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Abstrakt / Abstract

Tato práce se zaměřuje na analýzu
různých metod simulace vodní plochy
a implementaci jedné z nich. Začíná
teoretickým porovnáním různých způ-
sobů simulace vody, zhodnocením jejich
výhod a nevýhod. Vybraná metoda je
potom vysvětlena podrobněji a zároveň
je upřesněna motivace, která stála za
jejím výběrem. Poté je v kapitole o
návrhu vyložena struktura aplikace, za-
tímco dále jsou vysvětleny podrobnosti
o implementaci. Nakonec jsou porov-
nány různé konfigurace, změřen jejich
výkon a zhodnocena jejich vizuální
věrnost.

Klíčová slova: procedurální vlny, fyzi-
kální simulace, výpočty na GPU, návrh
aplikace, implementace aplikace

Překlad titulu: Procedurální genero-
vání vln na vodní hladině

This thesis focuses on analyzing
different methods of water surface simu-
lation and implementing one of them. It
starts with the theoretical comparison
between different ways of simulating
water, evaluating their pros and cons.
The chosen method is then explained
more in-depth, while also elaborating
on the motivation behind the choice.
After that, in the design chapter, the
application structure is laid out, while
the details of the implementation are
explained next. Finally, different con-
figurations are compared, measuring
their performance and evaluating their
visual fidelity.

Keywords: procedural waves, physi-
cal simulation, GPU computation, ap-
plication design, application implemen-
tation
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Chapter 1
Introduction

Water surface wave simulation is an essential component in various fields such as com-
puter graphics, virtual reality, video games (see 1.1), visual effects, and so on. The
ability to physically and accurately model and render water surfaces, while also min-
imizing computational resource requirements, is particularly important for creating
realistic and immersive virtual environments.

1.1 Goals
The goal of this thesis is to explore various methods for simulating water surfaces, and
evaluating their advantages and disadvantages. Furthermore, the thesis will involve the
implementation of the water surface simulation method described in [1] using C++ and
OpenGL, a widely-used API for rendering 2D and 3D graphics and light GPU compu-
tation. This practical component will demonstrate the feasibility and performance of
the chosen method.

1.2 Structure
In the following chapters, we will examine the theoretical foundations of water wave sim-
ulation, exploring key principles and equations such as the Navier-Stokes equations. We
will also review existing literature and methodologies, comparing their computational
efficiency and accuracy. In the Theory and Design chapters, we will go a bit deeper into
explaining the underlying physics used in the method this project is focused on and
also outline the main aspects of the final application. The Implementation chapter will
detail the process of developing the water surface simulation with OpenGL compute
shaders, including the challenges that it might entail. We will continue with the Results
chapter demonstrating the results and metrics of the performance of the application.
Finally, in the Conclusion chapter, we will discuss the outcome, potential improvements,
shortcomings, and possible future enhancements for the prototype application.

Figure 1.1. Example of waves in a video game called Sea of Thieves taken from [2].
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Chapter 2
Method overview

Fluid motion is governed by a combination of different physical forces, like gravity,
pressure, or surface tension. These forces together shape the behavior of fluids. For
the past few decades, Navier-Stokes equations have been the most widely used way
to predict this behavior. These equations, which describe how the velocity of a fluid
evolves over time, are fundamental to fluid dynamics.

Methods that utilize Navier-Stokes equations are normally divided into three cate-
gories: analytical approximations, numerical solutions, and hybrid approaches. Ana-
lytical approximations aim to simplify the equations to make them solvable in a closed
form, offering quick results, but often at the cost of generality and inability to simu-
late complex boundary conditions. On the other hand, numerical approaches discretize
the equations and directly solve them, providing accurate results, but require significant
computational resources. Hybrid approaches aim to balance the two, seeking to achieve
a compromise between computational efficiency and solution accuracy.

In this chapter, we will explore different methods and examine how each approach
works, its theoretical foundations, and the specific contexts they excel or fall short
in. By understanding the strengths and limitations of these methods, we can make
informed choices about which techniques to use for different applications.

2.1 Analytical methods
Analytical methods mostly make different theoretical assumptions to the Navier-Stokes
equations to simplify and make them more manageable. In computer graphics, these
assumptions are waves in deep water, periodic boundary conditions, and small ampli-
tudes. These methods have been very effective in creating height field waves by utilizing
analytical solutions to the differential equations on a 2D grid, while also taking into
account the wave dispersion. Examples of such methods could be [3–5].

Figure 2.1. Example of an analytical approach from [3].
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2 Numerical methods

Some of the approaches try to mitigate the limitations and can simulate shallow
waves by allowing interactions with a predefined heightfield-based static environment
[6], but still lack the ability to interact with dynamic and more complex environments.

These methods are very effective at simulating the waves regardless of the frequency
without any impact on the stability of the method and are not affected by the CFL
condition [7], since they do not depend on the time step size. However, due to their
limitations and assumptions, it becomes difficult and resource-demanding to compute
complex and non-periodic boundaries.

2.2 Numerical methods
To address the shortcomings of the analytical approach, it is possible to numerically
solve the Navier-Stokes equations. There are particle-based approaches like [8], that
aim to volumetrically simulate water as a series of particles. While this has its own
benefits, it is unnecessarily computationally intensive for simulating the ocean surface
in many cases. Other methods [9–10] do this by simulating wave motions over a 2D
grid representing height field which reduces the computational cost compared to the
3D particle representation.

Figure 2.2. Example of an numerical approach from [10].

Due to having minimal assumptions about the environment, these direct numerical
approaches are more flexible, than analytical, can have more elaborate environments,
and generally are a more accurate representation of the surface. However, since they
simulate wave propagation through time by iterating over a grid, the resulting level of
detail is dependent on the resolution of the grid, which directly impacts performance
and is subject to CFL condition [7].

This is a necessary convergence condition when solving certain partial differential
equations. It defines a so-called Courant number, which you can obtain like so:

𝐶 = 𝑢Δ𝑡
Δ𝑥

(1)

where:

. 𝑢 is the maximum velocity of propagation. Δ𝑡 is the time step. Δ𝑥 is the spatial interval we are working with

We will discuss how to work with it in the implementation section.
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2. Method overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.3 Hybrid methods
Finally, there are hybrid approaches that try to combine the best of the two and have
good visual fidelity, flexibility in the choice of boundaries, and aren’t very computation-
ally demanding. Notable examples might be [11–12]. They have numerical stability and
relative accuracy from the analytical approach but also divide the waves into smaller lo-
calized packets that can more easily interact with boundaries. The method this project
aims to implement [1] also falls into this category and we will discuss it more in the
next chapter.

Figure 2.3. Example of a hybrid approach from [11].
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Chapter 3
Theory

In this chapter, we will go through the motivation behind the chosen method to im-
plement, its theoretical underpinnings and physical concepts that will be used in the
implementation, and detail the sections of the application and how they will work
together.

At the beginning we will focus on the advantages of this method and why it was
chosen. Then we will also describe the main theoretical foundation it is based on and
finally go through some important physical concepts that it employs.

3.1 Motivation
The chosen has made several improvements for its time compared to what had been
done before, namely:. Spatial and frequential degrees of freedom of the simulation grid. This allows for

more localized control over the result. Lower frequency simulation variable other than the height of water. Since water
height changes rapidly over time, it requires a higher resolution simulation grid to
accurately represent the surface, compared to amplitude. This decision, on the other
hand, makes even less detailed grids yield comparably good results

Additionally, according to the authors, this method is much more GPU-friendly,
meaning it is easier to parallelize, which makes it a good candidate for our project.

3.2 Theoretical foundation
Here we will explore the theory behind the method, based on the specification explained
in [1]. The main idea of the method is to represent the height of the waves with the
complex function:

𝜂𝑐(𝙭, 𝑡) = ∫
ℝ2

𝒜(𝙭, 𝙠, 𝑡)𝑒𝑖(𝙠⋅𝙭−𝜔(𝑘)𝑡)𝑑𝙠 (1)

and the resulting water height is the real part of it: 𝜂(𝙭, 𝑡) = Re 𝜂𝑐(𝙭, 𝑡). In this
function 𝙭 is a 2D spatial coordinate, 𝙠 is a wave vector, its magnitude 𝑘 = |𝙠| is a wave
number, 𝙠̂ = 𝙠

|𝙠| is the normalized wave vector and 𝜔(𝑘) is angular speed of the waves
with the wave number 𝑘.

𝒜(𝙭, 𝙠, 𝑡) is the amplitude function that varies over space, wave frequencies, and
time. Compared to the previous works that used 𝒜(𝙠) that varies only over the wave
parameters, this approach provides more freedom with localized control over the change
in wave shapes.

The time evolution of this amplitude function is then represented by the following
differential equation:

5



3. Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∂𝒜
∂𝑡

(𝙭, 𝙠, 𝑡) = −𝜔′(𝑘)(𝙠̂ ⋅ ∇𝑥)𝒜(𝙭, 𝙠, 𝑡) (2)

This is the advection of the amplitude in the direction 𝙠̂ with the group velocity 𝜔′(𝑘).
We will also consider boundary conditions as explained in the method specification,
with:

𝒜(𝙭, 𝙠, 𝑡) = 𝒜𝑎𝑚𝑏𝑖𝑒𝑛𝑡(𝙭, 𝙠, 𝑡)
𝒜(𝙭, 𝙠, 𝑡) = 𝒜(𝙭, 𝙠𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑒𝑑, 𝑡) (3)

where 𝒜𝑎𝑚𝑏𝑖𝑒𝑛𝑡(𝙭, 𝙠, 𝑡) is going to be the transmitting boundary at the edges of the
simulation domain and 𝒜(𝙭, 𝙠𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑒𝑑, 𝑡) is the behavior when reflecting a boundary
with 𝙠𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑒𝑑 = 𝙠 − 2(𝙠 ⋅ 𝙣) ⋅ 𝙣 as the reflected wave vector.

3.2.1 Discretization over a grid
For the discretization of this amplitude function we will use the same 4D grid from
section 4.1 of [1], with 2 spatial dimensions 𝑥 and 𝑦, Θ angle from the equation 𝙠 =
(𝑘 ⋅ 𝑐𝑜𝑠Θ, 𝑘 ⋅ 𝑠𝑖𝑛Θ), that can be represented by this diagram:

θ

k

x

y

Figure 3.1. Grid representation diagram taken from [1], Figure 2.

This grid ranges between [𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥] × [𝑦𝑚𝑖𝑛, 𝑦𝑚𝑎𝑥] × [0, 2𝜋] × [𝑘𝑚𝑖𝑛, 𝑘𝑚𝑎𝑥]. The
continuous amplitude can then be obtained by interpolating between neighboring nodes
of the grid. This relation can be represented as the combination of basis functions in
all dimensions:

𝒜(𝙭, 𝙠, 𝑡) = ∑
𝑎,𝑏,𝑐

𝒜𝑎𝑏𝑐(𝑡)𝜙𝑎(𝙭)𝜃𝑏(Θ)𝜓𝑐(𝑘) (4)

where 𝒜𝑎𝑏𝑐(𝑡) are values stored in grid with the position 𝙭𝑎, angle Θ𝑏 and wave
number 𝑘𝑐 in a given time 𝑡. While 𝜙𝑎(𝙭), 𝜃𝑏(Θ), 𝜓𝑐(𝑘) are basis functions interpolating
between the values of 𝒜𝑎𝑏𝑐 over space, angle and wave number respectively. Since 𝜓𝑐(𝑘)
represents the dimension of frequency, we can use an actual ocean spectrum for it, which
will make the result more realistic. We will be using a so-called Pierson–Moskowitz

6



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2 Theoretical foundation

spectrum, described in [13] but also compare it to other spectra to see how the result
differs.

The authors mention using either linear or cubic interpolation for the first two terms,
while we will be using only linear interpolation, which has a good reason that will be
explained later in the implementation section.

3.2.2 Advection
Wave vector advection is the main way amplitudes propagate through our grid, it is
solved by semi-Lagrangian advection and is represented by the equation:

𝒜𝑎𝑏𝑐(𝑡 + Δ𝑡) = 𝒜𝑏𝑐(𝙭𝑎 − Δ𝑡𝜔′(𝑘𝑐)𝙠̂, 𝑡) (5)

where, as previously mentioned, 𝙠̂ = (𝑐𝑜𝑠Θ𝑏, 𝑠𝑖𝑛Θ𝑏) direction of the wave vector and
𝒜𝑏𝑐 is the interpolated amplitude with a fixed angle Θ𝑏 and wavenumber 𝑘𝑐 𝜔′(𝑘𝑐) is
the group speed. In this step, we also apply relevant boundary conditions if we leave
the simulation domain or interact with a boundary.

3.2.3 Diffusion
Additionally, there are also diffusion terms to smooth out the adjacent discrete wave
vectors to make them less spread out. With those terms, the partial derivative of the
function looks like this:

∂𝒜
∂𝑡

= −𝜔′(𝑘)(𝙠̂ ⋅ ∇𝑥)𝒜 + 𝛿(𝙠̂ ⋅ ∇)2𝒜 + 𝛾∂2𝒜
∂Θ2 (6)

this equation is dependant on the sizes of steps in each direction Δ𝑥, ΔΘ and Δ𝑘,
where 𝛿 = 10−5Δ𝑥2Δ𝑘2|𝜔′′(𝑘)| controls diffusion in the direction of travel, and 𝛾 =
0.025𝜔′(𝑘)ΔΘ2/Δ𝑥 control diffusion in the angle. It is discretized with second order
finite differencing.

3.2.4 Height calculation
For the final height calculation, we will use the formula:

𝜂(𝙭, 𝑡) = ∫
2𝜋

0
∑
𝑎,𝑏,𝑐

𝒜𝑎𝑏𝑐(𝑡)𝜙𝑎(𝙭)𝜃𝑏(Θ)Ψ𝑐(𝙠̂ ⋅ 𝙭 + 𝜉(𝙠̂), 𝑡)𝑑Θ (7)

where we integrate over all the directions. Additionally, this equation introduces the
new concept, that the authors called profile buffer. This buffer is essentially responsible
for the local details of the waves. 𝜉(𝙠̂) term is a random number that depends on the
angle Θ and adds variability to the the waves. In the results section we will try to
display what happens if we don’t use it and how the surface is affected by it. Profile
buffer is calculated as follows:

Ψ𝑐(𝑝, 𝑡) = ∫
∞

0
𝜓𝑐(𝑘)𝑐𝑜𝑠(𝑘𝑝 − 𝜔(𝑘)𝑡)𝑘 𝑑𝑘 (8)

where we integrate over the entire spectrum of wave lengths we simulate on, 𝜓𝑐(𝑘)
a localized amplitude function of the waves and is represented by an ocean spectrum
here, and the 𝑐𝑜𝑠 term the vertical displacement of the waves. However, here we will
also compute a horizontal displacement to more closely resemble a so-called trochoidal
or Gerstner [14] waves, as has been also pointed out by the authors of the method.

7



3. Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.3 Physical concepts
In this section, we will discuss the necessary underlying physical concepts that we will
work with while implementing and how they relate to each other. Also, keep in mind
that many of these parameters have different formulas depending on the depth of the
ocean, but since we are working with deep water, we might as well assume that the
depth is approaching infinity: ℎ → ∞ . This in turn simplifies many of the following
equations.

3.3.1 Dispersion relation
One of the concepts is dispersion relation or angular frequency, which relates the wave
number of a wave and its frequency. It is calculated as follows:

𝜔(𝑘) = √𝑔 ⋅ 𝑘 (9)

where 𝑔 = 9.81𝑚/𝑠2 is the gravitational constant.

3.3.2 Group velocity
Another one is group velocity. It depends on the dispersion of the wave and represents
the speed of the entire packet of the waves propagating through space. The formula for
calculating group velocity is:

𝜔′(𝑘) = 1
2

√ 𝑔
𝑘

(10)

3.3.3 Wave length/number relation
In addition, we will also need this relation that connects the wave number to its wave
length and is calculated according to the equation:

𝑘 = 2𝜋
𝑘𝑙𝑒𝑛𝑔𝑡ℎ

(11)

3.3.4 Gerstner waves
Gerstner wave is an exact solution of the Euler equations for periodic gravity waves first
discovered by Franz Gerstner [14]. This concept is often used in computer graphics to
model waves because it doesn’t have high computational requirements and is generally
a visually realistic representation. As we have discussed earlier, [3] has shown how to
do it. These are the equations for the calculation of the final absolute position of a
point, taken from [15]:

𝜉 = 𝛼 −
𝑀

∑
𝑚=1

𝑘𝑥,𝑚

𝑘𝑚

𝑎𝑚
𝑡𝑎𝑛ℎ(𝑘𝑚ℎ)

𝑠𝑖𝑛(Θ𝑚),

𝜂 = 𝛽 −
𝑀

∑
𝑚=1

𝑘𝑧,𝑚

𝑘𝑚

𝑎𝑚
𝑡𝑎𝑛ℎ(𝑘𝑚ℎ)

𝑠𝑖𝑛(Θ𝑚),

𝜁 =
𝑀

∑
𝑚=1

𝑎𝑚𝑐𝑜𝑠(Θ𝑚),

Θ𝑚 = 𝑘𝑥,𝑚𝛼 + 𝑘𝑧,𝑚𝛽 − 𝜔𝑚𝑡 − 𝜙𝑚 (12)
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In these equations terms 𝜉, 𝜂 and 𝜁 show functions that represent the absolute final
position of points in 𝑥, 𝑧 and 𝑦 dimensions respectively (with 𝑦 being the vertical
component). 𝛼 and 𝛽 are initial horizontal positions. 𝑎𝑚 is the amplitude of the given
wave and 𝑘𝑚 is the wave number. The term Θ𝑚 is related to the term 𝑘𝑝 − 𝜔(𝑘)𝑡 from
the equation (8) and roughly represents the phase of our wave.

Subsequently, we will need a normal vector to accurately apply lighting to the re-
sulting fragments and to do that we will use the formula [15]:

𝙣 = ∂𝙨
∂𝛼

× ∂𝙨
∂𝛽

𝙨(𝛼, 𝛽, 𝑡) = ⎛⎜
⎝

𝜉(𝛼, 𝛽, 𝑡)
𝜁(𝛼, 𝛽, 𝑡)
𝜂(𝛼, 𝛽, 𝑡)

⎞⎟
⎠

(13)
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Chapter 4
Application design

This chapter will explain all the foundational blocks of the application and explain
how we are going to implement specific parts of the method in the application, what
constructs are going to be used to save and pass the data around, etc.

4.1 Main points
The application prototype will be written for PC using cross-platform libraries, so in
theory, it should work on all the systems that support x86-64 architecture. It will be
written using C++ for the application itself and OpenGL API for rendering and main
computation tasks.

4.1.1 Libraries

. GLFW - cross-platform library to create and manage windows, contexts receiving and
processing events 1. GLM - GLSL style mathematics library 2. DevIL - library to load and manage images 3. Dear ImGui - lightweight gui library 4. Glad - OpenGL loader 5

4.1.2 Application structure
The application will consist of several main components, namely:

. Simulation - will store the data and manage our simulation grid and profile buffers,. Visualization - will store the data about the meshes and objects we are rendering and
render them,. Gui - won’t store anything, just provides functions to easier initialize ImGui and
start/end its frames, render the gui data.

Each component will have its initialization function called when it is added to the
application. After that, each component will have an update function that will be called
during the update stage, a GUI function, where it can submit data to ImGui frame to
expose its variables to the user, and a render function, which will be called during the
render stage. The application itself will also have all of these functions for the unified
approach.

The application itself will first initialize all the necessary resources, and then enter
the main loop. States of the application can roughly be represented by the diagram:

1 https://www.glfw.org/
2 https://github.com/g-truc/glm
3 https://openil.sourceforge.net/
4 https://github.com/ocornut/imgui
5 https://glad.dav1d.de/
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App initialization

Simulation

Visualization

Gui

onUpdate()

Simulation

Visualization

Gui

Simulation

Visualization

Gui

onGui() OnRender()

Figure 4.1. Diagram of the flow of the application.

Components that are crossed on the diagram do not participate in the respective
stage pointed out below.

4.2 Simulation
This section will go over the necessary parts of the simulation part of the application.
We will first explain the way the grid itself will be represented, and then go through each
step of the simulation algorithm, elaborating on how they are going to work with the
input/output data and give some general information regarding the compute shaders
for each step of the simulation.

4.2.1 Amplitude grid

Our simulation variable, namely the amplitude, will be stored in an array of 3D tex-
tures, where each 3D texture represents 𝒜𝑏𝑐 interpolated amplitude over spatial and
angle coordinates from the equation (5). This is also the reason we are using linear
interpolation as has been mentioned before, since we can use natively implemented in-
terpolation by just sampling a texture, which in theory should be faster than devising
our own interpolation function. Subsequently, each entry in the texture array is going
to be indexed by the wavenumber 𝑘, the remaining degree of freedom of our grid.

It is worth mentioning, that internally 𝑘 values in the grid will represent linear
wavelength to have a more understandable range of the simulation. Those wavelengths
are then going to be converted back to wave numbers when needed according to the
formula (11). The idea for this is taken from the CPU implementation mentioned in
[1].

This approach is limited by the number of image units we can use, which has to
be at least 16 according to the OpenGL specification, meaning it should be possible
to simulate up to 15 discrete values of 𝑘, since we will have to bind all of these at
the same time in the last stage of height evaluation in vertex and fragment shader.
The remaining 1 slot is going to be used by the profile buffer texture. While this is a
limitation, according to the authors, even 1 discrete 𝑘 produces more than respectable
results, which makes this limitation very unlikely to be an issue.

The class for amplitude grid will also store other relevant information:
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4. Application design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 𝑑𝑒𝑙𝑡𝑎𝑥 - step between the discrete nodes of the grid,. 𝑚𝑖𝑛𝑥, 𝑚𝑎𝑥𝑥 - minimum and maximum values over the real domain,. 𝑑𝑖𝑚𝑥 - resolution of the grid,

𝑥 is used here just as an example, and in fact, each of these is a 4D vector, where
each entry represents its own dimension.

The class will also have a function that will check for the CFL condition (1) for a
given 𝑑𝑡 and if the condition is met it will return that same 𝑑𝑡, otherwise, it will return
the maximum possible time step for a given resolution of the grid and group speeds.

4.2.2 Time step
Each time step of the simulation can be represented by the following pseudo-code:

1 function TimeStep(𝑡, 𝑑𝑡)
2 Advection(𝑑𝑡)
3 Diffusion(𝑑𝑡)
4 Ψ ← precomputeProfile(𝑡)
5 end function

Figure 4.2. Algorithm to calculate time step
Note how advection and diffusion require a time step to simulate the propagation of

waves, while the profile buffer is not dependent on the change in time, but rather is
calculated at an absolute point in time.

4.2.3 Profile buffer
As mentioned in the method specification by the authors [1], the profile buffer is a 1D
texture and there is its own profile buffer associated with each wavenumber 𝑘. This
makes it possible to use a 1D array texture (GL_TEXTURE_1D_ARRAY), which is essentially
continuous in one dimension and discrete in the other, which is perfect for our use case.
As mentioned before, the buffer will precompute 2 terms for spatial displacement and
2 derivatives for normal calculation, 4 float values in total, which we store as RGBA
values in the texture. Additionally, we will calculate two phases of the wave function
and interpolate between them to achieve better results. In the results section we will
compare the outcome with and without interpolation between the phases.

The way we will be calculating the buffer is roughly like this:

1 function precomputeProfile(𝑡)
2 for 𝑝𝑖 ← 0, 𝑝𝑚𝑎𝑥
3 𝑝 ← 𝑝𝑖 ⋅ 𝑝𝑒𝑟𝑖𝑜𝑑/𝑝𝑚𝑎𝑥 + 𝑘𝑚𝑖𝑛
4 Ψ(𝑝𝑖) ← Integrate(𝑘𝑚𝑖𝑛, 𝑘𝑚𝑎𝑥, gerstner(𝑘))
5 end for
6 end function
7

8 function gerstner(𝑘)
9 𝑘𝑛𝑢𝑚 ← 𝜏/𝑘

10 𝑝ℎ𝑎𝑠𝑒 ← 𝑘𝑛𝑢𝑚 ⋅ 𝑝 − 𝜔(𝑘𝑛𝑢𝑚) ⋅ 𝑡
11 return 𝑘 ⋅ 𝜓(𝑘)⋅ cos(𝑝ℎ𝑎𝑠𝑒)
12 end function

Figure 4.3. Pseudo code for profile buffer calculation
Here Integrate is a function that calculates integral between 𝑘𝑚𝑖𝑛 and 𝑘𝑚𝑎𝑥 over

the function gerstner, 𝑝𝑚𝑎𝑥 is the resolution of the profile buffer and 𝑘𝑙𝑒𝑛𝑔𝑡ℎ is the
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wavelength related to the wave number 𝑘. The 𝑝𝑒𝑟𝑖𝑜𝑑 in this case is a multiple of
𝑘𝑚𝑎𝑥 for a given profile buffer (the idea was taken from the CPU implementation [1]).
The multiplier will be tweakable by the use user in GUI. These two functions together
represent the equation (8).

4.2.4 Water height
The final displacement calculation will be done in the vertex shader and normal vector
calculation in the fragment shader associated with water mesh, which will be explained
more in-depth later. Here it is worth mentioning, that the rough way we will do it is
according to Algorithm 1 from [1]:

1 function WaterHeight(𝙭, 𝑡)
2 𝜂 ← 0
3 for 𝑏 ← 1, Θ𝜂 do
4 𝜃𝑏 ← 𝑏 ⋅ 2𝜋/Θ𝜂
5 𝙠 ← (cos𝜃, sin 𝜃)
6 𝑝 ← 𝙠 ⋅ 𝙭+ rand(𝑏)
7 for 𝑘 ← 1, 𝐾 do
8 𝜂 ← 𝜂 + 𝒜(𝙭, 𝑘𝑐𝙠) ⋅ Ψ𝑐(𝑝, 𝑡)
9 end for

10 end for
11 end function

Figure 4.4. Pseudo code for calculating water height.
where Θ𝜂 is number of integration nodes for angle Θ and 𝐾 is number of discrete

wave numbers.

4.2.5 Compute shaders
The main workforce for computing all the necessary simulation data will are going to
be compute shaders and the data should remain on the GPU at all times. Passing data
between CPU and GPU every simulation step is unacceptable since it will produce a
substantial performance overhead.

Compute shaders we will have are:

. Advections Compute - will take all of the necessary data as uniforms, including the
amplitude textures, and calculate the resulting amplitude according to the equation
(5). For each discrete wavenumber 𝑘 we will dispatch its own compute shader. Input
textures are going to be bound to sampler3D units, so we can interpolate between
values, while output textures will be image3D to access and write specific values.. Diffusion Compute - here it is much simpler, since we will be working with discrete
values, so no need for samplers, both input and output textures will be image3D, and
we will need multiple inputs, since we have to deal with other 𝑘. As in the previous
step, we will dispatch separate compute shaders for each 𝑘. and also bind image
textures for 𝑘 − 1 and 𝑘 + 1.. Disturbance Compute - to more easily interact with the surface for the user, we will
also add a so-called disturbance compute shader, that will create disturbances on the
water surface by increasing amplitude in all discrete directions Θ𝑏 by some constant
values. The shader will take as uniforms 2 image3D textures: input and output, and
a position where to create a disturbance. It will be dispatched when the user clicks
on a point on the surface. The idea for this was taken from the CPU implementation
of [1].
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. Profile Compute - compute shader that will calculate profile buffer entries accord-

ing to the equation (8) and store them in a image2D to which we will bind a
GL_TEXTURE_1D_ARRAY as mentioned previously. we will have to dispatch this shader
only once each simulation step since it will work on the entire profile buffer at once.
It will accept uniform values for the spectrum that we want to choose (the function
will be implemented in the shader itself, we will just have to choose it), upper/lower
bounds of 𝑘 we want to integrate over, absolute time and wind speed.

4.3 Other details
There are going to be other useful parts that don’t directly relate to simulation but
still contribute to the application.

4.3.1 Other shaders
We will certainly also need shaders to render the scene, these are going to be ver-
tex/fragment shader pairs:

. Lighting shader - a generic lighting shader that implements the Phong Illumination
Model [16] and will be used mainly for boundary objects.. Skybox shader - a shader that we will use to render the sky box around the scene,
will contain samplerCube in the fragment shader.. Water shader - an extension to the lighting shader above, that will also take am-
plitudes and profile buffer and calculate the spatial displacement of a vertex in the
vertex shader and a normal, that will be used for lighting in fragment shader.

4.3.2 Abstraction classes
These is an overview of what abstraction classes we will have to hide gl* commands in
the main application and instead interact with objects only:

. Base shader - for the ease of interacting with shader programs, we will associate
each program with an object and have functions to change its uniforms by directly
interacting with this object.. Compute shader - extension of the base shader, that will only add way to read from
file and compile a compute shader.. Shader - an extension of the base shader, that will be used for rendering and will have
a constructor that reads both vertex and fragment shaders from files and compiles
them into one program.. Mesh - generic mesh object that will have a shader associated with it, that will be
used to render it. Will store a reference to buffers associated with the data of its
mesh, which will be initialized in the constructor.. Object - generic object that will have a mesh associated with it, and also store
additional data related to a specific instance, like its position, rotation and scale.. Camera - a way to abstract the view and projection matrices used to transform the
scene into viewport coordinates. The framework we are building will allow us to have
more cameras, but we will be operating with only one.

In all the cases, except Camera, these are the classes we will inherit from to express
a specific case like advection compute shader, water or skybox object, etc, but we will
detail all of these in the next section.
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Chapter 5
Implementation

This chapter is going to be dedicated to the details about the implementation of different
parts of the application, while also explaining the steps and design choices. At the
beginning, we will explain everything related to simulating the wave vector advection,
diffusion, and precomputation of the profile buffer. Then, we will go over the way the
resulting water mesh is going to be constructed and updated for each frame.

5.1 Simulation
The class that handles all the simulation is called AmplitudeGrid. Parameters for the
grid testing are going to be set in a separate file as #define macros. The grid resolution
we will be using to test is going to be:

Dimension Macro Resolution

𝑋 - spatial N_SPATIAL 128
Θ - angle N_THETA 16
𝐾 - wavenumber N_K 1
𝑁 - profile samples P_RES 4096

Table 5.1. Testing parameters

5.1.1 Shaders
It is worth mentioning a few details about how we are going to abstract shader initial-
ization and interaction since that information will be useful later.

Firstly, all the shaders have functions to set uniform values associated with its pro-
gram ID in a form set[Type](std::string name, Type value) where name is the
name of the uniform variable, value is its value and [Type] can be any type like Integer,
Float, Vec3, IVec2, etc.

Also, to abstract the glUseProgram command, we have functions like bind() and
unbind().

Secondly, we will be using the extension GL_ARB_shading_language_include, which
enables a functionality, similar to C language #include, with the difference, that it
doesn’t allow us to read files from the PC, but includes so-called named strings.

To include a named string we first need to register it with the function
glNamedStringARB, which associates a path with a string, where path is going to be
an internal way for the GPU to find the file and the string is what will be included in
the shader source code in place of #include during compilation.

To facilitate this process, we introduce a static function in the ShaderBase class
ShaderBase::addIncludeFile(const std::string& fpath); which reads contents
of a file at fpath and adds them as a named string.
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Additionally, if the path has substring macros in it, the function will remove the

last two lines and add the macros of our current N_THETA and N_K. This might be a
very convoluted process, but it allows us to easily pass parameters to the shader during
compilation. This also means that shader files that define macros should have N_THETA
and N_K macros at the end of the file.

The reason we cannot pass these as uniform values lies in the fact, that we need to
use them as a size for sampler and image arrays, which has to be known at compile
time.

5.1.2 Grid initialization

We first need to construct the grid and initialize all of its internal structures. The grid
will be constructed from the following function :

12 AmplitudeGrid(float size, float waveNumberMin, float waveNumberMax);

where we set the physical size of the simulation domain, which will be mapped directly
onto our mesh and min/max values for wavenumber since we cannot simulate infinitely
big range.

In the constructor, we set parameters for the min/values, grid resolution and step in
the physical domain between the grid nodes:1

1 m_dim = (N_SPATIAL, N_SPATIAL, N_THETA, N_K),
2 m_min = (-size/2, -size/2, 0.0f, waveNumberMin),
3 m_max = (size/2, size/2, TAU, waveNumberMax)
4 for (int d = 0; d < 4; d++)
5 {
6 m_delta[d] = (m_max[d] - m_min[d]) / m_dim[d];
7 }

After that we are initializing amplitude textures, IDs for textures reserved for each
𝑘 are stored in std::vector, and we will need twice as much, also including output
textures, since we need to store output data somewhere, without copying data, meaning
we will have 2 vectors. Initialization is then done as follows:

1 float borderColor[] = { 0.0f, 0.0f, 0.0f, 0.0f };
2 m_inTextures.resize(N_K);
3 m_outTextures.resize(N_K);
4 glCreateTextures(GL_TEXTURE_3D, N_K, m_inTextures.data());
5 glCreateTextures(GL_TEXTURE_3D, N_K, m_outTextures.data());
6 for (int i = 0; i < N_K; ++i)
7 {
8 GLuint currTexture = m_inTextures[i];
9 glTextureParameteri(currTexture, GL_TEXTURE_WRAP_S,

10 GL_CLAMP_TO_BORDER);
11 glTextureParameteri(currTexture, GL_TEXTURE_WRAP_T,
12 GL_CLAMP_TO_BORDER);
13 glTextureParameterfv(currTexture, GL_TEXTURE_BORDER_COLOR,
14 borderColor);
15 glTextureParameteri(currTexture, GL_TEXTURE_WRAP_R, GL_REPEAT);
16 glTextureParameteri(currTexture, GL_TEXTURE_MAG_FILTER, GL_LINEAR);

1 prefix m_* is there for class members, to distinguish them from local variables
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17 glTextureParameteri(currTexture, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
18 glTextureStorage3D(currTexture, 1, GL_R32F, m_dim[X], m_dim[Z],
19 m_dim[Theta]);
20

21 currTexture = m_outTextures[i];
22 glTextureParameteri(currTexture, GL_TEXTURE_WRAP_S,
23 GL_CLAMP_TO_BORDER);
24 glTextureParameteri(currTexture, GL_TEXTURE_WRAP_T,
25 GL_CLAMP_TO_BORDER);
26 glTextureParameterfv(currTexture, GL_TEXTURE_BORDER_COLOR,
27 borderColor);
28 glTextureParameteri(currTexture, GL_TEXTURE_WRAP_R, GL_REPEAT);
29 glTextureParameteri(currTexture, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
30 glTextureParameteri(currTexture, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
31 glTextureStorage3D(currTexture, 1, GL_R32F, m_dim[X], m_dim[Z],
32 m_dim[Theta]);
33 }

where we first allocate enough space in vectors and create N_K 3D textures in each
vector. After that we initialize all the parameters: set wrapping for spatial coordinates
to clamp to the border, which is {0, 0, 0, 0} to not affect simulation if we by any
chance try to sample outside of it. However, for the angle dimension, we use GL_REPEAT,
since if we get out of the direction range (0, 2𝜋) we just have to wrap around.

Even though we set these wrappings, they are mostly to ensure that we don’t get
arbitrary results if something goes wrong, but we will be checking for boundaries in the
code either way, so, during the normal operation, it won’t get to sampling outside.

Additionally, we set down and upsampling to GL_LINEAR, to have the necessary linear
interpolation when sampling the values.

Subsequently, we allocate space for 𝑋⋅Θ⋅𝐾(5.1) values calling glTextureStorage3D.
We then use std::vector::swap after each step of the simulation, to ensure each

subsequent step has updated data to work with.
For the profile buffer, we won’t have any special class and it will be represented by

the function associated with the grid. The initialization of the profile buffer texture is
as follows:

1 glCreateTextures(GL_TEXTURE_1D_ARRAY, 1, &m_profileTexture);
2 glTextureParameteri(m_profileTexture, GL_TEXTURE_WRAP_S, GL_REPEAT);
3 glTextureParameteri(m_profileTexture, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
4 glTextureParameteri(m_profileTexture, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
5 glTextureStorage2D(m_profileTexture, 1, GL_RGBA32F, P_RES, N_K);

which, as mentioned before, is 1D array texture. Here we again need linear up/down-
sampling, and GL_REPEAT for wrapping over the wave phases. After that we allocated
data for 𝑁 ⋅ 𝐾 (5.1) values.

Additionally, we need to initialize shaders, and all of them are placed in the shaders/
folder:

1 ShaderBase::addIncludeFile("shaders/compute_macros.glsl");
2 ShaderBase::addIncludeFile("shaders/compute_common.glsl");
3

4 m_advectionCompute = std::make_unique<TimeStepCompute>("shaders/
5 advection.comp");
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6 m_diffusionCompute = std::make_unique<TimeStepCompute>("shaders/
7 diffusion.comp");
8 m_disturbanceCompute = std::make_unique<DisturbanceCompute>("shaders/
9 disturbance.comp");

10 m_profileCompute = std::make_unique<ProfileCompute>("shaders/
11 profile.comp");

Since we are using std::unique_ptr 2 instead of pure pointers, we have to construct
them using std::make_unique. Shader class constructors read the contents of files
that are passed as a parameter and compile them, saving the program ID to its internal
variable.

5.1.3 Time Step
Time step function is almost exactly the same as in 4.2:

1 void AmplitudeGrid::timeStep(float dt, bool updateAmps)
2 {
3 m_time += dt;
4 if (updateAmps)
5 {
6 advectionStep(dt);
7 wavevectorDiffusion(dt);
8 }
9 precomputeProfileBuffers();

10 }

with a notable exception like bool updateAmps which defines whether to update the
grid. If we just compute the profile buffer without updating the grid, the ocean will
have steady waves that circle around periodically.

Additionally, the code to calculate a time step according to the condition (1), as
explained at the end of section 4.2.1, we have a function:

1 double AmplitudeGrid::cflTimeStep(float dt, float timeMultiplier) const
2 {
3 dt = dt * pow(10, timeMultiplier);
4 float u = groupSpeed(m_dim[K] - 1);
5 float dx = std::min(m_delta[X], m_delta[Z]);
6

7 if (u * dt / dx > 0.5f)
8 return (0.5 * dx / u);
9 else

10 return dt;
11 }

here we also have a timeMultiplier parameter which allows us to speed up or slow
down the simulation.

5.1.4 Common shader functions
In a separate file compute_common.glsl we have a bunch of functions, that are going
to help us recover the position in the physical simulation domain from a grid position
and vice versa. These have both vector and individual value versions:
2 https://en.cppreference.com/w/cpp/memory/unique_ptr
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1 float realPos(int idx, int dim)
2 {
3 return u_min[dim] + (idx + 0.5) * u_delta[dim];
4 }
5 vec3 realPos(int ix, int iz, int itheta)
6 {
7 return vec3(realPos(ix, X), realPos(iz, Z), realPos(itheta, Theta));
8 }
9 float gridPos(float val, int dim)

10 {
11 return (val - u_min[dim]) / u_delta[dim] - 0.5;
12 }
13 vec3 gridPos(vec3 realPosition)
14 {
15 return vec3(gridPos(realPosition.x,X), gridPos(realPosition.y, Z),
16 gridPos(realPosition.z, Theta));
17 }

Figure 5.1. Position conversion functions
Additionally, in the compute_macros.glsl file we have a way to index values in a

grid position vector based on their

5.1.5 Advection
Advection compute shader is associated with an instance of TimeStepCompute class,
where it calls the function dispatchAdvection.

Since the maximum number of invocations in a local group is 1024, we define local
group size as:

1 layout (local_size_x = 16, local_size_y = 16, local_size_z = 4) in;

which exactly comes out to be 16 ⋅ 16 ⋅ 4 = 1024. Spatial coordinates were chosen only
because Θ is 4, which will be the lowest possible value for our N_THETA. Also, to ensure
that workgroup sizes are whole numbers, we add static assertions to check for that in
the parameter file:

1 static_assert(N_SPATIAL % 16 == 0 && N_SPATIAL >= 16);
2 static_assert(N_THETA % 4 == 0 && N_THETA >= 4);

these ensure that spatial dimensions of out grid are divisible by 16 and the angle
dimension is divisible by 4. This way when we dispatch compute shaders, we can
safely divide dimensions by the local group size like so:

1 glDispatchCompute(N_SPATIAL / 16, N_SPATIAL / 16, N_THETA / 4);

Advection itself is done in the main function:

1 ivec3 pos = ivec3(gl_GlobalInvocationID);
2 vec3 realPosition = realPos(pos[X], pos[Z], pos[Theta]);
3 float result;
4 vec2 waveVector = vec2(cos(realPosition[Theta]),
5 sin(realPosition[Theta]));
6 realPosition = realPosition - u_dt * u_groupSpeed *
7 vec3(waveVector, 0.0);
8 realPosition = reflection(realPosition);
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9 vec3 gridPosition = gridPos(realPosition);

10

11 if (gridPosition[X] <= 0.0 || gridPosition[X]+1 >= u_dim[X] ||
12 gridPosition[Z] <= 0.0 || gridPosition[Z]+1 >= u_dim[Z])
13 {
14 result = defaultAmplitude(realPosition[Theta]);
15 }
16 else
17 {
18 vec3 texPos = gridPosition/(u_dim.xyz) + 0.5/u_dim.xyz;
19 result = texture(in_Grid, texPos).r;
20 }
21 imageStore(out_Grid, pos, vec4(result, 0, 0, 0));

Figure 5.2. Advection compute shader
Here we first get a position on the grid, by referencing the built-in compute

shader variable gl_GlobalInvocationID, which is equal to gl_WorkGroupID *
gl_WorkGroupSiz + gl_LocalInvocationID. It is an integer position where this
invocation is on our 3D grid. From this int position on the grid, we calculate the real
position in our simulation domain with the function realPosition explained above.
Then we retrieve the normalized wave vector from the angle Θ and calculate the
semi-Lagrangian advection.

During this stage, we also have to consider boudary reflections. The way we imple-
ment them will work only on cubes and the first thing we need is a function to check
whether given coordinates are inside of a cube, where cubepos is the position of the
cube and cubescale is its scale such that each side then as length 2 * cubescale:

1 bool insideCube(vec2 position)
2 {
3 return (position.x > cubepos.x - cubescale &&
4 position.x < cubepos.x + cubescale &&
5 position.y > cubepos.y - cubescale &&
6 position.y < cubepos.y + cubescale);
7 }

With a way to check if a spatical coordinate is inside of a cube, we can now calculate
the reflection using the following function:

1 vec3 reflection(vec3 realPosition)
2 {
3 if (!insideCube(realPosition.xy))
4 return realPosition;
5

6 vec2 pos = realPosition.xy;
7 vec2 posc = realPosition.xy - cubepos;
8 vec2 n;
9 if (abs(posc.x) > abs(posc.y))

10 n = sign(posc.x) * vec2(1, 0);
11 else
12 n = sign(posc.y) * vec2(0, 1);
13 n *= 2;
14
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15 vec2 kdir = vec2(cos(realPosition[Theta]),
16 sin(realPosition[Theta]));
17 kdir = kdir - 2.0 * (kdir * n) * n;
18

19 float reftheta = atan(kdir.y, kdir.x);
20 return vec3(realPosition.xy, reftheta);
21 }

In the function, we first check if we are inside of the cube since we have to do
reflections only in that case. If so, we then calculate the normal of the side of the cube
we are the closest to, recover the simulation domain position of 𝜃, and finally perform
reflection according to the equation (3).

After the advection, we check if we are still in the simulation domain, and if no, we
apply the ambient value for the amplitude.

However, if we still are in the domain, we then calculate texture coordinates ranging
(0, 1) from the grid coordinates and grid dimensions, and sample the input texture
for the resulting value.

5.1.6 Diffusion

As with advection, diffusion compute shader is represented by the TimeStepCompute
class and has the same local workgroup size. It is also dispatched for each discrete 𝑘 we
have to update their respective textures. Here, however, we need to pass both textures
for 𝑘 − 1 and 𝑘 + 1 as inputs in addition to the texture for 𝑘, as well as the current 𝑘𝑖
index for k in the 4D grid we are dealing with.

For this reason, the function to dispatch diffusion compute is slightly different and
accepts the entire vector of textures and then binds them as needed. Before binding the
texture to the image unit it first checks whether we are still within (0, N_K) dimensions.

The diffusion itself is done in the shader as follows:

1 ivec3 pos = ivec3(gl_GlobalInvocationID);
2

3 float gamma = 0.05 * u_groupSpeed * u_dt * u_delta[Theta] *
4 u_delta[Theta] / u_delta[X];
5

6 float delta = 0.00002 * u_dt * u_delta[K] * u_delta[K] * u_delta[X] *
7 u_delta[X] * u_groupSpeed;
8

9 float result = (1.0 - gamma) * value(pos[X], pos[Z], pos[Theta]) +
10 gamma * 0.5 * (value(pos[X], pos[Z], pos[Theta]+1) +
11 value(pos[X], pos[Z], pos[Theta]-1)) ;
12

13 result -= delta * (value(pos[X], pos[Z], pos[Theta], u_ik) + 0.5 *
14 (value(pos[X], pos[Z], pos[Theta], u_ik + 1) +
15 value(pos[X], pos[Z], pos[Theta], u_ik -1)));
16

17 imageStore(out_Grid, pos, vec4(result, 0, 0, 0));

Figure 5.3. Diffusion compute shader
We first calculate values for 𝛿 and 𝛾 as described in 3.2.3 and then apply the finite

differencing method, so that the gamma term is calculated like:
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𝒜(𝑎, 𝑏, 𝑐) = 𝒜(𝑎, 𝑏, 𝑐) − 2𝛾𝒜(𝑎, 𝑏, 𝑐) + 𝛾𝒜(𝑎, 𝑏 + 1, 𝑐) + 𝛾𝒜(𝑎, 𝑏 − 1, 𝑐) (1)

where 𝒜(𝑎, 𝑏, 𝑐) is the amplitude value with position 𝙭𝑎 is position, Θ𝑏 is the angle and
𝑘𝑐 is the wave number. By incorporating 2 into 𝛾 and simplifying the terms we get:

𝒜(𝑎, 𝑏, 𝑐) = (1 − 𝛾)𝒜(𝑎, 𝑏, 𝑐) + 𝒜(𝑎, 𝑏 + 1, 𝑐) + 𝒜(𝑎, 𝑏 − 1, 𝑐)
2

(2)

The 𝛿 term is then calculated in the same fashion, but instead takes adjacent values
of 𝑘.

Here we do not use samplers, so to deal with out of bounds texture access we check
them in the value() function before accessing the values in the texture. To deal with
the bigger angle we just wrap it to get back into our grid and return 0 if we access
outside of the 𝑘 dimension:

1 float value(int ix, int iz, int itheta, int ik)
2 {
3 itheta = (itheta + u_dim[Theta]) % u_dim[Theta];
4 if (ik < 0 || ik >= N_K)
5 {
6 return 0.0;
7 }
8 vec4 val = imageLoad(in_Amps[ik], ivec3(ix, iz, itheta));
9 return val.r;

10 }

5.1.7 Profile Buffer
The next step is the calculation of the profile buffer. For this purpose, we will dispatch
a shader for each layer of the 1D array texture that represents the buffer. Additionally,
we will also provide its current 𝑘 and integral bounds as uniforms. To calculate the
bounds we use the same functions 5.1 to get the position in the simulation domain and
then subtract and add half of the step Δ𝑘 to get lower and upper bounds respectively:

1 float kmin = realPos(ik, K) - 0.5 * m_delta[K];
2 float kmax = realPos(ik, K) + 0.5 * m_delta[K];

In the shader itself, main() function just integrates over the function:

1 vec4 compute(float k, float p, float c)
2 {
3 float knum = TAU / k;
4 float phase1 = knum * p - dispersionRelation(knum) * u_time;
5 float phase2 = knum * (p + u_period) - dispersionRelation(knum) *
6 u_time;
7 return k * spectrum(k) * mix(calculateDisplacement(phase2, knum),
8 calculateDisplacement(phase1, knum), c);
9 }

where knum is the wave number calculated from the wavelength (11) and then, as
mentioned before, we also interpolate between individual phases of the wave using mix

22



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2 Water surface

with coeficient 𝑐 = 𝑝
𝑝𝑒𝑟𝑖𝑜𝑑 . The function calculateDisplacement returns calculated

gerstner waves, according to the section 3.3.4.
We need to store only necessary parts in the profile buffer, and there are a few

simplifications we can make to the equations (12):

. discard 𝛼 and 𝛽, which will leave us just the relative displacement of the points in
horizontal and vertical dimensions.. since we are working in deep water, the tangent term approaches one: 𝑡𝑎𝑛ℎ(𝑘𝑚 ℎ) →
1.. the amplitude 𝑎𝑚 is the specrtrum(k) function.. 𝑘𝑥,𝑚 and 𝑘𝑧,𝑚 are 𝑥 and 𝑦 components of out wave vector 𝙠 = (𝑘⋅𝑐𝑜𝑠(Θ𝑏), 𝑘⋅𝑠𝑖𝑛(Θ𝑏)),
we can simplify both 𝑘∗,𝑚

𝑘𝑚
to 𝑐𝑜𝑠(Θ𝑏) and 𝑠𝑖𝑛(Θ𝑏). These are going to be included

in the final height summation.. the sum ∑𝑀
𝑚=1 is what we will do during rendering and calculating the final height,

so we discard it as well.
In the end, we are left with values −𝑠𝑖𝑛(Θ) and 𝑐𝑜𝑠(Θ), where Θ signifies the

phase of the wave and should not be confused with the angle on our grid. These are
displacements in horizontal and vertical coordinates respectively.

Additionally, we need to calculate partial derivatives ∂𝑠
∂𝛼 and ∂𝑠

∂𝛽 as pointed out in
(13), which are going to be used to calculate the normal vector.

After evaluating the derivatives we get:

∂𝑠
∂𝛼

= 𝑘𝑥,𝑚
⎛⎜
⎝

−𝑐𝑜𝑠(Θ)
−𝑠𝑖𝑛(Θ)
−𝑐𝑜𝑠(Θ)

⎞⎟
⎠

∂𝑠
∂𝛽

= 𝑘𝑧,𝑚
⎛⎜
⎝

−𝑐𝑜𝑠(Θ)
−𝑠𝑖𝑛(Θ)
−𝑐𝑜𝑠(Θ)

⎞⎟
⎠

(3)

which means we only need to store 𝑘 ⋅−𝑐𝑜𝑠(Θ) and 𝑘 ⋅−𝑠𝑖𝑛(Θ) in the profile buffer
to be able to calculate the normal.

Taking all the above into consideration, the function calculateDisplacement()
looks as follow:

1 vec4 calculateDisplacement(float phase, float k)
2 {
3 float s = sin(phase);
4 float c = cos(phase);
5 return vec4(-s, c, - k * c, - k * s );
6 };

The values in the profile buffer, interpreted as colors, look like this:

Figure 5.4. Profile buffer contents.

5.2 Water surface
To use our simulation data, we need to render a water surface. In this section, we
will go over the details of how is water mesh constructed, what are the parameters
of shaders related to the water and how it is then rendered.
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5.2.1 Water mesh

To start over, we create a separate class extending the generic mesh from 4.3.2. As
with the simulation grid, our water mesh will be centered at (0,0). The function to
construct water mesh object is:

1 WaterMesh(WaterShader* shader, uint32_t size, float scale);

Here size is the the size of the mesh in a number of vertices in each dimension, while
scale is how big the mesh will be as a whole. WaterShader is the shader we will use
to calculate the final position of the vertex and it will be explained later.

The constructor first initialized the necessary buffers:

1 glGenBuffers(1, &vbo);
2 glBindBuffer(GL_ARRAY_BUFFER, vbo);
3

4 glGenVertexArrays(1, &vao);
5 glBindVertexArray(vao);
6

7 glGenBuffers(1, &ebo);
8 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ebo);
9

10 glEnableVertexAttribArray(shader->attributes.position);
11 glVertexAttribPointer(shader->attributes.position, 3, GL_FLOAT,
12 GL_FALSE, 0, 0);
13 glBufferData(GL_ARRAY_BUFFER, vertexSetSize * 3, nullptr,
14 GL_DYNAMIC_DRAW);
15

16 glBindVertexArray(0);
17 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
18 glBindBuffer(GL_ARRAY_BUFFER, 0);

We will be using GL_ELEMENT_ARRAY_BUFFER to draw the mesh, to not need several
copies of the same vertices and a vertex array to facilitate the interaction with the
buffers.

Before filling the buffers, we have to generate all the positions and indices. Posi-
tions are generated as follows:

1 float dx = scale / size;
2 float dy = scale / size;
3 for (int ix = 0; ix <= size; ++ix)
4 {
5 for (int iy = 0; iy <= size; ++iy)
6 {
7 glm::vec3 pos(-scale / 2 + ix * dx, 0.0f, -scale / 2 + iy * dy);
8 positions.emplace_back(pos);
9 }

10 }

The mesh is created at the vertical coordinate 𝑦 = 0 and ranges between
(−𝑠𝑐𝑎𝑙𝑒/2; 𝑠𝑐𝑎𝑙𝑒/2) and each triangle length is 𝑠𝑐𝑎𝑙𝑒/𝑠𝑖𝑧𝑒ww.

The indices are then generated as:
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1 for (int ix = 0; ix < size; ++ix)
2 {
3 for (int iy = 0; iy < size; ++iy)
4 {
5 int idx = iy + ix * (size + 1);
6 int Ix = size + 1;
7 int Iy = 1;
8 indices.push_back(idx);
9 indices.push_back(idx + Ix);

10 indices.push_back(idx + Iy);
11

12 indices.push_back(idx + Ix);
13 indices.push_back(idx + Ix + Iy);
14 indices.push_back(idx + Iy);
15 }
16 }

And the way individual primitives are indexed can be represented by the diagram:

0 1 2 3

4 5 6 7

0

1

2

3 4

5

Figure 5.5. Mesh vertex indexing.

where red digits are indices for the primitives and black digits are numbers of
individual vertices.

To render this mesh as needed we can then use its draw function, where we can
also specify the polygon mode (mainly used to render a wireframe):

1 void WaterMesh::draw(GLenum polygonMode) const
2 {
3 glBindVertexArray(vao);
4 glPolygonMode(GL_FRONT_AND_BACK, polygonMode);
5 glDrawElements(GL_TRIANGLES, indices.size(), GL_UNSIGNED_INT, 0);
6 glPolygonMode(GL_FRONT_AND_BACK, GL_FILL);
7 glBindVertexArray(0);
8 }
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Additionally, we have a class for the water object instance, but it only stores the

color of the water surface and saves the mesh and its model matrix.

5.2.2 Water shader
The final calculations defining the shape of the water surface are going to be done
inside the shader, associated with water mesh. To not repeat the code, here we
also have some common include files between vertex and fragment shader, which are
water_macros.glsl and water_common.glsl. While the former defines some shared
constants as well as the grid parameters, the latter has a shared function, that is used
to sample the right texture:

1 float getAmp(float theta, vec3 pos, vec2 posScaled, int ik)
2 {
3 if (pos.x < u_min.x || pos.z < u_min.y || pos.x > u_max.x ||
4 pos.z > u_max.y)
5 {
6 return defaultAmplitude(theta, defDirection, u_defaultAmp);
7 }
8 vec3 tPos = vec3(posScaled, theta /TAU);
9 return texture(u_Amps[ik], tPos).r * u_multiplier;

10 }

which also checks for bounds and returns a default amplitude value if we are sampling
outside. This will allow us to see some waves outside of the simulation domain. Here
we also apply a user-modifiable parameter u_multiplier that won’t have any effect
on the simulation, but will allow us to exaggerate amplitude size during the rendering
stage. Also worth mentioning, is that since we are going to call this function in a
loop, we also pass the already scaled-down spatial position as posScaled, add a
scaled-down theta and sample from the amplitude texture at index ik.

Here in the common file, we also define a function to generate pseudo-random
numbers from a seed, which will be our angle theta:

1 float rand(int seed)
2 {
3 return 23.34 * (fract(sin(seed * 123.432) * 5354.53));
4 }

With all of these in our arsenal, we can now get to the main calculation, which
is done in both vertex and fragment shaders. In the vertex stage, we first apply the
model matrix. The resulting coordinate is then scaled down and saved in the variable
which is then passed to the fragment stage and used during amplitude sampling.
Then we calculate the final sum (see 4.4) for the displacement of a vertex in both
horizontal and vertical coordinates:

1 vec3 calculateDisplacement(vec2 position)
2 {
3 vec3 result = vec3(0);
4 for (int b = 0; b < INTEGRATION_SAMPLES; ++b)
5 {
6 float theta = TAU / INTEGRATION_SAMPLES * b;
7 vec2 k = vec2(cos(theta), sin(theta));
8 float p = dot(k, position)
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9 +
10 rand(b);
11 p = p / u_profilePeriod;
12

13 for (int ik = 0; ik < N_K; ++ik)
14 {
15 vec4 val = getAmp(theta, vPosition, vPosScaled, ik) *
16 texture(u_profileBuffer, vec2(p, ik));
17 result += vec3(k.x * val.x, val.y, k.y * val.x);
18 }
19 }
20 return result;
21 }

This function almost exactly matches the one from the pseudocode mentioned
above, with a few notable exceptions. Firstly, we scale down the value of 𝑝 to the
range (0, 1) to be able to sample the texture correctly. Additionally, here we can see
the terms 𝑘∗,𝑚

𝑘𝑚
that we left out during the simplification of Gerstner wave equations

discussed in the section 5.1.7, and those are k.x and k.y.
Unfortunately, right now we also do not have the integration over several wave

numbers. Instead, the values from each ik amplitude grid are being summed up. To
implement the integration however, we would also need to pass the min/max values of
your 𝑘, then calculate its real value similar to how 𝜃 is calculated and finally convert
the simulation domain position to float grid position and interpolate between the
values of adjacent textures.

In the fragment shader, we then calculate the normal for each fragment, using a
similar approach, but by utilizing the latter 2 terms from the profile buffer instead:

1 vec3 calculateNormal(vec2 position)
2 {
3 vec3 dx = vec3(1.0, 0.0, 0.0);
4 vec3 dz = vec3(0.0, 0.0, 1.0);
5 for (int b = 0; b < INTEGRATION_SAMPLES; ++b)
6 {
7 float theta = TAU / INTEGRATION_SAMPLES * b;
8 vec2 k = vec2(cos(theta), sin(theta));
9 float p = dot(k, position) + rand(b);

10 p = p / u_profilePeriod;
11 for (int ik = 0; ik < N_K; ++ik)
12 {
13 vec4 val = getAmp(theta, vPosition, vPosScaled, ik) *
14 texture(u_profileBuffer, vec2(p, ik));
15

16 dx += k.x * val.zwz;
17 dz += k.y * val.zwz;
18 }
19 }
20 return normalize(-cross(dx, dz));
21 }
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With those 2 terms, we recover the vector of partial derivatives from the equation
(3). We then sum them up with the unit vectors, in both spatial dimensions, since
we also have to take into consideration the derivatives of 𝛼 and 𝛽 in functions 𝜉 and
𝜁 from the equation (12).

With this normal we can now apply the lighting to each fragment, according to he
Phong Illumination model [16]:

1 vec3 normal = calculateNormal(vPosition.xz);
2

3 vec3 lightColor = vec3(1.0);
4 vec3 outAmbient = vec3(0.0);
5 vec3 outDiffuse = vec3(0.0);
6 vec3 outSpecular = vec3(0.0);
7

8 vec3 diffuse = u_diffuse;
9 if (vPosition.x < u_min.x || vPosition.z < u_min.y ||

10 vPosition.x > u_max.x || vPosition.z > u_max.y)
11 {
12 diffuse = vec3(0.5);
13 }
14

15 vec3 L = normalize(u_lightPosition);
16 vec3 R = reflect(-L, normal);
17 vec3 V = normalize(u_cameraPosition - vPosition);
18

19 float diff = max(dot(normal, L), 0.0);
20 float spec = pow(max(dot(R, V), 0.0), u_shininess);
21

22 outAmbient = u_ambient;
23 outDiffuse = diffuse * lightColor * diff;
24 outSpecular = u_specular * spec;
25

26 fColor = vec4(outAmbient + outDiffuse + outSpecular, 1.0);

It is worth mentioning, that we also check for the position of the fragment, and
set the diffuse color of the fragments outside of the simulation domain to gray color,
to see where the waves are simulated more easily.
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Chapter 6
Results

In this chapter we will present the final results of the project and compare some of the
configurations, measuring how much time each of the compute shader stages takes,
how long it takes to render, etc. We are also going to compare how some of the parts
of the algorithm affect the simulation, as has been mentioned throughout the previous
chapters. Finally, we will compare the performance to the CPU implementation on
the same configurations.

First of all, in the figure 6.1 you can see the result of the simulation with testing
parameters from 5.1 and ambient amplitude 𝒜𝑎𝑚𝑏𝑖𝑒𝑛𝑡 = 0.1 using Pierson-Moskowitz
spectrum.

Figure 6.1. Simulation result with the grid resolution 128 × 16 × 1.

Since the amplitude is increased in a single direction, we get this shape of water
moving in a certain direction. Ideally, we would want to have more sophisticated
boundaries, as well as a precalculated initial grid for 𝒜 to have an already established
ocean. Nonetheless, this application is still good to show what the method is capable
of.

6.1 Performance metrics
In this section, we will try out a few different configurations and measure their
performance. The measurements are going to be done in the software RenderDoc 1,
which proved to be very useful throughout the work on the thesis, facilitating the
debugging of individual frames. The results are presented in the table 6.1.

There we can see how, as expected, profile buffer computation is largely inde-
pendent of the spatial and angle dimensions, and depends only on the resolution of

1 https://renderdoc.org/
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No. Res. 𝑋 Res. 𝜃 Res. 𝐾 Advection Diffusion Profile

1 128 16 1 0.0266 0.0367 0.0238
2 256 16 1 0.0921 0.1269 0.0228
3 512 16 1 0.3673 0.5313 0.0241
4 1024 16 1 1.4452 2.0746 0.0245
5 2056 16 1 5.4242 7.9929 0.0228
6 128 32 1 0.0515 0.0696 0.0227
7 128 16 2 0.05983 0.0872 0.0471

Table 6.1. Time taken by each compute shader stage in milliseconds.

wavenumber 𝑘. We can also note, that the diffusion step is more computationally
intensive, compared to the advection step roughly by a factor of 1.4. Then also it is
not a surprise, that increasing 𝑘 the time increases by roughly 2 times.

6.2 Visual comparison

While it is important to have information about the performance of the method
using different configurations, we also need to know whether it is even needed to have
higher-resolution grids. Figures 6.2, 6.3 and 6.4 show the difference with different
spatial, angle and wavenumber resolutions respectively.

Figure 6.2. Comparison of grids with different spatial resolution, configurations 2 and 3
from the table.6.1.
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Figure 6.3. Comparison of grids with different angle resolution, configurations 1 and 6
from the table.6.1.

Figure 6.4. Comparison of grids with different k resolution, configurations 1 and 7 from
the table.6.1.

The figures show, that increasing the resolution doesn’t yield big improvements,
while definitely increases simulation time.

6.3 Spectrum comparison
Ocean wave spectrum controls the local details of the waves that we have and, the-
oretically, we can use any non-directional spectrum in this implementation. The
reason we are including non-directional only is that our profile buffer computation
relies solely on the wind speed and 𝑘 wavenumber variables.

In the figures 6.5 and 6.6 you can see the examples of the results produced with
the JONSWAP and Tessendorf spectra, discussed and researched in [4], and while
it is possible to use any spectra, the results came out not very realistic: the waves
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seem too smooth and don’t have much variability. Tweaking different constants in
spectrum value calculation might help to mitigate this issue.

Figure 6.5. Result produced with the Tessendorf spectrum.

Figure 6.6. Result produced with the JONSWAP spectrum.
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6.4 Boundaries

We also have to check how the resulting algorithm deals with the boundaries and, as
explained earlier, due to a bad choice of the way to represent boundaries. So with
the current approach, we have a scene with a cube in the middle and the results can
be seen in the figure 6.7.

Figure 6.7. Example of boudary reflections.

While it is possible to see slight signs of reflection there, the result is by no means
satisfactory and further work will be required. It will be much more beneficial to
change the way boundaries are represented altogether. For example, to represent a
static environment, a heightmap will be a good choice since we can then compare the
height of an environment point with the height of our mesh and additionally estimate
a normal vector of the environment in a given point by calculating the gradient in
that point. For dynamic boundaries, on the other hand, we can directly modify
the values on our amplitude grid, by taking the speed and direction of movement
of an object and estimating by how much we have to increase the values in a given
direction.

Because of this poor design choice, the requirement for 3 different scenes from the
assignment wasn’t entirely completed, and there are technically only 2: with a cube
boundary and without it.

6.5 Certain parameter significance

As has been mentioned throughout the Design and Implementation chapters, in this
section we will demonstrate the significance of some of the parts of the algorithm
and how they contribute to the visual quality and how realistic the final result is.

In the figure 6.8 you can see how without the random factor when sampling the
profile buffer, the result is very much deterministic and the waves tend to circle
around the point (0, 0).
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Figure 6.8. The effect produced without random number in profile buffer sampling.

Figure 6.9. The effect produced without interpolation between wave phases.

Another thing we discussed earlier was the interpolation between phases of Ger-
stner waves during the precomputation of the profile buffer. In the figure 6.9 you
can see some regions with sharp edges, that do not show up on the other pictures.
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Additionally, while it is not visible in the figure, this way the wave height periodically
pulsates, which is far from the ideal result.

6.6 Comparison to the CPU implementation
Finally, in this section, we will compare the previous results to the CPU implementa-
tion of this same method. It is worth mentioning, that only the simulation portion of
the method was taken from the publicly available code, so the comparison should be
fairly reliable since we will be working with the same scene and the same rendering
code. The time taken by each simulation stage can be seen in the table 6.2.

No. Res. 𝑋 Res. 𝜃 Res. 𝐾 Advection Diffusion Profile

1 128 16 1 8.244 3.224 20.889
2 256 16 1 37.442 12.206 19.271
3 512 16 1 81.966 43.603 20.867
4 128 32 1 15.017 6.485 21.292

Table 6.2. Time taken by each stage of CPU implementation in milliseconds.

The most striking difference is that all the values are orders of magnitude higher on
the same configurations. Additionally, out of all the stages, the profile buffer seems
to have been slowed down the most. We can see that on the base configuration, its
computation takes almost 1000 times as much time as it takes on GPU (6.1). From
this data, we can deduce that profile buffer , and the grid simulation itself for that
matter, were designed to greatly benefit from the parallelization GPU provides.
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Chapter 7
Conclusions

In this thesis, we investigated various methods for simulating water surfaces, with a
particular focus on the context of computer graphics. We examined the theoretical
foundations of fluid dynamics, including the Navier-Stokes equations, and explored
analytical, numerical, and hybrid approaches that had been produced by various
researchers. We implemented a method using C++ and OpenGL, utilizing compute
shaders to achieve efficient real-time performance. We also conducted a series of tests
and evaluations to assess the performance and visual quality of the simulated waves.

In conclusion, we relatively successfully developed a procedural water wave sim-
ulation application that provides respectable results, while not requiring significant
computational resources.

7.1 Ways of improvement
Despite the partial success of the current implementation, there are some areas
where it is lacking, or produces unsatisfactory results, requiring further refinement:

. in the final calculation of water displacement and normal vector, the entire range
of simulated wave numbers has to be integrated over,

. different spectrum parameters have to be tweaked to produce more realistic results,

. the boundary checking and reflection system has to be reworked, as explained in
the Results chapter.

7.2 Future work
And finally, there are ways we can expand this method further, that will add to the
overall result but were not in the scope of this thesis.

The amplitude grid can be precomputed and loaded into the textures to have an
initial state. With this state of already established ocean, it will be much easier to
get the desired results from the very beginning. Also, if we do not need boundary
reflections, this method allows us to discard the advection and diffustion altogether.
In that case, the wave propagation will not be simulated, and the profile buffer will
solely be responsible for the visual quality.

Additionally, the visual quality can be improved in a way, that doesn’t directly
relate to the simulation, like implementing realistic water lighting and employing
reflections and refractions of the light rays.
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Appendix A
Instructions

To run the prototype application, testing PC GPU has to support OpenGL 4.6 and
extension GL_ARB_shading_language_include.

A.1 Compilation

The source codes are located in the attached zip archive.

To compile the application first open solution file /WaveSimulation.sln in Mi-
crosoft Visual Studio (preferably 2022), choose Release configuration and press the
build button.

To compile and run press Ctrl + F5.

A.2 Useful files and folders

/WaveSimulation.sln Microsoft Visual Studio solution file related to the
project.

/WaveSimulation/src Source code for the application.

/WaveSimulation/assets Shaders and textures used in the scene

/WaveSimulation/src

/utils/parameters.h File for setting the grid resolution parameters.
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A.3 GUI description

Camera

parameters


Visual amplitude multiplier


Frame statistics and desired framerate


Update 

amplitude 

grid or not


sdasdadas


Direction of ambient

waves


Check/ignore 

boundaries


Render water 

mesh as 


wireframe


dt used for last 

simulation step


Spectrum choice


Period of the 

profile buffer


Show/hide

skybox


Speed/slow down

the simulation


Amplitude of ambient

waves


Wind speed used 

for spectrum


Figure A.1. Description of GUI elements.
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