
FEE Faculty of Electrical Engineering
Department of Computer Science

Bachelor’s Thesis

System for blogging and planning
one-day tourist trips including
points of interest (POI)

Anhelina Rudzenka

May 2024
Supervisor: RNDr. Ladislav Serédi

ZADÁNÍ BAKALÁŘSKÉ PRÁCE​

I. OSOBNÍ A STUDIJNÍ ÚDAJE

510637 Osobní číslo:​Anhelina Jméno:​Rudzenka Příjmení:​

Fakulta elektrotechnická Fakulta/ústav:​

Zadávající katedra/ústav: Katedra počítačů

Softwarové inženýrství a technologie Studijní program:​

Enterprise systémy Specializace:​

II. ÚDAJE K BAKALÁŘSKÉ PRÁCI

Název bakalářské práce:​

Blogovací systém pro záznam a plánování tras jednodenních výletů včetně bodů zájmu (POI)

Název bakalářské práce anglicky:​

System for blogging and planning one-day tourist trips including points of interest (POI)

Pokyny pro vypracování:​
Po prozkoumání stávajících řešení, navrhněte architekturu webové aplikace, která bude nabízet uživatelům možnost​
plánovat jednodenní výlety.​
Prostudujte existující veřejná API mapových aplikací a jejich potenciál pro využití ve Vaši aplikaci..​
Aplikace bude disponovat funkcionalitou blogu, umožňující cestovatelům detailně popisovat a publikovat své zážitky z​
výletů. Zveřejněné příspěvky budou strukturované a skládat se z informačních bloků, které charakterizují města, památky,​
muzea, restaurace a další zajímavé body (POI – points of interest). Příspěvky budou moci obsahovat obrázky a geografické​
polohy, propojené s online mapovými službami. V závislosti na typu POI bude každý blok obsahovat povinná pole k​
vyplnění.​
Systém bude schopen pomoct uživateli při plánování výletů na základě již vložených příspěvků. K tomuto účelu bude​
možné uložené příspěvky cestovatelů prohledávat a filtrovat. Když tímto způsobem uživatel najde pro sebe vhodný výlet,​
do svých záložek uloží relevantní příspěvky nebo pouze vybrané POI.​
Aplikaci bude tvořit serverová a klientská část. Zprávu uživatelů včetně autentifikace zajišťuje server. Klientská část bude​
navřená ve formě single page aplikace ve vhodně zvoleném frameworku (např. Angular). Data se ukládají do databáze,​
přístupné z back-end, kde bude rovněž implementována obchodní logika (business logic).​
Na základě vašeho návrhu implementujte klíčové části systému takovým způsobem, aby bylo možné otestovat klíčové​
uživatelské scénáře. Výsledky testů vyhodnoťte, diskutujte dosažené výsledky, případně i zjištěné nedostatky a možný​
budoucí vývoj aplikace.​

Seznam doporučené literatury:​
CHAUDHARI, Kinjal; THAKKAR, Ankit. A comprehensive survey on travel recommender systems. Archives of Computational​
Methods in Engineering, 2020, 27: 1545-1571.​
KYSELA, Jiří. Analysis of usability of various geosocial network POI in tourism. In: Applied Informatics: Second International​
Conference, ICAI 2019, Madrid, Spain, November 7–9, 2019, Proceedings 2. Springer International Publishing, 2019. p.​
32-42.​
ZHAO, Pengpeng, et al. Where to go next: A spatio-temporal gated network for next poi recommendation. IEEE Transactions​
on Knowledge and Data Engineering, 2020, 34.5: 2512-2524.​

© ČVUT v Praze, Design: ČVUT v Praze, VIC Strana 1 z 2 CVUT-CZ-ZBP-2015.1

Jméno a pracoviště vedoucí(ho) bakalářské práce:​

RNDr. Ladislav Serédi kabinet výuky informatiky FEL

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) bakalářské práce:​

Termín odevzdání bakalářské práce: 24.05.2024 Datum zadání bakalářské práce: 01.02.2024

Platnost zadání bakalářské práce: 21.09.2025

___________________________​___________________________​___________________________​
prof. Mgr. Petr Páta, Ph.D.​

podpis děkana(ky)​
podpis vedoucí(ho) ústavu/katedry​RNDr. Ladislav Serédi​

podpis vedoucí(ho) práce​

III. PŘEVZETÍ ZADÁNÍ
Studentka bere na vědomí, že je povinna vypracovat bakalářskou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v bakalářské práci.

.
Datum převzetí zadání Podpis studentky

© ČVUT v Praze, Design: ČVUT v Praze, VIC Strana 2 z 2 CVUT-CZ-ZBP-2015.1

Acknowledgement / Declaration

I would like to express my gratitude
to RNDr. Ladislav Serédi for agreeing
to serve as thesis advisor, for his help
and advice.

I thank my parents for their support
and unconditional belief in me.

I thank my friends Mikita Citarovič
and Veronika Ovsyannikova, who were
always there for me and greatly helped
me in my studies.

I thank my friend Elizabeth Ryzhe-
vich for her support and understanding.

I thank my friend Juri Golomako for
technical advice and experience sharing.

I thank all the teachers, classmates
and colleagues who have helped me dur-
ing my studies.

I hereby declare I have written this
thesis work independently and quoted
all the sources of information used fol-
lowing methodological instructions on
ethical principles for writing an aca-
demic thesis. Moreover, I state that
this thesis has neither been submitted
nor accepted for any other degree.

In Prague, 24. May 2024

. .

iii

Abstrakt / Abstract

Bakalářská práce je věnována vytvo-
ření webové aplikace, která disponuje
funkcionalitou blogu a umožňuje cesto-
vatelům vytvářet, sdílet a číst příspěvky
(plány cest) popisující krátkodobé vý-
lety. Tyto příspěvky jsou sestaveny z
jednotlivých bloků míst, z nichž každý
představuje konkrétní místo zájmu (POI
– point of interest), jako jsou muzea,
restaurace, památky a další. Uživatelé
mají možnost vyhledávat plány cest
v jejich blízkém okolí zadáním místa
odjezdu a/nebo cílového místa. Projekt
využívá platformu Google Maps jako
zdroj geografických dat a pro vykreslení
online mapy.

Projekt se zaměřuje na krátkodobé
(jednodenní) plány cest skládající se
z míst v blízkosti uživatelova místa
odjezdu a/nebo cílového místa, což jej
odlišuje od existujících řešení.

Architektura aplikace byla navržena
jako monolitický klient-server, přičemž
byla použita třívrstvá architektura se
samostatnou prezentační vrstvou, vrst-
vou logiky a vrstvou přístupu k datům.
Klientský projekt byl vyvinut pomocí
technologie Angular, zatímco serverový
projekt byl vyvinut pomocí technologií
.NET.

Aplikace prošla neformálním manuál-
ním testováním a akceptačním testová-
ním.

Klíčová slova: blogovací systém,
plánování výletů, body zájmu, místa
zájmu, cestování, klient-server, REST,
API, .NET, C#, Angular, PostGIS,
PostgreSQL, Google Maps Platform,
backendová aplikace, frontendová apli-
kace.

Překlad titulu: Blogovací systém pro
záznam a plánování tras jednodenních
výletů včetně bodů zájmu (POI)

The bachelor thesis is dedicated to
creating a web application built on
blog functionality, allowing travelers
to create, share and read posts (trip
plans) describing short-term journeys.
These posts are constructed using dis-
crete places blocks, each representing
a specific place of interest (POI), such
as museums, restaurants, monuments,
and more. Users have the capability to
search for trip plans in their nearby area
by providing the departure and/or des-
tination locations. The project utilizes
the Google Maps Platform as a source
of geographical data and for rendering
the online map.

The project focuses on short-term
(one day) travel plans consisting of
places near the user’s departure and/or
destination locations, which makes it
different from existing solutions.

The application’s architecture was
designed as a monolithic client-server,
adopting a Three-Tier architecture with
separate Presentation Layer, Business
Logic Layer, and Data Access Layer.
The client project was developed using
Angular, while the server project was
developed using .NET technologies.

The application underwent informal
manual and acceptance testing.

Keywords: POI, place of inter-
est, travelling, trip planning, blog,
�lient-server, REST, API, .NET, C#,
Angular, PostGIS, PostgreSQL, Google
Maps Platform, backend, frontend.

iv

Contents /

1 Introduction 1
1.1 Motivation 1
1.2 Project description 1
1.3 Target audience 2
1.4 Research of existing solutions . . 2

1.4.1 TripAdvisor 2
1.4.2 Wanderlog 3
1.4.3 PlanYourTrip 3
1.4.4 RoutePerfect 4
1.4.5 Conclusion 4

1.5 Goals 4
2 Analysis and Architecture 5

2.1 Application requirements 5
2.1.1 Business requirements 5
2.1.2 Functional requirements . . . 5
2.1.3 Non-functional re-

quirements 7
2.2 Use Cases 7
2.3 Business domain model 9
2.4 Low fidelity prototype of GUI . . 9
2.5 Architecture 10
2.6 Backend technologies 10
2.7 Frontend technologies 11
2.8 Database 11
2.9 External APIs 13

2.9.1 Google Maps 13
2.9.2 Mapy.cz 13
2.9.3 API selection 13

3 Implementation 15
3.1 Component diagram 15
3.2 Sequence diagram 16
3.3 Frontend 17

3.3.1 Components library 19
3.3.2 Files upload 21
3.3.3 Google Maps Platform . . . 21
3.3.4 GUI 23

3.4 Backend 23
3.4.1 Data Access Layer 23
3.4.2 Business Logic Layer 25
3.4.3 Presentation Layer 26
3.4.4 Dependency injection . . . 27
3.4.5 PostGIS 29
3.4.6 Storing uploaded files . . . 30
3.4.7 Data mapping 31

3.4.8 Generating TypeScript
contracts from C# DTOs . 31

3.4.9 Unit of Work pattern . . . 32
3.4.10 Security 33

3.5 Project setup and configu-
ration 34

3.5.1 Running the frontend
project 34

3.5.2 Running the backend
project 34

4 Testing 35
4.1 Static testing 35
4.2 Manual testing 35
4.3 Unit testing 35
4.4 Usability testing and com-

parison with TripAdvisor . . . 36
4.5 Acceptance testing 37

5 Conclusion 38
5.1 Further prospects of the

project 39
Bibliography 41

A Low fidelity prototype of GUI 45

B GUI 55

C Test cases 64

D Acronyms 73

v

Tables / Figures

2.1 Key differences between
MySQL and PostgreSQL 12

4.1 Time spent to find trip plan
on bachelor project appli-
cation and the TripAdvisor
application. 36

C.2 Test case: Successful regis-
tration . 64

C.5 Test case: Logout 64
C.1 Test case: Registration form

validation . 65
C.3 Test case: Registration failed

because user with same email
or username already exists. 66

C.4 Test case: Successful login. 66
C.6 Test case: Search for a place

to visit. 67
C.7 Test case: View trip plan 67
C.8 Test case: Bookmarks man-

agement. 68
C.9 Test case: Comment the trip

plan . 69
C.10 Test case: Trip plan and trip

plan block rating 69
C.11 Test case: Create a trip plan . . 70
C.12 Test case: Change the trip

plan publicity. 70
C.13 Test case: Update the trip

plan . 71
C.14 Test case: Delete the trip plan . 72

1.1 Trip plan page with places
blocks .2

2.1 Use Cases actors7
2.2 Account management Use

Cases. .8
2.3 Trip planning Use Cases8
2.4 Business domain model9
2.5 DB-Engines Ranking of Re-

lational database engines 11
2.6 Global popularity compar-

ison between Google Maps
and Mapy.cz . 14

2.7 Comparison of Google Maps
and Mapy.cz popularity in
Czech Republic 14

3.1 Component diagram 15
3.2 Sequence diagram illustrat-

ing trip plan creation 16
3.3 Suggested places example 17
3.4 Authorization guard 17
3.5 Authentication interceptor 18
3.6 SafeUrlPipe and its usage. 19
3.7 PrimeNG gallery view 20
3.8 PrimeNG file upload compo-

nent customized with gallery
view and actions 20

3.9 Methods in Angular Google
Maps service . 22

3.10 OneDayTrip.DataAccess
project structure 23

3.11 POI entity configuration in
DB context . 24

3.12 Generated migration that
adds TripPlanBlockReactions
table . 24

3.13 Token generation method in
JWT service . 25

3.14 Searching trip plan with pa-
rameters implementation 26

3.15 DTO validation using valida-
tion attributes 26

3.16 List of endpoints in Swagger . . 27
3.17 DAL dependencies registra-

tion . 28
3.18 Correct services registration

in DI container 28

vi

3.19 Displayed saved geography
data in pgAdmin 4 Geometry
Viewer . 29

3.20 Visualization of Cartesian
and Spherical coordinate sys-
tems. 29

3.21 Usage of PostGIS with the
help of NetTopologySuite li-
brary and Entity Framework . . 30

3.22 TripPlanReaction mapping
configuration between DAL
entity and BLL model 31

3.23 Trip plan TypeScript con-
tract generation configuration . 32

3.24 Generated trip plan contract . . 32
3.25 Unit of Work pattern visual-

ization . 33
3.26 ASP.NET Identity configura-

tion . 33
A.1 Desktop registration page

prototype . 45
A.2 Mobile registration page pro-

totype . 45
A.3 Desktop login page prototype . 46
A.4 Mobile login page prototype . . . 46
A.5 Desktop home page prototype . 47
A.6 Mobile home page prototype . . 47
A.7 Desktop search results page

prototype . 48
A.8 Mobile search results page

prototype . 48
A.9 Desktop trip plan page pro-

totype . 49
A.10 Mobile trip plan page proto-

type . 50
A.11 Desktop create new trip plan

page prototype 50
A.12 Mobile create new trip plan

page prototype 51
A.13 Desktop user’s bookmarks

page prototype 51
A.14 Mobile user’s bookmarks

page prototype 52
A.15 Desktop user’s trip plans

page prototype 52

vii

A.16 Mobile user’s trip plans page
prototype . 53

A.17 Mobile user’s account page
prototype . 53

A.18 Desktop user’s account page
prototype . 54

B.19 Desktop registration page. 55
B.20 Mobile registration page 55
B.21 Desktop login page 56
B.22 Mobile login page 56
B.23 Desktop home page 57
B.24 Mobile home page 57
B.25 Desktop search results page . . . 58
B.26 Mobile search results page 58
B.27 Desktop trip plan page 59
B.28 Mobile trip plan page 60
B.29 Mobile create new trip plan

page . 60
B.30 Desktop create new trip plan

page . 61
B.31 Desktop user’s bookmarks

page . 62
B.32 Mobile user’s bookmarks page . 62
B.33 Desktop user’s trip plans page . 63
B.34 Mobile user’s trip plans page . . 63

viii

Chapter 1
Introduction

1.1 Motivation
The idea of this project was born during a trip to a city Mělnik in Czech Republic. This
trip has led me to the thought that many people who would like to travel and explore
tourist attractions may face the same problem as me, which is a lack of time for trip
planning and the trip itself.

I concluded that having a source of information about nearby tourist destinations,
just a short distance from our homes, would be helpful, offering users trip guides suitable
for a weekend or a day visit. The user could enter their departure location and the
service could then provide suggested trip plans in the nearby area consisting of places
of interest (POI) such as museums, castles, restaurants and more, along with detailed
descriptions for each.

I also suppose that there are active tourists who would like to document their travel
experiences and recommend lesser-known places to others. Such individuals might be
interested in sharing their insights through such a service.

Based on my experience, I haven’t come across any popular solutions that offer
travel guides. While there are numerous services providing place ratings, suggestions,
and paid guided tours, I have never come across solutions which publicly offer travel
guides comprised of places and their detailed descriptions. Additionally, I have never
encountered services specifically focused on short-term one-day or weekend trips. Such
guides could help to explore unknown places nearby and make lives more diverse.

There are different ways to create such a service and one of them is a web application.

1.2 Project description
The web application is structured around blog functionality, enabling travelers to com-
pose and share posts (trip plans) detailing their journeys. These posts are constructed
using discrete places blocks, each representing a specific place of interest (POI), such
as museums, restaurants, monuments, and more. Concrete places will be linked to ex-
ternal service, allowing users to access detailed information and utilize the online map
by navigating to this external service.

Users planning their trips can conveniently search for trip plans by filtering them
based on their proximity to either the starting point or the destination. Furthermore,
users have the option to bookmark trip plans that satisfy their interest or save concrete
places of interest to bookmarks for future reference. Users can revisit their bookmarks
later and leverage them to create their own travel itineraries.

The app has a social aspect, enabling users to share their trip plans publicly, making
them accessible to other users. Published travel plans will be available to the public for
the benefit of other users. Additionally, users can rate trip plans and places, as well as
leave comments on trip plans.

1

1. Introduction .

Figure 1.1. Trip plan page with places blocks.

1.3 Target audience
Target audience is travelers:. Who want to document their journeys and share experience with the public.. Who plan their journeys and lookup for a source of other travelers’ knowledge.. Who are searching for places to explore.. Who have limited time for their trip.

In summary, the primary target audience for the application consists of people who
want to travel or are already traveling.

1.4 Research of existing solutions
There are numerous travel-related services. The following sections will describe the
advantages and disadvantages of the popular services that encompass functionality
relevant to the project concept.

1.4.1 TripAdvisor
TripAdvisor is a travel-focused website with a vast database of POIs a places reviews
[1]. The site also hosts a tours marketplace and a traditional forum where users engage
in discussions about various travel-related topics. However, the website suffers from an
overloaded interface.

2

. 1.4 Research of existing solutions

Advantages:

. Vast POIs database.. Big community.. Guided tours marketplace.. Suggest POIs nearby.. Bookmarks functionality.. Have travel guides written by users.. During the development of this bachelor project, TripAdvisor introduced a beta ver-
sion of a feature that assists in creating trip plans with the help of AI.

Disadvantages:

. The application is overloaded with functionality and navigation, making it challeng-
ing to interact with and find the necessary information. For instance, navigation bar
differs between the main page, city-specific pages, and POIs pages.. While the city pages feature paid guided tour recommendations available on a mar-
ketplace, there is a notable absence of suggestions for free trip plans. Users can only
access these free travel guides written by users through a manual search, making
them less discoverable.

1.4.2 Wanderlog
Wanderlog is a travel planning and itinerary management platform that assists users
in creating and organizing their trips, providing features for mapping out routes, dis-
covering points of interest, and optimizing travel plans [2]. The platform also has
features for reservations and expense tracking, complemented by travel guides and map
views. However, there is a minor bug in the like function and a lack of bookmark
functionality.

Advantages:

. Complex tool for planning. Users can add flights, hotel, car reservations, build
itinerary, leave notes, and plan expenses.. Travel guides.. Great map view.. Integration with trip advisor and google maps.

Disadvantages:

. Error in the like function. When you press the like button, the number of likes
decreases. If there were no likes on the post, the number of likes becomes negative.. No option to save guide to bookmarks.. POI can’t be saved to bookmarks standalone. It can only be added to the existing
guide.

1.4.3 PlanYourTrip
PlanYourTrip is a free itinerary planning tool offers users the ability to personalize
their trips with advantages including estimated budget information and a map view,
but it has a restricted list of destinations, relies on company-created guides without
user-generated content, and has limited functionality [3].

Advantages:

. Estimated budget for proposed trip.. Map view.

3

1. Introduction .
Disadvantages:

. Limited list of destinations.. The company offers and publishes its own guides, lacking authentic user-generated
content.. Poor functionality.. Recommendations for attractions but not restaurants options.

1.4.4 RoutePerfect
RoutePerfect is a travel tool that helps users plan trips based on their preferences and
budget, offering route advice, hotel suggestions, and booking integration [4]. The tool
can interact with users through an AI-powered chat interface. However, it requires a
minimum trip duration of four days and lacks user reviews.

Advantages:

. Advise road from starting point to destination with road full of places of interest.. Hotel suggestions and integration with booking services.. Unique nontrivial places suggestions.

Disadvantages:

. Can’t set duration less than four days.. Absence of content created by real users.

1.4.5 Conclusion
None of the services mentioned above are solving exactly the same problem that I aim
to tackle with the current project. The project must be focused on short-term travel
plans consisting of places close to the user’s departure location.

Considering all the features and characteristics of existing solutions, a decision has
been made that the application will meet the following requirements:

. A simple and straightforward navigation, understandable even to inexperienced users. The application will specialize in one day trips.. A bookmarks functionality that provides the ability to save POIs or other users public
guides.

The best aspects of existing solutions must be considered and known disadvantages
must be avoided.

1.5 Goals
The primary goal of the project is to create a web application built on blog functionality,
allowing travelers to create, share and read posts (trip plans) describing short-term
journeys. Additionally, users must have the capability to search for trip plans in their
nearby area by providing the departure and/or destination locations. This involves
proposing the application’s architecture and researching publicly available travel data
sources.

Key Objectives:

. BG-1 Research publicly available travel data sources.. BG-2 Suggest web application architecture.. BG-3 Create a web application.

4

Chapter 2
Analysis and Architecture

2.1 Application requirements
The purpose of this section is to define and describe the project requirements which are
based on existing solutions analysis and target audience’s preferences. The requirements
are categorized into three groups [5]:

. Business requirements (BRQ) refer to tasks that are needed to fulfil to achieve a
high-level objective. Explain what the result of a business goal should look like.. Functional requirements (FRQ) define how a system needs to operate to achieve a
business goal. Require an action to be taken by a person, system, or process.. Non-functional requirements (NFR) define attributes or characteristics that the final
solution needs to have.

Certain requirements will be designated as optional, as they are not essential to the
core functionality and do not impede its operation. The primary emphasis is placed on
the trip plans management functionality.

2.1.1 Business requirements

. BRQ-01 Account management: The user must have the capability to manage their
accounts.. BRQ-02 Trip planning functionality: The user must possess the ability to read pub-
lished posts (trip plans) describing short-term journeys and manage their own trip
plans. Users must have the capability to search for trip plans in their nearby area
by providing the departure and/or destination locations. Additionally, users must be
able to save trip plans and POI they liked to bookmarks and revisit their bookmarks
later.

2.1.2 Functional requirements

FRQ-01 Account management:

. FRQ-011 Registration: The unregistered user should possess the capability to regis-
ter.. FRQ-012 Login: The registered user must be able to log in with credentials including
email and password.. FRQ-013 Logout: The authorized user must have the option to log out.. FRQ-014 Change password (optional): The authorized user must be capable of chang-
ing their password.. FRQ-015 Delete account (optional): The authorized user must have the ability to
delete their account.. FRQ-016 Change profile information (optional): The authorized user must possess
the ability to change their profile information, including their username and email.

5

2. Analysis and Architecture .
. FRQ-017 Review received ratings statistics (optional): The authorized user must be

able to review ratings of their public trip plans.. FRQ-018 Review given ratings (optional): The authorized user should possess the
capability to review the ratings they gave to other users’ trip plans.

FRQ-02 Trip planning functionality. FRQ-0201 Search place to visit: The user (authorized and unauthorized) must be
able to search for places nearby and trip plans created by other users. This must be
accomplished by providing the departure and/or destination locations.. FRQ-0202 View trip plan: The user (authorized and unauthorized) should possess
the capability to view public trip plans from search result.. FRQ-0203 Add the trip plan to bookmarks: The authorized user must have the
ability to save the public trip plans they like to their bookmarks.. FRQ-0204 Add the POI to bookmarks: The authorized user must have the capability
to save POIs they like to their bookmarks.. FRQ-0205 Delete the trip plan from bookmarks: The authorized user must have the
ability to delete the trip plans from their bookmarks.. FRQ-0206 Delete the POI from bookmarks: The authorized user must have the
capability to delete POIs from their bookmarks.. FRQ-0207 Make the trip plan public: The authorized user must be able to make
their trip plan public or keep it private. Public trip plans will be available for search
by other users, including those who are unauthorized.. FRQ-0208 Delete the trip plan: The authorized user should be able to delete a trip
plan they’ve created.. FRQ-0209 Comment the trip plan: The authorized user must have the capability to
comment on public trip plans.. FRQ-0210 Rate a trip plan: The authorized user must have the ability to rate trip
plans created by other users.. FRQ-0211 Rate the place block: The authorized user must have the ability to rate
place blocks created by other users.. FRQ-0212 Create a trip plan: The authorized user must have the ability to create a
trip plan.. FRQ-0213 Update the trip plan: The authorized user must have the capability to
update their previously created trip plan.. FRQ-0214 Add the place block to the trip plan: The authorized user must possess
the ability to add a block describing the place of interest to their trip plan.. FRQ-0215 Update the place block in the trip plan: The authorized user should be
able to update the place block, containing information about POI, within their trip
plan.. FRQ-0216 Delete the place block from the trip plan: The authorized user must have
the ability to delete the place block from their trip plan.. FRQ-0217 Select POI from external API to add it to place block: Authorized user
must be able to find POI provided by external API and add it to the place block in
their trip plan.. FRQ-0218 Create POI manually to add it to place block: The authorized user must
have the capability to manually create a POI if it is not found in external API data.
They can then add it to the place block within their trip plan.. FRQ-0219 Add POI to place block from bookmarks (optional): The authorized user
must be able to select POI from their bookmarks and add it to the place block in
their trip plan.

6

. 2.2 Use Cases

. FRQ-0220 Pagination: The system must paginate search results.

2.1.3 Non-functional requirements

. NFR-01 Swagger documentation: The application must provide swagger REST API
documentation for development purposes.. NFR-02 System performance: The application can be used by several users simulta-
neously.. NFR-03 User friendly interface: The application must have clear navigation and
understandable UI.. NFR-04 Support by popular browser: The application must work correctly in Google
Chrome, Firefox, and Microsoft Edge browsers.. NFR-05 Linux hosting server support: The application should function properly
when deployed on a Linux server.

2.2 Use Cases
This section is dedicated to Use Case diagram. A Use Case diagram captures the
requirements of a system and offers a visual representation of the possible interactions
between the system and entities external to the system [6]. These external entities are
referred to as actors. Actors represent roles which may include human users, external
hardware, or other systems.

The system involves the following actors:

. User – represents both authorized and unauthorized application users. Unauthorized
users have limited access to application functionality which is searching for travel
plans and viewing them.. Authorized user – an individual who has logged into the application.. Regular user – an authorized user without access to administrative functionality.. Admin user – a user with access to administrative functionality. This user can ap-
prove and manage other users’ posts and is responsible for ensuring that all users
comply with the rules of conduct and public order. Nevertheless, it’s important to
note that administrative functionality will not be implemented within the scope of
the bachelor project.

Figure 2.1. Actors.

7

2. Analysis and Architecture .

Figure 2.2. Account management Use Cases.

Figure 2.3. Trip planning Use Cases.

8

. 2.3 Business domain model

2.3 Business domain model

For data structurization and entities visualization the business domain model was cre-
ated. The business domain model represents the conceptual view of the system and
focuses on the key concepts, entities, and relationships within the business domain,
without getting into technical details. It describes the core concepts of the business
and the relationships between them.

A TripPlan class represents an entire blog post that consists of multiple places blocks
(PlaceBlock). Each place block represents one POI. Such a block may have images
(PlaceImage) and text about an experience of traveling to the place. Users may rate
the entire post (TripPlanReaction) or standalone blocks (PlaceBlockReaction).

The POI class represents a place linked to Google Maps. The Point of Interest (POI)
includes an address as a string. This address is not stored in a separate table because it
is only used for display purposes on the user interface. There is no need to decompose
the address into a standalone type, as all geographical operations are handled using the
Google Maps ID, latitude, and longitude, rather than the address string.

Figure 2.4. Business domain model.

The User can have the role of an administrator or a regular user. Nevertheless, in
this project, administrative functionality will not be implemented.

2.4 Low fidelity prototype of GUI

The application must demonstrate adaptability, ensuring optimal presentation on both
desktop and mobile devices. A low-fidelity prototype of the web application is presented
in Appendix A.

9

2. Analysis and Architecture .

2.5 Architecture
Due to the small size of the application and the low complexity of the business logic, a
client-server architecture was chosen.

The client-server architecture is a system model involving client and server systems
communicating over a network. Clients continuously connect to servers and send re-
quests, while servers listen for and respond to requests from multiple clients [7]. In the
current project, the frontend will act as the client, and the backend will function as the
server.

In order to enhance the separation of concerns, the project will adopt a Three-Tier
architecture that encompasses the following application layers [8–9]:

. The Presentation Layer is visible to the user. The user gives the inputs and instruc-
tions through this, and the output is also displayed on it. This layer encompasses
the Angular frontend application and the backend API (Controllers). Furthermore,
the frontend within this layer will use the external geographical data provider API.. The Business Logic Layer contains models and logic, offering essential functionality
to the application. This layer coordinates the application, processes commands,
makes logical decisions and evaluations, and performs calculations. It also acts as an
intermediate between the presentation and the data layer. Backend logic belongs to
this layer.. Data Access Layer stores and retrieves information from the database or filesystem.
The retrieved data is then passed back to the logic tier for processing. Data manip-
ulation on the backend belongs to this layer.

2.6 Backend technologies
There are numerous programming languages that allow the development of the backend
for web applications and every language has its pros and cons. The programming
language C# and the .NET platform were selected as the primary technologies for
backend implementation. The primary reason for this is that I have sufficient experience
in developing applications using this technology.

C# is a modern, open-source, cross-platform, strongly typed object-oriented pro-
gramming language and one of the top 5 programming languages on GitHub and is
consistently one of the most loved languages on Stack Overflow’s developer survey
[10–11]. It has a lot of syntactic sugar, which makes it very convenient and fast to de-
velop with. A comparison of C# and Java was made by my colleague Vadym Rudenko
in his bachelor project [12].

The .NET is a cross-platform and open-source set of runtime, library and compiler
components which can be used in various configurations for building web, desktop, and
mobile applications [13].

There still exists a misconception that C# and .NET are not cross-platform. This
delusion is often mentioned when comparing C# to other programming languages.
The brief history of the platform below will explain the origin of this misconception
and dispel it.

The .NET platform evolution starts in 2002 with the .NET Framework which had
a limitation of running exclusively on Windows operating systems [14]. This implies
that web applications could only be hosted on Windows servers. In response to the
framework’s limitation, a new version named .NET Core was released in 2016. It was
no longer limited to running on Windows OS. Both versions of the platform continued

10

. 2.7 Frontend technologies

to develop in parallel. With the release of .NET 5 in 2020, the “Core” part of the name
was dropped, and the new platform versions were simply referred to as .NET [15].

2.7 Frontend technologies
Single-Page Applications (SPAs) have become a very common choice in building out
frontend, as they allow for great customer experiences in terms of speed and respon-
siveness [16]. Once the application has loaded into a customer’s browser, further inter-
actions only have to care about loading the additional data needed, without reloading
the entire page.

The most popular SPAs frontend libraries according to Stack Overflow are React,
Vue and Angular [11]. For this project, the Angular framework will be used due to my
prior experience with this tool.

Angular enables developers to build scalable web applications with TypeScript, a
strict syntactic superset of JavaScript [17]. Angular is based on the most modern
web standards and supports all modern browsers. The power of the Angular platform
is based on the combination of the following characteristics: cross-platform, advanced
tooling, easy onboarding and worldwide usage.

2.8 Database
For the project’s objectives, a relational database is the most suitable choice. At the
time of writing this thesis, the most widely favored database management systems are
[18]:

. Oracle.. MySQL.. Microsoft SQL Server.. PostgreSQL.. Microsoft Azure SQL Database.

Figure 2.5. DB-Engines Ranking of Relational database engines [18].

11

2. Analysis and Architecture .
Oracle, Microsoft SQL Server, and its cloud-based version Microsoft Azure SQL

Database are highly reliable database engines widely utilized by large enterprise com-
panies. Nevertheless, they are all commercial solutions with a very significant cost of
licensing. While they offer free initial plans with limited functionality, as the project
scales, the licensing fees can become prohibitively expensive.

MySQL is a fast, reliable, scalable and easy-to-use open-source relational database
system designed to handle mission-critical, heavy-load production applications [19]. It
is a common and easy-to-start database with low memory, disk and CPU utilization,
managed by a relational database management system. MySQL Community Edition is
a free downloadable version supported by an active online community.

PostgreSQL is an open-source relational database with a strong reputation for its
reliability, flexibility and support of open technical standards [19]. PostgreSQL sup-
ports both non-relational and relational data types. It has been called one of the most
compliant, stable and mature relational databases available today and can easily handle
complex queries.

Category MySQL PostgreSQL

Database Purely relational database Object-relational database
technology management system. management system.

Features Limited support of database Supports most advanced
features like views, triggers, database features like
and procedures. materialized views, instead

of triggers, and stored
procedures in multiple
languages.

Data types Supports numeric, character, Supports all MySQL data
date and time, spatial, and types along with geometric,
JSON data types. enumerated, network address,

arrays, ranges, XML, hstore,
and composite.

ACID ACID compliant only with Always ACID compliant.
Compliance InnoDB and NDB Cluster

storage engines.
Indexes B-tree and R-tree index Supports multiple index types

support. like expression indexes, partial
indexes, and hash indexes
along with trees.

Performance Has improved performance Has improved performance
for high frequency read for high frequency write
operations. operations.

Table 2.1. Key differences between MySQL and PostgreSQL [20].

Both MySQL and PostgreSQL are suited for the project. The decisive factor in
choosing the DB engine is that PostgreSQL, when extended with PostGIS extension,
becomes a powerful spatial database management system. It is well-regarded for its
performance of geospatial databases and its versatility in mapping and spatial analysis

12

. 2.9 External APIs

tools [21]. PostGIS provides robust geospatial data management and a variety of
functions to enable GIS processing within the database itself, making PostgreSQL the
preferred choice for the current project.

2.9 External APIs

One of the most critical aspects of the project is selecting the appropriate geographical
data provider. All further development and user interaction will depend on the chosen
data provider service, which must meet the following requirements:

. Provide an API for displaying an interactive map. There must be an ability to open
the map directly at the provider service. For example, clicking on the map and
opening it in a mobile application or website, which will provide more functionality
for the user.. Provide an API for places search.. Provide an API for suggesting places nearby.. The service must possess rich functionality to accommodate further development of
the project.. The service must be popular so that users will be familiar with it.

The criteria mentioned limit the choice to two services: Google Maps and Mapy.cz.

2.9.1 Google Maps

Google Maps’ key strengths include high popularity, a large development community,
data richness, rich functionality, and a substantial amount of documentation. The main
disadvantage of the platform is the high cost for complex requests. However, at the
time of writing this thesis, the platform does offer services worth 200 USD at no charge
every month [22].

2.9.2 Mapy.cz

Mapy.cz has several key advantages, including data richness, a comparatively lower cost
than Google, and a simple API. The platform offers 250,000 free credits (equivalent to
approximately 17 USD) for the basic tariff and 10,000,000 credits (around 707 USD)
for the extended tariff every month [23]. However, due to its simplicity, the API
functionality is limited compared to Google.

2.9.3 API selection

When we look at the popularity of services over the last 12 months using Google Trends,
Mapy.cz service is widely recognized in the Czech Republic but remains relatively un-
known worldwide. Google Trends is a tool that provides insights into the relative
popularity of search queries over time and across different regions. The numbers on the
left axis of the charts represent search interest relative to the highest point on the chart
for the given region and time. A value of 100 is the peak popularity for the term. A
value of 50 means that the term is half as popular. A score of 0 means there was not
enough data for this term.

13

2. Analysis and Architecture .

Figure 2.6. Global popularity comparison between Google Maps and Mapy.cz [24].

Figure 2.7. Comparison of Google Maps and Mapy.cz popularity in Czech Republic [24].

The significant advantage of Google Maps services is that Angular supports libraries
for interacting with its API, making the development process easier, unlike Mapy.cz,
which lacks any library support.

Considering the popularity of services, the richness of functionality, and the potential
for further project growth, Google Maps has been chosen as the primary geographical
data provider due to its extensive functionality and wide popularity.

14

Chapter 3
Implementation

3.1 Component diagram
The component diagram represents the architecture of a web application divided into
two main subsystems: frontend and backend. The frontend project interacts with both
the backend system and the Google Maps Platform.

Figure 3.1. Component diagram.

The backend solution is divided into three layers:. Presentation Layer: Contains controllers that handle incoming requests and direct
them to the appropriate services in the Business Logic Layer.. Business Logic Layer: Comprises various services that encapsulate the core function-
alities, interfacing with repositories in the Data Access Layer.. Data Access Layer: Consists of repositories that manage data persistence and re-
trieval, interfacing with a database via EntityFramework.

Additionally, the backend integrates with .NET Identity for user management.

15

3. Implementation .

3.2 Sequence diagram

The sequence diagram illustrates the primary functionality of creating a trip plan, which
utilizes both the Google Maps Platform and the backend. The user can add multiple
places of interest (POIs) to the trip plan. While adding a place, the user must type
the place name or address. As the user types, requests are sent to the Google Maps
Platform with each character entered, and suggestions are displayed. Once the desired
place is found, the user selects it, triggering a final request to Google, which returns
the place details, including the full address, latitude, and longitude. The selected place
is then displayed on the map. When the trip plan is complete, the user can save it.

Figure 3.2. Sequence diagram illustrating trip plan creation.

16

. 3.3 Frontend

Figure 3.3. Suggested places example.

Other use cases are straightforward and primarily involve a single request-response
pair.

3.3 Frontend
The Angular frontend application is structured as follows.

Components directory encapsulates reusable components that serve various functions
and pages within the application. The “common” folder contains atomic components,
each characterized by fundamental functionality, designed for reuse across various com-
ponents and contexts. These include items such as carousel, comment block, embedded
Google Map, Google Place autocomplete field, search trip plan form, trip plan block
card and trip plan card, each encapsulated as individual components. This architecture
provides substantial benefits, as any necessary changes to a component can be made in
one centralized location, rather than having to update it in multiple instances across
the application. Components located directly within the root of the components folder
typically represent pages, such as the main page, search results page, trip plan page,
bookmarks page and others.

Guards section contains the authorization guard, which serves to prevent unautho-
rized access to specific system components.

Figure 3.4. Authorization guard.

Interceptors folder incorporates authentication interceptor, responsible for append-
ing authentication headers on outgoing requests. The interceptor checks if the request

17

3. Implementation .
URL matches the Google Maps API URL. If so, it modifies the request by adding
Content-Type and X-Goog-Api-Key headers with values retrieved from the environ-
ment configuration. Otherwise, it retrieves the JWT from an account service, and if
available, adds an Authorization header with the JWT to the request. Finally, it for-
wards the modified request to the next interceptor or HTTP handler in the chain. This
interceptor enables seamless integration of authentication mechanisms and facilitates
communication with external services within the application.

Figure 3.5. Authentication interceptor.

Models directory holds data models that may be returned from both the backend and
the Google Maps Platform. The “autogenerated” folder contains TypeScript interfaces
that are generated from the backend C# DTOs. This process is described in the
backend chapter of the documentation.

Pipes folder offers utility pipes, which can be used to manipulate data before present-
ing it on the UI. The SafeUrlPipe is utilized exclusively for rendering embedded Google
Maps iframes. The necessity of this pipe arises from Angular’s default security behav-
ior, which blocks iframes against Cross-Site Scripting (XSS) attacks. By employing
the bypassSecurityTrustResourceUrl method within the pipe, the application explicitly
trusts and permits the specified URL, thus overriding Angular’s protective measures.

18

. 3.3 Frontend

Figure 3.6. SafeUrlPipe and its usage.

Services section provides various services, including those responsible for fetching
data from both the backend and the Google Maps Platform.

The AccountService is designed to handle various user-related functionalities. This
service facilitates user registration, login, and management tasks such as refreshing user
information, retrieving JWT tokens, and logging out users. It employs observables to
manage user information, utilizing a ReplaySubject to store and broadcast user data
updates to subscribed components.

The GoogleMapsService serves for integrating Google Maps API functionalities. It
facilitates generating URLs for embedded maps based on specified locations and pro-
vides capabilities for place autocomplete and retrieving detailed information about the
places. The service supports the management of session tokens for Google Places API
requests, allowing to conclude sessions through the finishSession method.

The TripPlansService serves for managing trip plans and related operations. It offers
functionalities such as retrieving trip plans based on search parameters, accessing user-
specific trip plans, fetching details of a specific trip plan, obtaining trip plan suggestions,
creating new trip plans, updating existing ones, adjusting their publicity status, and
deleting trip plans.

The BookmarksService provides functionality for managing bookmarks related to
trip plans and trip plan blocks. It facilitates the addition, retrieval, and deletion of
bookmarks.

The ReactionsService facilitates the management of user reactions and interactions
with trip plans and trip plan blocks. It enables users to retrieve their reactions to
specific trip plans, rate trip plans, comment on trip plans, and rate individual trip plan
blocks.

Subsequent chapters will offer insights into frontend development.

3.3.1 Components library
Initially, I opted to utilize the free and open-source Angular Material component li-
brary due to its simplicity and official endorsement by the Angular Team at Google.

19

3. Implementation .
Angular Material offers a minimalist set of components, encompassing foundational
elements such as buttons, forms, text fields, and more, while also providing support
for basic customization [25]. It also provides a Google Maps Angular component that
implements the Google Maps JavaScript API [26]. However, I encountered limitations
within the library that were critical for application’s needs.

The library lacked essential components such as an image carousel and a file upload
button. While I could have developed these components independently, doing so would
have consumed time and resulted in stylistic inconsistencies compared to other com-
ponents. Exploring alternative solutions, I found that libraries offering single image
carousel and file upload button components sometimes were not free or had vastly dif-
ferent styles. Additionally, many of these alternatives were outdated or lacked active
community support.

Considering the factors mentioned above, I had to search for another component
library and transition the project to the new library.

After careful consideration, I selected the PrimeNG components library. It offers an
extensive component suite, has positive feedback from the community, and is utilized in
some real-world production applications [27]. Additionally, it is open-source and offers
a variety of themes, along with the availability of a paid plan, which offers extended
support for commercial products.

Figure 3.7. PrimeNG gallery view.

Figure 3.8. PrimeNG file upload component customized with gallery view and actions.

20

. 3.3 Frontend

Working with PrimeNG proved to be an exceptional experience, owing to its com-
prehensive suite of components and extensive configurability.

This experience taught me the importance of thoroughly reviewing a library’s com-
ponents before integration. I also realized that such decisions should be made during
the analysis phase rather than the implementation phase.

3.3.2 Files upload

Files upload implementation was an interesting challenge that I never solved before.
I discovered that a reliable method for uploading files to the backend is to send a
request encrypted as multipart/form-data, which transmits images as binary data. The
.NET platform provides the IFormFile type to manage the received files. However, this
approach introduces a complication, requiring the development of logic for mapping
complex custom data types to a FormData type, which is essentially a collection of
key-value pairs. This task becomes particularly complex when dealing with types that
contain multiple levels of nested structures. As a result, implementing and maintaining
such mapping logic, especially in a generic manner, can pose significant challenges.

3.3.3 Google Maps Platform

All interactions with the Google Maps Platform within the project occur on the fron-
tend. I initiated my work with the Google Maps API by attempting to render a basic
map. There are several methods available for rendering the map, and there are some li-
braries that can assist with this task. One such library is Angular Google Maps (AGM)
[28], which has not seen any commits for over a year as of the time of writing this
document. This library experienced a decline in popularity after the map component
was incorporated into the Angular Material library and became an officially supported
option. Hence, I gave preference to Angular Material.

When I experimented with the map component from the Angular Material library, I
discovered that it utilizes the Google Maps JavaScript API [29], which comes with a
cost [30]. However, I was aware that Google offers similar functionality for free through
the Maps Embed API [31]. All requests made to the Maps Embed API are provided
at no cost and come with unlimited usage [32].

The distinction between APIs lies in the fact that the Maps JavaScript API is more
complex, allowing interaction with the map by writing JavaScript and offering a wider
array of options and configurations. On the other hand, the Maps Embed API is much
simpler – it merely consists of an HTML iframe with a source link that specifies the
location to be displayed. The free tier of the Maps Embed API is entirely sufficient for
this project, which is why I opted for it instead of the Angular Material Google Maps
component.

For the project’s purposes the following requests are required:

. An autocomplete request, which attempts to find a place based on the provided
query string. It should provide place suggestions based on the place name or address
entered by the user. Such requests only return very simple data such as place name,
Google Maps ID, and address.. A Place Details request, which will return detailed information about a place. It
takes the place ID and a list of required data fields that should be returned, such as
latitude, longitude, detailed address, opening hours, and photos.

The next step I did was implementing the place autocomplete functionality. This
feature suggests autocompleted options to users as they type the name or address of

21

3. Implementation .
a place, drawing from known locations on Google Maps. This functionality is facili-
tated by the Google Places API, which offers two versions: the existing Places API
and the newer Places API (New) [33]. According to Google, the new version boasts
enhanced security, efficiency, performance, and features, and recommends its use for
new projects [34]. However, certain endpoints of the new API are labeled as Preview
and are available for use free of charge. As the project implementation progressed, some
of these endpoints have since transitioned to a Stable label. Considering the factors
listed above, I chose to use the new version, which is the Places API (New).

Figure 3.9. Methods in Angular Google Maps service.

The Places API (New) offers a wider range of billing plans, providing increased
flexibility and potential cost savings. This updated API incorporates functionality from
both the existing Places API and Geocoding API, providing a comprehensive suite of
services.

Google’s billing structure is based on the data fields that are queried. Each field
is assigned to a billing tier, and billing is determined by the price of the most expen-
sive field queried. Therefore, it is crucial to only request the necessary data to avoid
unnecessary costs.

Another factor that can contribute to cost savings on requests is the usage of sessions
[35]. Without utilizing sessions, billing is calculated individually for each request. This
becomes particularly significant in the context of autocomplete functionality, where
requests are made with each typed letter. By employing sessions, each autocomplete
request must include a session token, which is a randomly generated UUID (Universally
Unique Identifier). Once a place is identified through autocomplete, a Place Details
request should be made using the same session token. Subsequently, when the session
terminates, it results in charges equivalent to a single Place Details call [36].

22

. 3.4 Backend

Google Maps Platform is currently transitioning some functionality to gRPC. How-
ever, I used the REST API for communication since it is simple, and Google Maps
Platform has not migrated most of endpoints to gRPC yet.

3.3.4 GUI

The graphical user interface was implemented according to a low fidelity prototype.
The GUI screenshots are presented in Appendix B.

3.4 Backend
The .NET backend solution was structured as a Three-Tier application, consisting of
three distinct projects, each representing layers of the Three-Tier architecture. Given
the well-encapsulated layers, the projects can be smoothly transitioned to a microservice
architecture should there be a need for expansion. To achieve this, the library types
of projects should be transformed into executable application types, and appropriate
communication channels should be established.

The subsequent chapters will describe the implementation of each layer and will
highlight aspects related to backend development.

3.4.1 Data Access Layer

The OneDayTrip.DataAccess library project serves as the Data Access Layer (DAL).

Figure 3.10. OneDayTrip.DataAccess project structure.

This project is composed of Entities and Repositories that facilitate access to the
database and file system. It employs the Entity Framework Object–relational mapping
(ORM) for database access, featuring a DB context that configures all tables and their
relationships. The DB context extends the IdentityDbContext, eliminating the need
to manually implement user-related code such as user entity, user role entity and user
claims entity.

23

3. Implementation .

Figure 3.11. POI entity configuration in DB context.

The project employs a code-first approach, whereby the Entity Framework generates
the database schema based on the Entities and DB Context configuration. Essentially,
the database schema is derived from the code. Additionally, this layer supports mi-
grations, a method within the Entity Framework designed to incrementally update the
database schema, ensuring it remains synchronized with the application’s data model
while preserving the existing data in the database.

Figure 3.12. Generated migration that adds TripPlanBlockReactions table.

24

. 3.4 Backend

3.4.2 Business Logic Layer

The OneDayTrip.BusinessLogic library project represents the Business Logic Layer
(BLL). This project contains models and services. It references the OneDayTrip.DataAc-
cess project, allowing services to utilize methods from the DAL. Models can differ from
entities in the Data Access layer, which is why automated generic type mapping was
implemented, with Automapper configuration located in the class AutoMapperProfile.

Services encapsulate business logic, executing complex tasks with the assistance of
the DAL, and performing additional data manipulations. Additionally, there is a service
called JwtService responsible for generating authentication JWT.

Figure 3.13. Token generation method in JWT service.

25

3. Implementation .

Figure 3.14. Searching trip plan with parameters implementation.

3.4.3 Presentation Layer
The OneDayTrip project serves as the main executable and represents the Presentation
Layer. It is a monolithic project that connects all components and manages dependency
injection. This layer contains Controllers and Data Transfer Objects (DTOs). Some
DTOs support validation, implemented with the help of validation attributes. The con-
trollers implement the REST API, consume JSON, and respond with JSON. They also
provide Swagger documentation, adhering to the OpenAPI specification. Additionally,
Controllers utilize .NET Identity for user management. This layer also includes config-
uration for the Reinforced.Typings library, which generates TypeScript contracts from
C# DTOs.

Figure 3.15. DTO validation using validation attributes.

26

. 3.4 Backend

Figure 3.16. List of endpoints in Swagger.

The following chapters will clarify the libraries used and highlight important aspects
of the backend project.

3.4.4 Dependency injection
.NET supports the dependency injection (DI) software design pattern, which is a tech-
nique for achieving Inversion of Control (IoC) between classes and their dependencies.
Dependency injection in .NET is a built-in part of the framework, along with configu-
ration, logging, and the options pattern [37].

Services can be registered with one of the following lifetimes:

. Transient. Transient lifetime services are created each time they’re requested from
the service container.

27

3. Implementation .
. Scoped. For web applications, a scoped lifetime indicates that services are created

once per client request (connection). In apps that process requests, scoped services
are disposed at the end of the request.. Singleton. Singleton lifetime services are created either the first time they’re re-
quested or by the developer when an implementation instance is provided directly
to the container. Every subsequent request of the service implementation from the
dependency injection container uses the same instance.

The OneDayTrip as the main executable project handles dependency injection and
registered dependencies.

Figure 3.17. DAL dependencies registration.

When registering services, it is important to remember and avoid the common “cap-
tive dependency” antipattern. The term “captive dependency” was coined by Mark
Seemann, and refers to the misconfiguration of service lifetimes, where a longer-lived
service holds a shorter-lived service captive [38]. This mismatch can lead to improper
resource management, memory leaks, and unintended behavior because the shorter-
lived service might be disposed of while the longer-lived service still expects it to be
available. This undermines the design principles of dependency injection and can result
in hard-to-debug issues.

The following picture illustrates an example where services couldn’t be made single-
ton because they hold an IUnitOfWork implementation with a scoped lifetime. Con-
versely, the IJwtService doesn’t have any limitations and doesn’t hold state, which is
why it could be made singleton without any issue. Thus, understanding the lifetime
scope of services is crucial for effective implementation.

Figure 3.18. Correct services registration in DI container.

The container is responsible for cleanup of types it creates. Services resolved from the
container should never be disposed by the developer. If a type or factory is registered
as a singleton, the container disposes the singleton automatically.

28

. 3.4 Backend

3.4.5 PostGIS
One of the most important functionalities in the application is searching for places by
departure and destination. Using geographical coordinates (longitude and latitude) re-
trieved from the Google Maps API, it is possible to filter places based on their proximity
to the departure and destination locations. This can be achieved with the help of the
PostGIS extension for PostgreSQL.

PostGIS enhances the PostgreSQL relational database by adding support for storing,
indexing, and querying geospatial data [39]. This extension must first be installed and
enabled in the PostgreSQL database [40].

Figure 3.19. Displayed saved geography data in pgAdmin 4 Geometry Viewer.

In PostGIS It is very common to have data in which the coordinate are “geographics”
or “latitude/longitude”. It is important to understand that geographic coordinates are
not Cartesian coordinates. Geographic coordinates do not represent a linear distance
from an origin as plotted on a plane [41]. Rather, these spherical coordinates describe
angular coordinates on a globe. In spherical coordinates a point is specified by the
angle of rotation from a reference meridian (longitude), and the angle from the equator
(latitude).

Figure 3.20. Visualization of Cartesian and Spherical coordinate systems.

You can treat geographic coordinates as approximate Cartesian coordinates and con-
tinue to perform spatial calculations [41]. However, measurements of distance, length

29

3. Implementation .
and area will be inaccurate. Since spherical coordinates measure angular distance, the
units are in degrees. Furthermore, approximate results from indexes and true/false
tests, such as intersects and contains, can become highly inaccurate. The distance be-
tween points increases significantly in problematic areas, such as near the poles or the
International Date Line.

In GIS, there is an important identifier called the Spatial Reference System ID
(SRID). Every geometric shape has an associated spatial reference system, and each
reference system has an SRID [42]. A common SRID in use is 4326, which represents
spatial data using longitude and latitude coordinates on the Earth’s surface as defined
by the WGS84 standard. This standard is also used for the Global Positioning System
(GPS). Google Maps provides coordinates in the form of longitude and latitude, which
correspond to SRID 4326.

To utilize the functionality of PostGIS with Entity Framework, the NetTopologySuite
library must be installed, and the DB context must be configured [43]. Once this is
done, the PostGIS method Distance will be available for use. In my case, I am sorting
the places by distance from the departure location first, and then by distance from
the destination location, resulting in a list of nearby places relative to the specified
departure and destination locations.

Figure 3.21. Usage of PostGIS with the help of NetTopologySuite library and Entity
Framework.

3.4.6 Storing uploaded files
One of the core functionalities of the project is the ability to upload POI images. There
are multiple solutions for storing uploaded files on the backend. Most modern databases
support file storage directly within the database. Alternatively, files can be stored on
a disk. Each solution comes with its own set of advantages and disadvantages [44].

Storing files in a database offers convenience in terms of data querying and main-
taining data consistency. Conversely, storing files on a disk necessitates additional
effort, including managing CRUD operations, ensuring consistency with the database
state, and upholding security. Tables containing images can be configured for cascade
deletion, ensuring that images are deleted when the associated main entity is deleted.
When opting for filesystem storage, such considerations must be carefully managed.
Additionally, databases can be configured for backups and retention policies, which
may be more challenging with disk storage.

Nevertheless, storing files in a database can lead to database overload and perfor-
mance degradation, particularly with large image files. This can result in slower queries
and increased memory requirements. From a cloud perspective, scaling disk space is
generally easier and more cost-effective than scaling the database.

It is widely accepted to use databases for storing small files, such as profile pictures,
while the filesystem is recommended for larger files. Considering these factors, I have
decided to store POI images on disk. Additionally, for future project enhancement, a
Content Delivery Network (CDN) can be utilized. A CDN is a network of interconnected
servers that speeds up webpage loading for data-heavy applications [45]. When a user

30

. 3.4 Backend

visits a website, data from that website’s server has to travel across the internet to
reach the user’s computer. If the user is located far from that server, it will take a
long time to load a large file. Instead, the website content is stored on CDN servers
geographically closer to the users and reaches their computers much faster.

3.4.7 Data mapping

Due to the separation of layers, a challenge arises regarding data mapping. Each encap-
sulated project possesses its own contracts, which may vary. To address this, I utilized
the AutoMapper library [46]. By simply specifying the types in AutoMapper configu-
ration, all fields with matching names are automatically mapped from the source type
to the destination type. The library is configurable and supports the exclusion of fields,
as well as custom type and field mapping.

Figure 3.22. TripPlanReaction mapping configuration between DAL entity and BLL
model.

3.4.8 Generating TypeScript contracts from C# DTOs

It is a common situation during development that data contracts change rapidly. By
contracts, I refer to DTOs returned by the backend and received by the frontend.
Whenever the contract changes on the backend, the frontend contract must be updated
accordingly. For example, if a field in the backend contract is renamed or deleted, the
frontend will not throw an error, and the field will simply be empty. This can lead to
errors and lack of transparency, making it challenging to maintain consistent contracts.

Using gRPC and Protocol Buffers contracts could solve this problem. However,
I chose not to implement gRPC support because I aimed to make the backend and
frontend communication as quick and straightforward as possible. Adopting gRPC
would have taken more time, as I have not previously used gRPC in Angular projects
and could not dedicate much time to it.

To address this problem, I knew a simple solution in the Reinforced.Typings library
[47]. It offers a straightforward method for generating TypeScript contracts from C#
classes. Once configured, TypeScript contracts will be automatically regenerated with
every backend build.

31

3. Implementation .

Figure 3.23. Trip plan TypeScript contract generation configuration.

Figure 3.24. Generated trip plan contract.

There are more complex solutions available [48]. However, simply generating con-
tracts suffices for the project’s needs and proved to be a rapid and efficient solution.

3.4.9 Unit of Work pattern
The Unit of Work pattern was used on Data Access Layer. This widely adopted design
pattern helps to manage transactions and maintain data consistency in applications.
The Unit of Work pattern is used to manage transactions and ensure that multiple
operations are treated as a single logical unit [49]. It provides a way to group database
operations together, ensuring that they either succeed or fail as a whole. The key
principle behind the Unit of Work pattern is to maintain data consistency and integrity
by committing or rolling back changes in a coordinated manner.

32

. 3.4 Backend

Figure 3.25. Unit of Work pattern visualization.

3.4.10 Security
For application security, which includes authentication and authorization, I used the
.NET Core Identity library. This library provides built-in functionality for user manage-
ment, including registration, authorization, credential validation, password encryption,
and data storage in a database [50]. It also supports configuration of password require-
ments, account blocking, access conditions, and more. Additionally, ASP.NET Identity
is compatible with Entity Framework, enabling the generation of database schema for
user management using the code-first approach.

ASP.NET Identity simplifies and accelerates user management development. Ser-
vices are made available to the application through dependency injection and can be
configured as needed. The following image demonstrates the configuration of ASP.NET
Identity, where password validation parameters are set, a unique email requirement is
enforced, and email confirmation is turned off. The configured ASP.NET Identity is
also provided with an Entity Framework DB context to handle persistence operations.

Figure 3.26. ASP.NET Identity configuration.

After configuring ASP.NET Identity, I developed user registration using the User-
Manager class, which manages user accounts and performs various operations, including
creating or removing user accounts, modifying passwords, and assigning or removing
users from roles.

For sign-in functionality, I used the SignInManager class. After successful authoriza-
tion by Identity, I create a JWT, which is sent as a response. The frontend then sends
this token with each request that must be authorized.

33

3. Implementation .

3.5 Project setup and configuration
Web applications are designed to be deployed and hosted so they can be accessed
by users over the internet. Due to time limitations, the application has not been
deployed yet and has only been tested locally. This section describes how to configure
the application to run on a local computer.

3.5.1 Running the frontend project
To run the frontend project, the following steps must be completed:

1. Install Node.js version 10.5.2 or higher [51].
2. Install Angular CLI version 17.2.1 by running the command npm install -g @an-

gular/cli. Refer to the Angular setup guide for more details [52].
3. Install the project packages by executing the command npm i in the root folder

of the Angular project, which is the OneDayTrip/src/client folder.
4. Obtain a Google Maps API key according to instructions [53].
5. Insert your Google Maps API key into the googleApiKey field in the envi-

ronment.development.ts file located in the OneDayTrip/src/client/src/environments
folder.

6. Execute the ng serve command in the root of the client application folder (One-
DayTrip/src/client) to build and run the frontend project.

3.5.2 Running the backend project
Before running the backend project locally, the database must be set up according to
the following steps.

1. Install PostgreSQL and pgAdmin 4 according to the instructions [54]. During the
pgAdmin installation, ensure you check the PostGIS checkbox to install the PostGIS
extension.

2. Verify that PostGIS is installed. If it is not installed, follow the instructions to
install it [40].

After setting up the database, configure the backend project with the following steps:
1. Install Visual Studio with .NET 8 included [55].

2. Set the database connection string in the appsettings.Development.json file lo-
cated in the OneDayTrip/src/server/OneDayTrip folder, within the ConnectionStrings
section under the OneDayTrip field.

3. In the same file, specify the path to the folder where the images will be uploaded
in the TripPlanImagesDirectory field.

4. Open the project in Visual Studio by double-clicking the OneDayTrip.sln file in
the root of the backend folder (OneDayTrip/src/server/OneDayTrip).

5. Open the Package Manager Console by clicking on the search button and finding
it.

6. In the Package Manager Console, execute the command: Update-Database -Project
OneDayTrip.DataAccess -StartupProject OneDayTrip to run database migrations and
build the relevant database schema.

7. Run the project by clicking on Debug and selecting Start Without Debugging.
By following these steps, you will be able to configure and run the application on

your local computer.

34

Chapter 4
Testing

The purpose of testing in software development is to identify and fix bugs, ensure
the software meets requirements, and verify that it functions correctly under various
conditions. This chapter will describe the project testing, which includes static testing,
manual testing, unit testing, usability testing, and acceptance testing.

4.1 Static testing
Static testing is a method of software testing that analyzes code and identifies issues
without executing the program [56]. Unlike dynamic testing, which focuses on the
behavior of the code during runtime, static testing examines the code itself. It involves
reviewing the source code, analyzing its structure, and identifying potential defects,
vulnerabilities, and compliance issues.

For static testing of the project, I used ReSharper for Visual Studio [57]. It identi-
fies various types of problems, including unused variables, unreachable code, potential
bugs, logical errors, incorrect or missing nullability annotations and more. ReSharper
ensures adherence to coding standards, flags inefficient code patterns that could impact
performance and provides recommendations for code refactoring, helping to maintain
clean, efficient, and maintainable code.

4.2 Manual testing
Manual testing is performed by the tester who carries out all the actions on the tested
application manually, step by step and indicates whether a particular step was accom-
plished successfully or whether it failed [58]. It is especially useful in the initial phase
of software development, when the software and its user interface are not stable enough,
and beginning the automation does not make sense.

The list of test cases for manual testing was created based on functional requirements.
These requirements were grouped by functionality modules and ordered to allow for
sequential execution. The list of test cases performed by the testers is provided in
Appendix C.

For manual testing, a group of five people was assembled. Each tester was provided
with an identical list of test cases to complete. Testing was conducted by different
individuals at various stages of project development. Upon completion of the test
cases, feedback was collected and identified issues were resolved.

The collected information helped to identify and fix bugs. Additionally, it provided
valuable feedback for the project, which affected the development process.

4.3 Unit testing
Unit Testing focuses on testing individual components or units of the code to ensure
each part functions correctly. Individual functions or class methods, classes themselves,

35

4. Testing .
class interactions, small libraries, or parts of an application may be tested [59]. These
tests are automated and help detect errors early in the development process.

Several unit tests were created for the project where appropriate. These unit tests
ensure the consistency of trip plans and their associated images. Given that images are
saved on disk while trip plans are stored in a database, it is essential to handle cases
where saving images or trip plans fails. Trip plans and their images should be saved
together, ensuring that if one fails, neither is saved. Since storing images on disk is
under consideration and may be improved by utilizing a CDN in the future, only the
most critical cases were tested. Other unit tests were deemed unnecessary because they
would involve testing trivial database operations.

4.4 Usability testing and comparison with TripAdvisor
Usability testing evaluates whether the end user understands how to use the product
and how much they enjoy using it [59]. This process involves observing users as they
complete specific tasks, identifying any usability issues, and gathering qualitative and
quantitative data to improve the overall user experience.

To determine if the application offers any advantages over TripAdvisor, a group of
users was asked to find the same functionality on both this bachelor project application
and the TripAdvisor application. They were instructed to locate a trip plan containing
a list of places to visit, their descriptions, and a map showing the locations. The results
indicated that all users found this functionality more quickly on the bachelor project
application than on TripAdvisor, confirming the project’s value and motivation.

Tester Bachelor project application TripAdvisor

1 46 seconds 2 minutes 30 seconds
2 15 seconds 1 minute 10 seconds
3 10 seconds 1 minute 40 seconds
4 52 seconds 4 minutes
5 30 seconds 2 minutes 40 seconds

Table 4.1. Time spent to find trip plan on bachelor project application and the TripAdvisor
application.

Testers were also asked to provide their usability feedback on test cases from Ap-
pendix C. Additionally, half of the users were asked to evaluate the same test cases
using a mobile application simulator. Feedback was collected and a list of suggestions
for improvements was compiled:

. Ensure button colors are consistent. The delete buttons should be red. Currently,
the delete trip plan button on the Bookmarks page is green. Similarly, the cancel
button should be grey, not green. The text in the delete and edit buttons may be
replaced with icons.. Increase the margins between information blocks on the trip plan page.. Add a “view trip plan” button to the trip plan cards, such as those presented on the
search results page.. Change the color of stars indicating the rating to yellow. Currently, they have the
primary color, which is green.

36

. 4.5 Acceptance testing

Based on general user feedback, the application was rated as sufficiently user-friendly
and intuitive. The testing was successful, indicating that the application meets the
necessary usability standards.

4.5 Acceptance testing
Acceptance testing is conducted to verify that the application meets the defined business
requirements and the users’ needs [59]. This type of testing ensures that the system
behaves as expected from an end-user perspective.

Informal acceptance testing was conducted with a selected group of users who tested
the essential and most important functionalities of the application described in test
cases in Appendix C. During this testing phase, the users provided a list of suggested
improvements:

. Improve the primary image selection process on the create and edit trip plan pages.
Currently, each uploaded image has a star button in the corner. When clicked, the
image is marked as primary and will be presented on the search results page. How-
ever, this star button is not intuitive, even with the existing hint, and can be mistaken
for a rating button, which is usually represented by stars. Most testers were confused
about this button. The suggested solution is to add a new section to the create and
edit trip plan pages where users can select a primary image from all uploaded images.
Additionally, the primary image functionality could be implemented for the trip plan
block (POI) of the trip plan.. Add support for users to post multiple comments on a single trip plan. Implement
thread functionality to enable users to engage in discussions and answer each other’s
questions.. Replace Google Maps tags with manually added tags or support editing them. Fre-
quently, place type tags retrieved from the Google Maps API are not human-readable
and can be confusing. Ensure that place type tags are more user-friendly.. Add text formatting support for trip plan and trip plan block descriptions and com-
ments. This will enhance the text visual appeal.. Show users’ private trip plans in search results if they are the author.. When redirecting from POI bookmark to the trip plan page, ensure that the trip
plan page scrolls to the specific POI rather than starting from the beginning of the
page.

The feedback received was invaluable and has been taken into account. This test-
ing was a crucial part of the software development lifecycle, as it confirmed that the
application meets the needs and expectations of its end-users.

37

Chapter 5
Conclusion

This section outlines the experience of designing and developing this bachelor project,
highlighting key aspects of the process. The project’s goals included researching publicly
available travel data sources, proposing architecture, and implementing a web appli-
cation structured around blog functionality, enabling travelers to compose and share
posts (trip plans) detailing their journeys.

The work began with an analysis phase. Application requirements were defined
based on an analysis of existing solutions and the preferences of the target audience. A
Use Cases diagram was created to capture system requirements and visually represent
possible interactions between the system and external entities. A business domain
model was developed to structure the data and visualize the entities, representing the
conceptual view of the system. Additionally, a low fidelity GUI prototype was designed.

During the architecture proposal phase, it was decided to adopt a client-server archi-
tecture due to the application’s small size and the low complexity of the business logic.
To enhance the separation of concerns, the project adopted a Three-Tier architecture
comprising the Presentation Layer, Business Logic Layer, and Data Access Layer.

C# and the .NET platform were selected as the backend technologies, primarily due
to personal experience in developing applications with these tools. For the frontend
implementation, the Angular framework was chosen, again due to prior experience
with this technology.

Due to personal interest and a desire to deepen my understanding, an analysis and
comparison of popular database solutions were conducted. Based on personal expe-
rience and industry statistics, Oracle and Microsoft SQL Server are among the most
popular database engines for enterprise projects. While these engines are highly reli-
able, there is a noticeable trend of migrating projects to PostgreSQL, which is frequently
discussed at various conferences. As a result of this investigation, it became clear that
the primary reason for this trend is the cost of the license, as PostgreSQL is available
free of charge.

The decisive factor in choosing the PostgreSQL database for the project is its abil-
ity to be extended with the PostGIS extension, which offers robust geospatial data
management and a variety of functions to enable GIS processing within the database
itself.

One of the most critical aspects of the project was selecting the appropriate geo-
graphical data provider. The most suitable options were Google Maps and Mapy.cz.
Considering the popularity of the service, the richness of its functionality, and the po-
tential for future project growth, Google Maps was chosen as the primary geographical
data provider.

During the implementation phase, a component diagram was created to visually
represent the project’s architecture. Additionally, a sequence diagram was developed
to illustrate the primary functionality of creating a trip plan, which utilizes both the
Google Maps Platform and the backend.

38

. 5.1 Further prospects of the project

The frontend implementation started with the selection of a component library. Ini-
tially, I opted to utilize the Angular Material component library due to its simplicity
and official endorsement by the Angular Team at Google. However, in the middle of the
project implementation, I encountered limitations within the library that were critical
for the application’s needs. The library lacked essential components such as an image
carousel and a file upload button. After careful consideration, I opted for the PrimeNG
components library and transitioned the project to it. Working with PrimeNG proved
to be an exceptional experience, thanks to its comprehensive suite of components and
extensive configurability. This experience taught me the importance of thoroughly re-
viewing a library’s components before integration. I also realized that such decisions
should be made during the analysis phase rather than the implementation phase.

All interactions with the Google Maps Platform within the project take place on the
frontend. This includes embedded map rendering, autocomplete place search function-
ality, and place details requests. Research was conducted to compare different versions
of Google Maps APIs and their billing structures. Google’s billing is determined by
the data fields queried, making it essential to request only the necessary data to avoid
unnecessary costs. Another cost-saving factor for requests is the utilization of sessions.

The .NET backend solution was structured as a Three-Tier application, consisting of
three distinct projects, each representing layers of the Three-Tier architecture, which
made it well-encapsulated. The Data Access Layer (DAL) project consists of Enti-
ties and Repositories, facilitating access to the database and file system. This project
utilized the Entity Framework ORM and follows a code-first approach, wherein the
Entity Framework generates the database schema based on the Entities and DB Con-
text configuration. The Business Logic Layer project contains models and services,
utilizing methods from the DAL. The Presentation Layer project functions as the main
executable, acting as a monolithic project that connects all components and manages
dependency injection. This layer includes Controllers and DTOs, providing Swagger
documentation in accordance with the OpenAPI specification.

Furthermore, the backend implementation chapter describes the details of imple-
menting the dependency injection software design pattern, along with experiences of
utilizing PostGIS using the NetTopologySuite library in conjunction with the Entity
Framework ORM. It also describes solutions for storing uploaded files on the backend,
data mapping, security, and the usage of the Unit of Work design pattern. Additionally,
it describes the experience of generating TypeScript contracts from C# DTOs with the
assistance of the Reinforced.Typings library.

The final presents an overview of the project’s testing phase, which was carried out
consistently and included a range of methods such as static, manual, unit, usability,
and acceptance testing. The feedback obtained was instrumental in identifying bugs
and improving the project. The testing was a crucial part of the software development
lifecycle, as it confirmed that the application meets the needs and expectations of its
end-users and possesses potential for further growth and improvement.

Considering all these factors, it can be concluded that the bachelor project was
successfully completed, and the project goals are considered to be achieved.

5.1 Further prospects of the project
Based on user suggestions gathered during testing and my personal experience and
knowledge about the project, I have compiled a list of factors that may enhance the
project to production quality:

39

5. Conclusion .
. Deploy the project. Consider using cloud services such as Azure or Amazon. Compare

their free tiers to determine which is more beneficial.. Investigate using a Content Delivery Network (CDN) for POI image storage. This
may provide better data consistency, distribution, and availability.. Improve logging to make it more meaningful.. Assess whether using containers for this project could be beneficial.. Debug database queries generated by Entity Framework to improve performance.. Add caching for frequently used data such as POI types.. Implement administrative functionality such as blocking users and hiding trip plans
from the public. Consider using AI for content validation, censorship, and ensuring
trip plans do not contain inappropriate or harmful content.. Enhance UI theme customization to give the project a polished and professional
appearance.

I plan to continue working on the project as it is an excellent opportunity to expand
my knowledge and gain new experience.

40

Bibliography

[1] Tripadvisor. [online].
https://www.tripadvisor.com. c2023. Accessed: 2023-12-16.

[2] Wanderlog. travel itinerary, vacation & road trip planner [online].
https://wanderlog.com. c2023. Accessed: 2023-10-15.

[3] Plan Your Trip. [online].
https://planyourtrip.com. c2023. Accessed: 2023-12-16.

[4] RoutePerfect. Plan & Book A Perfect Trip With Our Itinerary Planner [online].
https://www.routeperfect.com. c2014-2023. Accessed: 2023-12-16.

[5] Coara. Business Requirements vs Functional Requirements [online].
https://coara.co/blog/business-requirements-vs-functional-requirements.
2020. Accessed: 2023-12-16.

[6] Sparx Systems. Use Case Diagram - UML 2 Tutorial [online].
https://sparxsystems.com/resources/tutorials/uml2/use-case-diagram.html.
c2000-2023. Accessed: 2023-12-17.

[7] Santosh Kumar. A Review on Client-Server based applications and research
opportunity. International Journal of Recent Scientific Research. 2019, 10 (7),
33857–3386.

[8] Appsierra. Software Architecture: N Tier, 3 Tier, 1 Tier, 2 Tier Architecture [on-
line].
https://www.appsierra.com/blog/tiers-in-software-architecture. 2023. Ac-
cessed: 2023-12-17.

[9] Guru99. N Tier(Multi-Tier), 3-Tier, 2-Tier Architecture with EXAMPLE [online].
https://www.guru99.com/n-tier-architecture-system-concepts-tips.html. 2023.
Accessed: 2023-12-17.

[10] Microsoft. C# | Modern, open-source programming language for .NET [online].
https://dotnet.microsoft.com/en-us/languages/csharp. c2023. Accessed: 2023-
12-17.

[11] Stack Overflow Insights. Stack Overflow Developer Survey 2023 [online].
https://survey.stackoverflow.co/2023/#technology-admired-and-desired. 2023.
Accessed: 2023-12-17.

[12] Vadym Rudenko. Bachelor thesis. Design and implementation of a cryptocurrency
market notification application [online].
https://dspace.cvut.cz/handle/10467/108764. c2023. Accessed: 2023-11-12.

[13] Microsoft Learn. Lifecycle FAQ - .NET and .NET Core [online].
https://learn.microsoft.com/en-us/lifecycle/faq/dotnet-core. c2023. Ac-
cessed: 2023-12-17.

[14] Marino Posadas. Mastering C# and. NET Framework. Packt Publishing Ltd,
2016.

41

https://www.tripadvisor.com
https://wanderlog.com
https://planyourtrip.com
https://www.routeperfect.com
https://coara.co/blog/business-requirements-vs-functional-requirements
https://sparxsystems.com/resources/tutorials/uml2/use-case-diagram.html
https://www.appsierra.com/blog/tiers-in-software-architecture
https://www.guru99.com/n-tier-architecture-system-concepts-tips.html
https://dotnet.microsoft.com/en-us/languages/csharp
https://survey.stackoverflow.co/2023/#technology-admired-and-desired
https://dspace.cvut.cz/handle/10467/108764
https://learn.microsoft.com/en-us/lifecycle/faq/dotnet-core

Bibliography .
[15] Andrew W Troelsen, and Philip Japikse. Pro C# 10 with. NET 6: Foundational

Principles and Practices in Programming. Springer, 2022.
[16] Shyam Seshadri. Angular: Up and running: Learning angular, step by step. ”

O’Reilly Media, Inc.”, 2018.
[17] Aristeidis Bampakos, and Pablo Deeleman. Learning Angular: A no-nonsense

guide to building web applications with Angular 15. Packt Publishing Ltd, 2023.
[18] DB-Engines - Knowledge Base of Relational, and NoSQL Database Management

Systems. Historical trend of relational DBMS popularity [online].
https://db-engines.com/en/ranking_trend/relational+dbms. c2023. Accessed:
2023-12-17.

[19] IBM. PostgreSQL vs. MySQL: What’s the Difference? [online].
https://www.ibm.com/blog/postgresql-vs-mysql-whats-the-difference. 2021.
Accessed: 2023-12-17.

[20] Amazon Web Services (AWS). PostgreSQL vs MySQL - Difference Between Rela-
tional Database Management Systems (RDBMS) [online].
https://aws.amazon.com/compare/the-difference-between-mysql-vs-postgresql.
c2023. Accessed: 2023-12-17.

[21] Spatial Post. 11 Best Geospatial Database Systems: An In-Depth Comparison [on-
line].
https://www.spatialpost.com/best-geospatial-database-systems. 2023. Ac-
cessed: 2023-12-17.

[22] Google Maps Platform. Platform Pricing & API Costs - Google Maps Platform
[online].
https://mapsplatform.google.com/pricing. c2023. Accessed: 2023-12-17.

[23] Developer Mapy.cz. Pricing - Developer Mapy.cz [online].
https://developer.mapy.cz/en/pricing. c1996–2023. Accessed: 2023-12-17.

[24] Google Trends. Google Maps, Mapy.cz - Explore - Google Trends [online].
https://trends.google.com/trends/explore?q=Google%20Maps,Mapy.cz&hl=en-US.
c2023. Accessed: 2023-12-17.

[25] Angular. Angular Material [online].
https://material.angular.io. 2024. Accessed: 2024-05-12.

[26] Angular. Google Maps component [online].
https://github.com/angular/components/blob/main/src/google-maps/README.md.
2023. Accessed: 2024-05-12.

[27] PrimeNG. Angular UI Component Library [online].
https://primeng.org. 2024. Accessed: 2024-05-12.

[28] AGM. Angular Google Maps [online].
https://angular-maps.com. 2018. Accessed: 2024-05-12.

[29] Google Maps Platform Documentation. Maps JavaScript API [online].
https://developers.google.com/maps/documentation/javascript. 2024. Accessed:
2024-05-12.

[30] Google Maps Platform Documentation. Maps JavaScript API Usage and Billing
[online].
https://developers.google.com/maps/documentation/javascript/usage-and-
billing. 2024. Accessed: 2024-05-12.

42

https://db-engines.com/en/ranking_trend/relational+dbms
https://www.ibm.com/blog/postgresql-vs-mysql-whats-the-difference
https://aws.amazon.com/compare/the-difference-between-mysql-vs-postgresql
https://www.spatialpost.com/best-geospatial-database-systems
https://mapsplatform.google.com/pricing
https://developer.mapy.cz/en/pricing
https://trends.google.com/trends/explore?q=Google%20Maps,Mapy.cz&hl=en-US
https://material.angular.io
https://github.com/angular/components/blob/main/src/google-maps/README.md
https://primeng.org
https://angular-maps.com
https://developers.google.com/maps/documentation/javascript
https://developers.google.com/maps/documentation/javascript/usage-and-billing
https://developers.google.com/maps/documentation/javascript/usage-and-billing

. .
[31] Google Maps Platform Documentation. The Maps Embed API overview [online].

https://developers.google.com/maps/documentation/embed/get-started. 2024.
Accessed: 2024-05-12.

[32] Google Maps Platform Documentation. Maps Embed API Usage and Billing [on-
line].
https://developers.google.com/maps/documentation/embed/usage-and-billing.
2024. Accessed: 2024-05-12.

[33] Google Maps Platform Documentation. Places API [online].
https://developers.google.com/maps/documentation/places/web-service. 2024.
Accessed: 2024-05-12.

[34] Google Maps Platform Documentation. Choose your API version - Places API
[online].
https://developers.google.com/maps/documentation/places/web-service/choos
e-api. 2024. Accessed: 2024-05-12.

[35] Google Maps Platform Documentation. Session tokens - Places API [online].
https://developers.google.com/maps/documentation/places/web-service/place-
session-tokens. 2024. Accessed: 2024-05-12.

[36] Google Maps Platform Documentation. Autocomplete (New) and session pricing
[online].
https://developers.google.com/maps/documentation/places/web-service/sessio
n-pricing. 2024. Accessed: 2024-05-12.

[37] Microsoft Learn. .NET dependency injection [online].
https://learn.microsoft.com/en-us/dotnet/core/extensions/dependency-inject
ion. 2024. Accessed: 2024-05-12.

[38] Microsoft Learn. Dependency injection guidelines [online].
https://learn.microsoft.com/en-us/dotnet/core/extensions/dependency-inject
ion-guidelines. 2024. Accessed: 2024-05-12.

[39] PostGIS. About PostGIS [online].
https://postgis.net. 2023. Accessed: 2024-05-12.

[40] PostGIS. Getting Started [online].
https://postgis.net/documentation/getting_started. 2023. Accessed: 2024-05-
12.

[41] PostGIS. Geography [online].
https://postgis.net/workshops/postgis-intro/geography.html. 2023. Accessed:
2024-05-12.

[42] Cockroach Lab. SRID 4326 - longitude and latitude [online].
https://www.cockroachlabs.com/docs/stable/srid-4326. 2024. Accessed: 2024-
05-12.

[43] Npgsql - .NET Access to PostgreSQL. Spatial Mapping with NetTopologySuite
[online].
https://www.npgsql.org/efcore/mapping/nts.html?tabs=without-datasource.
2023. Accessed: 2024-05-12.

[44] Stack Overflow. Storing Images in DB - Yea or Nay? [online].
https://stackoverflow.com/questions/3748/storing-images-in-db-yea-or-nay.
2008. Accessed: 2024-05-12.

43

https://developers.google.com/maps/documentation/embed/get-started
https://developers.google.com/maps/documentation/embed/usage-and-billing
https://developers.google.com/maps/documentation/places/web-service
https://developers.google.com/maps/documentation/places/web-service/choose-api
https://developers.google.com/maps/documentation/places/web-service/choose-api
https://developers.google.com/maps/documentation/places/web-service/place-session-tokens
https://developers.google.com/maps/documentation/places/web-service/place-session-tokens
https://developers.google.com/maps/documentation/places/web-service/session-pricing
https://developers.google.com/maps/documentation/places/web-service/session-pricing
https://learn.microsoft.com/en-us/dotnet/core/extensions/dependency-injection
https://learn.microsoft.com/en-us/dotnet/core/extensions/dependency-injection
https://learn.microsoft.com/en-us/dotnet/core/extensions/dependency-injection-guidelines
https://learn.microsoft.com/en-us/dotnet/core/extensions/dependency-injection-guidelines
https://postgis.net
https://postgis.net/documentation/getting_started
https://postgis.net/workshops/postgis-intro/geography.html
https://www.cockroachlabs.com/docs/stable/srid-4326
https://www.npgsql.org/efcore/mapping/nts.html?tabs=without-datasource
https://stackoverflow.com/questions/3748/storing-images-in-db-yea-or-nay

Bibliography .
[45] Amazon Web Services (AWS). What is a CDN (Content Delivery Network)? [on-

line].
https://aws.amazon.com/what-is/cdn/. 2024. Accessed: 2024-05-12.

[46] AutoMapper. [online].
https://docs.automapper.org. 2024. Accessed: 2024-05-12.

[47] Reinforced.Typings. Source code and documentation [online].
https://github.com/reinforced/Reinforced.Typings. 2024.

[48] Alex Klaus. 6+ ways to marry C# with TypeScript [online].
https://alex-klaus.com/marry-csharp-typescript. 2020. Accessed: 2024-05-12.

[49] Medium. Implementing the Unit of Work Pattern in Clean architecture with .NET
Core [online].
https://medium.com/@edin.sahbaz/implementing-the-unit-of-work-pattern-in-
clean-architecture-with-net-core-53efb7f9d4d. 2024. Accessed: 2024-05-12.

[50] Microsoft Learn. Introduction to Identity on ASP.NET Core [online].
https://learn.microsoft.com/en-us/aspnet/core/security/authentication/
identity?view=aspnetcore-8.0&tabs=visual-studio. 2024. Accessed: 2024-05-12.

[51] Node.js. Download Node.js [online].
https://nodejs.org/en/download/prebuilt-installer. 2024. Accessed: 2024-05-
12.

[52] Angular. Setting up the local environment and workspace [online].
https://angular.io/guide/setup-local. 2022. Accessed: 2024-05-12.

[53] Google Maps Platform Documentation. Use API Keys [online].
https://developers.google.com/maps/documentation/embed/get-api-key. 2024.
Accessed: 2024-05-12.

[54] W3Schools. Install PostgreSQL [online].
https://www.w3schools.com/postgresql/postgresql_install.php. Accessed: 2024-
05-12.

[55] Microsoft. Visual Studio [online].
https://visualstudio.microsoft.com. 2024. Accessed: 2024-05-12.

[56] Medium. Understanding Static Testing and Static Code Analysis Tools —
SonarLint [online].
https://receppemul.medium.com/understanding-static-testing-and-static-
code-analysis-tools-sonarlint-23359a8756f3. 2023. Accessed: 2024-05-12.

[57] JetBrains ReSharper. Code analysis [online].
https://www.jetbrains.com/help/resharper/Code_Analysis__Index.html. 2024.
Accessed: 2024-05-12.

[58] SmartBear Support. Manual Testing [online].
https://support.smartbear.com/testcomplete/docs/testing-with/deprecated/
manual/index.html. 2024. Accessed: 2024-05-12.

[59] Svyatoslav Kulikov. Software testing. 3rd edition [online]. 2024. Accessed: 2024-
05-12.

44

https://aws.amazon.com/what-is/cdn/
https://docs.automapper.org
https://github.com/reinforced/Reinforced.Typings
https://alex-klaus.com/marry-csharp-typescript
https://medium.com/@edin.sahbaz/implementing-the-unit-of-work-pattern-in-clean-architecture-with-net-core-53efb7f9d4d
https://medium.com/@edin.sahbaz/implementing-the-unit-of-work-pattern-in-clean-architecture-with-net-core-53efb7f9d4d
https://learn.microsoft.com/en-us/aspnet/core/security/authentication/identity?view=aspnetcore-8.0&tabs=visual-studio
https://learn.microsoft.com/en-us/aspnet/core/security/authentication/identity?view=aspnetcore-8.0&tabs=visual-studio
https://nodejs.org/en/download/prebuilt-installer
https://angular.io/guide/setup-local
https://developers.google.com/maps/documentation/embed/get-api-key
https://www.w3schools.com/postgresql/postgresql_install.php
https://visualstudio.microsoft.com
https://receppemul.medium.com/understanding-static-testing-and-static-code-analysis-tools-sonarlint-23359a8756f3
https://receppemul.medium.com/understanding-static-testing-and-static-code-analysis-tools-sonarlint-23359a8756f3
https://www.jetbrains.com/help/resharper/Code_Analysis__Index.html
https://support.smartbear.com/testcomplete/docs/testing-with/deprecated/manual/index.html
https://support.smartbear.com/testcomplete/docs/testing-with/deprecated/manual/index.html

Appendix A
Low fidelity prototype of GUI

Figure A.1. Desktop registration page prototype.

Figure A.2. Mobile registration page prototype.

45

A Low fidelity prototype of GUI .

Figure A.3. Desktop login page prototype.

Figure A.4. Mobile login page prototype.

46

. .

Figure A.5. Desktop home page prototype.

Figure A.6. Mobile home page prototype.

47

A Low fidelity prototype of GUI .

Figure A.7. Desktop search results page prototype.

Figure A.8. Mobile search results page prototype.

48

. .

Figure A.9. Desktop trip plan page prototype.

49

A Low fidelity prototype of GUI .

Figure A.10. Mobile trip plan page prototype.

Figure A.11. Desktop create new trip plan page prototype.

50

. .

Figure A.12. Mobile create new trip plan page prototype.

Figure A.13. Desktop user’s bookmarks page prototype.

51

A Low fidelity prototype of GUI .

Figure A.14. Mobile user’s bookmarks page prototype.

Figure A.15. Desktop user’s trip plans page prototype.

52

. .

Figure A.16. Mobile user’s trip plans page prototype.

Figure A.17. Mobile user’s account page prototype.

53

A Low fidelity prototype of GUI .

Figure A.18. Desktop user’s account page prototype.

54

Appendix B
GUI

Figure B.19. Desktop registration page.

Figure B.20. Mobile registration page.

55

B GUI .

Figure B.21. Desktop login page.

Figure B.22. Mobile login page.

56

. .

Figure B.23. Desktop home page.

Figure B.24. Mobile home page.

57

B GUI .

Figure B.25. Desktop search results page.

Figure B.26. Mobile search results page.

58

. .

Figure B.27. Desktop trip plan page.

59

B GUI .

Figure B.28. Mobile trip plan page.

Figure B.29. Mobile create new trip plan page.

60

. .

Figure B.30. Desktop create new trip plan page.

61

B GUI .

Figure B.31. Desktop user’s bookmarks page.

Figure B.32. Mobile user’s bookmarks page.

62

. .

Figure B.33. Desktop user’s trip plans page.

Figure B.34. Mobile user’s trip plans page.

63

Appendix C
Test cases

Id 2

Related FRQ-011
requirements

Title Successful registration
Steps Navigate to the “Sign up” page. Perform each of the following

validation tests one by one.
1. Enter a valid username. Username must be between 5 and 20
characters.
2. Enter a valid email address.
3. Enter a valid password. Password must contain at least one
lowercase letter, at least one uppercase letter and at least
one numeric digit. The password minimum length is 8 characters.
4. Repeat the entered password. Ensure the repeated password
matches the initial password.
5. Click on the Sign up button.
6. If error message that user with same username or email already
exists, repeat the attempt with other data.

Expected User account successfully created, and user is logged in.
result Verify successful login by checking existence of “Logout” button

on the navigation bar.

Table C.2. Test case: Successful registration.

Id 5

Related FRQ-013
requirements

Title Logout
Steps To execute this test user must be logged in first.

1. Click on “Logout” button on the navigation bar.
Expected User is logged out. Verify successful logout by checking that

result “Logout” button is not presented on the navigation bar.

Table C.5. Test case: Logout.

64

. .

Id 1

Related FRQ-011
requirements

Title Registration form validation
Steps Navigate to the “Sign up” page. Perform each of

the following validation tests one by one.
1. Open the sign-up page.
2. Leave the username field empty and attempt to submit the form.
3. Enter a username shorter than 5 characters (e.g., abc) and
submit the form.
4. Enter a username longer than 20 characters
(e.g. thisisaverylongusernameexceedingthelimit)
and submit the form.
5. Leave the email field empty and attempt to submit the form.
6. Enter an invalid email format (e.g. invalidemail@) and submit
the form.
7. Leave the password field empty and attempt to submit the form.
8. Enter a password shorter than 8 characters (e.g., Abc123)
and submit the form.
9. Enter a password without any uppercase letters
(e.g., abc12345) and submit the form.
10. Enter a password without any lowercase letters
(e.g., ABC12345) and submit the form.
11. Enter a password without any numeric digits
(e.g., Abcdefgh) and submit the form.
12. Leave the repeat password field empty and attempt
to submit the form.
13. Enter a password to the Repeat password” field
other than password in “Password” field.

Expected 1. Sign-up page is shown.
result 2. Error message Username is required is displayed.

3. Error message Minimum length required: 5 characters
is displayed.
4. Error message Maximum length allowed: 20 characters
is displayed.
5. Error message Email is required is displayed.
6. Error message Invalid email format is displayed.
7. Error message Password is required is displayed.
8. Error message Minimum length required: 8 characters
is displayed.
9. Error message At least one uppercase is displayed.
10. Error message At least one lowercase is displayed.
11. Error message At least one numeric is displayed.
12. Error message Please repeat the password is displayed.
13. Error message Passwords do not match is displayed.

Table C.1. Test case: Registration form validation.

65

C Test cases .

Id 3

Related FRQ-011
requirements

Title Registration failed because user with same email or username
already exists

Steps Navigate to the “Sign up” page. Perform each of the following
validation tests one by one.
1. Enter the username of the existing user.
2. Enter a valid email address.
3. Enter a valid password. Password must contain at least one
lowercase letter, at least one uppercase letter and at least
one numeric digit. The password minimum length is 8 characters.
4. Repeat the entered password. Ensure the repeated password
matches the initial password.
5. Click on the Sign up button.
6. Enter a new valid username. Username must be between
5 and 20 characters.
7. Enter the email address of the existing user.
8. Click on the Sign up button.

Expected After the steps 5 and 8 validation message saying that user
result with same username or email already exists must be shown.

Table C.3. Test case: Registration failed because user with same email or username already
exists.

Id 4

Related FRQ-012
requirements

Title Successful login
Steps Navigate to the “Sign in” page. Perform each of the following

validation tests one by one.
1. Enter the username of the existing user.
2. Enter the correct password associated with the username.
3. Click “Sign in” button.
4. Logout by clicking “Logout” button,
5. Navigate to the “Sign in” page.
6. Enter the email of the existing user.
7. Enter the correct password associated with the email.
8. Click “Sign in” button.

Expected After steps 3 and 8 the user must be logged in. Verify
result successful login by checking existence of “Logout” button on the

navigation bar.

Table C.4. Test case: Successful login.

66

. .

Id 6

Related FRQ-0201, FRQ-0220
requirements

Title Search for a place to visit.
Steps Navigate to the main page.

1. Enter departure place to filter.
2. Enter destination place to filter.
3. Click on “Search” button.

Expected Trip plans displayed in the search results are sorted by
result their distance from the departure and destination points. Trip

plans with locations closest to either the departure or destination
points will appear at the top of the search results, while those
farthest away will be listed at the bottom.

Table C.6. Test case: Search for a place to visit.

Id 7

Related FRQ-0202
requirements

Title View trip plan
Steps Navigate to the main page, fill in the searching filter and

click on “Search” button.
1. Click on any found trip plan.

Expected Trip plan page is opened, and trip plan details are shown.
result

Table C.7. Test case: View trip plan.

67

C Test cases .

Id 8

Related FRQ-0203, FRQ-0204, FRQ-0205, FRQ-0206
requirements

Title Bookmarks management
Steps Open any trip plan page.

1. Add trip plan to bookmarks by clicking the bookmark
button near the trip plan name.
2. Add trip plan block (POI) to bookmarks by clicking the
bookmark button near the POI name.
3. Delete trip plan from bookmarks by clicking the bookmark
button near the trip plan name.
4. Delete trip plan block (POI) from bookmarks by clicking
the bookmark button near the POI name.
5. Repeat steps 1 and 2 to add the trip plan and POI to
bookmarks again.
6. Open the bookmarks page by clicking on “Bookmarks” button
on navigation bar.
7. Delete trip plan from bookmarks by clicking the “Delete”
button on the trip plan card.
8. Delete trip plan block (POI) from bookmarks by clicking
the “Delete” button on the POI card.

Expected Open the bookmarks page by clicking on “Bookmarks” button
result on navigation bar. After steps 1 and 2 check that trip plan

bookmark and trip plan block (POI) bookmark are presented in
the list of bookmarks. After steps 3 and 4 check that the trip
plan bookmark and trip plan block (POI) bookmark are not
presented in the list of bookmarks. After steps 7 and 8 check
that trip plan bookmark and trip plan block (POI) bookmark
are not presented in the list of bookmarks

Table C.8. Test case: Bookmarks management.

68

. .

Id 9

Related FRQ-0209
requirements

Title Comment the trip plan
Steps Open any trip plan page and scroll to the Comment section.

1. Write a comment and save it.
2. Edit the comment and save the changes.
3. Delete the comment.

Expected 1. The comment must be presented in the list of comments.
result 2. The updated comment must be presented in the list

of comments
3. Comment must be deleted from the list of comments.

Table C.9. Test case: Comment the trip plan.

Id 10

Related FRQ-0210, FRQ-0211
requirements

Title Trip plan and trip plan block rating
Steps Open any trip plan page.

1. Rate the trip plan by clicking the rating button near
the trip plan name.
2. Click “Like” button near the POI name.
3. Click “Like” button near the POI name again.
4. Click “Dislike” button near the POI name.
5. Click “Dislike” button near the POI name again.

Expected 1. The given rating must be shown for the trip plan.
result 2. Like must be shown near the POI name.

3. No rating must be shown for the POI.
4. Dislike must be shown near the POI name.
5. No rating must be shown for the POI.

Table C.10. Test case: Trip plan and trip plan block rating.

69

C Test cases .

Id 11

Related FRQ-0213, FRQ-0214, FRQ-0215, FRQ-0216, FRQ-0217,
requirements FRQ-0218

Title Create a trip plan
Steps Open “My Trip Plans” page.

1. Click on “Create” button.
2. Fill the trip plan information.
3. Click the publicity checkbox to make trip plan public.
4. Add POI to trip plan by clicking on add POI button.
5. Fill the POI information. Find the place.
6. Add images to POI in multiple steps. Add images, delete
some of them, add some more.
7. Repeat steps 4, 5, 6 multiple times.
8. Click “Save” button

Expected 1. Trip plan creation page must be shown.
result 4. New trip plan block must be added.

5. After a place was found with a help of autocomplete, it
must be shown on map.
6. Uploaded images must be shown on UI.
8. Trip plan must be created and redirection to trip plan
page must be done. Verify that all filled information is
presented on the trip plan page. Check the post publicity by
searching the trip plan via trip plans search.

Table C.11. Test case: Create a trip plan.

Id 12

Related FRQ-0207
requirements

Title Change the trip plan publicity
Steps Open “My Trip Plans” page. To execute the test trip plan

must be created.
1. Click on “Make public” button on the trip plan card.
2. Click on “Make private” button on the trip plan card.

Expected Check the post publicity by finding the trip plan via trip
result plans search.

1. Trip plan must be presented in trip plan search results.
2. Trip plan should not be presented in trip plan search results.

Table C.12. Test case: Change the trip plan publicity.

70

. .

Id 13

Related FRQ-0213, FRQ-0214, FRQ-0215, FRQ-0216, FRQ-0217,
requirements FRQ-0218

Title Update the trip plan
Steps Open “My Trip Plans” page. For this test trip plan with at

least 2 POIs must exist.
1. Click on “Edit” button.
2. Change the trip plan information.
3. Change the trip plan publicity by clicking on the publicity
checkbox.
4. Delete existing POI block.
5. Change existing POI information.
6. Change existing POI images. This step includes deleting some
existing images and adding additional images.
7. Add POI to trip plan by clicking on add POI button.
8. Fill the POI information. Find the place.
9. Add images to POI in multiple steps. Add images, delete some
of them, add some more.
10. Repeat steps 7, 8, 9 multiple times.
11. Click “Save” button

Expected 1. Trip plan editing page must be shown.
result 4. Place block must be deleted.

6. Uploaded images must be shown on UI. Deleted images should
not be presented.
7. New trip plan block must be added.
8. After a place was found with a help of autocomplete, it must
be shown on map.
9. Uploaded images must be shown on UI.
11. Trip plan must be edited and redirection to trip plan page
must be done. Verify that all changes were applied correctly
and presented on the trip plan page. Check the post publicity
by searching the trip plan via trip plans search.

Table C.13. Test case: Update the trip plan.

71

C Test cases .

Id 14

Related FRQ-0208
requirements

Title Delete the trip plan
Steps Open “My Trip Plans” page. To execute the test

trip plan must be created.
1. Click on “Delete” button on the trip plan card.

Expected Trip plan must be deleted. Verify this by attempting to
result access the trip plan page of the deleted plan.

Table C.14. Test case: Delete the trip plan.

72

Appendix D
Acronyms

ACID . Atomicity, Consistency, Isolation, Durability principles that ensure the re-
liability and integrity of transactions in a database system.

API . Application Programming Interface.
BG . Business Goal.
BLL . Business Logic Layer.
CDN . Content Delivery Network.
CRUD . Create, Read, Update, Delete operations.
DAL . Data Access Layer.
DB . Database.
DI . Dependency Injection.
DTO . Data Transfer Objects.
GIS . Geographic Information Systems.
GPS . Global Positioning System.
GUI . Graphical user interface.
IoC . Inversion of Control.
JWT . JSON Web Token.
ORM . Object–relational mapping.
OS . Operating System.
POI . Point of Interest, place of interest.
SPA . Single-Page Application.
SRID . Spatial Reference System ID.
UI . User Interface.
USD . United States Dollar.

73

	System for blogging and planning one-day tourist trips including points of interest (POI)
	TITLE

	Untitled
	System for blogging and planning one-day tourist trips including points of interest (POI)
	Acknowledgement/Declaration
	Abstrakt/Abstract
	Contents
	Tables/Figures
	Introduction
	Motivation
	Project description
	Target audience
	Research of existing solutions
	TripAdvisor
	Wanderlog
	PlanYourTrip
	RoutePerfect
	Conclusion

	Goals

	Analysis and Architecture
	Application requirements
	Business requirements
	Functional requirements
	Non-functional requirements

	Use Cases
	Business domain model
	Low fidelity prototype of GUI
	Architecture
	Backend technologies
	Frontend technologies
	Database
	External APIs
	Google Maps
	Mapy.cz
	API selection

	Implementation
	Component diagram
	Sequence diagram
	Frontend
	Components library
	Files upload
	Google Maps Platform
	GUI

	Backend
	Data Access Layer
	Business Logic Layer
	Presentation Layer
	Dependency injection
	PostGIS
	Storing uploaded files
	Data mapping
	Generating TypeScript contracts from C\# DTOs
	Unit of Work pattern
	Security

	Project setup and configuration
	Running the frontend project
	Running the backend project

	Testing
	Static testing
	Manual testing
	Unit testing
	Usability testing and comparison with TripAdvisor
	Acceptance testing

	Conclusion
	Further prospects of the project

	Bibliography
	Low fidelity prototype of GUI
	GUI
	Test cases
	Acronyms

