
Bachelor Project

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Computer Science

Asynchronous communication in
microservice architecture using Apache
Kafka

Arlan Nurkhozhin

Supervisor: Ing. Kyrylo Bulat
Field of study: Software engineering and technologies
May 2024

ii

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

499318 Personal ID number: Nurkhozhin Arlan Student's name:

Faculty of Electrical Engineering Faculty / Institute:

Department / Institute: Department of Computer Science

Software Engineering and Technology Study program:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Asynchronous communication in microservice architecture using Apache Kafka

Bachelor’s thesis title in Czech:

Asynchronní komunikace v mikroservisní architektuře pomocí Apache Kafky

Guidelines:

As part of the bachelor's thesis, analyze and suggest optimizations for asynchronous communication between microservices
using Apache Kafka. Compare asynchronous to synchronous communication, explore Kafka's architecture and mechanisms,
and study design patterns and their implementation practices in microservices. Besides the theoretical part, focus on
developing an application based on microservices, demonstrating the use of Apache Kafka for asynchronous communication.
This practical component will evaluate Kafka's impact on scalability, throughput, fault tolerance, data durability, and agility.

Bibliography / sources:

Gwen Shapira, Todd Palino, Rajini Sivaram, Krit Petty: "Kafka: The Definitive Guide, 2nd Edition"
Sam Newman: "Building Microservices, 2nd Edition"
Chris Richardson: "Microservices Patterns: With examples in Java, 1st Edition"

Name and workplace of bachelor’s thesis supervisor:

Ing. Kyrylo Bulat System Testing IntelLigent Lab FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 24.05.2024 Date of bachelor’s thesis assignment: 15.02.2024

Assignment valid until: 21.09.2025

___________________________ ___________________________ ___________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature

Head of department’s signature Ing. Kyrylo Bulat
Supervisor’s signature

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZBP-2015.1

iv

Acknowledgements
I want to thank my supervisor Ing. Kyrylo
Bulat for enhancing this bachelor thesis
and providing helpful feedback. His metic-
ulous attention to detail helped me to
identify errors I had overlooked. Further-
more I want to thank my family, friends
and my partner for unwavering support
during creating of this thesis.

Declaration
I hereby declare that I have submitted
this bachelor thesis that I have prepared
this thesis independently and that I have
indicated all information sources used.
Prague, 22 May 2024

v

Abstract
Microservice architecture is a popular
choice among developers due to its scal-
ability, robustness, and agility. However,
this architecture brings the critical need
for efficient communication between mi-
croservices. This thesis focuses on an-
alyzing asynchronous communication in
microservice architecture using Apache
Kafka.

The study begins by analyzing microser-
vice architecture, including its topology,
pros and cons, and examples of practi-
cal applications in large-scale systems. It
introduces different communication strate-
gies, providing an overview of their impact
on system performance.

Then, the study compares asyn-
chronous and synchronous communication
in microservices, highlighting when to use
each, their advantages and limitations,
and their impact on scalability, perfor-
mance, and efficiency. It explores different
optimizations for asynchronous communi-
cations by analyzing asynchronous archi-
tectures and message brokers, focusing on
Kafka’s architecture and mechanisms.

Accumulated theory knowledge
strengthens the implemented prototype,
which utilizes Apache Kafka for microser-
vice internal communication. The study
and prototype helped to evaluate Kafka’s
impact on fault tolerance, scalability,
throughput, agility, and data durability,
which are essential factors in developing
systems.

Keywords: microservices, asynchronous
communication, Apache Kafka

Supervisor: Ing. Kyrylo Bulat

Abstrakt
Mikroservisní architektuřa je mezi vývo-
jáři popularní díky své škálovatelnosti, ro-
bustnosti a agilitě. Tato architektura však
přináší kritickou potřebu efektivní komu-
nikace mezi mikroslužbami. Tato práce se
zaměřuje na analýzu asynchronní komuni-
kace v mikroservisní architektuře pomocí
Apache Kafka.

Studie začíná analýzou architektury mi-
kroslužeb, včetně její topologie, výhod a
nevýhod a příkladů praktického využití v
rozsáhlých systémech. Představuje různé
komunikační strategie a poskytuje přehled
jejich vlivu na výkonnost systému.

Poté studie porovnává asynchronní a
synchronní komunikaci v mikroslužbách,
přičemž zdůrazňuje, kdy je třeba každou
z nich použít, jejich výhody a omezení
a jejich dopad na škálovatelnost, výkon
a efektivitu. Zkoumá různé optimalizace
asynchronní komunikace analýzou asyn-
chronních architektur a message brokerů
se zaměřením na architekturu a mecha-
nismy Kafky.

Nahromaděné teoretické znalosti posi-
lují implementovaný prototyp, který vyu-
žívá Apache Kafka pro interní komunikaci
mikroslužeb. Studie a prototyp pomohly
vyhodnotit vliv Kafky na odolnost proti
chybám, škálovatelnost, propustnost, agi-
litu a trvanlivost dat, což jsou zásadní
faktory při vývoji systémů.

Klíčová slova: mikroslužby,
asynchronní komunikace, Apache Kafka

Překlad názvu: Asynchronní
komunikace v mikroservisní architektuře
pomocí Apache Kafky

vi

Contents
1 Introduction 1
2 Exploring microservice architecture
and communication styles 3
2.1 Microservices at a glance 3

2.1.1 Topology 3
2.1.2 Pros and cons of microservice

architecture . 5
2.1.3 Microservices in practice 7

2.2 Communication strategies in
microservice architecture 8
2.2.1 Communication patterns and

styles . 8
2.2.2 Impact on system’s scalability

and performance 9
2.2.3 Ensuring system reliability and

resilience . 9
2.2.4 Balancing trade-offs in

communication choices 10
3 Asynchronous vs synchronous
communication. 11
3.1 Technical requirements 11
3.2 Use cases . 12
3.3 Advantages and limitations 13
3.4 Scalability, performance and

efficiency . 14
3.5 Real cases application 14

3.5.1 Netflix . 14
3.6 Conclusion 16
4 Detailed asynchronous
communication in microservices 17
4.1 Core architectures 17

4.1.1 Message queuing 17
4.1.2 Publish-subscribe architecture 18
4.1.3 Event streaming architecture 19
4.1.4 Event-driven architecture . . . 19

4.2 Message brokers 20
4.2.1 Apache Kafka 20
4.2.2 RabbitMQ 20

5 Deep dive into Apache Kafka 23
5.1 Messages and batches 23
5.2 Topics and partitions 24
5.3 Producers and consumers 25
5.4 Brokers and clusters 26
5.5 Kafka’s strengths and weaknesses

compared to other message brokers 27

5.6 Real world examples highlighting
efficiency, scalability and
performance . 28
5.6.1 LinkedIn 28
5.6.2 The New York Times 28

6 Implementation of a prototype 31
6.1 Tools and technologies used 31

6.1.1 Java . 31
6.1.2 Spring Boot 32
6.1.3 Redis . 32
6.1.4 Uber H3 33
6.1.5 Docker Compose 34
6.1.6 WebSocket 35

6.2 System architecture and
components . 36
6.2.1 Apache Kafka 38
6.2.2 Driver . 39
6.2.3 Driver location service

publisher . 41
6.2.4 Driver location service

consumer . 41
6.2.5 Driver service 42
6.2.6 Matching service 43
6.2.7 Ride management service . . . 45
6.2.8 Trip service 47
6.2.9 Rider . 48

6.3 Evaluating the impact of Kafka in
the prototype 48
6.3.1 Scalability and throughput . . 48
6.3.2 Fault tolerance and data

durability . 50
6.3.3 Agility . 51

7 Future work 55
8 Conclusion 57
Acronyms 59
Bibliography 61
A Used Software 65

vii

Figures
1.1 Interest over time by Google

Trends for the term
"Microservices".[1] 1

1.2 Popularity of development
approaches in 2023.[2] 2

2.1 Monolithic architecture.[7][8] 4
2.2 Microservice architecture.[4] 5

3.1 Existing system before
migration.[22] 15

3.2 Improved system after
migration.[22] 16

4.1 Message queuing.[23] 17
4.2 Publish-subscribe messaging.[24] 18
4.3 Event-driven architecture. 19
4.4 RabbitMQ architecture.[31] 21

5.1 Apache Kafka appends messages
from producers.[28] 24

5.2 Consumer group consumes a single
topic.[28] . 25

5.3 Kafka cluster architecture.[28] . . 26
5.4 The New York Times old

design.[36] . 29
5.5 The New York Times new

design.[36] . 30

6.1 Distances between centers of math
figures. The red lines have different
lengths from the black lines.[42] . . 33

6.2 Part of Prague map divided by
hexagon grid. Red dots are
drivers.[42] . 34

6.3 Design’s components. 36
6.4 Ride sharing prototype design part
1. 37

6.5 Ride sharing prototype design part
2. 38

6.6 Driver workflow in a ride-sharing
prototype. 40

6.7 Driver location service publisher
workflow uses one message format. 41

6.8 Driver location service consumer
workflow. 41

6.9 Red and blue drivers are stored in
their specific unified cells. 43

6.10 Matching service workflow. 45
6.11 Ride management service

workflow. 46
6.12 Ride statuses. 46
6.13 Rider simulation. 47
6.14 Topic partitions, multiple

consumers and producers for
scalability and throughput. 49

6.15 Multiple Kafka brokers inside one
cluster. 50

6.16 Inter service communication
without Apache Kafka. 53

viii

Tables
5.1 Apache Kafka message

structure.[28] 23

6.1 Detailed descriptions of Kafka
topics used in the ride-sharing
prototype. 39

6.2 Database schema for the driver
entities. 40

6.3 Example of mapping each driver ID
to their corresponding H3 index cell. 42

6.4 Groups of driver ids stored in set
in each H3 Index Cell. 42

6.5 Redis schema for managing ride
matching status. 44

6.6 Ride entity database schema in
Redis. 47

6.7 Database schema for the ‘Rider‘
entity stored in Redis. 48

ix

Chapter 1
Introduction

Over the past decade, the interest in microservice architecture has grown,
as shown in Figure 1.1. The graph shows the search interest level for "Mi-
croservices" within a specific region and timeframe. The y-axis measures
how often the term or phrase is searched compared to the highest point in
the graph. The x-axis represents a time when it was searched. The graph
represents the worldwide region and a ten-year timeframe to get nonbiased
data. When a term scores 100, it is at its peak popularity. If it scores 50, the
term’s popularity is half its peak level. A score of 0 indicates a need for more
data to evaluate the popularity of the chosen term.[1]

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

20
23

20
24

Year

0

20

40

60

80

100

Re
la

tiv
e

Se
ar

ch
 In

te
re

st

Interest in Microservices Over Time

Figure 1.1: Interest over time by Google Trends for the term "Microservices".[1]

Microservice architecture has now become a technology trend, as shown
in the Figure 1.2. The increased popularity of microservice architecture
results from its inherent robustness, scalability, flexibility, and capability for
independent deployment.[3] Communication is one of the most crucial parts
of microservice orchestration. Communication between microservices can be
asynchronous or synchronous, and its implementation can be realized through
diverse technologies, which will be compared and discussed in this thesis.[2]

1

1. Introduction

0 20 40 60 80 100
Popularity (%)

Microservices

Service-oriented architecture

Monolith with web frontend

CQRS

Reactive Streams

Actor Systems

Other

None

82%

35%

20%

12%

8%

4%

1%

2%

Popularity of Development Approaches in 2023 (JetBrains Survey)

Figure 1.2: Popularity of development approaches in 2023.[2]

2

Chapter 2
Exploring microservice architecture and
communication styles

In this chapter, we lay the groundwork for understanding microservice architec-
ture. How it has moved from centralized monolith architecture to autonomous
lightweight services, and why communication between microservices plays a
key role.

2.1 Microservices at a glance

Microservice architecture is composed of small, independent components
called microservices. Each microservice focuses on its specific functions,
which helps to update and develop the microservice independently from other
microservices. Because microservices split the whole system’s functionality
between each other, each of the services has its own codebase, which allows
a single team of developers to focus on developing a single specific service.
Additionally, independence between microservices brings technology diversity,
meaning each microservice can use different technologies, such as programming
languages.[4]

2.1.1 Topology

It is essential to thoroughly understand microservice and monolith topologies
to understand the reasons behind the industrial shift from monolithic to
microservice architecture.

As the Figure 2.1 demonstrates, the user or another server sends a request
to the monolithic server. This request first reaches the presentation layer,
where it is interpreted and then passed down to the business layer. The
business layer processes requests and performs necessary business functions,
which may include using the data access layer. The data access layer fetches,
puts, updates, or deletes data based on business layer calls. Then, the
response from the database travels back through the same path: first to the
data access layer, then to the business logic layer, and finally back to the
presentation layer, where the response is rendered and displayed to the user
or server. There are direct invocations between layers, and communication is

3

2. Exploring microservice architecture and communication styles..............

Sends requests

Computer

Sends requests

Phone Server

Database

Presentation layer

Data Access layer

Business layer

Monolithic
server

Renders
User
Interface

Process
business
functionality

Database
interaction

Sends requests

access data

Figure 2.1: Monolithic architecture.[7][8]

synchronous. This flow leads to:[7].Tightly coupled and interdependent components. A change in one layer
can negatively affect another layer, which could cause a whole program
to crash.. Scaling is possible by replicating the whole server again..Over time, the complexity of the application increases, affecting the
overall difficulty of maintaining the application..Application is dependent on the one technological stack.

Microservice architecture effectively addresses and resolves the drawbacks
inherent in monolithic systems. Figure 2.2 shows an example of this architec-
ture.

All requests in this example go through the Application Programming Inter-
face (API) gateway. API gateway is an entry point for incoming requests.[18]
However, a gateway is not a mandatory option in a microservice architecture;
for example, when microservices communicate with each other, they do not

4

............................. 2.1. Microservices at a glance

Microservice architecture

Send requests

Clients

API Gateway Service

Service does not
share its internal

data

Every service can have
different databases

Each service can
use different

technology stack

Service

Service

Service

Services can communicate
with each other

Figure 2.2: Microservice architecture.[4]

need to communicate with the internet, or requests can come directly to the
microservice without an API gateway. In the provided example, the API
gateway then routes requests to the appropriate microservice and handles
logging and the number of requests made to an API within a specified time-
frame. Behind the API Gateway lies a robust collection of small, independent
microservices. Each of these services solves a specific business need. For
instance, one service may be responsible for authorization and another for
content processing. Microservices allow developers to develop, deploy, and
scale autonomously based on demand. They also promote fault tolerance and
simplify maintenance, updates, and deployment cycles. Furthermore, differ-
ent teams can be assigned different services, each with a unique technology
stack.[4]

2.1.2 Pros and cons of microservice architecture

In the previous subsection, we compared monolithic and microservice ar-
chitecture, which helps us to understand the positive and negative parts of
microservice architecture. For advantages, we consider:[6][4].Programming language agnostic: Since services are independent,

they can be implemented in different programming languages most
suitable for the tasks.. Scalability: Compared with a monolith, there is no need to scale the
whole application unnecessarily. A team can choose which part of the
system (microservice) to scale.

5

2. Exploring microservice architecture and communication styles..............
.Robustness: In the case of monolithic architecture, a critical error may

crash the entire application. However, in microservices, it mainly affects
the service itself. Keeping different parts of a system separate from one
another enhances overall system robustness.. Easy of code maintenance: Smaller codebases for each service is
easier to understand. Updating and fixing is less risky as it will not
affect the entire application..Continuous deployment and integration: Microservice architecture
supports continuous deployment and integration of each service into the
system without interrupting the running system.

While microservice architecture is a robust and scalable solution, there are
also certain limitations:[6][15][4].Complexity: Distributed systems challenge developers in the form

of additional complexity. Services must communicate with each other
utilizing different internal communication mechanisms. Distributed
systems are more complex than direct method calls..Testing: Testing microservices requires end-to-end testing strategies
for network latency and message queues. Also, developers need to test
across multiple processes handling a broad system scope. Moreover, it
requires handling cases where one service dies..Network latency: Inter-service communication between microservices
brings latency as it involves sending a message and serialization over the
network. All these steps can result in increasing latency in the system.. Increased resource usage: Due to the independence of the microser-
vice architecture, each one needs its execution environment, which leads
to increased resource usage compared to a monolith..Monitoring: Distributed systems observability involves a multifaceted
approach, such as collecting logs and metrics across multiple microservices.
This methodology is vital in understating the system’s operational status.
In addition, distributing tracing needs to be implemented to track the
flow of calls, which will help investigate future errors. To ensure timely
communication, it is important to set up alerts for different events in
the system. These alerts should be configured in a way that notifies all
relevant stakeholders. This approach to observability is instrumental in
sustaining the reliability and efficiency of distributed systems.. Security: In monolithic architecture, data flows within one singular
process. However, data traverses over networks to other services in a mi-
croservices environment. This communication exposes data vulnerability
to interception of alteration during transit. Additionally, microservices’
endpoints must ensure that only authorized entities can access them..Data consistency: Ensuring data consistency in distributed systems
is not as straightforward as in monolith, where data resides in a single
database. Alternative approaches are required to address this problem,
such as distributed transactions that maintain data consistency across
different microservices. This alternative approach includes complexities.

In summary, microservice architecture can offer considerable flexibility,

6

............................. 2.1. Microservices at a glance

enabling choices in the technology stack, robustness, scalability, more manage-
able code maintenance, and continuous deployment and integration. These
factors play a huge role in choosing this methodology. However, developers
should consider increased maintenance, development, and testing complexity.
For some cases, a more straightforward approach such as monolith will be
sufficient, for example, when the team is small, or the application needs to
be running, fulfilling all requirements quickly.

2.1.3 Microservices in practice

Having explored the foundational concepts, pros, and cons, as well as archi-
tectural designs, we are now prepared to turn our attention to the practical
application of microservice architecture:.Netflix: A rapidly growing user base forced Netflix to shift from monolith

to microservices. Netflix began with a traditional development model,
managing a monolithic DVD rental application with 100 engineers. Under
the guidance of Adrian Cockcroft, the company managed to smoothly
transition from monolith to microservice architecture with small teams
developing hundreds of microservices. The change was compelling enough
to stream digital content to millions of Netflix customers daily.[9] Based
on its experience, Netflix established these best practices as demonstrated
by Netflix showcases its ability to enhance flexibility, scalability, and
speed in software development:[9].Creating a separate data store for each microservice: This

prevents microservices from sharing one data source, which could
lead to complex dependencies..Doing a separate build for each microservice: This allows
each microservice to use component files appropriate to its specific
needs..Deploying in containers: This set one standard for deploying
each microservices. The container is an independent environment
where a developer can set up network and environment variables.
It also ensures that failure in microservice does not crush the entire
system but only a container..Keeping code at a similar level of maturity: It advocates for
handling code additions or changes by creating new microservices,
thereby maintaining the stability of the existing ones..Uber: In December 2023, Uber was the largest ride-sharing company

in the United States[10], having 130 million monthly active users, and
the number of trips made during the first quarter of 2023 was 2.1 billion,
indicating a 24 % increase year-over-year.[11] Initially, Uber’s architecture
struggled with inefficiencies due to its monolithic design, where all
features were contained in a single, clunky system. This design made
it challenging to add new functionality and fix bugs efficiently. Uber
developed microservice architecture to address these issues, breaking
its initial monolith into microservices.[12] This shift brought significant
benefits such as:[12]

7

2. Exploring microservice architecture and communication styles..............
. Improved development speed: Teams scale up their assigned

microservices without impacting other services and teams..Quality and manageability of development: High-quality
software meets user requirements effectively and reliably. Because
of the microservice design, the system handles bugs and errors
better.

2.2 Communication strategies in microservice
architecture

Transitioning from a monolithic to a microservices-based application signifi-
cantly changes the communication mechanism. In a monolithic application,
components communicate on function calls within one process. These calls can
be either strongly coupled, where objects are directly instantiated (e.g., using
new ClassName()), or decoupled using Dependency Injection design pattern,
which references abstractions rather than concrete object instances.[13] Hence
this chapter is dedicated to exploration of the pivotal part of microservice
architecture - communication between microservices.

2.2.1 Communication patterns and styles

Client-service interaction in microservices can be classified along two primary
axes. First axe defines if communication is one-to-one or one-to-many:[15].One-to-one: Each client request is addressed by a single service..One-to-many: Request is concurrently managed by several services.
The second axe pertains to the timing of interaction:[15]. Synchronous: Client sends request and wait until response comes, often

pausing its operation..Asynchronous: Asynchronous interactions do not require the client to
wait, with responses potentially being deferred

One-to-one interactions can be categorized into different types:[15]:.Request/response: Client sends request and wait until response comes,
expecting it to be timely. This type leads to tightly coupled services..Asynchronous request/response: Client sends request to a service
but does not wait for response. Response comes asynchronously which
means it should not come right after sending a response..One-way notifications: The client sends a request without expecting
any reply..Remote Procedure Call (RPC): This type allows one service to call
procedures or functions in other services as if they were local.

In one-to-many interactions within microservices, there are two primary
types:[15]. Publish/subscribe: In this interaction, a client publishes a notification

message. This message is then consumed by none or multiple services
that are subscribed to specific client/publisher.

8

.................2.2. Communication strategies in microservice architecture

.Publish/async responses: A client publishes a request message and
waits for a predefined period for responses. Multiple services interested
in this request can respond within this timeframe.

2.2.2 Impact on system’s scalability and performance

In monolithic applications where communication happens in direct method
invocations, this method is optimized by programming language compilers and
runtime environments. Hence, these method calls have negligible overhead,
often enhanced by techniques like inlining. However, the interaction between
microservices involves network transmission, serialization, and deserialization
of data. This leads to measurable overhead regarding resources and time
compared with a monolith, where only memory pointers are typically passed
inside a system. Therefore, awareness of the size of the sending data and
efficient data processing becomes crucial to avoid performance bottlenecks
and ensure system scalability. Consequently, developers must know these
underlying communication mechanisms to optimize microservice interactions
and maintain system performance.[6]

2.2.3 Ensuring system reliability and resilience

Ensuring reliability and resilience involves error handling, service self-recovery
from failing, handling enormous numbers of requests, services’ health checks,
alerts, and logging. Unlike in single-process environments, error handling
is complex in distributed systems. It involves errors inside one service and
network issues such as network timeouts, unavailability of downstream services,
disconnections, and resource constraints, which may lead to the service’s crush.
This complexity necessitates robust error-handling strategies that can address
failures’ unpredictable and often external nature in a distributed environment.
In a single process, errors are expected and processed accordingly, or if the
error is not expected, which may lead to fatal error crushing, the application
error call stack is logged for future investigation.[6] Various strategies could
be employed to assure resilience:[14]:.Retry design pattern: Reattempting network calls that fail due

to transient faults. Caution is required as retries of non-idempotent
operations might lead to duplicate processing..Circuit breaker: This pattern prevents repeated attempts of likely-to-
fail operations, thus avoiding resource exhaustion and cascading failures.. Load balancing: Incoming requests are evenly distributed across service
instances, enhancing reliability.. Service versioning: Old instances are running in one line with new
instances which are marked as new. It ensures continuity.. Security: Implementing encryption and authentication for communica-
tion between microservices ensures security which leads to resilience.

9

2. Exploring microservice architecture and communication styles..............
2.2.4 Balancing trade-offs in communication choices

Choosing a specific technology or communication style is often overwhelming
because the range of technology is wide. Wise consideration should be taken
since the initial choice affects the future of the system or application. These
considerations should be based on the following:. System requirements: Functional and non-functional requirements.

Functional requirements define what the system is supposed to do. One
example of a functional requirement is user authentication. On the
other hand, non-functional requirements define how a system should
perform specific functions such as scalability, usability, or performance.
Considering these two types of requirements, the technical team can
choose the right tool. For instance, real-time operations are suitable
for synchronous communication because they need immediate response.
However, asynchronous communication may be more suitable in cases
where immediate response is not important..Coupling: Desired level of coupling between microservices..Team experience: If a team is more proficient with one paradigm, it
may be a good choice to stick to it as it saves time implementing the
system..Performance: Latency may be an issue in some cases that require
real-time processing.

In the end, a team has to understand that choice brings not only advantages
but also disadvantages. For example, choosing a request/response model may
be valid as it is straightforward to understand. However, it leads to a tightly
coupled model, which reduces the system’s scalability.

10

Chapter 3
Asynchronous vs synchronous
communication.

Efficient communication stands as a vital pillar for building application or
system. Interservice communication has two basic types of communication:
asynchronous and synchronous. Both types serve the fundamental purpose
of facilitating the exchange of information, yet their unique characteristics
make them suitable for different scenarios.

3.1 Technical requirements

Understanding technical requirements is crucial since it affects both business
and technology environments. Requirements for synchronous communication
between microservices:. Immediate, real-time interaction: Systems must support communi-

cation with minimum latency..High bandwidth: System must support extensive communication to
support video or audio streaming..Robust infrastructure: System must be running on reliable infras-
tructure to provide reliable communication.. Service discovery: Mechanisms to locate and communicate with other
services in network.[16]. Load balancing: Is device or software that distribute requests efficiently
among multiple services.[17].API gateway: A single entry point for handling requests and routing
them to appropriate services.[18]

In asynchronous interservice communication services are communicating via
message channels. Sender writes a message into a channel and receiver reads
this message from the communicating channel. Requirements for asynchronous
communication:[15]. Event-driven architecture: System receives various events and re-

sponds to them accordingly..Message brokers: Services in system communicate via a message
broker, which acts as intermediary message channel between services..Data consistency: To ensure reliability and consistency system must

11

3. Asynchronous vs synchronous communication.
maintain data consistency across all services. It involves ensuring any
update, modification or deletion of data are applied to all nodes and
instances.[19].Message reliable delivery: To ensure robustness system must guaran-
tee no messages are lost and can be proccessed eventually.

3.2 Use cases

In software, the use case refers to a hypothetical situation where a system
is subjected to an external request (like user registration) and accordingly
generates a corresponding response to achieve the user’s goal.[20] A user, in
our case, is another microservice that interacts with the system and other
microservices. Use cases for synchronous communication:.Request/response interactions: Where immediate response is needed.

For example payment confirmation or user authentication. In this cases
low latency is highly wanted..Tightly coupled operations: Situation where one service needs data
or an action from another service. For instance, to process an order,
system firstly need to read items in user’s cart, assure these items are in
stock etc..Monitoring and health checks: In cases where system needs to have
an overview of services status, immediate response is needed to ensure
system’s robustness and fault tolerance..Real-time processing: To ensure system observability real-time pro-
cessing could for example help to read and store current generating logs
from the system.

Use cases for asynchronous communication:[15].Decoupled operation: In comparison with synchronous tightly coupled
operations in some cases decoupled bond between microservices is more
suitable. For instance, after order was placed a notification sends. Order
service sends a message to a message channel. Notification service
listens to the channel and waits for any message appointed to it. In
this environment each service operates independently thus enhancing
system’s resilience as each service operates, fails and recovers without
affecting other services.. Emails, notifications and alerts: Emails, notification or alerts could
be sent to an interested person without affecting or blocking application’s
main flow..Message based interaction: As described previously sender does not
wait for immediate response, so sender is not blocked by awaiting for
response and can continue its workflow e.g. sending emails to a lot of
subscribers.. Load balancing: When system is in high usage store message for later
processing when system will have a capacity.

12

............................ 3.3. Advantages and limitations

3.3 Advantages and limitations

Choice between synchronous and asynchronous communication heavily de-
pends on system’s requirements and team’s experience. Selected type of
interactions brings not only its advantages but also its disadvantages thus it
requires a deep consideration. Advantages of synchronous communication:[13].Direct response: Synchronous protocols such as Hypertext Transfer

Protocol (HTTP) or Hypertext Transfer Protocol Secure (HTTPS) allows
for immediate response from the receiver.. Simplicity: Synchronous is easier to understand than asynchronous
communication and it also require less work e.g team does not need to
install any message channel, handle its writing, reading, scaling etc.

Challenges of synchronous communication:[13]. Fragility: Since interaction is direct it leads to tightly coupled microser-
vices. If one service fails, it can impact the entire system.. Performance impact: Adding synchronous dependencies such as query
requests can worsen client’s experience..Anti-pattern in interservice communication: A chain of requests
created between microservices in synchronous communication is consid-
ered an anti-pattern, as it can lead to inefficiencies and bottlenecks.

Asynchronous winning points:[14][21].Microservices independence: Asynchronous communication allows
microservices to communicate more independently enhancing the system’s
overall resilience and fault tolerance. Even if one service is failed, others
can operate.. Eventual consistency: It facilitates replicating data across microser-
vices to achieve eventual consistency, which is essential for maintaining
data integrity across different microservices..Responsiveness: In chain of microservices, sender can respond quicker
as it doesn’t have to wait for receiver respond..Gradual load distribution: Message queues in message channels can
be used as buffer, enabling receiver to process messages at their own
pace, not forcing them for instant response..Reduced coupling: Sender does not have to know about since it
communicate only with message channel, reducing dependencies between
services.

Challenges of asynchronous communication:[14].Complexity: Asynchronous communication is less straightforward to
implement because it involves solving challenges such as duplicated mes-
sages, request-response semantics, installing, configuring and operating
this type of communication.. Latency issues: If message channel’s queues fill up, the end-to-end
latency for operations can increase significantly..Throughput limitations: Message channels are potential bottlenecks
in the system as each message may require queue and dequeue operations..Messaging infrastructure coupling: There is risk of becoming highly

13

3. Asynchronous vs synchronous communication.
coupled with a specific messaging infrastructure, making it challenging
to switch to another platform later.

3.4 Scalability, performance and efficiency

After we have covered use cases and technical requirements, as well as the
advantages and limitations of both communication styles, we can move to
this subsection, which will highlight each contribution toward scalability,
performance, and efficiency:. Scalability: Asynchronous interaction offers better scalability because

of discussed in above subsections: loose coupling, microservices indepen-
dence in communication chains, load distribution and fault tolerance..Performance: Both types offer strong performance depending on spe-
cific context and requirements, which we described above.. Efficiency: Both synchronous and asynchronous communication have
their specific characteristics which can affect system’s efficiency. Syn-
chronous has direct bond between sender and receiver. It is straight-
forward and it is suitable for cases where instant feedback is needed.
However under heavy loads in can lead to scalability issues which has
negative impact on efficiency. On the other hand asynchronous interac-
tion is loosely coupled, which means that the failure or slow performance
of one service has a lesser impact on the overall system. This improves
the efficiency of the system, but also brings its own limitation such as:
response delays and increased complexity.

3.5 Real cases application

In this section we explore a real world scenario demonstrating successful
implementation of asynchronous communication.

3.5.1 Netflix

Netflix’s migration of their viewing history from synchronous request-response
to asynchronous events is a notable real-world case of asynchronous commu-
nication in microservices.

Netflix is a streaming platform with more than 200 million viewers all
around the world. Users can view a wide array of movies, series, TV shows,
and documentaries on mobile and PC devices and on TVs. The service is
designed to enhance user experience through personalized recommendations.
To achieve a positive user experience while watching a movie, Netflix collects
data for both operational and analytical purposes. This data supports features
like "continue watching", where the user can stop the movie on one device
and continue watching on another. However, it also feeds into personalization
algorithms and core business analytics. The need for efficient data handling
and system optimization in response to growing user demands and data

14

...............................3.5. Real cases application

landscapes was a primary aspect of migrating the viewing history feature
from synchronous to asynchronous interaction.[22]

In Netflix’s initial system architecture, data flow was initiated with the
Gateway service, subsequently moving towards Playback API, which is re-
sponsible for managing the entire lifecycle of playback sessions. For example,
at what precise time did the user stop the movie. After this stage, data
was sent to the Request processor layer. The data was classified and stored
in long-term and short-term viewing data. For long-term data, a relational
database was used and for short-term in-memory data storage because it
enables rapid data retrieval. The system worked great most of the time.
However, once in a while, a strange delay occurred. Utilizing synchronous
interaction in the system led to delays due to network issues or temporary
shutdowns in database nodes. This situation caused a cascading slowdown
from the Request processor to the Playback API and the Gateway, potentially
impacting the client devices.[22] Previous architecture:

Computer

Phone

TV

Netflix cloud

G
atew

ay

Playback A
PI

R
equest

processor

in-memory
data store

 Database

Figure 3.1: Existing system before migration.[22]

To address this, Netflix introduced asynchronous processing using a durable
queue between the Playback API and the Request processor.[22]

This shift, featuring Apache Kafka, which we will discuss later, allowed
for immediate client’s request acknowledgement and independent process-
ing by instances of Request processor on their own pace. This solution
tackles cascading delayed responses and shows scenario where asynchronous
communication is more suited. However, implementing Kafka at Netflix’s
scale, with challenges like data loss and processing latencies, required careful
consideration and handling of complex design decisions.[22]

15

3. Asynchronous vs synchronous communication.

R
equest Proccesor

R
equest Proccesor

Computer

Phone

TV

Netflix cloud

G
atew

ay

AckPlayback A
PI

in-memory
data store

 Database

R
equest Proccesor

Durable queues

Apache Kafka

Figure 3.2: Improved system after migration.[22]

3.6 Conclusion

In conclusion, exploring asynchronous and synchronous communication in
microservices architecture reveals a nuanced landscape. While synchronous
interaction brings direct response and simplicity, it falls short in performance
scalability fault tolerance, as highlighted in the subsections above. On the
one hand, asynchronous communication offers independence of microservices,
eventual consistency, responsiveness, gradual load distribution, and reduced
coupling. On the other hand, it has limitations such as overall complexity,
latency issues, throughput limitations, and messaging infrastructure coupling.
These insights underscore choosing and aligning the communication strategy
with system requirements and long-term objectives.

16

Chapter 4
Detailed asynchronous communication in
microservices

In previous chapters, we built general knowledge to have a good overview
of communication in microservices. This chapter will build a deeper un-
derstanding of asynchronous communication in microservices. By gaining
a profound understanding of asynchronous communication, we can make
more informed decisions and effectively implement solutions that enhance
microservices-based systems’ performance, scalability, and reliability.

4.1 Core architectures

4.1.1 Message queuing

A message queue is a critical element in asynchronous communication within
microservices architectures. It functions as a temporary holding platform
for messages that are awaiting processing. In this architecture, there is a
consumer and a producer. The producer sends a message to a queue, and the
consumer consumes it at its own pace. The fundamental characteristic of a
message queue is that it ensures that each message is processed only once by
a single consumer. This system is particularly beneficial for handling tasks
that require heavy processing, managing workload buffering or batching, and
moderating uneven workloads.[23]

Producer
Reads a message

Queue

Stores a message
Consumer

Figure 4.1: Message queuing.[23]

In modern microservice architecture, message queues help decode applica-
tions into smaller, independent units. They improve application reliability,
performance, and scalability by simplifying communication between decou-
pled applications. Message queue provides a buffer for temporarily storing
messages and endpoints for components to send and receive these messages.
Additionally, message queues enable different system parts to interact and

17

4. Detailed asynchronous communication in microservices.................
perform operations asynchronously. Messages in these queues can range from
requests and responses to error messages and general information. Producers
add, and consumers retrieve messages. While multiple producers and con-
sumers can interact with the queue, each message is uniquely processed by
only one consumer. Message queues can integrate with publish-subscribe
messaging patterns to create a fanout design pattern for scenarios where a
message needs to be processed by multiple consumers.[23]

4.1.2 Publish-subscribe architecture

This model allows messages to be broadcast to multiple subscribers from a
publisher through a topic. In publish-subscribe messaging, publishers create
and send messages to a specific topic; subscribers receive these messages by
subscribing to that topic.[24]

Publisher

Publisher

Topic

Subscriber

Subscriber

Subscriber

Figure 4.2: Publish-subscribe messaging.[24]

The publish-subscribe messaging system, a pivotal component in modern
distributed systems, comprises four essential elements:[24].Messages: A message is communication data between publishers and

subscribers. The message could be a plain string, image, video, sensor
data, complex object, and other types..Topics: As an intermediary channel, a topic is associated with each
message. Each topic has its list of subscribers who listen to new incoming
messages.. Subscribers: These are the recipients of the messages. To receive
messages, subscribers must register or subscribe to their topics of interest.
Upon receiving messages, subscribers may execute diverse functions or
process the message in different ways, often in parallel..Producers: Producers create and send messages to appropriate top-
ics. Consumers broadcast messages to all waiting subscribers at once.
Broadcasting forms a one-to-many relationship where publishers broad-
cast information without needing to know the message consumers, and
likewise, subscribers receive messages without needing to identify the
source.

18

................................ 4.1. Core architectures

The publish-subscribe model enables working with events. For example,
an event can trigger an update like adding a new item to a cart.[24]

4.1.3 Event streaming architecture

Event streaming can be likened to the central nervous system of the digital
world, forming the backbone of a continuously connected, software-driven
business environment. It involves capturing various data in real-time from
event sources like databases, sensors, mobile devices, and other software as an
event stream. These event streams are later processed, stored, manipulated,
or routed to different destinations. The essence of event streaming lies in its
ability to enable real-time and retrospective analysis and reaction, ensuring
that relevant information is available precisely when and where it is needed.[25]

Event streaming can be used in a multitude of scenarios. Some of its
key uses include processing financial transactions in real-time for banks and
stock exchanges, monitoring and tracking vehicles in logistics, analyzing
sensor data in industrial settings, managing customer interactions in retail,
monitoring patients in healthcare, underpinning data platforms, event-driven
architectures, and microservices.[25]

4.1.4 Event-driven architecture

Event-driven architecture is commonly used in microservice-based architecture
to enable interservice communication between decoupled services using events.
Events are either updates or changes in state, for instance a new successful
payment transaction. They can carry the state such as a previous transaction
example or serve as identifiers, like a notification that user received a message.
An event-driven architecture has three main components: event consumers,
event producers and event routes. Producer creates an event and send it
event router which filters and redirect event to consumers.[26]

Stock rate change

Event routerOrder confirmation

Completed drive

Update rate in
internal database

Send confirmation
notification to

customer

Store drive's details
for analytics

Figure 4.3: Event-driven architecture.

The benefits of an event-driven architecture:[26]. Independent scaling and failure management: Because producers
and consumers are decoupled and they do not have to know each other,

19

4. Detailed asynchronous communication in microservices.................
the failure of one will not affect others. In an event-driven system, only
the event router is aware of the loss of the service..Agile development process: The event router automates the filtering
and delivery of events to consumers, reducing the need for extensive
and manual coordination between producer and consumer services. The
event router significantly accelerates the development process.. Efficient auditing: An event router provides a centralized platform for
auditing applications and setting policies. It is easier to manage access
policies to data and who can publish and subscribe to a router..Cost reduction: Event-driven architectures operate on a push-based
model, meaning actions occur as events appear in the router, avoiding
the costs associated with continuous polling to check if an event appeared.
Additionally, it reduces network bandwidth and CPU utilization, which
reduces costs.

4.2 Message brokers

In this chapter, we will take a look at message brokers. A message broker
is a software that facilitates communication and data exchange between
different applications, systems, and services. It achieves this by converting
messages into various messaging protocols, allowing seamless interaction
between services, regardless of programming language or system platform.
The message broker serves as an intermediary between services. It can
validate, store, and route to various destinations.[27]

4.2.1 Apache Kafka

Apache Kafka is a distributed platform for handling large amounts of real-
time data. Multiple data sources continuously produce real-time data, often
simultaneously, creating a constant flow of incoming information. Apache
Kafka solves the distributed platform’s main problem: managing the ongoing
influx of data and processing it sequentially and incrementally.[29] Kafka’s
use cases:[29]. utilizing a publish-subscribe architecture. This approach helps elimi-

nate multiple point-to-point connections, leading to system complexity.
Apache Kafka also addresses publish-subscribe drawbacks such as lack
of fault-tolerance and scaling issues.. storing produced messages durably and sequentially. It allows consumers
to read messages in chronological order.. handling streams of data in real-time.

4.2.2 RabbitMQ

RabbitMQ is a general-purpose distributed message broker used in stream
processing. RabbitMQ consists of three main components: exchange, binding,
and queue. The exchange receives the messages and decides where to route

20

................................. 4.2. Message brokers

the message. The queue receives messages from the exchange, store messages
and then send them to the consumer. Binding connects the broker and
exchange.[30]

Publisher

Publisher

Publisher

Exchange

Queue

Queue

Queue

Consumer

Consumer

Consumer

Figure 4.4: RabbitMQ architecture.[31]

Messages are high-volume, continuous, and incremental data that require
rapid processing, such as sensor data streams. RabbitMQ ensures message
delivery, and messages are not stored for long periods as they are in Apache
Kafka. It means that when a subscriber reads a message, it sends an ac-
knowledgment to RabbitMQ, which deletes it.[30] RabbitMQ can be used in
situations where:[30].Message delivering needs to be guaranteed: Because RabbitMQ

utilizes a push model, it verifies whether or not the message is delivered..Complex routing architecture: RabbitMQ has the flexibility to send
messages to various destinations with bindings and exchanges..Broad support: RabbitMQ supports a broad array of programming
languages compared to Apache Kafka. It also supports old protocols
such as STOMP (Streaming Text Oriented Messaging Protocol).

21

22

Chapter 5
Deep dive into Apache Kafka

Every application uses data in some other, and in the evolving world of big
data and distributed systems, Apache Kafka helps deliver messages from
publishers to consumers. Each byte of information is valuable in every message,
and servers must deliver data with minimum latency to ensure the best user
experience or a competitive advantage over other enterprises. For example,
e-shop platforms generate dozens of data to help provide personalized user
recommendations based on user activity or real-time inventory management.
In financial banks, Apache Kafka can help address fraud or market risks by
analyzing transactions as they occur.[28]

5.1 Messages and batches

Message in Apache Kafka is the primary data transmission unit. From the
database perspective, the message in Apache Kafka is similar to a row or
record in the table. Producers create messages and send them to Kafka.
Then, consumers fetch messages from Kafka. The message is an array of
bytes containing the message’s value and optional metadata such as key and
headers.[28]

Component Description
Key The key is optional and decides in which partition the mes-

sage should be sent. Messages with the same key will be
stored in the same partition, guaranteeing the order within
the partition.

Value The value is the content of the message. It can be string, num-
ber, or complex, serialized data structures such as JavaScript
Object Notation (JSON) and Extensible Markup Language
(XML).

Headers Headers are optional key-value metadata that help provide
more information about the message.

Table 5.1: Apache Kafka message structure.[28]

Publishers send messages in Kafka, and consumers read them in batches.
A batch is a collection of messages sent to the same topic and partition.

23

5. Deep dive into Apache Kafka............................
This approach improves throughput and efficiency because it eliminates
network round-trip. Round-trip starts with the producer sending a batch of
messages over the network. Once the Kafka broker gets a batch, it sends
an acknowledgment back to the producer. On the receiver side, a consumer
requests to fetch incoming messages over the network. Then, the broker
gets a request, and it responds with a batch of Kafka messages. Once the
consumer gets a batch, a round-trip is done. So, instead of sending each
message individually, the producer can send a collected group of messages,
reducing the network load.[28]

5.2 Topics and partitions

Topics and partitions are foundational components in the Apache Kafka.

„Messages in Kafka are categorized into topics. The closest analogies
for a topic are a database table or a folder in a filesystem. Topics
are additionally broken down into a number of partitions.“[28]

Multiple consumers can read the topics simultaneously, and one topic can
have more than one partition. Partition is a log sequence. The sequence
in this term emphasizes the defined order in which the producer appends
messages. Messages always append at the end of the sequence; consumers can
reference every message by its position. However, Apache Kafka ensures the
order of messages strictly inside the partition, not across the partitions.[28]

0 1 2 3 4

0 1 2 3 4

0 1 2

5

0 1 2 3

Apache Kafka Topic

Kafka writes
messages at the
end of partitions

Partition 0

Partition 1

Partition 2

Partition 3

Figure 5.1: Apache Kafka appends messages from producers.[28]

Different Kafka brokers can host individual partitions, distributing the load
across the server infrastructure. Additionally, Apache Kafka can replicate

24

............................. 5.3. Producers and consumers

partitions across various brokers. It brings not only redundancy but also
availability, ensuring efficient horizontal scaling.[28]

5.3 Producers and consumers

Producers and consumers are essential parts of the Apache Kafka architecture.
The producer can be an application or a service that creates and publishes

messages to Kafka. The producer can determine which partition stores a
message using the key metadata described in the previous chapter. If the
key is not specified, Apache Kafka automatically decides where to place the
message.[28]

Consumers are the entities that fetch messages from the Kafka broker. To
read the message from the broker, consumers need to subscribe to one or more
topics. Consumers maintain the order of the messages in which producers
originally produced them within each partition. Each consumer holds an
offset value to avoid repeating fetching and identify the current position in
the partition. An offset in Apache Kafka is the unique value that sets the
Kafka broker after receiving a message. The producer itself does not set
offset. Holding offset also allows the consumer to resume fetching data from
the failed position in case of interruption. This mechanism is fundamental
in Apache Kafka architecture and ensures efficient and accurate message
consumption.[28] Figure 5.2 shows the consumer group example.

Consumer group

Consumer 0

Consumer 1

Consumer 2

Apache Kafka Topic

Partition 0

Partition 1

Partition 2 0 1 2 43

0 2 3 41

Partition 3

0 1 3

0 21

2

Current offset

Each partition can be read by
only one consumer at the

time

Figure 5.2: Consumer group consumes a single topic.[28]

Consumers are usually in consumer group reading data from one or more

25

5. Deep dive into Apache Kafka............................
topics together. By fetching data together, consumers can consume it faster
than if only one consumer was doing it. However, it is essential to note
that only one consumer can read from a single partition in a Kafka topic
simultaneously.[28]

5.4 Brokers and clusters

A server in Apache Kafka which stores messages is called a broker. The
broker stores messages in partitions and assigns unique offsets to messages,
and partitions are inside topics. The broker’s liability goes well beyond
storing messages. For instance, the broker is also responsible for handling
incoming requests from producers sending messages and consumers fetching
those messages.[28]

„Depending on the specific hardware and its performance character-
istics, a single broker can easily handle thousands of partitions and
millions of messages per second.“[28]

A cluster is a group of brokers. Compared to a single broker, a cluster is
more robust and scalable since the cluster has more brokers working together.
Since several brokers are in the cluster, brokers choose a leader, called a
cluster controller. The cluster controller checks the health of other brokers,
and if one broker fails, others can take the failed broker’s responsibility. The
controller also assigns partitions to brokers, and each partition is replicated
across brokers to ensure redundancy. A broker assigned a partition is called a
partition leader, and brokers replicating this partition are called followers. To
publish messages, producers must connect to a leader. However, consumers
can connect to a non-leader to fetch messages.[28]

Replicate B with all partitions

Send message to B/1

Producer

Fetch message from A/0

Fetch message from B/1

Consumer

Kafka Cluster

Replicate A with all partitions

Broker 2

0 1 2 3

Topic A

Partitions

0 1 2 3

Topic B

Partitions

Broker 1

0 1 2 3

Topic A

Partitions

0 1 2 3

Topic B

PartitionsSend message to A/0

Figure 5.3: Kafka cluster architecture.[28]

26

..........5.5. Kafka’s strengths and weaknesses compared to other message brokers

Since Apache Kafka stores all messages on disk, setting up a retention
policy is essential. Retention policy, in this case, is the set of rules that
defines when to delete messages, and it ensures disk storage does not fill up.
Retention can be in two ways:[28].Time-based retention: For instance, the timespan of the message can

be seven days. It means that after seven days, Apache Kafka deletes the
message.. Size-based retention: For example, the maximum size of the topic or
broker is 10 gigabytes. After the total size of messages reaches this value,
older messages Apache Kafka deletes to free up space for new messages.

Based on an application or system’s use cases, retention can be set up
individually in each topic, which brings flexibility to the system.

5.5 Kafka’s strengths and weaknesses compared to
other message brokers

There are other technical solutions similar to Apache Kafka, however, what
makes Apache Kafka unique:[28].Multiple producers and consumers: As was previously described,

Apache Kafka can handle multiple producers and consumers. It allows
storing incoming messages from the producers in a single place without
overloading connections between producers, Kafka, and consumers. It
also enables consumers to fetch data from one place without connecting
to the specific producer who creates the needed data.. Storing messages on the disk: Kafka consumers do not need to
process data in real-time since Apache Kafka stores messages on the disk.
Suppose the consumer cannot fetch messages from the topic for some
reason, such as network latency or heavy traffic. In that case, it can retry
from the previous place after some time without losing previous messages.
However, it is crucial to manage disk space efficiently. As described in
Section 5.4, Apache Kafka offers a retention policy to prevent the disk
from filling up.. Scalable: Apache Kafka can scale horizontally because of partitions,
consumer and producer groups, replication, and the ability to add new
brokers to the Kafka cluster. The broker can replicate partitions to other
brokers to parallelize the processing of data from consumers. Considering
brokers, Kafka can add more brokers to the cluster to handle any amount
of data, and producers can send messages to different partitions in the
topic concurrently.

These features combine to make Apache Kafka a high-performing publish-
subscribe message broker, ensuring low latency.

27

5. Deep dive into Apache Kafka............................
5.6 Real world examples highlighting efficiency,
scalability and performance

Apache Kafka is trusted by more than 80% of companies in the Fortune
100, which indicates that these companies trust Apache Kafka to provide
scalable, performant, and robust business solutions.[34] The Fortune 100 list
is published annually by Fortune Magazine and ranks the top 100 United
States (U.S.) companies by their reported annual revenue. It contains both
publicly traded and privately held companies.[35]

5.6.1 LinkedIn

LinkedIn is

„the world’s largest professional network with more than 1 billion
members in more than 200 countries and territories worldwide.“[32]

LinkedIn initially developed Apache Kafka as an internal project, which grew
into an open-source project with a high usage rate outside of the creator
company, which shows the project’s usefulness. Apache Kafka plays an
essential role in LinkedIn’s operations, along with other technologies. It has
responsibility for message exchanges, metric gathering, activity tracking, and
more. Kafka infrastructure in LinkedIn consists of over 100 clusters with
more than 4000 brokers. Together, they have more than 100000 topics and
seven million partitions. A remarkable indicator of this scale is the volume of
messages processed, which in 2019 surpassed 7 trillion per day.[33]

5.6.2 The New York Times

The New York Times has a vast history in offline and recently with online
journalism. It provides online access to the content, even if it was posted long
ago. This content must be accessible and searchable by different applications
and services at very low latency.[36] Initially, The New York Times relied on
an API-based system which was:[36]. developed by different teams, which led to incidents in the endpoint

configurations and data schemas.. challenging to manage API because services were tightly coupled.. Each consumer service requires information at a different level of im-
mediacy. For instance, some services require immediate availability of
the latest publishing for real-time updates or a comprehensive archive of
previously published content.

The new Apache Kafka-based system simplified and centralized data con-
sumption by various services as seen in Figure 5.4 The new design addressed
previous issues and brought the following advantages:[36].The new design standardized data flow from producers to consumers,

improving the software development process for front-end and back-end
services.

28

......... 5.6. Real world examples highlighting efficiency, scalability and performance

. Deployment simplification.. Improved monitoring of publishing content throughout the system, from
publication to end-user.

CMS

CMS

Archives

Etc.
Etc.

Etc.

Search

Personalization

Collections

Etc.
Etc.

Etc.

Producers of content Consumers of content

Figure 5.4: The New York Times old design.[36]

29

5. Deep dive into Apache Kafka............................

CMS

CMS

Archives

Etc.
Etc.

Etc.

Search

Personalization

Collections

Etc.
Etc.

Etc.

Producers of content Consumers of content

G
atew

ay

Kafka

Figure 5.5: The New York Times new design.[36]

30

Chapter 6
Implementation of a prototype

In the previous chapters, we explored microservice architecture and its com-
munication strategies, mainly focusing on asynchronous communication in
microservices. After that, we explored Apache Kafka, which can help to
utilize asynchronous inter-service communication, and this section introduces
the operational details of the prototype. It includes system architecture, its
components, and the required set of technologies to implement this prototype.
I decided to implement a part of a ride-sharing application like the real-world
ride-sharing service Uber to demonstrate the practical usage of microservices
and asynchronous communication utilizing Apache Kafka.

6.1 Tools and technologies used

There are plenty of technologies to implement a ride-sharing prototype. In
software development, the choice of instruments should be guided by specific
requirements and the team’s experience. In this case, the main requirements
are scalability, throughput, fault tolerance, data durability, and agility. So,
this section outlines choices for a set of technologies used to create and run
prototypes.

6.1.1 Java

Java is a secure, multi-platform, and fast programming language. It is power-
ing millions of Java applications and has been used for over two decades.[37]

In this prototype, Java serves as the primary language powering microser-
vices. It was chosen because of the author’s familiarity with this language
and because it provides:[37].Ton of online resources: Because Java is a relatively old and popular

language, there are many online resources to learn different aspects of
Java and its libraries and frameworks, making learning Java convenient
and efficient..Rich built-in libraries: Java provides plenty of useful functions and
libraries.

31

6. Implementation of a prototype
.High-quality development tools: Tools that come with Java enable

developers to debug, test, and deploy tools effectively.

6.1.2 Spring Boot

Spring Boot is a secure, flexible, configurable, and fast Java-based framework
built on top of the Spring framework.[38] It speeds the development of
microservices in general and the development of prototype because of the
following:[38]. Eliminating boilerplate code: Spring Boot provides auto configura-

tion. It automatically configures Spring and third-party libraries without
manually setting up configurations. For example, when developing the
prototype, most of the configuration was done by Spring annotations,
which sped up prototype development.. Starter dependencies: It provides starter dependencies that save the
developer valuable time from setting up a project. So the project can just
run. For instance, the prototype uses dependencies to connect to Apache
Kafka and Redis databases and manage WebSocket communication.
There was no need to select and match versions of libraries manually;
everything worked perfectly out of the box..Dependency Injection: Spring Boot uses Dependency Injection and
Inversion of Control, which delegate the construction of dependencies
to external entity. Dependency Injection is the technique that allows
an object to specify its dependencies through constructor arguments or
properties instead of constructing them internally. It makes the code
clean and elegant.[39]. Easy to use and rich libraries: Spring ecosystem provides high-
quality libraries which helped during the development of the prototype.
Spring Kafka and Spring Data provide tools to manage Kafka and Redis
efficiently, which also helps them spend more time writing code.

6.1.3 Redis

Redis is a Not Only SQL (NoSQL) in-memory database. It operates in the
Random Access Memory (RAM), being close to the applications instead of
the disk, which gives the database a higher speed for reading and writing
operations than those that work on the disk. Even though Redis is a key-value
store, it also has advanced structures such as sets and hashes.[40] Redis was
chosen as primary data storage because it offers:[40].High performance: Since Redis works with data in memory instead

of hard disk, it offers high write and read database operations. It brings
enhanced responsiveness and is suitable for the ride-sharing backend
with many users. Particularly for managing the ride lifecycle from point
A on the map to point B. Redis is an ideal candidate since a ride is often

32

............................ 6.1. Tools and technologies used

needed during its active duration. So, it allows quick access and data
modification, which is crucial for real-time changes. After the trip, it
can be archived in another permanent storage area. Understandably,
with a small amount of test users, the difference in speed is unnoticeable.
However, with the growth of test users and then real users, the difference
will be noticed because of the characteristics of relational versus in-
memory databases.. Flexible schema: At the moment of prototype development, strict
schema was not required. Dynamic schema allowed the development of
the application to be done quickly without the need to manage database
relations..Disk persistence: Even though Redis is an in-memory database, it
can store data snapshots on the disk. So, after the database is restarted
or crashed, the data will not be lost. It helps with debugging, and data
can be restored in case of a crash or outage..Redis data types: It supports not only string data type but is also
not limited to hashes, lists, sets, sorted sets, geospatial indexes, and
binary-safe data.[41]

6.1.4 Uber H3

Uber H3 is a geospatial indexing system that Uber internally developed to
enhance and optimize geographic information generated from millions of daily
transactions. This information needed to be analyzed for optimized dynamic
pricing in Uber’s internal services. H3 uses a grid system to split the cities
into hierarchically indexed hexagons. It helped Uber detect areas in the city
that were presented as hexagons for high and low demand.[42]

Hexagons as grid cells in the system were explicitly selected in favor of
triangles and squares because the distances between the hexagon center and
neighbor centers are the same, which is one value compared to triangles and
squares where the distance between neighbors varies as shown in Figure 6.1.
Because the distance for hexagon neighbors is the same, it drastically simplified
data analysis in Uber.[42].

Figure 6.1: Distances between centers of math figures. The red lines have
different lengths from the black lines.[42]

33

6. Implementation of a prototype
The H3 system was utilized in the prototype to store drivers in the Prague

hexagon grids. When drivers move through the city, they change their current
hexagons calculated by the H3 system. H3 also has a function to retrieve the
cell’s neighbor, which is used to find nearby drivers. The example of the grid-
divided map of Prague is in Figure 6.2 where red dotes are drivers. Hexagon
cells can have different sizes depending on the demand of the particular parts
of the city. For simplicity, in the prototype, grids are the same size.

Figure 6.2: Part of Prague map divided by hexagon grid. Red dots are
drivers.[42]

6.1.5 Docker Compose

Docker Compose is a tool that allows the management and definition of multi-
container Docker applications. Docker itself is an open platform designed to
simplify the development of software. It enables developers to define, build,
run, test, and ship isolated containers. Those containers are lightweight,
isolated, and do not depend on the operational system.[44] Docker Compose
and Docker were chosen because they offer:[43][44].Cross-platform: Docker can be installed on multiple platforms. If the

prototype is developed further with other developers, they do not have
to manually download, run, and operate databases and Apache Kafka.

34

............................ 6.1. Tools and technologies used

Redis databases and Apache Kafka are defined in Docker to eliminate
the need to provision infrastructure and focus on shipping features.. Standartised flow: One configuration file defines the environments
for running databases and Kafka, reducing manual infrastructure setup.
In the prototype, Docker is also responsible for setting up Kafka topics
and their configurations, which provide a convenient way to develop
applications.. Isolation: Redis databases run inside containers that divide them from
the main operational system. In case of data flooding and corruption, it
will not impact the operational system itself. Created data can also be
easily deleted in one place without manually searching for them. Not
only databases but Apache Kafka is isolated from other containers, which
provides modularity.

6.1.6 WebSocket

WebSocket is a TCP-based protocol that enables two-way, full-duplex, low-
latency communication between sender and receiver. It is used for live chats,
multiple collaboration on whiteboards, and live location tracking.[45]

Firstly, the server and client must open a WebSocket connection. It is called
a handshake, which includes a request/response message between sender and
receiver.[45]

After a handshake, the client and server can start transmitting messages
over the WebSocket connection.[45]

The connection is established once and can be terminated by sending a
close message to one of the sides.[45]

For communication between drivers/riders and the backend was chosen
WebScoket protocol because:[46].Real-time communication: Communication between the driver/rider

app and the server should be in real time for a better user experience.
Since WebSocket allows messages to be sent at any time, user clients
can receive real-time notifications and updates about rides as soon as an
event occurs in the system.. Lower latency: Because WebSocket maintains a persistent connection
between a client and server, it does not have to establish a new connection
whenever a client or server wants to send a message. Connection is
established once before the communication..Communication is full-duplex: It means that the server and client can
send messages simultaneously. They do not have to wait for a response
from the receiving side, and because of their nonblocking nature, they
can handle a high volume of messages.

In the prototype, WebSocket communication was implemented by the Spring
Boot Starter Websocket library using the Simple Text Oriented Messaging

35

6. Implementation of a prototype
Protocol (STOMP) protocol. STOMP is a subprotocol and can work over the
WebSocket protocol, providing a convenient way to pass messages between
client and server.[46]

6.2 System architecture and components

In this prototype, implementation was focused on the core functionality of
ride-sharing applications. Specifically, the subset of features: find ride, cancel
ride, start ride, and end ride. These features were selected because they are
fundamental for the operation of ride-sharing applications.

The system architecture in Figure 6.4 and in Figure 6.5 was built on
microservices that utilize Apache Kafka for scalable and efficient message
passing. The components used in the diagram are described in Figure 6.3.
The setup allows each part of the system to operate independently yet
cooperatively.

Microservice

Redis database

Apache Kafka Broker

kafka topic

Java Simulation

Figure 6.3: Design’s components.

36

........................
6.2.System

architecture
and

com
ponents

Apache Kafka

Push matching request Ride management
service

Apache Kafka

Trip service

Offer ride request to a driver

Push driver response

Driver service

Find drivers nearby a rider
Push ride offer

Push matched ride

Matching service

Push driver locationDriver location
service publisher

Push find messageFind a ride

Rider

Pull ride offer
ride_match_offers

Pull driver location
driver_locations

Drivers positions

Pull driver response

Pull matched ride

ride_match_updates

Driver location
service consumer

Store, update driver location

Recent trips

Create, update trip

Pull matching request for ride

match_requests

match_responses

Pull find message
rider_requests

Send current location

Accept, decline ride

Driver

Ride matches

Store current matches

Figure 6.4: Ride sharing prototype design part 1.

37

6. Implementation of a prototype

Ride management
service

Apache Kafka

Show ride update

Cancel ride

Trip service

Show ride update

Start, end ride

Driver service

Cancel ride

Rider

Recent trips

Update ridePull ride update
rider_ride_updates

Start, end ride

Driver

Pull ride update

driver_ride_updates

Push ride update

Push ride update

Pull cancel Ride

rider_requests

Pull start, end ride

driver_requests

Figure 6.5: Ride sharing prototype design part 2.

6.2.1 Apache Kafka

In the ride-sharing prototype, Apache Kafka plays an important role in data
flow between various microservices. It helps to achieve:

.Asynchronous communication: When a microservice publishes a
message, it does not have to wait for a response, blocking the whole
microservice. This means that consumers and producers do not interact
directly but via Apache Kafka.

.Decoupling of services: Apache Kafka enables microservices to work
independently and communicate effectively. All the microservice has to
know is the port and hostname of Apache Kafka and the topic where
to send messages. It does not have to manage other microservices ports
and hostnames. This approach streamlines service interactions, making
the overall system more scalable and easier to maintain.

.Data storage: Data in the topics persist in the disk, which helps with
debugging and testing. Data in the topics persist in the disk, which
helps with debugging and testing. For future development, it can help
in case of consumer unavailability. Because data are not lost, consumers
can start fetching when they connect to Kafka.

Overview of used Kafka topics:

38

........................ 6.2. System architecture and components

Topic Name Description
driver_locations It stores recent location updates from drivers.

These locations are used to track and manage
driver positions in H3 system.

ride_match_offers Contains offers sent to drivers for potential rides,
based on matching logic that considers closeness
to the rider.

ride_match_updates Receives updates from drivers about whether
they accept or reject the ride offers.

match_responses Collects responses from the matching service
to the ride management service about matched
rides.

match_requests It is used to submit ride requests from riders,
which need to be processed by the matching
service to find suitable drivers..

rider_requests It gathers initial ride requests from riders. This
topic is also used to send and consume cancel
ride messages.

driver_ride_updates Handles ride status updates from riders or drivers
during the lifecycle of the ride, such as ride can-
cellation, start, end, or match. Used to send
updates to drivers.

rider_ride_updates Handles ride status updates from riders or drivers
during the lifecycle of the ride, such as ride can-
cellation, start, end, or match. Used to send
updates to riders.

driver_requests Used by drivers to send messages such as start
or end a ride.

Table 6.1: Detailed descriptions of Kafka topics used in the ride-sharing proto-
type.

6.2.2 Driver

The driver in this prototype is the Java Spring Boot application. At the very
beginning of running the simulation, it creates the test driver data.

Drivers in the application can have one of the following states (driverStatus),
which determine their availability and actions within the system:

• AVAILABLE: The driver is free and can accept new ride requests.

• PICKING_UP: The driver is on the way to pick up a passenger.

• ON_THE_TRIP: The driver is transporting a passenger.

• DECIDING: The driver sent a response for a ride offer and currently
waiting for a match.

39

6. Implementation of a prototype
Drivers send their current locations in the time range from 6 to 12 seconds.

The time range was implemented to simulate real-world scenarios such as
latency and to add variability because each driver logs in at different times.
Driver simulation is connected via WebSockets to Driver location service
publisher and Driver service. When an update from Driver service comes, the
simulation updates a specific driver’s status and does actions such as start
ride and end ride.

When the driver responds positively to incoming Matching service offers,
the status changes from AVAILABLE to DECIDING, waiting for the ride-matched
update message from the Ride management service. Then, when an update
from the Ride management service comes that the ride is matched to the
driver, the driver’s status changes from DECIDING to PICKING_UP to mimic
the driver heading to the rider. After 5-second the driver sends START_RIDE
message to Driver service, and the driver’s status changes from PICKING_UP
to ON_THE_TRIP. Then, after 10 seconds, the driver sends END_RIDE, and the
status changes from ON_THE_TRIP to AVAILABLE to simulate a situation where
the driver gave the passenger a ride.

Driver entity has the following schema:

Field name Description
id The unique identifier for the driver.
riderId The unique identifier for a rider who is currently with

the driver
rideId The unique identifier for a ride which driver is currently

delivering
driverStatus The current status of the driver, represented as an

enumeration.
currentPosition The current location of the driver, stored as a MapPoint

object, which includes latitude and longitude coordi-
nates.

Table 6.2: Database schema for the driver entities.

Apache Kafka

Offer a ride request to a driver

Push driver response
Driver service

push driver locationDriver location
service publisher

Accept, decline ride

Update current driver location

Pull ride offer

ride_match_offers

driver_locations

ride_match_updates

Driver

Other microservices

Figure 6.6: Driver workflow in a ride-sharing prototype.

40

........................ 6.2. System architecture and components

6.2.3 Driver location service publisher

It utilizes WebSockets as a server to simulate real-time connection with drivers
because it constantly needs to receive driver’s position updates with minimal
latency. It also has the role of Kafka producer. When the driver’s current
location arrives via WebSocket communication from the driver simulation
service, the publisher forms a Kafka message as shown in Figure 6.7 that
includes the driver ID, latitude, longitude, and timestamp when the message
was sent. Even though microservices have different codebases, they use one
message format defined in the helper library to reduce repeating code.

Apache Kafka

Driver Location
Service Publisher driver_locations Driver Location

Service Consumer

Driver

DriverLocation {
String driverId,
BigDecimal latitude,
BigDecimal longitude,
Instant timestamp

}

Figure 6.7: Driver location service publisher workflow uses one message format.

6.2.4 Driver location service consumer

Apache Kafka

Pull driver location
driver_locations

Drivers positions

Driver location
service consumer

Store / Update driver location

Push driver locationDriver location
service publisher

Figure 6.8: Driver location service consumer workflow.

Driver location service consumer fulfills the Kafka consumer role by fetching
incoming messages from the driver_locations topic. When the message
arrives, it deserializes message into a Java object containing all the necessary
data to store the driver’s location effectively.

Then it uses H3 methods and algorithms to convert the driver’s longitude
and latitude into the H3 cell address where the driver is located. The address
is a unique index of the cell in the grid. Drivers with different longitudes
and latitudes may be stored in one cell grid if they fall within the exact cell

41

6. Implementation of a prototype
boundaries. For example, in Figure 6.10, drivers are marked as red and blue
dots on the map. All of them understandably have different geolocations, but
reds are stored in one cell, and blues are stored in another, based on their
respective cell locations.

In the Redis, drivers are organized by their geographic location into H3
cells as shown in Table 6.4; drivers shown as red dots on the map are stored
under the same cell index due to their proximity. Meanwhile, those shown as
blue are grouped into a different but similarly unified cell index.

While driver is moving and sending his location, the microservice updates
the driver’s current H3 cell in the Driver positions database as in the
Table 6.3 and groups drivers in the h3 cells as in the Table 6.4 for quick driver
ids retrieval in Matching service.

Driver id H3 index cell
12345 8a1e354110effff
67890 8a2a1072b597fff
.......
54321 8a1e354110effff

Table 6.3: Example of mapping each driver ID to their corresponding H3 index
cell.

H3 index cell Set of driver ids
8a1e354110effff {12345, 54321}
.......
8a2a1072b597fff {67890, 34567, 00001}

Table 6.4: Groups of driver ids stored in set in each H3 Index Cell.

6.2.5 Driver service

Driver service’s primary role is communicating with driver simulation:. Updating ride status initiated from the driver. The driver can send
requests to start, end, accept, or decline a ride. These actions must be
propagated to either Ride management service or Matching service to
manage the ride lifecycle.. Update ride status initiated from riders. Driver service will send riders’
ride requests to specified driver ids retrieved from ride_match_offers
Kafka topic. Ride offer is the rider’s request for a trip from point A to
point B

Driver service is also a WebSocket server for communication between drivers
and the ride-sharing backend. By being the communicator between other
parts of the system and the driver, driver service provides:

42

........................ 6.2. System architecture and components

Figure 6.9: Red and blue drivers are stored in their specific unified cells.

. Security: Driver service can in future handle and sanitize data input
before sending it to Kafka instead of direct communication between
drivers and Kafka topics..Clearer codebase: Driver simulation logic is separated from driver
service, which makes the overall codebase organized and clean. Each
service is responsible for its domain logic.

6.2.6 Matching service

The matching service is responsible for matching drivers and riders. The
rider requests a ride, and the service provides the nearest driver who accepts
the offer. The matching service connects to the two Redis databases: Redis
matches and Driver positions.

Firstly, the matching service receives request to match a rider to some
driver from the ride management service. The message looks like this:

43

6. Implementation of a prototype
{

" riderId ": " riderIdWhoRequestedRide ",
" rideId ": " assignedRideId ",
" riderPosition ": {

" longitude ": 14.4378 ,
" latitude ": 50.0755

},
" startPosition ": {

" longitude ": 14.4208 ,
" latitude ": 50.0875

},
" endPosition ": {

" longitude ": 14.4313 ,
" latitude ": 50.0874

}
}

Then it creates an entity in the Ride matches database with following schema:

Field name Description
id The unique identifier for ride matching. The same id as in

Recent trips database
status An enumeration representing the status of the matching ride:

MATCHED, NOT_MATCHED
Stored in Redis with a time to live of 3600 seconds (1 hour).

Table 6.5: Redis schema for managing ride matching status.

Then, the Matching service utilizes the H3 library to determine the rider’s
H3 cell index. After that, the service calculates the neighbor cells of the
cell where the rider is located. It gets a list of H3 indexes of neighbor cells,
including the cell where the rider is located, a total of seven cells. Then,
using these indexes, it retrieves drivers located in those indexes. If there are
some drivers, it sends them ride offers via ride_match_offers. If there are
no drivers in the first ring of cell neighbors, the matching service increases
the radius until it finds available drivers. Drivers can accept or decline the
offer. If the offer was accepted, a matching ride in the Ride Matches database
is marked as MATCHED. Next, incoming acceptances are ignored since the ride
is matched. Then it sends a message to the ride management service saying
that the ride is matched:

{
" driverId ": " matchedDriverId ",
" rideId ": " rideIdThatNeedsToBeMatched "

}

The following needs defined the usage of the Redis database in the Matching
service:

44

........................ 6.2. System architecture and components

.Consistency and integrity: There can be a lot of incoming match
requests, and information on whether the ride was already matched needs
to be stored somewhere. One way was to use some data structure inside
the microservice. However, it would require implementing synchronized
operation and handling concurrent modifications. It would increase the
overall complexity of the code base in the matching service. Redis is
designed to handle an enormous load concurrently, which makes it the
best candidate.. In-memory database: Read and write operations in the database need
the minimum possible latency to ensure a smooth user experience.

Ride management
service

Apache Kafka

Push driver response
Driver service

Push ride offer

Push a matched ride
Matching service

Pull ride offer

ride_match_offers

Drivers positions

Pull driver response

ride_match_updates

Recent trips

Update trip

Pull matching request for a ride

match_requests

Pull matching response
match_responses

Ride matches

Store current matches

Push matching request

Fetch nearby drivers

Figure 6.10: Matching service workflow.

6.2.7 Ride management service

This service is designed to manage the lifecycle of each ride, from initiation
to completion.

The average flow starts at CREATED and goes through MATCHING, MATCHED,
STARTED and ends in FINISHED. However, the ride’s lifecycle can go to
CANCELED in case the rider cancels the ride in the CREATED, MATCHING or
MATCHED phase. Ride’s lifecycle is presented in Figure 6.12.

Ride management service also use the Recent trips database to store ride
information. The ride information database schema looks like in the Table 6.6:

Ride management service expects messages from riders via rider_requests
Kafka topic. Riders can request or cancel a ride. When a rider request message
arrives at the ride management service, it creates an entity in the Recent
trips database with the status: CREATED.

After that, the service marks the ride entity in Redis as MATCHING indicating
that the ride is currently matching and then requests the Matching service to
match a rider with some available driver via match_requests topic.

45

6. Implementation of a prototype

Matching service Ride Management
Service

Apache Kafka

Find, cancel ride

Trip service

Start, end ride

Driver service

Recent trips

Update ride's state

Pull ride update
rider_ride_updates

Pull ride update
driver_ride_updates

Push ride update

Push ride update

Pull find, cancel ride
rider_requests

Pull start, end ride
driver_requests

Push matching response
match_responses

Pull matching request match_requests
Push matching request

Pull matched ride

Figure 6.11: Ride management service workflow.

CREATED MATCHING MATCHED STARTED

FINISHED
CANCELED

Figure 6.12: Ride statuses.

After some time, the Matching service sends a message with a found
driver. Management service sets the driver id in the ride entity and changes
ride status to MATCHED. After the change in the database, microservice
sends an update that the ride is matched to the driver and rider via topics
driver_ride_updates and rider_ride_updates.

If the driver starts or ends a ride, this driver action comes via driver_requests

46

........................ 6.2. System architecture and components

topic, then ride management service updated trips as STARTED or FINISHED.
If the rider cancels a ride, the service updates the ride entity status to

CANCELED. The ride management service sends ride status updates to driver
and rider so they know about ride status changes. It ensures synchronization
between driver and rider.

Field name Description
id The unique identifier for each ride.
driverId The unique identifier of the driver assigned to the ride.
riderId The unique identifier of the rider who requested the ride.
rideStatus The current status of the ride: CREATED, FINISHED,

MATCHING, MATCHED, CANCELED, STARTED.
startPosition The starting point of the ride containing latitude and longi-

tude.
endPosition The endpoint of the ride.

Table 6.6: Ride entity database schema in Redis.

6.2.8 Trip service

Like in the Driver service, Trip service serves as the primary communicator
with the riders. It sends updates about the ride’s status and receives requests
from the rider to find or cancel a started ride via WebSockets. Implementing
a special microservice for communicating with riders provides modularity and
security. It has the role of Kafka consumer and producer at the same time.
To pass the rider’s request to the system, it creates a Kafka message and
sends it to rider_requests topic. Respectively, it reads incoming messages
from rider_ride_updates that contain updates regarding rides’ statuses.
After receiving updates from the Ride management service, it sends updates
to the rider simulation. The update can be one of the: MATCHED_RIDE,
STARTED_RIDE, FINISHED_RIDE, CANCELED_RIDE and tells the rider how to
react to the update.

Apache Kafka

Ride management
service

Show ride update

Find, cancel ride

Trip service

Cancel ride

Rider

Recent trips

Update ride's state

Pull ride update
rider_ride_updates

Push ride update

Pull cancel Ride

rider_requests

Riders

Figure 6.13: Rider simulation.

47

6. Implementation of a prototype
6.2.9 Rider

The Rider is a Spring Boot Java application that simulates riders’ behaviors.
It utilizes Redis for the internal synchronization of riders and WebSocket
client to send riders’ requests to the Trip service.

At the start, all riders start with the status AVAILABLE. Every 5 seconds,
half of the riders with status AVAILABLE request a ride. Moreover, ten percent
of drivers seeking a ride cancel their requested trip. When the trip service
sends messages to the simulation, the simulation updates riders accordingly.
For instance, when a trip sends an update that:.The ride was matched, the simulation updates the rider’s status who

requested a ride as WAITING_FOR_DRIVER.. If the ride was started, the rider’s status is marked as ON_TRIP.. If the ride was canceled, the rider’s status returns to AVAILABLE..The ride ended. The rider is marked as AVAILABLE again.

This database schema defines the rider entity:

Field Name Description
id The unique identifier for each rider.
riderStatus The current status of the rider: ON_TRIP, AVAILABLE,

LOOKING_FOR_RIDE, WAITING_FOR_DRIVER.
currentDriverId Stores the driver’s identifier associated with the current

drive.
currentRideId Holds the identifier of the current ride the rider is involved

in.

Table 6.7: Database schema for the ‘Rider‘ entity stored in Redis.

6.3 Evaluating the impact of Kafka in the
prototype

Scalability, throughput, fault tolerance, data durability, and agility are prop-
erties of the whole system, not just Apache Kafka. It means that every part
of the system and prototype plays a role in those characteristics. But in this
section we will focus on how Apache Kafka benefits the prototype.

6.3.1 Scalability and throughput

Integrating Apache Kafka into the ride-sharing application significantly en-
hances the system’s scalability. Kafka’s ability to handle high volumes of
data through partitioning allows the system to distribute load across multiple
consumers. For instance, driver_locations topic is expected to constantly

48

................... 6.3. Evaluating the impact of Kafka in the prototype

receive messages from Driver locations service producers and fetch messages
by location consumers. This situation raises possible bottlenecks in the sys-
tem where consumers, producers, or the topic will be overwhelmed by the
incoming driver locations.

To address this and other similar issues, we can introduce topic partitions,
consumer groups, and multiple instances of microservices. In the case of
the Driver location service publisher, we can introduce multiple instances
of this microservice to match the expected load. Then, we can divide the
topic into multiple partitions. Because the topic is divided into partitions,
we must introduce a way to effectively and smartly store driver locations
into relevant topics instead of choosing Kafka’s automatic partitions logic.
We can implement a hash function that considers geographic location, driver
ID, and time when the message was sent. This function will decide in what
partition to put the message. On the other side, considering this hashing
information, for example, one or more consumer instances operating in the
consumer groups can read driver locations from partitions they are interested
in. The example is shown in Figure 6.14

Consumer group

Driver location
service publisher

Driver location
service consumer

Driver location
service consumer

Driver location
service consumer

Driver location
service publisher

Driver location
service publisher

driver_locations topic

0 1 2 43

0 2 3 41

Driver location
service consumer

Driver location
service publisher0 21

0 1 32

Figure 6.14: Topic partitions, multiple consumers and producers for scalability
and throughput.

As traffic increases, Kafka supports the addition of more brokers to the
cluster without downtime, as shown in Figure 6.15, which adds points to the
system’s scalability. It also ensures vertical scaling.

Using partitions, additional Kafka brokers, and multiple instances of mi-
croservices also increases overall throughput, enabling the system to handle
more concurrent users even under peak loads.

Kafka internally also utilizes the zero-copy method. It is a technique that
reduces CPU usage and network throughput. When Kafka sends a message
to clients, it sends message as bytes directly to the network channel without

49

6. Implementation of a prototype
intermediate buffers, unlike databases, where data are stored in a local cache
before being sent to the client.[28] Kafka allows each microservice instance to
process messages independently as a producer or consumer, which scales the
system’s ability to handle more operations.

Additionally, Kafka plays the role of buffer between consumers and pro-
ducers. It means that the producer’s throughput does not have to match
the consumer’s. Each can send or fetch Kafka messages at their own pace.
To further improve the throughput of the prototype, we can enable message
compression, which will reduce the size of messages sent over the network,
resulting in improved throughput.

Ride
management

service

Kafka cluster

Matching
service

Driver location
service

consumer

Trip service

Driver service

Kafka broker 2

Push matching request

Kafka broker 1

Push driver response

Push ride offer

Push driver location

Push find message

Push cancel message

Pull ride offer

Pull driver response

Pull matched ride

Pull find message

Pull cancel message

Pull ride update

Driver location
service

publisher

Push matched ride

Pull matching request

Pull driver location

ride_match_offers

driver_locations

match_requests

rider_requests

...

ride_match_offers

driver_locations

match_requests

rider_requests

...

Start ride

End ride

Figure 6.15: Multiple Kafka brokers inside one cluster.

6.3.2 Fault tolerance and data durability

To ensure the system continues to operate in case of the failure of one or more
Kafka brokers, we could set up broker replications where messages are copied
across multiple brokers. So if we set the replication factor as 3, it means that
one message in the topic would be replicated across 3 Kafka brokers, so in

50

................... 6.3. Evaluating the impact of Kafka in the prototype

case of the failure of one broker due to network or other issues, we still have
this message in other brokers, and this message can be gotten.

Thanks to Apache Kafka, microservices in the prototype are communicating
asynchronously, which means that the failure of one service does not directly
affect others. For instance, if the Matching service goes down, other services,
such as the Ride management service and Driver service, still function and
send messages to the match_requests and ride_match_updates. These
messages are stored in the topics until the Matching service is restored. This
situation significantly increases the fault tolerance of the system.

Consumers keep track of processed messages using offsets. In case of
consumer failure, it can return to the place where it stopped. It ensures that
no message is lost or reprocessed.

Kafka brokers can be and should be hosted on different servers to eliminate
dependency on hardware issues.

It is possible to set up the commitment of the messages across multiple
brokers. Once the message is committed, it is considered safely stored.
Uncommitted messages are not available for the consumers until they are
committed.[28] For example, a ride request may be committed to reduce the
risk of losing the request.

It is possible to set up producer retries.[28] There may be a situation when
the producer cannot send a message to the Kafka broker because the broker
does not acknowledge the delivery of the message. Losing a message from
Driver service, Matching service, Trip Service, or Ride management service is
intolerable. By setting up retries, we ensure user messages will not be lost.
However, this approach may introduce duplicate messages. For example, a
driver accepts a ride offer. After the matching service tells this information
to the Ride Management Service, it attempts to send a message to the driver
and rider about updating the ride status to MATCHED on the Kafka topic. Due
to a temporary network issue, a Kafka broker is unavailable, and the message
did not reach the broker. During this time, both driver and rider are unaware
of the ride status updates. The producer will be sending a message until it
does not receive an acknowledgment. Retries will ensure critical messages are
delivered, but it introduces a new problem: duplicate messages.

We can enable producers to be idempotent by setting enable.idempotence
to true in the Kafka producer settings. After the configuration change, the
producer will send the sequence number together with the message. This
feature guarantees that even if the ride matched message is sent multiple
times due to retries, the Kafka broker will recognize and decline duplicate
messages. The producer will receive harmless DuplicateSequenceException
indicating it sent a repetitive message.[28]

6.3.3 Agility

As a communication tool, Apache Kafka brings the following benefits:. Improved agility in the development process: Because Apache
Kafka stores messages in the topics, debugging and seeing the message

51

6. Implementation of a prototype
process flow was much more accessible. If direct microservice communica-
tion was used instead, it would require first manual logging of incoming
requests and second jumping between running microservices and trying
to find these messages between other logs. Apache Kafka allows us to
see all messages in the topic. Either from the beginning or the latest
(after connecting to the topic as a consumer client)..Decouple components in the prototype, providing agility: Each
component can operate independently. In the case of direct communica-
tion, components become dependent on each other. Suppose a developer
wants to add another service. In that case, he needs to send a message
to a specific endpoint, which requires opening the code base of another
microservice, which may be in another programming language. This situ-
ation requires synchronizing knowledge of other microservices endpoints
and their data schema. In the case of Kafka, we are good with topic
names and message format..A centralized, highly scalable, and clear view of data flow
between microservices: As we can see in the Figure 6.16, direct
invocations bring chaos even with the small number of microservices.
This prototype does not include price calculation, which could be placed
in a dedicated microservice, monitoring, analytics, customer services,
or payment service. Soon, this design can become super complicated
and hardly maintainable. Other teams must keep in mind other mi-
croservices, which delay development and business opportunities and
can have the negative consequence of losing money, investors, and the
important company reputation. Much like a method’s input parameters,
the microservices development team needs to know the message format
from the topic and, of course, the overall system design..Data monitoring: Monitoring the data flow and service communication
becomes easy because the communication is centralized. For example,
we can implement some fraud detector service which will be plugged in
the Kafka to identify possible frauds without affecting clients. Moreover,
we can check the health of Kafka and other components.

The design seems acceptable initially, but the system looks complex, even
with a few microservices. In the future, there may be other microservices that
would increase overall complexity and make the system even more coupled.

52

................... 6.3. Evaluating the impact of Kafka in the prototype

Trip service

Send ride status update

Ride management
service

Request match for ride

Send ride status update

Offer ride request to a driver

Send response

Start, end ride

Driver service

Find drivers nearby a riderOffer ride

Send matched ride

Matching service

Push driver locationDriver location
service publisher

Find ride

Cancel ride

Find a ride

Cancel rid

Rider

Drivers positions

Driver location
service consumer

Store, update driver location

Recent trips

Create, update trip

Send current location

Accept, decline, start, end ride

Driver

Ride matches

Store current matches

Figure 6.16: Inter service communication without Apache Kafka.

53

54

Chapter 7
Future work

There is always room for improvement, and this prototype is not an exception.
Possible areas for improvement:.Advanced Apache Kafka: Exploring advanced Apache Kafka topics

such as broker and cluster monitoring, multiple clusters, and security,
which were not used in the prototype for simplicity..Completeness of the prototype: Fully functional rider and driver
simulation, estimated arrival time for a ride, price calculation, and
analysis of demand and supply dynamics..Reactive programming: Implement reactive programming paradigms
to improve the system’s responsiveness and scalability. Reactive pro-
gramming can help in building more resilient and efficiently interactive
systems..Benchmarks: Provide benchmarks for response times to features such
as finding a ride. Benchmarking these features would not only help
in identifying performance bottlenecks but also aid in comparing the
efficiency of different architectural choices and optimizations..Testing: Create extensive integration and unit testing and develop test
scenarios that include simulating broker failures and network partitions.
Testing these scenarios will ensure that the system can handle failures
gracefully and maintain data integrity and availability under adverse
conditions.

55

56

Chapter 8
Conclusion

This bachelor thesis has explored asynchronous communication in microser-
vice architecture with Apache Kafka. We have expanded our understanding
of overall communication by studying the microservice architecture, its ad-
vantages and disadvantages, and real-world examples. We studied different
communication patterns, styles, and communication’s influence on software
systems.

Subsequently, we explored both asynchronous and synchronous communica-
tion. We studied cases when and where to use each of them and their influence
on the application. Moreover, we analyzed real-world example of asynchronous
communication, which gave us insight into when to implement asynchronous
communication with Apache Kafka. After understanding both asynchronous
and synchronous styles, we deeply analyzed asynchronous communication. Its
core architectures such as message queuing, publish-subscribe architecture,
event streaming architecture, and event-driven architecture. Ultimately, we
looked at message brokers implementing some of the studied architectures.
By exploring different brokers, we can better understand Apache Kafka itself.

Examining microservices and different interservice communications gave
us enough knowledge to understand Apache Kafka. In the final chapter, the
main components of Apache Kafka are explored not only by text but also
visually. Additionally, the chapter highlights Apache Kafka compared to
other brokers and provides real usage examples.

After understanding that Apache Kafka is a powerful and versatile tool, I
described the prototype’s architecture, the technologies used, each system
component, and how Kafka can help to achieve scalability, throughput, fault
tolerance, data durability and agility in the prototype.

57

58

Acronyms

API Application Programming Interface. 4, 5, 11, 15, 28

HTTP Hypertext Transfer Protocol. 13

HTTPS Hypertext Transfer Protocol Secure. 13

JSON JavaScript Object Notation. 23

NoSQL Not Only SQL. 32

RAM Random Access Memory. 32

RPC Remote Procedure Call. 8

STOMP Simple Text Oriented Messaging Protocol. 35, 36

U.S. United States. 28

XML Extensible Markup Language. 23

59

60

Bibliography

[1] "Google Trends." Accessed on December 29, 2023, Retrieved from https:
//trends.google.com/trends/explore?date=2014-01-01%202023-1
2-29&q=%2Fm%2F011spz0k&hl=en-US

[2] "JetBrains." Microservices - The State of Developer Ecosystem in 2023.
Accessed on January 4, 2024, Retrieved from https://www.jetbrains.
com/lp/devecosystem-2023/development/#mcrsrvc_design_approa
ches

[3] "O’Reilly." A Quick and Simple Definition of Microservices. Accessed on
November 13, 2023, Retrieved from https://www.oreilly.com/conten
t/a-quick-and-simple-definition-of-microservices/

[4] "Microsoft Learn." Microservices: An application revolution powered by
the cloud. Accessed on November 13, 2023, Retrieved from https://le
arn.microsoft.com/en-us/azure/architecture/guide/architectur
e-styles/microservices

[5] Richards, M., and Ford, N. Fundamentals of Software Architecture: An
Engineering Approach, 1st Edition, O’Reilly Media Inc., 2020.

[6] Newman, S. Building Microservices, 2nd Edition, O’Reilly Media, Inc.,
2021.

[7] "Atlassian." Microservices vs. Monolithic Architecture. Accessed on Novem-
ber 13, 2023, Retrieved from https://www.atlassian.com/microservi
ces/microservices-architecture/microservices-vs-monolith

[8] "Baeldung." N-Tier Architecture. Accessed on November 13, 2023, Re-
trieved from https://www.baeldung.com/cs/n-tier-architecture

[9] "Nginx." Adopting Microservices at Netflix: Lessons for Team and Process
Design. Accessed on November 19, 2023, Retrieved from https://www.ng
inx.com/blog/microservices-at-netflix-architectural-best-p
ractices/

[10] "Bloomberg Second Measure LLC" Rideshare Industry Overview Accessed
on February 18, 2024, Retrieved from https://secondmeasure.com/da
tapoints/rideshare-industry-overview/

61

https://trends.google.com/trends/explore?date=2014-01-01%202023-12-29&q=%2Fm%2F011spz0k&hl=en-US
https://trends.google.com/trends/explore?date=2014-01-01%202023-12-29&q=%2Fm%2F011spz0k&hl=en-US
https://trends.google.com/trends/explore?date=2014-01-01%202023-12-29&q=%2Fm%2F011spz0k&hl=en-US
https://www.jetbrains.com/lp/devecosystem-2023/development/#mcrsrvc_design_approaches
https://www.jetbrains.com/lp/devecosystem-2023/development/#mcrsrvc_design_approaches
https://www.jetbrains.com/lp/devecosystem-2023/development/#mcrsrvc_design_approaches
https://www.oreilly.com/content/a-quick-and-simple-definition-of-microservices/
https://www.oreilly.com/content/a-quick-and-simple-definition-of-microservices/
https://learn.microsoft.com/en-us/azure/architecture/guide/architecture-styles/microservices
https://learn.microsoft.com/en-us/azure/architecture/guide/architecture-styles/microservices
https://learn.microsoft.com/en-us/azure/architecture/guide/architecture-styles/microservices
https://www.atlassian.com/microservices/microservices-architecture/microservices-vs-monolith
https://www.atlassian.com/microservices/microservices-architecture/microservices-vs-monolith
https://www.baeldung.com/cs/n-tier-architecture
https://www.nginx.com/blog/microservices-at-netflix-architectural-best-practices/
https://www.nginx.com/blog/microservices-at-netflix-architectural-best-practices/
https://www.nginx.com/blog/microservices-at-netflix-architectural-best-practices/
https://secondmeasure.com/datapoints/rideshare-industry-overview/
https://secondmeasure.com/datapoints/rideshare-industry-overview/

8. Conclusion....................................
[11] "Uber Investor" Uber Announces Results for First Quarter 2023 Accessed

on February 18, 2024, Retrived from https://investor.uber.com/ne
ws-events/news/press-release-details/2023/Uber-Announces-R
esults-for-First-Quarter-2023/default.aspx

[12] "Dream Factory" 4 Microservices Examples: Amazon, Netflix, Uber, and
Etsy. Accessed on November 19, 2024 Retrieved from https://blog.dre
amfactory.com/microservices-examples/#examples

[13] "Microsoft." Communication in a Microservice Architecture. Accessed
on November 19, 2024, Retrieved from https://learn.microsoft.com/
en-us/dotnet/architecture/microservices/architect-microserv
ice-container-applications/communication-in-microservice-a
rchitecture

[14] "Microsoft." Design Interservice Communication for Microservices. Ac-
cessed on November 27, 2024, Retrieved from https://learn.microsof
t.com/en-us/azure/architecture/microservices/design/interser
vice-communication#challenges

[15] Richardson, C. Microservices Patterns: With examples in Java, 1st
Edition, Manning, 2018.

[16] "Baeldung." Service Discovery in Microservices. Accessed on November
27, 2024, Retrieved from https://www.baeldung.com/cs/service-dis
covery-microservices

[17] "Baeldung." How Does a Load Balancer Work? Accessed on November 27,
2024, Retrieved from https://www.baeldung.com/cs/load-balancer

[18] "Red Hat." What does an API gateway do? Accessed on November 27,
2024, Retrieved from https://www.redhat.com/en/topics/api/wha
t-does-an-api-gateway-do

[19] "Baeldung." Eventual Consistency vs. Strong Eventual Consistency vs.
Strong Consistency. Accessed on November 27, 2024, Retrieved from
https://www.baeldung.com/cs/eventual-consistency-vs-stron
g-eventual-consistency-vs-strong-consistency

[20] "IBM." Use Case. Accessed on November 27, 2024, Retrieved from
https://www.ibm.com/docs/en/rational-soft-arch/9.6.1?topic=
diagrams-use-case

[21] "Microsoft Learn." Asynchronous Message-Based Communication. Ac-
cessed on November 27, 2024, Retrieved from https://learn.microsof
t.com/en-us/dotnet/architecture/microservices/architect-mic
roservice-container-applications/asynchronous-message-based
-communication

62

https://investor.uber.com/news-events/news/press-release-details/2023/Uber-Announces-Results-for-First-Quarter-2023/default.aspx
https://investor.uber.com/news-events/news/press-release-details/2023/Uber-Announces-Results-for-First-Quarter-2023/default.aspx
https://investor.uber.com/news-events/news/press-release-details/2023/Uber-Announces-Results-for-First-Quarter-2023/default.aspx
https://blog.dreamfactory.com/microservices-examples/#examples
https://blog.dreamfactory.com/microservices-examples/#examples
https://learn.microsoft.com/en-us/dotnet/architecture/microservices/architect-microservice-container-applications/communication-in-microservice-architecture
https://learn.microsoft.com/en-us/dotnet/architecture/microservices/architect-microservice-container-applications/communication-in-microservice-architecture
https://learn.microsoft.com/en-us/dotnet/architecture/microservices/architect-microservice-container-applications/communication-in-microservice-architecture
https://learn.microsoft.com/en-us/dotnet/architecture/microservices/architect-microservice-container-applications/communication-in-microservice-architecture
https://learn.microsoft.com/en-us/azure/architecture/microservices/design/interservice-communication#challenges
https://learn.microsoft.com/en-us/azure/architecture/microservices/design/interservice-communication#challenges
https://learn.microsoft.com/en-us/azure/architecture/microservices/design/interservice-communication#challenges
https://www.baeldung.com/cs/service-discovery-microservices
https://www.baeldung.com/cs/service-discovery-microservices
https://www.baeldung.com/cs/load-balancer
https://www.redhat.com/en/topics/api/what-does-an-api-gateway-do
https://www.redhat.com/en/topics/api/what-does-an-api-gateway-do
https://www.baeldung.com/cs/eventual-consistency-vs-strong-eventual-consistency-vs-strong-consistency
https://www.baeldung.com/cs/eventual-consistency-vs-strong-eventual-consistency-vs-strong-consistency
https://www.ibm.com/docs/en/rational-soft-arch/9.6.1?topic=diagrams-use-case
https://www.ibm.com/docs/en/rational-soft-arch/9.6.1?topic=diagrams-use-case
https://learn.microsoft.com/en-us/dotnet/architecture/microservices/architect-microservice-container-applications/asynchronous-message-based-communication
https://learn.microsoft.com/en-us/dotnet/architecture/microservices/architect-microservice-container-applications/asynchronous-message-based-communication
https://learn.microsoft.com/en-us/dotnet/architecture/microservices/architect-microservice-container-applications/asynchronous-message-based-communication
https://learn.microsoft.com/en-us/dotnet/architecture/microservices/architect-microservice-container-applications/asynchronous-message-based-communication

.................................... 8. Conclusion

[22] "InfoQ" Migrating Netflix’s Viewing History from Synchronous Request-
Response to Async Events. Accessed on November 27, 2024, Retrieved
from https://www.infoq.com/articles/microservices-async-mig
ration/

[23] "Amazon Web Services." What is a Message Queue? Accessed on January
13, 2024, Retrieved from https://aws.amazon.com/message-queue/

[24] "Amazon Web Services." What is Pub/Sub? Accessed on January 13,
2024, Retrieved from https://aws.amazon.com/what-is/pub-sub-mes
saging/

[25] "Apache Kafka." Introduction. Accessed on January 13, 2024, Retrieved
from https://kafka.apache.org/intro

[26] "Amazon Web Services." Event-driven architecture. Accessed on January
13, 2024, Retrieved from https://aws.amazon.com/event-driven-arc
hitecture/

[27] "IBM." What are Message Brokers? Accessed on January 13, 2024,
Retrieved from https://www.ibm.com/topics/message-brokers

[28] Shapira, G., Palino, T., Sivaram, R., and Petty, K. Kafka: The Definitive
Guide. O’Reilly Media, Inc., 2021.

[29] "Amazon Web Services." What is Apache Kafka? Accessed on January
13, 2024, Retrieved from https://aws.amazon.com/what-is/apache-k
afka/

[30] "Amazon Web Services." What’s the Difference Between Kafka and
RabbitMQ? Accessed on January 13, 2024, Retrieved from https://aws.
amazon.com/compare/the-difference-between-rabbitmq-and-kaf
ka

[31] "RabbitMQ Blog." Interoperability in RabbitMQ Streams. Accessed on
January 13, 2024, Retrieved from https://blog.rabbitmq.com/posts/
2021/10/rabbitmq-streams-interoperability

[32] "LinkedIn" About LinkedIn. Accesed on January 13, 2024, Retrieved from
https://about.linkedin.com/

[33] "LinkedIn Engineering" How LinkedIn customizes Apache Kafka for 7
trillion messages per day. Accesed on January 13, 2024, Retrieved from
https://engineering.linkedin.com/blog/2019/apache-kafka-tri
llion-messages

[34] "Apache Kafka" Powered By. Accessed on May 4, 2024 Retrieved from
https://kafka.apache.org/powered-by

[35] "Wall Street Mojo" Fortune 100 - What Is It, Companies, Examples, Vs
Fortune 500. Accessed on May 4, 2024 Retrieved from https://www.wa
llstreetmojo.com/fortune-100/

63

https://www.infoq.com/articles/microservices-async-migration/
https://www.infoq.com/articles/microservices-async-migration/
https://aws.amazon.com/message-queue/
https://aws.amazon.com/what-is/pub-sub-messaging/
https://aws.amazon.com/what-is/pub-sub-messaging/
https://kafka.apache.org/intro
https://aws.amazon.com/event-driven-architecture/
https://aws.amazon.com/event-driven-architecture/
https://www.ibm.com/topics/message-brokers
https://aws.amazon.com/what-is/apache-kafka/
https://aws.amazon.com/what-is/apache-kafka/
https://aws.amazon.com/compare/the-difference-between-rabbitmq-and-kafka
https://aws.amazon.com/compare/the-difference-between-rabbitmq-and-kafka
https://aws.amazon.com/compare/the-difference-between-rabbitmq-and-kafka
https://blog.rabbitmq.com/posts/2021/10/rabbitmq-streams-interoperability
https://blog.rabbitmq.com/posts/2021/10/rabbitmq-streams-interoperability
https://about.linkedin.com/
https://engineering.linkedin.com/blog/2019/apache-kafka-trillion-messages
https://engineering.linkedin.com/blog/2019/apache-kafka-trillion-messages
https://kafka.apache.org/powered-by
https://www.wallstreetmojo.com/fortune-100/
https://www.wallstreetmojo.com/fortune-100/

8. Conclusion....................................
[36] "The New York Times" Publishing with Apache Kafka at The New York

Times. Accessed on May 4, 2024 Retrieved from https://open.nytimes
.com/publishing-with-apache-kafka-at-the-new-york-times-7f0
e3b7d2077

[37] "AWS". What is Java? Accessed on May 5, 2024 Retrieved from https:
//aws.amazon.com/what-is/java/

[38] "Microsoft Azure". What is Spring Boot? Accessed on May 5, 2024
Retrieved from https://azure.microsoft.com/en-us/resources/cl
oud-computing-dictionary/what-is-java-spring-boot

[39] "Docs Spring". Dependency Injection. Accessed on May 5, 2024 Retrieved
from https://docs.spring.io/spring-framework/reference/core/
beans/dependencies/factory-collaborators.html

[40] "IBM". What is Redis? Accessed on May 5, 2024 Retrieved from https:
//www.ibm.com/topics/redis

[41] "Redis". What Redis data structures look like Accessed on May 5, 2024
Retrieved from https://redis.io/glossary/redis-data-structure
s/

[42] "Uber Engineering Blog". H3: Uber’s Hexagonal Hierarchical Spatial
Index Accessed on May 5, 2024 Retrieved from https://www.uber.com
/en-CZ/blog/h3/

[43] "Docker Docs". Why use Compose? Accessed on May 6, 2024 Retrieved
from https://docs.docker.com/compose/intro/features-uses/

[44] "Docker Docs". Docker overview. Accessed on May 6, 2024 Retrieved
from https://docs.docker.com/get-started/overview/#the-docke
r-platform

[45] "Alex Diaconu. Ably" The WebSocket API and protocol explained Accesed
on May 13, 2024 Retrieved from https://ably.com/topic/websockets

[46] "Baeldung" Rest vs WebSockets Accesed on May 6, 2024 Retreived from
https://www.baeldung.com/rest-vs-websockets

64

https://open.nytimes.com/publishing-with-apache-kafka-at-the-new-york-times-7f0e3b7d2077
https://open.nytimes.com/publishing-with-apache-kafka-at-the-new-york-times-7f0e3b7d2077
https://open.nytimes.com/publishing-with-apache-kafka-at-the-new-york-times-7f0e3b7d2077
https://aws.amazon.com/what-is/java/
https://aws.amazon.com/what-is/java/
https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-is-java-spring-boot
https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-is-java-spring-boot
https://docs.spring.io/spring-framework/reference/core/beans/dependencies/factory-collaborators.html
https://docs.spring.io/spring-framework/reference/core/beans/dependencies/factory-collaborators.html
https://www.ibm.com/topics/redis
https://www.ibm.com/topics/redis
https://redis.io/glossary/redis-data-structures/
https://redis.io/glossary/redis-data-structures/
https://www.uber.com/en-CZ/blog/h3/
https://www.uber.com/en-CZ/blog/h3/
https://docs.docker.com/compose/intro/features-uses/
https://docs.docker.com/get-started/overview/#the-docker-platform
https://docs.docker.com/get-started/overview/#the-docker-platform
https://ably.com/topic/websockets
https://www.baeldung.com/rest-vs-websockets

Appendix A
Used Software

The following software was used during the development of the thesis:. Draw.io for drawing all diagrams.1.OpenStreetMap for images with maps. 2. Overpass turbo for retrieving locations data such as road and supermar-
kets longitudes and latitudes.3

1https://www.draw.io
2https://www.openstreetmap.org
3https://overpass-turbo.eu/

65

https://www.draw.io
https://www.openstreetmap.org
https://overpass-turbo.eu/

	Introduction
	Exploring microservice architecture and communication styles
	Microservices at a glance
	Topology
	Pros and cons of microservice architecture
	Microservices in practice

	Communication strategies in microservice architecture
	Communication patterns and styles
	Impact on system's scalability and performance
	Ensuring system reliability and resilience
	Balancing trade-offs in communication choices

	Asynchronous vs synchronous communication.
	Technical requirements
	Use cases
	Advantages and limitations
	Scalability, performance and efficiency
	Real cases application
	Netflix

	Conclusion

	Detailed asynchronous communication in microservices
	Core architectures
	Message queuing
	Publish-subscribe architecture
	Event streaming architecture
	Event-driven architecture

	Message brokers
	Apache Kafka
	RabbitMQ

	Deep dive into Apache Kafka
	Messages and batches
	Topics and partitions
	Producers and consumers
	Brokers and clusters
	Kafka's strengths and weaknesses compared to other message brokers
	Real world examples highlighting efficiency, scalability and performance
	LinkedIn
	The New York Times

	Implementation of a prototype
	Tools and technologies used
	Java
	Spring Boot
	Redis
	Uber H3
	Docker Compose
	WebSocket

	System architecture and components
	Apache Kafka
	Driver
	Driver location service publisher
	Driver location service consumer
	Driver service
	Matching service
	Ride management service
	Trip service
	Rider

	Evaluating the impact of Kafka in the prototype
	Scalability and throughput
	Fault tolerance and data durability
	Agility

	Future work
	Conclusion
	Acronyms
	Bibliography
	Used Software

