. It didn’t detect the bigger lesions
which is not ideal, considering that those are usually the more risky ones.

. Being unsure whether the application was running so I didn’t know if I
should wait or keep on using the app.

. The algorithm did not detect bigger lesions, it only found the small ones
and it also analysed some background spots as lesions. Also, when I took
a photo there was a button that said upload an image and I was not sure
if it was talking about the existing photo or if it meant uploading a new
one.

9. What feature is the application missing?

. indicators that a request is being processed – 3x

. maybe some form of showing the detected lesion

. The detected lesions are shown in the application as close-ups, but you
can not identify which lesion is which. So if some lesion is marked as
suspicious you usually cannot tell which lesion it is.

10. What feature did you find redundant?

. none – 3x

36

. 5.1 Usability Testing

. cannot determine

11. How useful do you thing this application is? (1 – very useful, 5 – completely
useless)
. 1 – 3x
. 2 – 2x
. 3

12. Would you recommend this application to your friends/family?

. Yes – 5x

. I don’t know

13. Do you have some other notes or questions regarding the use and features
of this application?

. When skipping a record the original one disappears which I find unintu-
itive, and clicking the check image quality uploads the record immedi-
ately without any confirmation message or something.

. I could not find the show-related lesions button

. Very nice and useful idea.

5.1.2 Observations
This section provides a list of important observations from the testing and
suggests ways how to improve these potential issues.

1. Log In – generally perceived as simple and comprehensible
Issue: Most of the users did not see the Sign-up button at first.
Severity: Minor
Possible solution: The application uses a universal login page from a third-

party provider. The page is customisable to a certain extent. It was decided
to increase the font size and underline the link to help identify the button,
but this solution has yet to be tested.

2. Creating a Single Record – generally perceived as quite intuitive
Issue: Application does not indicate background processes.
Severity: Moderate
Possible solution: Adding process indicator1 when running the image qual-

ity analysis and possibly a snackbar2 when a record is successfully created
could solve this issue.

3. Discontinue a record
Issue: There is no indication that the discontinuation was successful.
Severity: Moderate
Possible solution: Removing the button for discontinuation for records

that are already marked as discontinued (as of now, this information is only
stored on the server) and adding a snackbar that the process was successful
should solve this problem.

4. Displaying related records
Issue 1: The button to display related records is hard to find.
Severity: Moderate

1 https://m2.material.io/components/progress-indicators
2 https://m2.material.io/components/snackbars

37

https://m2.material.io/components/progress-indicators
https://m2.material.io/components/snackbars

5. Testing .
Possible solution: Show the way to navigate to the button clearly in the

User manual/ application Demo.
Issue 2: When showing the related records, currently only images are

displayed.
Severity: Suggestion
Possible solution: Adding a possibility to click on the image to show the

full overview of the related record.

5.1.3 Summary

In general, the users responded well to the application. Most of the presented
problems and questions were caused by the testers’ issues with the English
language. Other observations mostly regarded the detection algorithm and UI.
These were taken into account and compiled for future processing.

After these additions are processed, new testing needs to be conducted to
see how these changes affect the accessibility and usability of the application.

5.2 Development Testing
Crucial parts of both the server and client application are covered by unit tests.
Unit tests are a type of software test that focuses on testing an individual unit of
the program. In this context, the units can be for example functions, methods,
or objects [29].

Both, server and client projects use the JUnit1 framework to manage the
testing. On the server side, these are complemented with the Spring Boot an-
notations @SpringBootTest or @DataMongoTest. Additionally, in some cases,
it was beneficial to use the Mockito2 framework to create mock objects.

The AuthenticationService is a good example of a crucial element of
the server that needs to be controlled by tests. The presence of the au-
thentication token is simulated by mocking the TokenExporter class in the
AuthorizationService instance as can be seen in Listing 5.1.

@BeforeEach
void setUp() {

if (authorizationService == null) {
TokenExporter tokenExporter =

mock(TokenExporter.class);
when(tokenExporter.getUsername(any()))

.thenReturn(username);
authorizationService = new AuthorizationServiceImpl(
recordService, photoService,
mappingService, tokenExporter);

}
}

Listing 5.1. Example of the usage of Mockito framework in testing Authorization-
Service

1 https://junit.org/junit4/
2 https://site.mockito.org/

38

https://junit.org/junit4/
https://site.mockito.org/

. 5.2 Development Testing

@Test
void mappingAuthorizationSuccessfulTest() throws
EntityNotFoundException, InvalidIdException {

String id = mappingService.createNewMapping(username);

boolean isAuth = authorizationService
.authorizeMappingAccess(id);

assertTrue(isAuth);

mappingRepository.deleteById(new ObjectId(id));
}

@Test
void mappingAuthorizationFailedTest() throws
EntityNotFoundException, InvalidIdException {

String username1 = "test1";
String id = mappingService.createNewMapping(username1);

boolean isAuth = authorizationService
.authorizeMappingAccess(id);

assertFalse(isAuth);

mappingRepository.deleteById(new ObjectId(id));
}

Listing 5.2. Example of tests for authorisation accuracy for Mapping access.

An example of how the accuracy of the authorisation methods can be tested
is in Listings 5.2.

In the early stages of development, before the authentication was imple-
mented, the RestAssured1 library was used to test the functionality of server
endpoints regarding image saving and retrieving. These test methods were later
disabled (but not discarded) as the calls no longer work without the token.

1 https://rest-assured.io/

39

https://rest-assured.io/

Chapter 6
Conclusion

The final chapter will summarise the achievements of the thesis and compare
them with the original assignment. This chapter will also suggest possible
future extensions and improvements for the developed application.

6.1 Results
The primary objective of this thesis was to create a simple and accessible tool for
secondary prevention of skin cancer in the form of a native Android application.
To achieve this, I created a detailed analysis of the benefits and requirements
of self-examination of skin lesions, the algorithm from [1], and techniques of
photography for the best results of the detection and classification algorithm.

I designed and implemented a client and a server application, where the
client is represented by an Android application with a comprehensive UI written
in Jetpack Compose and the server is a Java Spring Boot application which
facilitates the data storage and evaluation of the images via the AI algorithm.

A usability testing was conducted and the application mostly received pos-
itive feedback from the participants. I worked with users to compile a list of
issues for future processing.

6.2 Possible extensions
This application was written with the possibility of future extensions in mind.
In case of future work, the development should start by addressing the issues
identified during testing and mentioned in section 5.1.2.

Following these mostly minor changes there are a lot of options as to which
part of the application can be extended.

The first option is to improve the Android client. For example, the ap-
plication currently does not handle creating records while offline, which is an
important feature that would enhance the usability of the application. Further-
more, the current UI is based on the Lo-Fi design described in the section 3.4.1.
Even though the testers mostly liked the current version, there are many pos-
sible improvements to enhance the user experience such as replacing the verbal
list on the My body screen with a more visual representation of the human body
to make the service less language dependent. As a part of this extension, an
application demo can be also implemented to eliminate the need for the user
manual.

Based on the usability testing, another thing that could use some additional
attention is the detection part of the AI algorithm from [1]. As a part of this
improvement, a feature could be added which would enable the user to mark
incorrectly detected lesions (false positives) as well as undetected lesions to
further improve the AI accuracy.

41

6. Conclusion .
Another possible extension that has been discussed is an option to create

another client application (not necessarily a smartphone one) that would be
targeted towards medical specialists. It would enable the users of the existing
application to connect with a doctor via the application to rule out incorrectly
classified lesions and suggest treatment. Some examples of this approach are
mentioned in section 2.1.3.

Lastly, I would like to mention the possibility of extending the application to
the iOS platform to make the provided service accessible to a wider audience
of users as together these two operating systems are used by over 99 % of all
smartphone devices [4].

42

References

[1] Bc. Samuel Šúr. Detection, Classification and Matching of Skin Lesions,
CTU FEE, bachelors thesis. 2023.
https://dspace.cvut.cz/handle/10467/109023.

[2] Melina Arnold, Deependra Singh, Mathieu Laversanne, Jerome Vignat,
Salvatore Vaccarella, Filip Meheus, Anne E. Cust, Esther de Vries, David
C. Whiteman, and Freddie Bray. Global burden of cutaneous melanoma
in 2020 and projections to 2040. JAMA Dermatology. 2022, 158 (5), 495.
DOI 10.1001/jamadermatol.2022.0160.

[3] GSMA Press Office pressoffice@gsma.com. Smartphone owners are now
the global majority, new GSMA report reveals. 2023.
https: / / www . gsma . com / newsroom / press-release / smartphone-owners-
are-now-the-global-majority-new-gsma-report-reveals / . Accessed on
15.04.2024.

[4] Ahmed Sherif. Mobile OS market share worldwide 2009-2024 . 2024.
https: / / www . statista . com / statistics / 272698 / global-market-share-
held-by-mobile-operating-systems-since-2009/. Accessed on 20.05.2024.

[5] Health promotion and disease prevention through population-based inter-
ventions, including action to address social determinants and health in-
equity.
https://www.emro.who.int/about-who/public-health-functions/health-
promotion-disease-prevention.html. Accessed on 28.04.2024.

[6] Alexis Arasu, Nekma Meah, and Rodney Sinclair. Skin checks in pri-
mary care. Australian Journal of General Practice. 2019, 48 (9), 614–619.
DOI 10.31128/ajgp-03-19-4887.

[7] Valéria Kohánka, and Ferenc Kudász. Work-related skin diseases. 2014.
oshwiki.osha.europa.eu/en/themes/work-related-skin-diseases. Ac-
cessed on 28.12.2023.

[8] J Daniel Jensen, and Boni E Elewski. The ABCDEF rule: Combining the
“ABCDE rule” and the “ugly duckling sign” in an effort to improve patient
self-screening examinations. J. Clin. Aesthet. Dermatol.. 2015, 8 (2), 15.

[9] Franz Nachbar, Wilhelm Stolz, Tanja Merkle, Armand B Cognetta,
Thomas Vogt, Michael Landthaler, Peter Bilek, Otto Braun-Falco, and
Gerd Plewig. The ABCD rule of dermatoscopy. Journal of American
Academy of Dermatology. 1994, 30 (4), 551–559. DOI 10.1016/S0190-
9622(94)70061-3.

[10] C Alonso-Belmonte, T Montero-Vilchez, S Arias-Santiago, and A
Buendía-Eisman. [translated article] current state of skin cancer pre-
vention: A systematic review. Actas Dermo-Sifiliográficas. 2022, 113 (8),
DOI 10.1016/j.ad.2022.04.018.

43

https://dspace.cvut.cz/handle/10467/109023
http://dx.doi.org/10.1001/jamadermatol.2022.0160
https://www.gsma.com/newsroom/press-release/smartphone-owners-are-now-the-global-majority-new-gsma-report-reveals/
https://www.gsma.com/newsroom/press-release/smartphone-owners-are-now-the-global-majority-new-gsma-report-reveals/
https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/
https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/
https://www.emro.who.int/about-who/public-health-functions/health-promotion-disease-prevention.html
https://www.emro.who.int/about-who/public-health-functions/health-promotion-disease-prevention.html
http://dx.doi.org/10.31128/ajgp-03-19-4887
oshwiki.osha.europa.eu/en/themes/work-related-skin-diseases
http://dx.doi.org/10.1016/S0190-9622(94)70061-3
http://dx.doi.org/10.1016/S0190-9622(94)70061-3
http://dx.doi.org/10.1016/j.ad.2022.04.018

References .
[11] Kushashwa Ravi Shrimali. Image quality assessment: Brisque. 2021.

https://learnopencv.com/image-quality-assessment-brisque/. Accessed
on 15.04.2024.

[12] Jeffrey P Callen, David R Bickers, and Ronald L Moy. Actinic keratoses.
Journal of the American Academy of Dermatology. 1997, 36 (4), 650–653.
DOI 10.1016/s0190-9622(97)70265-2.

[13] Valquiria Pessoa Chinem, and Hélio Amante Miot. Epidemiologia do
carcinoma basocelular. Anais Brasileiros de Dermatologia. 2011, 86 (2),
292–305. DOI 10.1590/s0365-05962011000200013.

[14] William E Damsky, and Marcus Bosenberg. Melanocytic Nevi and
melanoma: Unraveling a complex relationship. Oncogene. 2017, 36 (42),
5771–5792. DOI 10.1038/onc.2017.189.

[15] M B Morgan, Gary L Stevens, and Stephen Switlyk. Benign lichenoid ker-
atosis. The American Journal of Dermatopathology. 2005, 27 (5), 387–392.
DOI 10.1097/01.dad.0000175533.65486.84.

[16] John T Mullen, Lei Feng, Yan Xing, Paul F Mansfield, Jeffrey E Ger-
shenwald, Jeffrey E Lee, Merrick I Ross, and Janice N Cormier. Invasive
squamous cell carcinoma of the skin: Defining a high-risk group. Annals of
Surgical Oncology. 2006, 13 (7), 902–909. DOI 10.1245/aso.2006.07.022.

[17] Joao Vítor Alves, Diogo Miguel Matos, Hugo Frederico Barreiros, and
Elvira Augusta Bártolo. Variants of dermatofibroma - A histopatholog-
ical study . Anais Brasileiros de Dermatologia. 2014, 89 (3), 472–477.
DOI 10.1590/abd1806-4841.20142629.

[18] Vincenzo Piccolo, Teresa Russo, Elvira Moscarella, Gabriella Bran-
caccio, Roberto Alfano, and Giuseppe Argenziano. Dermatoscopy
of vascular lesions . Dermatologic Clinics . 2018, 36 (4), 389–395.
DOI 10.1016/j.det.2018.05.006.

[19] Rebecca Ellison. Why I avoid the front facing “selfie” Camera for business
photos; rebecca ellison creative - brand coach and photographer . 2021.
https: / / rebeccaellison . com / blog / why-avoid-front-facing-selfie-
camera-for-business-photos-instagram/. Accessed on 20.04.2024.

[20] John Terra. What is client-server architecture? everything you should
know: Simplilearn. 2023.
https: / / www . simplilearn . com / what-is-client-server-architecture-
article. Accessed on 13.05.2024.

[21] Joseph Molloy. A comprehensive overview of the client-server model.
2023.
https: / / www . liquidweb . com / blog / client-server-architecture / . Ac-
cessed on 14.05.2024.

[22] AltexSoft. Unstructured data, explained. 2023.
https: / / www . altexsoft . com / blog / unstructured-data / . Accessed on
14.05.2024.

[23] Barna Burom. NoSQL vs relational database file storing (mongodb and
SQL Server comparison). 2021.
https://codingsans.com/blog/nosql-vs-relational-database. Accessed
on 14.05.2024.

44

https://learnopencv.com/image-quality-assessment-brisque/
http://dx.doi.org/10.1016/s0190-9622(97)70265-2
http://dx.doi.org/10.1590/s0365-05962011000200013
http://dx.doi.org/ 10.1038/onc.2017.189
http://dx.doi.org/10.1097/01.dad.0000175533.65486.84
http://dx.doi.org/10.1245/aso.2006.07.022
http://dx.doi.org/10.1590/abd1806-4841.20142629
http://dx.doi.org/10.1016/j.det.2018.05.006
https://rebeccaellison.com/blog/why-avoid-front-facing-selfie-camera-for-business-photos-instagram/
https://rebeccaellison.com/blog/why-avoid-front-facing-selfie-camera-for-business-photos-instagram/
https://www.simplilearn.com/what-is-client-server-architecture-article
https://www.simplilearn.com/what-is-client-server-architecture-article
https://www.liquidweb.com/blog/client-server-architecture/
https://www.altexsoft.com/blog/unstructured-data/
https://codingsans.com/blog/nosql-vs-relational-database

. .
[24] Paul Michaels. The service / repository pattern. 2023.

https: / / pmichaels . net / service-repository-pattern / . Accessed on
16.05.2024.

[25] Authentication vs. Authorization.
https://www.onelogin.com/learn/authentication-vs-authorization. Ac-
cessed on 13.05.2024.

[26] McKenzie Tucci. Code-first vs. design-first: Eliminate friction with api
exploration. 2023.
https://swagger.io/blog/code-first-vs-design-first-api/. Accessed on
13.05.2024.

[27] Working with NoSQL Technologies :: Spring Boot; References; Data.
https://docs.spring.io/spring-boot/reference/data/nosql.html. Ac-
cessed on 15.05.2024.

[28] W. Denniss, and J. Bradley. OAuth 2.0 for Native Apps. OAuth 2.0 for
native apps. 2017, DOI 10.17487/rfc8252.

[29] Nickolay Bakharev. Unit testing: Definition, examples, and critical best
practices. 2024.
https://brightsec.com/blog/unit-testing/. Accessed on 16.05.2024.

45

https://pmichaels.net/service-repository-pattern/
https://www.onelogin.com/learn/authentication-vs-authorization
https://swagger.io/blog/code-first-vs-design-first-api/
https://docs.spring.io/spring-boot/reference/data/nosql.html
http://dx.doi.org/10.17487/rfc8252
https://brightsec.com/blog/unit-testing/

Appendix A
List of Abbreviations

AI . Artificial Inteligence
API . Application Programming Interface
BLOB . Binary Large Object
BRISQUE . Blind/Referenceless Image Spatial Quality Evaluator
CLI . Command Line Interface
CNN . Convolutional Neural Network
CSV . Comma Separated Values
DTO . Data Transfer Object
HTTPS . Hypertext Transfer Protocol Secure
IDE . Integrated Development Environment
JWT . JSON web token
Lo-Fi . Low-Fidelity
mp . megapixels
MVVM . Model-View-View-Model
PIQ . PyTorch Image Quality
REST . Representational State Transfer
RGB . Red, Green, Blue
UI . User Interface
UID . Unique Identifier
UML . Unified Model Language
URL . Uniform Resource Locator
UV . Ultra Violet
WHO . World Health Organization

47

Appendix B
List of Electronic Appendices

B.1 Source Code
The source code for the application is also available on https://gitlab.fel.
cvut.cz/lemakter/bakalarska-prace. The same contents as this repository
can be found in the provided sources in folder bakalarska prace. Subsequently,
the server folder contains the source code for the server-side application and
the client folder contains the source code of the client-side application.

B.2 User Manual
The original user manual for the application is provided in the file UserMan-
ual.pdf.

48

https://gitlab.fel.cvut.cz/lemakter/bakalarska-prace
https://gitlab.fel.cvut.cz/lemakter/bakalarska-prace

Appendix C
Placement Photography List

List of places to photograph that was provided to the subjects in the study
(section 2.3.1):

. Chest. Stomach. Upper back. Lower back. Buttocks. Right upper arm. Right lower arm. Right hand. Right thigh – front side. Right thigh – back side. Right calf. Right shin. Right foot. Neck. Face. Head

49

	Mobile application for self-evaluation of skin lesions
	TITLE

	Untitled
	Mobile application for self-evaluation of skin lesions
	Acknowledgement/Declaration
	Abstrakt/Abstract
	Contents
	Listings/Figures
	Introduction
	Objective
	Structure

	Analysis
	Prevention and Screening
	Identifying High-Risk Groups
	Visual Self-Examination
	Technology-Assisted Self-Examination

	Existing Algorithm
	Inputs
	Outputs
	Diagnosis Interpretation
	Drawbacks

	Photography
	User Study

	Functional Requirements
	Use-Cases
	Login/Registration
	Create Single Record
	Create New Record from Existing (Update a Record)
	Create a Complete Mapping
	Discontinue Record (Mark Record as Outdated)

	Design
	Datamodel
	Architecture
	Server
	Database
	Interface

	Mobile Client
	User Interface

	Implementation
	Security
	Project Management
	Server
	Languages and Technologies
	Project Structure
	Authentication
	Authorisation
	REST API Definition
	Data Storage

	Client
	Language and Technologies
	Project Structure
	Security
	User Interface Definition

	Testing
	Usability Testing
	Questionnaire
	Observations
	Summary

	Development Testing

	Conclusion
	Results
	Possible extensions

	References
	List of Abbreviations
	List of Electronic Appendices
	Source Code
	User Manual

	Placement Photography List

