
Bachelor Project

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Computer Science

Scaling databases in microservices-based
applications

Mikhail Nalutka

Supervisor: Ing. Jiří Šebek
Field of study: Otevřená informatika
Subfield: Software
May 2024

ii

ZADÁNÍ BAKALÁŘSKÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

499053 Osobní číslo:Mikhail Jméno:Nalutka Příjmení:

Fakulta elektrotechnická Fakulta/ústav:

Zadávající katedra/ústav: Katedra počítačů

Otevřená informatika Studijní program:

Software Specializace:

II. ÚDAJE K BAKALÁŘSKÉ PRÁCI

Název bakalářské práce:

Škálování databází v aplikaci založených na microservice architektuře

Název bakalářské práce anglicky:

Scaling databases in an application based on a microservice architecture

Pokyny pro vypracování:
V současné době jsou mikroslužby skloňované jako nejlepšípřístup pro psaní komplexních aplikací a vůbec realizaci
podnikových
architektur. Je důležité, aby aplikace byla dostupná i při vysokém zatížení.
Jedním ze způsobů, jak zajistit větší odolnost aplikace vůči zátěži, je škalování databáze.
Cíle této práce jsou:
1) provést rešerši používaných patternů a principů pro škalování databází
2) provést analýzu, v jakých situacích je vhodné použít konkretní patterny
3) vytvořit knihovnu, která obsahuje vzorové implementace patternů mikroslužeb pro škalování databází
4) vytvořit vzorovou aplikaci, která demonstruje účinnost zvolených design patternů
5) provést výkonnostní testy aplikaci

Seznam doporučené literatury:
1) Antonio Messina, Riccardo Rizzo, Pietro Storniolo, Alfonso Urso. "A Simplified Database Pattern for the
Microservice Architecture"
2) Gastón Márquez, Mónica M. Villegas, Hernán Astudillo. "A pattern language for scalable microservices-based systems"
3) Rodrigo Laigner, Yongluan Zhou, Marcos Antonio Vaz Salles, Yijian Liu, Marcos Kalinowski. "Data Management in
Microservices: State of the Practice, Challenges, and Research Directions"

Jméno a pracoviště vedoucí(ho) bakalářské práce:

Ing. Jiří Šebek kabinet výuky informatiky FEL

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) bakalářské práce:

Termín odevzdání bakalářské práce: 24.05.2024 Datum zadání bakalářské práce: 15.02.2024

Platnost zadání bakalářské práce: 21.09.2025

prof. Mgr. Petr Páta, Ph.D.

podpis děkana(ky)
podpis vedoucí(ho) ústavu/katedryIng. Jiří Šebek

podpis vedoucí(ho) práce

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZBP-2015.1

III. PŘEVZETÍ ZADÁNÍ
Student bere na vědomí, že je povinen vypracovat bakalářskou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v bakalářské práci.

.
Datum převzetí zadání Podpis studenta

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZBP-2015.1

Acknowledgements
I would like to thank my supervisor, Ing.
Jiří Šebek for his guidance and consul-
tations throughout the creation of this
bachelor thesis.

Declaration
I hereby declare that I have completed
this thesis independently. All sources of
information used in this work have been
cited and are included in the list of used
literature.

In Prague, 23. May 2024

v

Abstract
The goal of this bachelor thesis is to re-
search methods for database scaling in mi-
croservice applications and demonstrate
some of them on a demo application.

For this purpose, different methods for
database scaling were presented and com-
pared. After that, a demo microservice
application was created in order to demon-
strate the effects of the chosen scaling
techniques. Finally, a performance test
was done between the application which
was not scaled and the scaled application
to see if database scaling helped the ap-
plication to better handle the load.

Keywords: Database scaling,
microservice application, Docker,
Kubernetes, Locust

Supervisor: Ing. Jiří Šebek

Abstrakt
Cílem této bakalářské práci je prozkoumat
metody pro škálování databází v mikro-
servisních aplikacích a některé z ních pak
demonstrovat na vzorové aplikaci.

Za tímto účelem byly představeny a po-
rovnány různé metody škálování databáze.
Poté byla vytvořena ukázková mikroser-
visní aplikace, na které byly demonstro-
vany účinky zvolených technik škálování.
Nakonec byl proveden zatěžový test mezi
aplikací, která nebyla škálována, a škálova-
nou aplikací, aby se zjistilo, zda škálování
databáze pomohlo aplikaci lépe zvládat
zátěž.

Klíčová slova: Škálování databází,
mikroservisní aplikace, Docker,
Kubernetes, Locust

Překlad názvu: Škálování databází v
aplikaci založených na microservice
architektuře

vi

Contents
1 Introduction 1
2 Research 3
2.1 Database scalability 3

2.1.1 Types of database scaling 3
2.2 Database horizontal scaling

methods . 4
2.2.1 Replication 4
2.2.2 Partitions 5
2.2.3 Database optimization

techniques . 7
2.3 Microservice architecture 8

2.3.1 Advantages of microservice
architecture over monolithic
architecture . 8

2.3.2 Disadvantages of microservice
architecture over monolithic
architecture . 9

2.3.3 Communication between
microservices 9

2.4 Containerization 9
2.4.1 Docker . 9

2.5 Orchestration 10
2.5.1 Kubernetes 11

2.6 Conclusion 12
3 Analysis 13
3.1 Demo application 13
3.2 Functional requirements 13
4 Design 17
4.1 System’s data design 17
4.2 System’s architecture 18
4.3 Persistence layer design 19

4.3.1 Materialized views 19
4.3.2 Partitions 20
4.3.3 Indices 20

4.4 Examples of system’s
functionalities 21
4.4.1 Registering student for a class 21
4.4.2 Registering student for a thesis 22
4.4.3 Registering student for an

exam . 22
5 Implementation 25
5.1 Intra-service communication . . . 25
5.2 API gateway 26
5.3 Exception handling and HTTP

response configuration 26

5.4 Integration of optimizations done
on the persistence layer 27

6 Deployment 29
6.1 Docker . 29

6.1.1 Dockerfile configuration 29
6.2 Kubernetes 30

6.2.1 Deployment and service
configuration for the application . 30

6.2.2 Kubegres configuration for the
database . 31

6.2.3 Pgpool-II configuration 32
7 Testing 35
7.1 Locust . 35
7.2 Test approach 35
7.3 System’s configuration 35
7.4 Test results 36
7.5 Summary . 38
8 Conclusions 39
A Bibliography 41

vii

Figures
2.1 Master-Slave replication (source:

[1]) . 4
2.2 Master-Master replication (source:

[1]) . 5
2.3 Horizontally partitioning data

based on a sharding key (source: [2]) 6
2.4 Vertically partitioning data (source:

[2]) . 6
2.5 The Materialized view pattern
(source: [3]) . 7

2.6 Example of a microservice
architecture (source: [4]) 8

2.7 Docker architecture (source: [5]) 10
2.8 Kubernetes cluster architecture
(source: [6]) . 11

3.1 Use case diagram 15

4.1 Class diagram 17
4.2 Component diagram 19
4.3 Materialized view created from five

tables . 19
4.4 Table partitioning for three tables 20
4.5 Indices on materialized view . . . 21
4.6 Sequence diagram

addClassToTimetable 21
4.7 Sequence diagram

registerPersonForThesis 22
4.8 Sequence diagram

registerPersonForExam 23

5.1 Example of an intraservice
communication 25

5.2 API gateway config 26
5.3 HTTP response configuration

example . 27
5.4 @Query annotation usage example 27

6.1 Pgpool-II architecture(source: [7]) 33

7.1 Test run without scaling 36
7.2 Test run with scaling 37
7.3 Test run failures 37

Tables
7.1 Pod distribution for each

microservice . 36
7.2 Test results with 240 users 38

viii

Chapter 1
Introduction

When the business is growing and the number of users accessing its products is
increasing, it is very important to make sure that the service used by customers
can handle this increased load. Not being able to serve the increased amount
of requests leads to the application being unstable and even unavailable,
which means a loss in reputation and profit. Even a couple of minutes of
downtime can cost companies hundreds of thousands of dollars[8]. This is
why it is important to promptly scale an application. Notably, the database
scalability deserves special attention, as a database can become a bottleneck
for the whole application.

Lately, more and more companies migrate their applications from monolithic
architecture to microservices. [9] It is understandable, considering all the
benefits, for example the ability to split the load between smaller services.
Such approach allows to apply different scaling methods to different services.
This leads to an overall more stable application, which can handle more user
requests.

The goal of this thesis is to compare different database scaling methods
and apply them on a microservice-based application. To achieve this, we will
research existing methods and techniques used for scaling databases. After
that, an example microservice application will be created in order to demon-
strate the use of chosen scaling methods on it. After that, performance test
will be done to see if the database scaling improved application’s performance
and throughput.

1

2

Chapter 2
Research

This chapter gives theoretical introduction to database scaling methods,
microservice architecture, containerization and orchestration of applications.

2.1 Database scalability

Database scalability is the ability to expand or contract the capacity of system
resources in order to support the changing usage of your application[10].
By increasing its availability, scaling allows the application to handle the
increasing demand.

2.1.1 Types of database scaling

Where are two main ways how to scale a database. These are vertical and
horizontal scaling.

Vertical scaling

Vertical scaling refers to increasing the processing power of a single server or
cluster[10]. By having a more powerful server, application can handle more
load. However, it is not possible to keep increasing server’s resources forever.
Eventually, a limit of maximum resources will be met. At that point, one
needs to consider another scaling method.

Horizontal scaling

Horizontal scaling entails adding more machines to further distribute the
load of the database[11]. Unlike vertical scaling, horizontal scaling can be
performed over and over again, since we are not limited by a single server’s
limits. One problem of a horizontal scaling is that it is often more complicated
to manage it.

3

2. Research.......................................
2.2 Database horizontal scaling methods

There are two main techniques to scale a database: replication and data
partitioning

2.2.1 Replication

Replication refers to creating copies of a database or database node[10]. Such
a copy is called replica. Replicas contain data from the primary node. Data
updates in the primary node are automatically reflected in all its replicas.
This approach increases fault tolerance of a system. Even if one of the
nodes becomes unavailable, other nodes can still respond to the requests.
Replication can also be used for scaling. By having multiple database nodes,
client requests can be distributed among them. That way, you can process
much more requests faster.

There are two main methods how to replicate databases. That is Master-
Slave replication and Master-Master replication.

Master-Slave replication

Here the primary node (master) is the only node that can process write
requests, while the remaining replica nodes (slaves) are read-only. When the
primary node goes down, one of the replica nodes is promoted to master.

Figure 2.1: Master-Slave replication (source: [1])

4

.......................... 2.2. Database horizontal scaling methods

Master-Slave replication works best for read-focused data workloads, since
we can distribute read requests among replicas. However, it is not suitable
for write-heavy workloads, as each write must be copied to every replica.

Master-Master replication

In this replication, each replica node is considered to be master, meaning
that each replica is responsible for write and read requests. Since multiple
nodes can process write operations, concurrent writes to the same data can
lead to conflicts.

Figure 2.2: Master-Master replication (source: [1])

Unlike Master-Slave replication, Master-Master replication is great for
write-heavy data workloads, since write requests are not processed by just
one node.

2.2.2 Partitions

Partitioning is a method of dividing a large amount of data in one table
into smaller unique data stores called partitions. Data is distributed among
partitions based on a chosen column or a set of columns known as a partition
key. Partitioning can be used for scaling since we can make each database
node hold a unique subset of data.

Moreover, partitioned tables get access to partition pruning, a query op-
timization technique that can be used for improving performance on such
tables. When we search data belonging to the specific partition, the query
planner is able to ignore other partitions and scan only the relevant one, thus
speeding up the data retrieval.

Partitioning is also useful for managing historical data. Let’s say that
your application has to save user’s data for one year after their accounts are
deleted. For this purpose, you could store this data in the separate partition.
After than, you can easily dispose of the partition by dropping it, which is
much more efficient than having to bulk delete data from the main table.

5

2. Research.......................................
There are two main approaches to data partitioning: horizontal partitioning

and vertical partitioning.

Horizontal partitioning

Horizontal partitioning is distinguished by each partition having the same
table schema but holding a unique subset of rows from the partitioned table.
In other words, we split the table by rows, where different partitions contain
different records.

Figure 2.3: Horizontally partitioning data based on a sharding key (source: [2])

These partitions can be placed not only on a single server, but also on
multiple servers, thus distributing the load among multiple machines. This
approach is called sharding, where each individual partition is a shard.

Vertical partitioning

Vertical partitioning is different in a way that each partition holds a subset
of columns from the partitioned table. This means that partitions have
different schemas but the records are the same. The most common strategy
to distribute the data is to put the most frequently accessed columns in a
single partition or a small number of partitions.

Figure 2.4: Vertically partitioning data (source: [2])

6

.......................... 2.2. Database horizontal scaling methods

2.2.3 Database optimization techniques

Besides scaling, one can also significantly improve the database’s performance
by performing database optimization. Common methods for this are indices
and materialized views.

Indices

Usage of indices is a common technique to increase database performance.
An index on a table can considerably speed up the data retrieval for the
frequent queries at the cost of increasing system’s overhead. Proper indices
can also be used to significantly speed up table JOINs if the index is defined
on the JOIN column.

However, indices should be used cautiously, since poorly chosen indices
can even decrease performance. When designing an index, one must carefully
analyze application’s frequent read operations and consider the following
trade offs:. Indices take up storage space in the database, since the database server

has to maintain each index’s structure alongside the table data. The
amount of space that is required depends on the table’s size and the
number of columns in the index.. Indices can slow down write operations, as each modification to the
indexed column requires the update of an index itself. This is why
write-heavy tables usually receive a performance hit from indices.

Materialized view

Materialized view is a type of view that saves query data to a table instead
of having to compute data each time the view is queried. Since materialized
view does not calculate data each time it is queried, the data it contains
can quickly become stale. This is why it is important to periodically refresh
materialized views with fresh data.

Figure 2.5: The Materialized view pattern (source: [3])

7

2. Research.......................................
Materialized views are used to boost read performance for complex queries

that are executed often because the query cost is paid only when the material-
ized view is created or refreshed. Because materialized views are represented
as physical tables, they can also benefit from the use of indices, making data
retrieval even faster. And since the materialized views are not updated often,
the indices will not hinder write performance as much.

2.3 Microservice architecture

A microservices architecture is a software architecture which consists of a
collection of small, autonomous services. Each service is self-contained and
should implement a single business capability within a bounded context. A
bounded context is a natural division within a business and provides an
explicit boundary within which a domain model exists. [4]

Figure 2.6: Example of a microservice architecture (source: [4])

Each microservice should have its own data store and other services don’t
have access to it. This leads to more independent and loosely coupled services,
which allows for independent development and scaling.

2.3.1 Advantages of microservice architecture over monolithic
architecture

Splitting a monolithic application into a set of small services brings a lot of
benefits. Such small services are better suited for scaling. Often, only some
parts of the application experience high load. With microservices, we can
scale these parts independently according to the load they are getting.

Another benefit of the microservice architecture is the increased availability.
Even if some service becomes unavailable, other services will still work and
the application will still be able to serve most of the requests.

8

................................... 2.4. Containerization

2.3.2 Disadvantages of microservice architecture over
monolithic architecture

Microservice architecture also has some drawbacks. Such architecture on
the whole is more complex, as it introduces a lot of moving parts. As the
applications contains a lot of smaller services, they also have to communicate
with each other. This can lead to increased latency and network load.

Moreover, with each microservice having its own data store, it can be a
challenge to maintain a data consistency across the application.

2.3.3 Communication between microservices

In order to complete a user request, a lot of small services often have to work
together. This is why implementing efficient and robust interservice commu-
nication is key. Communication can be either synchronous or asynchronous.. Synchronous communication In this type of communication, a service

calls an API that another service exposes, using a protocol such as HTTP
or gRPC[12]. It is called synchronous because the caller needs to get a
response to continue executing its task..Asynchronous communication In this type of communication, a service
sends message to the message queue without waiting for a response, and
one or more services process the message asynchronously. [12]

Both types of communication have their benefits and drawbacks. Synchronous
communication is easier to implement, but it can create bottlenecks since
services can not process another requests while waiting for a response.

Asynchronous communication, on the other hand, provides better decou-
pling and increased performance, since the service that sends a message does
not wait for an immediate response. However, asynchronous communication
is much more complex to manage.

2.4 Containerization

Containerization is the process of packaging the application together with all
the dependencies which are required to run the application. Such package is
called a container. One of the main benefit of containerizing an application is
that they are highly portable, meaning that these containerized applications
can run without modifications on any environment that supports containers.

Since containers provide an isolated environment for application to run on,
they fit well with a microservice architecture. Each service can run inside it’s
own container, supporting loose coupling and resilience.

2.4.1 Docker

Docker is an open-source platform that is used for creating and managing
application containers. It is by the far the most popular and widely used

9

2. Research.......................................
containerization tool.[13]

Docker architecture

Users can interact with Docker by using commands from the Docker API
to the Docker client. Docker client then sends these commands through the
REST API to the Docker daemon, which is responsible for managing Docker
objects such as images and containers.[5]

Figure 2.7: Docker architecture (source: [5])

Docker objects.Docker Images - An image is a read-only template with instructions
for creating a container.[5] Images are created from a Dockerfile, which
describes the steps needed to create the image. Another option is to use
the already existing image from the Docker registry. Docker offers it’s
own registry called Docker Hub, which is the world’s largest repository
of Docker images. [14] It is free to use for all public repositories, but you
have to pay if you want to set up a private repository..Docker Containers - A container is the runnable instance of an Docker
Image. Users can manage their containers through the Docker API.[5]

2.5 Orchestration

Even though the containers itself are lightweight, managing them at the
larger scale can be challenging. This is where orchestration tools come into
play. Orchestration automates the provisioning, deployment, networking,
scaling, availability, and lifecycle management of containers.[15] The only
thing developer needs to do is write a configuration file, and the orchestration

10

.................................... 2.5. Orchestration

tool does the rest. This configuration file usually defines container images
and their locations, declares how the containers are connected to each other
and the amount of resources that each container can use.

2.5.1 Kubernetes

Kubernetes is an open source platform for automating deployment, scaling,
and management of containerized applications. It can also provide some
features, such as automatic load balancing and distributing the network
traffic between containers.[16]

Kubernetes architecture

When you deploy Kubernetes, you get an environment called cluster. These
clusters consist of nodes, which are essentially computing units that deploy,
run and manage containers. Each cluster has a master node known as a
control plane, which manages the worker nodes. Every working node has
a software agent called Kubelet that receives and executes orders from the
master node. [17]

Figure 2.8: Kubernetes cluster architecture (source: [6])

A group of one or more containers makes a pod. In Kubernetes, it is the
smallest deployable unit of computing. All containers that are a part of the
same pod always share storage and resources. Pods are created by specifying
Kubernetes workload resources.[18]

Kubernetes workload resources.Deployment - A deployment is used to manage the deployment and
scaling of a set of pods. It defines a desired state for a set of identical

11

2. Research.......................................
pods, known as replicas.[19]. StatefulSet - Like deployment, StatefulSet manages the deployment
and scaling of a set of pods. The difference is that StatefulSet does this
in a predictable and ordered manner. It also provides stable network
identities and stable storage for each pod.[20].ReplicaSet - ReplicaSet is responsible for maintaining a defined number
of pod replicas. For this, it can create and delete pods to reach the
required replica count.[21]. Service - A service defines a set of pods and the way how to access
them.[22]. Ingress - Ingres is an API object that is used to provide external access
to the services. In order to function, it needs an Ingress controller.[23]. Secret - In order to store sensitive data like passwords outside of the
application’s code, a secret object is used. Other pods can then access
the keys stored in the secret object.[24]

2.6 Conclusion

In this chapter we looked at different database scaling methods, described the
microservice architecture and explained containerization and orchestration.
In the next chapters, a demo microservice application will be designed,
implemented and then deployed. This application will demonstrate the effects
of database replication, partitioning, materialized views and indices.

12

Chapter 3
Analysis

This chapter marks the beginning of the thesis’s practical part by describing
the demo application and identifying its functional requirements.

3.1 Demo application

To showcase database scaling we need a demo application. For this purpose,
a university information system was chosen. Such a system for a typical
university can be used by tens of thousands of people [25], so it is a good
candidate for optimization.

University Information System allows teachers and students to digitize and
manage their university related data more easily. It will allow students to
manage their study plan, create timetables, register for courses and so on.
For teachers it makes it easier to manage the courses they teach.

3.2 Functional requirements..1. System will automatically create accounts for all users..2. System will automatically delete accounts for users who left the university..3. System will automatically create timetables for all users each semester..4. System will allow users to modify their account’s information..5. System will allow users to browse available courses..6. System will allow users to browse available exam dates..7. System will allow users to browse available thesis topics..8. System will allow users to create a course..9. System will allow users to modify a course...10. System will allow users to delete a course...11. System will allow users to create their timetables

13

3. Analysis ..12. System will allow users to create a class...13. System will allow users to modify a class...14. System will allow users to delete a class...15. System will allow users to register for a class...16. System will allow users to deregister from a class...17. System will allow users to register for the exam date...18. System will allow users to deregister from the exam date...19. System will allow users to create the exam date...20. System will allow users to modify the exam date...21. System will allow users to delete the exam date...22. System will allow users to register for a thesis topic...23. System will allow users to deregister from a thesis topic...24. System will allow users to create a thesis topic...25. System will allow users to delete a thesis topic

In the figure 3.1 we can see a use case diagram for the university information
system. There are two main roles, teacher and student. For the automatic
creation and deletion of user accounts, a system actor was introduced.

Both teacher and student have some shared functionality, like creating and
modifying timetables, modifying accounts and browsing courses. Users will
be able to modify their personal data such as mobile number, address and
bank account number.

Students will be able to choose a thesis topic from the list of all available
topics, which are added to the system by the teachers. Exam dates and
courses follow the same logic. After passing an exam, the teacher records the
grade for that subject in the system and the course is marked as completed.

14

................................3.2. Functional requirements

Figure 3.1: Use case diagram

15

16

Chapter 4
Design

In this chapter, we will take a closer look at the architecture of our system. We
will discuss entities and the relationships between them, different components
that make up the system and how they interact with each other. Next, we
will explain which database scaling methods will be used on the application
and why. Lastly, sequence diagrams will showcase the system’s more complex
operations.

4.1 System’s data design

The application has two main roles - Student and Teacher. These roles are
inherited from the User entity because they have some shared functionality
such as creating, modifying and accessing their timetables. User accounts are
created automatically. After a user is no longer associated with the university,
all their data is erased from the database completely.

Figure 4.1: Class diagram

17

4. Design..
Each semester, a new empty timetable is created for all users. Only previous

and current semester’s timetables are persisted for each user. In order to
differentiate between them, we need to record the semester’s start year and
it’s period. For this purpose we could have created an enumeration class
which would contain all semester codes, but it is not an ideal solution since
the enum would always increase in size. Instead, we have introduced the
semesterStartYear attribute and the Semester type enumeration class.

Timetable entity is used to record all classes that student is attending in
a given semester. Individual classes are represented by the Timeslot entity,
which records the course that the class belongs to and the time when the
class begins each week. Each class has a location that is represented by the
helper entity ClassLocation.

4.2 System’s architecture

Component diagram for our system consists of 3 different parts. The first
is the API gateway, which represents the entry point of our application.
It receives a request from the user, which is then routed and sent to the
responsible microservice.

System’s functionalities are divided among four different microservices:

.User service - User service manages user’s information such as their
name, degree level and email. It allows users to access and modify their
personal information.. Exam service - Exam service records available exam dates for all
courses. Through it, teachers have the ability to create and modify exam
dates for the courses that they are teaching, while students can register
for these exams..Thesis service - Thesis service keeps track of all thesis topics available
to the students. Teachers can add new thesis topics that are supervised
by them, and then students can register for theses..Course service - Course service holds information about all offered
courses and their available classes. Teachers create and modify courses
and the classes that belong to them. After that, students can register for
different classes. Course service is also responsible for managing user’s
timetables.

All our microservices share the same structure. Controller layer receives
requests from the API gateway, which is then passed to the service layer.
Service layer implements all business logic and is connected to the repository
layer, which communicates with the database. Our system’s architecture
uses the database per service pattern, meaning that each service has its own
private database that the other services can not access.

18

................................ 4.3. Persistence layer design

Figure 4.2: Component diagram

4.3 Persistence layer design

In order to further optimize our database, we created a materialized view
with indices and partitioned certain tables. Optimizations were mainly done
on course service’s database since it contains the most data and is also most
often accessed

4.3.1 Materialized views

Generally, the most frequently requested data in our application is the user’s
timetables. Therefore, it is very important to optimize the data retrieval for
this use case.

The problem is that to build a user’s timetable with all the classes and
their locations, application needs to combine data from five tables, making
it a quite expensive operation due to all the table JOINs. When you also
consider the fact that it is also one of the most used operation, you quickly
realise that it would be a massive performance hit for our application.

Figure 4.3: Materialized view created from five tables

In order to solve this problem, materialized view was used. Since the main
benefit of the materialized view is the precomputation of data, we can take
advantage of that and have the required data in one place. It also means that

19

4. Design..
we pay the price of joining tables only when the materialized view is refreshed,
instead of doing it on every timetable retrieval request. Moreover, the problem
of data in the materialized view getting stale does not affect us as much
because the underlying tables are updated only during the course registration
period each semester. After this period is over and the new semester begins,
we create our materialized view that does not require refreshes until the next
semester.

4.3.2 Partitions

Our application has to store all information about courses, their classes and
timetables for two semesters: the current one and the previous one. When
the new semester comes, information about timetables and individual classes
for the old semester needs to be erased, but information about courses is
retained for the future use. In order to better manage historic data without
compromising on performance, table partitioning was introduced.

Figure 4.4: Table partitioning for three tables

As you can see in the figure above, three tables were partitioned: ’course’,
’class’, ’timetable’. Column ’for_current_semester’ was chosen as a partition
key. Since data from the current semester will be accessed much more often,
query performance will increase thanks to the partition pruning, as in this
case the data from the previous semester can be skipped.

Another benefit of keeping timetables and classes from the previous semester
in separate partitions is the efficient disposal of old data. Instead of having
to do a bulk delete of data on the main table, we can just drop a partition
which is far more faster.

4.3.3 Indices

Since our materialized view can contain thousands of rows, it is a good idea
to introduce indices. This will let us greatly speed up the data retrieval.

When querying our materialized view, which we described earlier, most of
the time we search through either ’person_id’ or ’course_id’ columns. This
is why we have set up an index on each of these columns. With these indices

20

...........................4.4. Examples of system’s functionalities

in place, time complexity for the queries that are using one of them improved
from linear to logarithmic. This increase should be noticeable in the case of
large datasets.

Figure 4.5: Indices on materialized view

4.4 Examples of system’s functionalities

To showcase some important functionalities of the system, three sequence
diagrams were created.

4.4.1 Registering student for a class

Figure 4.6: Sequence diagram addClassToTimetable

The class registration request first comes to the API gateway. After that, it
is routed to the timetable controller, which then forwards it to the timetable

21

4. Design..
service. If the required timetable and class can not be found in the repositories,
then user gets a 404 not found error. If timetable and class are found, then
it is validated if the timetable has space and if the class has free places left.
If successful, class is added to the timetable and the amount of occupied
places is incremented for both the class and the course that it belongs to. On
validation failure, user receives a 400 bad request error.

4.4.2 Registering student for a thesis

The thesis registration request is forwarded from API gateway to thesis
controller. If the required thesis can not be found in the repository, then user
receives a 404 not found error. If thesis is found, then it is checked whether
it is not occupied by another student or if the student is already registered
for another thesis. If successful, student is registered for that thesis. On
validation failure, user receives a 400 bad request error.

Figure 4.7: Sequence diagram registerPersonForThesis

4.4.3 Registering student for an exam

The exam registration request is sent from API gateway to exam controller.
If the required exam can not be found in the repository, then user receives a
404 not found error. After the required exam is found, then it is checked if it
has free capacity left and whether the student is not registered for another
exam for this course. If successful, student is registered for that exam. On
validation failure, user receives a 400 bad request error.

22

...........................4.4. Examples of system’s functionalities

Figure 4.8: Sequence diagram registerPersonForExam

23

24

Chapter 5
Implementation

In this chapter we will have a detailed look at the implementation of the
system we introduced earlier. The goal is to demonstrate how different parts
of the application were implemented.

5.1 Intra-service communication

Sometimes, one service needs to get data from the other. In our case, for the
exam service to display all the available exams to the student, it first must
find out what courses is the student registered for. Since this data is owned
by the course service, the exam service must send a corresponding request to
it.

Figure 5.1: Example of an intraservice communication

In our case, this communication between different services is implemented
with the RestClient library. First, we need to define the address of the target
service, then we build a request by specifying the path and supplying the
request parameters. In our case, we send the request to the course service
with the two parameters: student id and whether we are interested in the
current semester’s data.

25

5. Implementation....................................
5.2 API gateway

In our application, API gateway was implemented as a separate component
with the Spring Cloud Gateway library. As you can see in the code sample
below, the gateway routes the incoming requests to the corresponding services
based on their paths. Also, since our services are running in Kubernetes, we
have to make sure that their addresses match the names of the service objects
deployed in Kubernetes.

Figure 5.2: API gateway config

5.3 Exception handling and HTTP response
configuration

In order for the application to differentiate between different types of errors,
custom exceptions were used. After the exception was thrown, controller
needs to be able to send a different response to the user based on the caught
exception. For this purpose, a ResponseEntity class was used. In figure 5.1 you

26

................. 5.4. Integration of optimizations done on the persistence layer

can see that the controller sends the user the "not found" response if the service
could not find the requested course and had thrown the "NotFoundException".

Figure 5.3: HTTP response configuration example

5.4 Integration of optimizations done on the
persistence layer

For our application to use the optimized queries, @Query annotation was used.
For example, in the code fragment below you can see that we instruct custom
repository method "getStudentsRegisteredForCourseFromCurrentSemester"
to take data from the materialized view "current_semester_attended_classes",
which we described in the chapter 4.3.1.

Figure 5.4: @Query annotation usage example

27

28

Chapter 6
Deployment

This chapter describes how our demo application was containerized with
Docker and then deployed in Kubernetes cluster. It also explains how the
database replication was set up in Kubernetes.

6.1 Docker

In order to make our application more portable and further separate our
services from each other, they had to be containerized. It was done by creating
a Dockerfile for each individual service. These Dockerfiles were then used
to build Docker images for each service. After that, they were pushed to a
private container registry on GitLab.

6.1.1 Dockerfile configuration

In the listing below you can see an example Dockerfile for course service. In
our application, Dockerfiles for other services have the same structure.

1 FROM openjdk :21
2 WORKDIR /
3 EXPOSE 8080
4 COPY t a r g e t / course_serv i ce −0.0.1−SNAPSHOT. j a r

course_serv i ce −0.0.1−SNAPSHOT. j a r
5 ENTRYPOINT exec java $JAVA_OPTS −j a r course_serv i ce

−0.0.1−SNAPSHOT. j a r
Listing 6.1: Dockerfile for course service

Any Dockerfile starts with a FROM instruction, which specifies the base
image for subsequent instructions. In our case, we use openjdk version 21
image. After that, we specify the working directory for our COPY instruction.
The later instruction indicates that the container should listen on port 8080.
Next, we copy our built application to the container’s working directory that
we specified earlier. The last instruction is a command which is ran at the
startup of the container. Here, it just executes our application.

29

6. Deployment
6.2 Kubernetes

To easily manage our containerized services, they were deployed to the
Kubernetes cluster. For exemplary purposes, our application was deployed
on my personal computer with the help of Minikube. Minikube is able to
quickly set up a Kubernetes cluster on a local machine. For each our service,
a Kubernetes deployment and Kubernetes service configurations were created.

6.2.1 Deployment and service configuration for the
application

In the listing below you can see an example Kubernetes deployment and
service configuration for course service. Both service and deployment are
kept in one YAML configuration file. Same as with Dockerfiles, Kubernetes
configurations for our services are pretty similar.

1 ap iVers ion : apps/v1
2 kind : Deployment
3 metadata :
4 name : course−s e r v i c e
5 spec :
6 r e p l i c a s : 3
7 s e l e c t o r :
8 matchLabels :
9 app : course−s e r v i c e

10 template :
11 metadata :
12 l a b e l s :
13 app : course−s e r v i c e
14 spec :
15 co n ta i n e r s :
16 − name : course−s e r v i c e
17 image : r e g i s t r y . g i t l a b . com/ nalutmik /
18 un iv e r s i t y −in format ion −system/ course−

s e r v i c e : l a t e s t
19 por t s :
20 − conta inerPort : 80
21 env :
22 − name : DB_HOST
23 value : pgpool
24 imagePu l lSec re t s :
25 − name : r egc red
26 −−−
27 ap iVers ion : v1
28 kind : S e rv i c e
29 metadata :
30 name : course−s e r v i c e

30

..................................... 6.2. Kubernetes

31 spec :
32 s e l e c t o r :
33 app : course−s e r v i c e
34 por t s :
35 − port : 80
36 ta rge tPor t : 8080
37 p ro to co l : TCP
38 type : Cluster IP

Listing 6.2: Kubernetes deployment and service configuration for course service

Deployment specifies which containers should run in a single pod. In our
case, we specify the name of the container, it’s port and the amount of replica
pods to be created. Since this deployment will try to pull the container
image from a private container registry, we created a secret object ’regcred’,
which contains authorization credentials for the registry. We have also set up
an environment variable ’DB_HOST’, which represents a hostname for our
database.

Service enables network exposure for pods specified in the selector. In our
case, it is a deployment object that we described earlier. We also specified on
which port the service will listen and to which port it will forward incoming
requests. Since we have API gateway acting as a LoadBalancer, all our main
services are of the ’ClusterIp’ type. ClusterIp makes the service reachable
only within the cluster.

Even though we could have created an Ingress object for exposing our
services to the external traffic, in the end we went with the LoadBalancer
object for simplicity’s sake.

6.2.2 Kubegres configuration for the database

In order to implement data replication across multiple database instances,
Kubegres was used. Kubegres is a Kubernetes operator which is able to
deploy one or more clusters of Postgresql instances.[26] In such cluster, a
primary read-write pod is deployed and optionally any number of read-only
replica pods. The data replication between the primary and the replica pods
is automatic.

In the listing below you can see the configuration of our Kubegres cluster.
Here, we set the amount of replicas as 3, which means that Kubegres will
create one primary pod and two read-only replicas. We also specify the
amount of resources that each pod can use. Finally, we need to define
passwords for Postgresql’s super user and a replication user. These passwords
are kept in a separate secret resource.

1 ap iVers ion : kubegres . r e a c t i v e −tech . i o /v1
2 kind : Kubegres
3 metadata :
4 name : mypostgres
5 namespace : d e f a u l t

31

6. Deployment
6
7 spec :
8 r e p l i c a s : 3
9 image : po s tg r e s : l a t e s t

10
11 database :
12 s i z e : 200Mi
13 volumeMount : / var / l i b / p o s t g r e s q l / data
14
15 r e s o u r c e s :
16 l i m i t s :
17 memory : "500Mi"
18 cpu : " 1 . 5 "
19
20 env :
21 − name : POSTGRES_PASSWORD
22 valueFrom :
23 secretKeyRef :
24 name : po s tg r e sq l −s e c r e t
25 key : superUserPassword
26
27 − name : POSTGRES_REPLICATION_PASSWORD
28 valueFrom :
29 secretKeyRef :
30 name : po s tg r e sq l −s e c r e t
31 key : r ep l i ca t i onUserPassword

Listing 6.3: Kubegres configuration

After we apply this config, Kubegres automatically creates persistent
volumes and persistent volume claims for each database instance. Moreover,
it also creates two services that allow access to the primary instance and replica
instances. In our case, it will create a service named ’mypostgres’ which is used
to access the primary node and another service called ’mypostgress-replica’,
which provides access to all replicas.

6.2.3 Pgpool-II configuration

To fully utilize the benefits of multiple database instances, read queries need
to be distributed evenly across all replica instances. This is why Pgpool-II
was used as a load balancer. Pgpool-II is a proxy software that sits between
PostgreSQL servers and a PostgreSQL database client[27].

32

..................................... 6.2. Kubernetes

Figure 6.1: Pgpool-II architecture(source: [7])

For its function it requires a PostgreSQL operator, in our case it is Kubegres.
Optionally, it can also collect and export database metrics for the monitoring
system such as Prometheus, but that is a topic outside our work.

The easiest way to configure Pgpool-II is to include parameters in the pod
as environmental variables. First of all, we need to specify the service names
and ports for two backend nodes, that is primary service and replica service.
In our case, we use the names of the services that were created by Kubegres.
Another important setting is the backend_weight, which specifies the load
balance ratio. By setting a higher weight for the replica, we move most of
the read load from the primary node to replica nodes.

1 ap iVers ion : apps/v1
2 kind : Deployment
3 metadata :
4 name : pgpool
5 spec :
6 r e p l i c a s : 1
7 s e l e c t o r :
8 matchLabels :
9 app : pgpool

10 template :
11 metadata :
12 l a b e l s :
13 app : pgpool
14 spec :
15 co n ta i n e r s :
16 − name : pgpool
17 image : pgpool / pgpool
18 env :

33

6. Deployment
19 − name : PGPOOL_PARAMS_BACKEND_HOSTNAME0
20 value : " mypostgres "
21 − name : PGPOOL_PARAMS_BACKEND_PORT0
22 value : "5432"
23 − name : PGPOOL_PARAMS_BACKEND_WEIGHT0
24 value : " 1 "
25 − name : PGPOOL_PARAMS_BACKEND_FLAG0
26 value : "ALWAYS_PRIMARY|DISALLOW_TO_FAILOVER"
27 − name : PGPOOL_PARAMS_BACKEND_HOSTNAME1
28 value : " mypostgres−r e p l i c a "
29 − name : PGPOOL_PARAMS_BACKEND_PORT1
30 value : "5432"
31 − name : PGPOOL_PARAMS_BACKEND_WEIGHT1
32 value : " 2 "
33 − name : PGPOOL_PARAMS_BACKEND_FLAG1
34 value : "DISALLOW_TO_FAILOVER"
35 − name : POSTGRES_USERNAME
36 value : po s tg r e s
37 − name : POSTGRES_PASSWORD
38 valueFrom :
39 secretKeyRef :
40 name : po s tg r e sq l −s e c r e t
41 key : superUserPassword

Listing 6.4: Pgpool-II configuration

34

Chapter 7
Testing

This chapter describes the performance test between scaled application and
the same application but without scaling. It specifies how the test was setup
and presents test results.

7.1 Locust

Locust is an open source performance/load testing tool[28]. It allows to
generate a great amount of users which can simulate realistic use of the
application. The testing scenarios are written in Python. The test run and
its results can be observed in a web interface, which also collects performance
statistics for each request.

7.2 Test approach

Since we want to simulate the usage of our application to be as realistic
as possible, our Locust test was designed to prefer sending certain requests
over others. For example, displaying user’s timetable and browsing available
classes for some course is a much more common operation than registering
for an exam or thesis topic.

Each test was run for 5 minutes and had 240 generated users. Any amount
of users above that threshold made the application throw connection errors
for some requests after running for a while.

7.3 System’s configuration

Testing was done on an application that is running in Kubernetes. The total
amount of available hardware resources was 12 CPU cores and 7 gigabytes of
RAM. These resources were used to create a total of 14 running pods. Out
of these pods, one was reserved for Pgpool-II, while the database had three
pods available. The application itself had 10 remaining pods, which were
distributed according to the table 7.1.

35

7. Testing
Service name Amount of pods
API gateway 3
Course service 3
Exam service 2
Thesis service 1
Person service 1

Table 7.1: Pod distribution for each microservice

Since the course service is by far the most used service in our application,
it has three pods. API gateway also received three pods, because it has to
be highly available to keep the application stable. Thesis service and person
service each run only on one pod, which is enough for the load they are
getting.

7.4 Test results

First, the test was run on the application without our optimizations. Applica-
tion was altered to not use the database optimizations that we implemented.
Also, to prevent the usage of the database replication, the amount of running
PostgreSQL instances was scaled down to just one pod. Figure 7.1 showcases
the complete test run.

Figure 7.1: Test run without scaling

36

..................................... 7.4. Test results

After that, the (changes to the application were reverted ?) application’s
ability to access our database optimization was brought back and the amount
of PostgreSQL instances was increased to 3. You can see the test run below
in the figure 7.2.

Figure 7.2: Test run with scaling

It is important to mention that both test runs had failures, but these are
just exceptions thrown by the application itself. This happens because of the
way we simulate registration requests in the test scenario code. You can see
the example of failures in the figure 7.3.

Figure 7.3: Test run failures

In the table 7.2 you can see the overall test results. Thanks to our scaling,
response time improved greatly, which almost doubled the median amount
of requests per second. Naturally, a total number of processed requests has

37

7. Testing
increased significantly.

Response time
in milliseconds Requests per second Number of requests

Application without optimizations 1466 87 25107
Application with optimizations 188 160 45479

Table 7.2: Test results with 240 users

7.5 Summary

Since our application is a read-heavy system, it is no surprise that the database
scaling greatly increased the application’s throughput. In a real production
environment, where the amount of users is often measured in thousands, the
scaling techniques that we used will still be relevant. For example, if the
load surpasses the database’s server capabilities, we could always increase the
amount of database replicas.

38

Chapter 8
Conclusions

The goal of this thesis was to research different methods for database scaling
and measure the effectiveness of some of these methods on a demo application.

In the first part of this thesis we researched different types of scaling
such as horizontal and vertical. Then, methods for horizontal scaling and
database optimization techniques were explained. After that we character-
ized microservice architecture, its advantages and disadvantages and ways
how to implement a communication between services. Lastly, we discussed
containerization and orchestration technologies.

In the analysis chapter, we described a demo application on which we would
later demonstrate the effects of scaling. Then, we wrote down the functional
requirements for the application and created a use case diagram.

In the design part, we first identified system’s key entities and the rela-
tionships between them. After that, we described system’s architecture by
explaining each service’s role and relationship between different components.
Next, we specified which database scaling techniques were used and why we
implemented them. Finally, we showcased some important functionalities of
the system by creating three sequence diagrams.

In the implementation chapter, we explained how certain problems were
resolved and what we used to accomplish it. More specifically, we talked
about how specific parts of the application like intra-service communication,
API gateway, HTTP response configuration and integration of optimizations
were implemented in the code.

In the deployment part, we described how we containerized our application
with Docker and then deployed on Kubernetes. We also presented the
replication and load balancing tools that we used.

In the last chapter we compared our demo application which used scaling
techniques with the same demo application but without scaling. It was done
with the Locust performance testing tool. We described how the test was
setup and then presented the test results.

39

40

Appendix A
Bibliography

[1] Microsoft. Replication pattern. https://learn.microsoft.com/
en-us/previous-versions/msp-n-p/dn589787(v=pandp.10).

[2] Microsoft. Data partitioning. https://learn.microsoft.com/en-us/
azure/architecture/best-practices/data-partitioning.

[3] Microsoft. Materialized view pattern. https://learn.microsoft.com/
en-us/previous-versions/msp-n-p/dn589782(v=pandp.10).

[4] Microsoft. Microservice architecture. https://learn.microsoft.
com/en-us/azure/architecture/guide/architecture-styles/
microservices/.

[5] Docker. Docker overview. https://docs.docker.com/get-started/
overview/.

[6] Kubernetes. Cluster architecture. https://kubernetes.io/docs/
concepts/architecture/.

[7] Pgpool-II. Pgpool-ii on kubernetes. https://www.pgpool.net/docs/
pgpool-II-4.2.7/en/html/example-kubernetes.html.

[8] Statista. Average cost per hour of server downtime world-
wide in 2017. https://www.statista.com/statistics/780699/
worldwide-server-hourly-downtime-cost-vertical-industry/.

[9] Statista. Do you utilize microservices within your or-
ganization? https://www.statista.com/statistics/
1236823/microservices-usage-per-organization-size/
#statisticContainer.

[10] MongoDB. Database scaling. https://www.mongodb.com/basics/
scaling.

[11] MongoDB. A guide to horizontal vs vertical scal-
ing. https://www.mongodb.com/resources/basics/
horizontal-vs-vertical-scaling.

41

https://learn.microsoft.com/en-us/previous-versions/msp-n-p/dn589787(v=pandp.10)
https://learn.microsoft.com/en-us/previous-versions/msp-n-p/dn589787(v=pandp.10)
https://learn.microsoft.com/en-us/azure/architecture/best-practices/data-partitioning
https://learn.microsoft.com/en-us/azure/architecture/best-practices/data-partitioning
https://learn.microsoft.com/en-us/previous-versions/msp-n-p/dn589782(v=pandp.10)
https://learn.microsoft.com/en-us/previous-versions/msp-n-p/dn589782(v=pandp.10)
https://learn.microsoft.com/en-us/azure/architecture/guide/architecture-styles/microservices/
https://learn.microsoft.com/en-us/azure/architecture/guide/architecture-styles/microservices/
https://learn.microsoft.com/en-us/azure/architecture/guide/architecture-styles/microservices/
https://docs.docker.com/get-started/overview/
https://docs.docker.com/get-started/overview/
https://kubernetes.io/docs/concepts/architecture/
https://kubernetes.io/docs/concepts/architecture/
https://www.pgpool.net/docs/pgpool-II-4.2.7/en/html/example-kubernetes.html
https://www.pgpool.net/docs/pgpool-II-4.2.7/en/html/example-kubernetes.html
https://www.statista.com/statistics/780699/worldwide-server-hourly-downtime-cost-vertical-industry/
https://www.statista.com/statistics/780699/worldwide-server-hourly-downtime-cost-vertical-industry/
https://www.statista.com/statistics/1236823/microservices-usage-per-organization-size/#statisticContainer
https://www.statista.com/statistics/1236823/microservices-usage-per-organization-size/#statisticContainer
https://www.statista.com/statistics/1236823/microservices-usage-per-organization-size/#statisticContainer
https://www.mongodb.com/basics/scaling
https://www.mongodb.com/basics/scaling
https://www.mongodb.com/resources/basics/horizontal-vs-vertical-scaling
https://www.mongodb.com/resources/basics/horizontal-vs-vertical-scaling

A. Bibliography.....................................
[12] Microsoft. Interservice communication. https://learn.

microsoft.com/en-us/azure/architecture/microservices/
design/interservice-communication.

[13] Statista. Leading containerization technologies market share world-
wide in 2023. https://www.statista.com/statistics/1256245/
containerization-technologies-software-market-share/.

[14] Docker. Overview of docker hub. https://docs.docker.com/
docker-hub/.

[15] IBM. Container orchestration. https://www.ibm.com/topics/
container-orchestration.

[16] Kubernetes. Kubernetes. https://kubernetes.io/.

[17] Kubernetes. Kubernetes components. https://kubernetes.io/docs/
concepts/overview/components/.

[18] Kubernetes. Pods documentation. https://kubernetes.io/docs/
concepts/workloads/pods/.

[19] Kubernetes. Deployment documentation. https://kubernetes.io/
docs/concepts/workloads/controllers/deployment/.

[20] Kubernetes. Statefulset documentation. https://kubernetes.io/
docs/concepts/workloads/controllers/statefulset/.

[21] Kubernetes. Replicaset documentation. https://kubernetes.io/docs/
concepts/workloads/controllers/replicaset/.

[22] Kubernetes. Service documentation. https://kubernetes.io/docs/
concepts/services-networking/service/.

[23] Kubernetes. Ingress documentation. https://kubernetes.io/docs/
concepts/services-networking/ingress/.

[24] Kubernetes. Secret documentation. https://kubernetes.io/docs/
concepts/configuration/secret/.

[25] Ministerstvo školství České republiky. Data o studentech,
poprvé zapsaných a absolventech vysokých škol. https:
//www.msmt.cz/vzdelavani/skolstvi-v-cr/statistika-skolstvi/
data-o-studentech-poprve-zapsanych-a-absolventech-vysokych?
lang=1.

[26] Kubegres. Kubegres. https://www.kubegres.io//.

[27] Pgpool-II. Pgpool-ii documentation. https://www.pgpool.net/docs/
42/en/html/intro-whatis.html.

[28] Locust. Locust documentation. https://docs.locust.io/en/stable/
what-is-locust.html.

42

https://learn.microsoft.com/en-us/azure/architecture/microservices/design/interservice-communication
https://learn.microsoft.com/en-us/azure/architecture/microservices/design/interservice-communication
https://learn.microsoft.com/en-us/azure/architecture/microservices/design/interservice-communication
https://www.statista.com/statistics/1256245/containerization-technologies-software-market-share/
https://www.statista.com/statistics/1256245/containerization-technologies-software-market-share/
https://docs.docker.com/docker-hub/
https://docs.docker.com/docker-hub/
https://www.ibm.com/topics/container-orchestration
https://www.ibm.com/topics/container-orchestration
https://kubernetes.io/
https://kubernetes.io/docs/concepts/overview/components/
https://kubernetes.io/docs/concepts/overview/components/
https://kubernetes.io/docs/concepts/workloads/pods/
https://kubernetes.io/docs/concepts/workloads/pods/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
https://kubernetes.io/docs/concepts/workloads/controllers/replicaset/
https://kubernetes.io/docs/concepts/workloads/controllers/replicaset/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/ingress/
https://kubernetes.io/docs/concepts/services-networking/ingress/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/
https://www.msmt.cz/vzdelavani/skolstvi-v-cr/statistika-skolstvi/data-o-studentech-poprve-zapsanych-a-absolventech-vysokych?lang=1
https://www.msmt.cz/vzdelavani/skolstvi-v-cr/statistika-skolstvi/data-o-studentech-poprve-zapsanych-a-absolventech-vysokych?lang=1
https://www.msmt.cz/vzdelavani/skolstvi-v-cr/statistika-skolstvi/data-o-studentech-poprve-zapsanych-a-absolventech-vysokych?lang=1
https://www.msmt.cz/vzdelavani/skolstvi-v-cr/statistika-skolstvi/data-o-studentech-poprve-zapsanych-a-absolventech-vysokych?lang=1
https://www.kubegres.io//
https://www.pgpool.net/docs/42/en/html/intro-whatis.html
https://www.pgpool.net/docs/42/en/html/intro-whatis.html
https://docs.locust.io/en/stable/what-is-locust.html
https://docs.locust.io/en/stable/what-is-locust.html

	Introduction
	Research
	Database scalability
	Types of database scaling

	Database horizontal scaling methods
	Replication
	Partitions
	Database optimization techniques

	Microservice architecture
	Advantages of microservice architecture over monolithic architecture
	Disadvantages of microservice architecture over monolithic architecture
	Communication between microservices

	Containerization
	Docker

	Orchestration
	Kubernetes

	Conclusion

	Analysis
	Demo application
	Functional requirements

	Design
	System's data design
	System's architecture
	Persistence layer design
	Materialized views
	Partitions
	Indices

	Examples of system's functionalities
	Registering student for a class
	Registering student for a thesis
	Registering student for an exam

	Implementation
	Intra-service communication
	API gateway
	Exception handling and HTTP response configuration
	Integration of optimizations done on the persistence layer

	Deployment
	Docker
	Dockerfile configuration

	Kubernetes
	Deployment and service configuration for the application
	Kubegres configuration for the database
	Pgpool-II configuration

	Testing
	Locust
	Test approach
	System's configuration
	Test results
	Summary

	Conclusions
	Bibliography

