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ABSTRACT

This thesis investigates the role of cochlear compression in speech perception, particularly in

noisy environments, using an advanced auditory model. The primary focus is on the analysis

of speech in multitalker babble noise by using an auditory model composed with a dual

resonance non-linear (DRNL) filterbank. A key aspect of this study is examining how the

overall signal intensity, meaning the intensity of speech and babble noise with constant signal-

to-noise ratio (-5 dB), influences these predictions. The research employs a systematic

approach, comparing the auditory model's predictions and showing the similarity between the

model outputs to speech and speech plus babble noise with actual experimental listening test

results from the literature. The currently used listening test results reveal a notable

improvement in speech perception in noise at intensities up to about 70 dB sound pressure

level (SPL). In contrast, the model predictions presented in this thesis do not fully show

improvement with increasing sound levels. This discrepancy highlights the complexity of

cochlear compression and suggests that additional factors beyond cochlear compression may

contribute to speech perception in noisy environments. The findings are pivotal in

understanding the extent to which cochlear compression contributes to this improvement.
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1 INTRODUCTION

1.1 Introduction and Motivation for the Study of Cochlear Compression 

in Speech Perception

The human auditory system, particularly the cochlea, plays a pivotal role in perceiving and 

understanding speech, especially in challenging listening environments. A key aspect of this 

system is cochlear compression, a dynamic process that significantly influences our ability to 

discern speech amidst background noise. This phenomenon becomes particularly evident at 

moderate to high sound levels, roughly ranging from about 30 to 60 dB sound pressure level 

(SPL). Recent studies in the field further substantiate this observation, highlighting that the non-

linear processing characteristics of the cochlea are most noticeable within this specific range of 

sound intensities [1]. Such findings are crucial as they provide a deeper understanding of the 

cochlear mechanics under various auditory conditions.

This cochlear compression is a nonlinear process that takes place inside the cochlea, which is 

responsible for converting sound vibrations into signals that our brain can interpret. The cochlea 

contains several key structures, including the basilar membrane, Reissner's membrane, and the 

tectorial membrane, along with hair cells that are critical for converting sound vibrations into 

neural signals. These components allow for a response to frequencies and sound levels. When 

sounds are at moderate levels (30 – 60 dB SPL), the basilar membrane responds nonlinearly, a 

characteristic that facilitates cochlear compression [2]. This compression effectively reduces 

the range of intensities we perceive, making it easier for our auditory system to handle sounds 

with varying intensities.

When it comes to perceiving speech, the presence of cochlear compression in the healthy 

cochlea and its absence when cochlear amplification is compromised is notable. Although 

speech signals are complex with huge frequency and dynamic range, the role of cochlear 

compression is not yet fully understood. Studies suggest that it plays a significant role in 

enhancing speech perception, particularly in noisy environments. For instance, research by 

Dubno et al. highlights that cochlear compression affects the perception of speech envelope 
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cues, which may be crucial for understanding speech against background noise [3].

Dubno et al. investigated speech perception in noise as a function of stimulus intensity, 

specifically examining how speech and noise intensities impact understanding when the signal-

to-noise ratio is held constant. Their findings indicated that comprehension improves as 

intensity increases up to about 60 dB SPL, beyond which the understanding of speech in noisy 

environments deteriorates [3]. These insights suggest that cochlear compression plays a pivotal 

role in speech perception amid background noise. Similarly, the work presented by Vencovský 

and Bureš [4] in a poster, which discusses 'Level-Dependent Responses to Speech in Noise 

derived from a Nonlinear Cochlear Model,' also yielded results that align with the observations 

by Dubno et al. [3]. This supports the notion that cochlear compression is crucial for enhancing 

speech intelligibility in noisy settings.

This thesis presents work employing a nonlinear filterbank cochlear model. Unlike the model 

used in Vencovský and Bureš [4], the model used in this thesis incorporates a nonlinear 

filterbank. Therefore, this model enables the study of cochlear compression on speech 

perception in noisy environments. In particular, the aim is to utilize this Dual Resonance Non-

Linear (DRNL) model to predict the similarity between the model outputs in r response to 

speech combined with multitalker (babble) noise.

2 Methodology

In this section, we comprehensively describe the methodologies employed in this study. We 

begin by detailing the DRNL (Dual Resonance Non-Linear) filterbank model and the specific 

implementation used in our research. Following this, we describe the auditory model in which 

the DRNL filterbank is integrated, highlighting its essential components and functionalities. 

Finally, we outline the method used to calculate the correlation between the auditory model 

outputs in response to isolated speech and speech combined with multitalker noise.
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2.1 OVERVIEW OF DUAL RESONANCE NON-LINEAR (DRNL) 

FILTERBANK

The Dual Resonance Non-Linear (DRNL) filterbank, as detailed in the work of Lopez-Poveda 

and Meddis [5], is a sophisticated auditory model designed to simulate the human cochlear 

response to sound. This model is particularly significant for replicating the complex, nonlinear 

processing of sounds in the cochlea, which is crucial for speech perception and auditory signal 

processing.

2.1.1 Simplified Description of the DRNL Filterbank:

The DRNL filterbank is a computational model designed to simulate the nonlinear 

characteristics of the human cochlea. It features a dual-pathway structure incorporating both 

linear and nonlinear responses to sound. The nonlinear path handles low-level sounds, 

employing dynamic compression to model the cochlea's complex response to these quieter 

sounds. As the intensity increases, the response becomes saturated, introducing compression. 

Conversely, the linear path becomes dominant at higher sound levels, maintaining a 

straightforward response with minimal distortion. Figure 1 shows the exact process, but note 

that in the case of the model used in this thesis, the nonlinearity is not a broken stick nonlinearity 

but a different nonlinearity described below. This compression is vital for representing how the 

cochlea handles a range of sound intensities, making the DRNL model particularly useful for 

understanding auditory processes such as speech perception. Integrating cascaded gammatone 

filters in both pathways allows the DRNL model to capture the frequency selectivity observed 

in psychoacoustic experiments, effectively simulating the auditory filtering performed by the 

basilar membrane [6].

This model, therefore, provides a robust and computationally effective framework for exploring 

how different sound levels affect cochlear behavior, making it a powerful tool for auditory 

research and applications like hearing aid design. Additionally, Ray Meddis aimed to integrate 

this model into a larger auditory periphery model to create a profile of a listener with hearing 
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loss.

2.1.2 Other Key Features of the DRNL Filterbank:

Fig.1 Diagram of the DRNL filter, taken from [5]. The parameters of each block are shown in 

the space between the linear (top) and the nonlinear (bottom) paths. The output signal from the 

DRNL filter is the sum of the signal coming out of each path. Note that in the case of the model 

implementation used in this thesis, the broken stick nonlinearity is adapted to the so-called 

“Nick’s compression algorithm” described in subsection 2.1.3.

A vital component of the DRNL model is the Gammatone (GT) filters, which are bandpass 

filters.GT filters are used to simulate the response of the basilar membrane in the human 

auditory system. GT filters are bandpass filters capable of extracting signal components in a 

specific frequency range. The center frequency and bandwidth can be adjusted as required to 

simulate the response of the basilar membrane at different locations in the human cochlea. 

These filters have center frequencies based on computational rules designed to cover the entire 

hearing range (approximately 20 Hz to 16 kHz). This method of frequency spacing correlates 

with the frequency distribution found in natural sounds, ensuring that the model accurately 

mimics human auditory processing. In addition to the GT filters, the DRNL filter also includes 

cascades of second-order Butterworth lowpass filters, which further contribute to the accurate 

simulation of the cochlear response.
Applications and Significance:
The DRNL filterbank is a sophisticated model that simulates the nonlinear processing of sounds 
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in the human cochlea. It integrates linear and nonlinear pathways to handle varying sound levels, 

with the nonlinear path mimicking cochlear amplification for low-level sounds and the linear 

path ensuring minimal distortion at higher sound levels. This model is crucial for predicting the 

similarity between the cochlea's response to isolated speech and to speech combined with 

babble noise, which is essential for understanding complex auditory tasks such as speech 

perception.

2.1.3 Compression algorithm in DRNL Model—Nick's compression algorithm

In the Dual Resonance Non-Linear (DRNL) model, the nonlinear compression algorithm plays 

a crucial role in simulating how the cochlea processes the sound of varying intensities. The 

"Nick's Compression Algorithm," as denoted in the model implementation from the MATLAB 

auditory periphery [7], offers an efficient method to emulate this biological process by 

dynamically adjusting the nonlinear output to accommodate different sound pressure levels. 

The essence of this algorithm lies in its segmental handling of the input signal, comparing the 

absolute value of the signal to a compression threshold to determine if compression is needed.

The operational principle of the algorithm is as follows: it first calculates the absolute value and 

the sign of the nonlinear output. When the absolute value of the nonlinear output is below the 

compression threshold, the algorithm processes this portion of the signal linearly, multiplying 

it by a predetermined gain coefficient. For parts exceeding the threshold, the algorithm employs 

an exponential function for compression, which not only considers the magnitude of the signal 

but also preserves its original sign, ensuring that the processed signal remains consistent with 

compressively growing basilar membrane response at moderate levels.

Figure 2 depicts the transfer function of Nick's Compression Algorithm within the DRNL model. 

The x-axis represents the input signal amplitude, while the y-axis represents the algorithm's 

output. The graph illustrates which branch of the DRNL filter dominates. At the lowest 

intensities, the nonlinear branch yields a larger response and, therefore, dominates the model 

output. In contrast, the linear branch starts to dominate as the stimulus amplitude grows. 
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Fig.2 The transfer functions for the algorithm's linear (orange line) and nonlinear (blue line) 

branches. The nonlinear branch produces larger amplitudes at low intensities, demonstrating 

its role in handling low-level sounds with dynamic compression. The linear branch begins to 

dominate as the input signal intensity increases and exceeds the cochlear compression 

threshold, providing a more straightforward response with minimal distortion.

Figure 3 expands the input range, providing a broader view of the algorithm's response to input 

signal intensity. The x-axis spans a broader range of input values, and the y-axis displays the 

corresponding output. The graph showcases three distinct lines: the blue line, the same as in 

Figure 2, represents the transfer function of the exponential compression, indicating the model's 

nonlinear response. The orange line shows the model's transfer function at the lowest intensities, 

where it behaves linearly. The green curve, which corresponds to the linear branch's transfer 

function shown as the orange line in Fig. 2, appears very small here due to the much smaller 

scale on the x-axis than in Fig. 2. This demonstrates the compression effect more extensively: 

inputs below the threshold experience linear amplification (orange line), while those above it 

undergo exponential compression (blue line). The algorithm's ability to maintain linearity at 

lower intensities and apply compression at higher intensities is crucial for realistic auditory 

modeling.
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Fig.3 Extended view of the transfer function for Nick's compression algorithm. The orange 

line demonstrates the transition from linear gain to logarithmic compression across a broader 

input range, illustrating the algorithm's dual response characteristic.

Introducing this compression algorithm significantly enhances the practicality and accuracy of 

the DRNL model, enabling it to mimic the dynamic compression effects of the human cochlea 

more precisely during actual auditory processing. This way, the model better reflects the 

cochlear response to different sound intensities and demonstrates the characteristics of 

nonlinear compression in handling high-intensity sounds, which is crucial for improving the 

design of hearing aids and optimizing auditory signal processing algorithms.

2.2 DRNL Model Implementation and Characteristics:

The DRNL (Dual Resonance Non-Linear) filterbank has been digitally implemented in 

MATLAB using the framework provided by the MATLAB Auditory Periphery (MAP) project, 

which is freely available on GitHub [7]. This section first describes the implementation 

specifics of the model, followed by an exposition of its characteristics. 
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Implementation Details:

The DRNL filterbank is implemented in the time domain and includes various components like

GT filters and linear lowpass (LP) filters as part of its architecture. This implementation is

available in MATLAB, utilizing a sampling rate of 44.1 kHz. This sampling rate is chosen

because it is high enough to accurately capture the frequency range of human hearing, which

extends up to approximately 20 kHz. The sampling frequency determines the highest frequency

that can be accurately represented, which is half of the sampling rate. Therefore, a sampling

rate of 44.1 kHz ensures that frequencies up to 22.05 kHz can be accurately processed,

encompassing the entire range of audible sounds.

GT filters:

This filter has an impulse response to the form. [8]

ℎ(𝑡) = 𝑘𝑡(𝑛―1)exp( ―2𝜋𝐵𝑡)cos(2𝜋𝑓𝑐𝑡 + 𝜙) (𝑡 ≥ 0),                  (1)

ℎ(𝑡) = 0 (𝑡 < 0),

where 𝑛 is the order of the filter, 𝐵 is the bandwidth, 𝑓𝑐 is the center frequency, 𝜑 is the

phase and k are gain.

The DRNL filter uses several cascades of first-order (n = 1) GT filters only. They were

implemented digitally as an infinite impulse response filter as follows [9]:

𝑦[𝑖] = 𝑎0 ⋅ 𝑥[𝑖] + 𝑎1 ⋅ 𝑥[𝑖 ― 1] ― 𝑏1 ⋅ 𝑦[𝑖 ― 1] ― 𝑏2 ⋅ 𝑦[𝑖 ― 2],             (2)

where ͓[i͔] refers to the ith sample of the digital signal, x, and y are the input and output signals

to/from the filter, respectively, and the coefficients are calculated as follows:

a0 =

|1 +  𝑏_1 𝑐𝑜𝑠(𝜃) ―  𝑗𝑏_1 𝑠𝑖𝑛(𝜃) +  𝑏_2 𝑐𝑜1 +  𝑏_1 𝑐𝑜𝑠(𝜃) ―  𝑗𝑏_1 𝑠𝑖𝑛(𝜃) +  𝑏_2 𝑐𝑜𝑠(2𝜃) ―  𝑗𝑏_2 𝑠𝑖𝑛(2𝜃)
1 +  𝛼 𝑐𝑜𝑠(𝜃) ―  𝑗𝛼 𝑠𝑖𝑛(𝜃) | ,

                                                                                                                                                  (3)

where a1=α⋅a0 , b1=2α , and b2=exp(−2ϕ). Here, θ=2πfc⋅dt, ϕ=2πB⋅dt, α=−exp(−ϕ)cos(θ),

and j=−1 . The variable dt represents the sampling period of the digital signal.

The low-pass filters:  

The low-pass filters in the DRNL model are implemented as second-order Butterworth lowpass

filters. The digital implementation formula is:

𝑦(𝑖) = 𝐶 ⋅ 𝑥[𝑖] ―2 ⋅ 𝐶 ⋅ 𝑥[𝑖 ― 1] +𝐶 ⋅ 𝑥[𝑖 ― 2] ―𝐷 ⋅ 𝑦[𝑖 ― 1] ―𝐸 ⋅ 𝑦[𝑖 ― 2],           (4)
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Where the coefficients that define the behavior of the filter are:

𝐶 =
1

1 + 2 ⋅ cot(π𝑓𝑐𝑑𝑡) + cot2(π𝑓𝑐𝑑𝑡),                                             (5)

𝐷 =  2 ∗  𝐶 ∗  (1 ―  𝑐𝑜𝑡^2(𝑝𝑖 ∗  𝑓𝑐 ∗  𝑑𝑡)),               (6)

𝐸 =  𝐶 ∗  (1 ―  √2 𝑐𝑜𝑡(𝑝𝑖 ∗  𝑓𝑐 ∗  𝑑𝑡) +  𝑐𝑜𝑡^2(𝑝𝑖 ∗  𝑓𝑐 ∗  𝑑𝑡)),        (7)

where fc is the 3-dB-down cutoff frequency of the low-pass filter, dt is the sampling period of

the digital signal.

The linear gain

The linear gain in the DRNL model is implemented in the digital implementation formula:

           𝑦[𝑖] = 𝑔 ∗ 𝑥[𝑖],                             (8)

where ͓[i] refers to the ith sample of the digital signal, and x and y are the input and output

signals to/from the linear gain stage, respectively.

The nonlinearity

The formula for the nonlinearity component in the DRNL model is given as:

𝑦(𝑖) =  𝑠𝑖𝑔𝑛(𝑥([𝑖]) ∗  𝑚𝑖𝑛 (𝑎 ∗  𝑎𝑏𝑠(𝑥[𝑖]), 𝑏 ∗  𝑎𝑏𝑠(𝑥([𝑖])^𝑐),                       (9)

Where:

y[i]: Output signal of the nonlinearity at the i-th sample.

x[i]: Input signal to the nonlinearity at the i-th sample.

a, b, c: Parameters of the nonlinearity.
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Fig.4 Input/output functions of the cochlear model showing the dependence of basilar 

membrane displacement (BM displ.) as a function of stimulus intensity for three different 

settings of the parameter a, which affects gain at characteristic frequencies (CFs). The output 

values were obtained using a pure tone at 0 dB SPL. In this figure, the blue line represents the 

model with a = 2e4, the red line represents the model with a = 2e3, and the yellow line 

represents the extrapolated response at the highest intensities, simulating the model with no 

outer hair cells (OHCs), corresponding to a = 0, indicating no nonlinear path. Note that the 

actual I/O function might slightly shift in amplitude due to the effect of gain on CF 

(characteristic frequency).
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Fig.5 Characteristic transfer functions derived for selected segments of the cochlear model with 

characteristic frequencies (CF) at 0.5, 1, 2, and 4 kHz. Transfer functions derived from the 

model with reduced gain (indicated by dashed lines) exhibit wider cochlear filter bandwidths at 

lower sound intensities. In contrast, at a sound pressure level of 80 dB SPL, the cochlear filter 

bandwidths tend to converge for models of varying gain. In this figure, the color-coded 
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responses correspond to different sound pressure levels: blue for 20 dB SPL, green for 40 dB 

SPL, red for 60 dB SPL, and black for 80 dB SPL, each tracing the model's performance at 

these respective intensities.

2.3 Analysis of DRNL Model Parameter Effects on Response

In this thesis, we use two variants of the cochlear model, which differ in the amount of cochlear 

compression, controlled by the parameter a. Higher values of a result in more pronounced 

dynamic range compression, enhancing the cochlea's sensitivity to weak signals while 

compressing strong signals. In contrast, a = 0 demonstrates a linear response with no dynamic 

range compression. A model employing two distinct values for the parameter a, specifically a 

= 2e3 and a = 2e4, was used to analyze the basilar membrane (BM) input/output functions. 

Figure 4 shows the input/output functions of the cochlear model at characteristic frequencies of 

0.5, 1, 2, and 4 kHz for three different gain settings. The output values were obtained using a 

pure tone at 0 dB SPL. In this figure, the blue line represents the model with a=2e4, the red line 

with a=2e3, and the yellow line represents the model without outer hair cells (OHCs), 

corresponding to a=0, indicating no nonlinear path. These input/output functions illustrate how 

the model's output varies with different gain settings. At low sound levels, the non-linear gain 

(blue and red lines) produces larger amplitudes, showing the compressive behavior of the model. 

As the input level increases, the higher gain model (blue line) shows greater compression, 

indicating a greater ability to handle high-intensity sounds. Conversely, the model without 

OHCs (yellow line) behaves linearly, showing no compression.

Figure 5 shows the characteristic transfer functions derived for cochlear model segments with 

CFs at 0.5, 1, 2, and 4 kHz. The transfer functions are shown for different sound pressure levels: 

blue for 20 dB SPL, green for 40 dB SPL, red for 60 dB SPL, and black for 70 dB SPL. Models 

with reduced gain (dashed lines) have wider cochlear filter bandwidths at lower sound levels, 

reflecting lower frequency selectivity. At 80 dB SPL, the cochlear filter bandwidths of models 

with different gain settings tend to converge, indicating similar frequency selectivity. This 
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shows how the parameter a affects the model: at lower gains (dashed lines), the filters are wider 

at low intensities, indicating less precise tuning. As gain increases, the model better represents 

the non-linear characteristics of the human cochlea, compressing high-intensity inputs and 

maintaining narrower bandwidths at moderate to high sound levels, thereby improving 

frequency selectivity.

2.4 DRNL Model Implementation

The Dual Resonance Non-Linear (DRNL) model achieves frequency selectivity through 

bandpass filters whose bandwidth varies with sound intensity. In this model, the bandwidth of 

the nonlinear pathway filters is a crucial factor, particularly due to its level-dependent nature. 

Specifically, the linear branch has wider filters than the nonlinear branch, resulting in a level-

dependent bandwidth. This section describes the implementation of the DRNL model, including 

how the parameter a affects the bandwidth and the overall model behavior.

The model was implemented in MATLAB, utilizing a sampling rate of 44.1 kHz. The frequency 

range covered by the model spans from approximately 20 Hz to 18.734 kHz, providing a 

detailed frequency resolution. This resolution is consistent with the model used in Vencovský 

and Bureš, ensuring comparable results and analyses. 

Controlling Bandwidths of GT filters:

The bandwidth of the DRNL model determines its frequency selectivity, which is an important 

characteristic of the auditory periphery. The filter bandwidth is narrowest at the lowest 

intensities, influencing the model's ability to selectively respond to different sound frequencies 

across all intensity levels. 

By adjusting the order of the nonlinear GT filters, we can manipulate the model bandwidth. A 

lower filter order results in wider bandwidths, altering the model's response characteristics. In 

the current model implementation, the bandwidths of each GT filter in both branches of the 

DRNL filter are shown in Fig. 6.
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Fig.6 Comparison of nonlinear and linear filter bandwidth across 300 sections of the cochlear 
model

Figure 6 illustrates the bandwidth distribution of nonlinear and linear filters across 300 sections 

of the cochlear model, from the base to the apex. The x-axis represents the 300 sections of the 

cochlear model, each corresponding to a specific CF range. The y-axis represents the filter 

bandwidth in Hertz (Hz).

The bandwidth of the GT filters in the nonlinear part (blue line): The bandwidth of auditory 

filters increases with the center frequency, as larger numbers of the model sections are at higher 

frequencies where the bandwidth is largest. This is consistent with the critical band theory, 

which indicates that the bandwidth of auditory filters, or critical bands, increases as a function 

of frequency. Additionally, research has shown that as the intensity of sound grows, the 

bandwidth also increases, which explains why the bandwidth in the linear part of the DRNL 

filters is larger than in the nonlinear part [12]. 

Bandwidth of the GT filters in the linear part (red line): The linear filter bandwidth also changes 

with the CF.
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2.5 Auditory Periphery Model

Within the framework of this thesis, the DRNL filterbank was incorporated into a model of the 

auditory periphery. This model consists of three main components:

1. Outer and Middle Ear model:

The input acoustic signal undergoes transformation, simulating the outer and middle ear transfer 

functions. This involves filtering by two parallel 1st-order Butterworth bandpass filters to 

model the resonances of the outer ear canal. The first filter has a gain of 10 dB with cutoff 

frequencies at 2.5 kHz and 4 kHz, while the second filter has a gain of 25 dB with cutoff 

frequencies at 2.5 kHz and 7 kHz. These filtered signals are combined and then processed by a 

middle ear model composed of a high-pass filter (cutoff frequency 50 Hz) and a low-pass filter 

(cutoff frequency 1 kHz), transforming the signal into stapes displacement. This model is 

sourced from the MATLAB Auditory Periphery (MAP) toolbox [7].

2. DRNL Filterbank:

The core component of the model is the DRNL filterbank, which simulates the nonlinear 

processing of the cochlea. The DRNL filterbank is described in detail above in section 2.1. It 

includes both linear and nonlinear pathways to replicate the cochlea's response to varying sound 

levels. The nonlinear pathway in the DRNL model is a hybrid: it responds linearly at the lowest 

intensities and transitions to compressive nonlinearity as the sound intensity increases. This 

behavior allows the model to simulate the basilar membrane's response to varying sound levels. 

At low intensities, the nonlinear path dominates, providing fine-tuned frequency selectivity. As 

the intensity increases, the linear path becomes more prominent, handling higher sound levels 

and ensuring the model's overall response remains accurate and robust. This dual-path structure 

allows the model to accurately represent the cochlear response across a wide range of sound 

intensities. The implementation details of the DRNL filterbank, including its components, such 

as GT filters and compression mechanisms, are described in section 2.1.

3. Inner Hair Cell and Auditory Nerve Synapse Model:
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Post the DRNL filterbank, the processed signal in each channel of the DRNL filterbank is fed 

into a model simulating the inner hair cell (IHC) and auditory nerve synapse. This stage includes 

a half-wave rectifier followed by a low-pass filter (1st-order Butterworth filter with a cutoff 

frequency of 1 kHz). The signal is then thresholded and converted to a logarithmic scale, 

representing the internal signal representation at the IHC output [10].

2.6 Method for Assessing Noise Impact on Speech Perception

The primary aim of the thesis is to utilize this auditory periphery model to predict the similarity 

between model outputs in response to speech alone and speech combined with babble noise. 

We do not have a cognitive section in the auditory model that would perform speech recognition. 

Therefore, we assume that cross-correlation between internal representations (i.e., outputs of 

the peripheral ear model) derived from the model in response to speech and in response to 

speech + babble noise correlate with speech recognition. We adopt here an approach known 

from so-called intrusive objective audio quality assessment tools in which the signal under test 

and a reference are available to the system.

The similarity between the model outputs is quantified using cross-correlation methods adapted 

from the PEMO-Q approach for objective audio quality assessment [11]. The internal 

representations of the entire sentences are derived for both clean speech and speech with babble 

noise, and cross-correlation coefficients are computed as follows:

r =

N,M

t,f=1
(xtf ― x)(ytf―y)

N,M

t,f=1
(xtf ― x)2

N,M

t,f=1
(ytf ― y)2

,                      (11) 

where 𝑥𝑡𝑓 and 𝑦𝑡𝑓 represent the time-frequency samples of the internal representations for 

speech with noise and speech only, respectively, the cross-correlation is calculated over non-

overlapping 20-ms time frames, yielding the cross-correlation, which is the function of time 

providing a temporal similarity function. We use two different approaches to calculate the 

overall cross-correlation for the entire sentence. The first approach is to compute the 0.05 
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quantile of the cross-correlation values across all time frames, capturing the lower bound of 

similarity. The second approach calculates the mean value of the cross-correlation across time, 

providing an average measure of similarity for the entire sentence. The same approach was used 

in Vencovský and Bures [4].

3 RESULTS

Figure 7 below illustrates the recognition performance of sentences presented in babble noise 

as a function of sound pressure level (SPL). The data used to create this figure were taken from 

Vencovský and Bureš [4]. Listeners were presented with a sentence (Czech meaningful 

sentences) in babble noise with a signal-to-babble-noise-ratio of -5 dB and asked to repeat the 

sentence. If the sentence is repeated correctly, the listener is awarded a rating of 100%. If the 

listener repeats at least half of the words in the sentence correctly, they are awarded a rating of 

50%. The overall level of speech and babble noise is variable. At each level, ten sentences are 

presented. The results are expressed as the mean values across the ratings of ten sentences 

presented at each level.

Figure 7 shows averaged values across 21 young and normally hearing adult listeners (8 females) 

with age below 30. It also illustrates the improvement in recognition performance as a function 

of increasing SPL up to a certain level, after which it may plateau at higher levels.
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Fig.7 Recognition of sentences in babble noise as a function of stimulus level for fixed speech 

to babble noise ratio of -5 dB.

Figures 8, 9, 10, and 11 illustrate the cross-correlation coefficients between the model outputs 

in response to speech and speech + babble noise. Each panel depicts the cross-correlation 

coefficients for ten different sentences. The cross-correlation coefficients depicted in Figs. 8 

and 9 were obtained with the model with a higher gain (parameter 𝑎 = 2e4), while those 

illustrated in Figs. 10 and 11 were obtained with the model with a lower gain (parameter 𝑎 = 

2e3). Figures 8 and 10 show the 5% quantile of 𝑟 as a function of time, and Figs. 9 and 11 show 

the mean values.
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Fig.8 Cross-correlations between model responses for speech + babble noise and speech only. 

0.05 quantile is taken across the cross-correlations for adjacent 20-ms time frames. The cochlear 

model has a higher gain (better hearing threshold).

Fig.9 Cross-correlations between model responses for speech + babble noise and speech only. 

The mean value is taken across the cross-correlations for adjacent 20-ms time frames. The 

cochlear model has a higher gain (better hearing threshold).



20

Fig.10 Cross-correlations between model responses for speech + babble noise and speech only. 

0.05 quantile is taken across the cross-correlations for adjacent 100-ms time frames. The 

cochlear model has lower gain (worse hearing threshold).

Fig.11 Cross-correlations between model responses for speech + babble noise and speech only. 

The mean value is taken across the cross-correlations for adjacent 100-ms time frames. The 

cochlear model has lower gain (worse hearing threshold).
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Fig.12 The difference between the cross-correlations for the model with higher gain and the 

model with lower gain is referred to as ∆r. The 0.05 quantile of r(t) is employed in this analysis.

Fig.13 The difference between the cross-correlations for the model with higher gain and the 

model with lower gain is referred to as ∆r. The mean value of r(t) is employed in this analysis. 

Figures 12 and 13 illustrate the difference in cross-correlations (Δr) between the model with 

higher gain and the model with lower gain. Figure 11 shows the 0.05 quantile of Δr, while 
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Figure 13 shows the mean values of Δr. The results indicate that there is generally no positive 

effect of higher gain at higher sound levels, where compression is more dominant. This is 

particularly evident in Fig.13, where the differences in cross-correlation are mostly close to 

zero or negative at higher sound levels, suggesting that higher gain does not improve the model's 

performance under babble noise conditions at these levels. Therefore, the presented simulation 

results rather question the positive role of compression on speech in noise perception and 

disagree with the results of listening experiments shown in Fig. 7.

In contrast, the simulations show that the best results are achieved at the lowest intensities for 

the model with higher gain. At the same time, the lower gain yields 0.05 quantile predictions, 

which qualitatively agree with listening experiments in that the correlation increases and 

reaches its maximum at intensities near 60 dB SPL.

The graphs illustrate the discrepancy in model outcomes at varying gain settings. The results 

are partly puzzling, showing the opposite trend we see in the experiments, i.e., a decline of 

cross-correlation with increasing levels. In addition, the gain seems to be rather detrimental at 

the intensities where the cochlear compression should dominate (near 60 dB SPL) because the 

best agreement with experimental data in the growth of cross-correlation up to about 60 dB SPL 

was found for the model with lower gain. Nevertheless, the predicted outcomes may diverge 

from the hearing experiment results due to differences in the model. It is important to consider 

these limitations when interpreting the results.

4 Summary
The ability to discern spoken phrases against a backdrop of competing babble noise is enhanced 

progressively with sound levels up to approximately 60 dB SPL. This trend of heightened 

auditory sentence and consonant recognition at escalated volumes aligns with the findings from 

Dubno and colleagues [3]. Their research further revealed a diminishing recognition rate for 

sounds above 60 dB SPL. It should be noted that in our observational data, the sound intensity 

was not extended beyond 70 dB SPL during the auditory tests.

1. The listener's speech perception is improved as the stimulus level increases, although the 

signal-to-babble noise ratio is constant (-5 dB).
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2. To study whether cochlear compression is responsible for recognition improvement, we 

used an advanced auditory model incorporating the Dual Resonance Non-Linear (DRNL) 

filterbank. 

The effect of babble noise on the model output was quantified by cross-correlation between 

the model response to speech + babble noise and the model response to speech only. Two 

model variants (higher gain with a = 2e4 and lower gain with a = 2e3) and two methods 

(0.05 quantile and mean value) were used. The results showed small improvements in 

cross-correlation for the model with higher gain at sound levels from 30 to 40 dB SPL and 

larger improvements for the model with lower gain across a broader range of levels, 

peaking around 50-60 dB SPL, which aligns with listening experiments but only for the 

0.05 quantile method. At higher intensities, the cross-correlation decreased. This variability, 

particularly the agreement with listening experiments only at the 0.05 quantile, is puzzling 

and suggests that cross-correlation may not be a comprehensive measure to quantify model 

performance under babble noise conditions. This discrepancy and the limited range of 

sound levels over which improvements are observed should be carefully considered in the 

summary and conclusion. 

Additionally, the model demonstrated higher cross-correlation for the cochlear model with 

higher gain at the lowest intensities.

Overall, the experimental results indicate that while the DRNL filterbank model has the 

potential to simulate certain aspects of human auditory processing, the results are not entirely 

conclusive. The observed improvements in cross-correlation do not consistently align with 

experimental data, suggesting that cochlear compression alone may not fully explain the 

mechanisms of speech perception in noisy environments. It is possible that factors beyond the 

cochlear periphery or additional mechanisms contribute to the results observed in listening 

experiments. There are many possible reasons for these results, and further research is needed 

to explore these additional factors and refine the model to better simulate human auditory 

processing.
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