CTU

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

F E E Faculty of Electrical Engineering
Department of Computer Science

Bachelor's Thesis

System for blogging and planning
one-day tourist trips including
points of interest (POI)

Anhelina Rudzenka

May 2024
Supervisor: RNDr. Ladislav Serédi

evuT ZADANI BAKALARSKE PRACE

CESKE VYSOKE
UCENI TECHNICKE
V PRAZE

I. OSOBNI A STUDIJNi UDAJE
4)
PFijmeni: Rudzenka Jméno: Anhelina Osobni &islo: 510637

Fakulta/ustav: Fakulta elektrotechnicka
Zadavajici katedra/ustav: Katedra pocitact

Studijni program: Softwarové inZzenyrstvi a technologie

Specializace: Enterprise systémy)
_
Il. UDAJE K BAKALARSKE PRACI
()

Nazev bakalarské prace:

Blogovaci systém pro zaznam a planovani tras jednodennich vyletii véetné bodu zajmu (POI)

Nazev bakalafské prace anglicky:

System for blogging and planning one-day tourist trips including points of interest (POI)

Pokyny pro vypracovani:

Po prozkoumani stavajicich feSeni, navrhnéte architekturu webové aplikace, ktera bude nabizet uzivatelim moznost
planovat jednodenni vylety.

Prostudujte existujici vefejna APl mapovych aplikaci a jejich potencial pro vyuZiti ve Vasi aplikaci..

Aplikace bude disponovat funkcionalitou blogu, umoznujici cestovatelim detailné popisovat a publikovat své zazitky z
vyletd. Zvefejnéné pFispévky budou strukturované a skladat se z informacnich blok, které charakterizuji mésta, pamatky,
muzea, restaurace a dalsi zajimavé body (POI — points of interest). Pfispévky budou moci obsahovat obrazky a geografické
polohy, propojené s online mapovymi sluzbami. V zavislosti na typu POI bude kazdy blok obsahovat povinna pole k
vyplInéni.

Systém bude schopen pomoct uzivateli pfi planovani vyletd na zakladé jiz viozenych pfispévkul. K tomuto Géelu bude
mozné ulozené prispévky cestovatelll prohledavat a filtrovat. Kdyz timto zplsobem uzivatel najde pro sebe vhodny vylet,
do svych zalozek ulozi relevantni pfispévky nebo pouze vybrané POI.

Aplikaci bude tvofit serverova a klientska ¢ast. Zpravu uzivatel véetné autentifikace zajistuje server. Klientska ¢ast bude
naviena ve formé single page aplikace ve vhodné zvoleném frameworku (napf. Angular). Data se ukladaji do databaze,
pFistupné z back-end, kde bude rovnéz implementovana obchodni logika (business logic).

Na zakladé vaseho navrhu implementujte klicové ¢asti systému takovym zplsobem, aby bylo mozné otestovat klicové
uzivatelské scénare. Vysledky testd vyhodnotte, diskutujte dosazené vysledky, pfipadné i zjisténé nedostatky a mozny
budouci vyvoj aplikace.

Seznam doporucené literatury:

CHAUDHARI, Kinjal; THAKKAR, Ankit. A comprehensive survey on travel recommender systems. Archives of Computational
Methods in Engineering, 2020, 27: 1545-1571.

KYSELA, Jifi. Analysis of usability of various geosocial network POl in tourism. In: Applied Informatics: Second International
Conference, ICAI 2019, Madrid, Spain, November 7-9, 2019, Proceedings 2. Springer International Publishing, 2019. p.
32-42.

ZHAO, Pengpeng, et al. Where to go next: A spatio-temporal gated network for next poi recommendation. IEEE Transactions
on Knowledge and Data Engineering, 2020, 34.5: 2512-2524.

CVUT-CZ-ZBP-2015.1 Stranalz 2 © CVUT v Praze, Design: CVUT v Praze, VIC

4 N
Jméno a pracovisté vedouci(ho) bakalarské prace:

RNDr. Ladislav Serédi kabinet vyuky informatiky FEL

Jméno a pracovisté druhé(ho) vedouci(ho) nebo konzultanta(ky) bakalarské prace:

Datum zadani bakalarské prace: 01.02.2024 Termin odevzdani bakalarské prace: 24.05.2024
Platnost zadani bakalarskeé prace: 21.09.2025

RNDr. Ladislav Serédi podpis vedouci(ho) Ustavu/katedry prof. Mgr. Petr Pata, Ph.D.
podpis vedouci(ho) prace podpis dékana(ky))
(.

ll. PREVZETi ZADANI

Studentka bere na védomi, Ze je povinna vypracovat bakalarskou praci samostatné, bez cizi pomoci, s vyjimkou poskytnutych konzultaci.
Seznam pouzité literatury, jinych pramen(a jmen konzultantd je tfeba uvést v bakalarské praci.

Datum prevzeti zadani Podpis studentky

CVUT-CZ-ZBP-2015.1 Strana 2z 2 © CVUT v Praze, Design: CVUT v Praze, VIC

Acknowledgement / Declaration

I would like to express my gratitude
to RNDr. Ladislav Serédi for agreeing
to serve as thesis advisor, for his help
and advice.

I thank my parents for their support
and unconditional belief in me.

I thank my friends Mikita Citarovic¢
and Veronika Ovsyannikova, who were
always there for me and greatly helped
me in my studies.

I thank my friend Elizabeth Ryzhe-
vich for her support and understanding.

I thank my friend Juri Golomako for
technical advice and experience sharing.

I thank all the teachers, classmates
and colleagues who have helped me dur-
ing my studies.

I hereby declare I have written this
thesis work independently and quoted
all the sources of information used fol-
lowing methodological instructions on
ethical principles for writing an aca-
demic thesis. Moreover, I state that
this thesis has neither been submitted
nor accepted for any other degree.

In Prague, 24. May 2024

Abstrakt

Bakalarska prace je vénovana vytvo-
feni webové aplikace, kterd disponuje
funkcionalitou blogu a umoznuje cesto-
vatelim vytvaret, sdilet a Cist prispévky
(plany cest) popisujici kratkodobé vy-
lety. Tyto prispévky jsou sestaveny z
jednotlivych blok mist, z nichz kazdy
predstavuje konkrétni misto zdjmu (POI
— point of interest), jako jsou muzea,
restaurace, pamatky a dalsi. Uzivatelé
maji moznost vyhledavat plany cest
v jejich blizkém okoli zadanim mista
odjezdu a/nebo cilového mista. Projekt
vyuziva platformu Google Maps jako
zdroj geografickych dat a pro vykresleni
online mapy.

Projekt se zaméfuje na kratkodobé
(jednodenni) plany cest skladajici se
z mist v blizkosti uzivatelova mista
odjezdu a/nebo cilového mista, coz jej
odlisuje od existujicich reseni.

Architektura aplikace byla navrzena
jako monoliticky klient-server, pricemz
byla pouzita tfivrstva architektura se
samostatnou prezentac¢ni vrstvou, vrst-
vou logiky a vrstvou pristupu k dattm.
Klientsky projekt byl vyvinut pomoci
technologie Angular, zatimco serverovy
projekt byl vyvinut pomoci technologii
NET.

Aplikace prosla neformélnim manual-
nim testovanim a akceptacnim testova-
nim.

Klicova slova: blogovaci systém,
planovani vyletiu, body zajmu, mista
zajmu, cestovani, klient-server, REST,
API, NET, C#, Angular, PostGIS,
PostgreSQL, Google Maps Platform,
backendova aplikace, frontendova apli-
kace.

Preklad titulu: Blogovaci systém pro
zéznam a planovani tras jednodennich
vylet véetné bodu zadjmu (POI)

/ Abstract

The bachelor thesis is dedicated to
creating a web application built on
blog functionality, allowing travelers
to create, share and read posts (trip
plans) describing short-term journeys.
These posts are constructed using dis-
crete places blocks, each representing
a specific place of interest (POI), such
as museums, restaurants, monuments,
and more. Users have the capability to
search for trip plans in their nearby area
by providing the departure and/or des-
tination locations. The project utilizes
the Google Maps Platform as a source
of geographical data and for rendering
the online map.

The project focuses on short-term
(one day) travel plans consisting of
places near the user’s departure and/or
destination locations, which makes it
different from existing solutions.

The application’s architecture was
designed as a monolithic client-server,
adopting a Three-Tier architecture with
separate Presentation Layer, Business
Logic Layer, and Data Access Layer.
The client project was developed using
Angular, while the server project was
developed using .NET technologies.

The application underwent informal
manual and acceptance testing.

Keywords: POI, place of inter-
est, travelling, trip planning, blog,
lient-server, REST, API, .NET, C#,
Angular, PostGIS, PostgreSQL, Google
Maps Platform, backend, frontend.

Contents

/

31

.32

33

1 Introduction 1 3.4.8 Generating TypeScript
1.1 Motivation 1 contracts from C# DTOs .
1.2 Project description 1 3.4.9 Unit of Work pattern
1.3 Target audience. 2 3.4.10 Security
1.4 Research of existing solutions . .2 3.5 Project setup and configu-
1.4.1 TripAdvisor 2 ration
1.4.2 Wanderlog 3 3.5.1 Running the frontend
1.4.3 PlanYourTrip 3 project
1.4.4 RoutePerfect 4 3.5.2 Running the backend
1.4.5 Conclusion 4 project
1.5 Goals 4 4 Testing

2 Analysis and Architecture 5 4.1 Static testing
2.1 Application requirements5 4.2 Manual testing
2.1.1 Business requirements5 4.3 Unit testing
2.1.2 Functional requirements . . . 5 4.4 Usability testing and com-

2.1.3 Non-functional re- parison with TripAdvisor

quirements 7 4.5 Acceptance testing
22 UseCases 7 5 Conclusion
2.3 Business domain model 9 5.1 Further prospects of the

2.4 Low fidelity prototype of GUI . . 9

project
2.5 Architecture 10 Bibliography
2.6 Backend technologies 10
2.7 Frontend technologies 11 A Low fidelity prototype of GUI
2.8 Database 11 B GUI
2.9 External APIs 13 C Test cases
2.9.1 Google Maps 13
2.9.2 Mapi.cz 13 D Acronyms
2.9.3 API selection 13
3 Implementation 15
3.1 Component diagram 15
3.2 Sequence diagram 16
3.3 Frontend 17
3.3.1 Components library 19
3.3.2 Files upload 21
3.3.3 Google Maps Platform . . . 21
334 GUL. 23
3.4 Backend 23
3.4.1 Data Access Layer 23
3.4.2 Business Logic Layer 25
3.4.3 Presentation Layer 26
3.4.4 Dependency injection . . . 27
3.4.5 PostGIS 29
3.4.6 Storing uploaded files . . . 30
3.4.7 Data mapping 31

2.1

4.1

C.2

C.5
C.1

C3

C4

C.6

C.7
c8

c.9

c.10

C.11
C.12

C.13

C.14

Tables

Key differences between

MySQL and PostgreSQL 12
Time spent to find trip plan

on bachelor project appli-

cation and the TripAdvisor
application...................... 36
Test case: Successful regis-
tration oLl 64
Test case: Logout 64
Test case: Registration form
validation 65
Test case: Registration failed
because user with same email

or username already exists. 66
Test case: Successful login. 66
Test case: Search for a place

to visit. .« 67
Test case: View trip plan 67
Test case: Bookmarks man-
agement................oolL 68
Test case: Comment the trip
plan.......... ...l 69
Test case: Trip plan and trip

plan block rating 69

Test case: Create a trip plan .. 70
Test case: Change the trip

plan publicity................... 70
Test case: Update the trip
plan ... 71

Test case: Delete the trip plan . 72

/ Figures

Vi

3.10

3.11

3.12

3.13

3.14

3.15

3.16
3.17

3.18

1.1 Trip plan page with places

blocksoviiiii
Use Cases actors
Account management Use

2.1
2.2

2.3
2.4
2.5

Trip planning Use Cases
Business domain model
DB-Engines Ranking of Re-
lational database engines
Global popularity compar-
ison between Google Maps
and Mapy.cz....................
Comparison of Google Maps
and Mapy.cz popularity in
Czech Republic.................
Component diagram
Sequence diagram illustrat-
ing trip plan creation
Suggested places example......
Authorization guard
Authentication interceptor.....
SafeUrlPipe and its usage......
PrimeNG gallery view
PrimeNG file upload compo-
nent customized with gallery
view and actions
Methods in Angular Google
Maps service.........ooevenen...
OneDayTrip. DataAccess
project structure
POI entity configuration in
DB contextooll
Generated migration that
adds TripPlanBlockReactions
table ...
Token generation method in
JWT service
Searching trip plan with pa-
rameters implementation
DTO validation using valida-
tion attributes..................
List of endpoints in Swagger ..
DAL dependencies registra-
tion
Correct services registration
in DI container

2.6

2.7

3.1
3.2
3.3
3.4
35
3.6
3.7
3.8

3.9

Vii

3.19 Displayed saved geography
data in pgAdmin 4 Geometry

Viewer ...

3.20 Visualization of Cartesian
and Spherical coordinate sys-

3.21 Usage of PostGIS with the
help of NetTopologySuite li-

brary and Entity Framework ..

3.22 TripPlanReaction mapping
configuration between DAL

entity and BLL model

3.23 Trip plan TypeScript con-

tract generation configuration .
3.24 Generated trip plan contract ..

3.25 Unit of Work pattern visual-

ization ...,

3.26 ASP.NET Identity configura-

tion ...

A.1 Desktop registration page

prototype ...l

A.2 Mobile registration page pro-

A.3 Desktop login page prototype .
A.4 Mobile login page prototype...
A.5 Desktop home page prototype .
A.6 Mobile home page prototype ..

A.7 Desktop search results page

prototype ...l

A.8 Mobile search results page

prototype ...l

A.9 Desktop trip plan page pro-

A.10 Mobile trip plan page proto-

TypPe « oo

A.11 Desktop create new trip plan

page prototype

A.12 Mobile create new trip plan

page prototype

A.13 Desktop user’s bookmarks

page prototype

A.14 Mobile user’s bookmarks

page prototype

A.15 Desktop user’s trip plans

page prototype

30

32
32

46
47
47

viii

A.16

A.17

A.18

B.19
B.20
B.21
B.22
B.23
B.24
B.25
B.26
B.27
B.28
B.29

B.30

B.31

B.32

B.33
B.34

Mobile user’s trip plans page

prototype ...l 53
Mobile user’s account page
prototype ...l 53
Desktop user’s account page
prototype ...t 54
Desktop registration page...... 55
Mobile registration page 55
Desktop login page............. 56
Mobile login page 56
Desktop home page o7
Mobile home page.............. 57
Desktop search results page ... 58
Mobile search results page..... 58
Desktop trip plan page 59
Mobile trip plan page 60
Mobile create new trip plan

PAZE e e 60
Desktop create new trip plan
PAGE . et 61
Desktop user’s bookmarks

PAGE ..o et 62

Mobile user’s bookmarks page . 62
Desktop user’s trip plans page . 63
Mobile user’s trip plans page .. 63

Chapter 1
Introduction

B 1.1 Motivation

The idea of this project was born during a trip to a city Mélnik in Czech Republic. This
trip has led me to the thought that many people who would like to travel and explore
tourist attractions may face the same problem as me, which is a lack of time for trip
planning and the trip itself.

I concluded that having a source of information about nearby tourist destinations,
just a short distance from our homes, would be helpful, offering users trip guides suitable
for a weekend or a day visit. The user could enter their departure location and the
service could then provide suggested trip plans in the nearby area consisting of places
of interest (POI) such as museums, castles, restaurants and more, along with detailed
descriptions for each.

I also suppose that there are active tourists who would like to document their travel
experiences and recommend lesser-known places to others. Such individuals might be
interested in sharing their insights through such a service.

Based on my experience, I haven’t come across any popular solutions that offer
travel guides. While there are numerous services providing place ratings, suggestions,
and paid guided tours, I have never come across solutions which publicly offer travel
guides comprised of places and their detailed descriptions. Additionally, I have never
encountered services specifically focused on short-term one-day or weekend trips. Such
guides could help to explore unknown places nearby and make lives more diverse.

There are different ways to create such a service and one of them is a web application.

I 1.2 Project description

The web application is structured around blog functionality, enabling travelers to com-
pose and share posts (trip plans) detailing their journeys. These posts are constructed
using discrete places blocks, each representing a specific place of interest (POI), such
as museums, restaurants, monuments, and more. Concrete places will be linked to ex-
ternal service, allowing users to access detailed information and utilize the online map
by navigating to this external service.

Users planning their trips can conveniently search for trip plans by filtering them
based on their proximity to either the starting point or the destination. Furthermore,
users have the option to bookmark trip plans that satisfy their interest or save concrete
places of interest to bookmarks for future reference. Users can revisit their bookmarks
later and leverage them to create their own travel itineraries.

The app has a social aspect, enabling users to share their trip plans publicly, making
them accessible to other users. Published travel plans will be available to the public for
the benefit of other users. Additionally, users can rate trip plans and places, as well as
leave comments on trip plans.

1. Introduction

Trip Plan Page

Q0 X Er &
Home My Plans Bookmarks g
Trip Plan Trip Plan Name
Kk et

Trip Plan Block / & unor
Created date

Place Block / POl L.upacteaes
POI Type

rating +10

POI Name 4 Increase rating
POI address

L «

Working hours
B e e

 Decrease rating

e G A SIS 4 AP B AL S8 G
e G 90 Son (g S g tea. eI it

. G 4 T 6 104 U SO S S Sete
A . A 56 SIS 4SS G A A

POI Type

rating +10

4 Increase rating

e
 Decrease rating

POl Type

rating +10

A Increase rating

| Decrease rating

Figure 1.1. Trip plan page with places blocks.

I 1.3 Target audience

Target audience is travelers:
m Who want to document their journeys and share experience with the public.
m Who plan their journeys and lookup for a source of other travelers’ knowledge.
m Who are searching for places to explore.
m Who have limited time for their trip.
In summary, the primary target audience for the application consists of people who
want to travel or are already traveling.

I 1.4 Research of existing solutions

There are numerous travel-related services. The following sections will describe the
advantages and disadvantages of the popular services that encompass functionality
relevant to the project concept.

Bl 1.4.1 TripAdvisor

TripAdvisor is a travel-focused website with a vast database of POIs a places reviews
[1]. The site also hosts a tours marketplace and a traditional forum where users engage
in discussions about various travel-related topics. However, the website suffers from an

overloaded interface.

Advantages:

m Vast POIs database.

m Big community.

m Guided tours marketplace.

m Suggest POIs nearby.

m Bookmarks functionality.

m Have travel guides written by users.

m During the development of this bachelor project, TripAdvisor introduced a beta ver-
sion of a feature that assists in creating trip plans with the help of Al

Disadvantages:

m The application is overloaded with functionality and navigation, making it challeng-
ing to interact with and find the necessary information. For instance, navigation bar
differs between the main page, city-specific pages, and POlIs pages.

m While the city pages feature paid guided tour recommendations available on a mar-
ketplace, there is a notable absence of suggestions for free trip plans. Users can only
access these free travel guides written by users through a manual search, making
them less discoverable.

l 1.4.2 Wanderlog

Wanderlog is a travel planning and itinerary management platform that assists users
in creating and organizing their trips, providing features for mapping out routes, dis-
covering points of interest, and optimizing travel plans [2]. The platform also has
features for reservations and expense tracking, complemented by travel guides and map
views. However, there is a minor bug in the like function and a lack of bookmark
functionality.

Advantages:

m Complex tool for planning. Users can add flights, hotel, car reservations, build
itinerary, leave notes, and plan expenses.

m Travel guides.

m Great map view.

m Integration with trip advisor and google maps.

Disadvantages:

m Error in the like function. When you press the like button, the number of likes
decreases. If there were no likes on the post, the number of likes becomes negative.

m No option to save guide to bookmarks.

m POI can’t be saved to bookmarks standalone. It can only be added to the existing
guide.

l 1.4.3 PlanYourTrip

PlanYourTrip is a free itinerary planning tool offers users the ability to personalize
their trips with advantages including estimated budget information and a map view,
but it has a restricted list of destinations, relies on company-created guides without
user-generated content, and has limited functionality [3].

Advantages:

m Estimated budget for proposed trip.
m Map view.

Disadvantages:

m Limited list of destinations.

m The company offers and publishes its own guides, lacking authentic user-generated
content.

m Poor functionality.

m Recommendations for attractions but not restaurants options.

B 1.4.4 RoutePerfect

RoutePerfect is a travel tool that helps users plan trips based on their preferences and
budget, offering route advice, hotel suggestions, and booking integration [4]. The tool
can interact with users through an Al-powered chat interface. However, it requires a
minimum trip duration of four days and lacks user reviews.

Advantages:

m Advise road from starting point to destination with road full of places of interest.
m Hotel suggestions and integration with booking services.
m Unique nontrivial places suggestions.

Disadvantages:

m Can’t set duration less than four days.
m Absence of content created by real users.

B 1.4.5 Conclusion

None of the services mentioned above are solving exactly the same problem that I aim
to tackle with the current project. The project must be focused on short-term travel
plans consisting of places close to the user’s departure location.

Considering all the features and characteristics of existing solutions, a decision has
been made that the application will meet the following requirements:

m A simple and straightforward navigation, understandable even to inexperienced users

m The application will specialize in one day trips.

m A bookmarks functionality that provides the ability to save POIs or other users public
guides.

The best aspects of existing solutions must be considered and known disadvantages
must be avoided.

I 1.5 Goals

The primary goal of the project is to create a web application built on blog functionality,
allowing travelers to create, share and read posts (trip plans) describing short-term
journeys. Additionally, users must have the capability to search for trip plans in their
nearby area by providing the departure and/or destination locations. This involves
proposing the application’s architecture and researching publicly available travel data
sources.

Key Objectives:

m BG-1 Research publicly available travel data sources.
m BG-2 Suggest web application architecture.
m BG-3 Create a web application.

Chapter 2
Analysis and Architecture

I 2.1 Application requirements

The purpose of this section is to define and describe the project requirements which are
based on existing solutions analysis and target audience’s preferences. The requirements
are categorized into three groups [5]:

m Business requirements (BRQ) refer to tasks that are needed to fulfil to achieve a
high-level objective. Explain what the result of a business goal should look like.

m Functional requirements (FRQ) define how a system needs to operate to achieve a
business goal. Require an action to be taken by a person, system, or process.

m Non-functional requirements (NFR) define attributes or characteristics that the final
solution needs to have.

Certain requirements will be designated as optional, as they are not essential to the
core functionality and do not impede its operation. The primary emphasis is placed on
the trip plans management functionality.

Il 2.1.1 Business requirements

m BRQ-01 Account management: The user must have the capability to manage their
accounts.

m BRQ-02 Trip planning functionality: The user must possess the ability to read pub-
lished posts (trip plans) describing short-term journeys and manage their own trip
plans. Users must have the capability to search for trip plans in their nearby area
by providing the departure and/or destination locations. Additionally, users must be
able to save trip plans and POI they liked to bookmarks and revisit their bookmarks
later.

Bl 2.1.2 Functional requirements
FRQ-01 Account management:

m FRQ-011 Registration: The unregistered user should possess the capability to regis-
ter.

m FRQ-012 Login: The registered user must be able to log in with credentials including
email and password.

m FRQ-013 Logout: The authorized user must have the option to log out.

m FRQ-014 Change password (optional): The authorized user must be capable of chang-
ing their password.

m FRQ-015 Delete account (optional): The authorized user must have the ability to
delete their account.

m FRQ-016 Change profile information (optional): The authorized user must possess
the ability to change their profile information, including their username and email.

m FRQ-017 Review received ratings statistics (optional): The authorized user must be
able to review ratings of their public trip plans.

m FRQ-018 Review given ratings (optional): The authorized user should possess the
capability to review the ratings they gave to other users’ trip plans.

FRQ-02 Trip planning functionality

m FRQ-0201 Search place to visit: The user (authorized and unauthorized) must be
able to search for places nearby and trip plans created by other users. This must be
accomplished by providing the departure and/or destination locations.

m FRQ-0202 View trip plan: The user (authorized and unauthorized) should possess
the capability to view public trip plans from search result.

m FRQ-0203 Add the trip plan to bookmarks: The authorized user must have the
ability to save the public trip plans they like to their bookmarks.

m FRQ-0204 Add the POI to bookmarks: The authorized user must have the capability
to save POlIs they like to their bookmarks.

m FRQ-0205 Delete the trip plan from bookmarks: The authorized user must have the
ability to delete the trip plans from their bookmarks.

m FRQ-0206 Delete the POI from bookmarks: The authorized user must have the
capability to delete POIs from their bookmarks.

m FRQ-0207 Make the trip plan public: The authorized user must be able to make
their trip plan public or keep it private. Public trip plans will be available for search
by other users, including those who are unauthorized.

m FRQ-0208 Delete the trip plan: The authorized user should be able to delete a trip
plan they’ve created.

m FRQ-0209 Comment the trip plan: The authorized user must have the capability to
comment on public trip plans.

m FRQ-0210 Rate a trip plan: The authorized user must have the ability to rate trip
plans created by other users.

m FRQ-0211 Rate the place block: The authorized user must have the ability to rate
place blocks created by other users.

m FRQ-0212 Create a trip plan: The authorized user must have the ability to create a
trip plan.

m FRQ-0213 Update the trip plan: The authorized user must have the capability to
update their previously created trip plan.

m FRQ-0214 Add the place block to the trip plan: The authorized user must possess
the ability to add a block describing the place of interest to their trip plan.

m FRQ-0215 Update the place block in the trip plan: The authorized user should be
able to update the place block, containing information about POI, within their trip
plan.

m FRQ-0216 Delete the place block from the trip plan: The authorized user must have
the ability to delete the place block from their trip plan.

m FRQ-0217 Select POI from external API to add it to place block: Authorized user
must be able to find POI provided by external API and add it to the place block in
their trip plan.

m FRQ-0218 Create POI manually to add it to place block: The authorized user must
have the capability to manually create a POI if it is not found in external API data.
They can then add it to the place block within their trip plan.

m FRQ-0219 Add POI to place block from bookmarks (optional): The authorized user
must be able to select POI from their bookmarks and add it to the place block in
their trip plan.

m FRQ-0220 Pagination: The system must paginate search results.

B 2.1.3 Non-functional requirements

m NFR-01 Swagger documentation: The application must provide swagger REST API
documentation for development purposes.

m NFR-02 System performance: The application can be used by several users simulta-
neously.

m NFR-03 User friendly interface: The application must have clear navigation and
understandable UL.

m NFR-04 Support by popular browser: The application must work correctly in Google
Chrome, Firefox, and Microsoft Edge browsers.

m NFR-05 Linux hosting server support: The application should function properly
when deployed on a Linux server.

I 2.2 Use Cases

This section is dedicated to Use Case diagram. A Use Case diagram captures the
requirements of a system and offers a visual representation of the possible interactions
between the system and entities external to the system [6]. These external entities are
referred to as actors. Actors represent roles which may include human users, external
hardware, or other systems.

The system involves the following actors:

m User — represents both authorized and unauthorized application users. Unauthorized
users have limited access to application functionality which is searching for travel
plans and viewing them.

m Authorized user — an individual who has logged into the application.

m Regular user — an authorized user without access to administrative functionality.

m Admin user — a user with access to administrative functionality. This user can ap-
prove and manage other users’ posts and is responsible for ensuring that all users
comply with the rules of conduct and public order. Nevertheless, it’s important to
note that administrative functionality will not be implemented within the scope of
the bachelor project.

uc Actors

~—

Regular User

\ — —
I \ (\
A\ / LY /
W\ el ot
FAY [: FA
/ AY

J AY
P / A
() Authorized user User
L

Figure 2.1. Actors.

2. Analysis and Architecture

uc Account Management Use Case Diagram /

uco4 Change
password (optional)

UCo5 Delete account uCo6 Change profile

(optional) information [optional)

UC01 Register uco2 Log in
ratings statistics

UC03 Log out
\ (optional)

User

UC08 Review given
ratings (optional)

Authorized user

Figure 2.2. Account management Use Cases.

uc Trip planning Use Case diagram /

UC23 Delete the trip
plan from bookmarks

UC24 Add the POl to UC25 Add the trip
bookmarks plan to bookmarks

UC26 Comment trip
plan

UC11 Rate the trip

plan

UC22 Delete the POI
from bookmarks

UC12 Rate place block

Uc21 Make the trip /Authomed user

plan public

UC13 Create a trip plan

UC16 Delete the place

UC20 Delete the trip UC14 Update the trip

plan plan
7 A
- -
- ~
~
wextend» ~a
wextend» _
UC19 Update place
block
UC09 Search place to s X AN
visit L : S
td | ~
<cincl’ude>3 aincludes winclude»
.) -
s N
[z ')

UC10 View trip plan

UC17 Select POI from UC18 Create POI UC27 Select POI from

external APl manually bookmarks (optional)

Figure 2.3. Trip planning Use Cases.

2.3 Business domain model

I 2.3 Business domain model

For data structurization and entities visualization the business domain model was cre-
ated. The business domain model represents the conceptual view of the system and
focuses on the key concepts, entities, and relationships within the business domain,
without getting into technical details. It describes the core concepts of the business
and the relationships between them.

A TripPlan class represents an entire blog post that consists of multiple places blocks
(PlaceBlock). Each place block represents one POIL Such a block may have images
(Placelmage) and text about an experience of traveling to the place. Users may rate
the entire post (TripPlanReaction) or standalone blocks (PlaceBlockReaction).

The POI class represents a place linked to Google Maps. The Point of Interest (POI)
includes an address as a string. This address is not stored in a separate table because it
is only used for display purposes on the user interface. There is no need to decompose
the address into a standalone type, as all geographical operations are handled using the
Google Maps ID, latitude, and longitude, rather than the address string.

class Business Domain Model ~

Poilmage

0.14_ path: string
- ContentType: string
- FileExtension: string

Primary image

0.*
0.1

TripPlanReaction

- Comment: string

- Rating:int

- RatingTimestamp: dateTime

- CommentTimestamp: dateTime

TripPlan

wenumeration»
UserRole

Admin
Regular

sPublic: boolean
- Name: string
- Description: string

“| - CreationDate: dateTime

- LastModifiedDate: dateTime

POI

TripPlanBlock

- GoogleMapsld: string

0.* 0.*

User

- Email: string
- Username: string

Author

AN Description: string

- Address: string
0.* 1|- Name:string
- Latitude: long

PO type is class, because ‘
Security (password, salt Author Bookmark Author ‘we need an ability to add
and etc.} is not illustrated new types fast and easy
on this diagram. without code redeploy
0.+

0.

- Longitude: long

0.*

TripPlanBlockReaction

POIType

- Role: UserRole

0.*%| "~

sLiked: boolean
RatingTimestamp: dateTime

- Name: string

Figure 2.4. Business domain model.

The User can have the role of an administrator or a regular user. Nevertheless, in
this project, administrative functionality will not be implemented.

I 2.4 Low fidelity prototype of GUI

The application must demonstrate adaptability, ensuring optimal presentation on both
desktop and mobile devices. A low-fidelity prototype of the web application is presented
in Appendix A.

I 2.5 Architecture

Due to the small size of the application and the low complexity of the business logic, a
client-server architecture was chosen.

The client-server architecture is a system model involving client and server systems
communicating over a network. Clients continuously connect to servers and send re-
quests, while servers listen for and respond to requests from multiple clients [7]. In the
current project, the frontend will act as the client, and the backend will function as the
server.

In order to enhance the separation of concerns, the project will adopt a Three-Tier
architecture that encompasses the following application layers [8-9]:

m The Presentation Layer is visible to the user. The user gives the inputs and instruc-
tions through this, and the output is also displayed on it. This layer encompasses
the Angular frontend application and the backend API (Controllers). Furthermore,
the frontend within this layer will use the external geographical data provider APIL.

m The Business Logic Layer contains models and logic, offering essential functionality
to the application. This layer coordinates the application, processes commands,
makes logical decisions and evaluations, and performs calculations. It also acts as an
intermediate between the presentation and the data layer. Backend logic belongs to
this layer.

m Data Access Layer stores and retrieves information from the database or filesystem.
The retrieved data is then passed back to the logic tier for processing. Data manip-
ulation on the backend belongs to this layer.

I 2.6 Backend technologies

There are numerous programming languages that allow the development of the backend
for web applications and every language has its pros and cons. The programming
language C# and the .NET platform were selected as the primary technologies for
backend implementation. The primary reason for this is that I have sufficient experience
in developing applications using this technology.

C# is a modern, open-source, cross-platform, strongly typed object-oriented pro-
gramming language and one of the top 5 programming languages on GitHub and is
consistently one of the most loved languages on Stack Overflow’s developer survey
[10-11]. It has a lot of syntactic sugar, which makes it very convenient and fast to de-
velop with. A comparison of C# and Java was made by my colleague Vadym Rudenko
in his bachelor project [12].

The .NET is a cross-platform and open-source set of runtime, library and compiler
components which can be used in various configurations for building web, desktop, and
mobile applications [13].

There still exists a misconception that C# and .NET are not cross-platform. This
delusion is often mentioned when comparing C# to other programming languages.
The brief history of the platform below will explain the origin of this misconception
and dispel it.

The .NET platform evolution starts in 2002 with the .NET Framework which had
a limitation of running exclusively on Windows operating systems [14]. This implies
that web applications could only be hosted on Windows servers. In response to the
framework’s limitation, a new version named .NET Core was released in 2016. It was
no longer limited to running on Windows OS. Both versions of the platform continued

10

2.7 Frontend technologies

to develop in parallel. With the release of NET 5 in 2020, the “Core” part of the name
was dropped, and the new platform versions were simply referred to as .NET [15].

I 2.7 Frontend technologies

Single-Page Applications (SPAs) have become a very common choice in building out
frontend, as they allow for great customer experiences in terms of speed and respon-
siveness [16]. Once the application has loaded into a customer’s browser, further inter-
actions only have to care about loading the additional data needed, without reloading
the entire page.

The most popular SPAs frontend libraries according to Stack Overflow are React,
Vue and Angular [11]. For this project, the Angular framework will be used due to my
prior experience with this tool.

Angular enables developers to build scalable web applications with TypeScript, a
strict syntactic superset of JavaScript [17]. Angular is based on the most modern
web standards and supports all modern browsers. The power of the Angular platform
is based on the combination of the following characteristics: cross-platform, advanced
tooling, easy onboarding and worldwide usage.

I 2.8 Database

For the project’s objectives, a relational database is the most suitable choice. At the

time of writing this thesis, the most widely favored database management systems are
[18]:

m Oracle.

m MySQL.

m Microsoft SQL Server.

m PostgreSQL.

m Microsoft Azure SQL Database.

—~— Oracle
— MysQL
Microsoft SQL Server
PostgreSQL
— IBM Db2

— Snowflake
100 sqLite
—_— » — Microsoft Access
— MariaDB
/\I\[/Jj/ Databricks
Microsoft Azure SQL Database

— Hive

Google BigQuery
FileMaker
— Teradata

Score (logarithmic scale)
)

0.1 © May 2024, DB-Engines.com
2014 2016 2018 2020 2022 2024

Figure 2.5. DB-Engines Ranking of Relational database engines [18].

11

Oracle, Microsoft SQL Server, and its cloud-based version Microsoft Azure SQL
Database are highly reliable database engines widely utilized by large enterprise com-
panies. Nevertheless, they are all commercial solutions with a very significant cost of
licensing. While they offer free initial plans with limited functionality, as the project
scales, the licensing fees can become prohibitively expensive.

MySQL is a fast, reliable, scalable and easy-to-use open-source relational database
system designed to handle mission-critical, heavy-load production applications [19]. It
is a common and easy-to-start database with low memory, disk and CPU utilization,
managed by a relational database management system. MySQL Community Edition is
a free downloadable version supported by an active online community.

PostgreSQL is an open-source relational database with a strong reputation for its
reliability, flexibility and support of open technical standards [19]. PostgreSQL sup-
ports both non-relational and relational data types. It has been called one of the most
compliant, stable and mature relational databases available today and can easily handle
complex queries.

Category MySQL PostgreSQL
Database Purely relational database Object-relational database
technology management system. management system.
Features Limited support of database Supports most advanced
features like views, triggers, database features like
and procedures. materialized views, instead
of triggers, and stored
procedures in multiple
languages.
Data types Supports numeric, character, Supports all MySQL data
date and time, spatial, and types along with geometric,
JSON data types. enumerated, network address,
arrays, ranges, XML, hstore,
and composite.
ACID ACID compliant only with Always ACID compliant.
Compliance InnoDB and NDB Cluster
storage engines.
Indexes B-tree and R-tree index Supports multiple index types
support. like expression indexes, partial
indexes, and hash indexes
along with trees.
Performance Has improved performance Has improved performance

for high frequency read
operations.

for high frequency write
operations.

Table 2.1. Key differences between MySQL and PostgreSQL [20].

Both MySQL and PostgreSQL are suited for the project. The decisive factor in

choosing the DB engine is that PostgreSQL, when extended with PostGIS extension,
becomes a powerful spatial database management system. It is well-regarded for its
performance of geospatial databases and its versatility in mapping and spatial analysis

12

tools [21]. PostGIS provides robust geospatial data management and a variety of
functions to enable GIS processing within the database itself, making PostgreSQL the
preferred choice for the current project.

I 2.9 External APIs

One of the most critical aspects of the project is selecting the appropriate geographical
data provider. All further development and user interaction will depend on the chosen
data provider service, which must meet the following requirements:

m Provide an API for displaying an interactive map. There must be an ability to open
the map directly at the provider service. For example, clicking on the map and
opening it in a mobile application or website, which will provide more functionality
for the user.

m Provide an API for places search.

m Provide an API for suggesting places nearby.

m The service must possess rich functionality to accommodate further development of
the project.

m The service must be popular so that users will be familiar with it.

The criteria mentioned limit the choice to two services: Google Maps and Mapy.cz.

Bl 29.1 Google Maps

Google Maps’ key strengths include high popularity, a large development community,
data richness, rich functionality, and a substantial amount of documentation. The main
disadvantage of the platform is the high cost for complex requests. However, at the
time of writing this thesis, the platform does offer services worth 200 USD at no charge
every month [22].

l 2.9.2 Mapy.cz

Mapy.cz has several key advantages, including data richness, a comparatively lower cost
than Google, and a simple API. The platform offers 250,000 free credits (equivalent to
approximately 17 USD) for the basic tariff and 10,000,000 credits (around 707 USD)
for the extended tariff every month [23]. However, due to its simplicity, the API
functionality is limited compared to Google.

B 2.9.3 APIselection

When we look at the popularity of services over the last 12 months using Google Trends,
Mapy.cz service is widely recognized in the Czech Republic but remains relatively un-
known worldwide. Google Trends is a tool that provides insights into the relative
popularity of search queries over time and across different regions. The numbers on the
left axis of the charts represent search interest relative to the highest point on the chart
for the given region and time. A value of 100 is the peak popularity for the term. A
value of 50 means that the term is half as popular. A score of 0 means there was not
enough data for this term.

13

2. Analysis and Architecture

Interest over time @ 3 oL
Google Maps
Mapy.cz
Average May 21, 2023 Oct 1,2023 Feb 11,2024
Figure 2.6. Global popularity comparison between Google Maps and Mapy.cz [24].
Interest over time @ L oL

Google Maps

Mapy.cz
—_"/—\M\

Average May 21,2023 Oct 1,2023 Feb 11,2024

Figure 2.7. Comparison of Google Maps and Mapy.cz popularity in Czech Republic [24].

The significant advantage of Google Maps services is that Angular supports libraries
for interacting with its API, making the development process easier, unlike Mapy.cz,
which lacks any library support.

Considering the popularity of services, the richness of functionality, and the potential
for further project growth, Google Maps has been chosen as the primary geographical
data provider due to its extensive functionality and wide popularity.

14

Chapter 3
Implementation

I 3.1 Componentdiagram

The component diagram represents the architecture of a web application divided into
two main subsystems: frontend and backend. The frontend project interacts with both

the backend system and the Google Maps Platform.

cmp ComponentDiagram
«subsystem»] «subsystem» 2]
Frontend Backend
csubsystems g] «subsystems g] asubsystems E]
Presentation Layer Business Logic Layer Data Access Layer
Accountservice E AccountController $:| IwtService S] ITripPlanRepository | prigplanRepasitory S]
OpenAP| lwtservice) -7
Specification -
A
. : FileSystemReposito
TrpPlansservice 3 | N A TrpPlanController 5 | o I Tripplanservice 8 | IFileSystemRepostory | postor] |
O C >0 Py N B
Openap! ITripplanservice] —C -t~ %C)i
specification -
BookmarksService @ Bmkmrkmntm”ea BookmakrsService E] —C stk sookmarksmposim%]
[I - ookmarksRepository
O— — HElEE - :
OpenAP| 1BookmakrsService S s
Reactonsservice 5] Reactionscontroller 3 | Reactionsservice 3 |]
S [I -
OpenAP IReactionsService|
GoogleMapsService 3 | J J l
N Al -NET Identity (black box) %] Al
" -~ 0
~ s !
S NN i
N S |
T T [=0 |
\ N
, N |
i N J
J UserManager| 1
I S 1
i N !
| N
N SigninManager |
o [|
O— i
Documentaton I
signinManager| 1
i
Google Maps Platform $]]
{black box) i
i
I
\/ EntityFramework
Database Provider
Database 2]

Figure 3.1. Component diagram.

The backend solution is divided into three layers:

m Presentation Layer: Contains controllers that handle incoming requests and direct

them to the appropriate services in the Business Logic Layer.

m Business Logic Layer: Comprises various services that encapsulate the core function-

alities, interfacing with repositories in the Data Access Layer.

m Data Access Layer: Consists of repositories that manage data persistence and re-

trieval, interfacing with a database via EntityFramework.

Additionally, the backend integrates with .NET Identity for user management.

15

3. Implementation

I 3.2 Sequence diagram

The sequence diagram illustrates the primary functionality of creating a trip plan, which
utilizes both the Google Maps Platform and the backend. The user can add multiple
places of interest (POIs) to the trip plan. While adding a place, the user must type
the place name or address. As the user types, requests are sent to the Google Maps
Platform with each character entered, and suggestions are displayed. Once the desired
place is found, the user selects it, triggering a final request to Google, which returns
the place details, including the full address, latitude, and longitude. The selected place
is then displayed on the map. When the trip plan is complete, the user can save it.

sd Create Trip Plan

Browser (frontend) Google Maps Backend DB Server filesystem
Platform

Create trip plan)

T T T T
I I I 1
| | | 1
I I I |
| | | 1
Render trip plan creation : : : :
component() | | l 1
(K- =———- === I I I 1
U I I I 1
Fil trip plan information() | | | | |
I I I 1
Show entered datal() | | | |
Sl I I I I
U | | | |
l l I I I
loop Add place (POI) to trip p\a/n) ; ; ; ; :
[Until user added all the places he wanted] : : : : :
| | | | |
Add place (POI) to trip plan() 1 1 1 1 :
I I I 1
show entered data() | | | |
E-—-—-———-------— | | | |
- I I I 1
Fill place (POI) information() g I I I 1
| | | 1
ez Show entered dataf) : : : :
I I I |
T I I I 1
I I I I |
loop Search p\ace/ } } } } :
[Untilthe desired place is found] : : : : :
I I I I 1
Type next character of place : : : : :
name or address{) 1 ; ; ; :
Autocomplete request()_ | | | |
I I |
I I |
Places suggestions() | | 1
Show su, tii <o ! ! !
ggestions() | | H
STt | | | |
. I I I 1
I I 1
I I I I 1
Select corract suggested place() } } } } :
Request place details() : : : :
I I 1
I I 1
Place details{) I I 1
************ I I |
Show place on map() | | 1
Sttt bbbty | | I
. I I I
I I I |
[l I I I
I I I |
Save trip plan() 1 " 1 1 :
tri I I 1
Save trip plan() . | |
} Save trip plan() ! :
I 1
Success|
: e - - 22 - :
I 1
I I 1
| Save places (trip plan blocks) images 1
I ! -
: Succéss(]
| SR et TP
Success{) I
[(S——mmmmm = R Bl I 1
- _ Render created tripplanf)_ | | l i
I I |
. - I I 1
| | |
I I I

Figure 3.2. Sequence diagram illustrating trip plan creation.

16

3.3 Frontend

Find place

Mélnik restaurace u

Restaurace U Svatého Vdclava, Svatovdclavskd, Mélnik 1, Mélnik, Czechia
Restaurace U LibuSe, Nerudova, Veltrusy, Mélnik, Czechia

Restaurace u Kohouta, Zizkova, Kralupy nad Vitavou 1, Mélnik, Czechia
Restaurace U Cervenych vrat, Chudolazy, Medonosy-Lib&chov, Mé&lnik, Czechia

Restaurace U Pirdta, ndmésti Miru, Mélnik 1, Mélnik, Czechia

Figure 3.3. Suggested places example.

Other use cases are straightforward and primarily involve a single request-response
pair.

I 3.3 Frontend

The Angular frontend application is structured as follows.

Components directory encapsulates reusable components that serve various functions
and pages within the application. The “common” folder contains atomic components,
each characterized by fundamental functionality, designed for reuse across various com-
ponents and contexts. These include items such as carousel, comment block, embedded
Google Map, Google Place autocomplete field, search trip plan form, trip plan block
card and trip plan card, each encapsulated as individual components. This architecture
provides substantial benefits, as any necessary changes to a component can be made in
one centralized location, rather than having to update it in multiple instances across
the application. Components located directly within the root of the components folder
typically represent pages, such as the main page, search results page, trip plan page,
bookmarks page and others.

Guards section contains the authorization guard, which serves to prevent unautho-
rized access to specific system components.

export const authorizationGuard: CanActivateFn = (route, state) => {
const accountService = inject(AccountService);
const router = inject(Router);

return accountService.user$.pipe(
map((userInfo: UserInfo | null) => {
if (userInfo) {
return true;
} else {

router.navigate(["sign-in"]1, { queryParams: { returnUrl: state.url }})
return false;

Figure 3.4. Authorization guard.

Interceptors folder incorporates authentication interceptor, responsible for append-
ing authentication headers on outgoing requests. The interceptor checks if the request

17

3. Implementation

URL matches the Google Maps API URL. If so, it modifies the request by adding
Content-Type and X-Goog-Api-Key headers with values retrieved from the environ-
ment configuration. Otherwise, it retrieves the JW'T from an account service, and if
available, adds an Authorization header with the JW'T to the request. Finally, it for-
wards the modified request to the next interceptor or HI'TP handler in the chain. This
interceptor enables seamless integration of authentication mechanisms and facilitates
communication with external services within the application.

export const authInterceptor: HttpInterceptorFn = (request, next) => {

if (request.url.includes(environment.googlePlacesApiUrl)) {
// Google Maps API request
request = request.clone({
setHeaders: {
'Content-Type': 'application/json',
'X-Goog-Api-Key': environment.googleApiKey,
b
s

return next(request);

const accountService = inject(AccountService);

const jwt = accountService.getJwt();
if (jwt) {
request = request.clone({
setHeaders: {
Authorization: 'Bearer ${jwt}"
¥
3
}

return next(request);
¥

Figure 3.5. Authentication interceptor.

Models directory holds data models that may be returned from both the backend and
the Google Maps Platform. The “autogenerated” folder contains TypeScript interfaces
that are generated from the backend C# DTOs. This process is described in the
backend chapter of the documentation.

Pipes folder offers utility pipes, which can be used to manipulate data before present-
ing it on the UIL. The SafeUrlPipe is utilized exclusively for rendering embedded Google
Maps iframes. The necessity of this pipe arises from Angular’s default security behav-
ior, which blocks iframes against Cross-Site Scripting (XSS) attacks. By employing
the bypassSecurity TrustResource Url method within the pipe, the application explicitly
trusts and permits the specified URL, thus overriding Angular’s protective measures.

18

3.3 Frontend

@Pipe({
name: 'safeUrl',
standalone: true
)

export class SafeUrlPipe implements PipeTransform {
constructor(private sanitizer: DomSanitizer) { }
transform(url: any) {
return this.sanitizer.bypassSecurityTrustResourceUrl(url);
}
¥

/* pipe usage in EmbedGoogleMapComponent

<iframe
loading="1lazy"
allowfullscreen

referrerpolicy="no-referrer-when-downgrade"
[src]l="googleMapsService.getGoogleMapsEmbeddedMapUrl(place) | safeUrl">
</iframe>/*

Figure 3.6. SafeUrlPipe and its usage.

Services section provides various services, including those responsible for fetching
data from both the backend and the Google Maps Platform.

The AccountService is designed to handle various user-related functionalities. This
service facilitates user registration, login, and management tasks such as refreshing user
information, retrieving JWT tokens, and logging out users. It employs observables to
manage user information, utilizing a ReplaySubject to store and broadcast user data
updates to subscribed components.

The GoogleMapsService serves for integrating Google Maps API functionalities. It
facilitates generating URLs for embedded maps based on specified locations and pro-
vides capabilities for place autocomplete and retrieving detailed information about the
places. The service supports the management of session tokens for Google Places API
requests, allowing to conclude sessions through the finishSession method.

The TripPlansService serves for managing trip plans and related operations. It offers
functionalities such as retrieving trip plans based on search parameters, accessing user-
specific trip plans, fetching details of a specific trip plan, obtaining trip plan suggestions,
creating new trip plans, updating existing ones, adjusting their publicity status, and
deleting trip plans.

The BookmarksService provides functionality for managing bookmarks related to
trip plans and trip plan blocks. It facilitates the addition, retrieval, and deletion of
bookmarks.

The ReactionsService facilitates the management of user reactions and interactions
with trip plans and trip plan blocks. It enables users to retrieve their reactions to
specific trip plans, rate trip plans, comment on trip plans, and rate individual trip plan
blocks.

Subsequent chapters will offer insights into frontend development.

l 3.3.1 Components library

Initially, I opted to utilize the free and open-source Angular Material component li-
brary due to its simplicity and official endorsement by the Angular Team at Google.

19

3. Implementation

Angular Material offers a minimalist set of components, encompassing foundational
elements such as buttons, forms, text fields, and more, while also providing support
for basic customization [25]. It also provides a Google Maps Angular component that
implements the Google Maps JavaScript API [26]. However, I encountered limitations
within the library that were critical for application’s needs.

The library lacked essential components such as an image carousel and a file upload
button. While I could have developed these components independently, doing so would
have consumed time and resulted in stylistic inconsistencies compared to other com-
ponents. Exploring alternative solutions, I found that libraries offering single image
carousel and file upload button components sometimes were not free or had vastly dif-
ferent styles. Additionally, many of these alternatives were outdated or lacked active
community support.

Considering the factors mentioned above, I had to search for another component
library and transition the project to the new library.

After careful consideration, I selected the PrimeNG components library. It offers an
extensive component suite, has positive feedback from the community, and is utilized in
some real-world production applications [27]. Additionally, it is open-source and offers
a variety of themes, along with the availability of a paid plan, which offers extended
support for commercial products.

Figure 3.7. PrimeNG gallery view.

o o o
e W A 7 q

Figure 3.8. PrimeNG file upload component customized with gallery view and actions.

20

Working with PrimeNG proved to be an exceptional experience, owing to its com-
prehensive suite of components and extensive configurability.

This experience taught me the importance of thoroughly reviewing a library’s com-
ponents before integration. I also realized that such decisions should be made during
the analysis phase rather than the implementation phase.

B 3.3.2 Filesupload

Files upload implementation was an interesting challenge that I never solved before.
I discovered that a reliable method for uploading files to the backend is to send a
request encrypted as multipart /form-data, which transmits images as binary data. The
.NET platform provides the IFormFile type to manage the received files. However, this
approach introduces a complication, requiring the development of logic for mapping
complex custom data types to a FormData type, which is essentially a collection of
key-value pairs. This task becomes particularly complex when dealing with types that
contain multiple levels of nested structures. As a result, implementing and maintaining
such mapping logic, especially in a generic manner, can pose significant challenges.

B 3.3.3 Google Maps Platform

All interactions with the Google Maps Platform within the project occur on the fron-
tend. I initiated my work with the Google Maps API by attempting to render a basic
map. There are several methods available for rendering the map, and there are some li-
braries that can assist with this task. One such library is Angular Google Maps (AGM)
[28], which has not seen any commits for over a year as of the time of writing this
document. This library experienced a decline in popularity after the map component
was incorporated into the Angular Material library and became an officially supported
option. Hence, I gave preference to Angular Material.

When I experimented with the map component from the Angular Material library, I
discovered that it utilizes the Google Maps JavaScript API [29], which comes with a
cost [30]. However, I was aware that Google offers similar functionality for free through
the Maps Embed API [31]. All requests made to the Maps Embed API are provided
at no cost and come with unlimited usage [32].

The distinction between APIs lies in the fact that the Maps JavaScript API is more
complex, allowing interaction with the map by writing JavaScript and offering a wider
array of options and configurations. On the other hand, the Maps Embed API is much
simpler — it merely consists of an HTML iframe with a source link that specifies the
location to be displayed. The free tier of the Maps Embed API is entirely sufficient for
this project, which is why I opted for it instead of the Angular Material Google Maps
component.

For the project’s purposes the following requests are required:

m An autocomplete request, which attempts to find a place based on the provided
query string. It should provide place suggestions based on the place name or address
entered by the user. Such requests only return very simple data such as place name,
Google Maps ID, and address.

m A Place Details request, which will return detailed information about a place. It
takes the place ID and a list of required data fields that should be returned, such as
latitude, longitude, detailed address, opening hours, and photos.

The next step I did was implementing the place autocomplete functionality. This
feature suggests autocompleted options to users as they type the name or address of

21

3. Implementation

a place, drawing from known locations on Google Maps. This functionality is facili-
tated by the Google Places API, which offers two versions: the existing Places API
and the newer Places API (New) [33]. According to Google, the new version boasts
enhanced security, efficiency, performance, and features, and recommends its use for
new projects [34]. However, certain endpoints of the new API are labeled as Preview
and are available for use free of charge. As the project implementation progressed, some
of these endpoints have since transitioned to a Stable label. Considering the factors
listed above, I chose to use the new version, which is the Places API (New).

public getGoogleMapsEmbeddedMapUrl(place: string): string {
const url = environment.googleEmbedMapUrl;
const apiKey = environment.googleApiKey;
return “${url}/place?key=${apiKey}&gq=${place.replace(" ", "+")}";

public placeAutocomplete(queryParams: AutocompletePlacesRequest):
Observable<PlaceSlimModel[]> {

const url = “${environment.googlePlacesApiUrl}:autocomplete;
return this.http.post<AutocompletePlacesResponse>(url, queryParams)
.pipe(

map (response => response.suggestions.map(item => {
return ({
googleMapsId: item.placePrediction.placeld,
shortName: item.placePrediction.structuredFormat.mainText?.text,
fullName: item.placePrediction.text.text
} as PlaceSlimModel)
M)
);

public placeDetails(placeld: string, sessionToken: string):
Observable<PlaceDetailsResponse> {
const url = “${environment.googlePlacesApiUrl}/${placeld}?sessionToken=${sessionToken}";
return this.http.get<PlaceDetailsResponse>(url, this.placeDetailsHttpsOptions);
¥

Figure 3.9. Methods in Angular Google Maps service.

The Places API (New) offers a wider range of billing plans, providing increased
flexibility and potential cost savings. This updated API incorporates functionality from
both the existing Places API and Geocoding API, providing a comprehensive suite of
services.

Google’s billing structure is based on the data fields that are queried. Each field
is assigned to a billing tier, and billing is determined by the price of the most expen-
sive field queried. Therefore, it is crucial to only request the necessary data to avoid
unnecessary costs.

Another factor that can contribute to cost savings on requests is the usage of sessions
[35]. Without utilizing sessions, billing is calculated individually for each request. This
becomes particularly significant in the context of autocomplete functionality, where
requests are made with each typed letter. By employing sessions, each autocomplete
request must include a session token, which is a randomly generated UUID (Universally
Unique Identifier). Once a place is identified through autocomplete, a Place Details
request should be made using the same session token. Subsequently, when the session
terminates, it results in charges equivalent to a single Place Details call [36].

22

3.4 Backend

Google Maps Platform is currently transitioning some functionality to gRPC. How-
ever, I used the REST API for communication since it is simple, and Google Maps
Platform has not migrated most of endpoints to gRPC yet.

B 334 GUI

The graphical user interface was implemented according to a low fidelity prototype.
The GUI screenshots are presented in Appendix B.

I 3.4 Backend

The .NET backend solution was structured as a Three-Tier application, consisting of
three distinct projects, each representing layers of the Three-Tier architecture. Given
the well-encapsulated layers, the projects can be smoothly transitioned to a microservice
architecture should there be a need for expansion. To achieve this, the library types
of projects should be transformed into executable application types, and appropriate
communication channels should be established.

The subsequent chapters will describe the implementation of each layer and will
highlight aspects related to backend development.

B 3.4.1 DataAccess Layer
The OneDayTrip.DataAccess library project serves as the Data Access Layer (DAL).

4 8 OneDayTrip.DataAccess

P & Dependencies

P & EJ Configuration

b & B3 Entities

> & B3 Interfaces

b & EJ Migrations

4 8 1 Models
D & C# ListResult.cs

P & E1 QueryParams

4 8 1 Repositories
P & C# BookmarksRepository.cs
P & C# FileSystemRepository.cs
P & C# ReactionsRepository.cs
P & C# TripPlanRepository.cs
P & C# UnitOfWork.cs

P & C# OneDayTripDbContext.cs

Figure 3.10. OneDayTrip.DataAccess project structure.

This project is composed of Entities and Repositories that facilitate access to the
database and file system. It employs the Entity Framework Object—relational mapping
(ORM) for database access, featuring a DB context that configures all tables and their
relationships. The DB context extends the IdentityDbContext, eliminating the need
to manually implement user-related code such as user entity, user role entity and user
claims entity.

23

3. Implementation

modelBuilder.Entity<Poi>().HasKey(x => x.Id);
modelBuilder.Entity<Poi>().Property(x => x.Location)

.HasColumnType("geography (point)");
modelBuilder.Entity<Poi>()

.HasMany(x => x.PoiTypes)

.WithMany(x => x.Pois);

Figure 3.11. POI entity configuration in DB context.

The project employs a code-first approach, whereby the Entity Framework generates
the database schema based on the Entities and DB Context configuration. Essentially,
the database schema is derived from the code. Additionally, this layer supports mi-
grations, a method within the Entity Framework designed to incrementally update the
database schema, ensuring it remains synchronized with the application’s data model
while preserving the existing data in the database.

public partial class TripPlanBlockReactions : Migration

{
protected override void Up(MigrationBuilder migrationBuilder)
{
migrationBuilder.CreateTable(
name: "TripPlanBlockReactions",
columns: table => new
{
UserId = table.Column<string>(type: "text", nullable: false),
TripPlanBlockId = table.Column<int>(type: "integer", nullable: false),
IsLiked = table.Column<bool>(type: "boolean", nullable: false),
RatingTimestamp = table.Column<DateTime>(type:
"timestamp with time zone", nullable: false)
1,
constraints: table =>
{
table.PrimaryKey ("PK_TripPlanBlockReactions",
x => new { x.TripPlanBlockId, x.UserId });
table.ForeignKey (
name: "FK_TripPlanBlockReactions_AspNetUsers_UserId",
column: x => x.UserId,
principalTable: "AspNetUsers",
principalColumn: "Id",
onDelete: ReferentialAction.Cascade);
table.ForeignKey(
name: "FK_TripPlanBlockReactions_TripPlanBlocks_TripPlanBlockId",
column: x => x.TripPlanBlockId,
principalTable: "TripPlanBlocks",
principalColumn: "Id",
onDelete: ReferentialAction.Cascade);
1)
migrationBuilder.CreateIndex(
name: "IX_TripPlanBlockReactions_UserId",
table: "TripPlanBlockReactions",
column: "UserId");
¥
/1
}

Figure 3.12. Generated migration that adds TripPlanBlockReactions table.

24

3.4 Backend

3.4.2 Business Logic Layer

The OneDayTrip. BusinessLogic library project represents the Business Logic Layer
(BLL). This project contains models and services. It references the OneDay Trip. DataAcj
cess project, allowing services to utilize methods from the DAL. Models can differ from
entities in the Data Access layer, which is why automated generic type mapping was
implemented, with Automapper configuration located in the class AutoMapperProfile.

Services encapsulate business logic, executing complex tasks with the assistance of
the DAL, and performing additional data manipulations. Additionally, there is a service
called JwtService responsible for generating authentication JWT.

/117
/117
111
111
/117

<summary>

Generates an encoded JWT (JSON Web Token) for a user.

</summary>

<param name="userId">The ID of the user for whom the token is being generated.</param>
<returns>JWT as a string, ready for use in HTTP headers for authentication.</returns>

public string GenerateToken(string userId)

{

// !'!'! No sensitive data must be in claims !!!

// Initialize a list of claims for the JWT.

// These include the user's ID and device information,

// a unique identifier for the JWT, and the time the token was issued.
var claims = new List<Claim>

{
new(ClaimTypes.NameIdentifier, userId),
new(JwtRegisteredClaimNames.Sub, userId),
new(JwtRegisteredClaimNames.Jti, Guid.NewGuid().ToString()),
new(JwtRegisteredClaimNames.Iat, DateTime.UtcNow.Ticks.ToString(),
ClaimValueTypes.Integer64),
};

// Create the JWT security token and encode it.
// The JWT includes the claims defined above, the issuer and audience from
// the config, and an expiration time.
// It's signed with a symmetric key, also from the config,
// and the HMAC-SHA256 algorithm.
var jwt = new JwtSecurityToken(
issuer: _jwtSettings.Issuer,
audience: _jwtSettings.Audience,
claims: claims,
expires: DateTime.UtcNow.AddMinutes(_jwtSettings.ExpiresInMinutes),
signingCredentials: new SigningCredentials(
_symmetricSecurityKey, SecurityAlgorithms.HmacSha256Signature)
);

// Convert the JWT into a string format that can be included in an HTTP header.
var encodedJwt = new JwtSecurityTokenHandler().WriteToken(jwt);

return encodedJwt;

Figure 3.13. Token generation method in JWT service.

25

3. Implementation

public async Task<ListResult<TripPlan>> GetTripPlansAsync(SearchTripPlanParams searchParams)
{
var queryParams = _mapper.Map<DataAccess.QueryParams.SearchTripPlanParams>(searchParams);

var tripPlans = await _unitOfWork.TripPlanRepository.GetTripPlansAsync(queryParams);

foreach (var tripPlan in tripPlans.Items)

{
if (tripPlan.PrimaryImage != null)
{
await _unitOfWork.FileSystemRepository
.EnrichTripPlanBlockImage(tripPlan.PrimaryImage);
¥
}
var result = _mapper.Map<ListResult<TripPlan>>(tripPlans);

return result;

Figure 3.14. Searching trip plan with parameters implementation.

Il 3.4.3 Presentation Layer

The OneDayTrip project serves as the main executable and represents the Presentation
Layer. It is a monolithic project that connects all components and manages dependency
injection. This layer contains Controllers and Data Transfer Objects (DTOs). Some
DTOs support validation, implemented with the help of validation attributes. The con-
trollers implement the REST API, consume JSON, and respond with JSON. They also
provide Swagger documentation, adhering to the OpenAPI specification. Additionally,
Controllers utilize .NET Identity for user management. This layer also includes config-

uration for the Reinforced. Typings library, which generates TypeScript contracts from
C# DTOs.

public class RegistrationDto

{
[Required]
[TrimStringlLength(5, 20)]
public string UsexrName { get; set; } = string.Empty;
[Required]
[EmailAddress]
[DataType(DataType.EmailAddress)]
public string Email { get; set; } = string.Empty;
[Required]
[DataType(DataType.Password)]
public string Password { get; set; } = string.Empty;
[Required]
[Compare("Password",
ErrorMessage = "The password and confirmation password do not match.")]
public string RepeatPassword { get; set; } = string.Empty;
¥

Figure 3.15. DTO validation using validation attributes.

26

3.4 Backend

OneDayTrip @ “

1/swaggerjson

Account

‘ S0 | Japifaccount/registration v ‘
‘ k8 fapifaccount/login v ‘
[rm— v|

Bookmarks ~
‘ /api/bookmarks/trip-plans/{tripPlanId} V‘
[m /api/bookmarks/trip-plans/{tripPlanId} v‘

[Cocr [ee——)
‘ /api/bookmarks he ‘

‘ /api/bookmarks/trip-plan-blocks/{tripPlanBlockId} 4 ‘
[@ /api/bookmarks/trip-plan-blocks/{tripPlanBlockId} v‘
‘ /api/bookmarks/trip-plan-blocks \/‘
Reactions ~
‘ /api/reactions/trip-plan/{tripPlanId} v‘
‘ /api/reactions/trip-plan/{tripPlanId}/rating v‘
‘ /api/reactions/trip-plan/{tripPlanId}/comment v ‘
‘ /api/reactions/trip-plan-block/{tripPlanBlockId}/rating v ‘
TripPlan ~

‘ /apiftrip-plans v‘
‘ /api/trip-plans v‘

J0 /api/trip-plans
‘ /apiftrip-plans/user-trip-plans v‘
‘ /api/trip-plans/{id} v‘
[m /api/trip-plans/{id} v‘
‘ /apiftrip-plans/suggestions v‘

/api/trip-plans/publicity/{id}

Figure 3.16. List of endpoints in Swagger.

The following chapters will clarify the libraries used and highlight important aspects
of the backend project.

B 3.4.4 Dependencyinjection

NET supports the dependency injection (DI) software design pattern, which is a tech-
nique for achieving Inversion of Control (IoC) between classes and their dependencies.
Dependency injection in .NET is a built-in part of the framework, along with configu-
ration, logging, and the options pattern [37].

Services can be registered with one of the following lifetimes:

m Transient. Transient lifetime services are created each time they’re requested from
the service container.

27

3. Implementation

m Scoped. For web applications, a scoped lifetime indicates that services are created
once per client request (connection). In apps that process requests, scoped services
are disposed at the end of the request.

m Singleton. Singleton lifetime services are created either the first time they’re re-
quested or by the developer when an implementation instance is provided directly
to the container. Every subsequent request of the service implementation from the
dependency injection container uses the same instance.

The OneDayTrip as the main executable project handles dependency injection and
registered dependencies.

builder.Services.AddSingleton(_ => new DbConnectionConfiguration
{
ConnectionString = builder.Configuration.GetConnectionString("OneDayTrip")
?? throw new Exception("OneDayTrip connection string is missing")

1)
builder.Services.AddDbContext<OneDayTripDbContext>();

var tripPlanImagesDirectory =
builder.Configuration.GetValue<string>("TripPlanImagesDirectory")
?? throw new Exception("Value TripPlanImagesDirectory is missing in config");

builder.Services.AddScoped<IUnitOfWork, UnitOfWork>(x =>
new UnitOfWork(x.GetRequiredService<OneDayTripDbContext>(), tripPlanImagesDirectory));

Figure 3.17. DAL dependencies registration.

When registering services, it is important to remember and avoid the common “cap-
tive dependency” antipattern. The term “captive dependency” was coined by Mark
Seemann, and refers to the misconfiguration of service lifetimes, where a longer-lived
service holds a shorter-lived service captive [38]. This mismatch can lead to improper
resource management, memory leaks, and unintended behavior because the shorter-
lived service might be disposed of while the longer-lived service still expects it to be
available. This undermines the design principles of dependency injection and can result
in hard-to-debug issues.

The following picture illustrates an example where services couldn’t be made single-
ton because they hold an IUnitOfWork implementation with a scoped lifetime. Con-
versely, the IJwtService doesn’t have any limitations and doesn’t hold state, which is
why it could be made singleton without any issue. Thus, understanding the lifetime
scope of services is crucial for effective implementation.

builder.Services.AddScoped<ITripPlanService, TripPlanService>();
builder.Services.AddScoped<IReactionsService, ReactionsService>();
builder.Services.AddScoped<IBookmarksService, BookmarksService>();
builder.Services.AddSingleton<IJwtService, JwtService>(_ => jwtService);

Figure 3.18. Correct services registration in DI container.

The container is responsible for cleanup of types it creates. Services resolved from the
container should never be disposed by the developer. If a type or factory is registered
as a singleton, the container disposes the singleton automatically.

28

B 3.4.5 PostGIS

One of the most important functionalities in the application is searching for places by
departure and destination. Using geographical coordinates (longitude and latitude) re-
trieved from the Google Maps API, it is possible to filter places based on their proximity
to the departure and destination locations. This can be achieved with the help of the
PostGIS extension for PostgreSQL.

PostGIS enhances the PostgreSQL relational database by adding support for storing,
indexing, and querying geospatial data [39]. This extension must first be installed and
enabled in the PostgreSQL database [40].

Scratch Pad X Query Query History Geometry Viewer X
1 SELECT "Name", "Address", "Location"
2 FROM public."Pois" | ¢ ~ |
3 LIMIT 1 | — Visoy,) .
4 OFFSET 2; s -
o 1*,
Mélnik | %
mospj6séfa 7,
/su ky %
/ Mo

£
% == | eaflet | © OpenStreetMap

Data Output Messages Notifications
A YO INE -

Name a Address 8 o Location
character varying (100) character varying (150) geography

1 Zamek Mélnik Svatovdclavska 19/16, 276 01 Mélnik-Mélnik 1, Czech.. ‘ 0101000020E61000000E92F41F88F22C4024A24E2FE72C4940 ‘

Figure 3.19. Displayed saved geography data in pgAdmin 4 Geometry Viewer.

In PostGIS It is very common to have data in which the coordinate are “geographics”
or “latitude/longitude”. It is important to understand that geographic coordinates are
not Cartesian coordinates. Geographic coordinates do not represent a linear distance
from an origin as plotted on a plane [41]. Rather, these spherical coordinates describe
angular coordinates on a globe. In spherical coordinates a point is specified by the
angle of rotation from a reference meridian (longitude), and the angle from the equator
(latitude).

Cartesian Spherical

Figure 3.20. Visualization of Cartesian and Spherical coordinate systems.

You can treat geographic coordinates as approximate Cartesian coordinates and con-
tinue to perform spatial calculations [41]. However, measurements of distance, length

29

and area will be inaccurate. Since spherical coordinates measure angular distance, the
units are in degrees. Furthermore, approximate results from indexes and true/false
tests, such as intersects and contains, can become highly inaccurate. The distance be-
tween points increases significantly in problematic areas, such as near the poles or the
International Date Line.

In GIS, there is an important identifier called the Spatial Reference System ID
(SRID). Every geometric shape has an associated spatial reference system, and each
reference system has an SRID [42]. A common SRID in use is 4326, which represents
spatial data using longitude and latitude coordinates on the Earth’s surface as defined
by the WGS84 standard. This standard is also used for the Global Positioning System
(GPS). Google Maps provides coordinates in the form of longitude and latitude, which
correspond to SRID 4326.

To utilize the functionality of Post GIS with Entity Framework, the NetTopologySuite
library must be installed, and the DB context must be configured [43]. Once this is
done, the PostGIS method Distance will be available for use. In my case, I am sorting
the places by distance from the departure location first, and then by distance from
the destination location, resulting in a list of nearby places relative to the specified
departure and destination locations.

guery = query
.0rderBy(x => x.TripPlanBlocks
.Min(y => y.Poi.Location.Distance(searchTripPlanParams.DepartureLocation)))
.ThenBy(x => x.TripPlanBlocks
.Min(y => y.Poi.Location.Distance(searchTripPlanParams.DestinationLocation)));

Figure 3.21. Usage of PostGIS with the help of NetTopologySuite library and Entity
Framework.

B 3.4.6 Storinguploaded files

One of the core functionalities of the project is the ability to upload POI images. There
are multiple solutions for storing uploaded files on the backend. Most modern databases
support file storage directly within the database. Alternatively, files can be stored on
a disk. Each solution comes with its own set of advantages and disadvantages [44].

Storing files in a database offers convenience in terms of data querying and main-
taining data consistency. Conversely, storing files on a disk necessitates additional
effort, including managing CRUD operations, ensuring consistency with the database
state, and upholding security. Tables containing images can be configured for cascade
deletion, ensuring that images are deleted when the associated main entity is deleted.
When opting for filesystem storage, such considerations must be carefully managed.
Additionally, databases can be configured for backups and retention policies, which
may be more challenging with disk storage.

Nevertheless, storing files in a database can lead to database overload and perfor-
mance degradation, particularly with large image files. This can result in slower queries
and increased memory requirements. From a cloud perspective, scaling disk space is
generally easier and more cost-effective than scaling the database.

It is widely accepted to use databases for storing small files, such as profile pictures,
while the filesystem is recommended for larger files. Considering these factors, I have
decided to store POI images on disk. Additionally, for future project enhancement, a
Content Delivery Network (CDN) can be utilized. A CDN is a network of interconnected
servers that speeds up webpage loading for data-heavy applications [45]. When a user

30

3.4 Backend

visits a website, data from that website’s server has to travel across the internet to
reach the user’s computer. If the user is located far from that server, it will take a
long time to load a large file. Instead, the website content is stored on CDN servers
geographically closer to the users and reaches their computers much faster.

B 3.4.7 Datamapping

Due to the separation of layers, a challenge arises regarding data mapping. Each encap-
sulated project possesses its own contracts, which may vary. To address this, I utilized
the AutoMapper library [46]. By simply specifying the types in AutoMapper configu-
ration, all fields with matching names are automatically mapped from the source type
to the destination type. The library is configurable and supports the exclusion of fields,
as well as custom type and field mapping.

CreateMap<Models.TripPlanReaction, DataAccess.Entities.TripPlanReaction>();
CreateMap<DataAccess.Entities.TripPlanReaction, Models.TripPlanReaction>()
.FoxMember (
dest => dest.AuthorUserName,
opt => opt.MapFrom(
src => src.User.UserName))
.ForMembex (
dest => dest.AuthorId,
opt => opt.MapFrom(
src => src.UserId));

Figure 3.22. TripPlanReaction mapping configuration between DAL entity and BLL
model.

Il 3.4.8 Generating TypeScript contracts from C# DTOs

It is a common situation during development that data contracts change rapidly. By
contracts, I refer to DTOs returned by the backend and received by the frontend.
Whenever the contract changes on the backend, the frontend contract must be updated
accordingly. For example, if a field in the backend contract is renamed or deleted, the
frontend will not throw an error, and the field will simply be empty. This can lead to
errors and lack of transparency, making it challenging to maintain consistent contracts.

Using gRPC and Protocol Buffers contracts could solve this problem. However,
I chose not to implement gRPC support because I aimed to make the backend and
frontend communication as quick and straightforward as possible. Adopting gRPC
would have taken more time, as I have not previously used gRPC in Angular projects
and could not dedicate much time to it.

To address this problem, I knew a simple solution in the Reinforced.Typings library
[47]. Tt offers a straightforward method for generating TypeScript contracts from C#
classes. Once configured, TypeScript contracts will be automatically regenerated with
every backend build.

31

3. Implementation

builder.ExportAsInterface<TripPlanDto>()
.WithPublicProperties()
.WithProperty(x => x.CreationDate,
config => config.Type(TsDateTypeName))
.WithProperty(x => x.LastModifiedDate,
config => config.Type(TsDateTypeName))
.AutoI(false)
.OverrideName("TripPlan")
.ExportTo("trip-plan.ts");

Figure 3.23. Trip plan TypeScript contract generation configuration.

// This code was generated by a Reinforced.Typings tool.
// Changes to this file may cause incorrect behavior and will be lost if
// the code is regenerated.

import { PoiImage } from './poi-image';
import { TripPlanBlock } from './trip-plan-block';
import { TripPlanReaction } from './trip-plan-reaction';

export interface TripPlan

{
id: number;
name: string;
description: string;
creationDate: Date;
lastModifiedDate: Date;
isPublic: boolean;
rating: number;
primaryImage: PoilImage;
tripPlanBlocks: TripPlanBlock[];
reactions: TripPlanReaction[];
authorId: string;
authorUserName: string;

Figure 3.24. Generated trip plan contract.

There are more complex solutions available [48]. However, simply generating con-
tracts suffices for the project’s needs and proved to be a rapid and efficient solution.

Il 3.4.9 Unitof Work pattern

The Unit of Work pattern was used on Data Access Layer. This widely adopted design
pattern helps to manage transactions and maintain data consistency in applications.
The Unit of Work pattern is used to manage transactions and ensure that multiple
operations are treated as a single logical unit [49]. It provides a way to group database
operations together, ensuring that they either succeed or fail as a whole. The key
principle behind the Unit of Work pattern is to maintain data consistency and integrity
by committing or rolling back changes in a coordinated manner.

32

Presentation Layer | Business Logic Layer | -
(Controllers) (Services) B ”| Database

No Repository

(Services)

With Repository | Presentationlayer | | BusinessLogicLayer | 5| DataAccess Layer S >
(Controllers) (Respositories) -

Unit of Work
With REDOSitDW Presentation Layer | | Business Logic Layer | -
& Unit of Work (Controllers) (Services)

Figure 3.25. Unit of Work pattern visualization.

B 3.4.10 Security

For application security, which includes authentication and authorization, I used the
.NET Core Identity library. This library provides built-in functionality for user manage-
ment, including registration, authorization, credential validation, password encryption,
and data storage in a database [50]. It also supports configuration of password require-
ments, account blocking, access conditions, and more. Additionally, ASP.NET Identity
is compatible with Entity Framework, enabling the generation of database schema for
user management using the code-first approach.

ASP.NET Identity simplifies and accelerates user management development. Ser-
vices are made available to the application through dependency injection and can be
configured as needed. The following image demonstrates the configuration of ASP.NET
Identity, where password validation parameters are set, a unique email requirement is
enforced, and email confirmation is turned off. The configured ASP.NET Identity is
also provided with an Entity Framework DB context to handle persistence operations.

builder.Services.AddIdentity<AppUser, IdentityRole>(options =>

{
options.Password.RequiredLength = 8;
options.Password.RequireNonAlphanumeric = false;
options.User.RequireUniqueEmail = true;
options.User.AllowedUserNameCharacters += " ";
options.SignIn.RequireConfirmedEmail = false;

1)

.AddEntityFrameworkStores<OneDayTripDbContext>();

Figure 3.26. ASP.NET Identity configuration.

After configuring ASP.NET Identity, I developed user registration using the User-
Manager class, which manages user accounts and performs various operations, including
creating or removing user accounts, modifying passwords, and assigning or removing
users from roles.

For sign-in functionality, I used the SignInManager class. After successful authoriza-
tion by Identity, I create a JW'T, which is sent as a response. The frontend then sends
this token with each request that must be authorized.

33

I 3.5 Project setup and configuration

Web applications are designed to be deployed and hosted so they can be accessed
by users over the internet. Due to time limitations, the application has not been
deployed yet and has only been tested locally. This section describes how to configure
the application to run on a local computer.

Bl 3.5.1 Running the frontend project

To run the frontend project, the following steps must be completed:

1. Install Node.js version 10.5.2 or higher [51].

2. Install Angular CLI version 17.2.1 by running the command npm install -g @Qan-
gular/cli. Refer to the Angular setup guide for more details [52].

3. Install the project packages by executing the command npm i in the root folder
of the Angular project, which is the OneDayTrip/src/client folder.

4. Obtain a Google Maps API key according to instructions [53].

5. Insert your Google Maps API key into the googleApiKey field in the envi-
ronment.development.ts file located in the OneDayTrip/src/client/src/environments
folder.

6. Execute the ng serve command in the root of the client application folder (One-
DayTrip/src/client) to build and run the frontend project.

Bl 3.5.2 Running the backend project

Before running the backend project locally, the database must be set up according to
the following steps.

1. Install PostgreSQL and pgAdmin 4 according to the instructions [54]. During the
pgAdmin installation, ensure you check the PostGIS checkbox to install the PostGIS
extension.

2. Verify that PostGIS is installed. If it is not installed, follow the instructions to
install it [40].

After setting up the database, configure the backend project with the following steps:
1. Install Visual Studio with .NET 8 included [55].

2. Set the database connection string in the appsettings. Development.json file lo-
cated in the OneDayTrip/src/server/OneDayTrip folder, within the ConnectionStrings
section under the OneDayTrip field.

3. In the same file, specify the path to the folder where the images will be uploaded
in the TripPlanImagesDirectory field.

4. Open the project in Visual Studio by double-clicking the OneDayTrip.sin file in
the root of the backend folder (OneDayTrip/src/server/OneDayTrip).

5. Open the Package Manager Console by clicking on the search button and finding
it.

6. In the Package Manager Console, execute the command: Update-Database -Project
OneDayTrip. DataAccess -StartupProject OneDayTrip to run database migrations and
build the relevant database schema.

7. Run the project by clicking on Debug and selecting Start Without Debugging.

By following these steps, you will be able to configure and run the application on
your local computer.

34

Chapter 4
Testing

The purpose of testing in software development is to identify and fix bugs, ensure
the software meets requirements, and verify that it functions correctly under various
conditions. This chapter will describe the project testing, which includes static testing,
manual testing, unit testing, usability testing, and acceptance testing.

I 4.1 Static testing

Static testing is a method of software testing that analyzes code and identifies issues
without executing the program [56]. Unlike dynamic testing, which focuses on the
behavior of the code during runtime, static testing examines the code itself. It involves
reviewing the source code, analyzing its structure, and identifying potential defects,
vulnerabilities, and compliance issues.

For static testing of the project, I used ReSharper for Visual Studio [57]. It identi-
fies various types of problems, including unused variables, unreachable code, potential
bugs, logical errors, incorrect or missing nullability annotations and more. ReSharper
ensures adherence to coding standards, flags inefficient code patterns that could impact
performance and provides recommendations for code refactoring, helping to maintain
clean, efficient, and maintainable code.

I 4.2 Manual testing

Manual testing is performed by the tester who carries out all the actions on the tested
application manually, step by step and indicates whether a particular step was accom-
plished successfully or whether it failed [58]. It is especially useful in the initial phase
of software development, when the software and its user interface are not stable enough,
and beginning the automation does not make sense.

The list of test cases for manual testing was created based on functional requirements.
These requirements were grouped by functionality modules and ordered to allow for
sequential execution. The list of test cases performed by the testers is provided in
Appendix C.

For manual testing, a group of five people was assembled. Each tester was provided
with an identical list of test cases to complete. Testing was conducted by different
individuals at various stages of project development. Upon completion of the test
cases, feedback was collected and identified issues were resolved.

The collected information helped to identify and fix bugs. Additionally, it provided
valuable feedback for the project, which affected the development process.

I 4.3 Unit testing

Unit Testing focuses on testing individual components or units of the code to ensure
each part functions correctly. Individual functions or class methods, classes themselves,

35

class interactions, small libraries, or parts of an application may be tested [59]. These
tests are automated and help detect errors early in the development process.

Several unit tests were created for the project where appropriate. These unit tests
ensure the consistency of trip plans and their associated images. Given that images are
saved on disk while trip plans are stored in a database, it is essential to handle cases
where saving images or trip plans fails. Trip plans and their images should be saved
together, ensuring that if one fails, neither is saved. Since storing images on disk is
under consideration and may be improved by utilizing a CDN in the future, only the
most critical cases were tested. Other unit tests were deemed unnecessary because they
would involve testing trivial database operations.

I 4.4 Usability testing and comparison with TripAdvisor

Usability testing evaluates whether the end user understands how to use the product
and how much they enjoy using it [59]. This process involves observing users as they
complete specific tasks, identifying any usability issues, and gathering qualitative and
quantitative data to improve the overall user experience.

To determine if the application offers any advantages over TripAdvisor, a group of
users was asked to find the same functionality on both this bachelor project application
and the TripAdvisor application. They were instructed to locate a trip plan containing
a list of places to visit, their descriptions, and a map showing the locations. The results
indicated that all users found this functionality more quickly on the bachelor project
application than on TripAdvisor, confirming the project’s value and motivation.

Tester Bachelor project application TripAdvisor

1 46 seconds 2 minutes 30 seconds
2 15 seconds 1 minute 10 seconds
3 10 seconds 1 minute 40 seconds
4 52 seconds 4 minutes

5 30 seconds 2 minutes 40 seconds

Table 4.1. Time spent to find trip plan on bachelor project application and the TripAdvisor
application.

Testers were also asked to provide their usability feedback on test cases from Ap-
pendix C. Additionally, half of the users were asked to evaluate the same test cases
using a mobile application simulator. Feedback was collected and a list of suggestions
for improvements was compiled:

m Ensure button colors are consistent. The delete buttons should be red. Currently,
the delete trip plan button on the Bookmarks page is green. Similarly, the cancel
button should be grey, not green. The text in the delete and edit buttons may be
replaced with icons.

m Increase the margins between information blocks on the trip plan page.

m Add a “view trip plan” button to the trip plan cards, such as those presented on the
search results page.

m Change the color of stars indicating the rating to yellow. Currently, they have the
primary color, which is green.

36

Based on general user feedback, the application was rated as sufficiently user-friendly
and intuitive. The testing was successful, indicating that the application meets the
necessary usability standards.

I 4.5 Acceptance testing

Acceptance testing is conducted to verify that the application meets the defined business
requirements and the users’ needs [59]. This type of testing ensures that the system
behaves as expected from an end-user perspective.

Informal acceptance testing was conducted with a selected group of users who tested
the essential and most important functionalities of the application described in test
cases in Appendix C. During this testing phase, the users provided a list of suggested
improvements:

m Improve the primary image selection process on the create and edit trip plan pages.
Currently, each uploaded image has a star button in the corner. When clicked, the
image is marked as primary and will be presented on the search results page. How-
ever, this star button is not intuitive, even with the existing hint, and can be mistaken
for a rating button, which is usually represented by stars. Most testers were confused
about this button. The suggested solution is to add a new section to the create and
edit trip plan pages where users can select a primary image from all uploaded images.
Additionally, the primary image functionality could be implemented for the trip plan
block (POI) of the trip plan.

m Add support for users to post multiple comments on a single trip plan. Implement
thread functionality to enable users to engage in discussions and answer each other’s
questions.

m Replace Google Maps tags with manually added tags or support editing them. Fre-
quently, place type tags retrieved from the Google Maps API are not human-readable
and can be confusing. Ensure that place type tags are more user-friendly.

m Add text formatting support for trip plan and trip plan block descriptions and com-
ments. This will enhance the text visual appeal.

m Show users’ private trip plans in search results if they are the author.

m When redirecting from POI bookmark to the trip plan page, ensure that the trip
plan page scrolls to the specific POI rather than starting from the beginning of the

page.
The feedback received was invaluable and has been taken into account. This test-

ing was a crucial part of the software development lifecycle, as it confirmed that the
application meets the needs and expectations of its end-users.

37

Chapter 5
Conclusion

This section outlines the experience of designing and developing this bachelor project,
highlighting key aspects of the process. The project’s goals included researching publicly
available travel data sources, proposing architecture, and implementing a web appli-
cation structured around blog functionality, enabling travelers to compose and share
posts (trip plans) detailing their journeys.

The work began with an analysis phase. Application requirements were defined
based on an analysis of existing solutions and the preferences of the target audience. A
Use Cases diagram was created to capture system requirements and visually represent
possible interactions between the system and external entities. A business domain
model was developed to structure the data and visualize the entities, representing the
conceptual view of the system. Additionally, a low fidelity GUI prototype was designed.

During the architecture proposal phase, it was decided to adopt a client-server archi-
tecture due to the application’s small size and the low complexity of the business logic.
To enhance the separation of concerns, the project adopted a Three-Tier architecture
comprising the Presentation Layer, Business Logic Layer, and Data Access Layer.

C# and the .NET platform were selected as the backend technologies, primarily due
to personal experience in developing applications with these tools. For the frontend
implementation, the Angular framework was chosen, again due to prior experience
with this technology.

Due to personal interest and a desire to deepen my understanding, an analysis and
comparison of popular database solutions were conducted. Based on personal expe-
rience and industry statistics, Oracle and Microsoft SQL Server are among the most
popular database engines for enterprise projects. While these engines are highly reli-
able, there is a noticeable trend of migrating projects to PostgreSQL, which is frequently
discussed at various conferences. As a result of this investigation, it became clear that
the primary reason for this trend is the cost of the license, as PostgreSQL is available
free of charge.

The decisive factor in choosing the PostgreSQL database for the project is its abil-
ity to be extended with the PostGIS extension, which offers robust geospatial data
management and a variety of functions to enable GIS processing within the database
itself.

One of the most critical aspects of the project was selecting the appropriate geo-
graphical data provider. The most suitable options were Google Maps and Mapy.cz.
Considering the popularity of the service, the richness of its functionality, and the po-
tential for future project growth, Google Maps was chosen as the primary geographical
data provider.

During the implementation phase, a component diagram was created to visually
represent the project’s architecture. Additionally, a sequence diagram was developed
to illustrate the primary functionality of creating a trip plan, which utilizes both the
Google Maps Platform and the backend.

38

The frontend implementation started with the selection of a component library. Ini-
tially, I opted to utilize the Angular Material component library due to its simplicity
and official endorsement by the Angular Team at Google. However, in the middle of the
project implementation, I encountered limitations within the library that were critical
for the application’s needs. The library lacked essential components such as an image
carousel and a file upload button. After careful consideration, I opted for the PrimeNG
components library and transitioned the project to it. Working with PrimeNG proved
to be an exceptional experience, thanks to its comprehensive suite of components and
extensive configurability. This experience taught me the importance of thoroughly re-
viewing a library’s components before integration. I also realized that such decisions
should be made during the analysis phase rather than the implementation phase.

All interactions with the Google Maps Platform within the project take place on the
frontend. This includes embedded map rendering, autocomplete place search function-
ality, and place details requests. Research was conducted to compare different versions
of Google Maps APIs and their billing structures. Google’s billing is determined by
the data fields queried, making it essential to request only the necessary data to avoid
unnecessary costs. Another cost-saving factor for requests is the utilization of sessions.

The .NET backend solution was structured as a Three-Tier application, consisting of
three distinct projects, each representing layers of the Three-Tier architecture, which
made it well-encapsulated. The Data Access Layer (DAL) project consists of Enti-
ties and Repositories, facilitating access to the database and file system. This project
utilized the Entity Framework ORM and follows a code-first approach, wherein the
Entity Framework generates the database schema based on the Entities and DB Con-
text configuration. The Business Logic Layer project contains models and services,
utilizing methods from the DAL. The Presentation Layer project functions as the main
executable, acting as a monolithic project that connects all components and manages
dependency injection. This layer includes Controllers and DTOs, providing Swagger
documentation in accordance with the OpenAPI specification.

Furthermore, the backend implementation chapter describes the details of imple-
menting the dependency injection software design pattern, along with experiences of
utilizing PostGIS using the NetTopologySuite library in conjunction with the Entity
Framework ORM. It also describes solutions for storing uploaded files on the backend,
data mapping, security, and the usage of the Unit of Work design pattern. Additionally,
it describes the experience of generating TypeScript contracts from C# DTOs with the
assistance of the Reinforced.Typings library.

The final presents an overview of the project’s testing phase, which was carried out
consistently and included a range of methods such as static, manual, unit, usability,
and acceptance testing. The feedback obtained was instrumental in identifying bugs
and improving the project. The testing was a crucial part of the software development
lifecycle, as it confirmed that the application meets the needs and expectations of its
end-users and possesses potential for further growth and improvement.

Considering all these factors, it can be concluded that the bachelor project was
successfully completed, and the project goals are considered to be achieved.

I 5.1 Further prospects of the project

Based on user suggestions gathered during testing and my personal experience and
knowledge about the project, I have compiled a list of factors that may enhance the
project to production quality:

39

m Deploy the project. Consider using cloud services such as Azure or Amazon. Compare
their free tiers to determine which is more beneficial.

m Investigate using a Content Delivery Network (CDN) for POI image storage. This
may provide better data consistency, distribution, and availability.

m Improve logging to make it more meaningful.

m Assess whether using containers for this project could be beneficial.

m Debug database queries generated by Entity Framework to improve performance.

m Add caching for frequently used data such as POI types.

m Implement administrative functionality such as blocking users and hiding trip plans
from the public. Consider using Al for content validation, censorship, and ensuring
trip plans do not contain inappropriate or harmful content.

m Enhance Ul theme customization to give the project a polished and professional
appearance.

I plan to continue working on the project as it is an excellent opportunity to expand
my knowledge and gain new experience.

40

Bibliography

[1] Tripadvisor. [online].
https://www.tripadvisor.com. ¢2023. Accessed: 2023-12-16.

[2] Wanderlog. travel itinerary, vacation € road trip planner [online].
https://wanderlog.com. c2023. Accessed: 2023-10-15.

[3] Plan Your Trip. [online].
https://planyourtrip.com. c2023. Accessed: 2023-12-16.

[4] RoutePerfect. Plan & Book A Perfect Trip With Our Itinerary Planner [online].
https://www.routeperfect.com. ¢2014-2023. Accessed: 2023-12-16.

[5] Coara. Business Requirements vs Functional Requirements [online].
https://coara.co/blog/business-requirements-vs-functional-requirements.

2020. Accessed: 2023-12-16.

[6] Sparx Systems. Use Case Diagram - UML 2 Tutorial [online].
https://sparxsystems.com/resources/tutorials/uml2/use-case-diagram.html.

c2000-2023. Accessed: 2023-12-17.

[7] Santosh Kumar. A Review on Client-Server based applications and research
opportunity. International Journal of Recent Scientific Research. 2019, 10 (7),
33857-3386.

[8] Appsierra. Software Architecture: N Tier, 8 Tier, 1 Tier, 2 Tier Architecture [on-
line].
https://www.appsierra.com/blog/tiers-in-software-architecture. 2023. Ac-
cessed: 2023-12-17.

[9] Guru99. N Tier(Multi-Tier), 3-Tier, 2-Tier Architecture with EXAMPLE [online].

https://wuw.guru99.com/n-tier-architecture-system-concepts-tips.html. 2023.
Accessed: 2023-12-17.

[10] Microsoft. C# | Modern, open-source programming language for .NET [online].
https://dotnet.microsoft.com/en-us/languages/csharp. c2023. Accessed: 2023-
12-17.

[11] Stack Overflow Insights. Stack Overflow Developer Survey 2023 [online].
https://survey.stackoverflow.co/2023/#technology-admired-and-desired. 2023.
Accessed: 2023-12-17.

[12] Vadym Rudenko. Bachelor thesis. Design and implementation of a cryptocurrency
market notification application [online].
https://dspace.cvut.cz/handle/10467/108764. c2023. Accessed: 2023-11-12.

[13] Microsoft Learn. Lifecycle FAQ - .NET and .NET Core [online].
https://learn.microsoft.com/en-us/lifecycle/faq/dotnet-core. c2023. Ac-
cessed: 2023-12-17.

[14] Marino Posadas. Mastering C# and. NET Framework. Packt Publishing Ltd,
2016.

41

https://www.tripadvisor.com
https://wanderlog.com
https://planyourtrip.com
https://www.routeperfect.com
https://coara.co/blog/business-requirements-vs-functional-requirements
https://sparxsystems.com/resources/tutorials/uml2/use-case-diagram.html
https://www.appsierra.com/blog/tiers-in-software-architecture
https://www.guru99.com/n-tier-architecture-system-concepts-tips.html
https://dotnet.microsoft.com/en-us/languages/csharp
https://survey.stackoverflow.co/2023/#technology-admired-and-desired
https://dspace.cvut.cz/handle/10467/108764
https://learn.microsoft.com/en-us/lifecycle/faq/dotnet-core

[15] Andrew W Troelsen, and Philip Japikse. Pro C# 10 with. NET 6: Foundational
Principles and Practices in Programming. Springer, 2022.

[16] Shyam Seshadri. Angular: Up and running: Learning angular, step by step. ”
O’Reilly Media, Inc.”, 2018.

[17] Aristeidis Bampakos, and Pablo Deeleman. Learning Angular: A no-nonsense
guide to building web applications with Angular 15. Packt Publishing Ltd, 2023.

[18] DB-Engines - Knowledge Base of Relational, and NoSQL Database Management
Systems. Historical trend of relational DBMS popularity [online].
https://db-engines.com/en/ranking_trend/relational+dbms. c2023. Accessed:
2023-12-17.

[19] IBM. PostgreSQL vs. MySQL: What’s the Difference? [online].
https://www.ibm.com/blog/postgresql-vs-mysql-whats-the-difference. 2021.
Accessed: 2023-12-17.

[20] Amazon Web Services (AWS). PostgreSQL vs MySQL - Difference Between Rela-
tional Database Management Systems (RDBMS) [online].

https://aws.amazon.com/compare/the-difference-between-mysql-vs-postgresql.

c2023. Accessed: 2023-12-17.

[21] Spatial Post. 11 Best Geospatial Database Systems: An In-Depth Comparison [on-
line].
https://www.spatialpost.com/best-geospatial-database-systems. 2023. Ac-
cessed: 2023-12-17.

[22] Google Maps Platform. Platform Pricing & API Costs - Google Maps Platform
[online].

https://mapsplatform.google.com/pricing. c2023. Accessed: 2023-12-17.

[23] Developer Mapy.cz. Pricing - Developer Mapy.cz [online].
https://developer.mapy.cz/en/pricing. c1996-2023. Accessed: 2023-12-17.

[24] Google Trends. Google Maps, Mapy.cz - Ezplore - Google Trends [online].

https://trends.google.com/trends/explore?q=Google’20Maps,Mapy.cz&hl=en-US.
c2023. Accessed: 2023-12-17.

[25] Angular. Angular Material [online].
https://material.angular.io. 2024. Accessed: 2024-05-12.

[26] Angular. Google Maps component [online].
https://github.com/angular/components/blob/main/src/google-maps/README.md.

2023. Accessed: 2024-05-12.

[27] PrimeNG. Angular UI Component Library [online].
https://primeng.org. 2024. Accessed: 2024-05-12.

[28] AGM. Angular Google Maps [online].
https://angular-maps.com. 2018. Accessed: 2024-05-12.

[29] Google Maps Platform Documentation. Maps JavaScript API [online].
https://developers.google.com/maps/documentation/javascript. 2024. Accessed:
2024-05-12.

[30] Google Maps Platform Documentation. Maps JavaScript API Usage and Billing
[online].
https://developers.google.com/maps/documentation/javascript/usage-and-

billing. 2024. Accessed: 2024-05-12.

42

https://db-engines.com/en/ranking_trend/relational+dbms
https://www.ibm.com/blog/postgresql-vs-mysql-whats-the-difference
https://aws.amazon.com/compare/the-difference-between-mysql-vs-postgresql
https://www.spatialpost.com/best-geospatial-database-systems
https://mapsplatform.google.com/pricing
https://developer.mapy.cz/en/pricing
https://trends.google.com/trends/explore?q=Google%20Maps,Mapy.cz&hl=en-US
https://material.angular.io
https://github.com/angular/components/blob/main/src/google-maps/README.md
https://primeng.org
https://angular-maps.com
https://developers.google.com/maps/documentation/javascript
https://developers.google.com/maps/documentation/javascript/usage-and-billing
https://developers.google.com/maps/documentation/javascript/usage-and-billing

[31] Google Maps Platform Documentation. The Maps Embed API overview [online].
https://developers.google.com/maps/documentation/embed/get-started. 2024.
Accessed: 2024-05-12.

[32] Google Maps Platform Documentation. Maps Embed API Usage and Billing [on-
line].
https://developers.google.com/maps/documentation/embed/usage-and-billing.
2024. Accessed: 2024-05-12.

[33] Google Maps Platform Documentation. Places API [online].
https://developers.google.com/maps/documentation/places/web-service. 2024.
Accessed: 2024-05-12.

[34] Google Maps Platform Documentation. Choose your API version - Places API
[online].
https://developers.google.com/maps/documentation/places/web-service/choos

e-api. 2024. Accessed: 2024-05-12.

[35] Google Maps Platform Documentation. Session tokens - Places API [online].

https://developers.google.com/maps/documentation/places/web-service/place-
session-tokens. 2024. Accessed: 2024-05-12.

[36] Google Maps Platform Documentation. Autocomplete (New) and session pricing
[online].
https://developers.google.com/maps/documentation/places/web-service/sessio

n-pricing. 2024. Accessed: 2024-05-12.

[37] Microsoft Learn. .NET dependency injection [online].
https://learn.microsoft.com/en-us/dotnet/core/extensions/dependency-inject

ion. 2024. Accessed: 2024-05-12.

[38] Microsoft Learn. Dependency injection guidelines [online].
https://learn.microsoft.com/en-us/dotnet/core/extensions/dependency-inject
ion-guidelines. 2024. Accessed: 2024-05-12.

[39] PostGIS. About PostGIS [online].
https://postgis.net. 2023. Accessed: 2024-05-12.

[40] PostGIS. Getting Started [online].
https://postgis.net/documentation/getting_started. 2023. Accessed: 2024-05-
12.

[41] PostGIS. Geography [online].
https://postgis.net/workshops/postgis-intro/geography.html. 2023. Accessed:
2024-05-12.

[42] Cockroach Lab. SRID 4326 - longitude and latitude [online].

https://www.cockroachlabs.com/docs/stable/srid-4326. 2024. Accessed: 2024-
05-12.

[43] Npgsql - .NET Access to PostgreSQL. Spatial Mapping with NetTopologySuite
[online].
https://www.npgsql.org/efcore/mapping/nts.html?tabs=without-datasource
2023. Accessed: 2024-05-12.

[44] Stack Overflow. Storing Images in DB - Yea or Nay? [online].
https://stackoverflow.com/questions/3748/storing-images-in-db-yea-or-nay.
2008. Accessed: 2024-05-12.

43

https://developers.google.com/maps/documentation/embed/get-started
https://developers.google.com/maps/documentation/embed/usage-and-billing
https://developers.google.com/maps/documentation/places/web-service
https://developers.google.com/maps/documentation/places/web-service/choose-api
https://developers.google.com/maps/documentation/places/web-service/choose-api
https://developers.google.com/maps/documentation/places/web-service/place-session-tokens
https://developers.google.com/maps/documentation/places/web-service/place-session-tokens
https://developers.google.com/maps/documentation/places/web-service/session-pricing
https://developers.google.com/maps/documentation/places/web-service/session-pricing
https://learn.microsoft.com/en-us/dotnet/core/extensions/dependency-injection
https://learn.microsoft.com/en-us/dotnet/core/extensions/dependency-injection
https://learn.microsoft.com/en-us/dotnet/core/extensions/dependency-injection-guidelines
https://learn.microsoft.com/en-us/dotnet/core/extensions/dependency-injection-guidelines
https://postgis.net
https://postgis.net/documentation/getting_started
https://postgis.net/workshops/postgis-intro/geography.html
https://www.cockroachlabs.com/docs/stable/srid-4326
https://www.npgsql.org/efcore/mapping/nts.html?tabs=without-datasource
https://stackoverflow.com/questions/3748/storing-images-in-db-yea-or-nay

[45] Amazon Web Services (AWS). What is a CDN (Content Delivery Network)? [on-
line].
https://aws.amazon.com/what-is/cdn/. 2024. Accessed: 2024-05-12.

[46] AutoMapper. [online].
https://docs.automapper.org. 2024. Accessed: 2024-05-12.

[47] Reinforced.Typings. Source code and documentation [online].
https://github.com/reinforced/Reinforced.Typings. 2024.

[48] Alex Klaus. 6+ ways to marry C# with TypeScript [online].
https://alex-klaus.com/marry-csharp-typescript. 2020. Accessed: 2024-05-12.

[49] Medium. Implementing the Unit of Work Pattern in Clean architecture with .NET
Core [online].
https://medium.com/Q@edin.sahbaz/implementing-the-unit-of-work-pattern-in-
clean-architecture-with-net-core-53efb7f9d4d. 2024. Accessed: 2024-05-12.

[50] Microsoft Learn. Introduction to Identity on ASP.NET Core [online].

https://learn.microsoft.com/en-us/aspnet/core/security/authentication/
identity?view=aspnetcore-8.0&tabs=visual-studio. 2024. Accessed: 2024-05-12.

[51] Node.js. Download Node.js [online].
https://nodejs.org/en/download/prebuilt-installer. 2024. Accessed: 2024-05-
12.

[52] Angular. Setting up the local environment and workspace [online].
https://angular.io/guide/setup-local. 2022. Accessed: 2024-05-12.

[53] Google Maps Platform Documentation. Use API Keys [online].
https://developers.google.com/maps/documentation/embed/get-api-key. 2024.
Accessed: 2024-05-12.

[54] W3Schools. Install PostgreSQL [online].
https://www.w3schools.com/postgresql/postgresql_install.php. Accessed: 2024-
05-12.

[55] Microsoft. Visual Studio [online].
https://visualstudio.microsoft.com. 2024. Accessed: 2024-05-12.

[56] Medium. Understanding Static Testing and Static Code Analysis Tools —
SonarLint [online].
https://receppemul .medium. com/understanding-static-testing-and-static-
code-analysis-tools-sonarlint-23359a8756f3. 2023. Accessed: 2024-05-12.

[57] JetBrains ReSharper. Code analysis [online].
https://www.jetbrains.com/help/resharper/Code_Analysis__Index.html. 2024.

Accessed: 2024-05-12.

[58] SmartBear Support. Manual Testing [online].
https://support.smartbear.com/testcomplete/docs/testing-with/deprecated/
manual/index.html. 2024. Accessed: 2024-05-12.

[59] Svyatoslav Kulikov. Software testing. 3rd edition [online]. 2024. Accessed: 2024-
05-12.

44

https://aws.amazon.com/what-is/cdn/
https://docs.automapper.org
https://github.com/reinforced/Reinforced.Typings
https://alex-klaus.com/marry-csharp-typescript
https://medium.com/@edin.sahbaz/implementing-the-unit-of-work-pattern-in-clean-architecture-with-net-core-53efb7f9d4d
https://medium.com/@edin.sahbaz/implementing-the-unit-of-work-pattern-in-clean-architecture-with-net-core-53efb7f9d4d
https://learn.microsoft.com/en-us/aspnet/core/security/authentication/identity?view=aspnetcore-8.0&tabs=visual-studio
https://learn.microsoft.com/en-us/aspnet/core/security/authentication/identity?view=aspnetcore-8.0&tabs=visual-studio
https://nodejs.org/en/download/prebuilt-installer
https://angular.io/guide/setup-local
https://developers.google.com/maps/documentation/embed/get-api-key
https://www.w3schools.com/postgresql/postgresql_install.php
https://visualstudio.microsoft.com
https://receppemul.medium.com/understanding-static-testing-and-static-code-analysis-tools-sonarlint-23359a8756f3
https://receppemul.medium.com/understanding-static-testing-and-static-code-analysis-tools-sonarlint-23359a8756f3
https://www.jetbrains.com/help/resharper/Code_Analysis__Index.html
https://support.smartbear.com/testcomplete/docs/testing-with/deprecated/manual/index.html
https://support.smartbear.com/testcomplete/docs/testing-with/deprecated/manual/index.html

Appendix A
Low fidelity prototype of GUI

Register
4 C> X {} (hups:/7 J @
Home MyPlans Bookmarks Register Login
Register

IUsemume I

| Emait |

| Password |

J

I Repeat password

L4

Figure A.1. Desktop registration page prototype.

= Home ..

Register

Username

Password

Repeat password

Register

& —

Figure A.2. Mobile registration page prototype.

45

Login

a E> X Q {hitps://

)& D

Home MyPlans Bookmarks

Register Login

Login

| Email |

I Password I

| Login

L

Figure A.3. Desktop login page prototype.

(0‘1:52 AM —— o all = E\

= Home .

Login

|Email |

I Password |

&)

Figure A.4. Mobile login page prototype.

46

Home Page
| E> X Q (hutps77 0@)
Home MyPlans Bookmarks g

— Find Trip Plan
How far?
or
Suggestions
Trip plan name Trip plan name Trip plan name
>< kK Ar e >< kK Ar e >< kK Ar e
AN A0 AN AV ANt B L L R) A At A4t At Aiiad
AL SLINNPNILLE ALNM A 8 MG LI ALN A e SOMRPNILE SAGNNILLT SN AL B
hiAddgl Agiidd Sijiuginiidt $ii Agiiet gd Al AAgldidd Sljiiginiidt i Agiiied gid hiiridigh A A Slfiigiagidil gid Agididd gl
SRS A4S SN S SAE Si4 440N SRS A0S SN M4 SN 4 A4 SRS AN SN 04 Mg 04 4000
GRS SMEPE IR NS NI Eets ARSI SMEME SRR SMIINISIItets LA SEPE S0i-AN0E SN RNISTRMRetd
(0]]
4

Figure A.5. Desktop home page prototype.

(0‘1:52 AM

=

= Home .

-4

— Find Trip Plan

(@ departure from)
How far?
or

(. find destination)

Suggestions

Trip plan name

* % k¥ vy

>

B el o]
A ditgll A Gih Gl AL
ST G AT 058 ST SOUNE TN W6
004 AN I SIS S SISt
A SIS SIS B4 SN $OA G4 B

Trip plan name

* %k % ¥ vy

>

SO Sers SLA Aen Aire LT
Wt S en e e I
S $h AL S AL S SR e

—

N\

Figure A.6. Mobile home page prototype.

47

Search Results Page

a E> X Q {hitps://

Home

My Plans

Bookmarks

~ Find Trip Plan

Search Results

or

Q, find destination

How far?

Trip plan name

Kk kfrsy

R L

A SR iigkt et 0
AL AL Slilalaiitt. i Agiiid
AUAE AN SN S BN . AN
AP SMN SRR NN tets

Trip plan name

*k k1 vy

AN VN SN S S

SR S SN A g
S AL S (4 AL
IS A M S S S N
MRS S IR SN IRt

Trip plan name

KA KTy

Aiiglt Aitskt Aiiest et diield

AN VRN 44NN 0L 4
W AL Sl G AL 4
SRS AN SN S SN 44 AiAnd
LA SME SR ISR

Trip plan name

. 8.8 8 %

A At i S AN
AN VIR AV AT e
A AL St i AL g
SRS AN ML 44 SN S4 A4
AL S SN AN

L)
=))® @

Figure A.7. Desktop search results page prototype.

ﬂsz»\m

=

ﬂsz AM

=

=— Home .

-4 = Home .
h-4 =

p-4

How far?

Search parameters ~
or

I Search parameters v |

;

Search Results

>

Trip plan name:

* K K I iy

Search Results

Ao S S Aot Ao
S S A G GBS A
SR (9 AT WS ATEE AU ST B4
004 S RS S S St
A S S $06 SRS S 084 SIS

A . A -

i groiiiins ebigts 004

* K K ¥ vy

>< Trip plan name

AR SN S A S S
e e e]

S 054 S G ST S I

<

Trip plan name

* K K vy

AL St G 4

osriies 004 b eaniiiies

AU I S A A S
e e e]
A (. A WS AL A A w4
T 054 SO M ST SR I
Wi, i S 004 Gl 4 G4 giniAs

Trip pi
>< * ok kb 77

A ditatt gt Aot iriatt et
NN S A e S A

lan nome:

<

Trip plan name

* K K I iy

Ao S S Aen ers s

g e et (e AT SIS gpren 06
. 454 SO WD A S S

e

Figure A.8. Mobile search results page prototype.

48

Trip Plan Poge

a E> X Q {hitps://

Home My Plans

Bookmarks

e

Trip Plan Name

[] save to bookmarks J

* kK ey

g Author

Created date
Last update date

POI Type

POI Name

POI address

N
/

N
yd

link to site
Working hours

B e I R e R o o]
S gheiidigt At Sipipingiitt $hi AL 44 AL Siigi sepidis
o ShighA Sii SO SN SLigiA Sl AL SNSRI Siel AL

AN ML S5 SN B4 B4 BN SENIEHAS BN B A4
AU 4 SPLINNMENIIOT 06 SIS AT SHEME AL ARt

rating +10

4 Increase rating
|, Decrease rating

POI Type

rating +10

4 Increase rating
|, Decrease rating

PCI Type

rating +10

4 Increase rating
|, Decrease rating

Comments

Leave the comment

g Autheor of comment

At AP PN APE gl SR RGNS SNt ATE 6 SPAMIN ALY SN i AL
SR AN SN $bE SighA S04 ALNML NN SN SNLALIS SMEIANANALL SaiALIGE el SMigLA L SN S04

g Author of comment

ARSI VUL L AV SIS AN A VL M0 SNV ALY SUMSMHAS S ARV 4
S AN Sl S0 GG S34 AVIGH. SNAMIRE Mg SN RIS S IEAEINEE SielAtigh SielAtigh Shigt S el B4

v

Figure A.9. Desktop trip plan page prototype.

49

(0%:52 AM — o all = E\

((H:SZAM S o alll "?‘E\

\!

= Home .. -4 = Home .. h-4
- = -_— =
Trip Plan Name POl Type
K kokfr vy
g Author LR X]
Created date
Last update date POLT
e
i
LA X]
PQOI Type
POI Name
POI address
Comments
> < Leave the comment
link to site
Working hours
AR ORI SN on g Author of comment
e ——- P TS —
e e SO AT HA A S $4 A 26
- Aparen e Aperes AL A S i G G AAAGL G i
- —-———- ——— ——— - -
- 4 Increase rating g Author of comment
rating + A Al Al A gl SN S
|/ Decrease rating Jj K\w A . Gla A AL olsbisiidih G AL o)

Figure A.10. Mobile trip plan page prototype.

Create New Trip Plan

<:J E> X Q {nttps://

Heme MyPlans Bookmarks

Create New Trip Plan

ITrip Plan Name |

Fomme]

®

Known Place O Add place manually

Q@

Search Place)

Description

N
/|

Add Picture

@ Add POI

L
EE)MO

Figure A.11. Desktop create new trip plan page prototype.

50

(OQ:SZ AM

=

= Home

-4

Create New Trip Plan

Trip Plan Name
Era—

@ Known Place O Add place manually

(& search Pla

e D)

Description

XK

Add Picture

Add POL

©)

\S

—/)

Figure A.12. Mobile create new trip plan page prototype.

Bookmarks Page

a E> X Q {nittps://

Home MyPlans Bookmarks g
My Bookmarks
TripPlan*POI\
[sort B |-
Trip plan name Trip plan name
>< * ek e 17 >< * ek e 17
il AiAghd Abigid ASL AiAghi SLANNANALS At AiAghd Aiigih AS Aiighl AN
AL AR AL S Ml ALV SN AN AL S WAV AN
SRR M SIS I SR SN R BN SIS 0 SNBGRLE SONE
B G S i AL G G L g K R R e
Trip plan name Trip plan name
>< KKt 17 >< *kk ot 1
AR MMM AV S AN NGNS B o L I X e o
SRt igiit igit Aol gt ginpiidg Aphiiit S igh it 4igit Aot gt giepbiig AApiited
A G AEAALE M AN 40N igpiagiidt Shi At i Apbiiid 4bigld
SN S SV 4 4SRN SN N AR S AL 04 ALNEM SN N
[

Figure A.13. Desktop user’s bookmarks page prototype.

51

(OQ:SZ AM

= Home

=

-4

My Bookmarks

X

St re 4t B0s St sssTIIIIL
A S AL S A A
S 4 AT e AT S0
e 006 G 08 Sitese Gmies asiers

X

Attt Attt At AeL dideid stbaisieiit
A Sigi At §hh Gle i A
———— 24 AT 24 AL Ses
S 000 SN W6 Sieee GESes eiere

X

et ittt ittt Ao ittt G

g

Trip plan name

L8 6 & (B4

Trip plan name:

K hk i vy

Trip plan name

*hk 5y

\- =7

Figure A.14. Mobile user’s bookmarks page prototype.

My Trip Plans Page

a E> X Q {nittps://

Home MyPlans Bookmarks

e

My Trip Plans

<

Trip plan name

B - o I o X o X I N
SRS S ARVLEE B4 AMLEE SN BN B SN S AVNL NN NS
AR GGl S Sl MG S0 SRR G0 S04 SRR Siginulii it
g AR Aigid 4 NS ANNMNL S $ EAMIMIAE SNl SMN . AR AR EEE 4
SRS AN - i -

Make Public

Delete

Trip plan name Yedokdrsy

<

Public

gt A4t At AL ALNE PSS SN Aiight Aot S0 NN AMEL Mgttt
Slpbigiid . ghi AAALA 4 AL 4igli ShiiAligh $i4 SN B ALAgii SeiAlig Sbign.
SR M LA AL AL S SRR S04 S SNV SN MM
AP SO0 AL S AL APNNINNIESS. 34 SALNIIINE. SR SINMS RIS AN S
AL SN - R e

Edit

Delete

Trip plan name Ydokrdry
gt A4t At AL ALIE SAMININIINLES SMVINNIIAEE Aiight Aot S NNAMEL Agtiiis

Public

Edit

il [f IEI:

Delete

v

Figure A.15. Desktop user’s trip plans page prototype.

52

(OQ:SZ AM

=

= Home

-4

My Trip Plans

Create new

>

Trip plan name

Attt et et At et
e e Y
NS S A S
L G G G SO s

l Make PuhlicJ I EditJ lDeIeteJ

Yookl

P

Trip plan name

A0 e semss aen svmss
P Wi it
S s SRl AL summsmIses
4 A0ren 0h AEIes So
L G S S A S

Public

\Trip plan name

Figure A.16. Mobile user’s trip plans page prototype.

(m:sz AM

—

= Home _

p-4

&

Received Ratings Statistics

X

Username
email@email.com

I Change account informa!ioﬂ

Change password

S

((H:SZ AM

—

= Home g
Ratings 1 Gave
Trip Plan ‘{ POI'\
[Eoro]

Trip plan name

X

5vr

At s S e Sve
D e o
A A G A
s At w4

A Sith g b St

Trip plan name

577

At Shiai et s dtast.

Ratings 1 Gave) /

\S

Figure A.17. Mobile user’s account page prototype.

53

a E> X Q {hitps://

Account Page

Home MyPlans Boockmarks g

Username
email@email.com
| change aceount information ||

Received Ratings Statistics

Ratings 1 Gave

TripPIan*PDI\‘
[Fore]

Trip plan name 5v¢ Trip plan name 5v¢
ANt Aiigtt AEIgd et Aiigd gt Aigh Abigid Aol Aiige
hbigigiigbidt sbidtpini gt it b Agigiigi it Sbiiipipligiiit

X AN AL S MM AL X A A S B A
SANRIREAE. 44 A 88 SRR $54 AT 4
AL A MNEAANE S MM AU A R M S

Trip plan name 5v¢ Trip plan name 5v¢
Aiigii Siigtt Aiigd At Sirighd Aiigid Siight Airigtd Aot Siigis

X kb il et i sibtainb ittt X L e o e]
AP LS M LA AL AL ST S SN IS
SRS . AL SRS S A e
S A MM S MM SIS A MG M S

v

Figure A.18. Desktop user’s account page prototype.

54

Appendix B
GUI

OneDayTrip Signin Sign up
Sign up
Username
Email
Password ®
Repeat password
Figure B.19. Desktop registration page.
= Signin Sign up Signin Sign up Sign in Sign up
Sign up Sign up Sign up
Username Username
OrangeBook OrangeBook ® Username 'Angelina’ is already
taken.
Email Email

mynameis@gmail.com
Password
cssscesse ®

Repeat password

mynameis@gmail.com

Password

cessccens @J

Medium

Requirements

* At least one lowercase

At least one uppercase

* At least one numeric

* Minimum length required: 8
characters

Email

® 'angel.rudenko.777@gmail.com’ is

already taken.

Username
Angelina

Email
angel.rudenko.777@gmail.com
Password

cssssesen

Repeat password

Figure B.20. Mobile registration page.

55

B GUI

OneDayTrip Sign in Sign up
Signin
Username or email
Password ®
Figure B.21. Desktop login page.
r ~
= Sign in Sign up = Signin Sign up
Sign in Slgn n
Username or email ® Incorrect Username or Password
Username or email
Password ® thisuserdoesnotexist@gmail.com
Password
m ssssssssssss ©
h A

Figure B.22. Mobile login page.

56

OneDayTrip My Plans Bookmarks

Find a trip

Departure from

Destination

Suggestions

One day in Mé&lnik City of Prague Plasy

Kozelnd vesnice s obrovskym
aredlem byvalého kldstera

Figure B.23. Desktop home page.

Logout

Find a trip

Departure from

Destination

Suggestions

3

One day in Mélnik

Figure B.24. Mobile home page.

57

Logout

vl

B GUI

OneDayTrip My Plans Bookmarks Logout

. . Search Results
Find a trip »

Departure from

Brno, Czechia

Destination

Hluboka Mésto Pisek
Za mne nejhezéi zdmek v Ceské Populdrni v ruskych skupindch o
republice. Cesku kv{li svému vtipnému ndzvu

L City of Prague One day in Mélnik

Figure B.25. Desktop search results page.

Logout

Find a trip
Departure from

Brno, Czechia

Destination

Search Results

Hluboka

Za mne nejhezé&i zamek v Ceské
republice.

Figure B.26. Mobile search results page.

58

K

OneDayTrip My Plans ~ Bookmarks

Hlubokd »
Ok hdrk ok
Total rating 4.5
Author Ladislav
Created 2024-05-08 12:04
Last update 2024-05-08 12:38
Za mne nejhezéi zdmek v Ceské republice.

premise

Hlubokd Castle »

- P
Statni zamek Hiubokd, Zamek 142, 373 41 Hluboké nad Vitavou, Czechia
Dost vysoké vstupné. Neberou ITIC!
i
The State Chateau ...
View larger map \uhuka‘@

Parkovité pro invalidy

O Q Ubytc
Stekl
0 'S(a‘(m zdmek Hiuboka

Koupalisté H\ubakaq
nad Vi~

Pristav Hiuboka®) —
Googlgad Vitavou! W
Keyboard shortculs Map dala 82024 Temms Repor a maperror

...Some more POls...

point_of_interest establishment z00 tourist_attraction hiking_area park

Zoo Hluboka

- O
©Ohrada 417, 373 41 Hlubokd nad Vitavou, Czechia

Maji hezké papousky.

Ohrada 417
View larger map

0 L4

5
Z00 Hlubok - 9 Losez]
placené parkovisté

hrada

Go'gle il

Comments

(You) Angelina 7 X

I would like to visit it!

Ladislav

Uz nemdm chybu.

Ladislav2

Mds tam hroznou chybu!

Figure B.27. Desktop trip plan page.
59

Logout

B GUI

Scroll 1

Scroll 2

Scroll 3

Logout

Hlubokd »
o) 8. 8.8 & ¢
Total rating 4.5
Author Ladislav
Created 2024-05-08 12:04
Last update 2024-05-08 12:38
Za mne nejhezéi zamek v Ceské republice.

premise

Hlubokd Castle »

W P

Stdtni zdmek Hlubokd, Zamek 142, 373
41 Hlubokd nad Vitavou, Czechia

Dost vysoké vstupné. Neberou ITIC!

Pretiservis Hluboka (@)
The State Chatea...

View larger map
(V) 4

tekl @
Statni zdmek Hluboka

o invalidy

Uby

Koupalisté + H |
nad 1

Dost vysoké vstupné. Neberou ITIC!

Pnenservis Hlubokd V
The State Chatea...

View larger map
(V) 4

tekl Q
Stétni zémek Hluboka

o invalidy

Uby

Koupalisté - +]|
nad' 1

L1299
Map data ©2024 | Terms

Google
Keyboard shortcuts

I}

Create New Trip Plan

Logout Bezruéova

Make Public & 'Eezruéova Find place
e PLANEO -
el Add place manually
One day in Mélnik
Description Poa Hyperr 1 Find place
“Che, it . :
o . K r
Visit all the best places of Mglnik in o — ndmésti Miru, Méinik 1, Czechia
&
one day) e arny 00l & w Description
"8 " Map data ©2024 GeoBasis DE/BKG (62009) Terms
Nice square. You can visit local
market here on the weekend. Also
~+ Add photos there is some concerts or activities
Find place X sometimes. In the center of square

Add place manually

Place Name
Small lake

Address

Bezruéova, 276 01 Mé&lInik 1

Find place nearby

Autobusové nddrazi Méinik, Bezruéo
Description

Small lake next to main bus station.

You can see nice animals there Find place

Bezrucova

View larger map

Comments

(You) Angelina 7 X

I would like to visit it!

2024/05/20 09:51

Ladislav

Uz nemdm chybu.

2024/05/08 12:40

Ladislav2

Mds tam hroznou chybu!

2024/05/08 12:19

@ Dobry Kanec — t
Google

Map data ©2024 GeoBasis DE/BKG (£2009) Terms

+ Add photos

X X Cancel

X Cancel

Add place manually

Figure B.29.

g

i &

5
ném. Miru $

View larger map rece @ tradpr

Meéstsky urad Mélm’Ke 4

/ 'ném Miru
©
o

&

S

<

0]

2

+

@ pobry Kanec = ti

\
- -

5 Map data 2024 GeoBasis DE/BKG (02009) Terms.

~+ Add photos

B

3

3

2

=
=

3

)
2,
Slacksho

Mobile create new trip plan page.

60

OneDayTrip

My Plans

Bookmarks
Create New Trip Plan
Make Public

Trip Plan Name

One day in M&inik

Description

Visit all the best places of Mglnik in

one day
Find place Add place manually X
Place Name

Bezruéova

Small lake K 276 01 manicr

Address View larger map

Bezrutova, 276 01 MInik 1

Find place nearby ﬂc

Autobusové nadrazi Mélnik, Bezrucova, Mélnik 1, Mélnik, Cz

PLANEO - Mél;

Description

Poay, Hypermarket Manik{ =
Small lake next to main bus station. You can see nice o,
animals there = -
N A -
(2008) Temns
+ Add photos X Cancel
—_—
= Al X
o
Find place Add place manually X
= .: & o
Find place 3 A
” 2 nam. Miru Bl
namesti Miru, Mélnik 1, Czechia ‘I 276 01 Mélnik 1 a fCS‘»JUMCUW Ufad préce v Mélniku
Description View larger map
- Méstsky drad Méln @ 2
Nice square. You can visit local market here on the o g
weekend. Also there is some concerts or activities ’nam‘ Miru &
8
sometimes. In the center of square you can see s o
oy, . 7 s * S
Stiedongka studng” - medieval well. I~ ¥ Koty
2 2 B ¥
Zémek Mamko g SH Y +
\ & |
9 Dobry Kanec - Hostinec L -
Google i & e
(82009) Tems ¢

+ Add photos X Cancel

Add place

Figure B.30. Desktop create new trip plan page.

61

Logout

B GUI

OneDayTrip

My Plans Bookmarks

Bookmarks

Trip Plans Places

Hluboka Plasy
Za mne nejhezéi zamek v Ceské Kozelnd vesnice s obrovskym
republice. aredlem byvalého kldstera

Delete from bookmarks Delete from bookmarks

Figure B.31. Desktop user’s bookmarks page.

F ~
= Logout

Bookmarks

Trip Plans Places

Hlubokd

Za mne nejhezéi zdmek v Ceské
republice.

Delete from bookmarks

4

L

Figure B.32. Mobile user’s bookmarks page.

62

Logout

OneDayTrip

My Plans Bookmarks

My Trip Plans

Hluboka Plasy Magic Novosibirsk

Za mne nejhez&i zamek v Ceské Kozelnd vesnice s obrovskym You need to see it by yourself!
republice. aredlem byvalého kldastera

Make Private [ZZNED S
Make Private [EZZNEDY Make Private [PZ2DY

Figure B.33. Desktop user’s trip plans page.

Logout

Hiubokd

Za mne nejhezéi zdmek v Ceskeé
republice.

Mcake Private 7z X

Plasy Create New Trip Plan

Figure B.34. Mobile user’s trip plans page.

63

Logout

Create New Trip Plan

»

Appendix C

Test cases
Id 2
Related FRQ-011
requirements
Title Successful registration
Steps Navigate to the “Sign up” page. Perform each of the following
validation tests one by one.
1. Enter a valid username. Username must be between 5 and 20
characters.
2. Enter a valid email address.
3. Enter a valid password. Password must contain at least one
lowercase letter, at least one uppercase letter and at least
one numeric digit. The password minimum length is 8 characters.
4. Repeat the entered password. Ensure the repeated password
matches the initial password.
5. Click on the Sign up button.
6. If error message that user with same username or email already
exists, repeat the attempt with other data.
Expected User account successfully created, and user is logged in.
result Verify successful login by checking existence of “Logout” button
on the navigation bar.
Table C.2. Test case: Successful registration.
Id 5
Related FRQ-013
requirements
Title Logout
Steps To execute this test user must be logged in first.
1. Click on “Logout” button on the navigation bar.
Expected User is logged out. Verify successful logout by checking that
result “Logout” button is not presented on the navigation bar.

Table C.5. Test case: Logout.

64

Id 1
Related FRQ-011
requirements

Title Registration form validation

Steps Navigate to the “Sign up” page. Perform each of
the following validation tests one by one.
1. Open the sign-up page.
2. Leave the username field empty and attempt to submit the form.
3. Enter a username shorter than 5 characters (e.g., abc) and
submit the form.
4. Enter a username longer than 20 characters
(e.g. thisisaverylongusernameexceedingthelimit)
and submit the form.
5. Leave the email field empty and attempt to submit the form.
6. Enter an invalid email format (e.g. invalidemail®) and submit
the form.
7. Leave the password field empty and attempt to submit the form.
8. Enter a password shorter than 8 characters (e.g., Abc123)
and submit the form.
9. Enter a password without any uppercase letters
(e.g., abc12345) and submit the form.
10. Enter a password without any lowercase letters
(e.g., ABC12345) and submit the form.
11. Enter a password without any numeric digits
(e.g., Abcdefgh) and submit the form.
12. Leave the repeat password field empty and attempt
to submit the form.
13. Enter a password to the Repeat password” field
other than password in “Password” field.

Expected 1. Sign-up page is shown.
result 2. Error message Username is required is displayed.

3. Error message Minimum length required: 5 characters
is displayed.

4. Error message Maximum length allowed: 20 characters
is displayed.

5. Error message Email is required is displayed.

6. Error message Invalid email format is displayed.

7. Error message Password is required is displayed.

8. Error message Minimum length required: 8 characters
is displayed.

9. Error message At least one uppercase is displayed.

10. Error message At least one lowercase is displayed.
11. Error message At least one numeric is displayed.

12. Error message Please repeat the password is displayed.
13. Error message Passwords do not match is displayed.

Table C.1. Test case: Registration form validation.

65

Id 3
Related FRQ-011
requirements

Title Registration failed because user with same email or username
already exists

Steps Navigate to the “Sign up” page. Perform each of the following
validation tests one by one.
1. Enter the username of the existing user.
2. Enter a valid email address.
3. Enter a valid password. Password must contain at least one
lowercase letter, at least one uppercase letter and at least
one numeric digit. The password minimum length is 8 characters.
4. Repeat the entered password. Ensure the repeated password
matches the initial password.
5. Click on the Sign up button.
6. Enter a new valid username. Username must be between
5 and 20 characters.
7. Enter the email address of the existing user.
8. Click on the Sign up button.

Expected After the steps 5 and 8 validation message saying that user
result with same username or email already exists must be shown.

Table C.3. Test case: Registration failed because user with same email or username already

exists.

Id 4
Related FRQ-012
requirements

Title Successful login

Steps Navigate to the “Sign in” page. Perform each of the following
validation tests one by one.
1. Enter the username of the existing user.
2. Enter the correct password associated with the username.
3. Click “Sign in” button.
4. Logout by clicking “Logout” button,
5. Navigate to the “Sign in” page.
6. Enter the email of the existing user.
7. Enter the correct password associated with the email.
8. Click “Sign in” button.

Expected After steps 3 and 8 the user must be logged in. Verify
result successful login by checking existence of “Logout” button on the

navigation bar.

Table C.4. Test case: Successful login.

66

Id

6

Related FRQ-0201, FRQ-0220
requirements
Title Search for a place to visit.
Steps Navigate to the main page.
1. Enter departure place to filter.
2. Enter destination place to filter.
3. Click on “Search” button.
Expected Trip plans displayed in the search results are sorted by
result their distance from the departure and destination points. Trip
plans with locations closest to either the departure or destination
points will appear at the top of the search results, while those
farthest away will be listed at the bottom.
Table C.6. Test case: Search for a place to visit.
Id 7
Related FRQ-0202
requirements
Title View trip plan
Steps Navigate to the main page, fill in the searching filter and
click on “Search” button.
1. Click on any found trip plan.
Expected Trip plan page is opened, and trip plan details are shown.
result

Table C.7. Test case: View trip plan.

67

Id

8

Related
requirements

Title
Steps

Expected
result

FRQ-0203, FRQ-0204, FRQ-0205, FRQ-0206

Bookmarks management

Open any trip plan page.

1. Add trip plan to bookmarks by clicking the bookmark
button near the trip plan name.

2. Add trip plan block (POI) to bookmarks by clicking the
bookmark button near the POI name.

3. Delete trip plan from bookmarks by clicking the bookmark
button near the trip plan name.

4. Delete trip plan block (POI) from bookmarks by clicking
the bookmark button near the POI name.

5. Repeat steps 1 and 2 to add the trip plan and POI to
bookmarks again.

6. Open the bookmarks page by clicking on “Bookmarks” button
on navigation bar.

7. Delete trip plan from bookmarks by clicking the “Delete”
button on the trip plan card.

8. Delete trip plan block (POI) from bookmarks by clicking
the “Delete” button on the POI card.

Open the bookmarks page by clicking on “Bookmarks” button
on navigation bar. After steps 1 and 2 check that trip plan
bookmark and trip plan block (POI) bookmark are presented in
the list of bookmarks. After steps 3 and 4 check that the trip
plan bookmark and trip plan block (POI) bookmark are not
presented in the list of bookmarks. After steps 7 and 8 check
that trip plan bookmark and trip plan block (POI) bookmark
are not presented in the list of bookmarks

Table C.8. Test case: Bookmarks management.

68

No rating must be shown for the POL.
Dislike must be shown near the POI name.

1d 9
Related FRQ-0209
requirements
Title Comment the trip plan
Steps Open any trip plan page and scroll to the Comment section.
1. Write a comment and save it.
2. Edit the comment and save the changes.
3. Delete the comment.
Expected 1. The comment must be presented in the list of comments.
result 2. The updated comment must be presented in the list
of comments
3. Comment must be deleted from the list of comments.
Table C.9. Test case: Comment the trip plan.
Id 10
Related FRQ-0210, FRQ-0211
requirements
Title Trip plan and trip plan block rating
Steps Open any trip plan page.
1. Rate the trip plan by clicking the rating button near
the trip plan name.
2. Click “Like” button near the POI name.
3. Click “Like” button near the POI name again.
4. Click “Dislike” button near the POI name.
5. Click “Dislike” button near the POI name again.
Expected 1. The given rating must be shown for the trip plan.
result 2. Like must be shown near the POI name.
3.
4.
5.

No rating must be shown for the POL.

Table C.10. Test case: Trip plan and trip plan block rating.

69

Id 11

Related FRQ-0213, FRQ-0214, FRQ-0215, FRQ-0216, FRQ-0217,
requirements FRQ-0218

Title Create a trip plan

Steps Open “My Trip Plans” page.

Click on “Create” button.

Fill the trip plan information.

Click the publicity checkbox to make trip plan public.
Add POI to trip plan by clicking on add POI button.
Fill the POI information. Find the place.

Add images to POI in multiple steps. Add images, delete
some of them, add some more.

Repeat steps 4, 5, 6 multiple times.

. Click “Save” button

e e 9=

Al

8
Expected 1. Trip plan creation page must be shown.
result 4. New trip plan block must be added.
5. After a place was found with a help of autocomplete, it
must be shown on map.
6. Uploaded images must be shown on UL
8. Trip plan must be created and redirection to trip plan
page must be done. Verify that all filled information is
presented on the trip plan page. Check the post publicity by
searching the trip plan via trip plans search.

Table C.11. Test case: Create a trip plan.

Id 12

Related FRQ-0207
requirements

Title Change the trip plan publicity

Steps Open “My Trip Plans” page. To execute the test trip plan
must be created.
1. Click on “Make public” button on the trip plan card.
2. Click on “Make private” button on the trip plan card.

Expected Check the post publicity by finding the trip plan via trip
result plans search.
1. Trip plan must be presented in trip plan search results.
2. Trip plan should not be presented in trip plan search results.

Table C.12. Test case: Change the trip plan publicity.

70

Id

13

Related
requirements

Title
Steps

Expected
result

FRQ-0213, FRQ-0214, FRQ-0215, FRQ-0216, FRQ-0217,
FRQ-0218

Update the trip plan

Open “My Trip Plans” page. For this test trip plan with at

least 2 POIs must exist.

1. Click on “Edit” button.

2. Change the trip plan information.

3. Change the trip plan publicity by clicking on the publicity
checkbox.

4. Delete existing POI block.

5. Change existing POI information.

6. Change existing POI images. This step includes deleting some
existing images and adding additional images.

7. Add POI to trip plan by clicking on add POI button.

8. Fill the POI information. Find the place.

9. Add images to POI in multiple steps. Add images, delete some
of them, add some more.

10. Repeat steps 7, 8, 9 multiple times.

11. Click “Save” button

1. Trip plan editing page must be shown.

4. Place block must be deleted.

6. Uploaded images must be shown on Ul Deleted images should
not be presented.

7. New trip plan block must be added.

8. After a place was found with a help of autocomplete, it must
be shown on map.

9. Uploaded images must be shown on UL

11. Trip plan must be edited and redirection to trip plan page
must be done. Verify that all changes were applied correctly
and presented on the trip plan page. Check the post publicity
by searching the trip plan via trip plans search.

Table C.13. Test case: Update the trip plan.

71

Id 14

Related FRQ-0208
requirements

Title Delete the trip plan

Steps Open “My Trip Plans” page. To execute the test
trip plan must be created.
1. Click on “Delete” button on the trip plan card.

Expected Trip plan must be deleted. Verify this by attempting to
result access the trip plan page of the deleted plan.

Table C.14. Test case: Delete the trip plan.

72

Appendix D
Acronyms

ACID = Atomicity, Consistency, Isolation, Durability principles that ensure the re-
liability and integrity of transactions in a database system.

API = Application Programming Interface.
BG m Business Goal.

BLL = Business Logic Layer.

CDN = Content Delivery Network.
CRUD m Create, Read, Update, Delete operations.
DAL wm Data Access Layer.

DB m Database.

DI m Dependency Injection.

DTO wm Data Transfer Objects.

GIS m Geographic Information Systems.
GPS = Global Positioning System.

GUI = Graphical user interface.

ToC m Inversion of Control.

JWT = JSON Web Token.

ORM = Object—-relational mapping.

0S m Operating System.

POI = Point of Interest, place of interest.
SPA = Single-Page Application.

SRID = Spatial Reference System ID.

Ul m User Interface.

USD = United States Dollar.

73

	System for blogging and planning one-day tourist trips including points of interest (POI)
	TITLE

	Untitled
	System for blogging and planning one-day tourist trips including points of interest (POI)
	Acknowledgement/Declaration
	Abstrakt/Abstract
	Contents
	Tables/Figures
	Introduction
	Motivation
	Project description
	Target audience
	Research of existing solutions
	TripAdvisor
	Wanderlog
	PlanYourTrip
	RoutePerfect
	Conclusion

	Goals

	Analysis and Architecture
	Application requirements
	Business requirements
	Functional requirements
	Non-functional requirements

	Use Cases
	Business domain model
	Low fidelity prototype of GUI
	Architecture
	Backend technologies
	Frontend technologies
	Database
	External APIs
	Google Maps
	Mapy.cz
	API selection

	Implementation
	Component diagram
	Sequence diagram
	Frontend
	Components library
	Files upload
	Google Maps Platform
	GUI

	Backend
	Data Access Layer
	Business Logic Layer
	Presentation Layer
	Dependency injection
	PostGIS
	Storing uploaded files
	Data mapping
	Generating TypeScript contracts from C\# DTOs
	Unit of Work pattern
	Security

	Project setup and configuration
	Running the frontend project
	Running the backend project

	Testing
	Static testing
	Manual testing
	Unit testing
	Usability testing and comparison with TripAdvisor
	Acceptance testing

	Conclusion
	Further prospects of the project

	Bibliography
	Low fidelity prototype of GUI
	GUI
	Test cases
	Acronyms

