
Faculty of Electrical Engineering
Department of Cybernetics

Bachelor’s thesis

Solving the Close Enough Multi
Traveling Salesman Problem with the
Hopfield Neural Network
Kristián Domažlický

Date May 2024
Supervisor: Ing. Jindřiška Deckerová

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

498962 Personal ID number: Domažlický Kristián Student's name:

Faculty of Electrical Engineering Faculty / Institute:

Department / Institute: Department of Cybernetics

Open Informatics Study program:

Artificial Intelligence and Computer Science Specialisation:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Solving the Close Enough Multi Traveling Salesman Problem with the Hopfield Neural Network

Bachelor’s thesis title in Czech:

Řešení problému obchodního cestujícího se spojitým okolím a více cestujícími pomocí Hopfieldovy
neuronové sítě

Guidelines:

1. Familiarize yourself with multi-vehicle routing problems such as the Multi Traveling Salesman Problem (mTSP) [1] and
Multi TSP with Neighborhoods (mTSPN) [2], as well as single-vehicle problems such as the Close Enough TSP (CETSP)
[3].
2. Familiarize yourself with the solution of TSP using the Hopfield Neural Network (HNN) [4].
3. Propose an energy function (a formulation) of the Close Enough mTSP (CEmTSP) to use in the HNN and adapt HNN
accordingly.
4. Evaluate the proposed HNN and compare it with the existing approaches, such as [5].

Bibliography / sources:

[1] Cheikhrouhou, Omar, and Ines Khoufi. "A comprehensive survey on the Multiple Traveling Salesman Problem:
Applications, approaches and taxonomy." Computer Science Review 40 (2021): 100369.
[2] He, Pengfei, and Jin-Kao Hao. "Hybrid search with neighborhood reduction for the multiple traveling salesman problem."
Computers & Operations Research 142 (2022): 105726.
[3] Gulczynski, Damon J., Jeffrey W. Heath, and Carter C. Price. "The close enough traveling salesman problem: A
discussion of several heuristics." Perspectives in Operations Research: Papers in Honor of Saul Gass’ 80 th Birthday
(2006): 271-283.
[4] Li, Rong, Junfei Qiao, and Wenjing Li. "A modified hopfield neural network for solving TSP problem." In 2016 12th
World Congress on Intelligent Control and Automation (WCICA), pp. 1775-1780. IEEE, 2016.
[5] Faigl, Jan. "An application of self-organizing map for multirobot multigoal path planning with minmax objective."
Computational intelligence and neuroscience 2016 (2016).

Name and workplace of bachelor’s thesis supervisor:

Ing. Jindřiška Deckerová Department of Computer Science FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 24.05.2024 Date of bachelor’s thesis assignment: 22.01.2024

Assignment valid until: 21.09.2025

___________________________ ___________________________ ___________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
prof. Dr. Ing. Jan Kybic

Head of department’s signature
Ing. Jindřiška Deckerová

Supervisor’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZBP-2015.1

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZBP-2015.1

Author statement for undergraduate work
I declare that the presented work was developed independently and that I have listed all sources
of the information used within it in accordance with the methodical instructions for observing
the ethical principles in the preparation of university thesis.

Prague, 24 May 2024

. .
Kristián Domažlický

i

Acknowledgment
I would like to thank Ing. Jindřiška Deckerová for supervising my thesis. As well would also
like to thank coffee for keeping me awake and writing this thesis. As a note for translation of the
Czech abstract DeepL was used.

ii

Abstrakt
Tato práce se zaměřuje na zavedenı́, implementaci a vyhodnocenı́ problému close enough multi
traveling salesman problem (CEmTSP). Problém spočı́vá v optimalizaci celkové ujeté délky
všech vozidel, přičemž každé mı́sto je navštı́veno jednou. CEmTSP je zobecněnı́m problému
cestujı́cı́ho obchodnı́ka (TSP). Je motivován sběrem dat z flotily bezpilotnı́ch letadel. V této
práci je navrženo použı́t k řešenı́ CEmTSP Hopfieldovu neuronovou sı́ť (HNN). HNN je typ plně
propojené neuronové sı́tě, která využı́vá gradientnı́ sestup k nalezenı́ optimálnı́ho řešenı́ podle
dané energetické funkce. Tato energetická funkce aproximuje studovaný problém a je navržena v
tomto článku. Pokud jde o vyhodnocenı́ HNN. S navrženou energetickou funkcı́ CEmTSP bylo
prokázáno, že HNN poskytuje platné řešenı́. pro CEmTSP, ale kvalita nenı́ konkurenceschopná
ve srovnánı́ s jinými řešiteli. Lze ji zlepšit pomocı́ optimalizace. I když se však řešenı́ zlepšı́,
neznamená to, že bude konkurenceschopné. To nám ukazuje, že HNN nenı́ optimálnı́ pro použitı́
jako řešenı́ pro CEmTSP.

Klı́čova slova: Hopfieldova neuronová sı́ť, Problém Obchodnı́ho cestujı́cı́ho se spojitým okolı́m
a vı́ce cestujı́cı́mi

iii

Abstract
This thesis focuses on the introduction, implementation, and evaluation of the Close Enough
Multi-Traveling Salesman Problem (CEmTSP). The problem is to optimize the total length trav-
eled of all vehicles, while visiting every location once. CEmTSP is a generalization of the Trav-
eling Salesman Problem (TSP). This is motivated by data collection from a fleet of UAVs. In this
thesis, it’s proposed to employ a Hopfield Neural Network (HNN) to solve CEmTSP. HNN is a
type of fully connected Neural Network that uses gradient descent to find the optimal solution
according to a given energy function. The energy function approximates the studied problem and
is proposed by this paper. Regarding the evaluation of HNN. With the proposed CEmTSP energy
function it has been shown that HNN provides a valid solution. for CEmTSP, but the quality is
not competitive in comparison with other solvers. It can be improved with optimization. How-
ever, even if it improves the solution, it does not make it competitive. This shows us that the
HNN is suboptimal to be used as a solution for CEmTSP.

Keywords: Hopfield Neural Network, Close Enough Multi Traveling Salesman Problem

iv

Contents

1 Introduction 1

2 Related Work 2
2.1 Traveling Salesman Problem . 2
2.2 Multi Traveling Salesman Problem . 3
2.3 Close Enough Traveling Salesman Problem . 3
2.4 Close Enough Multi-Traveling Salesman Problem 3
2.5 Neural Networks . 4

3 Problem Statement 5
3.1 Multi Traveling Salesman Problem . 5
3.2 Close Enough Multi-Traveling Salesman Problem 6

4 Hopfield Neural Network for TSP 7
4.1 Energy Function . 8
4.2 Hyper-Parameters . 9
4.3 Path Retrieval . 9

5 Proposed HNN-based Solution for CEmTSP 10
5.1 Modified Model of HNN . 10
5.2 Modified Energy Function . 11
5.3 Cost Matrix Calculation . 11
5.4 Local Minimum Problem . 12

5.4.1 Random Re-initialization (Referred to as Random) 12
5.4.2 Biased Re-initialization . 12

5.5 Generating Path From State Matrix . 13
5.6 Parallelization of HNN . 13
5.7 Path Optimization . 14

6 Results 16
6.1 Comparison of Re-initialization . 16
6.2 Non-Optimized . 17
6.3 Optimalized of Path . 18

7 Conclusion 21

References 22

A Content of the Enclosed CD 24

B Data 25

v

List of Figures
3.1 mTSP . 5
3.2 CEmTSP . 5
3.3 Vusualization of CEmTSP notation . 6
4.4 Vizualization of HNN matrix for TSP (inspired by [1]) 8
5.5 Vizualization of state matrix V matrix for CEmTSP (inspired by [1]). 10
5.6 Visualization of the path between neighbourhoods Sy, Si, Sz in this order 12
6.7 Visual comparison for re-initialization . 17
6.8 Solution of Berlin52 δ = 40 given by Heruistic 17
6.9 Solution of Berlin52 δ = 40 given by HNN . 17
6.10 Solution of Berlin52 δ = 40 given by Heruistic 18
6.11 Solution of Berlin52 δ = 40 given by HNN with 2-opt optimalization 18

List of Tables
1 Results HNN was solved with unbiased re-initialization, Part-1 19
2 Results HNN was solved with unbiased re-initialization, Part 2 20
B.1 Comparison of reinitializations Part-1 . 26
B.2 Comparison of reinitializations Part-2 . 27

vi

List of Algorithms
Hopfield Neural Network for TSP . 9
Parallel Hopfield Neural Network for CEmTSP . 15

vii

Abbreviations

HNN Hopfiel Neural Network
NN Neural Network
TSP Traveling Salesman Problem
CEmTSP Close Enought Multi Traveling Salesman Problem
mTSP Multi Traveling Salesman Problem
CETSP Close Enought Traveling Salesman Problem
SOM Self Organizing Maps
UAV Unmaned Areal Vehicle
euc Euclidian distance

Notation

N number of locations
M number of traveling salesman (Robots)
δ Radius of neighborhood
Σ Sequence of Targets to be visited
σ index of location that is being visited
S Neiborhood of Location
P Sequence of waypoints to be visited
p Waypoint
s Coords of location
V State Matrix of HNN
U Input Matrix of HNN
E Energyfunction
t Step size of derivation
L length of tour
a hyper parameter for Ea term
b hyper parameter for Eb term
c hyper parameter for Ec term
d hyper parameter for Ed term
f hyper parameter for Ef term
∆ min cost in cost matrix
∇ max cost in cost matrix
dist cost matrix

viii

Chapter 1

Introduction

This thesis is motivated by data collection from a fleet of UAVs, that can collect data remotely
through a camera or wireless network. This can be modeled as an advanced extension of the Traveling
Salesman Problem (TSP) called the Close Enough Multi Traveling Problem (CEmTSP). The thesis
is focused on solving the CEmTSP with a variant of a Neural Network (NN) called Hopfield Neural
Network (HNN), as HNN has already been proven to be able to solve TSP [2, 3].

The TSP is one of the classic problems of computer science. It is a task to find the shortest path

between N locations [4] . Due to the number of possible combinations, that is
(N − 1)

2
! the TSP

is an NP-hard problem. The TSP has been solved in many ways such as Hopfield Neural Networks
(HNN) [2] , K-opt [5], branch and bound [5], Self Organizing maps [6]. TSP has many applications
such as drilling of printed circuit boards, genome sequencing [5].

In problems such as crew scheduling, bus routing, and printing press scheduling [5], it is more
suitable to use multiple vehicles for a given problem. Therefore formulation of these problems as a
variant of the TSP called the Multi Traveling Salesman Problem (mTSP) would be used. mTSP differs
from TSP by extending the number of vehicles deployed to visit all locations. There are several ways
to prioritize the solution such as, (i) Min-sum, where the total cost of all paths of all vehicles is the final
cost, (ii) Min-max, where the final cost is the cost of the most expensive path, (iii) balanced workload
between vehicles, where the amount of locations is to be the same between the vehicles [7] . This
thesis will focus on the Min-sum variant of mTSP.

Another variant of the TSP focused on in this thesis is the Close Enough Traveling Salesman
Problem (CETSP). CETSP is motivated by data collection with instruments that can collect data from
a distance. These scenarios might be surveillance of complexes using drones, and disaster relief
coordination [7]. The ”Close Enough” modification is the addition of disk-shaped neighborhoods,
changing it so the location is visited if the vehicle visits the neighborhood instead of the center itself.

In this thesis, the CEmTSP with disk-shaped neighborhoods is solved by the HNN. HNN is a
recurrent neural network with a full feedback structure that relies on the proposed energy function to
find the global minimum by gradient descent [8]. The gradient descent makes the HNN susceptible to
local minima, this can be solved through re-initialization of the neural network, or a change of weights
in the neural network, so it escapes the local minimum. A motivation to solve CEmTSP through HNN
is possible parallelization and the possibility of making custom-made hardware to solve HNN, which
can speed up HNN significantly [9].

This thesis is structured as follows. The existing approaches to solving TSP-type problems and
background to HNN is in Chapter 2 . Formulation of mTSP and CEmTSP is in Chapter 3. The HNN,
on which the thesis solution is based, and a general deeper look into HNN is in Chapter 4. The thesis
modifications to HNN are in Chapter 5. Results and comparison with competing algorithms are in
Chapter 6. The conclusion is in Chapter 7.

1

Chapter 2

Related Work

This chapter briefly summarizes existing approaches to TSP, mTSP, and CETSP, since no direct
methods exist to solve CEMTSPs exist, to the best of the author’s knowledge. As this thesis builds on
existing knowledge of Neural Networks, this section also summarises them.

TSP is one of the classical problems of computer science. This problem even preceded the inven-
tion of computers as a German business manual called ”Geschäften gewiss zu sein—Von einem alten
Commis-Voyageu” was released in the year 1832, which was interested in the shortest path between
few german Cities [4]. One of the first computationally solved problems was in the year 1954 a path
through all 49 capitals of the continental USA [10]. In contrast to the year 2006, when the Concorde
algorithm was able to solve problems with 85 900 locations, making the record of solving practical
applications optimistic [11].
As solutions for TSP have improved more approaches and extensions have been formulated. The in-
terest in TSP is not only due to the direct solutions of TSP, but as TSP is an NP-complete problem a
solution to TSP problem could solve other NP-complete problems [11] .

2.1 Traveling Salesman Problem
Regarding solutions for TSP, they can be divided into three types of approaches: heuristic, approxi-
mate, and exact [5].

Heuristic algorithms, their solution is to find a heuristic with good empirical performance [12].
Some of these algorithms are K-opt [5], Closest Neighbor [5]. By only giving a heuristic answer
their computational time can be lower than other methods but their accuracy can not be ensured [11].
Expected accuracy depends on the type of heuristic from 25% with the Closest Neighbor heuristic to
2% with the Lin-Kernighan heuristic. Lin-Kernighan is a generalization of K-opt where differing k
values are used, due to its complexity O(nk), mainly the 2-opt heuristic, which by itself can achieve
5% [5] accuracy, is used, or less often 3-opt which accuracy by its own can achieve 3% [5] accuracy
[13]. Even though there is no accuracy guarantee their speed is used as an upper bound for the optimal
value and if the non-optimal solution would suffice [11].

Exact Algorithms try to find exact solutions, their complexity depends on the type of solution. An
example of these algorithms is brute-force, these algorithms try every combination resulting in O(‘n!),
which makes this impractical for larger TSP, Dynamic programming, tries to use already calculated
paths to prune un-optimal paths, a Hald-Karp algorithm using this method achieves O(n22n), making
them capable to calculate up to 60 locations paths, but any larger are impractical. The most capable
approach of exact algorithms is Branch and Cut that was able to solve 85,900 Location problem when
using Concorde algorithm [14], but this took 136 CPU-years [15].

Due to SOM algorithm will be used as a baseline solution and 2-opt will be used as an optimaliza-
tion for found paths. These algorithms are briefly described.

2-opt algorithm takes a valid solution of TSP, which might be random, and takes 2 edges, then
it replaces those edges with different ones that yield lower travel cost. This is repeated until no
improvements can be found [16]. This tour is called 2-optimal, for a K-optimal tour it takes K edges
instead of 2. For best results, the starting solution should be a greedy tour [5].

Self-organizing maps (SOM), are two layer Neural networks where the first layer is the input and
the second layer is the solution where the weights are Rd, d is the dimension of the problem. In every

2

iteration, random neurons are generated, then winning neurons are decided and the rest are forgotten,
it checks if the new path is better than the last best and the algorithm is rerun [6, 17]. Generation
of neurons can be adapted through heuristics such as GENIUS, which is trying to generate the best
neurons possible. In this work, the SOM solution is taken as a reference solution for CEMTSP [18].

2.2 Multi Traveling Salesman Problem
mTSP is an umbrella of problems that has many variants that will give us differing solutions, from
Min-max, Min-sum, balanced task allocation, and maximum vehicles used, with any combination of
those [7, 19] .

In this thesis, we focus on the Min-sum problem, this sub-problem objective is to find the shortest
distance of all paths while visiting every location only once. As this problem is almost the same as TSP,
however, some additional constraints must be implemented, for example, Multi Depot mTSP, where
this problem can be translated into TSP where the path is not a singular closed cycle but multiple cycles
starting and ending in a location that is designated as depot [20], or giving each vehicle minimum or
maximum amount of locations that need to be visited.

Solutions to mTSP can be divided into exact and heuristic solutions as well. Among popular
approaches to solving mTSPs are Genetic Algorithms, Ant Colony Optimization, or Self-Organizing
Maps [7, 17] .

2.3 Close Enough Traveling Salesman Problem
CETSP is motivated by practical scenarios, such as remote data collection of gas and electricity con-
sumption, collection of data from underwater vehicles on the ocean floor, and forest fire detection by
use of UAVs [21] . The difference between TSP and CETSP is that every location has a disk-shaped
neighborhood to visit.

CETSP was first been proposed by D. Gulczynski [22] and the author provided six heuristics,
these heuristics assume that all locations have an equal disc-shaped radius of δ [23]. As CETSP is a
newer modification of TSP, there are only a few exact approaches but among them, there are branch
and bound algorithms by Coutinho, that can solve instances with hundreds of neighborhoods, but take
four hours or more, and Integer-Programing based on Behdani and Smith [24]. As exact algorithms
for CETSPs take significantly longer than heuristic and approximate approaches are used more like
Super nodes heruistic [22] , genetic algorithms or SOM [19, 21, 24].

2.4 Close Enough Multi-Traveling Salesman Problem
CEmTSP is motivated by the combination of CETSP and mTSP, which could solve CETSP problems
on larger scales and with multiple vehicles being used simultaneously saving time. As this problem is
a combination of multiple modifications of TSP, little research has been done on this problem, to the
best of the author’s knowledge. This is quite limiting for this thesis as a comparison of accuracy is
needed to see how well HNN solves this problem. This will be solved through two solvers that answer
this problem but might not be the most accurate, SOM from paper [18] with omission of the Dubins
problem, and greedy K-means heuristic from paper [25]. These should give us benchmarks for HNN
to beat and be evaluated against.

3

2.5 Neural Networks
Neural Networks (NN) are inspired by neurons in the human brain, by creating connections between
elements with differing weights to create an interpretation of neurons. Their main advantage is versa-
tility, that there does not need to be a specific algorithm to solve a given problem, though it might not
be the most efficient way to solve a given problem. Another advantage is that NNs can be computed
in parallel making them suited to calculate real-time problems [9, 26]. The increasing popularity of
NNs in past years has led NNs to be used in many problems.

Regarding HNN specifically, HNN was first proposed by J.J. Hopfield [27], the idea is to improve
the simulation of biological neurons. As HNN requires energy to function, which is an approximation
of the problem given to HNN. This leads to specific advantages and drawbacks of HNNs compared to
other NNs. Among the drawbacks are, that the chosen energy function minima do not guarantee an
optimal solution, artificial Hyper-parameters are difficult to balance due to their sensitivity, the HNNs
sometimes can reach inadmissible solutions and HNN is likely to reach local minima of the energy
function [3, 9]. On the other hand, there is a major advantage that makes HNNs an interesting area of
study, and that is the fact that HNNs can be hardware-optimized, making the computation of solutions
much faster than in soft-computing [9].

The problems in which HNN gives better results than NN are Mathematical Programming prob-
lems like Linear Programming and Non-Linear Programming. The problems solved by HNNs include
and are not limited to TSP [2, 3], and facial recognition [28].

4

Chapter 3

Problem Statement

In this section, the definition of the studied problem is provided. CEmTSP is an extension of TSP,
where every location has a non-zero neighborhood, and multiple vehicles are dispatched to solve the
problem. As the solution for multiple vehicles can be differently prioritized this thesis focuses on the
Min-sum definition.

Figure 3.1: mTSP Figure 3.2: CEmTSP

3.1 Multi Traveling Salesman Problem
Having a set of n sensor locations si, each defined by its position si∈ R2, the mTSP goal is to
determine a set of m paths such that the sum cost of paths is minimal, and all the locations si are
visited once. Besides the depot location s1 where all the paths start and end. The paths are defined as
a set Σ = {Σ1 . . .Σm}, where each element is a path Σi = (σi

1 . . . σ
i
ki
), and the path is a sequence

of locations that are to be gone through. Each vehicle needs to visit at least l locations giving ki ≥ l,
where ki is the number of locations visited by path i. This definition is for the Min-sum variant of
mTSP.

Problem 3.1.1 (Multi Traveling Salesman Problem (mTSP))

minimize
Σ

L =

m∑
p=1

(
∥∥∥sσp

ki
− sσp

1

∥∥∥+

kp−1∑
i=1

∥∥∥sσp
i
− sσp

i+1

∥∥∥) (1)

s.t. σp
i ̸= σa

j for ∀i ̸= j and i ̸= 1 and ∀a∀p ∈ {1 . . .m} (2)

∀i ∈ {1 . . .m} ki ≥ l (3)

5

sy

si sz

Sy

Si Sz

Figure 3.3: Vusualization of CEmTSP notation

3.2 Close Enough Multi-Traveling Salesman Problem
Having a set of n sensor neighborhoods Si, each defined by Si ∈ (si, δi), si being the location of
the sensor i defined by si ∈ R2 and δi is the size of the disk-shaped neighborhood. δi is always the
same except for depot’s δ1 = 0. The CEmTSP is to determine a set of m paths with minimal distance
traveled, while visiting all si once, starting and ending in depot s1. The paths are a sequence of Σ =
(Σ1 . . .Σm). It denotes the sequence of visited locations, where Σi = (σi

1 . . . σ
i
ki
). Which is translated

into to sequence of waypoints that are to be traveled P = (P 1 . . . Pm), where P i = (pi1 . . . p
i
ki
) where

P i
j is defined by pij ∈ R2 and follows constraint.∥∥∥sσi

j
− pij

∥∥∥ ≤ δσi
j

Each vehicle needs to visit at least l locations giving ki ≥ l and ki being the number of locations
visited by path i.

Problem 3.2.1 (Close Enought Multi TSP (CEmTSP))

minimize
Σ

L =
m∑
z=1

(∥pzk − pz
1∥+

k∑
i=1

∥∥pz
i − pz

i+1

∥∥) (4)

s.t. σl
i ̸= σg

j for ∀i ̸= j and z ̸= g and i ̸= 1 (5)∥∥∥sσi
j
− pij

∥∥∥ ≤ δσi
j

for ∀i∀j (6)

ki ≥ l for ∀i ∈ {1 . . .m} (7)

6

Chapter 4

Hopfield Neural Network for TSP

In this chapter, Hopfield Neural Network (HNN) for TSP is introduced, as a basis on which an HNN
for CEmTSP can be constructed, notation from [2] is followed. Hopfield Neural Network (HNN) [2]
is a recurrent neural network, which utilizes the gradient descent method of a given energy function.
The energy function is an abstraction of the problem, that gives an optimal solution to a given problem
when it reaches the global minimum. The HNN is modeled as a matrix of numbers of dimension n×n,
where n is the number of Locations. HNN utilizes two matrices, U which is the input matrix that is
put into the sigmoid Equation (8), and the output matrix V (referred to as the state matrix) which is
produced by Equation (7). Each column x represents the time when a given location is visited and row
y gives what location is being visited. Each number in the matrix is between 0 and 1 representing the
likelihood of the location y being visited at time x. The update cycle iterates over all of the numbers
in the matrix and uses gradient descent, to find the minima of the energy function.

Vxy =
1

1 + exp(−Uxy)
(8)

This sigmoid function should ensure convergence, but U does not need to be saved and can be
calculated from

Uxy = log(Vxy)− log(1− Vxy)− t
∂E

∂Vxy
(9)

V converges so that in every column and every row, there should be one 1 and the rest should be 0.
Since the algorithm can reach local minima, it is re-run with a different initial V. The algorithm goes
as follows:

1. Generate a V matrix, for the first matrix set every value to a random value.

2. Calculate Uxi with the help of Equation (9)

3. Update V by sigmoid Equation (8)

4. Check if the V columns are not close to having one 1 and the rest 0 if so you got the minimum,
note it might be a local minimum, if not go to step 2. The V converges if the sum in every
collum is close to 1 and the maximum number in every collum is close to 1 as well, the values
depend on the setting of HNN.

HNN is shown in Algorithm 1.

7

V 1 2 3 4 5 · · · n

1 1 0.25 0.36 0.59 0.42 · · · 0.25

2 0.27 0.74 0.24 0.68 0.57 · · · 0.36

3 0.36 0.64 0.12 0.34 0.84 · · · 0.61

4 0.78 0.29 0.24 0.11 0.36 · · · 0.47

5 0.96 0.34 0.01 0.88 0.37 · · · 0.98

...
...

...
...

...
...

. . .
...

n 0.25 0.78 0.67 0.15 0.14 · · · 1

weighted
probability
of visiting

location 1 as
1st location

row y
represents
location sy

col x represents x-th
position in the route

Figure 4.4: Vizualization of HNN matrix for TSP (inspired by [1])

4.1 Energy Function
The energy function for TSP [2] consists of four terms Ea, Eb, Ec, Ed each corresponding to a
different constraint and has corresponding weights of a, b, c, and d. More discussed in Section 4.2 .
The energy function follows

E = a Ea + b Eb + c Ec + d Ed (10)

The first term Ea term minimizes the total sum in every column

Ea =
n−1∑
x=1

n∑
i=1

n∑
j=1i ̸=j

Vxi Vxj (11)

Eb term minimizes the total sum in every row

Eb =

n−1∑
x=1

n∑
i=1

n∑
j=1(j ̸=x

Vxi Vji (12)

Ec term is to avert the situation when Vxi is stuck at 0 or 1

Ec = [

n∑
x=1

((

n∑
i=1

Vxi)− 1)2 +

n∑
i=1

((

n∑
x=1

Vxi)− 1)2] (13)

Ed term is to calculate the distance between the Locations and minimize it. dist is the Euclidean dis-
tance between two Locations.

Ed = (

n−1∑
i=1

n∑
y=1y ̸=i

n−1∑
x=2

disti,y Vx,i (Vx+1,y + Vx−1,y)) (14)

8

4.2 Hyper-Parameters
Problem with the energy function is that it needs four hyper-parameters a, b, c, d, and one hyper–
parameter for the step size t. These hyper-parameters have been deduced in [29].

c = n m (15)

b = 3 ∆+ c (16)

a = b− d∇ (17)

d =
1

∆
(18)

t =
1

20 (n+m) ∆
(19)

where ∆ is the shortest path between two locations and∇ is the longest one.

4.3 Path Retrieval
To construct the final path from the state matrix V is to follow the rule that states, that there can be
just one 1 in every row and column, and the rest should be 0. Hence, the algorithm goes through the
matrix column by column finds the highest number, and saves the corresponding locations (the row)
index to the corresponding position in the search (column). If the location was already assigned, the
corresponding values of the matrix are compared. The one with the bigger value Vx,y is assigned, the
lower value is set to 0, and is recalculated. This is done till all the columns have been decided.

Algorithm 1 Hopfield Neural Network for TSP
Input: imax – Maximum of trials
emax – maximum epochs
S– set of locations
Output: Σbest = (σ1 . . . σn)– best path yet found

1 t← 1
while t ≤ tmax do

2 V ← initialiseStateMatrix(n,m)
e← 1
while e ≤ emax do

3 x← 1
while x ≤ n do

4 y ← 1
while y ≤ n do

5 Ux,y ← log(Vx,y)− log(1− Vx,y)− ∂E
∂Vx,y

▷ Equation (9)
Vx,y ← 1

1+e−Ux,y
▷ Equation (8)

6 Σ← pathRetrieval(V)
currentCost← pathCost(Σ)
if currentCost < bestCost then

7 bestCost← currentCost
Σbest ← Σ

9

Chapter 5

Proposed HNN-based Solution for CEmTSP

The HNN approach described in Chapter 4 is extended to CEmTSP and these modifications of HNN
are proposed:

• Change of state matrix V from a table of n × n to another from which a valid CEmTSP path
can be constructed while the complexity of the problem is minimized.

• A new modified energy function that considers the disk-shaped neighborhoods.

As well as solutions for drawbacks of HNNs mentioned in Section 2.5 which are as follows:

• Hyper-parameters that are sufficient enough to make the energy function solve the CEmTSP.

• Inadmissible solutions to CEmTSP, are addressed.

• Methods to escape local minima of energy function are proposed.

5.1 Modified Model of HNN

V 1 2 3 4 5 · · · n · · · n+m-1

1 1 0.25 0.36 0.59 0.42 · · · 0.25 · · · 0.25

2 0.27 0.74 0.24 0.68 0.57 · · · 0.36 · · · 0.5

3 0.36 0.64 0.12 0.34 0.84 · · · 0.61 · · · 0

4 0.78 0.29 0.24 0.11 0.36 · · · 0.47 · · · 0.1

5 0.96 0.34 0.01 0.88 0.37 · · · 0.98 · · · 0.4

...
...

...
...

...
...

. . .
...

. . .
...

n 0.25 0.78 0.67 0.15 0.14 · · · 1 · · · 0.3

weighted
probability
of visiting

location 1 as
1st location

row y
represents
location sy

col x represents x-th
position in the route

Figure 5.5: Vizualization of state matrix V matrix for CEmTSP (inspired by [1]).

The model that was used for the TSP in Chapter 4 would not be sufficient, since the depot needs
to be visited m times. There are two possible ways to solve this. The first and least optimal is making
an entire matrix for each vehicle making the model of a state matrix m × n × n, this leads to a
few problems, getting a path from this matrix is harder due to the fact not every collum will have
1 somewhere, so it needs to be found which collum is redundant and which is required, as well the
complexity of the problem is O(m n2), which compared to brute force O((n − 1)!/2) is better, but
compared to TSP O(n2) it is not ideal.

10

The other method and the one that has been used is that for every additional vehicle, a collum is
added making the matrix n× (m+m− 1), which leads to complexity of O(n (n+m− 1)), which
is preferable to the other option and getting path from the matrix same as TSP, with an expectation to
decide when to visit the depot. This model basis is that as the depot S1 or row one is to be visited m
times rest is the same as TSP so only m − 1 rows need to be added. This leads to a problem that Ed

will optimize so S1 will be visited m times in a row, this is solved in Section 5.2 with the addition of
a new term to energy function Ef .

5.2 Modified Energy Function
The energy function is similar to the TSP energy function from section 4.1, the difference is that a new
f term, to ensure the minimal distance between depots (l) is introduced, and a D term is changed due
to a different cost matrix, explained in Section 5.3. As to hyper-parameters, all parameters a, b, c, d,
and t are the same as described in Section 4.2 , except for a new hyperparameter f

E = a Ea + b Eb + c Ec + d Ed + f Ef (20)

d tries to ensure that the distance between Locations is as low as possible

Ed = (
n−1∑
i=1

n∑
y=1y ̸=i

n∑
z=1z ̸=i

n+m−1∑
x=1

disty,i,z Vx,i Vx+1,y Vx−1,z) (21)

f tries to ensure that the distance between visiting depot is at least a minimum distance (l)

Ef =

m+m−1∑
x=1

l∑
z=−l z ̸=0

Vx+l,1 Vx,1 (22)

and hyper-parameter f is
f = a+ c (23)

5.3 Cost Matrix Calculation
To calculate the distance between neighborhoods Sy, Si, Sz a simple calculation was done. The idea
of the calculation is to find the closest point py,i,z to the path between sy and sz that is still in the
neighborhood Si. This is done by finding the projection of si on the path between sy and sz , and then
pulling the point py,i,z until it reaches the neighborhood Si. The calculation of the distance for dist
matrix is

disty,i,z = ∥sy − py,i,z∥+ ∥sz − py,i,z∥ (24)

Note that, these distances are only expected distances and are used only for the energy function term
Ed term, not for the final path cost.

11

sy

si sz

Sy

Si Sz

py,i,z

Figure 5.6: Visualization of the path between neighbourhoods Sy, Si, Sz in this order

5.4 Local Minimum Problem
As mentioned, the issue with gradient descent is that the algorithm will end in a local minima and
there is no certainty if the local minima is a global one or not. There are many ways to tackle the
issue, one of them is re-initialization after a certain number of iterations of HNN or if the state matrix
V has converged to a local minimum, the ways to reinitialize the state matrix are described in this
section.

5.4.1 Random Re-initialization (Referred to as Random)
The random re-initialization method is the simplest, each time a local minimum is reached the V state
matrix will be randomly reinitialized this ensures that multiple local minimums will be visited but
does not ensure that progressively lower minima will be visited.

5.4.2 Biased Re-initialization
This type of re-initialization depends on the previous path Σ, which is a joint path of all Σi, to find a
different local minimum. A certain amount of locations in Σ are shuffled. This should result in visiting
local minima that are progressively better.

Unbiased shuffle (Referred to as Unbiased) draws two random numbers between 1 and the size
of the path, if they are the same the numbers are re-rolled, and the corresponding values in Σ are
swapped.

Biased shuffle (Referred to as Biased) depends on distances between Locations, a new array is
created T = (T1, ..Tn+m−1) where

Ti = ∥pi−1 − pi∥+ ∥pi − pi+1∥ − dU + Ti−1

12

this gives every location in Σ a weight based on the distance to and from its surrounding locations.
Then 2 random numbers are generated that ri ∈ 0..Tn+m+1 , i ∈ 1, 2, and index is found so

idxi = l if Tl−1 < ri < Tl

Suppose idx1 == idx2 new two random numbers are generated, if not the visited locations in Σ are
swapped. This should ensure that the longer paths are more likely to be swapped.

Construction of state matrix V After a certain amount of locations were swapped, a new V is
initialized such that

Vx,i =

{
Z if Σx == i

Y otherwise

Value of Z, Y is arbitrary but Z > Y .

5.5 Generating Path From State Matrix
As stated in Section 4.3 state matrix needs to be transformed into the most probable state, with the
difference that m 1 will be in the first row, and a sequence of waypoints P is to be generated.
Getting the position of the depot in the path is the first thing that needs to be found. That is done by
finding the maximum in the first row of V and setting surrounding l values to −∞ then repeating this
m times.

Then the rest of the path is found by the same algorithm as in Section 4.3 with the exception that
those columns that have been decided in the previous step are skipped, and the first row is ignored for
finding maximum.

After generating the path Σ, it now needs to be split between the vehicles, which is done by finding
the position of depots, and each vehicle has its path from the depot to the next depot position where
the next vehicle path begins.

After getting path Σi for each vehicle now it’s important to find its waypoints. Those waypoints
are the same that have been used to calculate distances between locations in Section 5.3 , thus the
sequence of waypoints is constructed as follows

pia = pσi
a−1,σi

a,σ
i
a+1

where the point pσi
a−1,σi

a,σ
i
a+1 is the same as p,y,i,z from Section 5.3. Gradual improvements to the

position of the waypoint can be made by recalculating the position of pσi
a−1,σi

a,σ
i
a+1 with a similar

calculation as in Section 5.3, but instead of taking the Center point of the neighboring locations,
waypoints pia−1 and pia+1 are taken.

As there can be invalid solutions to the CEmTSP obtained from HNN, there needs to be simple
validation that every region is visited at least and only once, except for the depot. This can be done
by checking if every value in Σ is different and then the waypoints in P are in the region of the
corresponding location.

5.6 Parallelization of HNN
As mentioned in Section 2.5 , HNNs are suitable for massively parallel computation with the problem
that the update of the state matrix V runs into memory synchronization difficulties. This can be solved
in multiple ways, but this thesis uses only one method.

13

Neuron level in this parallelization each thread has an entire row of neurons to compute, in this
case making the amount of threads possible n+m− 1 and each thread is computing n weights. The
disadvantage of this approach is the new matrix Vn needs to be made, in which the new weights are
stored and all derivations are still calculated from V , making the Neural Network learn slower. This
is shown in Algorithm 2.

5.7 Path Optimization
As the path obtained from HNN might not be optimal, two optimizations are used, 2-opt [16] and path
smoothing algorithm. The path smoothing algorithm is a simple algorithm that tries to find the best
coordinates to visit neighborhood i when going from y to z the calculation is the same as in Section
5.3. Except taking the waypoints py and pz instead of their centers. These calculations are iteratively
done over the whole path to improve the location of waypoints to correspond to the final path.

14

Algorithm 2 Parallel Hopfield Neural Network for CEmTSP
Input: imax – Maximum of trials
m –number of Vehicles to be used
n – Number of Locations to be visited
emax – maximum epochs
Σbest – Best path previously found - optional
S– set of locations
bestCost – cost for best path previously found - optional
Output: Σbest = (Σ1 . . .Σm)– best path found
bestCost – finally cost of the path
Pbest = (P 1 . . . Pm) – best path waypoints found

8 t← 1
Σbest ← Σinit

Pbest ← generateWaypoints(Σbest)
bestCost← pathCost(Pbest)
while t ≤ tmax do

9 V ← initialiseStateMatrix(n,m,Σbest)
e← 1
while e ≤ emax do

10 x← 1
while x ≤ n+m− 1 do

11 y ← 1
while y ≤ n do

12 Ux,y ← log(Vx,y)− log(1− Vx,y)− ∂E
∂Vx,y

▷ Equation (9)
Vnx,y ← 1

1+e−Ux,y
▷ Equation (8)

13 V ← Vn

14 Σ← pathRetrieval(V)
P ← generateWaypoints(Σ)
currentCost← pathCost(P)
if currentCost < bestCost then

15 bestCost← currentCost
Pbest ← P
Σbest ← Σ

15

Chapter 6

Results

In this chapter, the results for the CEmTSP solved using proposed HNN with and without the
optimizations as described in Chapter 5, are evaluated. The comparison is with the SOMeuc algo-
rithm [17], omitting Dubins model and using only Euclidean distances (denoted as SOMeuc). The
other is an Greedy K-means Heuristic [25], used as a baseline without neighborhoods denoted as K-
means. As well a comparison of different proposals to escape local minima, which are described in
Section 5.4, are evaluated.

The evaluation is done through two values %PDB and %PDM where Lref is a solution from
SOMeuc solver.

%PDB is a quality comparison between the best values of SOMeuc and HNN solution (L). Where
0% is the solution was equal and a positive percentage is that our solution is less optimal than SOM.

%PDB =
L− Lref

Lref
100% (25)

The algorithm robustness is calculated as %PDM, which compares the solver mean value with the
SOMeuc reference solution.

%PDM =
Lmean − Lref

Lref
100% (26)

Solutions for HNN were running multi-threaded, on 2x Intel Xeon Scalable Gold 6146 with a maxi-
mum of 8 threads and a maximum of 4 hours per problem, with 10 Trials – how many times matrix
was re-initialized, not all issues made all trials in time, 120 epochs – steps to improve matrix V by
gradient descend, and starting matrix being random, hyper-parameters are described in Section 4.2.
SOMeuc was run on Intel® Core™ i9-13900K with 20 trials. Both SOMeuc and HNN were run on
δ = 40. Greedy K-means heuristic was run on AMD Ryzen 9 3900X with δ = 0 for 120 epochs. In
all problems, m = 3 vehicles were used. Problems have been chosen from TSPLIB [30].

6.1 Comparison of Re-initialization
As mentioned in Section 5.4, multiple ways to escape local minimums were investigated, this section
is interested in finding which performed the best and which should be used in the next problems.
As can be seen, in Figure 6.7 and Tables from B.1 and B.2, there isn’t a certain re-initialization that

would always be the best. There are multiple possible ways to decide the best re-initialization.
The first is average %PDB which gives us, Biased = 1280.57%, Random = 1225.30% and,

Unbiased = 1210.48% . In this Unbiased reinitialization has the best results. The disadvantage
of this approach is that one ”lucky” randomization or problem might have a great influence on the
resulting %PDB. So this can be improved by mean %PDB but it turns out the results are the same as
average.
Another option is to find the average %PDM which gives us, Biased = 5721.68%, Random =
5633.73% and, Unbiased = 5483.17%, and its mean values are Biased = 1355.13%, Random =
1334.30% and, Unbiased = 1292.65%.

As in all of the possible ways to decide the best re-initialization the Unbiased one seems to be the
most reliable followed by Random and lastly the Biased one.

16

51 52 70 99 10
0

10
1

10
5

10
7

12
4

12
7

13
0

13
6

14
4

15
0

15
2

15
9

19
5

19
8

20
0

22
5

22
6

26
2

26
4

28
0

29
9

31
8

40
0

n

0

1000

2000

3000

4000

5000
%

PD
B

Biased Unbiased Random

Figure 6.7: Visual comparison for re-initialization

6.2 Non-Optimized
Now it’s time to compare the K-means and SOMeuc to non-optimized HNN.
As can be seen from Figures 6.9, 6.8 and Tables 1, 2, the solution from HNN might be an admissible

Figure 6.8: Solution of Berlin52 δ = 40 given by
Heruistic Figure 6.9: Solution of Berlin52 δ = 40 given by HNN

17

solution for CEmTSP but far from optimal. Compared with SOMeuc unoptimized HNN is bad the
average %PDB is 1 210.48% the %PDM is 54 83.17% and none of the solutions from HNN for any
problem were better than the ones from SOM. Regarding the K-means, compared with that only one
problem was solved with a better solution which is a280 any other is solved with a worse solution.
This shows us that a non-optimized solution from HNN is not good enough to be a reliable solver for
CEmTSP.

6.3 Optimalized of Path

Figure 6.10: Solution of Berlin52 δ = 40 given by
Heruistic

Figure 6.11: Solution of Berlin52 δ = 40 given by
HNN with 2-opt optimalization

As can be seen in Tables 1, 2, and in Figures 6.11 and 6.9 optimization gives improved solutions
than the unoptimized solution. Compared to the K-means, the optimized HNN gives 13 better results
out of 38 problems. When compared to the SOMeuc solver the HNN is now able to find better solu-
tions in 2 problems and its mean %PDB improved to 275.89 % from 1 210.48% and the mean %PDM
has reached 329.67% from 1 298.65%. This shows that the optimization greatly affects the final so-
lution, but even with the optimization, it can’t be said it is an improvement on the SOM approach. It
hasn’t been proven that there is a significant increase in time complexity while using optimization.

18

Ta
bl

e
1:

R
es

ul
ts

H
N

N
w

as
so

lv
ed

w
ith

un
bi

as
ed

re
-i

ni
tia

liz
at

io
n,

Pa
rt

-1

Pr
ob

le
m

K
-m

ea
ns

[2
5]

S
O
M

eu
c

[1
8]

H
N

N
H

N
N
2
o
p
t

L
%

PD
B

%
PD

M
L

%
PD

B
%

PD
M

L
%

PD
B

%
PD

M
T
[c
p
u
]

[H
]

L
%

PD
B

%
PD

M
T
[c
p
u
]

[H
]

a2
80

41
0
0.
41

24
6.
44

24
6
.4
4

11
83

.5
9

0
6.

63
22
67

.6
2

91
.5
9

9
1.
59

14
81

34
.8

3
-

-
-

-
be

rl
in

52
99

58
.7

7
-6

.4
9

-6
.4

9
10

65
0.
41

0
.0
0

4
.0
9

25
26
6.
52

13
7.
2
4

15
7.
18

11
6.

67
1
2
0
45
.1
9

13
.1
0

20
.0
1

11
5.

54
bi

er
12

7
14
9
43
1.
17

18
.5
9

18
.5
9

12
60

02
.6

0
4.

24
58
8
87
4.
97

36
7.
3
5

38
5.
96

66
18

.4
2

18
1
79
9.
69

44
.2
8

48
.7
2

68
70

.0
8

ch
13

0
79
76
.2
8

88
.6
7

88
.6
7

42
27

.5
8

0
8.

74
42

65
9.
72

90
9.
0
8

9
09
.0
8

96
00

.3
5

62
83
.9
6

48
.6
4

48
.6
4

63
04

.2
ch

15
0

98
3
4.
09

96
.1
8

96
.1
8

50
12

.8
7

0
5.

73
47

06
9.
47

83
8.
97

8
38
.9
7

21
11

7.
2

76
35
.2
6

52
.3
1

52
.3
1

11
52

1.
15

d1
98

26
67
3.
00

56
.6
1

56
.6
1

17
03

1.
85

0
10

.9
5

16
6
16
3.
58

87
5.
6
0

9
83
.6
6

59
90

7.
19

29
96
6.
7
0

75
.9
5

10
7.
8
4

19
18

2.
73

d4
93

53
81
1.
48

76
.3
8

76
.3
8

30
50

8.
93

0
2.

36
-

-
-

-
-

-
-

-
ei

l1
01

86
9.
32

16
69
.2
9

16
69

.2
9

49
.1

3
0

36
.3

7
17
59
.5
5

34
81

.1
5

39
75
.4
8

30
90

.0
1

95
4
.9
8

18
43
.6
5

2
12
3.
4
8

20
51

.4
9

ei
l5

1
63
0.
38

26
63
.4
3

26
63

.4
3

22
.8

1
0

-0
.0

93
9
.5
3

40
18

.6
8

44
2
4.
1
8

11
1.

25
3
98
.5
6

16
47
.2
1

1
89
7.
21

11
0.

97
ei

l7
6

79
3.
28

55
32
.5
1

55
32

.5
1

14
.0

8
0

54
.2

8
13
44
.3
5

94
45

.2
8

1
0
42
4.
47

63
0.

14
5
82
.0
2

40
3
2.
4
9

48
74
.2
3

57
8.

01
fl4

17
19

87
1.
95

48
.3
8

48
.3
8

13
39
2.
58

0
.0
0

0
.9
3

-
-

-
-

12
83

8.
2

-4
.1

4
-4

.1
4

13
95

69
.8

7
gi

l2
62

35
95
.4
7

32
4.
00

32
4
.0
0

84
7.

99
0

20
.6

3
18

51
2.
36

20
83
.0
8

20
83
.0
8

17
12

67
.8

8
49
49
.2
9

48
3.
65

4
83
.6
5

16
97

08
.6

2
kr

oA
10

0
29

82
8.
32

21
.3
4

21
.3
4

24
58

2.
45

0
3.

2
14
1
11
2.
83

47
4.
0
4

5
24
.7
2

25
78

.8
4

34
38
1.
9
7

39
.8
6

64
.7
7

19
89

.0
1

kr
oA

15
0

35
23
3.
74

25
.4
0

25
.4
0

28
09

6.
19

0
2.

3
23
2
93
3.
00

72
9.
0
6

7
67
.7
0

21
94

0.
82

37
81
8.
3
1

34
.6
0

67
.9
5

10
82

5.
27

kr
oA

20
0

42
22
2.
62

51
.3
4

51
.3
4

27
89

9.
4

0
3.

03
30
8
79
1.
56

10
06
.8
0

10
4
6.
49

69
89

2.
56

4
3
46
8.
9
0

55
.8
1

8
6.
74

37
56

3.
22

kr
oB

10
0

29
49
1.
45

32
.3
9

32
.3
9

22
27

5.
35

0
7.

78
14
8
28
3.
86

56
5.
6
9

59
6.
79

38
48

.0
1

2
6
7
80
.4
6

20
.2
2

5
0.
01

20
01

.6
3

kr
oB

15
0

38
01
1.
49

45
.2
2

45
.2
2

26
17

5.
77

0
3.

78
22
6
71
2.
72

76
6.
1
2

84
2.
60

32
12

0.
88

4
1
0
90
.7
1

5
6.
9
8

8
3.
29

11
62

9.
76

kr
oB

20
0

40
3
26
.2
1

33
.5
4

33
.5
4

30
19

8.
56

0
3.

81
31
9
24
7.
36

95
7.
1
6

95
8.
0
9

91
13

2.
05

38
3
93
.1
3

2
7.
1
4

27
.7
0

38
70

2.
67

kr
oC

10
0

30
68
9.
16

37
.6
3

37
.6
3

22
29

8.
1

0
4.

29
15
6
92
5.
97

60
3.
76

6
41
.5
3

38
52

.0
2

30
75
2.
29

3
7.
9
1

83
.7
5

19
92

.6
8

kr
oD

10
0

28
88
5.
35

13
.3
2

13
.3
2

25
48

9.
88

0
6.

33
13
2
98
4.
58

42
1.
7
2

4
94
.5
2

38
38

.4
35

09
6.
5
6

37
.6
9

55
.8
9

19
51

.1
6

kr
oE

10
0

34
20
3.
52

27
.5
1

27
.5
1

26
82

5.
13

0
5.

66
13
6
91
9.
10

41
0.
4
1

45
0.
34

37
36

.9
2

31
42
7.
0
2

17
.1
6

41
.0
4

20
08

.8
4

lin
10

5
26

23
5.
59

38
.6
4

38
.6
4

18
92

3.
12

0
5.

92
12
1
16
0.
74

54
0.
2
8

55
1.
90

46
43

.6
7

2
9
11
7.
2
4

53
.8
7

7
0.
65

16
81

.9
5

lin
31

8
61

89
2.
48

34
.2
2

34
.2
2

46
11

1.
92

0
2.

91
55
1
97
7.
37

10
97
.0
4

1
14
2.
80

15
19

78
.9

1
8
4
5
58
.6
7

83
.3
8

8
4.
62

15
20

11
.3

6
pc

b4
42

69
13
1.
24

54
.0
9

54
.0
9

44
86

4.
4

0
3.

17
-

-
-

-
-

-
-

-
pr

10
7

63
93
6.
76

38
.0
3

38
.0
3

46
32

1.
88

0
29

.5
9

57
2
86
5.
39

11
36
.7
1

12
09
.7
3

39
44

.4
6

88
8
03
.6
8

9
1.
7
1

12
4.
8
7

26
34

.2
8

pr
12

4
87

5
05
.4
3

11
.3
9

11
.3
9

78
56

0.
1

0
0.

8
64
2
91
8.
06

71
8.
3
8

7
48
.8
0

72
21

.5
12
8
90
5.
90

6
4.
0
9

71
.0
0

48
57

.9
pr

13
6

13
6
95
8.
61

19
.7
2

19
.7
2

11
43

96
.9

0
2.

79
82
8
46
6.
19

62
4.
20

6
52
.3
4

12
13

1.
31

20
0
4
65
.9
5

7
5.
24

80
.7
8

69
61

.8
8

pr
14

4
97

72
0.
40

16
.7
7

16
.7
7

83
68

2.
75

0
8.

23
79
2
04
3.
69

84
6.
4
8

8
77
.1
4

16
04

5.
58

14
1
9
18
.8
3

6
9.
59

76
.8
4

88
84

.1
7

pr
15

2
11
5
79
4.
59

22
.4
7

22
.4
7

94
54

5.
75

0
20

.3
98
0
86
8.
07

93
7.
4
5

98
6.
13

31
54

0.
23

1
72

01
4.
2
8

81
.9
4

9
3.
71

11
33

5.
69

pr
22

6
13
4
80
3.
45

22
.9
9

22
.9
9

10
96

02
.1

0
6.

52
1
57
6
02
6
.9
0

13
37
.9
5

1
38
2.
67

15
72

72
.2

5
1
65

17
7.
7
6

50
.7
1

6
7.
30

78
87

1.
15

19

Ta
bl

e
2:

R
es

ul
ts

H
N

N
w

as
so

lv
ed

w
ith

un
bi

as
ed

re
-i

ni
tia

liz
at

io
n,

Pa
rt

2

Pr
ob

le
m

K
-m

ea
ns

[2
5]

S
O
M

eu
c

[1
8]

H
N

N
H

N
N
2
o
p
t

L
%

PD
B

%
PD

M
L

%
PD

B
%

PD
M

L
%

PD
B

%
PD

M
T
[c
p
u
]

[H
]

L
%

PD
B

%
PD

M
T
[c
p
u
]

[H
]

pr
26

4
61

56
5.
86

9.
75

9.
75

56
09

5.
88

0
17

.0
6

1
19

0
81

7
.1
3

20
22
.8
2

2
05

1.
0
2

21
87

75
.1

6
11

4
13

2.
83

10
3.
46

11
2
.7
9

13
93

07
.2

9
pr

29
9

74
35

2.
74

38
.6
4

38
.6
4

53
63

1.
41

0
.0
0

4
.2
1

75
67

5.
85

41
.1
0

4
1.
10

12
08

52
.3

7
51

94
1.

18
-3

.1
5

-3
.1

5
16

57
07

.1
pr

43
9

14
6
12

0.
06

24
.2
9

24
.2
9

11
75

66
.4

0
2.

07
-

-
-

-
-

-
-

-
pr

76
17

0
65

9.
75

32
.4
0

32
.4
0

12
89

01
.4

0
2.

03
59

0
00

3.
75

35
7.
72

36
8.
37

10
11

.2
7

2
02

73
8.
9
7

5
7.
28

63
.8
3

57
0.

13
ra

t1
95

34
21

.4
3

16
2.
21

16
2
.2
1

13
04

.8
4

0
7.

04
15

41
7.
99

10
81
.6
0

11
9
0.
36

86
77

5.
92

3
97

4.
9
6

20
4.
6
3

2
25

.0
1

35
55

9.
55

ra
t9

9
19

17
.4
9

18
1.
86

18
1
.8
6

68
0.

29
0

15
.7

3
58

56
.1
2

76
0
.8
3

81
4.
05

22
57

.1
9

1
76

3.
6
0

15
9.
2
4

2
18

.7
9

19
12

.3
rd

10
0

13
02

4.
79

54
.8
0

54
.8
0

84
14

.1
0

5.
25

42
18

0.
42

40
1.
31

46
9.
58

32
59

.7
5

88
1
7.
39

4.
79

4
4
.0
5

25
15

.9
rd

40
0

20
85

4.
46

11
3.
51

11
3
.5
1

97
67

.5
9

0
3.

21
19

7
35

6.
15

19
20
.5
2

1
92

0.
5
2

17
14

83
.9

8
16

26
2.
11

66
.4
9

6
6
.4
9

14
69

38
.3

1
st

70
10

35
.2
9

44
6.
04

44
6
.0
4

18
9.

6
0

13
.8

5
18

90
.1
7

89
6
.9
2

1
06

9.
7
6

87
7.

45
93

8.
72

39
5.
10

47
6
.3
5

52
6.

77
ts

22
5

18
4
93

7.
23

13
.5
5

13
.5
5

16
28

62
.1

0
3.

35
1
47

3
14

4
.8
3

80
4.
54

83
6.
21

14
30

94
.3

9
24

0
9
28
.9
1

47
.9
3

70
.4
1

62
78

7.
93

ts
p2

25
60

18
.3
2

20
0.
68

20
0
.6
8

20
01

.5
6

0
9.

1
30

28
5.
39

14
13
.0
9

15
37
.9
4

15
20

51
.3

1
6
33

0.
8
9

21
6.
3
0

2
57

.1
8

64
26

7.
95

u1
59

68
14

0.
82

53
.8
6

53
.8
6

44
28

8.
0

0
8.

93
43

2
56

2.
23

87
6.
70

90
1.
67

25
58

1.
17

87
16

1.
64

9
6.
8
1

1
12

.9
0

20
44

2.
22

20

Chapter 7

Conclusion

This thesis was interested in solving Close Enough Multi Traveling Problem (CEmTSP). With the
main interest being to solve the Min-sum version of the mTSP. Part of the problem, with the use of
a fully connected neural network called Hopfield Neural Network (HNN) using gradient descent to
find the minimum in a given energy function. As well as adding optimization functions to the solution
given by HNN to see if the optimizations will improve the solution quality.

The basis of the thesis is the HNN from [2]. To extend this HNN to cover CEmTSP, several
modifications were required. One of the modifications was a change of energy function to solve the
continuous neighborhood part of the problem. Another modification is the change of representation,
from state matrix n × n to matrix n × (n + m − 1) to solve the ”Multi” part of CEmTSP. Since
the gradient method can get stuck in a local minima, multiple ways to escape it were suggested and
evaluated.

As the baseline that HNN is compared to, SOM solver from [18] has been used, with Dubins
replaced with Euclidean distance, and a heuristic approach of K-means with a greedy heuristic [25].

The results have shown HNN without optimization gives valid solutions, but the quality of solu-
tions is never optimal this, in the author’s opinion, can be caused by multiple reasons. (i) An erroneous
choice of energy function can be the cause of problems. The energy function might not have global or
local minima in the corresponding solutions resulting in the solutions from HNN being sub-optimal.
(ii) Another possibility is that the number of epochs is insufficient to find the optimal solution. (iii)
That the path retrieval function might be failing and giving incorrect translation from V to Σ, this
author finds unlikely because it should give the most probable solution from V , the only case when
that is not the case is the location of σ = 1, that is found thru the highest value in row 1 without input
from any other values.

Regarding the escape of the local minima, three ways to escape were investigated Random re-
initialization, Biased re-initialization, and Unbiased re-initialization. From these, the best fairing
re-initialization was the Unbiased one.

As it comes to optimization, it was done by the 2-opt algorithm with path smoothing. The opti-
mized results were an improvement, but it hasn’t made the HNN approach competitive with SOM.

Overall, HNN is not competitive with the adapted SOMeuc algorithm [18] and has a problem
defeating a simple heuristic [25]. The author thinks, the possible problem is in the energy function
and the number of reinitializations, the algorithm could be improved by adding a heuristic solution as
a jumping-off point from which to find better solutions.

21

References

[1] J. Deckerová, “Artificial neural networks in solution of the orienteering problems,” 2018.

[2] Y. Luo, “Design and improvement of hopfield network for tsp,” in Proceedings of the 2019
International Conference on Artificial Intelligence and Computer Science, 2019, pp. 79–83.

[3] Y. Takahashi, “Mathematical improvement of the hopfield model for tsp feasible solutions
by synapse dynamical systems,” Neurocomputing, vol. 15, no. 1, pp. 15–43, 1997. [Online].
Available: https://www.sciencedirect.com/science/article/pii/S0925231296000446

[4] D. L. Applegate, The traveling salesman problem: a computational study. Princeton university
press, 2006, vol. 17.

[5] R. Matai, S. P. Singh, and M. L. Mittal, “Traveling salesman problem: an overview of applica-
tions, formulations, and solution approaches,” Traveling salesman problem, theory and applica-
tions, vol. 1, no. 1, pp. 1–25, 2010.

[6] J. Faigl et al., “An application of self-organizing map for multirobot multigoal path planning
with minmax objective,” Computational intelligence and neuroscience, vol. 2016, 2016.

[7] O. Cheikhrouhou and I. Khoufi, “A comprehensive survey on the multiple traveling sales-
man problem: Applications, approaches and taxonomy,” Computer Science Review, vol. 40,
p. 100369, 2021.

[8] R. Li, J. Qiao, and W. Li, “A modified hopfield neural network for solving tsp problem,” in
2016 12th World Congress on Intelligent Control and Automation (WCICA). IEEE, 2016, pp.
1775–1780.

[9] U.-P. Wen, K.-M. Lan, and H.-S. Shih, “A review of hopfield neural networks for solving math-
ematical programming problems,” European Journal of Operational Research, vol. 198, no. 3,
pp. 675–687, 2009.

[10] Z. Hanzálek, Mar 2022. [Online]. Available: https://rtime.ciirc.cvut.cz/∼hanzalek/KO/TSP e.pdf

[11] K. L. Hoffman, M. Padberg, G. Rinaldi, et al., “Traveling salesman problem,” Encyclopedia of
operations research and management science, vol. 1, pp. 1573–1578, 2013.

[12] G. Laporte, “The traveling salesman problem: An overview of exact and approximate algo-
rithms,” European Journal of Operational Research, vol. 59, no. 2, pp. 231–247, 1992.

[13] D. Karapetyan and G. Gutin, “Lin–kernighan heuristic adaptations for the generalized traveling
salesman problem,” European Journal of Operational Research, vol. 208, no. 3, pp. 221–232,
2011.

[14] D. Sanches, D. Whitley, and R. Tinós, “Improving an exact solver for the traveling salesman
problem using partition crossover,” in Proceedings of the Genetic and Evolutionary Computation
Conference, 2017, pp. 337–344.

22

https://www.sciencedirect.com/science/article/pii/S0925231296000446
https://rtime.ciirc.cvut.cz/~hanzalek/KO/TSP_e.pdf

[15] Q. T. Luu, “Traveling salesman problem: Exact solutions vs. heuristic vs. ap-
proximation algorithms,” Mar 2024. [Online]. Available: https://www.baeldung.com/cs/
tsp-exact-solutions-vs-heuristic-vs-approximation-algorithms

[16] S. Hougardy, F. Zaiser, and X. Zhong, “The approximation ratio of the 2-opt heuristic for the
metric traveling salesman problem,” Operations Research Letters, vol. 48, no. 4, pp. 401–404,
2020.

[17] J. Faigl, R. Pěnička, and G. Best, “Self-organizing map-based solution for the orienteering prob-
lem with neighborhoods,” in 2016 IEEE International Conference on Systems, Man, and Cyber-
netics (SMC). IEEE, 2016, pp. 001 315–001 321.

[18] J. Faigl and P. Váňa, “Unsupervised learning for surveillance planning with team of aerial vehi-
cles,” in 2017 International Joint Conference on Neural Networks (IJCNN). IEEE, 2017, pp.
4340–4347.

[19] P. He and J.-K. Hao, “Hybrid search with neighborhood reduction for the multiple traveling
salesman problem,” Computers & Operations Research, vol. 142, p. 105726, 2022.

[20] P. Oberlin, S. Rathinam, and S. Darbha, “A transformation for a multiple depot, multiple traveling
salesman problem,” in 2009 American Control Conference. IEEE, 2009, pp. 2636–2641.

[21] J. Faigl, “GSOA: growing self-organizing array - unsupervised learning for the close-enough
traveling salesman problem and other routing problems,” Neurocomputing, vol. 312, pp. 120–
134, 2018.

[22] D. J. Gulczynski, J. W. Heath, and C. C. Price, The Close Enough Traveling Salesman Problem:
A Discussion of Several Heuristics. Springer US, 2006, pp. 271–283.

[23] F. Carrabs, C. Cerrone, R. Cerulli, and M. Gaudioso, “A novel discretization scheme for
the close enough traveling salesman problem,” Computers Operations Research, vol. 78,
pp. 163–171, 2017. [Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0305054816302179

[24] D. Sinha Roy, B. Golden, X. Wang, and E. Wasil, “Estimating the tour length for the close
enough traveling salesman problem,” Algorithms, vol. 14, no. 4, p. 123, 2021.

[25] J. Faigl, M. Kulich, and L. Přeučil, “Goal assignment using distance cost in multi-robot explo-
ration,” in 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE,
2012, pp. 3741–3746.

[26] M. Islam, G. Chen, and S. Jin, “An overview of neural network,” American Journal of Neural
Networks and Applications, vol. 5, no. 1, pp. 7–11, 2019.

[27] J. J. Hopfield, “Neurons with graded response have collective computational properties like those
of two-state neurons.” Proceedings of the national academy of sciences, vol. 81, no. 10, pp.
3088–3092, 1984.

[28] K. Ricanek, G. Lebby, and K. Haywood, “Hopfield like networks for pattern recognition with ap-
plication to face recognition,” in IJCNN’99. International Joint Conference on Neural Networks.
Proceedings (Cat. No.99CH36339), vol. 5, 1999, pp. 3265–3269 vol.5.

[29] P. M. Talaván and J. Yáñez, “Parameter setting of the hopfield network applied to tsp,” Neural
Networks, vol. 15, no. 3, pp. 363–373, 2002.

[30] [Online]. Available: http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/

23

https://www.baeldung.com/cs/tsp-exact-solutions-vs-heuristic-vs-approximation-algorithms
https://www.baeldung.com/cs/tsp-exact-solutions-vs-heuristic-vs-approximation-algorithms
https://www.sciencedirect.com/science/article/pii/S0305054816302179
https://www.sciencedirect.com/science/article/pii/S0305054816302179
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/

Appendix A

Content of the Enclosed CD

CD
etc
HNN

data
src

HNN.jl
run hnn.jl
Pathtour.jl
help functions.jl
TSP.jl
Energy.jl
plot.jl
structures.jl
function and derivations.jl
heuristic.jl

tests
test energy terms.jl
test gradient.jl
test gradient jd.jl
test normalization.jl

config.ini
Manifest.toml
project.toml

24

Appendix B

Data

25

B. Data

Ta
bl

e
B

.1
:C

om
pa

ri
so

n
of

re
in

iti
al

iz
at

io
ns

Pa
rt

-1

Pr
ob

le
m

R
a
n
d
om

U
n
bi
a
se
d

B
ia
es
ed

L
%

PD
B

%
PD

M
L

%
PD

B
%

PD
M

L
%

PD
B

%
PD

M
a2

80
22

67
.6

2
91

.5
9

91
.5

9
22

67
.6

2
91

.5
9

91
.5

9
22

67
.6

2
91

.5
9

91
.5

9
be

rl
in

52
25

58
0.
40

14
0
.1
8

16
1
.7
5

25
26

6.
52

13
7.

24
15

7.
18

26
92

7.
81

15
2
.8
3

1
6
0.
4
7

bi
er

12
7

59
5
79

7.
50

37
2
.8
5

39
2
.6
2

58
8
87

4
.9
7

36
7
.3
5

38
5
.9
6

57
64

42
.2

7
35

7.
48

37
3.

74
ch

13
0

42
65

9.
72

90
9.

08
90

9.
08

42
65

9.
72

90
9.

08
90

9.
08

42
65

9.
72

90
9.

08
90

9.
08

ch
15

0
47

06
9.

47
83

8.
97

83
8.

97
47

06
9.

47
83

8.
97

83
8.

97
47

06
9.

47
83

8.
97

83
8.

97
d1

98
18

2
77

2.
72

97
3
.1
2

10
15

.6
5

16
61

63
.5

8
87

5.
6

98
3.

66
16

8
21

8.
67

88
7
.6
7

9
5
7.
4
0

ei
l1

01
17

47
.6

1
34

56
.8

5
39

83
.0

3
17

59
.5
5

34
81

.1
5

39
75

.4
8

20
05

.2
3

39
81

.1
9

4
2
0
8.
9
2

ei
l5

1
98

4.
65

42
16

.4
9

46
22

.6
8

93
9.

53
40

18
.6

8
44

24
.1

8
10

69
.6
9

45
89

.2
8

4
8
3
1.
6
5

ei
l7

6
13

89
.4
1

97
65

.2
2

11
38

3.
29

13
44

.3
5

94
45

.2
8

10
42

4.
47

16
23
.6
3

11
42

8.
26

1
2
1
9
0.
2
4

gi
l2

62
18

51
2.

36
20

83
.0

8
20

83
.0

8
18

51
2.

36
20

83
.0

8
20

83
.0

8
18

51
2.

36
20

83
.0

8
20

83
.0

8
kr

oA
10

0
15

0
22

7.
75

51
1
.1
2

55
6
.5
4

14
11

12
.8

3
47

4.
04

52
4.

72
14

5
49

3.
92

49
1
.8
6

5
5
2.
7
4

kr
oA

15
0

22
6
41

6.
23

70
5
.8
6

76
5
.8
1

23
2
93

3
.0
0

72
9
.0
6

76
7
.7
0

21
98

49
.7

9
68

2.
49

75
5.

09
kr

oA
20

0
30

2
67

1.
54

98
4
.8
7

10
70

.1
5

30
8
79

1
.5
6

10
06

.8
0

10
46

.4
9

29
54

85
.3

6
95

9.
11

10
34

.5
5

kr
oB

10
0

15
0
44

5.
74

57
5
.3
9

63
8
.4
2

14
8
28

3
.8
6

56
5
.6
9

59
6
.7
9

12
79

54
.8

6
47

4.
42

56
5.

14
kr

oB
15

0
21

34
83

.7
8

71
5.

58
81

5.
94

22
6
71

2.
72

76
6
.1
2

84
2
.6
0

22
6
71

2.
72

76
6
.1
2

8
3
5.
4
0

kr
oB

20
0

31
92

47
.3

6
95

7.
16

95
7.

16
31

92
47

.3
6

95
7.

16
95

8.
09

31
92

47
.3

6
95

7.
16

95
8.

09
kr

oC
10

0
14

16
68

.3
1

53
5.

34
63

0.
57

15
6
92

5.
97

60
3
.7
6

64
1
.5
3

14
7
11

1.
08

55
9
.7
5

6
1
1.
4
7

kr
oD

10
0

14
4
51

9.
49

46
6
.9
7

53
2
.9
2

13
29

84
.5

8
42

1.
72

49
4.

52
13

7
45

2.
31

43
9
.2
4

5
1
5.
1
7

kr
oE

10
0

15
4
20

5.
33

47
4
.8
5

52
1
.2
1

13
6
91

9
.1
0

41
0
.4
1

45
0
.3
4

13
67

18
.0

40
9.

66
48

5.
39

26

B. Data

Ta
bl

e
B

.2
:C

om
pa

ri
so

n
of

re
in

iti
al

iz
at

io
ns

Pa
rt

-2

Pr
ob

le
m

R
a
n
d
om

U
n
bi
a
se
d

B
ia
es
ed

L
%

PD
B

%
PD

M
L

%
PD

B
%

PD
M

L
%

PD
B

%
PD

M
lin

10
5

11
7
68

7.
94

52
1.
93

55
0
.2
0

12
1
16

0.
74

54
0.
28

55
1
.9
0

10
45

21
.6

9
45

2.
35

49
5.

64
lin

31
8

57
5
55

1.
00

11
48
.1
6

11
68

.3
6

55
1
97

7.
37

10
97
.0
4

11
42

.8
0

53
61

96
.1

10
62

.8
1

11
04

.7
3

pr
10

7
52

65
73

.5
7

10
36

.7
7

11
47

.8
3

57
2
86

5.
39

11
36
.7
1

12
09

.7
3

55
7
40

3.
20

11
03
.3
3

1
1
8
9
.4
2

pr
12

4
66

2
54

2.
06

74
3.
36

79
5
.6
3

64
2
91

8.
06

71
8.
38

74
8
.8
0

62
34

82
.3

6
69

3.
64

74
0.

25
pr

13
6

79
02

98
.9

7
59

0.
84

62
7.

33
82

8
46

6.
19

62
4.
20

65
2
.3
4

80
3
39

8.
71

60
2.
29

6
4
3
.8
0

pr
14

4
78

6
80

4.
48

84
0.
22

88
1
.8
8

79
2
04

3.
69

84
6.
48

87
7
.1
4

71
34

68
.5

75
2.

59
81

5.
45

pr
15

2
99

5
37

6.
49

95
2.
80

99
3
.2
5

98
08

68
.0

7
93

7.
45

98
6.

13
1
03

2
01

3
.2
8

99
1.
55

1
0
1
5
.0
2

pr
22

6
1
64

6
54

1
.4
2

14
02
.2
9

14
43

.2
5

1
57

6
02

6
.9
0

13
37
.9
5

13
82

.6
7

15
04

23
3.

8
12

72
.4

5
13

34
.5

8
pr

26
4

10
10

05
7.

08
17

00
.5

9
18

39
.2

2
1
19

0
81

7
.1
3

20
22
.8
2

20
51

.0
2

1
16

9
27

4
.9
8

19
84
.4
2

2
0
4
1
.4
7

pr
29

9
75

67
5.

85
41

.1
41

.1
75

67
5.

85
41

.1
41

.1
75

67
5.

85
41

.1
41

.1
pr

76
56

81
09

.4
7

34
0.

73
36

9.
33

59
0
00

3.
75

35
7.
72

36
8
.3
7

57
1
50

1.
91

34
3.
36

3
5
9
.3
8

ra
t1

95
16

47
8.
26

11
62
.8
6

12
16

.9
3

15
41

7.
99

10
81

.6
11

90
.3

6
16

08
0.
55

11
32
.3
8

1
2
1
7
.9
2

ra
t9

9
56

54
.2
7

73
1
.1
6

81
1
.3
6

58
56
.1
2

76
0
.8
3

81
4
.0
5

55
88

.1
3

72
1.

44
79

8.
75

rd
10

0
45

89
2.
20

44
5.
42

50
0
.2
3

42
18

0.
42

40
1.

31
46

9.
58

43
57

6.
23

41
7.
90

4
7
7
.8
1

rd
40

0
19

73
56

.1
5

19
20

.5
2

19
20

.5
2

19
73

56
.1

5
19

20
.5

2
19

20
.5

2
19

73
56

.1
5

19
20

.5
2

19
20

.5
2

st
70

21
61
.1
0

10
39

.8
1

10
92

.2
9

18
90

.1
7

89
6.

92
10

69
.7

6
20

82
.8
3

99
8
.5
3

1
0
3
5
.6
3

ts
22

5
1
57

5
16

1
.1
7

86
7.
17

90
0
.3
2

1
47

3
14

4
.8
3

80
4.
54

83
6
.2
1

14
64

40
5.

24
79

9.
17

82
7.

73
ts

p2
25

30
61

6.
17

14
29
.6
2

15
18

.2
6

30
28

5.
39

14
13
.0
9

15
37

.9
4

29
47

9.
56

13
72

.8
3

15
13

.6
9

u1
59

43
02

81
.0

6
87

1.
55

91
5.

78
43

2
56

2.
23

87
6.
70

90
1
.6
7

46
0
56

3.
68

93
9.
93

9
6
4
.0
6

27

	1 Introduction
	2 Related Work
	Traveling Salesman Problem
	Multi Traveling Salesman Problem
	Close Enough Traveling Salesman Problem
	Close Enough Multi-Traveling Salesman Problem
	Neural Networks

	3 Problem Statement
	Multi Traveling Salesman Problem
	Close Enough Multi-Traveling Salesman Problem

	4 Hopfield Neural Network for TSP
	Energy Function
	Hyper-Parameters
	Path Retrieval

	5 Proposed HNN-based Solution for CEmTSP
	Modified Model of HNN
	Modified Energy Function
	Cost Matrix Calculation
	Local Minimum Problem
	Random Re-initialization (Referred to as Random)
	Biased Re-initialization

	Generating Path From State Matrix
	Parallelization of HNN
	Path Optimization

	6 Results
	Comparison of Re-initialization
	Non-Optimized
	Optimalized of Path

	7 Conclusion
	 References
	A Content of the Enclosed CD
	B Data

