
Bachelor Project

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Cybernetics

3D reconstruction of indoor boulders

Martin Forman

Supervisor: Ing. Jan Čech, Ph.D.
Field of study: Open Informatics
Subfield: Artifitial inteligence
January 2024

ii

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

498842 Personal ID number: Forman Martin Student's name:
Faculty of Electrical Engineering Faculty / Institute:

Department / Institute: Department of Cybernetics
Open Informatics Study program:
Artificial Intelligence and Computer Science Specialisation:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

3D Reconstruction of Indoor Boulders

Bachelor’s thesis title in Czech:

3D rekonstrukce vnitřních lezeckých boulderů

Guidelines:
The climbing sport has been very popular lately. There are many climbing gyms, where the routes, called problems, are
regularly changed. Basic walls are usually piecewise planar with different slopes and contain holds of the same color. The
athlete's task is to climb the route, usually to the top hold or to climb over the top platform.
Create a tool for automatic 3D reconstruction of bouldering routes, which will allow measuring distances between holds,
or various angles in the scene (for example, the deviation of the basic wall from the gravitational vertical). The tool should
work with a small number of photographs of the route, taken with an ordinary mobile phone.
Evaluate the accuracy of the method using several physical measurements in the scene and using a depth camera.
Optional:
- Develop an application including GUI, which will allow interactive measurement from photographs.
- Use monocular depth estimation for the reconstruction.

Bibliography / sources:
[1] R. Hartley, A. Zisserman. Multiple View Geometry in Computer Vision. 2nd edition, Cambridge University Press, 2004.
[2] Godard, Clément, Oisin Mac Aodha, and Gabriel J. Brostow. "Unsupervised monocular depth estimation with left-right
consistency." Proc. CVPR, 2017.
[3] Ming Yan, Xin Wang, Yudi Dai, Siqi Shen, Chenglu Wen, Lan Xu, Yuexin Ma, Cheng Wang. CIMI4D: A Large Multimodal
Climbing Motion Dataset under Human-scene Interactions. Proc. CVPR, 2023.
[4] Katsuhito Sasaki, Keisuke Shiro, Jun Rekimoto. ExemPoser: Predicting Poses of Experts as Examples for Beginners
in Climbing Using a Neural Network. Proc. of the Augmented Humans International Conference, 2020.

Name and workplace of bachelor’s thesis supervisor:

Ing. Jan Čech, Ph.D. Visual Recognition Group FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 24.05.2024 Date of bachelor’s thesis assignment: 02.02.2024

Assignment valid until: 21.09.2025

___________________________ ___________________________ ___________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
prof. Dr. Ing. Jan Kybic

Head of department’s signature
Ing. Jan Čech, Ph.D.

Supervisor’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZBP-2015.1

iv

Acknowledgements
I would like to thank my supervisor Ing.
Jan Čech Ph.D. for the help he provided
with writing and researching my thesis. I
would also like to thank the climbing gym
Smichoff 1 in Prague and Hudy boulder
Karlín 2 for letting me collect a dataset of
boulders for my work. Many thanks too
belongs to the contributors and authors
of libraries used in the implementation of
this project, namely: Kornia, PyQt, Open
CV, sklearn, GCS and more.

1Smichof climbing gym website:
https://www.lezeckecentrum.cz/cs/

2Hudy climbing gym website:
https://www.hudysteny.cz/boulderkarlin/

Declaration
I declare that the presented work was de-
veloped independently and that I have
listed all sources of information used
within it in accordance with the methodi-
cal instructions for observing the ethical
principles in the preparation of university
theses.
A LLM was used for help with some cod-
ing tedious tasks, LATEXformatting and
testing research ideas.

v

Abstract
In this thesis, the 3D reconstruction of
indoor climbing boulders from two im-
ages was investigated. An application
was developed to measure distances be-
tween holds, as well as other objects and
angles within the scene. The method-
ology combined classical Structure from
Motion (SfM) techniques with recent
learned descriptors for matching, specifi-
cally LoFTR.
The application’s performance was eval-
uated for accuracy, revealing that mul-
tiple reconstructed scenes achieved mea-
surement errors around 5%. However,
some cases exhibited higher errors due
to factors such as low texture, poor image
quality, and sub-optimal baselines. The
evaluation results informed a discussion
on potential improvements and identified
limitations of the current approach.

Keywords: SfM, Structure from Motion,
3D reconstruction, Boulder 3D
reconstruction, boulder, 3D models,
point cloud, 2D to 3D, RANSAC, GCS,
depth estimation, indoor climbing,
LoFTR, feature matching, image-based
reconstruction, photogrammetry,
measurement accuracy, texture mapping,
computer vision, scene reconstruction,
distance measurement, angle
measurement, image quality, baseline,
error analysis, application development

Supervisor: Ing. Jan Čech, Ph.D.
Fakulta Elektrotechnická ČVUT,
Na Zderaze 269/4,
121 35 Praha 2

Abstrakt
V této práci byla zkoumána 3D rekon-
strukce vnitřních lezeckých boulderů ze
dvou snímků. Byla vyvinuta aplikace
pro měření vzdáleností mezi chyty, stejně
jako jiných objektů a úhlů ve scéně. Me-
todologie kombinovala klasické techniky
Structure from Motion (SfM) s nedávnými
učenými deskriptory pro párování, kon-
krétně LoFTR.
Výkon aplikace byl hodnocen z hlediska
přesnosti, přičemž bylo zjištěno, že více re-
konstruovaných scén dosáhlo měřicí chyby
kolem 5%. Některé případy však vykazo-
valy vyšší chybu kvůli faktorům jako nízká
textura, špatná kvalita snímků a neopti-
mální baseline. Výsledky hodnocení vedly
k diskuzi o možných vylepšeních a identi-
fikaci omezení současného přístupu.

Klíčová slova: SfM, Structure from
Motion, 3D rekonstrukce, 3D
rekonstrukce boulderů, boulder, 3D
modely, mračno bodů, 2D na 3D,
RANSAC, GCS, odhad hloubky, indoor
lezení, LoFTR, párování prvků,
rekonstrukce založená na obrazech,
fotogrammetrie, přesnost měření,
mapování textur, počítačové vidění,
rekonstrukce scény, měření vzdáleností,
měření úhlů, kvalita obrazu, základna,
analýza chyb, vývoj aplikací

Překlad názvu: 3D rekonstrukce
vnitřních lezeckých boulderů

vi

Contents
1 Introduction 1
2 Related Work 3
3 The solution 7
3.1 Getting the 3D model 7

3.1.1 Creating the data set
(capturing images) 7

3.1.2 Camera calibration 9
3.1.3 Correspondence matching . . . 10
3.1.4 Epipolar Geometry 11
3.1.5 Rectifying images 13
3.1.6 Dense stereo matching 13
3.1.7 Interpolating disparity 14
3.1.8 Directly relating images
(projection) 14

3.1.9 Triangulation into 3D 15
3.2 Getting measurements from 3D

data . 16
3.2.1 Measuring real world distance 18
3.2.2 Measuring angles in the scene 18

4 Implementation details 19
4.1 Wrapping a library for use in

python . 19
4.2 Creating a GUI application 20

4.2.1 Data selection 20
4.2.2 Processing 21
4.2.3 Result Visualization 21

5 Experiments 25
5.1 cross-validation method 25
5.2 Measurement accuracy evaluation 25

5.2.1 Measuring only using
regularities 26

5.2.2 How distance from reference
measurement impacts results 27

5.3 Angle measurement evaluation . 27
5.4 3D point cloud evaluation 28
5.5 Expansion on results 28

5.5.1 Dataset quality 28
5.5.2 Reference measurement quality 29
5.5.3 Other factors influencing

quality . 29
6 Limitations and future Work 43
6.1 Improving accuracy 43

6.1.1 Creating datasets 44
6.1.2 Self-calibration 44

6.2 Building a mobile app 44

6.3 Automatic scale detection 45
6.4 Inventing new use cases and adding

features . 45
7 Conclusion 47
Bibliography 49

vii

Figures
1.1 Boulder and its distinct features
(chalk and shoe marks). 2

2.1 COLMAP [17, 16] result with 5
images. 4

2.2 Depth-Anything [22] result from a
single image (a model based
monodepth algorithm approximates
depth without any other data.) 5

3.1 3D reconstruction pipeline
overview. 8

3.2 Example image pairs from the
collected dataset. 9

3.3 Camera matrix K and its example
from a iPhone camera. 10

3.4 Comparison between results of
SIFT and LoFTR correspondence
matching. See that LoFTR (bottom)
returns much denser matches
between points. 11

3.5 Detail of LoFTR matches (every
tenth match drawn for clearness) on
a small section of the image. 12

3.6 Epipolar geometry [6]. 12
3.7 Fundamental matrix problem. . . 12
3.8 Rectified images. 13
3.9 Disparity map (note that many

values are present but not visible). 14
3.10 Interpolated disparity. 15
3.11 Summary of calculations needed

to get possible R and t. 16
3.12 Camera projection matrices P1,

P2. 17
3.13 Example of reconstructed 3D

points from different views. 17
3.14 Original image and a

reconstructed model coloured by it. 17

4.1 Code snippets from GCS Python
interface. 20

4.2 Compilation of C++ to create a
library to interface with. 21

4.3 GUI app home window, image
loading and processing views. 21

4.4 Visualization widgets and the
related menu. 22

4.5 Snippets of Python used to scale
distance measurements. 23

4.6 Calculation of the angle between
two planes using their normal
vectors. 24

5.1 Statistical formulas used to
evaluate results. Here, di represents
the estimated distances , mi

represents the ground truth distances,
N is the number of data points, and
d̄ is the mean of the data points. For
each of these statistics we show the
mean value and standard deviation
over the cross-validation bins. 26

5.2 Snippets of Python used for
cross-validation. 30

5.3 Regular elements with known
distance. Mounting holes spaced
every 20 cm diagonally (L), and
square panels of dimensions
100 × 100 cm (R). 30

5.4 Example of measurements by
author (L), measurements using
regularities (R). 31

5.5 Measurements and their statistics
for 26 measurements. 31

5.6 Measurements and their statistics
for 15 measurements. This is one of
the fail cases, where probably the
lack of texture compared to other
cases led to much greater error. . . . 32

5.7 Example of relative mean error,
observe that almost no bias is present
overall, since the individual
measurements cancel out. 32

5.8 Measurements and their statistics
for 11 measurements. 33

5.9 Measurements and their statistics
for 10 measurements. 34

5.10 Measurements and their statistics
for 10 measurements. 35

5.11 Measurements and their statistics
for 10 measurements. 36

viii

5.12 Graph of relative error based on
distance from reference measurement,
showing the increase in error the
further the reference. 36

5.13 Example boulder sketch from
Hudy Karlín boulder. 37

5.14 Example angle measurements in a
single scene shown in fig. 5.15. . . . 37

5.15 Angle measurement statistics for
5 measurements. The red and blue
points mark the selected planes and
the area is transparently colored. . 38

5.16 Angle measurement statistics for
2 measurements. 39

5.17 Angle measurement statistics for
a single measurements (only angle in
the reconstructed pointcloud). 40

5.18 A untextured 3D reconstruction
and its detail showing flat and
uneven regions depending on angle
towards camera. The original image
is also shown for comparison. 41

6.1 A Lidar 3D scan of a boulder
captured by a iPhone 14 Pro lidar
scanner, using the application 3D
scanner. The same image is shown
with (R) and without (L) texture, to
better display the accuracy and
spatial textures captured. 44

Tables

ix

Chapter 1
Introduction

This thesis focuses on building a python based application that lets users
reconstruct a 3D model from images of a climbing boulder and use the
captured model to retrieve data about angles and distances in the scene. To
provide a seamless experience and make the application widely available,
we opted to reconstruct the 3D model only using two images, that can be
captured by any image capturing device (phone camera, DSLR, etc.), that
only has to be calibrated once (can be done offline) and allows for hand held
image capture and a varied baseline (distance between the capture points of
the two images).
The ability to capture accurate 3D data without the use of specialized
technologies like LiDAR or stereo camera rigs, is the main goal of this thesis.
To achieve this goal, a classical 3D Reconstruction pipeline is employed, with
some modern tools from the Kornia [8] library, that uses machine learning to
improve on the performance of traditional algorithmic approaches to some
tasks.
As mentioned, the limitation of two images was selected to create a user
friendly system which could be integrated into a desktop or mobile app. It
is also interesting to experiment with the limitations of creating 3D models
with limited data and how specific domain knowledge can substitute this
data. For boulders, we can assume we are reconstructing a partially planar
scene (a wall with mostly neutral colours) that contains easily recognisable
texture, like climbing holds, shoe marks or chalk marks (seen in figures 1.1).
This texture is what allows good performance of the selected pipeline, mostly

regarding the dense stereo reconstruction phase, where detection of the same
physical points in the provided images is performed. The linear interpolation
method was also selected based on the planar nature of the boulder.
Since accuracy is part of the goal of 3D reconstruction, 3D information
gathered from the scene by different methods will be used for comparison. We
show the viability of the more traditional two picture SfM approach against
open source tools like COLMAP [16, 17] (a very powerful reconstruction
tool-set, however mainly focused on big scenes with many input images). We
also compare to real world collected measurements and calculate the error of
our reconstruction.
For completeness, it is better to state that 3D reconstruction from a hand-

1

1. Introduction

Figure 1.1: Boulder and its distinct features (chalk and shoe marks).

held camera will never be the most accurate way of obtaining a 3D model,
as many steps in its process are based on some form of estimates. Other
techniques of scanning 3D space can actually capture the depth information
in a scene or more accurately estimate it. LiDAR is specifically a technology
that accurately captures the full 3D scene and is not affected by aspects
like lighting which can impact photogrammetry results (photogrammetry
includes SfM and our approach). Other techniques like infrared 3D scanning
or phootgrammetry using a stereo camera (calibrated with fixed distance
between two cameras) can also produce more accurate results.

2

Chapter 2
Related Work

Searching for related work to the specific task of photogrammetric recon-
struction of 3D indoor boulders, to the best of our knowledge, no similar
research comes up. The closest research project [13] was concerned with
reconstructing outdoor climbing walls (natural not artificial) and mainly the
individual climbing routes on them. Although the research also uses a fairly
traditional tool-set of SfM methods, an approach of using 400 images was
taken by this research, and the focus on outdoor climbing walls means there
is a difference in the textures and also the scale of the reconstruction process.
Another related research article [20, p.7] we found also focused on outdoor
boulders of much greater dimensions and used many images, but provides a
interesting insight about scaling and model accuracy:

It was shown that control points are not only necessary to scale the
model but also to compensate for the non-linear model misalignment.
Indeed, the accuracy can be considerably improved by using control
points and performing the optimisation process in Photoscan.

Based on this research, our pipeline will have to overcome these issues in
another way, since we do not have control points (manually added elements
on the boulder) for the sake of ease of use.
Most of the cited work that was used to build the basis for the 3D recon-
struction program is general SfM content (research or otherwise). Even
though the theory for 3D reconstruction is generally well defined and easily
implemented, many of the methods perform differently for each data set and
a lot of experimental work has to be done to get good performance. To get
accurate results, tiny mistakes have to be corrected or eliminated, otherwise
the error multiplies in the pipeline and the results suffer accordingly.
This could be viewed as one of the benefits of this work, as no other research
we found tackles the specific issues encountered in creating a good 3D recon-
struction application for indoor boulders while not using a lot of input data
but only two images.
Even though the specific problem of boulders is not commonly researched, we
need to take into account many general reconstruction tools that try to offer
good result for any object (boulder or other). Such tools include COLMAP
[17, 16], which is a very powerful tool, but not well suited for our specific
task, managing mainly reconstruction from thousands of pictures, videos or

3

2. Related Work.....................................
3D scans. However when we try to give it limited data it fails to produce
good results. See figure 2.1, where after inputting 5 images, COLMAP only
reconstructed around 5000 points of the scene. Using only two images pro-
duced even worse results.
There are other commercial tools that reconstruct 3D data from images or

Figure 2.1: COLMAP [17, 16] result with 5 images.

video like Capturing reality [1], the distinguishing factor compared to this
work being again the amount of images.
Other research it is interesting to compare to is Depth-Anything [22]. This is
a mono-depth model trained to estimate depth from a single view. Although
the relative results visually seem quite accurate (as seen in figure 2.2), this
can only serve as part of the pipeline (providing relative depth information),
and we need to follow it up with some SfM processing to retrieve a 3D model.
Other mono-depth tools exist and research into them includes [9], however
Depth-Anything is the state of the art solution at thge moment of writing.

4

..................................... 2. Related Work

Figure 2.2: Depth-Anything [22] result from a single image (a model based
monodepth algorithm approximates depth without any other data.)

5

6

Chapter 3
The solution

In this chapter, the process of getting a 3D reconstruction out of only two
images while still providing a accurate result will be discussed together
with relevant theory. Parts of the experiments will also be shown through
comparisons between available methods and algorithms with examples of the
effect on the resulting 3D model.

3.1 Getting the 3D model

Constructing a 3D model is a multi step process that starts with the raw
source images and uses SfM theory to get inter-image correspondences, es-
timate Fundamental and Essential matrices (discussed further) and using
triangulation to calculate the 3D points estimation. Along this process many
steps can be taken to improve the result, starting with camera calibration,
outlier filtration and interpolation. All these steps combined get us a more
accurate and more complete result. See the fig. 3.1 for a quick overview or
read the description of each step below.

3.1.1 Creating the data set (capturing images)

For purposes of testing the thesis code, a dataset of images of boulders had
to be collected. As no publicly available datasets were found, data collection
was performed by the author, by capturing bordering gyms in Prague (mostly
Smichoff and Hudy Boulder Karlín).
Important aspects of the images are: a good baseline distance (translation)

between the two capture points (for the same scene) was chosen to make the
results of SfM more accurate; the same lens (the same camera) was used for
capturing the image pair (a camera matrix estimated from calibration was
applied to both images); Distinct parts of the scene were captured in both
images (the majority of the actual subject - the boulder, was in view for both
pictures), while also fitting in a part of the ground for better context.
Elaborating on the baseline choice, we always need to find a compromise
between matching accuracy and reconstruction error. Regarding matching
accuracy, a smaller baseline enables better performance of LoFTR [18] and
subsequent dense stereo GCS [5], which yields more matched points, improving

7

3. The solution

Dataset: Boulder image pairs

Correspondence matching

Compute epipolar geometry

Camera calibration

Rectify images

Run dense stereo

Interpolate missing data

Triangulate into 3D

Result: dense 3D point-cloud

Estimate camera positions

Figure 3.1: 3D reconstruction pipeline overview.

8

.................................3.1. Getting the 3D model

Figure 3.2: Example image pairs from the collected dataset.

the resulting 3D point-cloud (making it denser). On the other hand, with
smaller baselines, the reconstruction error increases, as data triangulation
performs better with bigger angle between the two camera positions (a greater
baseline). We will discus these effects further in the experiments section 5.
Additional data captured for a subgroup of the dataset includes real world
measurement of distance between parts of the scene (either on a single plane
or at a angle between objects). This data was used to evaluate the accuracy
of the 3D reconstruction in a quantitative way. It enables to asses if any
distortion occurred (as will be discussed in the results).
This dataset can be used for any SfM processes as it possesses the above
described qualities which enable the use of methods of SfM with minimal
error.

3.1.2 Camera calibration

As was briefly mentioned in the previous section, we calibrated the camera
which is used to capture the dataset. This is a crucial step in ensuring the
quality of outputs of SfM methods. A calibration collects parameters of 3D to
2D projection, influenced partially by the radial or tangential distortions in
the camera lens, and produces the camera matrix K. We can use the camera
matrix to compensate for distortion and create more geometrically accurate
images (can be done retrospectively).

The camera matrix K (shown in fig. 3.3) is a 3 × 3 matrix that holds
values fx, fy that describe the focal length in direction of x, y. The value

9

3. The solution
K =

fx s cx

0 fy cy

0 0 1

 Example K =

3110.29 0 2048.40
0 3109.29 1473.52
0 0 1

Figure 3.3: Camera matrix K and its example from a iPhone camera.

s describes whether the axes x and y are perpendicular to each other and
so in practice it is often 0. The values cx, cy define the principal point of
the camera, which is the optical center where the optical axis intersects the
image plane.
In practice, calibration is a step that is required only once and can for example
be realized through capturing a series of images of a chess board from different
angles and using code to calculate the camera matrix. This is the method
we chose, using the calibration toolbox provided in Open-CV [19], but there
are other methods to estimate the camera matrix. Even better, some devices
may already come calibrated and have a internally stored camera matrix that
can be used. Contrastly, if there is not a chance to calibrate the camera, we
could estimate it using the knowledge about the values, however this will
always impact result in some way.
After applying a camera matrix to the image, we have the unaltered image
(to the extent of the quality of the calibration). This establishes the ground
truth for the image and we can start using SfM processes without much error.

3.1.3 Correspondence matching

Correspondence matching is the process of finding the same real object in
both images, even though they appear in a different place and from a different
angle (Since the two images are captured from a different angle). This
establishes a relation between the images and is further on used for finding
the Fundamental matrix, triangulation etc.
Multiple approaches are possible to find the correspondence points, and while
traditional algorithms implemented in the Open-CV library [19] provide decent
results, using a pre-trained model LoFTR [18] implemented in the Kornia [8]
library yields more detected correspondence points while not causing a big
performance penalty. As is apparent from figure 3.4 and 3.5, LoFTR yields
matches in the thousands while SIFT manages only hundreds (after outlier
elimination was performed on both to only count relevant matches).

As the authors of LoFTR explain, the differentiating factor is that LoFTR
first performs matching on a pixel-wise level instead of sequentially performing
image feature detection, description, and matching. Using a Transformer and
the described approach gives the advantage mainly across low texture areas
(where traditional methods are more likely to fail) [18].
The quality of correspondences can make or break the final result, and since
we can not assume results returned by LoFTR are correct, we use RANSAC
to filter out some of the bad matches (specifically we use MAGSAC [3] - a
RANSAC variant without user set thresholds). This internally requires the

10

.................................3.1. Getting the 3D model

Figure 3.4: Comparison between results of SIFT and LoFTR correspondence
matching. See that LoFTR (bottom) returns much denser matches between
points.

estimation of the Fundamental matrix using the 7 point algorithm (discused
in a following section).

3.1.4 Epipolar Geometry

Epipolar geometry describes the relationship between both images, the es-
timated camera positions and the real world object being captured. This
mathematical definition of the two different image views allows us to convert
the image points between one-another, and is encapsulated in the Funda-
mental matrix (often denoted F). The Fundamental Matrix relates points
in one image to epipolar lines onto which they re-project in the other image.
Once we have the correspondences and Fundamental matrix, we can gather
more information about Rotation and Translation between the two camera
position. Consult the figure 3.6 for better visualization of the relationship of
the images.
Calculation of the Fundamental matrix is a algorithmic problem with differ-

ent approaches available, the basic one being the 7 and 8 point algorithms,
which use a system of linear equations to solve for F (the fundamental ma-
trix).

11

3. The solution

Figure 3.5: Detail of LoFTR matches (every tenth match drawn for clearness)
on a small section of the image.

Figure 3.6: Epipolar geometry [6].

Although there are differences between the algorithms, if no significant noise
is present in the input points, the solution does not differ. In our process we
use the 7 point algorithm and paired it with RANSAC to filter out outlier
correspondences (mismatches between unrelated points).

x′T Fx =
(
x′ y′ 1

) f11 f12 f13
f21 f22 f23
f31 f32 f33

x

y
1

 = 0

Figure 3.7: Fundamental matrix problem.

12

.................................3.1. Getting the 3D model

3.1.5 Rectifying images

Once we have the calibration of our two cameras and information on how
points in a image correspond to epipolar lines in the other, we can move on to
image rectification, i.e. transform the images so that corresponding epipolar
lines become parallel between the images and horizontal (As seen if fig. 3.8).
This is achieved by applying a homography matrix to each image.
In fig. 3.8 notice as well, that new dimensions have to be computed for the
images to accommodate the warped dimensions which can increase the image
size as well as changing its rotation.
The reason for rectifications are, that it improves subsequent steps by making
calculations more efficient. It also is a prerequisite for dense stereo matching
(growing the amount of corresponding points algorithmically), which is one
of the next steps towards 3D reconstruction.
More precisely, in rectification we warp images IL and IR using H1 and H2
which are computed using the Open-CV [19] implementation of a rectification
algorithm for uncalibrated cameras [11]

Figure 3.8: Rectified images.

3.1.6 Dense stereo matching

While we use LoFTR to get initial correspondences between images and these
would allow us to complete the 3D reconstruction process, the result would
be a really sparse 3D point-cloud (we can only get 3D points for known cor-
respondences). To overcome this issue we can employ dense stereo matching,
which takes our initial matches as seeds and grows them algorithmically to
many more points.
There are many algorithms that provide dense or semi-dense stereo matching
and the one chosen is GCS [5], which is a semi-dense stereo algorithm that
stays efficient by visiting only a fraction of the disparity space and that
guarantees the quality of the new correspondence points. With this we can
turn our thousands of correspondences to hundreds of thousands (assuming a
4K image where theoretical limit is in the millions).
If we express all the matches in terms of disparity (enabled by having rectified
images), we can start deriving the depth, which becomes the basis for 3D

13

3. The solution
reconstruction. Disparity represents the horizontal shift between the position
of a point in the left image and its corresponding point in the right image.
Mathematically, each point from one image is shifted in the other image
(specifically its x coordinate) using x′ = x − d. Mapping a color spectrum
onto the disparity we get a visual representation that starts to resemble depth
(fig. 3.9)

Figure 3.9: Disparity map (note that many values are present but not visible).

3.1.7 Interpolating disparity

Since the dense stereo reconstruction still does not result in dense enough
points but it already has many data points covering the whole image, we can
use linear interpolation (we can assume many parts of the scene are partially
planar and also that from out GCS correspondence growing, details like the
holds have multiple) to fill in the whole image area and improve our basis for
point-cloud reconstruction. Linear interpolation could be replaced by another
method better reconstructing non planar shapes, but specifically for boulders,
most of the scene is partially planar and thanks to running the dense stereo
algorithm prior to interpolation, we have enough correspondence points on
most non-planar objects to have a close to truth reconstruction.
As can be see in figure 3.10, the linear interpolation manages to accurately
estimate disparities of unknown points based on sampling the value from a
triangle drawn between three of the closest known points. This is a good
state in which we can start converting into 3D.

3.1.8 Directly relating images (projection)

As described above, the Fundamental matrix F holds some information about
the relationship between points in our two images. However, if we want to
convert points directly between images, we need to obtain so called projection
matrices (P1 and P2).
To obtain P1 and P2 we need to first get Rotation R and a translation vector

14

.................................3.1. Getting the 3D model

Figure 3.10: Interpolated disparity.

t, which directly show the relation between images (how much did the camera
move and rotate between capturing the images). We get R and t from the
essential matrix E, which is derived using the Fundamental matrix combined
with the Camera matrix (see fig. 3.11 for detail). As can be seen in 3.11,
After performing SVD on E, we get multiple possible rotations R1, R2 and
translation vectors t1, t2. We can however test to see which one of these
is the correct Rotation and translation by using both for triangulation and
finding the combination where most 3D points are in front of both cameras
(i.e., the depth values are positive for both views) [12].
Calculating Projection (formulas shown in fig. 3.12) for each matrix once uses

the found values R and t and for the other projection we provide a Identity
matrix 3x3 and a zero vector (projections are relative and one camera is the
start position so no rotation and translation occurs). Having the projection
matrices P1, P2 ready, we can move on to triangulating the point-cloud using
the disparity as well.

3.1.9 Triangulation into 3D

We use Triangulation to convert 2D corresponding points to 3D, computing
the structure in the process. The implementation is based on DLT [10]. DLT:
Direct Linear Transform is a method of computing the 3D information using
a set of linear equations. It also takes steps to address some geometric error
and does not fail when some noise is introduced in the points (However the
projection matrices have to be correct).
This approach is taken because we assume enough points were found by the
dense stereo algorithm in combination with the sceens being partially planar,
that a linear interpolation is a good choice for filling the unknown areas.
The output of this triangulation is a list of 3D coordinates, providing a dense
point-cloud for visualization.

15

3. The solution
Essential matrix from F , K1 and K2

(K1 = K2 if images were taken with the same camera):

E = K2
T FK1

Singular Value Decomposition (SVD) of E:

E = UΣVT

Enforce structure of E by modifying Σ to :

Σ =

1 0 0
0 1 0
0 0 0

Defining matrix W to retrieve possible rotations:

W =

0 −1 0
1 0 0
0 0 1

Possible rotations:

R1 = UWVT

R2 = UWT VT

Possible translations:

t1 = u3
t2 = −u3

Figure 3.11: Summary of calculations needed to get possible R and t.

Relation between 2D and 3D points

Since we have the original 2D coordinates as well as the new 3D coordinates,
we can directly back-project these points, which is helpful not only for
assigning the original image colors to the point-cloud but is also used in user
interaction with the point-cloud that enables measurement of distances and
angles between planes (to be discussed later)

3.2 Getting measurements from 3D data

As the goal of this work is not only to visualize the reconstruction of 3D mod-
els but also to provide measurements of distance and angles between planes
in the image, we need to describe how we use the resulting 3D point-cloud to

16

.......................... 3.2. Getting measurements from 3D data

P1 = K
[
I3 | 0

]
P2 = K

[
R | t

]
Figure 3.12: Camera projection matrices P1, P2.

Figure 3.13: Example of reconstructed 3D points from different views.

Figure 3.14: Original image and a reconstructed model coloured by it.

get this data.
The reconstruction is metric, but up to scale, which is to be set by a mea-
surement in the real world. This is a limitation of the work that is however
very hard to overcome without requiring placing a scaling target in the image
(any item of known dimensions) or without using other specialized measuring
or additional data (a potential solution is described in Limitations).

17

3. The solution
3.2.1 Measuring real world distance

After reconstructing the point cloud, we can measure the distance between
points using the L2 norm. However this presents the issue of real world scale.
We only can measure in relative units without retrieving scale information
from the scene or in another way. In this work, user defined scale was used,
where a user inputs a distance between any two points which gets used for
scale for further measurements. This could cause some error, especially for
measurements taken far away from the reference distance.

3.2.2 Measuring angles in the scene

Measuring angles is a more complex task than measuring distance, since we
can not rely on single points but have to get planes between which to measure
the angle.
However for angle measurement, no reference measurement is required for
the process.

Plane fitting

Getting a plane on which multiple points lie can be done by using the
RANSAC algorithm to find a series of inlier points (ones that all lie on the
same plane) and then retrieving the plane model for this plane. The more
points are used as input for RANSAC the better the accuracy but as few as
3 points can work as well.
In practice we collect points that mark a area, and RANSAC is then ran on
all the points contained in that area. For a more detailed explanation see
4.2.3

Angle measurement

Once a plane is fitted, we can get its normal vector. The angle between two
planes then is calculated as the arc cosine of the dot product of two of these
normal vectors (normalized to the same size).

18

Chapter 4
Implementation details

After experimenting with the pipeline design and settling on the solution
described above, other tasks were undertaken on the way to completion of
this thesis. The ones that will be better discussed here are creating a python
wrapper for a C++ library and creating a GUI desktop application to present
result of reconstruction to any end user.

4.1 Wrapping a library for use in python

Since libraries already used in the project: Open CV [19] and Kornia [8]
both don’t provide a dense stereo algorithm with good performance, GCS
was selected as abetter tool, however the library was originally written in
C++ and with a Matlab wrapper, using MEX. This meant a new wrapper
was needed to be able to run the library directly from Python, which is the
primary language used for this thesis and also the GUI application.
Small changes to the C++ source were necessary to remove functions calling
back to the Matlab runtime. Instead C++ native alternatives were written
and then the library could be compiled standardly as a shared library (.dll or
.dylib based on the platform).
To be able to interact with this or any other library, a python native ctypeslib
was used. This Python library provides functions to load a library and
its contents, and define data types, allocate memory and call functions. A
important detail which had to be taken into account was memory order, as
numpy arrays which hold most of the data that had to be passed to the C++
library usually store array in C order (row-major), however the C++ library
was written for use with Matlab, so it uses a column-major order. This meant
changing the memory order as well as allocating a continuous block that fit
the expectation of the C++ code.
After resolving some issues, the wrapper is a fully functional alternative to

the Matlab interface.
Fig. 4.1 shows some of the code needed to interface with a library using python.
This code could theoretically interface with code written in many different
programming languages, if they are compiled as a library (see example of
compilation in fig. 4.2

19

4. Implementation details.................................
1 def allocate_c_arr(arr, c_type):
2 """Function to allocate python arrays for use in C++"""
3 c_arr = arr.ctypes.data_as(POINTER(c_type))
4 #Arr dimensions also have to be passed
5 c_m, c_n = c_int(arr.shape[0]), c_int(arr.shape[1])
6 return c_arr, c_m, c_n
7

8 #Loading the compiled C++ library
9 gcs = cdll.LoadLibrary("dgrow.dylib")

10

11 #Defining all input data types of the C++ function
12 gcs.pyInterface.argtypes = [POINTER(c_double), c_int, c_int,
13 POINTER(c_double), c_int, c_int,
14 POINTER(c_double), c_int, c_int,
15 POINTER(c_double), c_int, c_int,
16 POINTER(c_double), c_int, c_int,
17 POINTER(c_double), c_int, c_int,
18 POINTER(c_double), c_int, c_int,
19 c_int,c_int,c_uint,c_double,c_double,
20 c_double,c_double,c_bool,c_bool,c_int,
21 POINTER(c_double), c_int, c_int,
22 POINTER(c_double), c_int, c_int,
23 POINTER(c_double), c_int, c_int]
24 #Defining return type
25 gcs.pyInterface.restype = c_void_p
26

27 #Converting array c_D that was changed inside the C++ function back to numpy form
28 ret_D = np.ctypeslib.as_array(c_D, shape=(c_D_n.value,c_D_m.value)).T

Figure 4.1: Code snippets from GCS Python interface.

4.2 Creating a GUI application

There are many choices when it comes to implementing a GUI for a python
application. For this thesis, the Qt library with its Python interface PyQt [7]
was chosen for good documentation, performance and customizability.
For plotting 3D and 2D data and creating the widgets for measurements, the
library PyQtGraph [4] was chosen for having a shared Qt core and providing
performant 3D plots (crucial for 3D visualizations).

4.2.1 Data selection

On the launch of the application, the user is free to upload any image pair
to try 3D reconstruction on. The app interfaces with the OS to load images
from a selected location and keeps a reference to them for future processing.
The other element required from the user is the Camera matrix of the device
which captured the uploaded image pair. Only after providing this information
does the application let the user to continue with the reconstruction.

20

...............................4.2. Creating a GUI application

1 g++ -c dgrow0.cpp
2 g++ -dynamiclib -fPIC -o dgrow.dylib dgrow0.o

Figure 4.2: Compilation of C++ to create a library to interface with.

Figure 4.3: GUI app home window, image loading and processing views.

4.2.2 Processing

After all the data is present, the application launches a separate thread which
computes all the steps in the pipeline described above, until all results are
ready and stored. While waiting, the app displays a loading bar with the
progress of the reconstruction (as shown in fig. 4.3).

4.2.3 Result Visualization

After processing is done, the user can choose between visualizing the 3D
point-cloud itself or launching one of the measurement widgets that let him
interactively measure in the scene to his liking (where data is present). See
figure 4.4 to see all the widgets and a menu presented to the user to launch
them.

Point-cloud visualization

Even though the point-cloud mainly serves as underlying data for the mea-
surements, it can be interesting for the user to visualize it. This is enabled
by a interactive widget that can zoom, rotate and move around the points in
3D space.
The points get displayed together with the colours sourced from the images
so the user can easily see and evaluate the quality of the reconstruction.

21

4. Implementation details.................................

Figure 4.4: Visualization widgets and the related menu.

Distance measurement widget

When the user chooses to measure distances, he is presented with one of the
images he uploaded and has to first tap two points and enter the distance be-
tween them, setting a scale for further measurements. After that, any points
he selects get a line drawn between them and the distance gets displayed for
the line.
See figure 4.5 to understand the scaling of measurements. Fundamentally,
after the user submits the real world distance between select points, a relation
between the real world distance in centimeters and the measurement produced
by the norm between the two points (arbitrary units). We the use this relation-
ship to convert all other measurements from the arbitrary units to centimeters.

The measurement works with the 3D model and not purely image data,
so the measurement should correspond with the real world structure of the
boulder. The ability to measure in the 3D structure is why reconstruction is
needed in the first place. If the goal was to measure only points lying on a
single plane, to 3D data would be needed. Having the 3D data means we can
overcome this limitation and measure across points with different depth etc.

Angle measurement widget

Angle measuring requires the user to click 5 points in the image he gets
presented with that should all be in one plane. Then he defines the plane
to measure against by another 5 points and when this is complete, he gets a

22

...............................4.2. Creating a GUI application

1 def measureDistance(self):
2 """Measure scaled distance between self.point1 and self.point2
3 (QT points clicked by user)"""
4

5 xy1 = np.array([self.point1.x(),self.point1.y()],dtype=np.float32)
6 xy2 = np.array([self.point2.x(),self.point2.y()],dtype=np.float32)
7 distance_img = np.linalg.norm(xy2-xy1)
8

9 # Find nearest point to clicked position in 3D
10 xyz1 = self.pts_3D[self.findClosestPoint(xy1)]
11 xyz2 = self.pts_3D[self.findClosestPoint(xy2)]
12

13 # Calculate cm distance based on real_world_scale
14 distance_real = np.linalg.norm(xyz2-xyz1) * self.real_world_scale
15 return distance_real
16

17 def extractScale(self):
18 """Set real_world_scale - a constant to convert distance to cm
19 based on user given value (through InputDialog)"""
20

21 dist = self.measureDistance(show=False)
22 self.scale_cm = self.scaleInputDialog()
23 self.real_world_scale = (self.scale_cm/dist)
24

Figure 4.5: Snippets of Python used to scale distance measurements.

measurement returned. All the points selected are marked in the image.
Internally, each of the 5 points is used to calculate a convex hull which is
then used to find all 2D points inside it and their corresponding 3D points.
RANSAC is then used on the 3D coordinates to find inlier points in the
marked plane and after that, a plane model can be found, giving us the planes
normal vector which is used to measure the angles in the scene (as is shown
in fig. 4.6).
In the thesis we use the scipy library [21] implementation of the convex hull,
which is the smallest convex polygon that can enclose all the points in a set
(i.e. the 5 points defined by the user), because it provides good methods to
then get all points inside of this polygon. After that, the RANSACRegressor
class from sklearn [15] was used to identify the plane (fit inlier points form
the given area).

23

4. Implementation details.................................

The angle θ between two planes is:

θ = arccos
(n1 · n2

∥n1∥∥n2∥

)
where:

n1 =

a1
b1
c1

 , n2 =

a2
b2
c2

The magnitudes of the normal vectors are:

∥n1∥ =
√

a2
1 + b2

1 + c2
1, ∥n2∥ =

√
a2

2 + b2
2 + c2

2

in this case, a1, b1, c1 and a2, b2, c2 are detected using
RANSAC.

Figure 4.6: Calculation of the angle between two planes using their normal
vectors.

24

Chapter 5
Experiments

Let us present and evaluate the results of this work. As the target of this thesis
is to provide a tool for measuring distances and angles in the captured scene,
we will evaluate both of these against the ground truth. As was discussed
earlier, to the best of our knowledge, no publicly available datasets exist with
boulders and their measurements, that is why measurements were made by
the author at the Smichoff climbing gym1, and angle data was sourced from
Hudy boulder Karlín gym 2, from a simple 3D sketch containing angles of
the walls.
To better understand the accuracy achieved by the described 3D reconstruc-
tion pipeline, cross-validation was performed on the measurements, and
statistics were computed (better presented in fig. 5.1).

5.1 cross-validation method

To better assess our results, a cross-validation script was designed. In a
loop over all the known ground truth measurements, one distance is always
selected as the reference measurement (used to set the scaling of all other
measurements) and the rest of the measurements are evaluated (better shown
in fig. 5.2).
This provides more insight into the distortion and error of the 3D data, thanks
to the iteration over many measurements.

5.2 Measurement accuracy evaluation

Although capturing accurate measurements by hand of multiple boulders
is very tedious, we can use the regularity of some elements to gain more
control data without actually recording it. A good example are mounting
holes, which not all but many boulders have over their whole surface in a
regular pattern, spaced diagonally every 20 cm (as seen in fig. 5.3). Another
regularity was found on a specific boulder where panels making up the wall

1Smichoff climbing gym website: https://www.lezeckecentrum.cz/cs/
2Hudy climbing gym website: https://www.hudysteny.cz/boulderkarlin/

25

5. Experiments

Mean Error (ME) : ME = 1
N

N∑
i=1

(di − mi)

Relative Mean Error : RME = 1
N

N∑
i=1

(
di − mi

mi

)
× 100

Mean Absolute Error : MAE = 1
N

N∑
i=1

|di − mi|

Relative Mean Absolute Error : RMAE = 1
N

N∑
i=1

∣∣∣∣di − mi

mi

∣∣∣∣ × 100

Root Mean Square Error : RMSE =

√√√√ 1
N

N∑
i=1

(di − mi)2

Figure 5.1: Statistical formulas used to evaluate results. Here, di

represents the estimated distances , mi represents the ground truth
distances, N is the number of data points, and d̄ is the mean of the
data points. For each of these statistics we show the mean value and
standard deviation over the cross-validation bins.

were squares where each side measures 100 cm.
In total, we tested 10 reconstructions, 7 for distance measurements and 3 for
angle measurements.

After manually marking some of these regular points and adding the authors
measurements (see both in fig. 5.4), we ran cross-validation on the distances,
selecting a different pair of points each time as scale and we captured the
following results (in figures 5.5, 5.6).

Bias in measurement

One of the metrics we chose to evaluate is Mean error (and relative mean
error), showing us if perhaps all the measurements are biased towards being
always longer or shorter that the ground truth. This would point to some
issues in the reconstruction or measurement evaluation, however for the test
cases we observed that the Mean error has a small mean close to zero and only
the standard deviation is larger. See a example of the observed behaviour in
fig. 5.7, computed for boulders shown in fig. 5.5

5.2.1 Measuring only using regularities

Because manually collecting measurements is problematic (public gyms are
usually filled with people wanting to climb so measuring the boulder is tricky),
and cant provide good coverage of the boulder (the height of the wall can

26

............................. 5.3. Angle measurement evaluation

reach 4 or 5 meters, so most is not reachable for manual measurements), and
measuring with a hand held tape measure over longer distances with a angle
is prone to errors, we used the found regularities to enlarge our evaluation set
and annotated measurements on boulder where no manually collected data
exists.
This restricts all the measurements to lie on physical planes, however it still
needs to utilize to 3D underlying data to provide results, so we can evaluate
the reconstruction accuracy using these measurements as well. Specifically,
the 3D data is needed to be able to set one reference measurement in any
part of the scene and then use it over all the different planes. For measuring
on a single plane, no 3D reconstruction would theoretically be needed.
Measurements and the statistical results compared to the ground truth
(calculated based on the known distance between mounting holes) are shown
in figures 5.8, 5.9 and 5.10.

5.2.2 How distance from reference measurement impacts
results

Even though steps to mitigate distortion are taken in the reconstruction
pipeline, some will still be present in the final result. And while some error
may be similar among the whole image, some distortion may more affect the
edges of the image (because of radial distortion if the image was captured by
a wide angle lens for example).
To evaluate if this is the case and by how much, a boulder with a long flat
plane was reconstructed and measurements were made of the same distance
along its length (see fig. 5.11). The result was then evaluated as all the others
with an additional focus on the distance from where the scale was set (shown
in fig. 5.12).

5.3 Angle measurement evaluation

To evaluate the accuracy of the angles in the scene, we used a schematic of
Hudy boulder Karlín, which has sketches of individual walls with all angles
of the boulder sections marked (as difference from a 90 degree angle. see in
fig. 5.13).
This ground-truth data allows for measurement against the floor plane, and
for boulders with multiple angled sections, measurements of angle between
each part.

Although the selected method for plane fitting is dependent on user input,
if a big enough portion of the plane is selected, the detected normal vector is
always the same, because RANSAC finds the plane based on inliers in the
selected area. This leads us to evaluating only by using a single measurement
of each angle (as seen in fig. 5.14).

27

5. Experiments
Angle measuring results are shown in figures 5.15,5.16 and 5.17. Figure

5.14 shows multiple measurements that were taken between wall segments of
boulder in fig. 5.15.

5.4 3D point cloud evaluation

Since there is no dataset available for 3D scans of boulders, and the climbing
gyms we reached out to also could not provide it, we do not have a statistical
evaluation of the accuracy of the 3D points compared to the real world 3D
structures of the boulder.

A dataset could however be created in the future by using a 3D scanner
(even some phones now come with lidar scanners which can capture a 3D
scene like in fig. 6.1), and then this accuracy could be evaluated. Without
the dataset we ca still observe some of the qualities of the reconstruction
visually. Mainly we can see the effect of the interpolation and the "flatness"
of the boulder walls depending on their angle towards the camera (portion
of the boulder parallel to the camera is flat, where as tilted planes in the
boulder have a mote uneven surface) in fig. 5.18 (shown without texture for
better evaluation).

5.5 Expansion on results

After evaluating the results of the measurements we observe that the results
are not completely accurate. Measurement error differs a lot between different
test scenes (different image reconstructions). This section aims to discuss
some of the reasons this may be occurring, however the main takeaways are
that our evaluation techniques do not point to a single culprit and that many
factors all influence the results.

5.5.1 Dataset quality

During evaluation of the results, one thing becomes apparent. The error for
each case is quite different. This could be the result of many different factors
but one thing that is probably at play is the difference in the image pair
quality.
Generally, we know that every reconstruction is affected by a combination of
baseline between images, calibration quality and resolution of images. The
images sharpness (focus), lighting and the scene captured can affect quality.
Although sharpness is controlled in the dataset, lighting differs between im-
ages and the scene captured is always different. The main factors affecting
the result from the scene point of view are: what is the angle to the subject
(the boulder), the distance to the boulder (which also affect if the ground is

28

................................. 5.5. Expansion on results

captured) and more.

5.5.2 Reference measurement quality

As the manual measurements were performed by hand with a tape measure,
the recorded distance may be off a varying amount for each measurement
and each boulder. This could be improved by using a different measuring
method or having a dataset with measurements and angles in it.
Another factor that is important to consider is that the shorter the distances
we try to measure the greater our error will be. The reconstruction process
produces quite a good result considering the whole scene, but local errors
may be greater, affecting short distance measurements.

5.5.3 Other factors influencing quality

One factor influencing the result quality is the boulder itself. Each wall differs
and while some boulders have only a few holds, no mounting holes and few
angles, others have many different structures, mounting holes and angles.
This all influences the texture that can be detected by feature matchers like
LoFTR [18], as well as how dirty or clean the boulder is (for match detection,
the more dirty and textured, the better).

29

5. Experiments
1 def crossvalidate(self):
2 """function computing all data permutations for cross-validation,
3 part of a class holding all necessary variables
4 (measurements is the ground truth)"""
5 for i in range(len(self.measurements)):
6 dist = self.measureDistance(self.measure_pts[i,0,:],
7 self.measure_pts[i,1,:])
8 self.real_world_scale = (self.measurements[i]/dist)
9 for j in range(len(self.measurements)):

10 if j == i:
11 self.results[i][j] = measurements[i]
12 continue
13 self.results[i][j] = self.measureDistance(
14 self.measure_pts[j,0,:],
15 self.measure_pts[j,1,:])
16 self.real_world_scale = 1
17 np.set_printoptions(suppress=True)
18

19 def compute_stats(data):
20 """Calculate statistics about results of experiment (data)
21 compared to ground_truth (measurements)"""
22 np.set_printoptions(suppress=True)
23 signed_relative_error = ((data.T - measurements[:, np.newaxis]) /
24 measurements[:, np.newaxis]) * 100
25 absolute_relative_error = np.abs(signed_relative_error)
26 measurement_stats = {
27 'ME' : np.mean(data.T - measurements[:, np.newaxis], axis=1),
28 'Relative_ME': np.mean(signed_relative_error, axis=1),
29 'MAE': np.mean(np.abs(data.T - measurements[:, np.newaxis]),
30 axis=1),
31 'Relative_MAE': np.mean(absolute_relative_error, axis=1),
32 'std_dev': np.std(data, axis=1),
33 'Root_MSE': np.sqrt(np.mean(
34 (data.T - measurements[:, np.newaxis]) ** 2, axis=1))
35 }
36

Figure 5.2: Snippets of Python used for cross-validation.

Figure 5.3: Regular elements with known distance. Mounting holes spaced every
20 cm diagonally (L), and square panels of dimensions 100 × 100 cm (R).

30

................................. 5.5. Expansion on results

Figure 5.4: Example of measurements by author (L), measurements using
regularities (R).

Statistic Mean value σ

Mean Error [cm] 1.157 9.550
Relative Mean Error [%] 0.872 9.375

Mean Absolute Error [cm] 10.672 4.046
Relative Mean Absolute Error [%] 10.638 3.498

Root Mean Squared Error [cm] 12.857 4.556

Figure 5.5: Measurements and their statistics for 26 measurements.

31

5. Experiments

Statistic Mean value σ

Mean Error [cm] 12.503 40.796
Relative Mean Error [%] 11.176 35.635

Mean Absolute Error [cm] 45.041 20.553
Relative Mean Absolute Error [%] 39.282 17.456

Root Mean Squared Error [cm] 57.355 25.806

Figure 5.6: Measurements and their statistics for 15 measurements. This is one
of the fail cases, where probably the lack of texture compared to other cases led
to much greater error.

Assessing the bias in error, we look at the non absolute value of relative
mean error. Completely non-biased results would make this error be 0. The

calculated mean error is very close to zero, therefore we have a almost
unbiased result.

Statistic Value σ

Relative Mean Error [%] 0.8726 9.3751

The table below shows relative mean error (in %) for each cross-validation
bin (after all iterations), from which the overall statistic was computed.

7.91 -0.76 -2.25 -2.75 -2.00
-2.67 -1.02 0.29 3.37 3.34
2.96 -9.46 -6.36 -7.84 -14.42
1.89 4.99 -16.95 11.83 7.98
14.13 17.36 -6.98 -12.84 18.68
14.26

Figure 5.7: Example of relative mean error, observe that almost no bias is
present overall, since the individual measurements cancel out.

32

................................. 5.5. Expansion on results

Statistic Mean value σ

Mean Error [cm] 0.112 2.570
Relative Mean Error [%] 0.041 2.024

Mean Absolute Error [cm] 2.780 1.310
Relative Mean Absolute Error [%] 2.171 0.994

Root Mean Squared Error [cm] 3.451 1.325

Figure 5.8: Measurements and their statistics for 11 measurements.

33

5. Experiments

Statistic Mean value σ

Mean Error [cm] -0.708 2.358
Relative Mean Error [%] 0.035 1.885

Mean Absolute Error [cm] 3.317 0.977
Relative Mean Absolute Error [%] 2.007 0.795

Root Mean Squared Error [cm] 4.280 1.281

Figure 5.9: Measurements and their statistics for 10 measurements.

34

................................. 5.5. Expansion on results

Statistic Mean value σ

Mean Error [cm] -0.335 3.791
Relative Mean Error [%] 0.115 3.309

Mean Absolute Error [cm] 3.550 2.392
Relative Mean Absolute Error [%] 3.345 1.733

Root Mean Squared Error [cm] 4.739 2.160

Figure 5.10: Measurements and their statistics for 10 measurements.

35

5. Experiments

Statistic Mean value σ

Mean Error [cm] 0.022 2.096
Relative Mean Error [%] 0.011 1.048

Mean Absolute Error [cm] 2.244 0.915
Relative Mean Absolute Error [%] 1.122 0.457

Root Mean Squared Error [cm] 2.808 0.902

Figure 5.11: Measurements and their statistics for 10 measurements.

Figure 5.12: Graph of relative error based on distance from reference measure-
ment, showing the increase in error the further the reference.

36

................................. 5.5. Expansion on results

Figure 5.13: Example boulder sketch from Hudy Karlín boulder.

Measurement [°] Ground truth [°] Abs. relative error [%]
133.8310 94 42.3851
1.0070 2 49.6500
32.7059 30 9.0197
89.6971 94 4.5765
25.9118 28 7.4586

Figure 5.14: Example angle measurements in a single scene shown in fig. 5.15.

37

5. Experiments

Statistic Value
Mean Error [°] 7.031

Relative Mean Error [%] -2.059
Mean Absolute Error [°] 9.984

Relative Mean Absolute Error [%] 22.616
Standard Deviation [°] 48.298

Root Mean Squared Error [°] 17.987

Figure 5.15: Angle measurement statistics for 5 measurements. The red and
blue points mark the selected planes and the area is transparently colored.

38

................................. 5.5. Expansion on results

Statistic Mean value
Mean Error [°] -11.997

Relative Mean Error [%] -13.330
Mean Absolute Error [°] 11.997

Relative Mean Absolute Error [%] 13.330
Standard Deviation [°] 2.933

Root Mean Squared Error [°] 12.350

Figure 5.16: Angle measurement statistics for 2 measurements.

39

5. Experiments

Statistic Mean value
Mean Error [°] -3.238

Relative Mean Error [%] -3.949
Mean Absolute Error [°] 3.238

Relative Mean Absolute Error [%] 3.949
Root Mean Squared Error [°] 3.238

Figure 5.17: Angle measurement statistics for a single measurements (only angle
in the reconstructed pointcloud).

40

................................. 5.5. Expansion on results

Figure 5.18: A untextured 3D reconstruction and its detail showing flat and
uneven regions depending on angle towards camera. The original image is also
shown for comparison.

41

42

Chapter 6
Limitations and future Work

The primary goal of this thesis was to develop an effective 3D reconstruction
pipeline for indoor boulders. While the results achieved demonstrate the
feasibility of the approach, several limitations were identified that suggest
avenues for future improvement.
Limitations of this work mainly lie in accuracy, where errors of above 10%
were recorded for some test cases, pointing towards a generally inconsistent
tool (some boulders get reconstructed with a small error while in a couple of
cases, a big error was recorded). This is partly due to the limitation of the
method (only two images being used, handheld cameras etc.), however with
more time and effort performance can probably be improved.
Possible future work includes either trying to address some of the mentioned
limitations of this work or extending functionality in other ways.

6.1 Improving accuracy

At this stage, the thesis shows that to some extent, reconstructing form two
images is possible, but to improve results, new methods would need to be tried,
to end up with a more accurate dense 3D point-cloud. Many alternatives
present themselves as possible paths towards potential improvement of the
results.
Segmenting the images for example, could help find better correspondences
and segments could then be used for improved interpolation. Monodepth
algorithms could also be combined with the existing process, providing addi-
tional data for improved computation of results.
Another possible approach would be to train a model that would try to replace
most of the pipeline, however, here we face the issue of no datasets being
available for training (pairs of pictures with a 3D model would be needed).
This may be partially resolved by generating a synthetic dataset.
To enable evaluation of these and other methods, better evaluation of the
results wold be helpful, to help with isolating the source of the error. Our
current testing methods evaluated that the reconstruction finishes with some
error and we can quantify this error, but we cant find its source from this
information. Better ground-truth data would help with this.

43

6. Limitations and future Work

Figure 6.1: A Lidar 3D scan of a boulder captured by a iPhone 14 Pro lidar
scanner, using the application 3D scanner. The same image is shown with (R)
and without (L) texture, to better display the accuracy and spatial textures
captured.

6.1.1 Creating datasets

A notable action that could help in improvement of this work and others would
be creating a dataset of boulder images ideally paired with their accurate
3D model (sourced from the manufacturer or gathered by a very precise 3D
scanner).
One example of better ground truth data can be seen in fig. 6.1, captured
with a lidar scanner equipped phone (for example 1).

6.1.2 Self-calibration

Right now, the program created for reconstruction takes a camera matrix
of the capturing device as input. This however could be avoided, in the
simplest case just by correctly estimating the matrix based on some image
information. Contrastly, a calibration utility could be built into the app,
to let users calculate the camera matrix of their device. Methods exist to
self-calibrate the camera using the image pair itself (found for example in
[14]). The regular mounting holes or detectable lines in the image could be
used, however these methods may come with a decrease in accuracy compared
to standalone calibration.

6.2 Building a mobile app

To provide better functionality for users, a mobile app could be developed
with the pipeline implemented to reconstruct the 3D model directly on the
device capturing images.
Right now, the desktop app allows for the examination and measurement of

1https://apps.apple.com/us/app/3d-scanner-app/id1419913995

44

............................... 6.3. Automatic scale detection

boulders in between climbing sessions (with previously captured data, the
user can reconstruct the boulder he climbed in the gym at home).
However, since one of the potential uses of the measurement application is
direct utilization by climbers in a climbing gym, this would greatly improve
the user experience for this use case (running a desktop application in a
climbing gym is not really feasible).

6.3 Automatic scale detection

Although not a easy task in general, not requiring a user to input scale
could be a big factor in improving this work. As we discussed, some of the
boulder walls have regularities of known size, so a detection algorithm could
be designed to automatically scale measurements on boulders on which such
regularities exist.
Alternatively, taking inspiration from the default measuring app on IOS,
a mix of gyroscope information about the phone movement and rotation
coupled with image data could be used to measure without the need for
knowing distance [2]. This method however is prone to huge errors, especially
in the indoor use case, where the movement is minimal so the sensors provide
low accuracy.

6.4 Inventing new use cases and adding features

The other possible direction that this work can be used as a base for is using
3D reconstructed data for a very different use case than measuring. This
might require changing the pipeline or adding extra processing, depending on
the use. Some use cases that come to mind are 3D printing and use of the
model in virtual reality.

45

46

Chapter 7
Conclusion

In this thesis, a 3D reconstruction pipeline was designed, tested and evalu-
ated, to create 3D models (point clouds) of climbing boulders. The input
information needed for this process is a pair of images of a indoor boulder
and a camera matrix. If the pair of images fulfills some basic requirements
discussed in the thesis, it is possible to reconstruct the 3D data. For testing
purposes a dataset of such images was captured by the author.
A GUI desktop application was developed for the processing of such images,
and it produces 3D point clouds as well as providing an interface to measure
in the scene and estimate angles as well. The results of such measurements
carry some error but we observed that in most cases the tool is usable even
with these errors. However increasing accuracy is a target in the future.
In the process of creating the application, a python wrapper was created for
the dense stereo library GCS [5], which can be used in future projects.
Promising results were achieved, and limitations and possible future work
was identified. This tool is a good test ground of two image reconstruction
and could be improved and extended to become even better.

47

48

Bibliography

[1] Capturing reality: Reality scan.

[2] Apple Inc. Use the measure app on your iphone, ipad, or ipod touch,
2024. Accessed: 2024-05-22.

[3] Daniel Barath, Jiri Matas, and Jana Noskova. Magsac: Marginalizing
sample consensus. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), June 2019.

[4] Luke Campagnola et al. PyQtGraph: Scientific Graphics and GUI
Library for Python. MIT License, 2009–.

[5] Jan Čech and Radim Šára. Efficient sampling of disparity space for
fast and accurate matching. In BenCOS 2007: CVPR Workshop To-
wards Benchmarking Automated Calibration, Orientation and Surface
Reconstruction from Images. IEEE, 2007. Software GCS 2.0.

[6] Dimo Chotrov. Epipolar geometry of stereo vision, 2018.

[7] Riverbank Computing. PyQt, 1998–.

[8] D. Ponsa E. Rublee E. Riba, D. Mishkin and G. Bradski. Kornia: an
open source differentiable computer vision library for pytorch. In Winter
Conference on Applications of Computer Vision, 2020.

[9] Clément Godard, Oisin Mac Aodha, and Gabriel J. Brostow. Unsuper-
vised monocular depth estimation with left-right consistency, 2017.

[10] Richard Hartley and Andrew Zisserman. Structure Computation, page
310–324. Cambridge University Press, 2 edition.

[11] Richard I. Hartley. Theory and practice of projective rectification.
International Journal of Computer Vision, 35(2):115–127, 1999.

[12] Kornia contributors. Documenation of: kornia.geometry.epipolar, 2024.

[13] Eleni Kouti. Geometric documentation of climbing routes: 3d maps
of sport climbing fields. the case study of villanueva de valdegobia.
Master’s thesis, National Technical University of Athens, School of Rural

49

7. Conclusion......................................
and Surveying Engineering, Department of Topography, Laboratory of
Photogrammetry, Athens, July 2019.

[14] P.R.S. Mendonca and R. Cipolla. A simple technique for self-calibration.
In Proceedings. 1999 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (Cat. No PR00149), volume 1, pages
500–505 Vol. 1, 1999.

[15] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer,
Ron Weiss, Vincent Dubourg, et al. Scikit-learn: Machine learning in
python. Journal of machine learning research, 12(Oct):2825–2830, 2011.

[16] Johannes Lutz Schönberger and Jan-Michael Frahm. Structure-from-
motion revisited. In Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2016.

[17] Johannes Lutz Schönberger, Enliang Zheng, Marc Pollefeys, and Jan-
Michael Frahm. Pixelwise view selection for unstructured multi-view
stereo. In European Conference on Computer Vision (ECCV), 2016.

[18] Jiaming Sun, Zehong Shen, Yuang Wang, Hujun Bao, and Xiaowei Zhou.
LoFTR: Detector-free local feature matching with transformers, 2021.

[19] OpenCV Development Team. OpenCV: Open source computer vision
library, 2000–.

[20] Klaus Thoeni, Anna Giacomini, Ron Murtagh, and Eric Kniest. A
comparison of multi-view 3d reconstruction of a rock wall using several
cameras and a laser scanner. ISPRS - International Archives of the
Photogrammetry, Remote Sensing and Spatial Information Sciences,
XL-5:573–580, 06 2014.

[21] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland,
Tyler Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson,
Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew
Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew
R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, C J Carey, İlhan
Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef
Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R.
Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul
van Mulbregt, and SciPy 1.0 Contributors. SciPy 1.0: Fundamental
Algorithms for Scientific Computing in Python. Nature Methods, 17:261–
272, 2020.

[22] Lihe Yang, Bingyi Kang, Zilong Huang, Xiaogang Xu, Jiashi Feng, and
Hengshuang Zhao. Depth anything: Unleashing the power of large-scale
unlabeled data. In CVPR, 2024.

50

	Introduction
	Related Work
	The solution
	Getting the 3D model
	Creating the data set (capturing images)
	Camera calibration
	Correspondence matching
	Epipolar Geometry
	Rectifying images
	Dense stereo matching
	Interpolating disparity
	Directly relating images (projection)
	Triangulation into 3D

	Getting measurements from 3D data
	Measuring real world distance
	Measuring angles in the scene

	Implementation details
	Wrapping a library for use in python
	Creating a GUI application
	Data selection
	Processing
	Result Visualization

	Experiments
	cross-validation method
	Measurement accuracy evaluation
	Measuring only using regularities
	How distance from reference measurement impacts results

	Angle measurement evaluation
	3D point cloud evaluation
	Expansion on results
	Dataset quality
	Reference measurement quality
	Other factors influencing quality

	Limitations and future Work
	Improving accuracy
	Creating datasets
	Self-calibration

	Building a mobile app
	Automatic scale detection
	Inventing new use cases and adding features

	Conclusion
	Bibliography

