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Abstract

The primary objective of this thesis is
to explore the potential of employing
Explainable AI (XAI) methods to gain in-
sights into the decision-making processes
of state-of-the-art object detectors for se-
quential data, with a focus on applications
in autonomous driving.

The research begins by reviewing his-
torical and modern object detection ap-
proaches and identifying suitable XAI
methods that are able to interpret deci-
sions made by deep neural networks on
image data, particularly those that high-
light relevant parts of the input image.

Subsequently, an appropriate dataset
relevant to autonomous driving, contain-
ing sequential data, is identified. A suit-
able object detection model is selected and
integrated with the chosen XAI method
to explain the model’s decisions on the
dataset.

Finally, the thesis involves a quantita-
tive and qualitative analysis of the XAI
outputs for the model’s decisions, aim-
ing to uncover patterns and dependencies
within the explanations.

Keywords: object detection, explainable
artificial intelligence, autonomous
driving, deep learning

Supervisor:
Ph.D.

Ing. Lukas Neumann,
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Abstrakt

Hlavnim cilem této prace je prozkou-
mat moznosti vyuziti metod vysvétlitelné
umelé inteligence (XAI) k ziskani vhledu
do rozhodovacich procesti nejmodernéj-
sich detektoru objektu pro sekvencni data
se zamérenim na aplikace v autonomnim
Fizeni.

Vyzkum zac¢iné prehledem historickych
a modernich pristupu k detekci objekti a
identifikaci vhodnych metod XAI, které
jsou schopny interpretovat rozhodnuti hlu-
bokych neuronovych siti na obrazovych
datech, zejména téch, které zvyraznuji re-
levantni ¢asti vstupniho obrazu.

Nasledné je identifikovan vhodny sou-
bor dat relevantni pro autonomni fizeni,
ktery obsahuje sekvencni data. Je vybran
vhodny detektor objektd, ktery je na-
sledné integrovan se zvolenou metodou
XAl jez dokéze poodhalit zdroje jednot-
livych rozhodnuti modelu pti aplikaci na
datové sadeé.

Nakonec prace zahrnuje kvantitativni
a kvalitativni analyzu vystupa XAl pro
jednotlivd rozhodnuti detektoru, jejimz
cilem je odhalit vzorce a zavislosti v téchto
vystupech a tim i v rozhodovani daného
detektoru.

Klicova slova: detekce objektt,
vysvétlitelnd uméla inteligence,
autonomni fizeni, hluboké uceni

Pteklad nazvu: Analyza rozhodovani
detektoru objekti pro autonomni
automobily
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Chapter 1

Introduction

. 1.1 Motivation

Autonomous driving has already a well-established and rich history and is
often regarded as the future of transportation. Nevertheless, it is still not
fully accepted by today’s society.

Despite its potential to reduce traffic accidents and address issues such as
infrastructure overload and congestion, people are still uncomfortable with
self-driving cars on the roads, let alone riding in them themselves. Many
of these fears originate from a general skepticism towards new technologies
for which people lack prior experience. But there are also other factors that
are equally significant, such as the unclear decision-making process of the
controlling AT agent or insufficient explanations of cases where the Al failed to
make the right decision across various conditions and circumstances, thereby
appearing unreliable.

These factors can potentially be addressed by a sub-field of artificial intel-
ligence studies called explainable AI, also known as X AI, which presents
methods and algorithms that partially uncover the mentioned uncertainty
and provide relatively understandable insights into AI models that might
otherwise seem like black boxes.

By leveraging the possibilities offered by XAl in autonomous driving, this
field may see at least a modest improvement in much-needed trust. Another
significant application of this practice is that researchers can utilize it to
explain the circumstances of Al agents’ incorrect predictions and, based on
that, adjust the engineering process of the Al model. For example, this could
involve providing more data of the exposed specific cases during the learning
phase.

Neural network-driven object detectors play a crucial role in autonomous
car technology, as the behavior and reactions of self-driving cars strongly
rely on precise identification and localization of objects in their surroundings.
While various sources, including LIDAR. or GPS, contribute to the perception
of the surrounding world, cameras producing RGB images are the primary
means of perception, making 2D object detection essential.

Given this premise, it is reasonable to apply relevant XAI methods to
object detectors to utilize the advantages they offer for autonomous driving.



1. Introduction

B2 Key Objectives

It is essential to clearly outline the key objectives of this thesis as they serve
as the foundational framework that guides the research effort, especially
considering the broad scope of the original assignment.

The key objectives, listed sequentially, are as follows:

1.

Gather information on existing object detection approaches, focus pri-
marily on modern deep-learning-based detectors. Additionally, research
the explainable Al methods for modern image-processing convolutional
neural networks, particularly object detectors. Focus especially on meth-
ods that are grounded in highlighting the relevant parts of the input
image.

Explore available datasets relevant to autonomous driving and determine
a suitable option for fulfilling the subsequent objectives. An important
criterion to consider is the presence of sequential data within the dataset,
as this requirement will be crucial for achieving the other goals outlined
in this thesis.

Given the chosen dataset and the obtained information about object
detection algorithms, identify important components and parameters of
the deep-learning-based detectors, and based on that choose a suitable
model to proceed with.

Considering the outputs of previously outlined objectives, select a state-
of-the-art XAI method for the subsequent analysis.

With the chosen dataset and object detector in mind, select a target
object class, such as pedestrians or cars, and identify instances of this
class within the dataset. Utilize the sequential nature of the data and
track the same instances across the dataset. For example, track each
pedestrian over all images. Finally, determine the criteria for satisfactory
instances and appropriately filter them.

Develop an algorithm that implements the selected XAI method and
visualizes explanations of the decisions made by the chosen object detector
for a specified object. Apply this algorithm on the filtered instances
of the nominated object class within the dataset. (This step is not
further reflected in this thesis as it does not delve into specifics of the
implementation. However, the results of this step are shown in the
subsequent parts.)

Define metrics capable of capturing changes in explanations of the de-
cisions made by the object detector for the object instances over time.
Additionally, define other supportive metrics if necessary. The primary
objective of the metrics should be to uncover potential patterns and
dependencies within the explanations.
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8. Analyze the results both qualitatively and quantitatively. Describe how
the explanation generally changes over time within a single sequence
that captures an autonomous-driving-related object.

9. (Optional) Propose, how the gained insight might improve accuracy of
object detection.

. 1.3 Thesis Outline

The thesis follows this structure:

Chapter [2| delves into research on object detection and explainable Al,
focusing on the essential information about the detector and XAI method
used in the subsequent experiments and analysis.

Chapter [3| details the extraction of the data needed for the analysis. It
describes the selected dataset, the deep learning detector used in this work,
the selection process of the XAI method, its adjustments, parameter settings,
and proposes suitable metrics for the outputs of the conducted experiments.

Chapter [4] involves the analysis and interpretation of the outputs from the
previous chapter.






Chapter 2

Theoretical Background

This chapter provides a comprehensive overview of key concepts in object
detection and explainable AI this thesis builds upon. The chapter directly
addresses the first objective outlined in section

In section the general principles of object detection are outlined,
covering both historical and modern approaches. The discussion primarily
centers on modern deep learning detectors, with a focus on two-stage detectors
and a brief mention of one-stage detectors. Section delves into explainable
Al, detailing the common technique of pixel attribution maps to visualize
explanations of computer vision neural networks.

B 21 Object Detection

Object detection, a fundamental task in computer vision alongside image
classification, segmentation, and others, involves locating and identifying
objects within digital images.

The technology of object detection is currently utilized across a wide
spectrum of fields. It finds applications in sectors such as healthcare, security,
marketing, agriculture, autonomous driving, and many others. In these fields,
object detection systems are deployed to identify various entities, including
people, animals, traffic signs, medical features, and more.

Although 3D object detection also exists, it is not relevant for this thesis.

B 2.1.1 Essence of Object Detection

Object detection can basically be seen as an extension of object classification,
incorporating the additional task of object localization.

The fundamental premise underlying both detection and classification
is that each type of object possesses specific distinguishing features. For
instance, a basketball is typically characterized by its round shape and orange
color, while a polar bear is usually identified by its white fur and distinctive
body parts such as a head and legs.

Geometric features within images are recognized by the object detectors
at various levels. At a low level, detectors may identify basic geometric
shapes such as edges and corners. Meanwhile, at a higher level, detectors

5



2. Theoretical Background

may recognize complex structures such as body parts. Color information is
considered by analyzing geometric features within each color channel of an
RGB image and subsequently integrating all partial outputs.

Various ways of extracting these features exist, and each detection method
implements them differently. Once the features are obtained, they are sub-
jected to an object classification process.

Localization of an object usually comprises determining a bounding box,
a rectangle with sides parallel to the image axes, that tightly encloses the
object in the image. Typically, this bounding box is represented either by
the coordinates of its top-left and bottom-right corners in the image or
by providing the center (or one corner) coordinates and dimensions of the
bounding box. Again, the way this bounding box is acquired varies across
different object detection methods.

The typical object detection pipeline involves feeding an image into a
detector designed to recognize specific object types, known as object classes
(e.g., cars, people). The detector then scans the image to locate instances
of these classes (e.g., specific cars), producing output consisting of bounding
box coordinates, class labels, and confidence scores. These scores indicate
the detector’s level of certainty for each detected object. Since the detector
often produces numerous suggestions, a common practice is to filter out less
certain detections using a confidence score threshold.

Figure 2.1: Example output of object detection process. [I]

Two approaches to object detection are widely recognized: traditional
methods and deep-learning-based methods.

B 2.1.2 Traditional Object Detection

Historically, methods falling under the traditional, non-deep-learning approach
were the first relatively successful object detectors.

6
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For object localization, these methods commonly employed techniques like
sliding windows or concepts similar to it. In the sliding window method, the
algorithm places a window of multiple scales over various locations in the
image. Each of these image regions is then searched for specific features, using
methods such as analyzing pixel intensity gradients or applying predefined
sets of kernels. The extracted features are subsequently processed through a
classification step, often utilizing algorithms like Support Vector Machine [2)

(SVM).

Examples of these methods include the Viola-Jones [3] algorithm, in-
troduced in 2001 by Paul Viola and Michael Jones, and the Histogram of
Oriented Gradients [4] (HOG) algorithm, originally proposed in 2005 by N.
Dalal and B. Triggs.

While these methods achieved significant milestones, including face and
person recognition, and underwent considerable refinement over the years,
they exhibited notable drawbacks and limitations. These limitations include
binary classification (recognizing only one object class) or the inability to
detect slightly more complex scenarios, such as side views of faces for the
case of the face detectors. Consequently, they were eventually outperformed
by the deep learning approach.

B 2.1.3 Object Detection in Deep Learning

The vast majority of today’s object detection applications leverage deep-
learning-based algorithms, harnessing the significant capabilities of deep
neural networks.

These methods effectively address the limitations of traditional approaches.
For instance, they demonstrate robustness in complex scenarios, while also
possessing the capability to distinguish multiple object classes. However, they
also bring forth new challenges and drawbacks, such as high computational
requirements for training and the need for a large amount of annotated
data. This annotation process typically requires extensive labor and financial
resources.

Two primary types of object detectors utilizing neural networks are com-
monly recognized: two-stage (multi-shot) and one-stage (single-shot).

This classification is marked by two important milestones in the history
of object detection. The first is the invention of the region-based con-
volutional neural network (R-CNN) by Ross Girshick, Jeff Donahue,
Trevor Darrell, and Jitendra Malik (originally) in 2013 [5], which served as the
foundation for subsequent two-stage detectors. The second milestone is the
release of the work You Only Look Once: Unified, Real-Time Object Detection
by Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi in 2016
[6], which introduced one of the first widely recognized one-stage detectors
called YOLO.
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B 2.1.4 Two-Stage Detectors

Two-stage detectors, as their designation suggests, operate in two distinct
stages: the region proposal stage for localization and the subsequent classifi-
cation stage. Each of the stages is handled by its own distinct algorithm.

There are many profound algorithms in this category but most of them
are based on the R-CNN. Also, it is worth noting that the term ’region’ is
frequently used throughout this section, typically referring to rectangular
areas in images.

B 2141 R-CNN:

The R-CNN (Region-Based Convolutional Neural Network) [5] pioneered the
development of two-stage algorithms by introducing the foundational concept
that led to the creation of an entire family of related methods.

R-CNN: Regions with CNN features

warped egion
E N +”
e

tvmonltor? no.

1. Input 2. Extract region 3. Compute 4. Classify
image proposals (~2k) CNN features regions

Figure 2.2: Pipeline of the R-CNN algorithm. [5]

The first step in object detection, localization, often presents a bottleneck
for the efficiency of object detection algorithms, particularly when imprecise,
leading to the generation of numerous regions for object search. One of the
simplest yet somewhat naive approaches is the sliding window algorithm, also
known as exhaustive search. However, the R-CNN architecture improves the
efficiency by adopting a technique known as Selective Search [7].

The selective search typically involves three main steps:

1. Segment the image based on pixel intensity using a graph-based segmen-
tation method.

2. Combine smaller, similar (amorphous) regions into larger ones recursively,
employing the following algorithm:
a. From the set of regions, select the two that are most similar.
Merge them into a single, larger region.

c. Repeat the above steps. Through this iterative process, larger
segments are formed and appended to the list of identified regions.
The process concludes upon reaching predefined thresholds for
maximum region size, number of regions, and similarity.

8



2.1. Object Detection

Various methods exist to assess region similarity, including color, texture,
size, or fill similarity, as proposed in the original paper.

3. Utilize the identified regions to generate region proposals by assigning
them bounding boxes.

Figure 2.3: Process of extracting region proposals using the Selective Search
algorithm. The first image in the top row illustrates the initial segmentation
step of the algorithm, while the other two images depict the subsequent merging
of regions. The bottom row images illustrate the final step, where each region is
assigned a bounding box. Each image depicts the result corresponding to the
segmentation state shown in the respective image in the top row. It is important
to note that the color specification of the bounding boxes is irrelevant for this
explanation. [7]

As a result, approximately 2000 region proposals (also called object pro-
posals) are generated using this approach.

The second stage involves warping the proposed regions into a square
shape. These regions are then inputted into a feature-extracting convolutional
neural network (CNN). The feature maps obtained from the CNN’s output
are subsequently evaluated by linear Support Vector Machines [2] (SVMs),
each trained to recognize a specific class. The resulting score indicates the
probability of the class being present within the region.

Each proposed region is evaluated for every class. Using these scores, a
greedy Non-Mazimum Suppression technique is employed independently for
each class. This technique rejects a region if it has an Intersection-over-
Union (IoU) overlap with a higher-scoring unsuppressed region that exceeds
a predetermined threshold.

In subsequent versions, a simple linear regression model was integrated
into the algorithm to mitigate localization errors. This model returns four
offset values used to adjust the bounding box coordinates.

9



2. Theoretical Background

The algorithm encounters several challenges. Its deployment for real-time
applications is hindered by the considerable time required for detection,
often taking tens of seconds per image. Additionally, the training time is
prolonged for the same reason. Moreover, the fixed nature of the selective
search component restricts this part of the algorithm from learning from the
provided data.

These challenges have been addressed by several subsequent methods,
including SPPnet [8], Fast R-CNN [9], Faster R-CNN [1], Mask R-CNN [10],
Feature Pyramid Network [11] (FPN), and others. Some of these methods
will be explored further in this section, selected based on their relevance to
this thesis.

B 2.1.4.2 Fast R-CNN:

The Fast R-CNN [9] method succeeds the R-CNN directly, preserving its
fundamental concept while introducing significant alterations in the second
stage of the algorithm.

Outputs: bbox
softmax regressor

_'_Deep
- |ConvNet

Rol FC FC
pooling
layer FCs
i Rol feature
feature map vector For each Rol

Figure 2.4: Pipeline of the Fast R-CNN algorithm. [9]

The algorithm processes the analyzed image along with a set of object
proposals, obtained for example by the Selective Search. Initially, the image
undergoes several convolutional and max-pooling layers to generate a feature
map. Subsequently, for each object proposal, a Region of Interest (Rol)
pooling layer [9] extracts a fixed-length feature vector from the feature map.
These feature vectors are then fed into a sequence of fully connected layers,
which branch into two output layers.

The first output layer produces probability estimates across defined number
of object classes, including a catch-all "background" class. Meanwhile, the
second output layer generates four numbers encoding refined bounding-box
positions for each class.

The Rol pooling layer converts the features within any valid region of
interest into a compact feature map with a fixed spatial extent, where the
dimensions are determined by layer hyperparameters that are set when the
neural network is designed.

10



2.1. Object Detection

This approach significantly reduces the detection time to mere seconds,
and training time is also substantially decreased. The primary reason for this
improvement is the elimination of the need to employ the CNN to extract
the feature map from each object proposal individually. Instead, this process
is performed only once for the entire image, and the features for each object
proposal are subsequently extracted from the resulting feature map.

When the generation of region proposals is excluded from the detection
process (i.e., they are pre-generated), the detection time decreases to under
a second. This suggests that the next bottleneck to address is the region
proposal generation.

B 2.1.43 Faster R-CNN:
Faster R-CNN [I] is an algorithm built upon the foundation of Fast R-CNN,
specifically designed to address its aforementioned bottleneck - region proposal

generation.

N classifier

Rol pooling

proposals

Region Proposal Network

feature maps

conv layers

L O e )

Figure 2.5: Pipeline of the Faster R-CNN algorithm. [I]

11



2. Theoretical Background

The pipeline of this algorithm remains consistent with its previous version,
with the addition of a Region Proposal Network [I] (RPN) that supplies the
region proposals. Notably, the RPN shares convolutional layers with the
feature-extracting network, enhancing overall efficiency.

The RPN initially identifies points (usually all) on the multi-dimensional
feature map generated by the feature-extracting network. At each of these
points, k region proposals are predicted. These proposals are parameterized
relative to k reference boxes, known as anchors. An anchor is centered at the
defined point and possesses a scale and aspect ratio.

2k scores 4k coordinates « k anchor boxes

cls layer \ ’ reg layer .

256-d
1 intermediate layer

sliding window

conv feature map

Figure 2.6: Anchor extraction and processing at one of the selected points
of the feature map. The ’cls layer’ represents the classification part while the
‘reg layer’ represents the regression part. Notably, the parameters depicted
are implementation-specific; in this case: '256-d’ refers to the feature map’s
dimensionality, "2k scores’ represents the classification output with two classes,
and 4k coordinates’ denotes the regression output. [I]

Comprising of two components, the RPN includes a classification part and
a regression part. The classification part evaluates each anchor and yields a
probability that the anchor contains an object. Meanwhile, the regression
part outputs four numbers encoding the coordinates of the corresponding
region proposal. For a feature map of size H x W, there are a total of H-W -k
anchors. Subsequently, the region proposals can be filtered based on the
probability score or attributes of the proposal box itself, such as whether it
extends beyond the boundaries of the image. After this point, the procedure
closely follows the approach of Fast R-CNN.

These improvements have resulted in a considerable decrease in detection
time, now measurable in hundreds of milliseconds. Consequently, the Faster
R-~-CNN algorithm is widely employed in numerous real-time applications.

12



2.1. Object Detection

Bl 2.1.5 One-Stage Detectors

One-stage detectors, in contrast to two-stage detectors, tackle both object
detection tasks, localization and classification, in a single stage by one neural
network.

Single-shot detectors are typically faster but may trade off some accuracy
compared to multi-shot detectors. Additionally, they often offer easier training
due to their design, allowing for end-to-end training, which is not always
feasible for detectors in the other group.

Numerous notable one-stage algorithms exist: You Only Look Once [6]
(YOLO), Single Shot MultiBox Detector [12] (SSD), RetinaNet [13], and
various iterations of YOLO (YOLOwvS3 [14] to YOLOvY [15]) to name a few.

While this approach is an important part of the modern object detection,
this section will solely elaborate on the original YOLO algorithm, considering
the broad and complex nature of the topic and the context of this work.

B 2151 YOLO:

The YOLO [6] detector serves as the equivalent in one-stage detectors to
what R-CNN represents for two-stage detectors—a pioneering force in its

paradigm.
ZE:EE{:

1. Resize image.
2. Run convolutional network.
3. Non-max suppression.

Figure 2.7: Outline of the YOLO algorithm pipeline. [6]

This approach consolidates various components of object detection into a
single neural network. It takes an image as input and simultaneously predicts
bounding boxes across all classes. This enables the neural network to utilize
global context, even the other predictions, for every single object detection.

The initial step of the algorithm involves partitioning the input image into
a grid of S x S cells. Within each grid cell, the neural network predicts B
bounding boxes and C' conditional class probabilities. Notably, only one set
of class probabilities is predicted per grid cell, regardless of the number of
boxes. Each bounding box prediction includes five parameters: x, y, w, h,
and confidence. The (x, y) coordinates denote the box’s center relative to the
grid cell bounds, while the width and height are relative to the entire image.
The confidence scores indicate both the model’s confidence in object presence
and the accuracy of its prediction for the box.

Multiplying the conditional class probabilities from the grid cell containing
the individual box’s center by the individual box confidence predictions yields
class-specific confidence scores. These scores encapsulate both the probability

13



2. Theoretical Background

B 'l f
e e~ N |

Bounding boxes + confidence

pr iy
b o

S x S grid oninput Final detections

Class probability map

Figure 2.8: Visualized steps of the YOLO algorithm. The left image shows
the initial partitioning of the input image into S x S squares (S = 7). The
center-top image visualizes the bounding boxes predicted for each of the cells.
The widths of the box lines represent the confidence scores for each box. In the
center-bottom image, each cell’s color represents the maximum probability class
from the C conditional class probabilities. Finally, the right image shows the
resulting detections, where the bounding box colors carry the same meaning as
in the center-bottom image. [6]

of the class appearing in the box and the accuracy of the predicted box’s fit
to the object.

Among all the bounding boxes, only the relevant ones are chosen by
applying a threshold on the class confidence score and using Non-Maximum
Suppression. This technique discards a region if its Intersection-over-Union
(IoU) overlap with a higher-scoring unsuppressed region exceeds a predefined
threshold.

YOLO offers a highly efficient implementation of the object detection
algorithm, often employed in real-time applications with speeds of up to 40
frames per second. However, the algorithm also encounters challenges in
accurately predicting bounding boxes due to spatial constraints and reliance
on coarse features, particularly for small objects or those in intricate configu-
rations. These limitations contribute to localization inaccuracies, serving as
the primary source of error.

Subsequent versions of YOLO have addressed many of the initial drawbacks
and have significantly enhanced the method in terms of both accuracy and
speed.
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B 2.2 Explainable Al

Explainable artificial intelligence (XAI) commonly refers to Al systems that
enable humans to maintain cognitive oversight, or the techniques utilized to
facilitate this oversight.

While XAI is broad in scope, this thesis solely targets one of its aspects:
pixel attribution methods [16]. Therefore, this section will delve deeper
into this specific topic, although it is important to note that other approaches
exist.

B 2.2.1 Pixel Attribution Methods

The pixel attribution methods aim to uncover the decision-making process
of deep learning models, particularly neural networks that operate on image
data, and identify their potential biases. They achieve that by identifying
and highlighting the pixels within the input image that influence a specific
decision made by a neural network.

The output of these methods is a pixel attribution map, typically a
grayscale image of the same size as the input image. In this map, each pixel is
assigned a numerical value representing the importance of the corresponding
pixel in the input image for the specific decision made by a neural network,
as illustrated for example in Figure [2.9.

These maps, along with the methods themselves, are referred to by various
names such as attention maps, saliency maps, sensitivity maps, attribution
maps, feature attribution maps, and others.

Various types of pixel attribution methods exist. Two basic classifications
of these methods are relevant for this thesis:

The first classification is based on the way the method interacts with the
model.

® White box methods: These algorithms require direct access to the
analyzed model. They utilize its internal information, such as gradients
and activations in specific layers of the neural network, for their explana-
tions. While they tend to be fast, they can be challenging to design due
to their model-specific nature. They are also referred to as model-specific
methods.

® Black box methods: These algorithms treat the model as a black
box, meaning they do not require or possess any information about the
analyzed model. Instead, they manipulate the input and analyze the
resulting output. While they are typically slower than white box methods
due to their need of iterating over many input variations, they are easier
to use and design as they are not dependent on the specific model. They
are also known as model-agnostic methods.
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2. Theoretical Background

The second classification highlights two primary groups of methods based on
how they derive the values for the pixels in attribution maps:

8 Gradient-based methods: These techniques generate pixel attribution
maps by analyzing the gradient (derivative) of the output with respect to
specific elements, such as the input image or intermediate feature maps
of the neural network. Essentially, the gradient indicates which parts
of the specified elements are crucial for the output, as it demonstrates
the effect of a slight change in these elements on the output. Since the
gradient has the same size as the elements, which generally differs from
the input image size, it must be appropriately projected onto the input
image to obtain the pixel attribution map. Typically, these methods
belong to the white box group because they involve manipulation of the
internal parts of the model, such as incorporating hooks to capture the
gradients.

8 Occlusion-based methods: These methods rely on the premise that
changing a part of the input image essential for the prediction will
significantly alter the output, while altering an unimportant part will
have minimal effect. By systematically altering specific parts of the
input image, these methods highlight the pixels that are essential for the
model’s decision. They are often categorized as black box methods and
are also referred to as perturbation- or ablation-based methods.

The majority of these methods can be applied to analyze neural networks
designed for both image classification and object detection, as they share the
same fundamental principle. However, some methods encounter difficulty in
providing separate explanations for individual object classes (e.g., dogs and
cats) or instances of objects (e.g., two different dogs) if there are multiple
objects in the image. This limitation arises from techniques that, for example,
utilize activations from the forward pass, making them not suitable for such
general cases.

Numerous pixel attribution methods exist, with new ones emerging each
year. Gradient-based methods vary in their approach to utilizing gradients,
some employing second-grade gradients, others weighting gradients by cor-
responding activations, and some normalizing the activations beforehand.
Similarly, occlusion-based methods differ in their techniques for altering spe-
cific parts of the input image, with some using blurring, others binary masks,
and still others grayscale masks.

In this work, four specific methods will be further described.

B 2.2.1.1 Vanilla Gradient

The Vanilla Gradient [16] method, originally known as Image-Specific Class
Saliency Visualization [17], is a straightforward gradient-based approach and
one of the earliest pixel attribution methods.

This method basically involves three steps:
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1. Input the image of interest into the analyzed model and obtain the results
through a forward pass.

2. Calculate the gradient of the desired output (e.g., specific class prob-
abilities) with respect to the input image to obtain the desired pixel
attribution map.

3. Visualize the pixel attribution map.

However, this approach faces two main challenges, both of which stem from
a common component of neural networks called ReLU (Rectified Linear Unit).
One of them is a well-known problem called dying ReLLU, where neurons in
the network may become inactive, leading to zero gradients. The second
challenge lies in how the backward pass of the gradients through the ReLU is
implemented, which directly affects the resulting attribution maps.

Figure 2.9: Example of using the vanilla gradient algorithm to explain the
classification of an image by a neural network. The top image shows the original
input, while the bottom image displays the resulting pixel attribution map, where
the importance of each pixel is indicated by its intensity (whiteness). [I7]

Also, subsequent improvements were introduced to this method in later
iterations. For example, it was observed that in the results, a few pixels with
much higher than average gradients often appeared, which could throw off the
color scales used for visualization. To address this issue, it proved convenient
to eliminate these outliers, for instance, by capping the gradients at the 99th
percentile.

It would be reasonable to consider this method a lightweight white box
method. While it does not directly utilize internal model information, it
requires a direct call of the backward pass and propagation of the gradient
through the neural network, which may rely on the specific model architecture.
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M 2.2.1.2 SmoothGrad

SmoothGrad [I8] serves more as a suggested improvement to existing gradient-
based methods rather than a standalone technique.

Its premise revolves around reducing noise by introducing random per-
turbations to the input image. The rationale behind this approach lies in
the observation that gradients often exhibit high variability at small scales.
By adding noise to the image and repeating this process multiple times, the
resulting gradients can be averaged to mitigate fluctuations.

The method comprises four primary steps:

1. Generate multiple versions of the input image with added noise.
2. Generate a pixel attribution map for each of these noisy images.
3. Average the attribution maps.

4. Visualize the averaged attribution map.

Mathematically, the calculation of the averaged attribution map can be
expressed as:

A~

M(z) ==Y M(z+N(0, 6%)), (2.1)
1

S|

where x represents the input image, M is the SmoothGrad attribution map,
M is the attribution map generated with the original method, n denotes the
number of perturbed versions of the input image, and A (0, 02) represents
Gaussian noise with standard deviation o.

50%

vel: 0% 5% 10%

Figure 2.10: Effect of the parameter o on the resulting pixel attribution map
for three images (n = 50). The noise levels correspond to ¢/(Tmaz — Tmin),
where Timaz, Tmin represent the maximum and minimum values of the image,
respectively. [18]

Setting the parameters n and o requires careful consideration and will vary
depending on the specific use case. For instance, selecting an appropriate
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value for ¢ is crucial, as different neural network models exhibit varying
sensitivities to noise. Setting it too high may result in the model failing to
recognize the target object in the image.

Sample size n: 2 5 20 50 100

Figure 2.11: Effect of the parameter n on the resulting pixel attribution map.
The noise level is set to 10%. [18]

The SmoothGrad method inherently operates without relying on any
internal information from the analyzed neural network, it solely interacts with
the input data. As it does not constitute a fully-fledged method, it cannot be
classified regarding its interaction with the model. Instead, it can be stated
that it maintains the original classification in this regard of the method to
which it is attached.

B 2213 Grad-CAM

The Grad-CAM (Gradient-weighted Class Activation Mapping) [19] method,
a gradient-based approach, is commonly used to explain decisions made by
convolutional neural networks (CNNs).

The process of generating the pixel attribution map using this method
can be divided into seven steps:

1. Input the image of interest into the analyzed model and obtain its
predictions through a forward pass.

2. Calculate the gradient of the desired specific output (e.g., specific class
probabilities) with respect to the outputs of the last convolutional layer,
also known as feature (activation) map, of the analyzed CNN.

3. Weight the multi-channel feature map by the corresponding gradients
using element-wise multiplication.

4. Average the weighted feature map along the channel dimension to obtain
2D feature map.

5. Set all values less than zero to zero.

6. Resize the result to the size of the input image to obtain the attribution
map.

7. Visualize the pixel attribution map.
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The fundamental premise of this method lies in the assumption that the
feature maps contain information about all features present in the input
image. These encoded features range from basic (e.g., edges, corners) in
the lower levels of the CNN to more abstract in the higher levels. However,
a challenge arises as these feature maps contain features of all recognized
objects in the image, not solely the ones of interest. Hence, gradient weighting
is employed to highlight the importance of specific regions in the feature
maps, as indicated by the gradients, for the selected output.

(a) : Original image (b) : Grad-CAM’s explanation

Figure 2.12: Example demonstrating the Grad-CAM algorithm explaining the
classification of an image by a neural network. Here, the model’s prediction
that there is a cat in the image is explained. The most important parts for the
classification are colored red. [19]

It is also important to note that the gradient can be calculated with respect
to any of the intermediate feature maps of the CNN. This method will then
highlight the different, aforementioned types of features.

Indeed, the Grad-CAM method is a typical exemplar of the white box ap-
proach, as it relies on internal information from the neural network, specifically
the activations and gradients, to generate its results.

B 2214 D-RISE

The D-RISE (Detector Randomized Input Sampling for Explanation) [20]
method is an occlusion-based technique specifically designed for explaining
deep learning object detection models. It builds upon the RISE method,
which served a similar purpose for image classifiers.

20



2.2. Explainable Al

Figure 2.13: Example illustrating multiple D-RISE explanations of object
detections made by a neural network. The significance of each pixel for the
detection is represented by a color gradient, ranging from blue to red, where red
indicates higher importance. [20]

The process of generating the pixel attribution map using D-RISE involves
six steps:
1. Generate a specified number of RISE masks.

2. Apply each generated mask to the image of interest.

3. For each mask, input the masked image into the analyzed object detector
and obtain its detections through a forward pass.

4. Determine a score for each mask by comparing the detections of the
target object in both the masked and unmasked images.

5. Weight all masks by their scores to obtain the pixel attribution map.

6. Visualize the pixel attribution map.

Detection proposals

d
L& . Obje Similarity
Detecto scores
/ : 4,
! ' oM z

[
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2. Theoretical Background

As these steps provide only a rough outline and this method is referred to
in the later chapters of this work, it is essential to delve into the details of
each step.

Generating RISE mask:

The first step of the algorithm involves generating RISE masks for the
input image. The resulting masks are grayscale images. This task comprises
three sub-tasks:

1. Sample N binary grids of size h X w (smaller than the image size H x W)
by independently setting each element to 1 with probability p and to 0
with probability (1 — p).

2. Upsample all grids to size (h + 1)Cy X (w + 1)Cy using bilinear inter-
polation, where Cy x Cy = [C/h] X [Cw /w] represents the size of the
cell in the upsampled grid.

3. Crop areas H x W with uniformly random offsets ranging from (0,0) up
to (Cm, Cw) to obtain the masks.

Also, three important parameters need to be set in this step:

® Parameter N: The number of masks used in this algorithm, influencing
the convergence of the method.

® Parameter (h x w): The grid size, which represents the resolution of the
method.

® Parameter p: The probability of activating (setting to 1) a cell in the
binary grid, indicating the percentage of the image being unmasked.

Masking the input image:

The second step is straightforward. It involves taking the masks generated
in the first step and pixel-wise multiplying them with the input image. This
operation is possible because the masks are of the same size as the input
image.

Each pixel of the image contains three values - one for each color channel.
These three values will be multiplied by the value of the corresponding pixel
in the mask. As the values in the mask approach zero (ranging from one to
zero), the corresponding pixels in the image are increasingly dimmed.

Processing the masked image

In the third step, the masked image is fed into the analyzed detector for
each generated mask.

The output of the detector may be in a custom format, as different models
may implement it differently. In most cases, however, it can be converted to
the format of detection vector.

Assuming that the detector has identified K objects in the image, it is useful
to describe each of these objects using a detection vector d; = [L;, P;, O;],
where i ranges from 1 to K.
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L, = (2,9, 2%, yb) represents the bounding box of the i-th object,
defined by its top-left (z1,y;) and bottom-right (z2,y2) corners.

s P =(p, ...,pic) is a vector of probabilities indicating the presence of
each of the C classes within the region L;.

® O; represents the objectness score, reflecting the probability of the region
L; containing an object of any class.

For masked image m, a set of detection vectors is acquired, denoted as
Dy, = [d}, ..., d%m], where K, represents the number of detected objects in
the masked image and m ranges from 1 to N - number of generated masks.

Calculating mask scores:

The fourth step of the algorithm aims to score the masks. This is achieved
by evaluating the detections (obtained in the third step) of the target object
in the masked images.

It is essential to first select the target object. Typically, it is chosen from
the objects detected in the input image. This approach is utilized when the
method aims to expose the parts of the image important for the object’s
detection. However, it can also be provided externally, such as by a human,
as a ground truth. This allows for explanations, for example, of why the
detector fails to detect the object.

The target object is also defined by a detection vector, denoted as dr =
[Lr, Pr,Or], where each component carries the same meaning as previously
described.

For a mask m, there is a detection vector set D,, (describing all objects
detected in the image masked by the mask m) from the previous step. Each
detection vector di* from this set can be compared with the target detection
vector dr by assigning a similarity score to it.

The similarity score s(d}"*,dr) is calculated as the product of three scalar
factors:

S(dgn, dT) = SL(LT, LT) . SP(PZ-m, PT) . So(OZm, OT), (2.2)
where
SL(LZn, LT) = IOU(LZ”, LT), (23)
P™. Pr
sp(P",Pr) = b, 2.4
B Pr) = e i &4
50(0f",0r) = O}". (2.5)

The sp, bounding box similarity score, is calculated as Intersection over
Union to measure the spatial proximity between two bounding boxes.

The sp, class probability vector similarity score, is determined by cosine
similarity.

And the sp, objectness similarity score, is computed simply by making it
equal to O;.
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Multiplying these three partial similarity scores ensures that if one of them
is low, the resulting similarity score is also low. Additionally, it is possible
to exclude any of the partial similarity scores if they are not important for
the specific use case. Specifically, the objectness similarity score is usually
omitted because the analyzed detector does not produce it. It is also possible
to change the way some of the similarities score are calculated to fit the
method for a specific use case.

For the mask m the similarity score s(d, dr) is calculated between each
of its detection vectors d}" and the target detection vector dr. The desired
mask score sy, is then the maximum of these similarity scores:

Sm =max s(d",dr), 1 <i< Ky, (2.6)

Deriving the pixel attribution mask:

In the fifth step, each of the masks is weighted (multiplied) by the corre-
sponding mask score.

Optionally, the weighted masks can be averaged by dividing them by their
total number (N) and subsequently normalized.

The primary drawback of the D-RISE method is its slow speed, as gen-
erating explanations typically involves a high number of masks. Each mask
requires a forward pass through the model, resulting in considerable com-
putational overhead. Typically, generating a reasonable explanation with
bearable level of noise requires processing lower thousands of masks.

B 2.2.2 Pixel Attribution Map Visualization

There are various methods for visualizing pixel attribution maps, but two
approaches are particularly common. Both techniques leverage the fact that
the map has the same dimensions as the input image.

The first method involves normalizing the map so that its values fall within
the range [0, 1]. Once normalized, these values can be used as pixel intensities
by performing pixel-wise multiplication with the input image. Consequently,
pixels with higher attribution values remain largely unchanged in the original
image, while those with lower values are dimmed.

The second approach utilizes the attribution map as a heat map, a vi-
sualization method commonly used for grayscale images where pixel values
are represented by different colors. Various color palettes can be employed,
such as the cool-to-warm theme, where cooler colors (e.g., blue) represent
lower values and warmer colors (e.g., red) represent higher values, transition-
ing gradually from red to blue. Typically, this method involves overlaying
the grayscale image (the attention map) onto the input image with partial
transparency.
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Chapter 3

Data and Experiments

. 3.1 Dataset

The dataset plays a pivotal role in ensuring clear validation of the algorithm’s
outcomes and the consequent analysis in this work. This section directly
addresses the second objective outlined in section

B 3.1.1 Dataset Selection

There are two main requirements for the eventually selected dataset to meet:

1. The dataset must contain RGB images related to autonomous driving,
for example, images obtained from a car driving around a city. The need
for RGB images arises from the fact that object detectors, which are the
ultimate focus of this work, take them as input.

2. The dataset must include sequential data, meaning there must be se-
quences of images taken one after another at a reasonable frame rate, so
that individual objects appear in multiple images. Additionally, the im-
ages must be in the order they were taken to enable tracking of individual
objects across the sequences.

It would also be advantageous if the dataset included labels for objects
relevant to autonomous driving, such as cars, pedestrians, traffic lights, etc.,
as these annotations could prove useful in the subsequent analysis.

After careful consideration of these requirements, KITTI Multi-Object
Tracking (KMOT) [21] dataset has been selected.

Various acceptable alternatives exist, such as PandaSet [22], nuScenes
[23], and A2D2 [24]. Therefore, it is important to note that no particular
reason exists for choosing the KMOT dataset over the others, as no in-depth
comparison has been conducted. The primary reason for its selection is that
it meets the requirements, which is satisfactory for this work.
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B 3.1.2 Dataset Overview

The KMOT dataset comprises 21 training sequences and 29 test sequences.
Each sequence contains consecutive images captured from the roof of a car
driving through urban areas at a fixed frame rate of 10 frames per second.

Figure 3.1: Example image from KMOT dataset. (sequence: 15, image: 100) [21]

The training sequences are accompanied by human-provided labels. For
all conducted experiments, only the training sequences, comprising a total of
8008 images, will be utilized, as the provided labels allow for leveraging them
effectively.

The labels contain information that will be utilized in later sections of this
work. The relevant components include:

8 Target ID: Each labeled object is assigned a unique number within the
sequence.

® Object class: The dataset encompasses 8 different classes of objects,
with only the 'Pedestrian’ class being relevant for this work.

® Bounding box: It is a rectangle that encloses the object and defines
its position. It is represented by four decimal numbers: [z1,y1, Z2, y2],
where [z1,y1] denotes the coordinates of the top right corner and [z2, y2]
denotes the coordinates of the bottom left corner.

8 Truncation: This attribute indicates whether an object is truncated,
meaning part of the object extends beyond the boundary of the image
(0 for non-truncated, 1 for truncated).

8 Occlusion: This attribute describes the extent of occlusion of an object
by other objects (0 for fully visible, 1 for partially occluded, and 2 for
largely occluded - the exact distinction between 1 and 2 is not relevant
for this work).

8 Location: Provides the 3D location of the object in camera coordinates,
denoted as [z,y,z]. The orientation of the axes is irrelevant for this
thesis.
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It is noteworthy that variations exist in the image sizes among the training
sequences, although these inconsistencies do not impact the results of the
conducted experiments. Namely, the images come in four different dimensions
(height, width): 375x1242, 370x1224, 374x1238, and 376x1241.

B 3.2 Model

The goal of this section is to leverage the insights gained about modern object
detectors to select an appropriate model for this thesis. This section also
directly addresses the third objective outlined in section |1.2l

One essential requirement is that the model must be deep-learning-based.
Another critical specification is that the model ought to be pre-trained,
enabling immediate deployment for object detection. This work focuses on
analyzing an existing model rather than training a new one. Additionally, the
model should be designed to detect objects relevant to autonomous driving,
such as vehicles, traffic signs, and pedestrians.

Furthermore, it would be convenient if the model could process images
of arbitrary sizes, as the chosen dataset contains images of very specific
dimensions.

According to these criteria, a deep-learning-based two-stage Faster R-
CNN model with a ResNet-50-FPIN backbone, pre-trained on the
COCO dataset [25], has been chosen.

The model follows the general structure of Faster R-CNNs described in
section [2.1.4.3. The second part of the designation specifies the feature-
extracting component of the architecture, also known as the backbone. For
clarification, ResNet stands for Residual Network [26], 50 indicates the number
of layers, and FPN refers to the Feature Pyramid Network [11].

This model detects a wide variety of classes relevant to autonomous driving,
such as 'car’, "person’, ’bicycle’, 'motorcycle’, ’stop sign’, ’traffic light’, truck’,
and more.

Furthermore, the model can handle images of arbitrary sizes, although it
typically resizes them. This resizing process involves setting minimum and
maximum size constraints, in this case, 320 and 640, respectively. If either the
width or height of the image exceeds these boundaries, bilinear interpolation
is used to resize the image to the specified limits while maintaining its aspect
ratio.

Another advantage of this model is its accessibility, facilitated by the fact
that the pre-trained model is available within the open-source deep-learning
framework for Python known as PyTorch. Detailed documentation regarding
its utilization and implementation specifics is publicly accessible. [27]

The model output contains bounding boxes for each detected object in
the input image. For each bounding box, a label is provided representing
the most probable class of the detected object, along with a score, a number
within the range of 0 to 1, that represents the detector’s confidence in the
prediction of the class.
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B 33 Explainable Al Method

The XAI methods, along with the object detectors, are the main focus of this
work. Therefore, it is important to choose the method for analysis carefully,
adjust it if necessary, and set its parameters accordingly. This section directly
addresses the fourth objective outlined in section [1.2l

B 3.3.1 Method Selection

Numerous XAI methods exist, even when narrowed down to those dedicated
to explaining the decisions of deep-learning-based object detectors. One
particular approach, called pixel attribution methods, has been selected for
its straightforward concept of highlighting the pixels of the input image that
are important for a specific decision of the analyzed detector. Section [2.2.1
has presented two classifications of such methods to choose from.

The first classification to consider is between gradient-based and occlusion-
based methods. While both have their advantages, the occlusion approach
has been chosen. This method is preferred because its results are easier to
interpret. By ablating parts of the input image and analyzing the changes
in the detector’s outputs, importance is assigned to the ablated pixels. This
is in contrast to the gradient approach, which relies on somewhat abstract
interpretations of the backpropagated gradients.

The second decision to make is whether to use black box or white box
method. Again, both have their merits, but the black box approach has
been chosen. This type is preferred because its implementation is largely
independent of the model, and the interpretation of the results remains
model-agnostic.

A suitable example of a black box occlusion-based method is the D-RISE
algorithm, as described in section |2.2.1.4. The subsequent parts of this work
will utilize this method.

B 3.3.2 Method Settings and Adjustments

The D-RISE method requires several parameters to be set before deployment.
Additionally, some adjustments can be introduced to the algorithm to facilitate
easier analysis in the subsequent stages of this work. This section will refer
directly to the section [2.2.1.4.

B 3.3.2.1 |Initial Settings

Note that the normalized version of the algorithm will be used, implying the
output pixel attribution map will contain values ranging from 0 to 1.

It is necessary to define the components of the similarity score for the
mask score calculation, as specified in equation 2.2, All notation, such as
subscripts, refers to the original section.

The bounding box similarity score sy, will be kept the same, representing
the IoU (Intersection over Union) between boxes.
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On the other hand, the class probability vector similarity score sp will be
changed. The detector selected in the section 3.2 provides only the probability
score of the most probable class for each bounding box. So, it is convenient
to represent the similarity score sp as:

sp(P", Pr) =p’, (3.1)

where p' is the aforementioned probability score.
Finally, the objectness probability score so will not be used, as the selected
detector does not provide objectness scores.

B 3.3.2.2 Method Stability

The primary metric for evaluating the parameter settings and the effectiveness
of the improvements introduced in this work will be stability of the method.

Since the D-RISE algorithm employs randomness as an essential part of
its workflow, the results may vary for the same input and settings. This
variability is undesirable for two reasons: firstly, an algorithm intended to
explain the decisions of an Al model must provide consistent explanations
to be useful, and secondly, for analysis purposes, such instability introduces
noise into the data, complicating the interpretation of results. Therefore, the
goal is to suppress this variability, thereby enforcing stability.

To measure stability of the algorithm’s output, various indicators are
proposed:

® Mean Standard Deviation (MSD): The MSD measures the average
variability of the pixel attribution values across multiple runs of the
D-RISE algorithm. Mathematically, it is defined as:

1 N
MSD = ; oi (3.2)

where IV is the total number of pixel locations in the image, and o; is
the standard deviation of the pixel attribution values at the i-th pixel
location across multiple runs of the algorithm. The standard deviation
o; for the i-th pixel is calculated as:

g; = J % Z(wm — ,ui)Q, (33)

where M is the number of runs, x;; is the pixel attribution value at the
i-th pixel location in the j-th run, and p; is the mean pixel attribution
value at the i-th pixel location across all runs, given by:

1 M

A lower MSD indicates higher stability and consistency in the pixel
attribution maps produced by the algorithm.
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B 3.3.2.3 Parameter Settings and Method Adjustments
Three parameters need to be configured:

® Parameter N = 1000: The stability of the results corresponds to the
number of masks used, with more masks leading to increased stability.
However, this comes with the drawback of longer explanation generation
times as more masks are utilized.

® Parameter (h x w) = (5 x 5): The grid size parameter determines the
resolution of the method, affecting its ability to capture important details
for detection, such as eyes. A smaller value increases the likelihood of
detecting finer details, while a larger value generalizes the highlighted
areas. However, setting the value too small can lead to instability, while
setting it too large may result in overly generalized explanations that
are difficult to analyze.

® Parameter p = 0.5: The probability of activating (setting to 1) a cell in
the binary grid, indicating the percentage of the image being unmasked.

The parameters were selected following a series of experiments aimed at
minimizing the MSD (Mean Square Displacement) metric to ensure stability.
As demonstrated for example in Figure 3.2, the graph illustrates a clear trend
indicating that a larger number of masks results in a smaller MSD, indicative
of greater stability.
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Figure 3.2: Graph depicting the relationship between the MSD (Mean Standard
Deviation) instability metric and the parameter N (number of masks) for the
D-RISE method. The MSD values were computed based on 10 runs on a single
image, ranging from 20 to 5000 masks with increments of 20 masks.

Several adjustments were implemented in the original method to mitigate
instability. Notably, instead of masking the entire image, only the region
surrounding the bounding box of the detected object is masked. Additionally,
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the original black masks were replaced with masks of various colors. Further-
more, the parameter (h x w) for each mask is subject to random variations
within a certain range, introducing variability of analyzed details.

B 34 Experiment Input Data

This section directly addresses the fifth objective outlined in section (1.2}
covering the selection of the target class, tracking unique instances of this
class across the dataset, and filtering them. Additionally, it both implicitly
and explicitly refers to the dataset (3.1) and model (3.2) sections.

B 3.4.1 Target Class Selection

While selecting the target class, it’s crucial to consider the dataset as well as
the model.

Although there are multiple class options resulting from the intersection
of classes provided by the model and dataset, the class referred to as "Pedes-
trian’ throughout this thesis has been chosen. In the dataset context, this
class is labeled as 'Pedestrian’, whereas in the context of the classes detected
by the model, it is 'person’. Instances of the ’Pedestrian’ class found in
specific images are referred to as pedestrians, whereas sets of pedestrians
across multiple images that represent the same person in the real world are
referred to as unique pedestrian objects.

The primary reason for this choice is the significant number of pedestrians
in the dataset, coupled with its critical relevance for autonomous driving.
The provided labels indicate 167 unique pedestrian objects, comprising 11470
pedestrians within 2529 images.

B 3.4.2 Object Tracking

Tracking objects across image sequences is a challenging task, even though

various modern solutions exist. In this work, the labels provided by the

dataset will be leveraged to make tracking effective and straightforward.
Each unique pedestrian object labeled in the dataset is accompanied by a

unique target ID and reference bounding box for each frame it appears in.
The tracking comprises the following steps:

1. Run each image of the dataset containing labeled pedestrians through
the model and obtain bounding boxes and confidence scores for each
detected pedestrian.

2. For each reference box, evaluate all detected boxes in the corresponding
image and select the one with the highest Intersection over Union (IoU)
with the reference box. Additionally, set a threshold for the minimum
IoU to eliminate cases when the detector does not detect the pedestrian
instance. In this work, the threshold was set to 0.2.
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3. Data and Experiments

3. By assigning the target IDs of the reference boxes to the corresponding
bounding boxes, valid pedestrian objects across the dataset are effectively
tracked.

By the end of this process, each detected pedestrian that is also labeled
in the dataset is assigned the ID of the unique pedestrian object it belongs
to. The number of detected pedestrians that are also in the dataset is 11055,
corresponding to 165 unique pedestrian objects.

B 3.4.3 Instance Filtering

In object detection, it is common practice to set boundaries for detected
objects based on specific use cases. Defining parameters for the analyzed
data is also beneficial for ensuring precise and relevant results. Therefore,
several constraints for pedestrians are incorporated in this work to optimize
the analysis. After each filtering step, number of pedestrians ¢ and number
of unique pedestrian objects p is provided.

First, it is essential to set a threshold, 0.5 is used in this work, for the
confidence score provided by the detector. If the detector is uncertain about
a prediction, the bounding box might be inaccurate or it might misclassify
the object, introducing noise into the data. The goal of this thesis is not to
analyze incorrect or poor predictions. [i = 9827, p = 165]

Another opportunity arises to utilize the labels from the dataset. These
labels contain information about pedestrians’ occlusion, truncation, and
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Figure 3.3: Histogram illustrating the distribution of distances from the camera
for the previously filtered 6837 pedestrians. Instances beyond the distance
threshold of 27 meters are highlighted and labeled as ’'Filtered Out’, while
those within the threshold are labeled as 'Kept’ Note that 12 pedestrians with
distances above 45 meters are not shown for convenient visualization.
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Using the information about occlusion and truncation to filter out occluded
and truncated pedestrians is advantageous. Such cases can, for example,
complicate accurate tracking when they are covered by others or result in
inaccurate metrics of the XAl outcomes when they are partially out of frame,
potentially introducing additional noise into the data. Only pedestrians
labeled with 0 for occlusion and truncation are retained. [i = 6837, p = 156]

The pedestrians’ real-world location in camera coordinates can be used to
determine their distance from the camera. Since this distance is used in the
subsequent analysis, filtering out instances that are too far away is reasonable.
In this work, the distance threshold is set to 27 meters, corresponding to the
rounded 90th percentile of the filtered pedestrians’ distances. This threshold is
chosen because distant objects are prone to detection errors and are typically
too small for detailed analysis. This step is visualized in Figure|3.3. [i = 6303,
p = 150]

After the filtering steps, 150 unique pedestrian objects, composed of 6303
pedestrians, will be the focus of the subsequent analysis.

. 3.5 Metrics

The main goal of this thesis is to analyze how explanations provided by an
XAI method for autonomous-driving-related object detections change over
time for a specific object. Once all the necessary data for this analysis is
obtained, defining reasonable metrics is the final step before conducting the
actual analysis. This section directly addresses the seventh objective outlined
in section [1.2|

When designing the metrics, it’s essential to consider their purpose. The
metrics are intended to evaluate the output of the experiment pipeline, which
consists of pixel attribution maps generated for pedestrians tracked across
multiple RGB images each captured from a different viewpoint. Additionally,
external information about the pedestrians can be utilized, such as their
real-world location in the camera coordinates, location in the image, and
dimensions of their bounding boxes.

B 3.5.1 Frame Number Metric

Each unique pedestrian may be detected in multiple dataset images. The
frames of a pedestrian are understood as the dataset images in which the
pedestrian appears.

It is important to note that the frames are numbered by their position
relative to the dataset image that corresponds to the first appearance of the
pedestrian. This means that each frame is indexed based on its position
in the sequence of the dataset images, starting from the frame where the
pedestrian first appears.

For example, assume a pedestrian appears in dataset image 231, is present
in each image until 240 inclusive, then disappears, only to reappear in image
245 and finally disappears after image 250. In this case, image 231 corresponds
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to the frame number 1, image 240 to the frame number 10, and so forth.
When the pedestrian reappears in image 245, this image corresponds to the
frame number 15, and image 250 to the frame number 20. This numbering
includes images in which the pedestrian does not appear.

This numbering allows the frames to be interpreted as consistent time rep-
resentations, providing a clear method for tracking the pedestrian’s presence
and analyzing changes in the dataset over time.

B 3.5.2 Distance Metric

The distance of a detected pedestrian from the camera will also be utilized
in the subsequent analysis. This metric not only indicates the size of the
pedestrian in the image but also reflects changes over time as the distance
varies for the specific pedestrian object across multiple images.

The distance can be estimated by considering camera calibration, the pixel
height of the pedestrian, and an approximation of their actual height. Lever-
aging the dataset labels, which contain information about the pedestrian’s
location in camera coordinates, makes this process much easier.

The location, represented as (z,y, z), can be converted to distance d using

the equation:
d=/x? 4+ y? + 22 (3.5)

Here, z, y, and 2z denote the respective coordinates of the pedestrian in
the camera’s reference frame.

B 3.5.3 Body Part Attention Metrics

XAI pixel attribution methods operate by highlighting pixels within an
analyzed image that are important for a detector’s prediction of an instance
of a target object. This output is easily interpretable: For example, if the
detector detects a person and the pixel attribution map highlights the person’s
legs, it is reasonable to deduce that the legs are what the detector focused on
when detecting the person in this specific case.

Following this concept, a set of metrics is proposed, labeled as Body Part
Attention (BPA) Metrics. Here, "attention" refers to the values of the
pixel attribution map, indicating the model’s focus on specific body parts.

B 3.5.3.1 Pedestrian Pose Estimation

The initial step in obtaining the BPA metrics is to identify the body parts of
the detected pedestrians within the analyzed image.

This thesis defines such pedestrian body parts using keypoints that are
characterized by its position in the analyzed image, denoted as (z,y).

For this purpose, a widely recognized deep learning system called Open-
Pose [2§] is employed. The OpenPose model is used to estimate the pose of
each pedestrian, as illustrated in Figure |3.4.
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TG AE

Figure 3.4: Pose estimation for a pedestrian showing 12 estimated keypoints.
Dataset specifications: [Sequence: 15, Image: 100, Pedestrian ID: 5]

This work recognizes 18 keypoints, as listed in Table 3.1l In addition to
the single keypoint body parts, several group keypoint body parts are defined
to be utilized in the subsequent analysis, as shown in Table [3.2l

It is necessary to note that the pose estimations may introduce additional
noise to the data as inaccuracies in keypoint detection can occur due to
occlusions, varying lighting conditions, and the inherent limitations of the
model. These inaccuracies can affect the reliability of the group keypoint
body parts and, consequently, the analysis based on them.

Three 2D histograms are presented to illustrate important information
about the generated poses. The data is visualized with respect to pedestrian
distances ranging from 3.8 m to 27 m, divided into 15 equidistant intervals.
This format will be utilized in the subsequent analysis within this work.

The first histogram, depicted in Figure [3.5] illustrates the frequency of
detected pedestrian poses containing specific keypoint types within distinct
distance interval. A noteworthy observation is that majority of poses occur
around 8 meters, aligning with the distribution of pedestrian poses illustrated
in Figure [3.3l This trend is consistent across all three histograms. The
red dots highlight the keypoint type with the highest occurrence within
each distance interval. Notably, the 'neck’ keypoint emerges as the most
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frequently detected across various distances, although similar occurrences are
also observed.

The second histogram, illustrated in Figure 3.6, reveals that the eye, ear,
wrist, and nose keypoints are frequently absent in the detected pedestrian
poses.

The third histogram, depicted in Figure 3.7, demonstrates that within
approximately 20 meters of distance, pedestrian poses predominantly lack 7
or fewer keypoints. Beyond this distance, the incidence of missing keypoints
increases, with the most distant pedestrians frequently lacking all keypoints
and thus being excluded from subsequent analysis.

I 3.5.3.2 BPA Metrics Calculation

The second step is to utilize the obtained body parts to calculate the specific
metrics:

® Body Part Attention Sum (BPA-Sum): The BPA-Sum metric
shows how much attention (pixel attribution) is within the analyzed
pixel attribution map around specific body part.

The calculation process can be divided into five steps:

1. For each keypoint k; = (z;,y;), where i € (1,...,K) and K denotes
the total number of keypoints for the target body part, generate
a blank mask M;. This mask is essentially an image with a single
color channel ranging from 0 to 1 for pixel values. It is the same
size as the analyzed pixel attribution map P.

2. Fill each mask M; with a Gaussian circle around the keypoint k;
with radius r.

The Gaussian circle is generated using the Gaussian function, which
assigns intensity values (ranging from 1 to 0) to pixels based on
their distance from the keypoint. The intensity of each pixel (x,y)
in the mask M; is determined as follows:

_d ()

M;(z,y) = e 22
di(z,y) = \/(@ — 22 + (y — )2,

(3.6)

where d; is the Euclidean distance from the pixel (x,y) to the
keypoint k;. This function ensures that pixels closer to the keypoint
have higher intensity values, gradually decreasing as distance from
the keypoint increases.

The radius r is determined by the bounding box height of the
analyzed pedestrian, based on the assumption that the body parts
scale proportionally with this height. In this thesis, the radius for
a pedestrian with a bounding box height h s calculated as follows:
r = h/30.
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Figure 3.5: Distribution of pedestrian pose keypoint appearences across pedes-
trian distances from the camera, ranging from 3.8 m to 27 m and divided into 15
equidistant bins. The shade of blue in each frame represents the frequency of the
keypoint appearing in the pedestrian poses in the distance interval. Additionally,
a red dot marks the dominant keypoint for each distance interval.
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Figure 3.6: Distribution of missing pedestrian pose keypoints across pedestrian
distances from the camera, ranging from 3.8 m to 27 m and divided into 15
equidistant bins. The shade of blue in each frame represents the frequency of
missing keypoints in the pedestrian poses within the distance interval. Addition-
ally, a red dot marks the dominant keypoint for each distance interval.
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Figure 3.7: Distribution of numbers of missing pedestrian keypoints in pedestrian
poses across equidistant pedestrian distances divided into 15 bins. Shades of blue
indicate the frequency of poses with the specific number of missing keypoints
within each distance interval. Additionally, the predominant number of poses
within each distance bin is highlighted.

Keypoints

‘nose’
‘neck’
’shoulder(R)’
‘elbow(R)’
'wrist(R)’
’shoulder(L)’
"elbow (L)’
'wrist(L)’
‘hip(R)’
'knee(R)’
"ankle(R)’
"hip(L)’
'knee(L)’

Table 3.1: List of Keypoints. (L) and (R) indicate left and right from the
perspective of the pedestrian.
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3. Create a combined mask M by taking the maximum value for each
pixel across all M; masks:

The combined mask M is generated by determining, for each pixel
(z,y), the maximum value across all individual masks M;. Mathe-
matically, this operation can be expressed as:

M(a, ) = max M;(z, ). (3.7)

4. Multiply pixel-wise the combined mask M with the pixel attribution
map P to obtain a map M P with attention around the body part’s
keypoints:

Py =P06o M. (3.8)

5. Sum the pixel values of the Py; map to obtain the desired BPA-Sum:

W H
BPA-Sum = ) ) Py(z,y), (3.9)
z=1y=1

where W and H denote the width and height of the pixel attribution
map, respectively.

® Body Part Attention Average (BPA-Average): The BPA-Average
metric indicates the average level of attention (pixel attribution) within
the analyzed pixel attribution map around a specific body part.

The calculation process utilizes the BPA-Sum. Therefore, once it is
calculated, two additional steps are required:

1. Sum the pixel values of the combined mask M:

W H
M-Sum = Z Z M(z,y), (3.10)

r=1y=1
where W and H denote the width and height of the pixel attribution
map, respectively.

2. Divide the BPA-Sum by the M-Sum to obtain the desired BPA-

Average:
BPA-Sum

M-Sum
= Relative Body Part Attention (Relative-BPA): The Relative-BPA

represents the attention a body part draws relative to other parts of the
image.

BPA-Average = (3.11)

The calculation process also utilizes the BPA-Sum. Therefore, once it is
calculated, two additional steps are required:

1. Sum the pixel values of the pixel attribution map P:

W H
P-Sum = > > P(z,y), (3.12)

rz=1y=1
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where W and H denote the width and height of the pixel attribution
map, respectively.

2. Divide the BPA-Sum by the P-Sum to obtain the desired Relative-
BPA.:

BPA-Sum
1 - = " .1
Relative-BPA P Sum (3.13)
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Body Part Components
’shoulders’ ’shoulder(L)’, ’shoulder(R)’
‘elbows’ ‘elbow(L)’, ’elbow(R)’
'wrists’ "wrist(L)’, 'wrist(R)’
"hips’ "hip(L)’, ’hip(R)’
'knees’ 'knee(L)’, ’knee(R)’
"ankles’ ‘ankle(L)’, "ankle(R)’
‘eyes’ ‘eye(L)’, ’eye(R)’
‘ears’ ‘ear(L)’, ’ear(R)’
leg(L)’ "hip(L)’, ’knee(L)’, ’ankle(L)’
leg(R)’ 'hip(R)’, ’knee(R)’, "ankle(R)’
arm(L)’ "shoulder(L)’, ’elbow(L)’, "wrist(L)’
‘arm(R)’ ’shoulder(R)’, ’elbow(R)’, "wrist(R)’
‘arms’ ‘arm(L)’, "arm(R)’
legs’ leg(L)’, ’leg( )
"head’ 'nose’, ’eyes’, 'ears’
"lower body’ "legs’, 'wrists’, ’elbows’
‘upper body’ ‘shoulders’, 'neck’, "head’
"full body’ "legs’, 'arms’, 'neck’, "head’

Table 3.2: Body Parts and Their Components. (L) and (R) indicate left and
right from the perspective of the pedestrian.
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Chapter 4

Analysis

This chapter aims to analyze the outcomes from Chapter [3] in a manner
that directly addresses the eighth objective outlined in section [1.2. This
objective directs the analysis towards describing how D-RISE explanations of
the selected Faster R-CNN detector’s decisions change over time for filtered
unique pedestrian objects detected in the KMOT dataset images, utilizing
BPA metrics.

The structure of this chapter is influenced by the basis on which the
explanation change is observed. Section 4.1 explores the assigned method
of analyzing changes over time by using the consecutive images (frames)
in which pedestrians appear. In contrast, section 4.2 follows a method of
analyzing changes based on the distances of pedestrians from the camera.

B 41 Frame-Based Analysis

The frame-based analysis is founded on the straightforward premise that
the dataset images were captured sequentially at a fixed rate. Therefore, it
is reasonable to analyze the change in the explanation over the frames, as
they represent discrete consecutive time intervals in the observed scene. The
method for obtaining frames for each pedestrian is described in Section |3.5.1.

A convenient way to visualize this approach is to plot the BPA metric
against the frame numbers for each pedestrian. An example is shown in
Figure 4.1,

The graph illustrates the dependence of the BPA-Sum metric for the body
part ’full body’ on the frame number for all pedestrians. Due to the large
number of data points plotted, it would not be possible to distinguish each
pedestrian individually. Therefore, only three pedestrians were highlighted,
while the others were suppressed. The ’Pedestrian 1’ and ’Pedestrian 2’
exhibit a typical dependency pattern, while 'Pedestrian 3’ demonstrates a
more unique behavior.

For illustration, three specific frames were selected for 'Pedestrian 1’: Al,
B1, and C1, with explanations visualized in subfigures (a), (b), and (c) of
Figure 4.5, respectively. For 'Pedestrian 3’, also three frames were selected:
A3, B3, and C3, with explanations provided in Figure [4.6l
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Figure 4.1: Dependence of the BPA-Sum metric for the body part 'full body’ on
the frame number for all pedestrians. The graph illustrates the variation in the
BPA-Sum metric across different frame numbers, highlighting the dependencies

for three distinct pedestrians.
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Figure 4.2: Dependence of the distance metric on the frame number for all
pedestrians. Highlighted are the dependencies for the same three pedestrians as

in Figure

44
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Upon closer examination of the results, it appears that the BPA-Sum ’full
body’ value within a pedestrian sequence depends more on the pedestrian’s
distance from the camera than on the frame number itself.

To support this theory, the Figure |4.2| depicting the dependence of distance
on the frame number can be utilized. By comparing the two graphs, it is
evident from the patterns observed among the three highlighted pedestrians
that as the distance decreases, the BPA-Sum ’full body’ increases for the
same frame number, and vice versa. This behavior would be observed for
other pedestrians if they were highlighted as well.

To explain this conclusion, it’s essential to interpret the nature of the metric.
The BPA-Sum ’full body’ reflects the concentration of the model’s attention
around the pedestrian’s body, determined by summing the attention values
of pixels within the pedestrian’s body region. Consequently, the metric’s
value depends on the number of relevant pixels, therefore it increases as the
pedestrian is closer to the camera because it results in a larger representation
of the pedestrian in the image.

Among the highlighted pedestrians in Figure4.2], the distinguishable lines of
dots represent dependencies for individual pedestrians. Closer examination of
the graph reveals that, generally, as the frame number increases, the distance
decreases. This trend makes sense as the car approaches the pedestrian when
they are in the image because the camera points in the driving direction, and
the distance increases as the car moves away when the pedestrian is out of
view.

The unique dependency pattern of 'Pedestrian 3’ is caused by the fact
that the car first approaches the pedestrian (point A3, Figure |4.1), then stops
(point B3), while the pedestrian continues to walk away (point C3).

Another noteworthy observation is the absence of metric data for frame
numbers between approximately 320 and 360. This absence could be at-
tributed to three potential explanations. First, pedestrian instances within
this range may have been filtered out due to factors such as occlusion, trun-
cation, or low detector confidence. Second, the detector may have failed to
detect the pedestrians altogether. Third, regarding the BPA metrics, it is
possible that insufficient body parts were detected during this period. This is
more likely for pedestrians who are farther away, as indicated by Figure |3.7.

Figures [4.3] and [4.4] serve to illustrate examples of the other two BPA
metrics. By highlighting the data points corresponding to the same pedestrians
as in the previous analysis, these figures provide a basis for comparison.
Although there is potential for deeper analysis of specific cases, such as the
values around frame number 200 for the 'Pedestrian 3’ data points, this will
not be further elaborated in this work.

The secondary reason for not delving deeper is the complexity of inter-
preting the data as a whole. The analysis thus far has focused on individual
pedestrians, but with approximately 150 pedestrians and 3 BPA metrics for
several body parts to analyze, continuing this detailed analysis would be
impractical.
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Figure 4.3: Dependence of the BPA-Average metric for the body part ’full body’
on the frame number for all pedestrians. Highlighted are the dependencies for
the same three pedestrians as in Figure
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Figure 4.4: Dependence of the Relative-BPA metric for the body part ’full body’
on the frame number for all pedestrians. Highlighted are the dependencies for
the same three pedestrians as in Figure
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0.0 02 0.4 0.6 08 1.0
(a) : Image: 237 (A1)

0.0 02 0.4 0.6 0.8 1.0
(b) : Image: 258 (B1)
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Figure 4.5: Three images displaying a target pedestrian with red bounding
boxes predicted by the object detector, overlaid with pixel attribution maps.
Cropped images on the right show the pedestrian pose visualized within the
bounding boxes. Each image’s caption represents its number within the dataset
sequence. Dataset specifications: [Sequence: 12, Pedestrian ID: 42].
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(a) : Image: 443 (A3)

(b) : Image: 554 (B3)
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(c) : Image: 640 (C3)

Figure 4.6: Three images displaying a target pedestrian with red bounding
boxes predicted by the object detector, overlaid with pixel attribution maps.
Cropped images on the right show the pedestrian pose visualized within the
bounding boxes. Each image’s caption represents its number within the dataset
sequence. Dataset specifications: [Sequence: 19, Pedestrian ID: 48].
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The primary reason lies in the limitations of the frame-based analysis
approach and the time analysis in general. Since the detector makes decisions
based on individual static images, these decisions are influenced by the current
state of the object, not by the sequence of states leading up to it or following
it. These states may include factors such as whether the pedestrians face
the camera, their proximity to the camera, their body posture (e.g., whether
their legs are close to each other or whether their arms are close to the body),
the colors they wear, and other such attributes.

For the frame-based approach, this means that for the same frame number,
each object is typically in a different state. Therefore, this method (and
time analysis in general) cannot work at all without incorporating external
information about the state of the object, such as the pedestrian’s distance
from the camera.

B 42 Distance-Based Analysis

The distance-based analysis focuses on observing the dependency of changes
in the explanations on one of the pedestrians’ states, specifically their distance
from the camera.

It is reasonable to start with the same example as in the previous method.
In Figure |4.7, a clear dependence of the BPA-Sum ’full body’ metric on the
distance is recognizable, as described in the previous section [4.1| (paragraph 4
and onwards).
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Figure 4.7: Dependence of the BPA-Sum metric for the body part ’full body’ on
the distance from camera for all pedestrians. Highlighted are the dependencies
for the same three pedestrians as in Figure 4.1l

Although a detailed analysis of the metrics considering individual pedes-
trians could be valuable, it would be impractical due to the high number of
pedestrians and data points.
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With a stable ground for interpretation established, it is more convenient
to divide the x-axis (distances) into equidistant intervals and, for each interval,
calculate the average value and standard deviation of the metric. Plotting
these average values provides an overview of the metric’s dependence on
distance for an average pedestrian.

The number of intervals has been experimentally set to 15 to capture gen-
eral trends in the dependencies within the individual metrics. The minimum
visualized distance is 3.8 meters, corresponding to the minimum distance in
the analyzed data, which is slightly under 4 meters. The maximum visualized
distance is 27 meters, as pedestrians farther than that were filtered out.

It is important to consider the distribution of pedestrian distances, as
shown in Figure 3.3], since the number of points in the intervals from which
the averages and standard deviations are calculated may vary significantly.
This variance can affect the reliability of the calculated metrics for each
interval.

Additionally, because the BPA metrics are based on the detected keypoints
of the pedestrian poses, the information in Figures 3.5l 3.6, and |3.7 regarding
the number of keypoints across different distance intervals might also be
important.

B 4.2.1 BPA Metrics

The first set of graphs is depicted in Figure [4.8. It illustrates the dependency
of the BPA-Sum metric on the pedestrian’s distance for various body parts
defined in Table[3.2. The graph labeled 'full body’ corresponds to the detailed
graph shown in Figure 4.7

A notable observation is the significant variation in the y-axis range for
individual body parts. This corresponds to the dependency discussed in
section |4.1) (paragraph 6), where the BPA-Sum metric relies on the number of
pixels of the pedestrian. For instance, the body part 'upper body’ can consist
of up to 6 keypoints, while the body part ’ankles’ only has a maximum of
2 keypoints. Generally, more keypoints correspond to more pixels and thus
more attention.

Additionally, the dependencies for all body parts generally adhere to
the logical rule that smaller distance results in increased attention. This
correlation underscores the principle that as the pedestrian moves closer, they
tend to occupy more pixels in the image, thus attracting greater attention.
Also, the poses of closer pedestrians typically contain more keypoints, as shown
in Figure|3.7. However, despite this general trend, some minor inconsistencies
occur.

In this regard, there are two distinct groups of body parts. The first group,
comprising ’shoulders’, 'neck’, "head’, and 'upper body’, consistently adheres
to this rule across all intervals, with attention increasing as the pedestrian
approaches.

However, the second group, consisting of ’ankles’, 'knees’, ’hips’, ’legs’,
‘elbows’, *wrists’, 'lower body’, and ’full body’, exhibits slight inconsistency
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Figure 4.8: Dependence of the BPA-Sum metric for twelve body parts on the
distance from the camera for all pedestrians. The x-axis is divided into 15
equidistant intervals from 3.8 m to 27 m. Red points indicate the average metric
values within each interval, with error bars representing the standard deviation.

with this rule in the first two intervals, as the first interval shows a smaller
value than the second one.

The first group will be represented by the 'upper body,” while the second
group, excluding ’full body’, will be represented by the 'lower body.’ The
"full body’ will stand alone as an indicator of the overall dependency. It is
convenient to focus solely on analyzing these two body parts because they
encompass the other ones, as shown in Table 3.2, and can adequately represent
the observed groups.

Note that ’wrists’ and ’elbows’ are listed under the ’lower body’ This
categorization is based on the premise that although anatomically attached to
the ’shoulders’ from the 'upper body’, they typically occupy lower positions
in relation to the body.

It is also important to note that while the standard deviation tends to
increase as the distance decreases, this observation does not provide new
insights into the dependency on distance. This is because the values used
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to calculate the average cannot be negative. Therefore, as the average
value increases, the standard deviation naturally grows as well. Instead, the
information about standard deviation is utilized to visualize the spread of
the points within each interval.

To gain more insight into the differences between the two established
groups, it is necessary to plot more detailed graphs for the 'upper body’ and
lower body’, as shown in Figures 4.9 and |4.10L

The first notable observation when comparing the graphs is that the
relative standard deviations for the 'lower body’ are generally lower across
all distances, indicating greater stability for this metric. The only exception
is the first interval.

The "upper body’ graph behaves as expected, with the BPA-Sum decreasing
with distance. The ’lower body’ graph shows a similar trend, except for
the first interval. Therefore, it is reasonable to focus on explanations and
pedestrians corresponding to the data points in this interval.

Six instances from this interval were randomly selected to cover the range
of BPA-Sum ’lower body’ values and are marked in Figures [4.9] and [4.10] by
blue points and numbers. These cases are visualized in order in Figures 4.15
and 14.16L

The second set of graphs is depicted in Figure [4.11. It illustrates the
dependency of the BPA-Average metric on the pedestrian’s distance for
various body parts. The metric represents the average attention around the
specific body parts.

The established groups persist for this metric as well, which is expected
since, although the BPA-Average metric refines the BPA-Sum by removing
the direct dependency on the number of pixels, it is still derived from it.

For the group represented by "upper body’, the BPA-Average value remains
consistent across distances, hovering around 0.5 relative to the maximum
value of 1.0.

Conversely, the group represented by ’'lower body’ shows varying metric
values, starting low for closer pedestrians, rising in the first meters, and then
stabilizing. Typically, these values hover around 0.5, with one exception: the
"hips’ body part, which converges to a value around 0.8.

By comparing the first intervals of both groups, it is evident that the
"lower body’ has a smaller average attention compared to the 'upper body’.

Additionally, the error bars indicate that the 'lower body’ group generally
exhibits smaller standard deviations across the distance intervals compared
to the 'upper body’ group, suggesting greater consistency.

The third set of graphs is depicted in Figure 4.8 and illustrates the
dependency of the Relative-BPA metric on the pedestrian’s distance for
various body parts. This metric represents the proportion of the model’s
total attention that is focused around specific body part.

The graphs also demonstrate consistent dependencies for the two body
part groups.

The 'upper body’ shows a slight decline in the values of the Relative-BPA
metric over the first few meters before stabilizing. The values range in units
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Figure 4.9: Dependence of the BPA-Sum metric for the body part 'upper body’
on the distance from the camera for all pedestrians. The x-axis is divided into 15
equidistant intervals ranging from 3.8 m to 27 m. For each interval, the average
value (red dot), standard deviation (red error bars), relative standard deviation
(red numbers), and number of points (black number) are calculated. Blue points

represent cases referred to in section ?77.
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Figure 4.10: Dependence of the BPA-Sum metric for the body part "lower body’
on the distance from the camera for all pedestrians. The x-axis is divided into 15
equidistant intervals ranging from 3.8 m to 27 m. For each interval, the average
value (red dot), standard deviation (red error bars), relative standard deviation
(red numbers), and number of points (black number) are calculated. Blue points

represent cases referred to in section

53



4. Analysis

—_ 'upper hody' - lower body' ® Average
@ @
L ] L ]
gO.S— b e ® ® o o ¢ o * gO-S' 'SEIR AR AR IR AR AR IR0 40
] . . s ® o L]
2 ! z |°
g ool ; : . | £ o0l : : ‘ ‘
5 10 15 20 25 5 10 15 20 25
Distance [m] Distance [m]
—_ ‘ankles' —_ 'knees'
v 0.5 | w i
o =] e ® & o o g ® & & o o
z ® 054 '
5 P R I L Y PR AT S T I I I .
z z .
£ 00d : : . | g0t : . : :
5 10 15 20 25 5 10 15 20 25
Distance [m] Distance [m]
'hips' —_ 'legs’
1 -~
8 e o 8 ® & 0 0 & & g 8 o | U s o o o ®
g ? £ 0.5 ISR R NS AR I R 4
@ ’ ] ’
z ) H @
ol ‘ . . : £ 00— ‘ ‘ ‘ :
5 10 15 20 25 5 10 15 20 25
Distance [m] Distance [m]
- 'shoulders’ - ‘elbows’
& &
€os5{® e o ® o * % s 0 0 o * o BO5 NI IE 4R AR AR AL,
] L ] @ o *
g g
5 00l : : : — & 00l ‘ : : :
5 10 15 20 25 5 10 15 20 25
Distance [m] Distance [m]
- 'wrists' - 'neck’
& o | &
§0_5, .'.l-lll.-.l go.sil..".gi..ll'..
z o * z
g 00l 4 ; : : g 001 . . : :
5 10 15 20 25 5 10 15 20 25
Distance [m] Distance [m]
- 'head' - ‘full body"
@ @
2 e | 2 0.5 ..--------'I
B05] ® I . B . *
% ® o ® o o 0 . ® s 0 0 . % *
g 00— ‘ . . ‘ & 001 ‘ ‘ ‘ ‘
5 10 15 20 25 5 10 15 20 25
Distance [m] Distance [m]

Figure 4.11: Dependence of the BPA-Average metric for twelve body parts on
the distance from the camera for all pedestrians. The x-axis is divided into
15 equidistant intervals from 3.8 m to 27 m. Red points indicate the average
metric values within each interval, with error bars representing the standard
deviation.

of percentages of the total attention for individual body parts. Specifically,
the attention for the 'upper body’ starts at around 10 percent for closer
pedestrians and decreases to around 5 percent for the most distant ones.

For the ’lower body’, the metric values initially rise from around 2 percent
to approximately 18 percent within the first few meters. After reaching a
distance of approximately 17 meters, the values begin to decline, eventually
stabilizing around 10 percent.

By comparing both groups, it is evident that the ’lower body’ dominates
over the 'upper body’ across all distance intervals, with the exception of the
first interval.

An interesting observation is that the relative attention for ’full body’

remains approximately 20 percent across most distances. This suggests that
80 percent of the attention is concentrated elsewhere. Based on visualizing
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Figure 4.12: Dependence of the Relative-BPA metric for twelve body parts
on the distance from the camera for all pedestrians. The x-axis is divided into
15 equidistant intervals from 3.8 m to 27 m. Red points indicate the average
metric values within each interval, with error bars representing the standard
deviation.

the results, as shown in Figure |4.6| the dispersion in between the detected
keypoints appears to offer the best explanation for this distribution.

B 4.2.2 High and Low Attention Keypoints

The keypoints that consistently attract the highest attention across the
distance intervals are generally the hip and knee keypoints, as depicted in
Figure 4.13] However, an exception is observed in the first interval, where the
'upper body’ keypoints such as 'neck’, ’ear(R)’, or ’shoulder(L)’ dominate.

Conversely, the Figure |4.14] shows that the keypoints that consistently
attract the least attention across the distance intervals are the ankle along
with the ear keypoints. Once again, the first interval deviates from this trend,
with the knee keypoints dominating.
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Figure 4.13: Distribution of pedestrian pose keypoints with the highest attention
across pedestrian distances from the camera, ranging from 3.8 m to 27 m and
divided into 15 equidistant bins. The shade of blue in each frame represents the
frequency of the keypoint receiving the most attention relative to others in the
interval. Additionally, a red dot marks the dominant keypoint for each distance
interval.
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Figure 4.14: Distribution of pedestrian pose keypoints with the lowest attention
across pedestrian distances from the camera, ranging from 3.8 m to 27 m and
divided into 15 equidistant bins. The shade of blue in each frame represents the
frequency of the keypoint receiving the least attention relative to others in the

interval. Additionally, a red dot marks the dominant keypoint for each distance
interval.
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B 4.2.3 Interpretation of Results

Based on the obtained data and qualitative analysis of the visualized expla-
nations for individual detections, as demonstrated in Figures |4.15/ and 4.16],
it is reasonable to propose the following theory about the explanations of the
detector’s decisions and the detections themselves.

The proposed metrics suggest that the explanations for detections across
various distances remain largely consistent, indicating that the detector focuses
on all of the analyzed body parts, with an overall preference for the ’lower
body’ More specifically, there is a notable emphasis on the ’hips’ body part,
as demonstrated, for example, in Figures [4.11] and |4.13. This observation
aligns with the visualizations of general cases, as depicted in Figures 4.6/ and
4.5l

The only uncovered inconsistency arises when the detected pedestrian’s
distance from the camera is approximately within 6 meters. In such cases,
the detector’s attention is more likely to shift from the 'lower body’ to the
‘upper body’, specifically focusing on the 'head’, 'neck’, and ’shoulders’. These
dependencies in the metrics are also evident when visualizing such cases, as
shown, for example, in Figures 4.15| and |[4.16.

Many of the pedestrians corresponding to the aforementioned cases are
partially truncated, despite being labeled in the dataset as not truncated,
particularly in the section of their legs. This is also evident in Figure |3.6,
which illustrates that the first interval’s poses exhibit a higher incidence
of missing ’ankle(L)’ and ’ankle(R)’ keypoints compared to other distance
intervals, where the ankle keypoints are minimally absent.

It is not surprising that the detector doesn’t focus on the ankles of a
pedestrian when they are out of the frame. However, what is more interesting
is that it appears that the detector, along with the truncated ankles or knees,
ceases to focus on the usually targeted hips and transfers attention to the
neck and head of the pedestrian.

The main indicators supporting this theory are the information about the
highest attention keypoint histogram in Figure 4.13, along with the decrease
in the first intervals of the graphs visualizing the BPA metrics for the 'lower
body’ group, and the increase in the 'upper body’ graphs. This trend is most
evident in Figure [4.9, where the drop in BPA-Sum metric values for the "lower
body’ is accompanied by visualizations of several such cases.

When considering these outcomes, it is crucial to keep in mind that
correlation does not imply causation. It is very likely that the aforementioned
truncation is not the sole factor causing the observed transfer of the model’s
attention. There are cases where pedestrians have parts of their legs out of
the image, yet the attention remains around the typical "hips’ body part, as
seen in, for example, Figure [4.16(c). In contrast, there are instances where
pedestrians do not have truncated legs, or only to a minor extent, yet the
model focuses on the upper part of the body, as seen, for example, in Figure
4.16 (a).
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(a) : BPA-Sum: 0.0, [Sequence 17, Image 62, Pedestrian ID: 3] (1)

0.0 02 04 06 08 Lo
(b) : BPA-Sum: 3.5, [Sequence: 19, Image: 304, Pedestrian ID: 27] (2

(c) BPA-Sum: 164.6, [Sequence 13, Image: 266, Pedestrian ID: 44] (3

Figure 4.15: Three images displaying a target pedestrian with red bounding
boxes predicted by the object detector, overlaid with pixel attribution maps.
Cropped images on the right show the pedestrian pose visualized within the
bounding boxes. Each image’s caption contains the BPA-Sum metric value
calculated for the specific case, with dataset specifications provided in square
brackets and reference numbers from Figure enclosed in parentheses.
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[ ]
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(a) : BPA-Sum: 500.7, [Sequence: 17, Image: 43, Pedestrian ID: 3] (4)

]
0.0 0.2 0.4 0.6 0.8 1.0

(b) : BPA-Sum: 699.4, [Sequence: 13, Image: 270, Pedestrian ID: 65] (5)

(——
0.0 0.2 0.4 0.6 0.8 1.0

(c) : BPA-Sum: 1107.1, [Sequence: 19, Image: 982, Pedestrian ID: 84] (6)

Figure 4.16: Three images displaying a target pedestrian with red bounding
boxes predicted by the object detector, overlaid with pixel attribution maps.
Cropped images on the right show the pedestrian pose visualized within the
bounding boxes. Each image’s caption contains the BPA-Sum metric value
calculated for the specific case, with dataset specifications provided in square
brackets and reference numbers from Figure enclosed in parentheses.
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Chapter 5

Conclusion

The primary objectives of this thesis outlined in section [1.2| were largely
achieved, with the last optional step remaining incomplete.

Initially, the thesis explored historical and modern object detection method-
ologies, focusing on deep-learning techniques such as two-stage and one-stage
detectors.

Subsequently, attention turned to explainable AI methods, specifically
examining pixel attribution techniques such as gradient-based Grad-CAM,
Vanilla Gradient, and the ablation-based D-RISE method.

From the multitude of available autonomous driving datasets, the KITTI
Multi-Object Tracking (KMOT) dataset was chosen for its comprehensive
labeling and relevance to the thesis.

Following thorough research on detectors, a two-stage Faster R-CNN model
was selected, leveraging its 'person’ class to represent pedestrians, the primary
objects of interest in the subsequent analysis.

From the proposed XAI methods, the D-RISE method was selected due
to relatively straightforward interpretation of its attention maps.

Following the implementation of the main algorithm, which utilized the
previously chosen components, input data for analysis was generated.

Before proceeding with the actual analysis, it was crucial to establish
appropriate metrics. Thus, the Body Part Attention (BPA) metrics, based
on the pose of analyzed pedestrians, were introduced. These poses were
estimated using the well-known OpenPose detector and divided into several
body parts such as "head’, "lower body’, or "upper body’.

Three BPA metrics were introduced:

® BPA-Sum, representing the total attention around specific body parts,
calculated as the sum of the pixels of the pixel attribution map around
the body part’s keypoints.

® BPA-Average, representing the average attention value (ranging from 0
to 1) around the body part.

® Relative-BPA, which corresponds to the attention for the body part
relative to the overall amount of attention in the pixel attribution map.

61



5. Conclusion

The analysis of the D-RISE explanations of the Faster R-CNN model’s
detections of pedestrians in the images of the KMOT dataset was conducted
using two approaches.

The frame-based analysis representing the assigned time-based approach,
which, although employed, was deemed insufficient. The concept of time
analysis was deemed unreasonable, as detectors base decisions on individual
static images. These decisions are influenced by the current state of the object
rather than by a sequence of states leading up to or following it.

Conversely, the distance-based analysis focused on one component of the
pedestrians’ state: their distance from the camera. This analysis revealed that
while explanations and consequently detections remained consistent across
the entire analyzed range of distances (3.8 meters to 27 meters) — with the
model focusing on the whole body of the pedestrian, particularly emphasizing
the middle part, specifically the hips — pedestrians within 6 meters, especially
those with parts of their legs (e.g., ankles) out of the image, were more
likely to be recognized by the upper part of their bodies, such as heads and
shoulders.
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