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Abstract
This thesis deals with developing algo-

rithms for creating tree models from LI-
DAR data. The thesis proposes a method
to remove the ground and detect the tree
trunk and the branches attached to it.
The algorithm works with real data from
an experiment with 400-year-old peduncu-
late oaks standing on the dam of the Ho-
molka pond in Prague. From the acquired
data, a graph modeling the structure of
the trunk and branches was created. The
algorithm was also used to reconstruct
the trunk and branch structure from data
taken from multiple LIDAR sensor posi-
tions.

Keywords: LIDAR, tree model, Point
Cloud Library, ICP

Supervisor: RNDr. Petr Štěpán, Ph.D.
Praha, Resslova 307/9

Abstrakt
Tato práce se zabývá vývojem algo-

ritmů pro vytváření modelů stromů z
dat LIDARu. V práci je navržen postup
pro odstranění země a pro detekci kmene
stromu a na něj navazujících větví. Algo-
ritmus pracuje s reálnými daty z experi-
mentu se 400 let starými duby letními sto-
jícími na hrázi rybníka Homolka v Praze.
Z pořízených dat byl vytvořen graf mo-
delující strukturu kmene a větví. Pomocí
algoritmu se podařilo zrekonstruovat také
strukturu kmene a větví z dat pořízených
z více pozic LIDAR senzoru.

Klíčová slova: LIDAR, model stromu,
Point Cloud Library, ICP
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Chapter 1
Introduction

Unmanned Aerial Vehicles (UAVs), such as drones, are emerging as increas-
ingly prominent in society as they offer a large number of previously unimag-
ined applications. Gone are the days of highly expensive UAVs that were only
used by armies or specific organizations. As drones have become commercially
available to the general population due to a drop in price, the range of their
possible uses has expanded considerably.

These applications include many practical tasks such as plant disease
detection for precision agriculture, plant and tree health surveys, and imaging
and mapping of various objects in nature. Due to the compact size and weight
of drones, they are well-suited for flying in places that would be difficult for
humans to reach while retaining the ability to carry various accessories and
sensors.

A LIDAR laser scanner is an important sensor for current UAVs. It provides
information about the distances of objects around the drone. Using these
data, the UAV is able to create a model of the environment it is moving
through and plan its flight accordingly.

Detection of the condition of protected trees of exceptional age fits the
description of applications suitable for UAVS. Since little research has been
done on this topic, there is an opportunity to find further use for UAVs in
this area.

This thesis first focuses on learning the principles of LIDAR operation
and then considers algorithms for processing LIDAR data. Secondly, this
knowledge is used to design an algorithm capable of detecting trunks of indi-
vidual trees in a multi-tree environment. This algorithm is further extended
to detect the main branches of selected trees.

Finally, a method for fusing data from multiple sensor positions is proposed.
The combination of all these steps leads to the creation of trunk and main
branch models of protected trees of exceptional ages. These models make it
possible to track tree growth and possibly losses of the main branches of the
trees.
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Chapter 2
LIDAR

LIDAR (Light Detection And Ranging) is a method of determining distances
to objects using a laser. Simply put, it employs the principle of reflecting a
laser from an object and measuring the time it takes for the light to return
to the sensor. More precisely:

d = c × t

2
where d is the distance to the object, c is the speed of light, and t is the

time it takes the laser to reach the object and reflect back to the sensor.
Old LIDAR devices were only capable of scanning in one plane. Modern

sensors emit up to 128 beams at the same time and are able to scan the full
360° surroundings. The output of these LIDAR scanners are clusters of points
(point clouds). Each of these points has coordinates in 3D space (relative
to the position of the scanner). It is possible to add additional information,
such as color, to the data recorded this way if an RGB camera is used in
addition to LIDAR [MN20].

Figure 2.1: LIDAR Scan Example[Wik23a]

One of the shortcomings of LIDAR is apparent in Figure 2.1. The blue
square represents a device equipped with a LIDAR scanner, and the green
circle represents an obstacle. Just like a classic RGB camera, LIDAR cannot
see through (nontransparent) objects, which creates spots in the scan that
are "in a shadow," i.e., behind some other object in the LIDAR’s scanning
axis. Therefore, to capture a comprehensive scan of a complex object in a

3



2. LIDAR .......................................
given space, we must take images from multiple positions and angles and
then run software to combine these scans into one complete model.

LIDAR is used in a large number of scientific fields such as archaeology,
geography, geology, seismology, forestry, laser guidance, and control and
navigation of autonomous cars (or unmanned robots).

2.1 Point Cloud Library

2.1.1 Introduction

Point Cloud Library (PCL) is an open-source project enabling the processing
of 2D and 3D images and point clouds. Several modern algorithms for filtering,
segmentation, registration, and more are included in the PCL framework.
These algorithms serve as a comprehensive set of tools for efficient work with
point clouds. The library can work with data taken by a stereo camera, 3D
scanner, and time-of-flight camera, as well as data artificially created by a
computer[RC11][Lib][Rus09]. For proper functionality, Point Cloud Library
requires the installation of additional libraries: Boost, Eigen, FLANN, and
VTK, and is available on Linux, MacOS, Windows and Android. CMake is
required to build the library[Wik23b].

2.1.2 Point Cloud

A point cloud is a data structure that represents a set (cloud) of multi-
dimensional points. Most often, these are points in 3D that have X, Y, and
Z coordinates. Depending on the technology used to capture the points, they
may also have a color parameter. Point Cloud Library contains its own data
format for point clouds - PCD (Point Cloud Data).

2.1.3 PCL Modules

The library consists of several smaller sub-libraries (modules), each covering
a certain area of problem solutions. filters - mechanisms for removing outliers, noise reduction, and filtering

3D point cloud data.. features - data structures and mechanisms for estimating 3D features
from point cloud data. 3D features are representations of points that
describe certain geometric patterns depending on information from the
surroundings of the given point. This selected space around the point is
referred to as the K-neighborhood.. keypoints - algorithms for detection of keypoints in the point cloud.
Keypoints are points that are distinctive and stable in the dataset and
can thus be easily identified using a precisely defined criterion. Keypoints
function as a compact but reliable representation of a given point cloud.
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..................................2.1. Point Cloud Library

. registration - a range of point cloud registration algorithms for both
organized and unorganized datasets. Registration is the joining of several
datasets into one consistent model. For this, it is necessary to determine
the corresponding points in individual datasets and find a transformation
that minimizes the distance between these points.. kdtree - kd-tree data structure using FLANN (Fast Library for Approx-
imate Nearest Neighbors[ML09]), enables fast nearest neighbor searches.. octree - methods for creating a tree structure where each internal node
has exactly eight children[Wik24b], routines for nearest neighbor search.. segmentation - algorithms for point cloud segmentation into individual
clusters for subsequent processing.. sample_consensus - Sample Consensus (SAC) methods (e.g., RANSAC,
model definitions for planes, cylinders, lines, etc., determination of indi-
vidual models and their parameters.. surface - reconstruction of original surfaces from 3D scans such as
meshes, hulls, or surfaces with normal vectors(normals).. recognition - algorithms for object recognition applications.. io - classes and functions for reading/writing files and capturing point
clouds using scanning devices.. visualization - allows quick visualization of the results of various algo-
rithms when working with point clouds.
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Chapter 3
Tree Trunk Detection

The aim of this thesis is to design algorithms that allow UAVs to detect trees,
their trunks, and their branches. This chapter describes the detection of tree
trunks in a multi-tree environment. The detection of individual branches of a
given tree is analyzed in Chapter 4.

3.1 Algorithm Outline

To successfully segment individual tree trunks in a point cloud, it is crucial
to pre-process the data. That is done in several steps. After loading the
input data, it is necessary to remove points that make up the ground and
then calculate the normals for use in other algorithms. Subsequently, Region
Growing Segmentation and Cylinder Segmentation are performed. Here is an
outline of the necessary steps...1. Load the input point cloud...2. Estimate normal vectors of the points...3. Using Planar Segmentation, remove all points that make up the ground...4. Recalculate normal vectors of the remaining points...5. Start Region Growing Segmentation to divide the point cloud into multi-

ple clusters...6. Start Cylinder Segmentation on individual clusters to find tree trunks...7. Save all identified cylinders (tree trunks) into one PCD file.

3.2 Loading the Input Point Cloud

The function pcl::io::loadPCDFile<pcl::PointXYZ> from the io module of
PCL loads and prepares the point cloud for further handling in the program.

7



3. Tree Trunk Detection .................................
1 pcl :: PointCloud <pcl :: PointXYZ >:: Ptr cloud(new

pcl :: PointCloud <pcl :: PointXYZ >);
2

3 pcl ::io:: loadPCDFile <pcl :: PointXYZ >(" smalles_2a_16517381
87092102 _downsampled2 .pcd", *cloud);

Listing 3.1: Load PCD

This loaded the relevant PCD file into pcl::PointCloud<pcl::PointXYZ>::Ptr
cloud. The point cloud has already been downsampled in advance to ensure
faster data manipulation.

Figure 3.1: Loaded Input Cloud

3.3 Surface Normal Estimation

Surface normal estimation provides important information regarding the orien-
tation of individual surfaces in the scan. The output normal vectors[Wei] are
required for the proper functionality of subsequent segmentation algorithms.

8



................................... 3.4. Ground Removal

1 pcl :: NormalEstimation <PointT , pcl :: Normal > ne;
2 pcl :: PointCloud <pcl :: Normal >:: Ptr cloud_normals (new

pcl :: PointCloud <pcl :: Normal >);
3 pcl :: search :: KdTree <PointT >:: Ptr tree(new

pcl :: search :: KdTree <PointT >());
4

5 ne. setSearchMethod (tree);
6 ne. setInputCloud (cloud);
7 ne. setKSearch (10);
8 ne. compute (* cloud_normals );

Listing 3.2: Surface Normal Estimation

Estimation of the normals is performed by the pcl::NormalEstimation class.
It requires the pcl::search::KdTree class to find the k-nearest neighbors of a
given point. It is, therefore, set as the search method for pcl::NormalEstimation.
The input cloud is set as the point cloud loaded in the previous step. Ten
nearest neighbors of a given point are selected for the calculation. The calcu-
lated normal vectors are then stored in pcl::PointCloud<pcl::Normal>::Ptr
cloud_normals, meaning each vector in cloud_normals corresponds to a point
in the original input cloud.

3.4 Ground Removal

The newly calculated normals help remove points that represent the ground
in the forest. Removing the ground prior to any segmentation has shown
beneficial for reducing the input data size and improving segmentation per-
formance[KHW16][Dou+11].

3.4.1 Planar Segmentation

Using enough points, a model of a plane is created. Points lying directly on
the plane and points at a certain distance from it are then filtered and removed
from the original point cloud, only leaving points that could theoretically
represent tree trunks in the point cloud. This greatly improves the efficiency
of algorithms used later, as fewer points generally mean a shorter computation
time.

9



3. Tree Trunk Detection .................................
1 pcl :: SACSegmentationFromNormals <PointT , pcl :: Normal > seg;
2 pcl :: PointIndices :: Ptr inliers_plane (new

pcl :: PointIndices );
3 pcl :: ModelCoefficients :: Ptr coefficients_plane (new

pcl :: ModelCoefficients );
4

5 seg. setOptimizeCoefficients (true);
6 seg. setModelType (pcl :: SACMODEL_NORMAL_PLANE );
7 seg. setMethodType (pcl :: SAC_RANSAC );
8 seg. setMaxIterations (100);
9 seg. setDistanceThreshold (0.6);

10 seg. setInputCloud (cloud);
11 seg. setInputNormals ( cloud_normals );
12 seg. segment (* inliers_plane , * coefficients_plane );

Listing 3.3: Planar Segmentation

The pcl::SACSegmentationFromNormals class implements Sample Con-
sensus methods that use normals to estimate the parameters of various
geometrical models and also holds templates for models like planes, cylinders,
or lines. The class pcl::PointIndices stores the indices of points that make
up a given plane. The class pcl::ModelCoefficients represents a geometrical
model using relevant coefficients. In our case, the model being estimated is
pcl::SACMODEL_NORMAL_PLANE, and the estimation is done by the
RANSAC (Random Sample Consensus) method. The number of iterations of
the algorithm is limited to 100 to not slow the program down unnecessarily.
The command seg.setDistanceThreshold(0.6) specifies the distance from the
model of the plane to which points are still marked as part of the model;
these points are called inliers. Finally, seg.segment(*inliers_plane, *coeffi-
cients_plane) performs the actual segmentation of the plane. It stores the
indices of the points that belong to the model in inliers_plane and the planar
coefficients in coeffcients_plane.

1 pcl :: ExtractIndices <PointT > extract ;
2 pcl :: PointCloud <PointT >:: Ptr cloud_filtered (new

pcl :: PointCloud <PointT >);
3

4 extract . setInputCloud (cloud);
5 extract . setIndices ( inliers_plane );
6 extract . setNegative (true);
7 extract . filter (* cloud_filtered );

Listing 3.4: Plane Extraction

Using the indices in inliers_plane, points that form the ground are se-
lected in the original cloud and removed. This functionality is ensured by
the pcl::ExtractIndices class. By setting extract.setIndices(inliers_plane)
and extract.setNegative(true) at the same time, all points, except those
in inliers_plane (i.e., the points we want to keep), are selected. The ex-
tract.filter(*cloud_filtered) method then writes these points to a new point
cloud on which Region Growing Segmentation will be used.
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................................... 3.4. Ground Removal

(a) : Points Left After Planar Segmentation

(b) : Points Classified as Ground

Figure 3.2: Ground Removal Result

Figure 3.2a is made up of points representing tree trunks and bushes. Points
that were removed using Planar Segmentation are in Figure 3.2b.

Testing has shown that it is more convenient to recalculate the estimated
normal vectors before continuing onto Region Growing Segmentation to
achieve improved results. The process looks analogous to the one shown
in Listing 3.2, with the difference that it is done on the already filtered
cloud. New normals are stored in pcl::PointCloud<pcl::Normal>::Ptr fil-
tered_cloud_normals.

3.4.2 Pass-Through Filter

Correct data pre-processing has shown to be challenging. While Planar
Segmentation produced satisfactory results on the first dataset of multiple
trees, it failed terribly when implemented on the dataset with one sizable
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3. Tree Trunk Detection .................................
tree. The problem is caused by the fact that the profile of the ground near
the tree is uneven and irregular. Naturally, a plane cannot be fitted through
such points. Therefore, the plane that the Planar Segmentation (Listing 3.3)
algorithm finds is, in a majority of cases, a random plane that enough points
fall onto by chance. This means that Planar Segmentation yields wrong and,
thus, unsatisfactory results.

Figure 3.3a shows a view of the tree after unsuccessful Planar Segmentation.
The mistake becomes apparent when looking at the scan from below; see
Figure 3.3b. A strip of missing points (marked by the red lines for illustration)
is evident in the scan. That is the result of removing the fitted plane along
with a set margin around it.

(a) : Dataset After Incorrect Planar Segmentation

(b) : Red Lines Showing the Incorrectly Selected Plane

Figure 3.3: Planar Segmentation, Incorrect Result

The simple yet effective solution to this problem is to remove all points
whose Z-coordinate is less than some threshold depending on the loaded point
cloud. That creates a point cloud where the tree is separated from the rest
of the foliage near it, enabling the Region Growing Algorithm to effortlessly
segment the whole tree with all its branches. Thanks to the fact that the
origin of the coordinate system is the drone itself and the fact that the drone

12



................................... 3.4. Ground Removal

remained mostly stable (there is some tilt present, however, so the Z-axis
does not exactly represent a direction perpendicular to the ground, as one
might think) throughout the scan around the tree, this threshold is similar for
all partial scans. The filtering itself is executed by a pass-through filter. This
only leaves points that satisfy a given constraint - a value of the Z-coordinate
in this case.

1 pcl :: PassThrough <pcl :: PointXYZ > passThrough ;
2

3 passThrough . setInputCloud (cloud);
4 passThrough . setFilterFieldName ("z");
5 passThrough . setFilterLimits (-2.8, 100.0) ;
6 passThrough . filter (* cloud_filtered );

Listing 3.5: Pass Through Filter

For this specific dataset, the cutoff threshold hovered around z = −3.
Figure 3.4 displays the new, simplified approach. While not all ground

points are removed, a large enough gap forms between the tree trunk and
the adjacent ground allowing for a successful subsequent Region Growing
Segmentation. As previously stated, this method generates sufficient results,
unlike the Planar Segmentation method.

Figure 3.4: Ground Removal, Correct Result
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3. Tree Trunk Detection .................................
3.5 Region Growing Segmentation

With the point cloud now being rid of the points belonging to the ground plane,
the Region Growing Segmentation algorithm[RHV06] implemented in the
pcl::RegionGrowing class can be run. It divides the points into multiple smaller
parts - clusters. The algorithm takes multiple parameters - minimum cluster
size, maximum cluster size, a method for finding nearest neighbors (the same
KdTree as in Listing 3.2), input data, normals corresponding to the input data,
and a curvature and smoothness threshold. After running reg.extract(clusters),
individual clusters are then saved as indices to std::vector<pcl::PointIndices>
clusters.

1 pcl :: RegionGrowing <pcl :: PointXYZ , pcl :: Normal > reg;
2

3 reg. setMinClusterSize (50);
4 reg. setMaxClusterSize (1000000) ;
5 reg. setSearchMethod (tree);
6 reg. setNumberOfNeighbours (50);
7 reg. setInputCloud ( cloud_filtered );
8 reg. setInputNormals ( filtered_cloud_normals );
9 reg. setSmoothnessThreshold (30.0 / 180.0 * M_PI);

10 reg. setCurvatureThreshold (0.6);
11

12 std :: vector <pcl :: PointIndices > clusters ;
13 reg. extract ( clusters );

Listing 3.6: Region Growing Segmentation

The exact values for the smoothness and curvature thresholds were deter-
mined by trial and error and greatly depend on the dataset, its features, and
the expected output. As previously stated, the Region Growing Segmentation
algorithm writes the indices to an array of indices (pcl::PointIndices); however,
pointers to the indices (pcl::PointIndices::Ptr) are required when working with
other algorithms. Therefore, performing any necessary conversions before
continuing any further is essential.

The result of Region Growing Segmentation can be visualized using colors
- each color represents a different cluster. Figure 3.5 shows what that might
look like.

14



................................ 3.6. Cylinder Segmentation

Figure 3.5: Colored Clusters

3.6 Cylinder Segmentation

With the point cloud divided into clusters, it is possible to apply the Cylinder
Segmentation algorithm to each cluster separately. This, again, uses the
pcl::SACSegmentationFromNormals class, just like Planar Segmentation (List-
ing 3.3). The approximation of the pcl::SACMODEL_CYLINDER model is
also done by the RANSAC method. In this case, several parameters are set -
the weight of the normal vectors, the maximum number of iterations of the
algorithm, the maximum distance of a point from the current cylinder model
to still be considered part of the cylinder, and the maximum and minimum
radius of the cylinder. In this context, a cylinder represents a tree trunk.

1 pcl :: SACSegmentationFromNormals <PointT , pcl :: Normal >
cyl_seg ;

2 pcl :: PointIndices :: Ptr inliers_cylinder (new
pcl :: PointIndices );

3 pcl :: ModelCoefficients :: Ptr coefficients_cylinder (new
pcl :: ModelCoefficients );

4

5 cyl_seg . setOptimizeCoefficients (true);
6 cyl_seg . setModelType (pcl :: SACMODEL_CYLINDER );
7 cyl_seg . setMethodType (pcl :: SAC_RANSAC );
8 cyl_seg . setNormalDistanceWeight (0.1);
9 cyl_seg . setMaxIterations (10000) ;

10 cyl_seg . setDistanceThreshold (0.4);
11 cyl_seg . setRadiusLimits (0.05 , 0.25);

Listing 3.7: Cylinder Segmentation

15



3. Tree Trunk Detection .................................
After the initial setup, Cylinder Segmentation is run on each cluster and its

corresponding normal vectors. When a cylinder is identified and segmented,
all points that fall onto its model are saved as an individual PCD file (one
PCD file, one tree trunk) and then removed from the current cluster (along
with the relevant normals). This process is repeated until the current cluster
is empty, i.e., all the points have been removed from it. This way, as many
tree trunks as possible are found in each cluster. To ensure a higher chance
of a segmented cylinder actually representing a tree trunk, only cylinders
containing more than 90 points are considered valid and saved as a PCD file.
Figure 3.6 shows all cylinders put together.

Figure 3.6: All Cylinders
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Chapter 4
Trunk and Main Branches Detection

Detecting the main branches of a particular tree is a natural step in the
current process. It has proven an order of magnitude more difficult compared
to simple tree trunk detection as it presented a number of new challenges.
The sequence of the steps is more complex and differs from the one in Section
3.1. The revised outline looks like this:..1. Load the input point cloud...2. Estimate normal vectors of the points, as described in Section 3.3...3. Remove ground using the filter from Subsection 3.4.2...4. Recalculate normal vectors of the remaining points...5. Start Region Growing Segmentation to divide the point cloud into multi-

ple clusters (updated in Section 4.1)...6. Select the cluster with the complete tree in it...7. Perform Cylinder Segmentation to obtain cylindrical models of the trunk
and main branches...8. Identify adjacent branches...9. Create a graph of the tree using the axes of the cylinders....10. Test said algorithm on multiple scans fused together using Iterative
Closest Point.

4.1 Whole Tree Region Growing Segmentation

Now that the dataset has been processed accordingly, the Surface Normal
Estimation and the Region Growing Algorithm can be run. The implementa-
tion is identical to the ones in Listing 3.2 and Listing 3.6, respectively. The
output of this algorithm is again an array of clusters. The cluster with the
whole tree in it is then selected. This particular point cloud is set as the
input cloud for the next step - Cylinder Segmentation.
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4. Trunk and Main Branches Detection...........................

Figure 4.1: Example of a Selected Cluster

4.2 Tree Cluster Cylinder Segmentation

At first glance, it might seem that the trunk and main branches segmentation
resembles the approach used in Figure 3.6. That thought is, however, mostly
inaccurate. Instead of segmenting multiple clusters, the goal is to segment
just one cluster repeatedly to extract as much data as possible. As this part of
the program is rather complex, a C++ struct is created to hold data relevant
to each cylinder.

1 typedef struct My_Cylinder
2 {
3 int id;
4 pcl :: PointIndices :: Ptr originalIndices ;
5 pcl :: ModelCoefficients :: Ptr coefficients ;
6 pcl :: SampleConsensusModelCylinder <PointT ,

pcl :: Normal >:: Ptr cylinder_model ;
7 My_OBB * cyl_obb ;
8 std :: vector < My_Cylinder *> overlapping_cylinders ;
9 pcl :: PointCloud <pcl :: PointXYZ >:: Ptr projectedCyl ;

10

11 } My_Cylinder ;

Listing 4.1: MyCylinder Struct
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...........................4.2. Tree Cluster Cylinder Segmentation

Each cylinder then holds the following information:. id - an identifier unique to the cylinder.. orignalIndices - indices of points as they were in the original cloud at
the time of loading.. coefficients - coefficients of the cylinder model - a vector of the axis, a
point on that axis, and the diameter of the cylinder.. cylinder_model - stores the points of the cylinder and provides useful
methods (more in Subsection 4.2.3).. cyl_obb - a custom C++ struct for an oriented bounding box of the
cylinder (more in Subsection 4.3.1).. overlapping_cylinders - an array of cylinders that overlap with the
current one, i.e., are adjacent.. projectedCyl - a point cloud of all points (that fall onto the model of
the cylinder) projected onto the cylinder’s axis.

First, Cylinder Segmentation is performed on the whole point cloud, mean-
ing a cylinder can be found in any part of the scan. If, at this point, the
algorithm does not find a cylinder, the program stops, as there are either no
more cylinders remaining or the points do not represent a cylinder. However,
if a cylinder exists, it is further processed.

4.2.1 Euclidean Cluster Extraction

Due to the shape of the tree and the fact that the cylinder model is not
constrained in either direction of its axis, the model often intersects with
multiple branches or a trunk and a branch. This creates a cylinder with
multiple isolated sets of points, as seen in Figure 4.2. This behavior is
undesirable as the intention is only to find points from one cylinder.

The solution to this problem is to use Euclidean Cluster Extraction. The
algorithm works as described in [Rus09] :..1. create a kd-tree representation for the input point cloud dataset P ;..2. set up an empty list of clusters C and a queue of the points that need to

be checked Q;..3. then for every point pi ∈ P , perform the following steps:. add pi to the current queue Q;. for every point pj ∈ Q do:. search for the set P k
i of point neighbors of pi in a sphere with

radius r < dth.
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4. Trunk and Main Branches Detection...........................

Figure 4.2: Isolated Sets of Points Belonging to One Cylinder

. for every neighbor pk
i ∈ P k

i , check if the point has already been
processed, and if not, add it to Q;.when the list of all points in Q has been processed, add Q to the

list of clusters C, and reset Q to an empty list;..4. the algorithm terminates when all points pi ∈ P have been processed
and are now part of the list of point clusters C.

Using this algorithm, it is possible to select the biggest cluster in the current
cylinder. This cluster then represents the cylinder. The remaining points
are removed from the current cylinder but remain in the point cloud. In all
the steps where points are removed or reassigned, the same operations are
performed on the corresponding normals, so no discrepancies happen.

4.2.2 Cylinder Radius Optimization

The next step in the segmentation is to make the cylinder as precise as possible
to best represent the actual trunk/branch. The idea is to incrementally
decrease the radius of the segmented cylinder while keeping a certain number
of points from the original cylinder. Half of the points are a reasonable
threshold for this dataset. This procedure is needed because the algorithm
seems to favor cylinders with greater radii, which, unfortunately, means less
accurate results. The following algorithm is at least partially able to mitigate
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...........................4.2. Tree Cluster Cylinder Segmentation

this fact. At the start of the cylinder segmentation, the lower and upper
bounds for the radii are set to 0.025 and 0.9, respectively. This is to include
all possible cylinders.

The algorithm then works as follows:..1. Start initial Cylinder Segmentation to obtain a cylinder..2. Perform Euclidean Cluster Extraction to find the biggest cluster..3. Set this cluster as the current cylinder..4. While newMinRadius > thA and curPointCount > thB. Perform Cylinder Segmentation on the current cylinder with

newMaxRadius = currentCylinderRadius − 0.001

newMinRadius = newMaxRadius ∗ radiusRatio. If the newly segmented cylinder contains at least half of the points
of the cylinder from 1, set it as the current cylinder and go to 4...5. Repeat for all cylinders

To specify, currentCylinderRadius is the radius of the last found cylin-
der, curPointCount is the number of points in the last found cylinder,
radiusRatio is some preset ratio by which the radius is made smaller(4/5 in
this case), and thA and thB are thresholds chosen with respect to the current
dataset.

This algorithm produces a more accurate output because the found cylinders
better resemble the actual parts of the tree. It generally also detects more
cylinders, as shown in Figure 4.3.

Figure 4.3: Cylinder Radius Optimization (left) vs No Optimization (right)
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4. Trunk and Main Branches Detection...........................
4.2.3 Adding Points to Optimized Cylinders

In most cases, the optimal cylinder radius is different from the original ra-
dius. At this point, it is advantageous to reevaluate and check whether any
points from the original cloud fall onto the new model of the cylinder. These
points can be added to the current cylinder cloud, thus creating a more com-
plex cylinder. The PCL class pcl::SampleConsensusModelCylinder<PointT,
pcl::Normal> implements a method doSamplesVerifyModel which verifies
whether a point (sample) verifies a given model. Each point from the original
cloud is then checked, and if it fulfills the given criteria, it is added to the
current cylinder.

Due to the fact mentioned in Subsection 4.2.1, it is imperative to rerun
Euclidean Cluster Extraction to eliminate potential gaps in the cylinder.

After concluding this step, the points belonging to the cylinder are removed
from the original cloud, and the finalized cylinder is ready to be used further;
no other alterations are necessary.

The above-mentioned steps:. Cylinder Segmentation. Euclidean Cluster Extraction. Cylinder Radius Optimization.Adding Points. Final Euclidean Cluster Extraction

are repeated until no new cylinders are found in the original cloud.

4.3 Adjacent Branches Identification

At this point, the trunk and the branches are segmented. However, there is
no information on how all these branches are connected, which is crucial to
creating a tree graph/model. As mentioned previously, each My_Cylinder
struct has an array called overlapping_cylinders to store all adjacent cylinders.
In our case, cylinders are considered adjacent when they are attached to
each other on the real tree. Simply put, two adjacent cylinders are just two
connected parts of a branch. There are many ways to determine which two
cylinders are adjacent, each with its pros and cons. Next, three approaches
are described along with the results they produced on the given dataset.

4.3.1 Oriented Bounding Box

As defined in [GML00], an oriented bounding box (OBB) is an arbitrarily
oriented rectanguloid. An axisaligned bounding box (AABB) is a rectanguloid
whose faces are aligned with the coordinate axes of its parent coordinate
system. Whereas an AABB can be represented with just minimum and
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............................ 4.3. Adjacent Branches Identification

maximum extents along each axis, an OBB representation must encode not
only position and widths but also orientation. The advantage OBBs have over
AABBs as bounding volumes is that they can bind their enclosed geometry
more tightly.

Figure 4.4: A Comparison of AABB and OBB of a Point Cloud[Kak21]

In PCL, OBBs can be calculated with pcl::computeCentroidAndOBB, which
returns the centroid, the center, OBB dimensions, and a rotational matrix of
the OBB.

The idea behind implementing this approach is to create an Oriented
Bounding Box for each cylinder and then, using the Separating Axis The-
orem[GML00], find OBBs that overlap. Those OBBs can, therefore, be
considered adjacent branches. As per [GML00], an axis n is a separating
axis of two point sets A and B if and only the images of A and B under
axial projection onto n are disjoint. The separating axis theorem states that
two polytopes, A and B, are disjoint if and only if there exists a separating
axis which is either perpendicular to a face of one of the polytopes or is
perpendicular to an edge taken from each.

In a three-dimensional space, 15 separating axes exist. Three represent
the face normals of box A, three represent the face normals of box B, and
the nine remaining axes are calculated as all possible combinations of cross
products of the face normals of box A and box B. The axes are shown in
Table 4.1. The lower index always corresponds to one of the face normals of
the boxes[Huy08][Ebe99].
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4. Trunk and Main Branches Detection...........................
Axis Nr. Axis Label

1 A0
2 A1
3 A2
4 B0
5 B1
6 B2
7 A0 × B0
8 A0 × B1
9 A0 × B2
10 A1 × B0
11 A1 × B1
12 A1 × B2
13 A2 × B0
14 A2 × B1
15 A2 × B2

Table 4.1: Possible Separating Axes

As stated above, to declare two boxes as not overlapping, at least one
separating axis must exist. Therefore, the projections of box A and box B
onto the specified axis must not overlap at least in one of the cases. When
checking for overlap, the following applies (according to [GML00]):

Two intervals are disjoint if and only if the separation of their midpoints is
greater than the sum of their half-widths (radii). The relevant comparison is
s > rA + rB. In(A) is the projection of box A onto an axis n and In(B) is
the projection of box B onto an axis n as visible in Figure 4.5.

Figure 4.5: Checking for Disjoint Intervals[GML00]

The way the projections In(A) and In(B) are obtained is explained in
[Huy08]:

Suppose box A has the following properties:. PA: coordinate position of the center of A.Ax: unit vector representing the x-axis of A
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............................ 4.3. Adjacent Branches Identification

.Ay: unit vector representing the y-axis of A.Az: unit vector representing the z-axis of A.WA: half width of A (corresponds with the local x-axis of A).HA: half height of A (corresponds with the local y-axis of A).DA: half depth of A (corresponds with the local z-axis of A)

The projection of half of box A onto axis L is given by the equation:

1
2 |Proj(BoxA)| = |Proj(WAAx)| + |Proj(HAAy)| + |Proj(DAAz)|

= |(WAAx) · L| + |(HAAy) · L| + |(DAAz) · L|

The process for box B is analogous. Those projections are then equal to
rA and rB, respectively. The distance between the centers of the OBBs is
s = PB − PA.

If an OBB is deemed to be overlapping with the OBB of the current cylinder,
the corresponding cylinder is added to the array of overlapping cylinders. In
Figure 4.6, the pink points belong to the current cylinder, whereas the black
points are from cylinders whose OBBs overlap with the current cylinder’s
OBB. The OBBs themselves are displayed as cuboids.

Figure 4.6: Example of Overlapping OBBs

While this approach is based on a robust theory, it is unsuitable for this
application. The main problem is that due to the irregular shapes that the
points in the cylinders make, the bounding boxes sometimes overlap when
the cylinders are not adjacent (as demonstrated in Figure 4.7), or, on the
other hand, do not overlap, even though the cylinders are right next to each
other. While this does not necessarily render it unusable for this purpose,
another approach has shown superior results.
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4. Trunk and Main Branches Detection...........................

Figure 4.7: An Incorrect Evaluation of Overlaps

4.3.2 Nearest Neighbor Search

A different method of classifying adjacent branches is to find the shortest
distance between two points of the cylinders and then compare that value to
a previously set threshold. If that comparison holds true, the two cylinders
can be considered adjacent.

Suppose we have cylinder A, whose adjacent cylinders we want to find.
Take some cylinder B, and for each point in A, find its nearest neighbor in
points from B, and if the distance between them is smaller than the shortest
distance found until now, store it as the shortest distance.

Repeat this process for cylinders C, D, etc. When finished, take cylinder B
and start the process again, finding the nearest neighbor in cylinders C, D,
E, etc. Repeat for all pairs of cylinders.

Nearest neighbors are found with pcl::KdTreeFLANN<pcl::PointXYZ>::Ptr
and its method nearestKSearch, where K is set to one, thus only finding the
one nearest neighbor.

Each cylinder should then have one value for each of the remaining cylinders,
denoting the shortest distance between any two points on the two cylinders.

This technique is simple but computationally demanding with respect to
the number of cylinders, as it needs to find the nearest neighbor for all points
in a cylinder. The main problem, however, is when two branches are relatively
close to each other at just one point in space, they satisfy the threshold
condition, even though they are not connected. Fine-tuning the threshold
value is complicated as well.
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............................ 4.3. Adjacent Branches Identification

4.3.3 Endpoint Nearest Neighbor

The last approach also utilizes Nearest Neighbor Search but in a different
way. First, each cylinder is projected onto its axis, creating a sort of line
segment. Then, thanks to the cylinder coefficients, the endpoints of the line
segment can be calculated.

As is given by the parametric equation of a line, any point on a line can be
described as mentioned in [Wik24a]:

x = x0 + at

y = y0 + bt

z = z0 + ct

where:. (x, y, z) is a point on the line with an independent variable t which ranges
over the real numbers.. (x0, y0, z0) is a fixed point on the line.. a, b, and c are related to the slope of the line, such that the direction
vector (a, b, c) is parallel to the line.

To calculate t:

t = (x − x0)/a = (y − y0)/b = (z − z0)/c

If t is calculated for each projected point, we can find the lowest and
highest value of t. Those values belong to the points on either end of the line
segment, i.e., the points that are the furthest away from the base point in
each direction.

The next step is to take the newly obtained endpoints and find their
respective nearest neighbors in the points on the axis of some other cylinder.
Note the difference: in Subsection 4.3.2, the nearest neighbor is found for each
point; in this case, however, the nearest neighbor is found only for the two
endpoints. The distances between the endpoints and their nearest neighbors
can then be compared to a threshold, deciding whether the two cylinders
from which those points come are close enough to be considered adjacent.
The threshold is set as 1.2r for the single scan and 1r for the merged scans
(see Section 6.2), where r is the radius of the current cylinder. In the merged
scan, the model becomes too crowded with the connections between branches
due to the higher number of cylinders, which is why the threshold is set lower.
Those are the values that produce the results in Figures 5.4 and 5.5, and
Figures 6.3 and 6.4, respectively. As can be seen, the threshold serves as a
way to set how much detail (i.e., the number of connections made) is in the
final model. This step is repeated for all cylinders.

This method proved to be the most reliable out of those mentioned previ-
ously. It eliminates the problem of two cylinders being close to each other at
just one point (usually close to the middle). It also does not suffer from the
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shortcomings of OBBs relating to false positives/negatives, as the points are
always projected onto a line, and the distance threshold can be adjusted as
needed.
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Chapter 5
Tree Graph

The previous section describes a method for detecting whether two cylinders
are adjacent. This chapter proposes an algorithm to connect the individual
segments representing the axes of the adjacent cylinders. The connected
cylinders should form a semi-continuous structure that resembles the original
tree - a tree graph.

As branches generally differ in shape and size, the relative positions of the
cylinders the branches represent are expressed by various scenarios. These
possibilities need to be taken into account when trying to connect them.
Connecting two branches means inserting new points between the two cylinder
axes.

5.1 Cylinder Axes as Skew Lines

Due to the accuracy of the measurements and cylinder translation algorithms,
all axes of the following cylinders can be considered skew lines. The inter-
connection of the two line segments representing the axes of the cylinders
depends on the relative positions of the points that represent the distance of
these skew lines.

To obtain these points, we take the two cylinder axes, their respective
vectors, and points on the axes and create parametric equations of the lines:

Cylinder axis 1 : l1 = p1 + t1d⃗1

Cylinder axis 2 : l2 = p2 + t2d⃗2

where p is a point on the line and d⃗ is a vector of direction of a line l.
Next, we must find a vector n⃗ perpendicular to both lines simultaneously.

This is done by calculating the cross product of d⃗1 and d⃗2[Wik24a]:

n⃗ = d⃗1 × d⃗2

As further mentioned in [Wik24a]: The plane formed by the translations
of Line 2 along n⃗ contains the point p2 and is perpendicular to n⃗2 = d⃗2 × n⃗.

Therefore, the intersecting point of Line 1 with the above-mentioned plane,
which is also the point on Line 1 that is nearest to Line 2, is given by
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5. Tree Graph......................................

c1 = p1 + (p2 − p1) · n⃗2

d⃗1 · n⃗2
d⃗1

Similarly, the point on Line 2 nearest to Line 1 is given by (where n⃗1 =
d⃗1 × n⃗)

c2 = p2 + (p1 − p2) · n⃗1

d⃗2 · n⃗1
d⃗2

Now that the points are calculated, there are three possibilities as to where
they are with respect to the endpoints of the cylinder axes...1. Point c1 lies between the endpoints of cylinder axis 1. Point c2 lies

between the endpoints of cylinder axis 2...2. Point c1 lies between the endpoints of cylinder axis 1. Point c2 lies
outside of the endpoints of cylinder axis 2, or vice versa...3. Point c1 lies outside of the endpoints of cylinder axis 1. Point c2 lies
outside of the endpoints of cylinder axis 2.

In case number 1. the solution is fairly straightforward, points c1 and c2
are simply connected with a line as illustrated in Figure 5.1. Note that the
sketches are in 2D; they do not represent the situation to its full extent, but
they are sufficient for this purpose. The axes are denoted as l1 and l2, with
the blue segments representing the projected points.

Figure 5.1: Skew Lines: Case 1

In case number 2, there are two options as to what can happen. We will
focus on the situation where point c1 lies outside of the endpoints of cylinder
axis 1 and point c2 lies between the endpoints of cylinder axis 2. The process,
for when the opposite is true, is analogous.

Let us define the distance between c1 and the endpoint of axis 1 closest to
it as minDist1 and distThresh as some arbitrary threshold.

If minDist1 < distThresh holds true, c1 and the endpoint (of axis 1)
closest to it are connected. Then, c1 and c2 are connected. Simply put, the

30



.............................. 5.1. Cylinder Axes as Skew Lines

(a) : minDist1 < distT hresh (b) : minDist1 > distT hresh

Figure 5.2: Skew Lines: Case 2a and 2b

axis of cylinder 1 is extended to point c1, and then c1 and c2 are connected.
See Figure 5.2a.

If minDist1 > distThresh is the case, the endpoint (of axis 1) closest to
c1, let us call it e12, is connected to point e22, an endpoint from axis 2 that
is closest to e12. See Figure 5.2b.

In case number 3, we extend both axes and then connect c1 and c2. That
is, take c1, find the endpoint (of axis 1) closest to it, and connect them. Do
the same for c2 and the endpoint (of axis 2) closest to it. Finally, connect
the two closest points, c1 and c2.

Figure 5.3: Skew Lines: Case 3
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5. Tree Graph......................................
Combining these steps produces a semi-continuous model (tree graph) of

the tree, as shown in Figure 5.4. Semi-continuous means that the model is
made up of multiple clusters of interconnected branches. However, not all
clusters are connected. The green lines represent the axes of the cylinders,
and the pink lines are segments drawn into the point cloud as a result of
connecting individual axes. To better grasp how the model relates to the
original scan, see Figure 5.5.

Figure 5.4: Tree Graph
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.............................. 5.1. Cylinder Axes as Skew Lines

Figure 5.5: Tree Graph with Points
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Chapter 6
Fusing Multiple Scans Together

The algorithm described above works as intended on a single scan from one
position. In this chapter, we will test whether this algorithm performs com-
parably on a point cloud merged from multiple scans from different positions.
The Iterative Closest Point algorithm seems well suited for this purpose[BM92].
In [Rus09], ICP is described as an iterative descend method that tries to
find the optimal transformation between two datasets by minimizing the
Euclidean distance error metric between their overlapping areas. ICP uses
pairs of nearest 3D points in the source and model set as correspondences and
assumes that every point has a corresponding match. ICP has drawbacks,
such as being susceptible to local minima, having a small convergence basin,
and generally needing a high number of iteration steps until convergence can
be reached.

6.1 Input Dataset Transformation

Because ICP considers pairs of points in both clouds, it can become computa-
tionally demanding as the size of the dataset increases. Therefore, the dataset
must remain relatively small. Consequently, only the segmented tree (as seen
in 4.1) is used to merge the point clouds instead of the original dataset. In
Table 6.1, the respective sizes (in number of points) of the original scans and
final segmented trees are stated. Five scans were chosen for the merging.

Cloud Nr. Original Size Final Size Reduction in %
1 131072 4655 96.45
2 131072 6778 94.83
3 131072 5650 95.69
4 131072 5415 95.87
5 131072 5288 95.97

Table 6.1: Scan Sizes
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6. Fusing Multiple Scans Together.............................
6.2 PCL ICP

Point Cloud Library implements a version of Iterative Closest Point in
pcl::IterativeClosestPoint based on Singular Value Decomposition and a
version pcl::IterativeClosestPointNonLinear, which uses Levenberg-Marquardt
optimization. Both methods yield similar results, as is evident in Figure 6.1.

According to [Lib], the algorithm has several termination criteria:..1. Number of iterations has reached the maximum user imposed number of
iterations (via setMaximumIterations)..2. The epsilon (difference) between the previous transformation and the
current estimated transformation is smaller than a user imposed value
(via setTransformationEpsilon)..3. The sum of Euclidean squared errors is smaller than a user defined
threshold (via setEuclideanFitnessEpsilon)

The sum of Euclidean squared errors (called Fitness Score in PCL) can,
therefore, be used to evaluate the performance of the algorithm on a given
dataset. The lower the value, the better aligned the scans should be. In
Figure 6.1, fitness scores are displayed for 1-5 merged scans. This shows that
the best alignment was achieved when combining five scans. The results are,
however, partially inaccurate due to the fact that some points are present only
in some scans and not in others. Because of that, the fitness scores for when
two scans are merged reach relatively large numbers. This is apparent in
Figure 6.2, where the green cloud contains a large branch that is not present
in the red cloud. All the points in the green branch then make up a large
portion of the error, as they are far away from any red points. This artifact
diminishes when more scans with that branch are added.
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Figure 6.1: Fitness Score Evaluation
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Figure 6.2: An Odd Branch

6.3 Voxel Grid Filtering

When using point clouds that are created by fusing multiple scans together,
the number of points rapidly increases. To keep the computation time of the
segmentation program reasonable, the point cloud must first be filtered/down-
sampled. That can be done using the Voxel Grid filter. As explained in [Lib],
the VoxelGrid class creates a 3D voxel grid (think about a voxel grid as a set
of tiny 3D boxes in space) over the input point cloud data. Then, in each voxel
(i.e., 3D box), all the points present will be approximated (i.e., downsampled)
with their centroid. This approach is a bit slower than approximating them
with the center of the voxel, but it represents the underlying surface more
accurately.

This step is only necessary when using multiple merged scans, not just
individual ones. It is important to mention that filtering the point cloud
changes the final model, as different cylinders are segmented due to the fact
that some points are now missing compared to the original point cloud. This
is visible in Figures 6.3 and 6.4, where the models differ even though they
are segmented from the same original cloud. For comparison, a photo of the
tree that was scanned to create the dataset is shown in Figure 6.5.
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Figure 6.3: ICP Tree Graph w/o Voxel Filter

Figure 6.4: ICP Tree Graph with Voxel Filter
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Figure 6.5: A Photo of the Tree
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Chapter 7
Conclusion

This thesis first proposed an algorithm for detecting trunks of individual trees
in a multi-tree environment (e.g., a forest) using point clouds from a LIDAR
scan. This was done by segmenting and removing a plane representing the
ground and then separating the point cloud into smaller clusters with Regional
Growing Segmentation. Those clusters were then individually segmented with
Cylinder Segmentation to approximate individual tree trunks.

This algorithm was then extended to detect and segment the trunk and
main branches of an individual tree. Due to the uneven terrain in the dataset
of the individual tree, a new method for removing the ground was presented.
Points belonging to the tree were then identified using Region Growing
Segmentation.

Next, adjacent branches in the scan were detected and connected based on
a distance threshold. Furthermore, a method for fusing multiple scans of a
tree was proposed.

Finally, the algorithm was tested on the merged scan of a tree, creating a
model of the trunk and main branches of a protected tree of exceptional age.

In future research, it might be beneficial to utilize a more complex method
for removing the ground around the tree, as the current one is not very robust
and might not work when deployed on more complex datasets. Improvements
could be made to methods regarding the detecting and connecting of adjacent
branches as well.
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