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ABSTRACT

This master’s thesis focuses on analyzing and designing robust controllers for a
two-wheeled-legged robot on wheels named Sk8o. The objective is to determine
the optimal extension length of the robot’s legs and subsequently design robust
controllers. One controller will be designed based on the identified nominal
length, while the other will benefit from measuring the robot’s height. There-
fore, the thesis first addresses system modeling. With the help of the model, an
analysis is conducted based on which the controllers are designed. Finally, these
controllers are tested and compared in simulations and on the real robot.

Keywords: linear quadratic regulator, robot, robust control, uncertainty, gain-
scheduling, H∞, loop-shaping
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ABSTRAKT

Tato diplomová práce se zabývá analýzou a návrhem robustních regulátorů pro
dvounohého robota na kolečkách jménem Sk8o. Cílem je nalézt optimální délku
natažení nohou robota a následně navrhnout robustní regulátory. Jeden regulátor
bude navrhnut na základě nalezené nominální délky, zatímco druhý bude benefi-
tovat z měření výšky robota. Nejdříve se proto práce věnuje modelování systému.
S pomocí modelu se provede analýza na základě čehož se navrhnou regulátory.
Na závěr jsou tyto regulátory testovány a provnávány v simulacích a na reálném
robotovi.

Klíčová slova: lineární kvadratický regulátor, robot, robustní řízení, neurčitost,
gain-scheduling, H∞, tvarování frekvenční charakteristiky
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CHAPTER 1

INTRODUCTION

1.1 Goals

This thesis aims to analyze and design robust controllers for the two-wheeled
bipedal robot named Sk8o. Special attention will be paid to the problem of
stretching and shortening its legs, which changes the robot’s height. Notably,
the analysis will be performed on the simplified wheeled inverted pendulum,
whose rod length will represent the equivalent of the robot’s height. Based on
this analysis, two robust controllers will be designed to ensure stability and
performance across all possible heights of the robot. One controller will utilize
measurements of the imaginary rod length, while the other will assume the rod
length falls within a specified range.

1.2 Motivation

The motivation for starting to analyze and design new controllers was that the
robot oscillates at its maximum height with the currently deployed controller.
This controller was designed at nearly its lowest height because it was intuitively
considered that the height where it is the hardest to stabilize the robot is in its
bent legs. It was shown that this idea was not the best, and from observation, it
was seen that the performance was not ideal.
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CHAPTER 1. INTRODUCTION

1.3 Outline
In Chapter 2 the robot Sk8o will be introduced. It will present its structure
together with the components used in the robot.

Chapter 3 will present two used models. One simplified model is used for
analysis and designing new controllers, together with a full rigid body simulation
model, whose purpose is to test controllers before they are deployed to the real
robot. The connection between these two models and the real robot will be shown.
How to measure the robot’s height will also be explained.

Next, Chapter 4 will present the structure of the linearized simplified model
together with analysis, which leads to finding the optimal prolongation of the
legs. Also, an analysis of the already deployed controller will be performed to
find the length for which the original controller could be designed to ensure good
performance across all heights of the robot.

In Chapter 5, two types of controllers will be introduced. One robust controller
benefiting from the analysis in the previous chapter, while the second introduced
controller will benefit from the measurement from which we can estimate the
robot’s height.

In the following two chapters, the experiments will be performed. In Chapter
6, the experiments in the simulator will be shown. The comparison between
the controllers will be evaluated. The same holds for Chapter 7, where the
experiments will be done on the real robot. Also, this chapter will compare the
results achieved with those achieved in the simulator.

2



CHAPTER 2

SK8O ROBOT

This chapter will introduce the Sk8o, a two-wheeled bipedal robot, emphasizing
its structure and components. The robot was originally developed in 2021 by
Krištof Pučejdl and Martin Gurtner in the Advanced Algorithms for Control
and Communications (AA4CC) group at the Faculty of Electrical Engineering
(FEE) Czech Technical University in Prague (CTU). It was inspired by the robot
Ascento [2], originally developed at ETH Zurich.

2.1 Related Works
Since the first development of the robot, much work, especially in the form of a
thesis, was done. For this thesis, it is important to acknowledge the works that
provided the foundational information and insights. The most significant source
of information was gained from the thesis by Dominik Hodan [13]. Also, as a
source of information, theses by Adam Kollarcik [9], and Petr Brož [21] were
used. The robot Sk8o is captured in Figure 2.1.

3



CHAPTER 2. SK8O ROBOT

Figure 2.1: Sk8o robot

2.2 Description
The robot has two legs with a closed kinematic chain ending with actuated
wheels. These legs are attached to the body at the hip. In the body, all the
electronics, except motors, are concerned. Each leg can be extended and stretched
independently by controlling the corresponding motor installed in the hip. A
rapid extension of both legs allows the robot to jump. Moreover, the joint is
situated between the hip and wheels, referred to as the knee. The knees contain a
torsion spring that partially counteracts gravity. Most of the parts were created
using a 3D printer.

2.2.1 Actuators
The robot movement is handled by four eX8108 105KV brushless DC motors,
two placed at the wheels and the other at the hips. They are controlled by Ben
Katz’s 3-phase motor controller 1. Both position and torque control modes are
available for all four motors, with a frequency of operation set at 40 kHz. Position
control governs the extension of the legs at the hips, while the motor torque mode
control is used for the wheels. The software imposes a maximum torque limit of
0.7 N m at the wheels. Additionally, the actuators at the hips are geared up by a

1https://github.com/bgkatz/3phase_integrated
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2.2. DESCRIPTION

factor of 16.5 to ensure adequate torque delivery.

2.2.2 Sensors
The robot has an Inertial Measurement Unit (IMU) to measure accelerations,
angular rates, and Euler angles. More precisely, it utilizes the ICM-42688 sensor,
featuring a built-in anti-aliasing filter, and is configured with a bandwidth of
1051 Hz. Moreover, each motor controller monitors and reports the motor’s
position, velocity, and torque. For completeness, the robot can be integrated with
a RealSense camera for extended functionality. Its inclusion is not important to
the focus of this thesis.

2.2.3 Computers
There are currently two computational units in the robot, namely the Teensy 4.0
board and the Odroid N2+ computer. Teensy performs periodic tasks, such as
collecting measurements from the motor controllers and IMU, as well as passing
the required actions to the motor controllers. Subsequently, this measurement
data is transmitted to the Odroid computer on demand. Programmed in the C++
language, the Teensy operates with its main loop running at a frequency of 1
KHz. The Odroid board facilitates remote interaction with the robot through
Wi-Fi connectivity and/or an Xbox controller. Operating on Ubuntu Linux, this
board organizes its functionalities as services programmed in C++ or Python. The
schematic of components is in Figure 2.2.

Figure 2.2: Electronics diagram. Reproduced from [13]
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CHAPTER 3

MODELING SYSTEM DYNAMICS

This chapter introduces two types of models, each serving specific purposes.
The simple control-oriented model, primarily used for some analysis and design
controllers. The second model, known as the high-fidelity, is intended to verify
the designed controllers before they are deployed to the real robot. This high-
fidelity model closely replicates the full dynamics of the robot. Additionally, the
chapter will draw analogies between these two models.

3.1 Simple Control-Oriented Model
For analysis and control design, the Segway-like model (a wheeled inverted pen-
dulum) representing a simplified model of the Sk8o robot will be used. Notably,
when the robot’s legs are fixed, its behavior resembles that of a Segway-like
model. This model can be seen in Figure 3.1 and was obtained from previous
work by Dominik Hodan [13] and [18]. The model will be presented in the form
of state-space equations, along with its linearized approximation. Unlike previous
works, this model will incorporate dependence on the rod length in its linear
approximation.

The generalized coordinates of the model are position in x coordinate, pitch
angle ϕ, and yaw angle ψ. These coordinates are concentrated to a single vector
q1. Its derivatives are also concentrated to a vector, this time to q2. By stacking
these two vectors, we got the final q state vector. The model has two torque inputs,
one uL from the left wheel and the second uR from the right wheel, concentrated
to input vector u. Finally, the state space representation is

q̇ = [ q1

M−1 (Bu −C −Dq2 −G)
] = f(q,u), (3.1.1)

6



3.1. SIMPLE CONTROL-ORIENTED MODEL

Figure 3.1: Segway-like model. Reproduced from [13]

where matrices are in the following form

M =
⎡⎢⎢⎢⎢⎢⎣

m11 m12 0
m21 m22 0
0 0 m33

⎤⎥⎥⎥⎥⎥⎦
,B =

⎡⎢⎢⎢⎢⎢⎣

1
r

1
r

−1 −1
−w

r −w
r

⎤⎥⎥⎥⎥⎥⎦
,C =

⎡⎢⎢⎢⎢⎢⎣

0 c12 c13
0 0 c23
c31 c32 c33

⎤⎥⎥⎥⎥⎥⎦
,

D =
⎡⎢⎢⎢⎢⎢⎣

d11 d12 0
d21 d22 0
0 0 d33

⎤⎥⎥⎥⎥⎥⎦
,G =

⎡⎢⎢⎢⎢⎢⎣

0
−mgρ cosϕ

0

⎤⎥⎥⎥⎥⎥⎦
, (3.1.2)

with the following elements of matrices

m11 =mb + 2mw + 2
J

r2
, m12 =m21 =mbρ cosϕ, m22 = Iby +mbρ

2,

m33 = Ibz + 2K +
w2

2
(mw +

J

r2
) − (Ibz − Ibx −mbρ

2) sin2 ϕ,

c12 = −mbρϕ̇ sinϕ, c13 = −c31 =mbρψ̇ sinϕ,

c23 = −c32 = (Ibz − Ibx −mbρ
2) ψ̇ sinϕ cosϕ,

c23 = −(Ibz − Ibx −mbρ
2) ϕ̇ sinϕ cosϕ,

d11 =
2b

r2
, d12 = d21 = −

2b

r
, d22 = 2b, d33 =

w2b

2r2
,

where the values of these parameters are listed in table 3.1. It is important to note
that the rod length of the Segway model is not a fixed value but varies due to the
adjustable height of the actual robot.

7



CHAPTER 3. MODELING SYSTEM DYNAMICS

Symbol Parameter Value Unit
w distance between wheels 0.29 m
ρ rod length 0.26 - 0.43 m
r wheel radius 0.08 m
mb body mass 4 kg
mw wheel mass 0.3 kg
J wheel moment of inertia about turning axis 735 × 10−6 kg m2

K wheel moment of inertia about vertical axis 39 × 10−5 kg m2

Ibx roll moment of inertia 484 × 10−4 kg m2

Iby pitch moment of inertia 377 × 10−4 kg m2

Ibz yaw moment of inertia 406 × 10−4 kg m2

b wheel damping 0.01 N m s rad−1

g gravity constant 9.81 m s−2

Table 3.1: List of parameters for Segway-like model

3.1.1 Linearized model

Since all methods and analyses in this thesis require a linear model, a linear
approximation of the model must be performed. The linear approximation about
its equilibrium q = 0,u = 0 is computed by the Jacobians of the state space model
3.1.1 as follows

A(ρ) = ∂f(q,u)
∂q

∣
q=0,u=0

,B(ρ) = ∂f(q,u)
∂u

∣
q=0,u=0

. (3.1.3)

Because the real robot can change its height, both the state matrix A(ρ) and input
matrix B(ρ) depend on the rod length. The position and orientation will not
affect further analysis and control. That is why the states x and ψ are removed
from state vector q. From now on, if the vector q will be mentioned, we mean
the reduced version. The same holds for the state and input matrices.

3.1.2 Models for control design

To address the differences between the real robot and the simulation model, which
will be detailed in section 3.2.3, we first reorder the states and matrices using
a transformation matrix. This reordering simplifies the subsequent transforma-
tions between the real robot states and the states used in the simulator. The

8



3.1. SIMPLE CONTROL-ORIENTED MODEL

transformation matrix is defined as

T =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

. (3.1.4)

The transformation is then performed in the following manner

q = Tq, A(ρ) = TA(ρ)T−1, B(ρ) = TB(ρ). (3.1.5)

In this thesis, two different types of controllers will be designed. For this
purpose, we introduce two different structures of the system. One is in continuous
time, which serves for dynamic controller design, and one is in discrete time for
state feedback with integral actions.

System for dynamic controller

This structure of the system will not depend on the rod length. It will be set at its
nominal value found in 4.3. We can measure all states there, so the output matrix
C will be the identity matrix, and the feedthrough matrix D will be zero. Note
that this system will sometimes be called a plant during the text. The minimal
state space realization of this system will be marked as

G = (A,B,C,0). (3.1.6)

The controller developed based on this model will then be discretized for deploy-
ment to the real robot.

System for state feedback

Therefore, for deployment onto the physical robot, the state feedback controller
must operate within a discrete time. For this purpose, the model must be dis-
cretized. This can be done simply by zero-order hold discretization as follows

Ad(ρ) = eA(ρ)h, Bd(ρ) = ∫
h

0 e
A(ρ)h dtB(ρ), (3.1.7)

where h is the sampling period. This controller aims to stabilize the system in
the upper position and allow tracking of the velocity ẋ and yaw rate ψ̇. Since, for

9



CHAPTER 3. MODELING SYSTEM DYNAMICS

this system, the controller will be state feedback, it is necessary to add integral
action. The extended system by this integral action is as follows

[qk+1
ϵk+1
]

´¹¹¹¹¹¸¹¹¹¹¹¶
z(k+1)

= [Ad(ρ) 0
−L I

]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Ai(ρ)

[qk

ϵk
]

±
z(k)

+[B(ρ)
0
]

´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
Bi(ρ)

uk + [
0
I
]

°
Br

rk (3.1.8)

where rk is the reference signal, I is an identity matrix, and L is a matrix that
defines what states we want to track. In our case, this matrix has the form

L = [1 0 0 0
0 1 0 0

] . (3.1.9)

Then, the state feedback gain Ki can be found for this augmented system.

3.2 High Fidelity Model
For testing the new controllers, a simulation model that is as accurate as possible
to that of the real robot is needed. In previous work by Dominik Hodan, this
model was developed, but in MuJoCo [26]. Because this thesis uses MATLAB
[17] for analysis and developing new controllers, it would be demanding to
rewrite each controller to this model. For this purpose, as part of this thesis, it
was also developing this model in MATLAB Simscape [3]. In this environment,
the entire model is depicted through the interconnection of physical components
represented as blocks. Unlike classical manipulators, which have fixed bases,
this model type falls into the category of floating base systems [22]. This means
the robot’s body is represented as a moving base, and the end effector is, in this
situation, the robot’s wheels. The model is, therefore, modeled from body to
wheels.

3.2.1 Modelling
To facilitate easy handling of the model, it is advisable to introduce the coordinate
frames of the robot first. To accomplish this, it is necessary to derive the appro-
priate transformations between each frame. The resulting frames for the right leg
are shown in Figure 3.2. An additional view of the robot is then in Figure 3.3.
All corresponding parameters are reproduced from [13]. The moments of inertia
were also reproduced, except for the body, which was updated. These parameters
can be seen in the Table 3.2 and moment of inertia in 3.3. The transformation

10



3.2. HIGH FIDELITY MODEL

Figure 3.2: Right leg description Figure 3.3: Front robot description

Body Symbol Value Unit

body

mb 3 kg
lb 100 mm
luk 93 mm
lw 92.5 mm

upper leg
mu 0.2 kg
lu 188 mm

lower leg

ml 0.2 kg
ll 190 mm
llk 50 mm
bk 0.15 N m s rad−1

kinematic loop
mk 0.1 kg
lk 193 mm

wheel
mw 0.3 kg
lo 25.6 mm
r 80 mm

- b 0.01 N m s rad−1

Table 3.2: Parameters of the full model

between each frame was defined as rotation Rij followed by translation tij . The

11



CHAPTER 3. MODELING SYSTEM DYNAMICS

Body Ixx [kg m2] Iyy [kg m2] Izz [kg m2]
body 4.84 × 10−2 4.06 × 10−2 3.77 × 10−2
upper leg 6.04 × 10−4 1.67 × 10−5 5.91 × 10−4
lower leg 9.75 × 10−4 1.67 × 10−5 9.62 × 10−4
kinematic loop 6.36 × 10−4 1.67 × 10−5 6.22 × 10−4
wheel 3.90 × 10−4 3.90 × 10−4 7.35 × 10−4

Table 3.3: Inertia parameters of different parts

structure of the rotation and translation is defined as follows

Rij =
⎡⎢⎢⎢⎢⎢⎣

cosΦi − sinΦi 0
sinΦi cosΦi 0
0 0 1

⎤⎥⎥⎥⎥⎥⎦
, tij =

⎡⎢⎢⎢⎢⎢⎣

tx
ty
tz

⎤⎥⎥⎥⎥⎥⎦
(3.2.1)

As can be seen, the rotation is considered only around the z-axis with angle Φi

and translation in x, y, and z-axis. The described transformation for the right leg
is listed in Table 3.4. The corresponding transformation for the left leg is defined
similarly.

(i, j) Φi tx ty tz

(0,1) 0 0 −lb lw
(1,2) Φ1 −lu 0 0
(2,3) Φ2 llk 0 0
(3,4) −Φ3 lk 0 0
(2,5) Φ2 −ll 0 0
(0,5) −Φ0 −luk 0 0

Table 3.4: List of variables for right leg

Then, the model based on these parameters was designed. First, the typical
blocks, such as solver configuration, world (reference) frame, and mechanism
configuration blocks, were created. The interconnection of these blocks is evident
in [4]. Subsequently, the appropriate transformation establishes the connection
between the reference frame, the body, and the ground. The robot’s body is
represented as the 6-DOF joint [1]. This joint is then followed by transformations
defined in Table 3.4, wherein each frame is the Revolute Joint [6]. Because this
system is modeled as a floating base system, the contacts between the wheels and
the floor at least had to be defined. These contacts are modeled by block Spatial
Contact Force block [7]. These contacts are essential to address the interaction
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3.2. HIGH FIDELITY MODEL

between the robot, particularly the wheels and the ground. These contacts then
seem to influence the behavior of the robot. However, in this thesis, the default
parameters were used. The developed model 1 in MATLAB Simscape is in Figure
3.4.

Figure 3.4: Modeled the Sk8o robot in the Simscape environment

3.2.2 Connection to simple control-oriented model

All previously developed controllers, including the newly developed controllers
in this thesis, utilize the states derived from an imaginary Segway-like model.
For this purpose, these states must be extracted from the high-fidelity model. The
forward velocity ẋ is measured from wheel velocities as

ẋ = r
2
(θ̇R + θ̇L), (3.2.2)

where θ̇R is velocity from right wheel and θ̇L from left wheel. Similarly the yaw
rate ψ̇ is computed as

ψ̇ = r

2(lw + lo)
(θ̇R − θ̇L). (3.2.3)

1https://gitlab.fel.cvut.cz/aa4cc/sk8o/rocond
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CHAPTER 3. MODELING SYSTEM DYNAMICS

The pitch rate ϕ̇ and pitch angle ϕ are then measured using Transform Sensor
block [8]. This block measures states between the body and the world frame.
Subsequently, the pitch angle is calculated as follows

ϕ = atan2(−r31,
√
r232 + r233), (3.2.4)

where rij is the position index in the rotation matrix provided by the transform
sensor. The computation of pitch angle is a little bit complicated. First, the
skew-symmetric matrix is computed as

⎡⎢⎢⎢⎢⎢⎣

0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

⎤⎥⎥⎥⎥⎥⎦
= ṘR⊺ (3.2.5)

where Ṙ is the time derivative of the rotation matrix the Transform Sensor pro-
vides. This gives us angular velocities around each axis in the world frame.
Therefore, another transformation is necessary as we require the angular ve-
locities in the body frame. After un-skewing the skew-symmetric matrix, the
transformation can be written as

⎡⎢⎢⎢⎢⎢⎣

ωz

ωy

ωz

⎤⎥⎥⎥⎥⎥⎦
= R⊺

⎡⎢⎢⎢⎢⎢⎣

ωz

ωy

ωz

⎤⎥⎥⎥⎥⎥⎦
. (3.2.6)

Then, finally, the pitch rate is given as ϕ̇ = −ωz.

Rod length Computation

Figure 3.5: Leg description

Next, it is important to connect the rod length
of the imaginary Segway-like model to the
height of the full robot. The change of the
height of the full robot is controlled by the
angle Φ1 at the hips. The rod length can be
computed from this angle based on the figure
3.5 in the following manner. Note that this
computation is nothing more than using the
law of cosine. The diagonal length d1 in the
kinematic loop is computed as

d1 =
√
l2u + l2uk + 2luluk cos(Φ1 +Φ0) (3.2.7)
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3.2. HIGH FIDELITY MODEL

Then, the angles Φ12 and Φ22, where its sum is
angle Φ2 can be derived as

Φ12 = arccos(
l2u + d21 − l2uk

2lud
) , (3.2.8)

Φ22 = arccos(
l2lk + d21 − l2k

2llkd
) . (3.2.9)

Finally, the rod length approximating the actual height of the robots is given by

ρ =
√
l2u + l2l + 2lull cos(π − (Φ12 +Φ22)) + lb. (3.2.10)

Joint angles initialization

Figure 3.6: Leg description

If we want to initialize the angles in joints
based on the rod length, we can compute the
angle Φ2 at the knee as

Φ2 = π − arccos(
l2u + l2l − (ρ − lb)2

2lull
) .

(3.2.11)
Then, the d2 could be computed as

d2 =
√
l2u + l2uk + 2luluk cos(Φ2). (3.2.12)

Based on the d2 we can now derive angles Φ11

and Φ22 in the following manner

Φ11 = arccos(
d22 + l2lk − l2k

2d2llk
) −Φ0, (3.2.13)

Φ12 = arccos(
d22 + l2u − l2k

2d2lu
) . (3.2.14)

The sum of these two angles forms the Φ1. Last angle Φ3 which consist of the
sum of Φ31 and Φ32 can be given by

Φ3 = arccos(
d22 + l2k − l2lk

2d2lk
) + arccos(d

2
2 + l2uk − l2u
2d2luk

) . (3.2.15)
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3.2.3 Differences to the real robot
This model should be as close to the real robot as possible, but still, some differ-
ences from the real robot were made. After all, it is indeed just a simplification of
the real world, but still, it closely imitates the system’s dynamic. The difference
was made in how the states of the imaginary Segway-like model introduced in
3.2.2 are compared to how it is measured in the real robot.

The states are not the same as introduced in 3.2.2. The states of the Segway-
like model in the real robot are measured as

ẋ = θ̇L + θ̇R (3.2.16)

ψ̇ = θ̇L − θ̇R. (3.2.17)

The pitch rate ϕ̇ and pitch angle ϕ are computed from the IMU sensor, so there
is no difference. Thanks to the state reorganization introduced in 3.1.2, the next
transformations will have a diagonal structure. The transformation matrices then
have the following form

Tq =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

− r
w 0 0 0
0 − r

2 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, Tr [
− r

w 0
0 − r

2

] (3.2.18)

where Tq transforms states introduced in 3.2.2 to the real robot states and the Tr

transform the references. A state feedback controller was also introduced in this
thesis. This controller can be easily transformed to a real robot as

Ki =Ki [
Tq

Tr
]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Tqr

, (3.2.19)

and by multiplying the controller again but now with T−1qr we get the controller
back to the simulation model.

Another difference is in the hip angle references and measurement. Because
one of the controllers will benefit from this measurement, feeding him correct
hip angles is crucial. The equation what do this transformation is

Φs = α +
Φr

16.5
, (3.2.20)

where Φs is simulator hip angle, which also controller expect and Φr is real robot
hip angle. The α = 66.5 degrees is an angle constant.
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CHAPTER 4

UNCERTAINITY MODELLING

This chapter focuses on system properties determined mostly by the rod length of
a Segway-like model. First, the structure of the Segway-like model, depending on
the rod length, will be shown. Then, the rod length will be taken as the uncertain
parameter, which can vary between its maximal and minimal value. Based on
this, the nominal value of some criterion will be found.

4.1 Parameter Dependence Structure
For further analysis, we need to know how the already linearized system depends
on the rod length. For this purpose, the state matrix A(ρ) and input matrix B(ρ)
dependent on this parameter with some rounding up for a better view is shown
below

A(ρ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−0.08l2−0.0064l−0.0002
0.021l2+0.00037

0.0064l2+0.0005l
0.021l2+0.00037 0 −1.0045l2

0.021l2+0.00037
0.0064l+0.0006

0.0017l2+2.9×10−5
−0.0005l

0.0017l2+2.9×10−5 0 0.097l
0.0017l2+2.9×10−5

0 0 −2.18 0
0 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

(4.1.1)

B(ρ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−0.32l2−0.0256l−0.00095
0.021l2+0.00037

−0.32l2−0.0256l−0.00095
0.021l2+0.00037

0.0256l+0.00247
0.0017l2+2.9×10−5

0.0256l+0.00247
0.0017l2+2.9×10−5

60.24 −60.24
0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

. (4.1.2)

The fraction in these matrices is caused by the inverse of the mass matrix M in
the equation 3.1.1. We can see that the yaw rate ψ̇ does not depend on the rod
length. If we plot each of the elements of state matrix A(ρ), which depends on
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the rod length, we will see that the development is smooth and seems to tend to
be quadratic. This shows the Figure 4.1. The development of the elements of
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Figure 4.1: Depence of element in state matrix

the input matrix B(ρ) will be similar to how elements develop based on the rod
length.

4.1.1 Depence of eigenvalues on the rod length

Above, we found that the development of elements of the matrices is smooth.
A similar holds for the development of the eigenvalues, which is not surprising.
Because the dependence of eigenvalues on the rod length is long and hence it
is impossible to show it, at least the plot of the dependence based on the rod
length is shown in Figure 4.2. Considering that the eigenvalues lack an imaginary
part, they are represented without reference to the complex plane. Moreover,
the eigenvalue λ3 is omitted as it remains constant. We can see that with the
higher rod lengths, the eigenvalues tend to go to the origin both for stable and
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Figure 4.2: Eigenvalues rod length dependence

unstable eigenvalues. This analysis will have the impact of the one-designed
controller, which uses measurement of this imaginary rod length, more precisely
of the stretch of the legs in the full robot. See 5.2 for more details.

4.2 Analysis for Already Deployed LQ Controller

In the current state of this thesis, the primary controller implemented in the real
robot is the Linear Quadratic (LQ) controller. It was originally developed for
the rod length ρ = 0.2907 meters, slightly lower than the middle of the possible
rod length value. The measurements and observations showed that the full robot
behaves more oscillatory if the legs are stretched. This section aims to analyze
the robust stability and performance of this controller. Also, to determine at
which rod length the LQ controller should be roughly designed. We switch to
the discrete time for this analysis because the controller is discrete, and we use
the same system structure introduced in 3.1.2 for state feedback. The controller
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CHAPTER 4. UNCERTAINITY MODELLING

was first transformed using inversion in the 3.2.19 to the state of the Segway-like
model.

4.2.1 Robust stability

Above, the system was said to be stable at each rod length. Indeed, if we visualize
the eigenvalues at each rod length within the possible value range, all will be
inside the unit circle. From the analysis done in 4.1, we can expect that if we
grid the discrete-time system finely, the trajectory of the development of the
eigenvalues will be fully captured. The eigenvalues in the complex plane are
shown in the Figure 4.3. This figure confirms that truly all eigenvalues lie inside a
unit circle. Also, it is worth noting that the eigenvalue, which has seen the largest

0.95 0.96 0.97 0.98 0.99 1

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

Figure 4.3: Dependence of eigenvalues on rod length

development, tends to go outside the unit circle with a higher rod length. Indeed,
if we adjust the rod length, we will get an unstable system at some point.
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4.2.2 Robust performance

Now that we know the system is stable at each rod length, we can analyze robust
performance. However, the responses to unit references will be shown before we
start the analysis. Figure 4.4 captures the responses at different rod lengths. We

Figure 4.4: Responses to unit references

can conclude that the responses are relatively pretty fast. The velocity converges
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to its reference within approximately one second, while the yaw rate achieves its
reference in nearly half a second.

One possible way to analyze robust performance is to compute H∞ norm.
This norm is defined as the peak gain of the system G across all frequencies and
all input directions [5]. Along this, we plot the system’s singular values for better
insight. This H∞ norm can be computed by solving the following optimization
problem outlined in [11] as

min
P,γ

γ

s.t.

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−P 0 0 0
0 Acl

⊺PAcl −P Acl
⊺PBr C⊺

0 Br
⊺P⊺Acl Br

⊺PBr − γI D⊺

0 C D −γI

⎤⎥⎥⎥⎥⎥⎥⎥⎦

< 0,
(4.2.1)

where P is the symmetric matrix solution. This optimization problem can be
solved by [16]. By solving this optimization problem above, we obtain minimal
γ, which means that all singular values of the state space realization Gcl =
(Acl,Br,C,D) is below this γ value. If we solve this optimization problem for
systems at different rod lengths, we get the set of these γ values. The maximum
found is γ = 3.3, corresponding to the maximum possible rod length. This
statement supports Figure 4.5, which shows the singular values at different rod
lengths. We can see that the maximum γ found corresponds to the maximum
possible rod length. This result supports the observation that the system oscillates
slightly at about its maximum height. In the next section, we will look at what
happens when the controller is designed at near the maximum rod length.

4.2.3 Optimal rod length LQ controller design
Based on the analyses above, we can say that the controller could be designed
near the maximum to get the peak low at this height. Again, the eigenvalues for
this will be shown together with the H∞ norm and singular values to support this
statement. Also, the responses to the references will be shown at the end. We
know how fast the dynamic should be from the 4.2.2. Based on this, the controller
was designed for the rod length with value ρ = 0.4 meters. The dependence of
eigenvalues on the rod length is in Figure 4.6, which shows that the system is also
stable at each rod length. Examining Figure 4.7, depicting the singular values,
reveals the absence of resonance peaks, with the maximum γ at just 1.08. These
findings indicate a significant improvement in robust performance. Lastly, the
responses to the unit yaw rate reference ψ̇ref are in the figure 4.8 together with
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Figure 4.5: Singular values at different rod lengths

the responses to the unit velocity reference ẋref. We can see no oscillation there,
which means the responses are also better at this rod length, as expected. The
responses at different rod lengths are similar to each other.

From this analysis, we can say that the LQ controller should be designed
in the neighborhood of its maximum value for similar performance at each rod
length. However, because it could be hard to determine the exact optimal rod
length and this analysis will not be very important for designing the controller, the
exact optimal rod length will not be provided. Lastly, from some experimenting,
we can at least provide the range where the performance is still good, and also,
we will not see much difference between performance in this range. The optimal
rod length ρ is between 0.38 and 0.43 meters.
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Figure 4.7: Singular values at different rod lengths
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Figure 4.8: Responses to unit references
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4.3 Nominal Model Search
This section aims to determine the nominal model for the robot. The following
approach was used to derive the nominal value for the rod length, which represents
the actual leg lengths of the real robot. First, the model was linearly sampled
between a minimal and maximal possible value of rod length. These sampled
models now serve as potential representations of the nominal model, denoted as
G0. For better visualization, only five possible nominal models were generated.
Because testing these nominal models against a larger set of possible models
is beneficial, another set of models Gi was generated. Then, the multiplicative
(relative) uncertainty to each of the possible nominal models was applied

e(jω) = max
σ(Gi)∈S

∣Gi(jω) −G0(jω)
G0(jω)

∣. (4.3.1)

The e(jω) now forms the upper bound of the relative uncertainty for each nominal
model. The example of the upper bound for one of the nominal models is shown
in Figure 4.9. Then, the upper bound for each of the generated nominal models
shows the Figure 4.10.

This figure shows that if we choose any of these models as nominal, there is
no crossover frequency. So, one of the possible criteria to quantify the nominal
model is the lowest e(jω), specifically at low frequencies. This criterium was
chosen, and it can be seen that the nominal model lies around ρnominal = 0.33.
Also, it can be seen that the more the nominal value is further from the actual
nominal value with the lowest uncertainty, the bigger the uncertainty is. Based on
this observation, we can shrink the radius of the possible nominal models around
the nominal model with the lowest uncertainty. This idea of shrinking the possible
models can be done iteratively, and we can find the exact value of the nominal
model with the lowest uncertainty. The result of the nominal model finding can
be seen in Figure 4.11. Based on our earlier criteria, the figure suggests that the
nominal model aligns with a rod length of ρnominal = 0.32 meters. Now, this rod
length will serve as the nominal value for which the robust controller in the next
sections will be designed.
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CHAPTER 5

CONTROLLER DESIGN

In this chapter, two different types of controllers will be designed. One approach
assumes that the rod length of the Segway-like model is constant, evaluated at
a nominal value, while the second approach benefits from the estimation of the
robot height. Initially, the robust controller, which cannot estimate the robot’s
height, will be designed. Then, gain scheduling will be discussed. The gain
scheduling approach estimates the robot’s height to update its gains based on this
estimate in real-time.

5.1 Robust Controller
This type of controller will not benefit from estimating the robot’s height. Instead,
we will assume that the robot height is uncertain within some range. This approach
will benefit from the analysis in a section about searching for the nominal model
in section 4.3. Based on the criterion described in this section, it was found
that the nominal model is for the robot height of ρnominal = 0.32 meters, which
is a little under half of its maximum and minimum height. This section will
describe the H∞ Loop Shaping method, which consists of loop shaping and
robust stabilization. In this design method, we switch to a continuous time system
defined in the equation 3.1.2, because it is easier than in discrete time. Then, the
controller is discretized. For the discrete-time case definition, see [12].

5.1.1 H∞ loop-shaping
This design procedure is based on H∞ robust stabilization, combined with the
loop shaping method explained in [25] and originally proposed by McFarlane
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Figure 5.1: H∞ robust stabilization

and Glover. This method can be divided into two stages. The first stage involves
shaping the open-loop plant using pre-compensator W1 and post-compensator
W2 to achieve the desired shape to the singular values of the open-loop frequency
response. The second stage is concerned with robustly stabilizing this shaped
plant. We note that robust stabilization can be done without shaping the plant.
However, the shaping procedure is crucial because we want to get some system
performance, so we will consider only this option.

Robust Stabilization

The shaped plant is robustly stabilized using H∞ optimization. An advantage of
this method is that we do not need to know these uncertainties explicitly. This
approach directly addresses uncertainty using two stable perturbations in the
normalized coprime factorization. This can be expressed in either its right or left
form. Here, we will assume the left form, defined as follows

G =M−1N, (5.1.1)

where M and N are stable transfer function. Then, the perturbed plant is defined
as

Gp = (M +∆M)−1(N +∆N), (5.1.2)

where the ∆M and ∆N are this time unknown stable transfer functions. These
transfer functions represent the uncertainty in the nominal system. Then, the goal
of robust stabilization is to stabilize the whole family of systems

Gp = {(M +∆M)−1(N +∆N) ∶ ∥[∆M ∆N]∥∞ < ε}, (5.1.3)
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using the dynamic controller feedback controller K, where ε > 0 is stability
margin. We can say that this perturbed system will be stable with the dynamic
feedback controller K if the following holds

∥[K
I
] (I −GK)−1M−1∥

∞
≤ 1

ε
. (5.1.4)

The maximum achievable stability margin ε is given by [14] as

ε−1max = (1 + ϱ(XZ))
1
2 , (5.1.5)

where ϱ(⋅) denotes the spectral radius, which means maximum eigenvalue. For
the strictly proper minimal state space realization of the system G, the Z and X
are the positive, unique solutions of the following algebraic Riccati equations

AZ +ZA⊺ −ZC⊺CZ +BB⊺ = 0, (5.1.6)

A⊺X +XA −XBB⊺X +C⊺C = 0. (5.1.7)

Then, the controller K which guarantees 5.1.4 for specified ε−1 < ε−1max is given by

Ks = [
A +BB⊺X + ε−2L−⊺ZC⊺(C +DB⊺X) ε−2L−⊺ZC⊺

B⊺X 0
] , (5.1.8)

where the matrix L is defined as

L = (1 − ε−2)I +XZ. (5.1.9)

It is important to note that these equations hold only for strictly proper systems,
which our system is. For the case where the system is not strictly proper (matrix
D is not zero), the corresponding equations can be found in the [25].

Loop Shaping Design

As mentioned, the plant should first be shaped to change the system’s performance.
This can be done, for example, by using some already designed controller that
ensures performance for the nominal model. During this thesis, there were some
attempts to design controllers, which initially ensured some good performance,
but these controllers were of high order, and the performance was farther from
that described in 4.2.2. Another option is to use the classical loop shaping method,
where we shape the singular values to ensure performance. Because we have no
phase information, robust stabilization is ensured in the second stage as explained
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in [15]. That is why we are just considering shaping the singular values of
the open loop frequency response. Also, in [25], it was mentioned that in real
applications, generally, little effort can be made by following some simple rules
to ensure good performance.

A general approach was involved in this design procedure. Our requirements
align with typical rules, seeking high gain at low frequencies to ensure good track-
ing and disturbance rejection while maintaining low gain at higher frequencies
for effective noise attenuation. Also, the slope should be -1 at the bandwidth
frequency. We will first consider the pre-compensator W1. Based on these rules,
similarly as in [10], a Proportional-Integral (PI) controller was used and set to
the diagonal of the pre-compensator W1 to ensure zero steady-state error. After
several trials of tuning the PI controller parameters, the final structure of the
pre-compensator W1 was determined to provide sufficient performance. The
post-compensator W2 was selected as an identity matrix. The pre-compensator
has the following structure

W1 = [
1.5s+0.075

s
1.5s+0.075

s

], (5.1.10)

and the shaped plant is then given as

Gs =W2GW1. (5.1.11)

Then, the robust stabilization was performed on this shaped plant, resulting in the
controller Ks. The maximal stability margin achieved was εmax = 0.33, meaning
the nominal system can take up 33% of coprime uncertainty. This is still higher
than the minimum recommended in [25]. The shaped controller can be expressed
for the plant G as

K =W1KsW2. (5.1.12)

The shaped singular values of the frequency response, together with that robustly
stabilized, are shown in Figure 5.2 We observe that at lower frequencies, the
singular values are squeezed together. At higher frequencies, the gain decreases,
and the slope is steeper. Additionally, the gain increases around the bandwidth.
Figure 5.3. shows the resulting controller structure, where the Ks(0) and W2(0)
are the dc gains. This controller structure was selected over the classical approach
to avoid directly exciting the dynamics of Ks, which leads to the undesirable
effects of the classical derivative kick [25]. On the other hand, we got the initial
opposite kick in the responses on reference tracking. This is likely because the
system is a non-minimum phase, and the controller Ks is not directly excited
with the change of reference.
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Figure 5.2: Initially shaped and robustified plant

Now, we switch back to the time domain, showing the responses to unit
references. The responses are shown in Figure 5.4. We can see that with a
comparison to unit responses in 4.2.2, the response to the velocity ẋr is a little bit
slower than that for the already deployed controller, approximately 0.5 seconds
slower. On the other hand, the response to ψ̇r is around 0.4 seconds faster. We
can also observe the initial kicks, as was mentioned before. If we also compare
the pitch rate ϕ̇ and pitch ϕ, the deviation from zeros is bigger than in the case of
the already deployed controller. A better comparison will be seen in Chapter 6,
where all developed controllers in this thesis will be compared with the already
deployed one. Chapter 7 will then compare all controllers in a real robot.

Anti-windup

Another advantage of using this controller structure is incorporating the anti-
windup. Because we used in the pre-compensator W1 the integrator, and the real
system has some saturation, it is required to use anti-windup. The anti-windup can
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Figure 5.3: Controller structure

be implemented by introducing the pre-compensator with its minimal state-space
representation W1 = (Aw,Bw,Cw,Dw) in Hanus form [24] as

u = [ Aw −BwD−1w Cw 0 BwD−1w

Cw Dw 0
] [us

ua
] , (5.1.13)

where us is the output from the controller Ks and ua represents the output from the
actuator saturation. Every experiment made in Chapters 6 and 7 was performed
with implemented anti-windup.
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Figure 5.4: Responses to unit references

5.2 Gain Scheduled Controller

In this section, we explore the implementation of a gain-scheduled controller that
leverages the measurement of the hip angles to estimate the robot’s height. Gain
scheduling is a control strategy that adapts its parameters, or gains, in response
to changes in the system dynamics. This approach is particularly useful for
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CHAPTER 5. CONTROLLER DESIGN

managing nonlinear systems whose dynamics vary across different operating
conditions. The typical methodology involves linearizing the system around
various operating points and designing a separate controller for each linearized
model. These controllers are then implemented through a lookup table or by
fitting the parameters (gains) to a spline function, allowing smooth transitions
between different operating points. This enables the controller to maintain optimal
performance across various conditions.

In section 3.2.2, it was demonstrated that rod length can be expressed using
the hip angle, which is measurable. The objective was to design a controller that
ensures consistent system dynamics across varying robot heights. To ensure this,
the following approach was used. First, the discrete-time Linear Quadratic (LQ)
controller was designed for a specific rod length. The used rod length was its
nominal value obtained in 4.3. But it could be chosen any other.

5.2.1 LQ controller design

This controller design approach aims to determine the stabilizable state feedback
gain Ki with integral action for tracking, which minimizes the following quadratic
cost function.

J(z,u) =
∞
∑
k=0

z⊺kQzk + u⊺kRuk (5.2.1)

for a given linear discrete-time state space model

zk =Aizk +Biuk, (5.2.2)

where Q =Q⊺ ⪰ 0 and R =R⊺ ≻ 0 are cost matrices for states and control inputs.
The optimal solution to this problem can be achieved by solving the infinite time
horizon LQ problem, expressed as

S =Q +A⊺i SAi − (A⊺i SBi)(R +B⊺i SBi)−1(B⊺i SAi), (5.2.3)

where S = S⊺ ⪰ 0 represents the solution. This equation is known as the discrete-
time Algebraic Riccati equation. The optimal state feedback gain matrix Ki is
then given by

Ki = (B⊺i SBi +R)−1(B⊺i SAi). (5.2.4)

The closed-loop system state matrix at this rod length is expressed as

Acl = (Ai −BiKi) (5.2.5)
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5.2. GAIN SCHEDULED CONTROLLER

5.2.2 Eigen structure assigment
To ensure stability and maintain identical responses across different rod lengths,
one approach is to assign each rod length with the characteristics of the closed-
loop matrix Acl. This effectively harmonizes the system’s behavior regardless
of the specific rod length. The closed-loop matrix Acl exhibits similarity to its
Jordan form J. The closed-loop matrix can be likened to its Jordan form in the
following manner

Acl = (Ai −BiKi) ∼ J. (5.2.6)

Utilizing the transformation matrix X, the above similarity relation can be equiv-
alently expressed as

(Ai −BiK) =XJX−1. (5.2.7)

Upon rearranging terms, the equation transforms as in [23] into

AiX −XJ −BiKiX = 0. (5.2.8)

We can further parameterize the equation using the matrix H, defined as

H =KiX. (5.2.9)

Because we already know for the used nominal system, these matrice K and X,
the parametrization matrix H is known, and the equation 5.2.8 can be rewritten
as follows

AiX −XJ −BiH = 0, (5.2.10)

which will result in the Sylvester equation. From [20], we can say that if the
matrices Ai and J have no same eigenvalues, then the solution X exists. The
controller is then finally retrieved as

Ki = −H−1X. (5.2.11)

Based on this approach, we can assign the Jordan form J determined by the LQ
controller for a nominal rod length to systems with different rod lengths.

After assigning the Jordan form to a set of grided rod lengths between its
maximal and minimal possible value, we can see from Figure 5.5 that the gain
dependence on the rod length is in the worst approximately quadratic. This is
not surprising because section 4.1 shows that the system dependence on the rod
length is approximately quadratic. Moreover, the eigenvalues have the property
of changing only in one direction, also in the quadratic form. The quadratic
gain dependence then holds for any nominal design. This fact is used, and the
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Figure 5.5: The dependence of individual gains on rod length
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5.2. GAIN SCHEDULED CONTROLLER

controller gains are fitted to a second-order polynomial. The final form of the
controller is then

u = −Ki(ρ)z, (5.2.12)

where (ρ) indicates parameter depence. Finally, the step response on the unit
references of the yaw rate ψ̇ref and velocity ẋref are in Figure 5.6. From this figure,

Figure 5.6: Response on the yaw rate reference

we can conclude that the response is almost the same at every rod length and
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much or less the same as for the already deployed controller in the rod length
for which it was designed. In the next two chapters, more detailed comparison
will be performed. It is worth mentioning that this approach can be used for any
already created state feedback controller if we know the gains of the matrix and
the rod length for which the controller was designed.
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CHAPTER 6

SIMULATION EXPERIMENTS

In this chapter, the experiments in the simulator will be performed. First, a
comparison between old and newly developed controllers will be made. A simple
balancing experiment will be done at different heights of the robot. Next, we
generate a general trajectory tracking incorporating velocity and yaw rate tracking.
Also, the robot height will change when tracking these references.

6.1 Balancing

The two developed controllers, gain scheduled and H∞ controller, will be com-
pared with the old LQ controller in these experiments. The comparison will be
performed at three different heights of the robot, in its low, middle, and maximum
height. The comparison will be made in terms of balancing performance. The
robot behavior at its lowest height is in Figure 6.1. We can see that the robot has
a similar balancing performance using the LQ and gain-scheduled controller at
this height. The robot performs poorly with the H∞ controller. A robot with this
controller tends to do little balancing, whereas the robot is still in the simulation
with the other controllers.

Following, we analyze the robot’s behavior when both legs are in the middle
position. The comparison of the robot’s behavior in this leg configuration is
shown in Figure 6.2. Again, we see the same behavior of the robot with LQ
and gain-scheduled controller. This is not surprising since the initial design of
the gain-scheduled controller was done at approximately this height. The same
holds for the LQ controller. The robot balance is much or less the same for both
controllers as for the lowest height. With the H∞ controller, the robot behaves
similarly as in the shortest legs configuration.
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CHAPTER 6. SIMULATION EXPERIMENTS

Figure 6.1: Balancing of the robot for shortest legs

Lastly, we will look at the robot’s behavior for the stretched legs. This
behavior is shown in the Figure 6.3. As expected, the robot with the LQ controller
had the worst balancing performance. With the gain-scheduled controller, the
robot behaved best. Again, the performance is similar to the other’s height, which
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6.1. BALANCING

Figure 6.2: Balancing of the robot at mid-legs configuration

was wanted. This time, theH∞ beats at least the LQ controller in balancing. Also,
as for the gain-scheduled controller, the behavior with this controller is the same
at each height.

Based on these three experiments, we can conclude that similar behaviors at
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Figure 6.3: Balancing of the robot for the stretched legs

each height have gain-scheduled and H∞ controllers. We especially wanted this
behavior with the gain-scheduled controller. Although in simulations, the H∞
produced worse behavior than the LQ controller, at least it kept consistent robot
behavior at each height. In the end, we can say that some improvements were
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made with these two newly developed controllers. We will see slightly different
behaviors in Chapter 7.

6.2 Reference Tracking
Now, the performance of the newly developed controllers in terms of tracking
will be evaluated. The tracking of the yaw rate ψ̇ and velocity ẋ during the robot’s
height change will be applied.

First, we will look at the robot’s behavior with H∞ controller. The responses,
applied torques, and hip angles are shown in Figure 6.4. We can observe over-
shoots in the velocity ẋ due to a change in the robot height during tracking
the references. Some undershoots and overshoots in all measurements with the
changes of references appeared. The yaw rate ψ̇ is pretty fast because the yaw
rate reference ψ̇ref is settled immediately. Looking at the actions, except for the
reference changes, the actions are small. We can also see the right hip angle Φ1L

and the left hip angle Φ1R changing over time. Some influence of the varying
height is obvious.

If we switch to using the gain-scheduled controller, we can observe the track-
ing of references in Figure 6.5. We observe better velocity reference ẋref tracking.
The deviation of velocity ẋ from its reference during the robot’s height variation
is insignificant. Also, the pitch rate ψ̇ and pitch angle ϕ are not influenced by
the varying height of the robot. The yaw rate ψ̇ settles its reference approxi-
mately after half of a second with little overshoot. This is slower than using H∞
controller.
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Figure 6.4: Reference tracking with varying height using H∞ controller
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Figure 6.5: Velocity reference tracking with varying height using gain-scheduled
controller
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CHAPTER 7

REAL ROBOT EXPERIMENTS

In this chapter, the same experiments as in 3.2.2 will be performed. First, a simple
balancing experiment will be performed at different heights. This experiment
will demonstrate that the newly developed controllers can improve the system’s
behavior at different heights, especially in the extended legs where the robot
for the original LQ controller oscillates. The next experiment will demonstrate
that the robot with these two newly developed controllers can follow a simple
trajectory during varying heights.

7.1 Balancing

This balancing experiment was performed on three different robot heights. No-
tably at its lowest height, in the middle, and at its maximum height. The com-
parison at the lowest height can be seen in the figure 7.1. We can see that the
best behavior in terms of balancing has the H∞ controller. There, we can see the
pattern in the velocity ẋ, where to ensure a low pitch rate ϕ̇, the robot slightly
moves forward and backward. The gain-scheduled controller holds that the robot
behaves slightly worse than using the original LQ controller. This can be because
the old controller has higher gains at this height (see the dependence of gains on
the rod length in Figure 5.5).

Now, we compare the robot’s behavior using different controllers at its middle
height. This behavior is shown in Figure 7.2. Again, the best behavior was
achieved with H∞ controller. We can observe that the pitch rate ϕ̇ and pitch
angle ϕ are closest to the origin of the whole experiment. The robot with a gain-
scheduled controller has more or less the same behavior, which is unsurprising.
The initial design for the gain-scheduled controller was made somewhere around
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Figure 7.1: Balancing of the robot at its minimum height

this height. The same is applied to the LQ controller.
The last balancing experiment was made at its maximum height. There, we

state that the robot oscillates for the LQ controller. Indeed, this fact is shown in
Figure 7.3, where the robot’s behavior with different controllers is also shown.
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Figure 7.2: Balancing of the robot at its middle height

We can observe the improvement in the robot’s behavior using newly developed
controllers. Again, the best performance was achieved with H∞ controller. The
gain-scheduled controller improved the balancing behavior at this height from
using the LQ controller. The behavior is again similar to other heights.
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Figure 7.3: Balancing of the robot at its maximum height
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We can conclude that in terms of balancing, the H∞ controller beat both the
LQ and the gain-scheduled controller. With this controller, the deviation from the
origin was small, especially in pitch rate ϕ̇ and pitch angle ϕ. This result differs
from in 6.1, where we saw that H∞ controller does not produce the best behavior
across different heights. This can be because the parameters in this simulator are
not precise. Also, the contact forces modeled in the simulator cannot be very
accurate.

7.2 Reference tracking
This section demonstrates that the robot with the newly developed controllers can
track references while changing its height. A comparison with the original LQ
controller was not made because the response with the gain-scheduled controller
will be much or less the same.

We will look first at how well the robot could track references with H∞
controller. The result of the experiment can be seen in the Figure 7.4. We can
see that the velocity reference ẋref is settled after approximately one and a half
seconds. The velocity ẋ at 11 seconds goes slightly lower (the robot began to slow
down). At this time, the hip angles were almost minimal (in robot measurement, a
higher value means a lower hip angle, see 3.2.3). In the second half of references
tracking, where the yaw rate reference ψ̇ref change from 0.5 rad/s to -0.5 rad/s,
the velocity was again settled and almost precisely tracked. We can observe the
rough deviation from the origin in the pitch rate ϕ̇ with the velocity reference
ẋref change. The system overreacts every time. This is probably due to how
the controller is implemented (see controller structure described in 5.1.1). This
overreaction can be seen in the left wheel action uL and right wheel action uR.
The response to the yaw rate reference ψ̇ref is settled almost immediately.

Now, we look at reference tracking using a gain-scheduled controller. The
responses are in the Figure 7.5. Now we see the faster response to the velocity
reference ẋref , traced in one second. After settling the reference, velocity ẋ
remains at this reference. Unlike the previous H∞ controller, we do not observe
any overreaction. The response of the yaw rate ψ̇ to its reference is slower than
that with using H∞ controller, but still pretty fast with settling time after 0.5
seconds. We can say that the varying heights of the robot during tracking do not
have almost any influence on using this gain-scheduled controller.

If we should compare the gain-scheduled with H∞ controller regarding refer-
ence tracking, we can conclude that velocity tracking is better with gain-scheduled
controller. On the other hand, the yaw rate reference tracking is better with H∞
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Figure 7.4: Reference tracking with varying height using H∞ controller

controller. Also, the initial kick with reference change using H∞ is not the most
attractive.
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Figure 7.5: Reference tracking with varying height using gain-scheduling

7.3 Comparison with Simulator Experiments

In the comparison with the simulator, some changes in all experiments are ob-
servable. In section 6.1, we saw different results for the H∞ controller as in
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7.1. Unlike in the simulator, the reference tracking with varying heights had
almost no effect in the real robot experiment with both controllers. Despite some
efforts to specify the model parameters (for example, a moment of inertia of
the body), which led to better similarity between the simulator and real robot,
some differences are still observable. Based on the experiment, we can conclude
that the simulator is imperfect. On the other hand, it is worth noting that every
controller successfully tested in the simulator also functioned correctly on the real
robot, which cannot be said for the simple control-oriented model. Ultimately,
we can conclude that the simulator fulfilled its main purpose.
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CHAPTER 8

CONCLUSION

The primary objective of this thesis was to design a controller that ensures
optimal performance at various robot heights, beginning with an analysis based
on a simplified model.

To achieve this objective, Chapter 3 introduces two models. The simplified
model was used to analyze and design the controllers, while the high-fidelity
model was employed to test the controllers before deploying them on the robot.
Next, in Chapter 4 the optimal extension length for the robot’s legs was found.

Based on this analysis, two types of controllers were designed in Chapter 5.
One robust controller was designed for optimal robot legs and the second one
benefits from measuring the corresponding robot’s height.

In the following Chapter 6, the newly developed controller was compared with
the old one in the simulator. Also, the robot’s behavior with the new controllers
at varying heights was observed. Subsequently, we saw in Chapter 7 that the
best balancing performance in a real robot was achieved with H∞ controller. On
the other hand, tracking performance at varying heights was achieved with the
gain-scheduled controller.

In conclusion, we can say that better performance than the old controller was
achieved. Especially at the height where the old one has the worst performance.

In recent years, whole-body control has gained lots of popularity. One exam-
ple is a similar robot Ascento mentioned at the beginning. The next step would be
to design a full rigid body model and perform whole-body control. In [19], they
achieved better performance by using whole-body control for the Ascento robot.
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