

České vysoké učení technické v Praze

Fakulta elektrotechnická Katedra fyziky

Studium z-pinčových výbojů na plazmatickém fokusu PFZ-200

Jakub Chlumecký

Vedoucí: Ing. Jan Novotný Oponent: Ing. Ondřej Ficker, Ph.D. Obor: Elektrotechnika, energetika a management Studijní program: Aplikovaná elektrotechnika Květen 2024

ZADÁNÍ BAKALÁŘSKÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

Příjmení:	Chlumecký	Jméno: Jakub	Osobní číslo: 483813
Fakulta/ústav:	Fakulta elektrotechnická		
Zadávající katedr	a/ústav: Katedra fyziky		
Studijní program:	Elektrotechnika, energetika	a management	
Specializace:	Aplikovaná elektrotechnika		

II. ÚDAJE K BAKALÁŘSKÉ PRÁCI

Název bakalářské práce:
Studium z-pinčových výbojů na plazmatickém fokusu PFZ-200
Název bakalářské práce anglicky:
Study of z-pinch discharges in PFZ-200 plasma focus device
Pokyny pro vypracování:
 Nastudujte problematiku silnoproudých z-pinčových výbojů, plazmatických fokusů a D-D jaderné fúzní reakce. Popište plazmatický fokus PFZ-200 a porovnejte jej s ostatními plazmatickými fokusy ve světě Proveďte sérii experimentů na zařízení PFZ-200 pro různé energie impulzního generátoru. V průběhu experimentů zaznamenávejte signály z Rogowského cívky a neutronové diagnostiky. Zaznamenané výsledky zpracujte a proveďte vyhodnocení závislosti neutronového zisku a dynamiky výboje na energii impulzního generátoru a velikosti elektrického proudu výboje.
Seznam doporučené literatury:
 F. Chen: Úvod do fyziky plazmatu M. Scholz: Plasma-focus and controlled nuclear fusion, (2014) M. G. Haines: A review of the dense Z-pinch, Plasma Phys. Control. Fusion 53 (2011) S. Lee: Plasma Focus Radiative Model: Review of the Lee Model Code, J Fusion Energy 33, 319–335 (2014)
Ing. Jan Novotný katedra fyziky FEL
Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) bakalářské práce:
Datum zadání bakalářské práce: 15.02.2024 Termín odevzdání bakalářské práce: 24.05.2024
Platnost zadání bakalářské práce: 21.09.2025
Ing. Jan Novotný podpis vedoucí(ho) prácedoc. Ing. Zdeněk Müller, Ph.D. podpis vedoucí(ho) ústavu/katedryprof. Mgr. Petr Páta, Ph.D. podpis děkana(ky)
PŘEVZETÍ ZADÁNÍ

Student bere na vědomí, že je povinen vypracovat bakalářskou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací. Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v bakalářské práci.

Datum převzetí zadání

Podpis studenta

Poděkování

Autor této práce by chtěl věnovat hlavní poděkování Ing. Janu Novotnému za podporu a vedení během realizace této práce. Další poděkování patří ostatním členům skupiny silnoproudých výbojů za ochotu a hlubší objasnění problematiky v této oblasti. Dále také Josefovi Hánovi za technickou podporu během experimentu, který byl stěžejním úkolem této závěrečné práce. V neposlední řadě je nutné také poděkovat přátelům a rodině, bez jejichž podpory by toto dílo nikdy nedosáhlo zdárného konce.

Prohlášení

Prohlašuji, že jsem předloženou práci vypracoval samostatně a že jsem uvedl veškeré použité informační zdroje v souladu s Metodickým pokynem o dodržování etických principů při přípravě vysokoškolských závěrečných prací.

V Praze, 24. května 2024

Abstrakt

Tato práce je zaměřena na výzkum silnoproudých z-pinčových výbojů na plazmatickém fokusu PFZ-200. Hlavním cílem bylo experimentální ověření neutronové emise v závislosti na maximálním proudu výboje, též známém jako škálovací zákon. V rámci jedné experimentální kampaně bylo provedeno celkem 126 výstřelů s rozsahem proudů 160 - 260 kA a množstvím produkovaných neutronů (0,3 - 2,4) $\cdot 10^8$. Na základě získaných dat lze usoudit, že neutronové zisky odpovídají $Y_n \sim I^{3,47\pm0,01}$ a $Y_n \sim E^{1,9\pm0,7}$.

Klíčová slova: z-pinčový výboj, plazmatický fokus, neutronový zdroj

Vedoucí: Ing. Jan Novotný

Abstract

This thesis focuses on the investigation of high-current z-pinch discharges on the PFZ-200 plasma focus device. The main goal was the experimental verification of neutron emission as a function of the maximum discharge current, also known as the scaling law. A total of 126 shots were performed in one experimental campaign with a current range of 160 - 260 kA and a neutron production yield of $(0.3 - 2.4) \cdot 10^8$. Based on the data obtained, it can be concluded that the neutron yields correspond to $Y_n \sim I^{3.47\pm0.01}$ and $Y_n \sim E^{1.9\pm0.7}$.

Keywords: z-pinch discharge, plasma focus, neutron source

Title translation: Study of z-pinch discharges in PFZ-200 plasma focus device

Obsah

Úvod	1
1 Z-pinčový výboj	3
1.1 Princip z-pinčového výboje	3
1.2 Produkce neutronů	4
1.2.1 D-D reakce	4
1.2.2 D-T reakce	5
1.3 Škálovací zákon	5
1.4 Numerický model	5
1.4.1 Lee model \ldots	6
1.4.2 Vliv modelových	
parametrů na průběh výboje	7
1.4.3Výpočet neutronového zisku .	10
2 Z-pinčová zařízení	13
2.1 Kompresní z-pinč	13
2.2 Drátkový z-pinč	13
2.3 Gas puff	13
2.4 Plazmatický fokus	14
2.4.1 PFZ-200	15
2.4.2 PF-1000	18
3 Diagnostika	19
3.1 Aktivační čítač	19
3.2 Time-of-flight detektory	19
3.3 Měření vysokých proudů	21
4 Experiment na PFZ-200	23
4.1 Rozmístění diagnostiky	23
4.2 Neutronová měření	24
4.3 Porovnání měření se simulací	27
4.4 Měření při 22 k V $\ldots\ldots\ldots$	29
Závěr	33
A Literatura	35
B Naměřená data	39

Obrázky

1.1 Schéma z-pinčového a $\theta\text{-pinčového}$
výboje 4
1.2 Neutronové zisky při maximálních
proudech, upraveno z [1] 6
1.3 Ukázka porovnání časových
průběhů proudu experimentálně
získaného se simulací podle Lee
modelu.
1 4 Závislost průběhu
proudu v čase na změně koeficientu
f 8
1.5 Závislost průběhu
proudu v časa pa změně kooficiontu
f
$\int_{C} \cdots \cdots$
1.6 Zavisiost prudenu proudu v case
pri zmene koeficientu f_{mr} pro zvoleny
casový úsek 9
1.7 Závislost průběhu proudu v čase
při změně ko eficientu f_{cr} pro zvolený
časový úsek 10
1.8 Vliv změny koeficientů \mathbf{f}_m a \mathbf{f}_{mr} na
termální, beam-target a celkové
neutronové zisky 11
1.9 Vliv změny ko eficientů \mathbf{f}_c a \mathbf{f}_{cr} na
termální, beam-target a celkové
neutronové zisky 12
2.1 Schéma: a) Kompresní z-pinč
upraveno z [2], b) Drátkový z-pinč, c)
Liniové drátkové pole, d) X-pinč 14
2.2 Schéma plazmatických fokusů
Mather a Filippov 15
2.3 Schématické zapojení
plazmatického fokusu PFZ 16
2.4 Plazmatický fokus PFZ-200 [archiv
autora] 17
2.5 Pohled do komory na elektrodový
systém [archiv autora]
2.6 Pohled do komory
PF-1000 na elektrodový systém
[archiv_autora] 18
3.1 Umístění čítače v laboratoři [archiv
autora]
3.2 Průřez ToF detektorem.
$upraveno z [3], \dots 20$

diagnostiky 2	24
4.2 Naměřené neutronové zisky při	
maximálních proudech 2	25
4.3 Neutronový zisk pro uložené	
energie v baterii	27
4.4 Simulované průběhy proudu v čase	
pro různá napětí ź	28
4.5 Naměřené průběhy proudu v čase	
pro různá napětí ź	28
4.6 Naměřené neutronové zisky pro	
maximální proudy při napětí 22 kV. 3	30
4.7 Srovnání průběhu proudu v čase	
pro simulaci a experiment pro napětí	
22 kV	31

Tabulky

4.1 Naměřené průměrné neutronové zisky a maximální proud pro jednotlivá napětí a odpovídající
ulozenou energii v baterii
4.2 Porovnání
naměřeného a simulovaného zisku
neutronů, poměr \mathbf{Y}_n je poměr
neutronového zisku ze simulace ku
zisku z měření 29
4.3 Naměřené proudy a zisky pro různé
hodnoty tlaku pro napětí 22 kV 30
4.4 Porovnání
naměřeného a simulovaného zisku
neutronů pro různé tlaky při napětí
22 kV, poměr \mathbf{Y}_n je poměr
neutronového zisku ze simulace ku
zisku z měření 31

Úvod

Silnoproudé výboje v plazmatu představují fascinující a komplexní oblast fyziky a elektrotechniky. Tato věděcká disciplína se zabývá chováním horkého hustého plazmatu, jímž protéká silný elektrický proud. Plazma jakožto čtvrtý stav hmoty, vedle pevných látek, kapalin a plynů, představuje unikátní skupenství obsahující volné nosiče elektrického náboje se schopností kolektivně reagovat na elektrická a magnetická pole a samo je vytvářet [4]. V přírodě se s plazmatem setkáváme například v blescích a polárních zářích, zatímco v průmyslu a vědě nachází uplatnění v zařízeních jako jsou výbojky, obloukové pece nebo tokamaky pro jadernou fúzi [5].

Speciálním typem silnoproudého výboje je z-pinč, jenž představuje dynamickou a rozmanitou oblast výzkumu a aplikací fyziky plazmatu. Bližší porozumění těmto výbojům a jejich efektivní využití vyžaduje široké spektrum znalostí zahrnující fyziku, elektrotechniku, materiálové vědy a inženýrství. Pokrok v této oblasti slibuje významné inovace jak v energetice, tak v mnoha průmyslových, medicínských, ale i vojenských odvětvích [6, 7, 8].

Cílem této práce je bližší porozumnění z-pinčovému výboji, jeho základní popis a dále popis používaných zařízení od prvních aparatur po současně používanou s hlavním zaměřením na konkrétní zařízení PFZ-200, na kterém bude proveden experiment. Motivace tohoto měření je určení škálování proudu pro neutronové zisky, aby bylo možné k porovnání s ostatními zařízeními ve světě.

Kapitola 1 Z-pinčový výboj

V této kapitole bude popsána samotná podstata tzv. z-pinčového výboje a stěžejní fyzikální děje, které tento jev doprovázejí. Závěr této kapitoly je věnován numerické simulaci.

1.1 Princip z-pinčového výboje

Typickou ukázkou silnoproudého výboje v přírodě jsou bouřkové blesky v zemské atmosféře[9], koróna či jiskrový výboj, probíhající v ionizovaném vzduchu. Více energické výboje probíhají již v husté plazmatu. Z běžnějších se může jednat o doutnavý nebo obloukový výboj. Dalším příkladem jsou sluneční erupce, které mají tzv. pinčové vlastnosti[10]. Speciální druh výboje, který nastává v mnohem hustším prostředí, neboli plně ionizovaném plazmatu, se nazývá z-pinčový výboj. Zatímco blesky dosahují proudů zhruba do 100 kA, tak v laboratorních z-pinčových výbojích je dosahováno maximálního proudu až 30 MA, jejich proudová hustota bývá až o čtyři řády vyšší a energie až bývá vyšší o řádů pět. Rozměry kanálu bleskového výboje jsou podstatně větší. Zde se jedná o průměr proudového kanálu v jednotkách centimetrů a délky kanálu ve stovkách metrů, zatímco u z-pinčových výbojů rozměry bývají až o několik řádů menší, tedy průměry několik milimetrů a délky jednotky centimetrů. Co se týče doby průběhu jednotlivých výbojů, blesky probíhají v řádech milisekund a jejich existence je možné pozorovat lidským okem. V případě běžného z-pinče průběh výboje trvá také až několik mikrosekund, ale přímo samotná imploze trvá pouze desítky až stovky nanosekund, tudíž samotný výboj lze spatřit pouze lidským okem, ovšem nelze z takového pozorování vyvozovat žádné poznatky. Pro dosažení takto vysokých hodnot proudů a energií je potřeba velmi výkonný impulzní generátor, který je složený z bateriového systému a vysokonapěťového zdroje, který je schopný dosáhnout dostatečného napětí, aby se výboj mohl uskutečnit.

Z-pinčový výboj v laboratorním prostředí nejčastěji probíhá v plynném prostředí za nízkého tlaku (100-500 Pa) nebo ve vakuu po uhlíkových vláknech, případně kovových drátcích. Při takovém výboji je elektrický proud tak vysoký, že dokáže vytvářet v plazmatu vlastní silné magnetické pole, 1. Z-pinčový výboj 🔹 🔹 🔹

které působí na nabité částice Ampérovou silou

$$\mathbf{dF} = I\mathbf{dI} \times \mathbf{B},\tag{1.1}$$

kde **F** je síla, která stlačuje proud I a **B** je vlastní magnetické pole generované protékajícím proudem. Směr a orientaci toků a působení sil lze vidět na obrázku 1.1, kde je i schématicky znázorněn jiný druh pinčového výboje a tím je tzv. θ -pinč. Rozdíl oproti z-pinči u θ -pinče spočívá ve skutečnosti, že proud neteče ve směru osy z, ale v azimutálním směru, tím vytváří magnetické pole ve směru osy z. Tento typ výboje není tak častý pro praxi jako z-pinč, s kterým se setkáváme častěji, proto se budeme nadále věnovat pouze z-pinči.

Obrázek 1.1: Schéma z-pinčového a θ -pinčového výboje [5].

1.2 Produkce neutronů

Obecně můžeme říci, že zdroj neutronů lze získat na základě různých jaderných reakcí. Mezi nejznámější zdroje patří například radioizotopy (α , n) jako ²⁴¹Am/Be nebo ²³⁹Pu/Be [11]. Ovšem nevýhodou těchto zdrojů je, že nelze regulovat jejich tok, a ani je úplně "vypnout". V jaderných elektrárnách dochází ke štěpení těžkých jader uranu a uvolnění velkého množství neutronů, které lze regulovat zpravidla pomocí bóru obsaženého ve vodě, nebo v regulačních tyčích. Opačným procesem ke štěpení je fúze, neboli slučování lehkých jader, která rovněž vede k produkci neutronů a právě k fúzním reakcím dochází v z-pinčových výbojích. Jak již bylo v přechozím textu zmíněno, z-pinče probíhají nejčastěji v deuteriovém plynu. Hlavním důvodem je, aby bylo možné dosáhnout tzv. D-D fúzní reakce.

1.2.1 D-D reakce

Při této reakci dochází ke srážce dvou atomů deuteria, přičemž nastávají dvě možnosti, jakých produktů bude dosaženo. První možnost je, že výstupem

1.3. Škálovací zákon

srážky bude atom tritia společně s protonem, nebo atom helia s neutronem. Poznamenejme, že deuterium se získává z vody, lze tedy považovat jeho zásoby za téměř nevyčerpatelné, čímž se jedná o vhodný zdroj energie [5].

$$D + D \to T + p \tag{1.2}$$

$$D + D \to He^3 + n \tag{1.3}$$

Další možnou reakcí, ke které dochází v z-pinčových výbojích je slučování deuteria s tritiem.

1.2.2 D-T reakce

Další reakce se nazývá D-T reakce, kdy dochází ke srážce deuteria a tricia. Z praktického pohledu má tato reakce několik nevýhod. První nevýhodou je nutnost dvou rozdílných atomů. S tím je spojeno, že nebude vždy docházet k žádaným D-T srážkám, ale také D-D a T-T. Výhodou je energeticky výhodnější proces, produkující neutrony a helia-4. Tento typ reakce je zvláště významný pro budoucí aplikace v oblasti termojaderné fúze, kde představuje potenciální zdroj obrovského množství energie [5].

$$D + T \to He^4 + n \tag{1.4}$$

1.3 Škálovací zákon

V počátcích z-pinčových experimentů byla zjištěna závislost mezi množstvím produkovaných neutronů a energií impulzního generátoru ve travu $Y_n \sim E_0^2$. Tato energie závisí na kapacitě C_0 a napětí U_0 , na které baterii dokážeme nabít $(E_0 = \frac{1}{2} \cdot C_0 \cdot U_0^2)$. Později byla popsána závislost elektrického proudu ve výboji s již zmíněnou energií baterie $I \sim E^{0,5}$, a tak byla následně odvozena závislost neutronového zisku ve tvaru $Y_n \sim I^4$ [12]. Následně byly vedeny diskuze, o kterou hodnotu proudu se ve skutečnosti jedná, jestli o maximální dosažený proud nebo o proud, při kterém dochází k emisi neutronů. Po dalším zkoumáni bylo zjištěno, že pro většinu zkoumaných zařízení jsou hodnoty těchto proudů téměř totožné, a tedy nezáleží, podle kterého proudu se bude neutronový zisk určovat [13]. Po rozsáhlém rozboru dat z velkého spektra experimentů na mnoha zařízeních se podařilo dále upřesnit mocninu proudu. na které závisí zisk na nejčastější hodnotu, tedy že neutronový zisk pro většinu zařízení se pohybuje mezi 3,2. a 3,3. mocninou, tedy $Y_n \sim I_{max}^{3,2-3,3}$ [14]. Na Obr. 1.2 níže můžeme pozorovat naměřené neutronové zisky při maximálních proudech na několik zařízeních při různých měřeních s dvojím proložením. Vyšším škálováním, zde se jedná o čtvrtou mocninu proudu a nižším škálovím, zde se jedná o třetí mocninu.

1.4 Numerický model

Pro simulaci silnoproudých výbojů v plazmatických fokusech typu Mather, který je popsán v pozdější kapitole 2.4, se užívají různé modely. Veřejně

Obrázek 1.2: Neutronové zisky při maximálních proudech, upraveno z [1].

publikovaný je Lee model, který velmi přesně napodobuje průběh výboje. Vzhledem k jeho dostupnosti a velmi snadné obsluze je tento model velmi známý a velice rozšířený pro experimentátory, kteří se nezabívají vlastními simulacemi a tvorbou svého modelu.

1.4.1 Lee model

První verze tohoto modelu byla publikována v roce 1984 a obsahovala 2 fáze výboje, axiální a radiální kompresi. Dále byl tento model vylepšován, až se v roce 2000 podařilo publikovat značně rozšířenou verzi, která doplnila další 3 fáze a to radiální rázovou kompresi, pomalou kompresi a expanzi. Z těchto přidaných fází je nejpodstatnější pomalá komprese, protože se jedná o fázi při které dochází k pinčovému jevu. Později byla přidána šestá fáze, tzv. přechodová, která probíhá v době mezi kompresí a expanzí [15].

Abychom byli schopni používat tento kód, je potřeba znát parametry určující průběh výboje. Tyto parametry je možné rozdělit do 3 skupin:

- 1. modelové parametry
- 2. operační parametry
- 3. parametry zařízení

Ze skupiny modelových parametrů lze hovořit o koeficientech, které určují poměr hmoty a poměr proudu podílejících se na dané části výboje z celkového množství pro axiální a radiální fázi. Vhodnou volbou těchto parametrů je snaha přizpůsobit simulace ke skutečným průběhům výboje. Další skupinou jsou operační parametry, tedy takové pro které byl prováděn výboj. Jedná se o nabíjecí napětí kondenzátorové baterie, množství napuštěného plynu určující tlak v komoře. Dále je také možné uvést druh pracovního plynu, kterým byla komora napuštěna, nejčastěji se používá čisté deuterium, neboť hlavním cílem je dosáhnout D-D fúzní reakce, které bez deuteria dosáhnout nelze [16, 17, 2]. Nicméně používají se i směsi deuteria s jinými plyny, například s argonem [18] nebo s tritiem [19]. Poslední zmíněnou skupinou pro úspěšné provedení simulace jsou parametry zařízení. Jedná se o odpor a indukčnost obvodu. Důležitá je kapacita obvodu, ale vzhledem k připojeným bateriím lze kapacitu samotného obvodu zanedbat a brát v potaz pouze kapacitu baterií, které mají velkou převahu nad obvodem. Je potřebné uvádět i délku elektrodového systému, vzdálenost katody od osy z a průměr anody. Na Obr. 1.3 je porovnání reálného výboje s jeho simulací na aparatuře PF-1000, která byla použita při tvorbě a úpravě Lee modelu.

Obrázek 1.3: Ukázka porovnání časových průběhů proudu experimentálně získaného se simulací podle Lee modelu.

1.4.2 Vliv modelových parametrů na průběh výboje

Jak bylo zmíněno v předchozí části, Lee model obsahuje modelové parametry, konkrétně 2 pro axiální a 2 pro radiální fázi výboje. Jedná se o poměrné veličiny z celkové hmoty a celkového proudu, tedy všechny tyto parametry dosahují hodnot od 0 do 1 nezávisle na sobě.

První z axiálních parametrů, většinou řádově volený ve vyšších desetinách, je koeficient f_m , který značí poměrnou část hmoty pohybující se v daném směru, zde tedy axiálním. Druhý axiální parametr je označen f_c , značící poměrnou část proudu tekoucí mezi elektrodami, volené hodnoty se pohybují řádově v nízkých desetinách až setinách. Pro lepší představu vlivu těchto koeficientů si ukážeme, jaký mají vliv na průběhu výboje. Ostatní parametry jsou volené podle aparatury PFZ-200 při napětí 18 kV, těmto parametrům bude věnovaná další část.

Obrázek 1.4: Závislost průběhu proudu v čase na změně koeficientu f_m .

Jak můžeme vidět z Obr. 1.4, koeficient f_m má vliv jak na době nárůstu proudu, tak i na jeho maximální hodnotě. S vyšším koeficientem tedy můžeme dosáhnout i většího maximálního proudu, ovšem jak můžeme pozorovat při hodnotách $f_m = 0, 10 - 0, 12$, proud při začátku radiální fáze je menší než maximální proud. Dokonce při hodnotě $f_m = 0, 16$ už můžeme pozorovat značný rozdíl hodnot těchto proudů. Také pokles je u vyšších proudů během radiální fáze více znatelný. Dále také lze pozorovat, že každá přidaná setina koeficientu prodlužuje dobu do pinče přibližně o 50 ns. Doba do pinče, nebo také doba do výboje, je časové rozmezí od začátku nárůstu proudu do jeho přetržení při výboji.

Na Obr. 1.5 můžeme pozorovat téměř opačné změny pro koeficient f_c než pro předchozí f_m , tedy zvyšováním koeficientu získáváme nižší maximální proud a rychlejší dobu do pinče, ovšem s rozdílem nižšího rozdílu mezi maximálním proudem a proudem přechodu z axiální do radiální fáze. Také časový rozdíl není tak znatelný, mezi použitými koeficienty $f_c = 0,55$ a $f_c = 0,85$ je časový rozdíl pouze 288 ns, což při porovnání nejmenšího a největšího vybraného koeficientu pro f_m je téměř poloviční.

Obdobně jsou označovány koeficienty pro radiální fázi, tedy f_{mr} pro poměr hmoty v radiálním směru a f_{cr} pro poměr proudu, používané hodnoty jsou podobné jako pro axiální koeficienty. Jak je možné očekávat již z názvu, vliv radiálních parametrů se projeví pouze v radiální fázi výboje, který je v porovnání s délkou celého průběhu velice malý, avšak jeho průběh má zásadní vliv na produkci neutronů. Není tedy možné blíže pozorovat vliv

Obrázek 1.5: Závislost průběhu proudu v čase na změně koeficientu f_c .

změnu koeficientů na celém průběhu, proto se zaměříme jen na ovlivnitelný úsek z celého průběhu.

Obrázek 1.6: Závislost průběhu proudu v čase při změně koeficientu f_{mr} pro zvolený časový úsek.

Obrázek 1.7: Závislost průběhu proudu v čase při změně koeficientu f_{cr} pro zvolený časový úsek.

Pozorováním Obr. 1.6 můžeme vyvodit, že zvyšováním koeficientu f_{mr} dosáhneme pozvolnějšího přechodu z axiální do radiální fáze s téměř zanedbatelně vyšším proudem běhen pinče. Pro koeficient f_{cr} na Obr. 1.7 vidíme opačný vliv než u f_{mr} , stejně tak jako na sebe působily axiální koeficienty. Zde se zvyšováním koeficientu získáváme rychlejší dobu do přechodu fází a pinče s vyšším poklesem proudu během radiální fáze.

1.4.3 Výpočet neutronového zisku

Důležitá vlastnost tohoto modelu je ta, že dokáže podle zvolených parametrů kromě časového průběhu proudu vypočítat i výsledný neutronový zisk. Tento zisk je vypočítán ze dvou způsobů tvorby neutronů, jsou to termonukleární produkce a beam-target. Termonukleární neutronové zisky se určí jako

$$Y_{th} = \int_{t_1}^{t_2} 0.5 \cdot n_i^2 \cdot \pi \cdot r_p^2 \cdot z_f < \sigma v > dt$$
 (1.5)

kde n_i je objemová hustota výskytu iontů, r_p je poloměr pinče, z_f je délka pinče a $\langle \sigma v \rangle$ je reaktivita. Neutronový zisk Y_{th} je získán jako integrál ze všech dílčích částí po relevantní dobu výboje. Druhou skupinou jsou tzv. beam-target neutrony. Tyto neutrony jsou způsobeny interakcí mezi horkým hustým plazmatem a svazkem rychlých deuteronů při výboji. Zisk beam-target neutronů lze zapsat jako

$$Y_{b-t} \sim n_b n_i (r_p^2 z_p)(\sigma v) \tau, \qquad (1.6)$$

kde n_b je objemová hustota svazku nalétávajících iontů a τ je poměr doby beam-target interakce k uzavření sloupce plazmatu. Po dalších úpravách lze tento vzorec přepsat do podoby počítající s parametry zařízení, tedy

$$Y_{b-t} = C_n n_i I_{pinch}^2 z_p^2 (\ln \frac{b}{r_p}) \sigma / V_{max}^{1/2}$$
(1.7)

kde I_{pinch} je elektrický proud při začátku fáze pomalé komprese, b je poloměr ke katodě a V_{max} je maximální napětí indukované proudem, který kolabuje radiálně k ose. C_n je konstanta, která je kalibrovaná podle experimentálních měření [15].

Beam-target a termonukleární složky jsou ve výsledku sečteny do výsledného zisku. Napříč většinou simulovaných průběhů je poměr mezi těmito složkami vždy ve prospěch beam-target neutronů. Termální neutrony při upravení modelu na očekávané parametry aparatury pro experiment se pohybují řádově 10^4 až 10^5 , zatímco beam-target jsou minimálně $9 \cdot 10^6$ při nejnižším napětí. Tento poměr odpovídá realitě, tedy že při z-pinčovém výboji jsou získávány neutrony zejména z beam-target procesu. Na Obr. 1.8 a 1.9 níže můžeme pozorovat, jak se mění množství jednotlivých neutronových zisků při změně modelových parametrů, i zde jsou beam-taget a celkové zisky téměř totožné.

Obrázek 1.8: Vliv změny koeficientů \mathbf{f}_m a \mathbf{f}_{mr} na termální, beam-target a celkové neutronové zisky.

Obrázek 1.9: Vliv změny koeficientů \mathbf{f}_c a \mathbf{f}_{cr} na termální, beam-target a celkové neutronové zisky.

Kapitola 2 Z-pinčová zařízení

V rámci této kapitoly se budeme zabývat zařízeními a jejich případnými konfiguracemi, která byla používána pro z-pinčové výboje. Od počátků výzkumu silnoproudých výbojů se výzkumné aparatury dočkaly vývoje hlavně v oblasti elektrodových systémů v komorách, ve kterých probíhá výboj. Proto začneme s nejzákladnějším zařízením a půjdeme postupně až k současně používaným aparaturám.

2.1 Kompresní z-pinč

Prvním velmi rozšířeným a užívaným typem zařízení byl kompresní z-pinč. Jedná se o válcovou komoru, do které je stlačeno částečně ionizované plazma. Po průrazu na izolátoru se po stranách od anody tvoří proudová vrstva směrem ke katodě. Tato vrstva je pak stlačována rázovou vlnou v radiálním směru [20]. Pro tento typ aparatury bývají charakteristické rozměry komory o průměru v řádu centimetrů. Ovšem v případě zachování délky komory, ale zmenšení průměru z centimetrů na milimetry, bylo by možné hovořit o tzv. kapilárním z-pinči [16].

2.2 Drátkový z-pinč

Další konfigurací je drátkový z-pinč, jedná se o uspořádání, kde je mezi elektrodami umístěn drátek, který bývá většinou vyroben z wolframu nebo mědi, ovšem pokud bývá vyroben z uhlíku, tak se mluví spíše o vlákně než drátku [21]. Při použití více drátků do uskupení vedle sebe nebo v kruhu mezi elektrodami nazývámeme toto seskupení drátkové pole (wire array). Dále lze při použití více drátků dosáhnout křížení na ose z, takže při pohledu ze stran vytváří drátky písmeno X, dostáváme speciální konfiguraci drátkového z-pinče zvanou X-pinč.

2.3 Gas puff

Tento typ zařízení se od předešlých konfigurací velice odlišuje svojí konstrukcí. Oproti drátkovému uspořádání je zde nahrazen drátek svazkem plynu,

Obrázek 2.1: Schéma: a) Kompresní z-pinč upraveno z [2], b) Drátkový z-pinč, c) Liniové drátkové pole, d) X-pinč.

který lze zionizovat přiložením napětí. Tato konfigurace má vlastnosti podobné kompresnímu pinči akorát bez použití izolátoru, také dovoluje urychlit ionty na vyšší energie. Průběh výboje v takto uskupeném zařízení je následující. Pracovní plyn, který je umístěný v nádobě pod vysokým tlakem, je vstříknut nadzvukovou rychlostí do vakuové komory ve vhodný okamžik před výstřelem. Jakmile dosáhne plyn druhé elektrody dojde ke spuštění pulzního generátoru a plynem projde k rychle rostoucího proudu [22]. Tento typ zařízení tedy dovoluje manipulovat s dobou vstřiku a hustoty hmoty v počáteční fázi výboje.

2.4 Plazmatický fokus

Speciální konfigurace z-pinče je plazmatický fokus. Již delší dobu se používají dvě konfigurace Mather a Filippov, které byly vynalezeny nezávisle na sobě v 60. letech minulého století, Mather v USA a Filippov v SSSR [23, 24, 16]. Tyto aparatury se liší především v geometrii. Hlavním rozdílem je poměr délky a průměr anody. Předností typu Mather je výrazně větší délka elektrod než je průměr anody, tím je dosahováno delší axiální urychlovací fáze. Bylo by vhodné dodat, že tento typ plazmatického fokusu je mnohem častější. Druhým je typ Filippov, kde anoda má podstatně větší průměr než je délka elektrod a tím pádem delší radiální fázi při které dochází k implozi. Oba tyto typy můžeme vidět na následujícím obrázku 2.2.

Obrázek 2.2: Schéma plazmatických fokusů a) Mather a b) Filippov, upraveno z [25].

Nejdůležitější částí plazmatického fokusu je hermeticky uzavřená tlaková komora, ve které se nachází koaxiální elektrodový systém složený z válcové anody, jenž je umístěna uprostřed komory. Okolo anody bývají rozmístěny katodové tyče, jejichž počet se může měnit v závislosti na zařízení. na povrchu anody ve spodní části bývá umístěn izolátor, na kterém dochází k přeskoku proudu, a tím se začne formovat proudová vrstva mezi izolátorem a elektrodami. Tento přeskok zprostředkovává jiskřiště, které spíná kondenzátorovou baterii. Jak baterie, tak jiskřiště se nacházejí mimo komoru a jsou připojeny vodiči. Před provedením výboje bývá vyčerpán vzduch z komory, tím se dosáhne vakua $(10^{-2} - 10^{-3} \text{ Pa})$. Následně je do komory vpuštěn plyn, ve kterém bude probíhat výboj. Množství tohoto plynu udává tlak v komoře, většinou se jedná o desítky až stovky Pascalů [17]. Po napuštění plynu do komory a nabití kondenzátorové baterie je již možné sepnout jiskřiště, tím se začne formovat proudová vrstva na izolátoru, která je urychlována Amperovou silou v axiálním směru. Této části se proto říká axiální fáze, jenž pozvolně přechází v radiální fázi v okamžik, kdy proudová vrstva se dostane nad elektrody a začne být stlačována nad středem anody v radiálním směru. Této části se říká komprese a dochází při ní k emisi neutronů a rentgenového záření.

2.4.1 PFZ-200

Jedná se o malý univerzitní plazmatický fokus, který je umístěný na katedře fyziky Elektrotechnické fakulty ČVUT v Praze, na kterém byl prováděn experiment, jenž je popisován v této práci. Tento plazmatický fokus je typu Mather. Pro toto zařízení je baterie napájena vysokonapěťovým zdrojem, který je schopný nabít baterii až na 30 kV, se čtyřmi paralelně zapojenými kondenzátory o celkové kapacitě 20 μ F. Každý kondenzátor je spuštěn jiskřištěm, které je plněno vzduchem. Vzhledem k navržené konstrukci ba-

teriového a elektrodového systému se volí maximální hodnota napětí 20 kV. Nejběžněji se používá hodnota nabíjecího napětí 18 kV, kterým je dosahováno maxima proudů v rozmezí přibližně 210 - 220 kA a neutronové zisky se pohybují v řádu 10^8 neutronů na výstřel.

Obrázek 2.3: Schématické zapojení plazmatického fokusu PFZ-200 [26].

Uprostřed vakuové komory se nachází válcová elektroda (anoda), tato anoda má průměr 25 mm a délkou 140 mm. Horní konec anody byl uzpůsoben tak, aby bylo možné tuto elektrodu zakončit různými hroty, které ovlivňují průběh radiální fáze výboje a s tím i spojenou emisi neutronů a maximální proudy [17]. Tato elektroda je ve spodní části obklopena izolátorem z Al_2O_3 , který dosahuje výšky 40 mm. V osové vzdálenosti 50 mm je okolo anody celkem 12 katodových tyčí. Jedná se o ocelové tyče, kdy každá tyč má průměr 8,5 mm a její délka je 190 mm. Díky malým rozměrům komory lze velmi rychle dosáhnout vakua, což dovoluje dosahovat intervalu mezi jednotlivými výstřely přibližně 5 až 10 minut. To je vhodné pro experimenty vyžadující větší množství výstřelů, jako například testování různých elektrod, změny hodnot napětí a tlaku nebo zkoušce diagnostických zařízení [26].

Parametry pro simulační model

Již jsme v kapitole 1.4.2 probrali modelové parametry simulačního modelu, takže se nyní můžeme podívat na zbývající dvě skupiny, tedy na parametry zařízení a operační parametry. Mezi první tuto skupinu patří parametry obvodu a rozměry elektrod, pro tuto aparaturu má obvod indukčnost $L_0 = 40$ nH, odpor $r_0 = 1$ m Ω a kapacitu $C_0 = 20 \,\mu$ F. Vzhledem ke konstrukci aparatury je fyzický zásah do těchto vlastností velice obtížný, oproti tomu pro změny rozměrů elektrod stačí pouze zásah do komory. První geometrický rozměr je poloměr kružnice b = 2, 5 cm, na které jsou rozmístěny katodové tyče, další je poloměr vnitřní elektrody a = 1, 25 cm a délku anody, která je z = 19 cm. Tyto parametry platí při použití většiny elektrod, které byly navržené a použité na této aparatuře.

. .

Obrázek 2.4: Plazmatický fokus PFZ-200 [archiv autora].

 $Obrázek \ 2.5: \ {\rm Pohled} \ {\rm do} \ {\rm komory} \ {\rm na} \ {\rm elektrodov} \acute{\rm y} \ {\rm syst} \acute{\rm em} \ [{\rm archiv} \ {\rm autora}].$

2.4.2 PF-1000

PF-1000 je plazmatický fokus v Institutu fyziky plazmatu a laserové mikrosyntézy (IFPLM) ve Varšavě, o kterém byla zmínka již v kapitole 1.4.1. Jedná se o plazmatický fokus typu Mather, u kterého je možné v bateriovém systému uložit energii až 1000 kJ před výstřelem. Je zde dosahováno elektrických proudů přes 1 MA a neutronových zisků v řádově od 10⁹ až po 10¹¹ neutronů na výstřel. Doba nutná na čerpání komory je přibližně hodina. Důležité parametry PF-1000 jsou: kapacita kondenzátorové baterie $C_0 = 1,332$ mF, nominální induktance $L_0 = 8,9$ nH, zkratový proud $I_{SC} = 15$ MA a charakteristickou impedanci $Z_0 = 2.6$ m Ω [27].

Obrázek 2.6: Pohled do komory PF-1000 na elektrodový systém [archiv autora].

Kapitola 3 Diagnostika

V této části si probereme diagnostické přístroje a metody, které byly použity při našem experimentu na PFZ-200. Nejprve si popíšeme neutronovou diagnostiku a následně metodu určování elektrického proudu v z-pinčovém výboji.

3.1 Aktivační čítač

Jednou z možností pro detekci fúzních neutronů je pomocí aktivačního čítače, který využívá například stříbro (SAC, "silver activation counter"). Tento čítač je složen ze stříbrné fólie, která obklopuje Geiger-Müllerovy trubice. Tato fólie obsahuje přírodní izotopy stříbra, z 51,8 % $^{107}_{47}$ Ag a z 48,2 % $^{109}_{47}$ Ag, jenž je obklopena vysokohustotním PET, nebo lze použít i parafín. Tento materiál slouží jako moderátor pro rychlé neutrony. Tyto neutrony je třeba zpomalit na energie zvyšující pravděpodobnost zachycení neutronu tak, aby došlo k záchytu a tedy k obohacení stříbra. K reakci dochází následovně: stříbro zachytí neutron, čímž se obohatí na nestabilní izotop $^{108}_{47}$ Ag, resp. $^{110}_{47}$ Ag, a následně dojde k β^- rozpadu, díky kterému se stříbro rozpadá na $^{108}_{48}$ Cd, resp. $^{110}_{48}$ Cd.

Důležitý je poločas rozpadu, který by měl být co nejkratší, aby při opakování výboje nedocházelo stále k počítání reakcí, ke kterým došlo kvůli předchozímu výstřelu [28]. Pro $^{107}_{47}$ Ag se jedná o poločas rozpadu 142,9 s a pro $^{109}_{47}$ Ag to je 24,6 s [16]. Tyto poločasy jsou dostačující, aby nepřesahovali interval mezi jednotlivými výboji.

3.2 Time-of-flight detektory

Time-of-flight (ToF) detektory jsou jedny z nejvíce přesných metod jak detekovat rychlé neutrony a jejich energické spektrum. Detektor většinou má tvar dlouhé trubice z nerezové oceli, která slouží jako pouzdro. V tomto pouzdře se nachází scintilátor, což bývá plastikový válec bohatý na vodík z materiálu založeném na polyvinyltoluenu, ty lze jednoduše vyrobit a následně s nimi jednoduše manipulovat. Scintilátor je zde opticky spojen s fotonásobičem, který je doplněný o vysokonapěťový dělič. na základě různé polohy detektoru

Obrázek 3.1: Umístění čítače v laboratoři [archiv autora].

od zdroje záření, případného vnějšího stínění, regulaci napájecího napětí v rozsahu 1 - 2 kV a možnosti útlumu emise světla ze scintilátoru je možné použít tento typ detektoru pro velmi široké rozpětí neutronových zisků od 10^6 až po 10^{12} neutronů na výstřel [3].

Obrázek 3.2: Průřez ToF detektorem, upraveno z [3].

Princip detekce fúzních neutronů spočívá v elastických srážkách neutronů s protony ve scintilátoru. Při srážce vzniká urychlený proton, jehož střední volná dráha je výrazně menší než rozměr scintilátoru, čímž je všechna energie předána atomům scintilátoru. Excitované atomy následně emitují viditelné světlo, toto světlo je detekováno pomocí fotonásobiče a je převedeno na elektrický signál. Pro účely takovéhoto měření postačí plastikové scintilátory [3].

Jak již bylo zmíněno, v porovnání s ostatními technologiemi mají ToF několik výhod: jsou schopné měřit s velkou vzorkovací frekvencí, jsou malé, lehké a mají kompaktní design, nepotřebují vnější osvětlení. Lze tyto detektory považovat za dobrá zařízení na detekci přítomnosti neutronů, ovšem pro přesné určení počtu neutronů se příliš nehodí.

3.3 Měření vysokých proudů

Silnoproudé z-pinčové výboje jsou charakteristické maximem proudu dosahujícím stovek kA až nižších desítek MA, přičemž doba náběhu se může pohybovat od 100 ns až po 1 µs. Kvůli těmto skutečnostem měření proudů nelze uskutečnit konvenčními přístroji jako je ampérmetr nebo měřící transformátor. Nejlepší magnetoelektrické ampérmetry jsou schopny měřit i řádově jednotky až desítky kA, což nestačí. Měřící transformátory mají lepší vlastnosti než ampérmetry, ale stále nedosahují dostatečné vzorkovací frekvence. Podle článku [29] je možné odhadovat tuto frekvenci maximálně na 20 MHz, což umožní rozlišení v mikrosekundách, ale to je stále o několik řádů nižší frekvence než je potřeba. Další možné zařízení by byla Hallova sonda (neboli také senzor Hallova jevu), která také není schopna pracovat s dostatečnou vzorkovací frekvencí, kterou vyžadují tak rychlé děje jako jsou z-pinčové výboje.

Proud ve výboji je tedy potřeba měřit jiným zařízením, které je schopné požadavky na měření splnit. Z takovýchto důvodů lze využít např. Rogowského cívky, které jsou schopné měřit od desítek až po miliony ampér se vzorkovací frekvencí až 10 GHz [30, 31]. Rogowského cívku pracuje na podobném principu jako dříve zmíněná Hallova sonda, tedy na elektromagnetické indukci. Měří rychlost změny proudu pomocí detekce měnícího se magnetického pole kolem vodiče. Indukuje napětí úměrné derivaci proudu protékajícího vodičem. K určení skutečného proudu je nutná integrace indukovaného napětí. Lze ji tedy použít pro tato měření a její provedení je jednodušší a levnější. Jedná se o dlouhou válcovou cívku, která obplétá vodič, jímž protéká měřený proud. Cívka je magneticky spřažená s vodičem, aby elektromagnetické pole bylo proporční pro změnu v čase, kdy protéká proud [32]. Cívky se dělí na dva typické druhy s pevným nebo elastickým jádrem, kdy je potřeba vybrat podle potřeb měření [33]. Používání Rogowského cívky pro měření vysokofrekvenčních proudů má několik výhod:

- Nedochází k saturaci feromagnetického jádra, tedy se měřený proud nezastaví na určité hodnotě, protože cívka má vzduchové jádro.
- Je lineární díky absenci magnetických materiálů.
- Jedná se o jednoduché a levné řešení.
- Neinvazní, tj. cívka nezatěžuje proud obvodu, který se má měřit za určitých podmínek impedančního přizpůsobení.

Kapitola 4

Experiment na PFZ-200

Hlavním cílem této práce je experimentální ověření škálovacího zákona popsaného v kapitole 1.3, který popisuje závislost mezi neutronovým ziskem a elektrickým proudem v z-pinčovém výboji. Za tímto účelem byl proveden experiment na školním plazmatickém fokusu PFZ-200, kdy bylo systematicky voleno nabíjecí napětí generátoru v rozmezí 14 - 22 kV, aby bylo možné zaznamenat neutronové zisky při výbojích s různými maximy proudu. Neutronové zisky byly měřeny pomocí aktivačního čítače, dále byly zaznamenány průběhy detekce na několika nToF detektorech, tato diagnostická zařízení byla popsána v kapitole 3.2 a 3.1, navíc použité scintilátory v nToF detektorech jsou citlivé i na tvrdé rentgenové záření. Dále z diagnostických zařízení byla použita Rogowského cívka (viz kapitola 3.3) pro měření proudu. Pro každé zvolené napětí byla snaha dosáhnout co nejvíce ustálených neutronových zisků mezi jednotlivými výstřely při podobných maximálních proudech. Mezi jednotlivými výstřely byl dodržován dostatečný časový interval, aby bylo možné před každým výstřelem dostatečně odčerpat komoru na tlak alespoň $2 \cdot 10^{-2}$ Pa a napustit novým deuteriem. Dále bylo potřeba vyčkat na úplný rozpad stříbra z neutronového čítače, aby nedocházelo k ovlivňování mezi jednotlivými výstřely. Pro každou hodnotu napětí bylo nejprve provedena optimalizace tlaku a následně bylo provedeno vlastní měření.

Celá tato praktická část byla uskutečněna při použití válcové elektrody s drobnou dírou uprostřed, jak již bylo zmíněno v kapitole 2.4.1. Tato elektroda je vyrobena ze slitiny obsahující 20 % mědi a 80 % wolframu. v průběhu experimentu se podařilo uskutečnit celkem 126 úspěšných výstřelů. Pro každou hodnotu napětí v rozsahu 14 - 22 kV bylo provedeno alespoň 12 výstřelů. Nejvíce výstřelů bylo provedeno při napětí 18 kV, protože toto experimentální zařízení bylo navrhováno pro tuto hodnotu napětí. Výsledky měření budou detailněji rozebrány v dalších kapitolách.

4.1 Rozmístění diagnostiky

Při měření byly využity následující detektory a měřící přístroje. Aktivační čítač umístěný 40 cm od středu komory. Dále byly využity celkem čtyři nToF detektory na určování doby produkce neutronů. Detektory označené jako

4. Experiment na PFZ-200

nToF0 a nToFA byly umístěny v bezprostřední blízkosti komory, od které byly odstíněny olověnými cihlami o tloušťce 5 cm, aby se minimalizoval průnik rentgenového záření a měřený signál odpovídal pouze detekci neutronů. Další dvojice označená jako nToFB a nToFC byla umístěna ve Faradayově kleci ve vzdálenosti 269 cm a 427 cm od komory. V této kleci se dále nacházejí osciloskopy, pomocí kterých je zaznamenáván ToF signál. Pod výbojovou komorou se nachází Rogowského cívka, která měří proud v obvodu experimentálního zařízení.

Obrázek 4.1: Schématické rozmístění diagnostiky.

4.2 Neutronová měření

V průběhu experimentu byly provedeny výstřely s maximy elektrických proudů v celkovém rozsahu od 168 kA až po 247 kA s odpovídajícím neutronovým ziskem. V rámci měření se při nastavení nabíjecího napětí na hodnotu 22 kV podařilo dosáhnout maximálního proudu až 260 kA, avšak došlo k velkému poklesu neutronového zisku oproti předchozím hodnotám napětí. Této hodnotě napětí se budeme později věnovat zvlášť, nyní se zaměříme na napětové hladiny do 21 kV včetně.

Nejnižším napětím bylo 14 kV, při kterém bylo průměrně dosahováno maximálního proudu 168 kA. Pro toto napětí byl nalezen optimální tlak 280 Pa. Jak je zobrazeno na Obr. 4.2, při této hodnotě proudu dochází k zisku $(3, 2 \pm 1, 3) \cdot 10^7$ neutronů na výstřel s velkou fluktuací mezi jednotlivými výstřely. Dále na tomto grafu můžeme vidět tři proklady, jenž mají naznačovat již zmíněnou závislost v kapitole 1.3. Zelená a červená křivka označuje horní a dolní mocniny proudu, mezi kterými se pohybují jednotlivé výstřely. Modrá křivka naznačuje nejpřesnější mocninu prokladu této funkce $y = a + bx^c$, kde c je hledaná mocnina, v tomto případě konkrétně $c=3,47~\pm~0,01.$ Pro maximum proudu 168 kA a jemu odpovídající zisk se nachází v okolí nižší mocniny proudu a lze usuzovat, že tento proud není optimální pro toto zařízení a je třeba vyššího napětí. Při napětí 15 kV kterému odpovídá hodnota maximálního proudu 178 kA bylo dosahováno průměrného zisku $(5,0~\pm~1,2)~\cdot~10^7$ neutronů na výstřel. Pro toto napětí byl zachován stejný tlak jako pro 14 kV. Se zvýšením proudu bylo dosaženo očekávaného zvýšení neutronového zisku a navíc zisk byl více stabilní s menší statistickou odchylkou. Následné zvýšení napětí na 16 kV vedlo ke zvýšení maximálního proudu na 190 kA, s tím se průměrný neutronový zisk téměř zdvojnásobil na $(8,6~\pm~2,6)~\cdot~10^7$ neutronů na výstřel. Také bylo potřeba zvýšit tlak na 300 Pa a 320 Pa s tím, že při tlaku 320 Pa se neutronové zisky méně lišily mezi sebou. Pro tento proud se poprvé několikrát podařilo i překročit hranici 10⁸ neutronů na výstřel. Překonání hranice 200 kA se podařilo při napětí 17 kV, kdy při maximálním proudu 203 kA byl zisk $(9,4~\pm~2,1)~\cdot~10^7$ neutronů na výstřel. Pro toto napětí byl zachován tlak 320 Pa.

Obrázek 4.2: Naměřené neutronové zisky při maximálních proudech.

Při nabíjení kondenzátorové baterie na napětí 18 kV, lze očekávat, že zde bude docházet k velké odchylce kvůli výstřelům s nadprůměrným ziskem, vzhledem ke skutečnosti, že se jedná o hodnotu, na kterou je zařízení dimenzováno. Jak se můžeme přesvědčit na již zmíněném Obr. 4.2, některé zisky jsou srovnatelné se zisky při proudech vyšších o 30 kA než při tomto napětí. Při tomto napětí bylo standardně dosahováno $(1, 2 \pm 0, 4) \cdot 10^8$ neutronů na výstřel při maximálním proudu 214 kA. Tlak byl navýšen na hodnotu 350 Pa oproti předchozímu nižšímu napětí.

Po navýšení napětí na 19 kV s odpovídajícím maximálním proudem 227 kA, bylo stabilně dosahováno neutronových zisků v řádu 10^8 , přesněji

 $(1,5 \pm 0,3) \cdot 10^8$ neutronů na výstřel. Experimentální komora byla převážně plněna na tlak 350 Pa, přičemž vyšší hodnoty tlaku neměly vliv na zvýšení neutronového zisku. Při tomto napětí se podařil i velmi úspěšný výstřel, kdy bylo dosaženo rekordního zisku $3, 2 \cdot 10^8$ neutronů. Zvýšením napětí na 20 kV bylo dosahováno průměrného zisku $(1, 7 \pm 0, 4) \cdot 10^8$ neutronů na výstřel. Při tomto napětí byl zvolen tlak 350 Pa, při kterém bylo průměrně dosahováno maxima proudu 235 kA. Poslední hodnotou napětí při které docházelo úspěšně k produkci neutronů byla hodnota 21 kV. Vhodný tlak pro optimalizaci byl zvolen tlak 380 Pa, pro který byl stabilně dosahován maximální proud 247 kA s neutronovým ziskem $(2, 1 \pm 0, 4) \cdot 10^8$ neutronů na výstřel. Shrnutí naměřených proudů a neutronových zisků je uvedeno v tabulce 4.1 níže. V této tabulce se také nacházejí vypočítané energie uložené v baterii před výbojem, tuto závislost můžeme pozorovat na Obr. 4.3. na tomto grafu lze pozorovat také proklad, který je také založený na předpokladu z kapitoly 1.3, že neutronový zisk je úměrný druhé mocnině uložené energie. Z tohoto experimentálního měření proklad naměřených hodnot pro funkci $y = a + b \cdot x^c$, kde $c = 1, 9 \pm 0, 7.$

Napětí	Energie	Maximální proud	Neutronový zisk \mathbf{Y}_n	Odchylka \mathbf{Y}_n
(kV)	(kJ)	(kA)	(neutrony/výstřel)	(neutrony/výstřel)
14	1,96	168	$3,2 \cdot 10^{7}$	$1,3 \cdot 10^7 (41 \%)$
15	2,25	178	$5,0 \cdot 10^{7}$	$1,2 \cdot 10^7 \ (24 \ \%)$
16	2,56	190	$8,6 \cdot 10^{7}$	$2,6 \cdot 10^7 (30 \%)$
17	2,89	203	$9,4 \cdot 10^{7}$	$2,1 \cdot 10^7 (22 \%)$
18	3,24	214	$1,2 \cdot 10^{8}$	$3,9 \cdot 10^7 (32 \%)$
19	3,61	227	$1,5 \cdot 10^8$	$2,9 \cdot 10^7 \ (19 \ \%)$
20	4,00	236	$1,7 \cdot 10^8$	$3,9 \cdot 10^7 \ (23 \ \%)$
21	4,41	247	$2,1 \cdot 10^8$	$3,7 \cdot 10^7 (17 \%)$

Tabulka 4.1: Naměřené průměrné neutronové zisky a maximální proud pro jednotlivá napětí a odpovídající uloženou energii v baterii.

Obrázek 4.3: Neutronový zisk pro uložené energie v baterii.

4.3 Porovnání měření se simulací

Pro možnost provedení srovnání naměřených dat se simulací je potřeba seznámit se s poslední kategorií parametrů, jak bylo uvedeno za začátku kapitoly 1.4.1, kde byly i popsány modelové parametry. Zbývající skupinou jsou operační parametry. Jedná se o skupinu, kde je možné měnit všechny veličiny bez zásahu do komory. První z těchto parametrů je nabíjecí napětí U_0 (kV), další je tlak P_0 (Torr). Tuto dvojici parametrů je možné při experimentu velice jednoduše měnit, tedy pro porovnání se simulací jsou nejvhodnější na porovnání pro široké spektrum ať už napětí nebo tlaků, případně obojího zároveň. Další parametry jsou molární hmotnost, atomové číslo a druh izotopu, to vše jsou vlastnosti napouštěného plynu. Změna náplně v komoře také patří mezi snadněji proveditelné změny mezi jednotlivými výstřely. Pro tento experiment bylo měřeno s deuteriem, tedy molární hmotnost 4, protože se jedná o molekulu dvou atomů složených ze dvou nuklidů, atomové číslo 1 a izotop s označením 2, tento plyn nebyl měněn.

Nyní, když jsme se seznámili se všemi parametry, které jsou potřebné k simulaci můžeme jejich znalost použít k porovnání se skutečnými naměřenými průběhy. Když se podíváme na simulované průběhy (Obr. 4.4) můžeme pozorovat maximální proud zhruba od 200 kA při napětí 14 kV až po proudy blížící se 280 kA při nabíjecím napětí 21 kV. Také doba do pinče, popsaná v kapitole 1.4.2, se pohybuje od 1,3 μ s až po 1,7 μ s. Ovšem když se dále podíváme na naměřené hodnoty na Obr. 4.5, tak vidíme, že proudy dosahují maximálně 247 kA a doby do pinče jsou také výrazně delší než simulované. Vysvětlením neshod je skutečnost, že tyto simulace byly provedeny před měřením pro odhadnutí maximálních proudů a zisků, které by bylo možné očekávat. Pro lepší porovnání by bylo potřeba přesně napasovat modelové parametry na jednotlivé průběhy, přesto tyto simulace jsou postačující pro porovnání. Při přiblížení simulovaných průběhů můžeme upravit průběhy proudu, přesto orientační hodnota neutronů se příliš nezmění.

Obrázek 4.4: Simulované průběhy proudu v čase pro různá napětí.

Obrázek 4.5: Naměřené průběhy proudu v čase pro různá napětí.

Kromě průběhů proudů při výboji, at už se jedná o hodnoty proudů nebo dobu do pinče, je třeba se také zaměřit na neutronové zisky. Naměřené zisky byly již probrány v kapitole 4.2. Jak bylo popsáno v kapitole 1.4.1, tento numerický model je schopen vypočítat i neutronový zisk. Hodnoty naměřené můžeme tedy porovnat s nasimulovanými, viz tabulka 4.2, kde můžeme pozorovat, že reálné naměřené hodnoty jsou několikanásobně vyšší než hodnoty ze simulace. Můžeme vidět, že při porovnání poměru počet neutronů z měření ku simulaci se pohybuje v poměru od 3,51 při 14 kV až po poměr 6,98 při 21 kV.

Napětí	Neutronový zisk experiment	Neutronový zisk simulace	Poměr n. zisků
(kV)	(neutrony/výstřel)	(neutrony/výstřel)	(-)
14	$3,2 \cdot 10^7$	$9,1 \cdot 10^{6}$	3,51
15	$5,0 \cdot 10^7$	$1,1 \cdot 10^{7}$	4,58
16	$8,6 \cdot 10^7$	$1,4 \cdot 10^{7}$	6,39
17	$9,4 \cdot 10^7$	$1,7 \cdot 10^{7}$	5,67
18	$1,2 \cdot 10^8$	$2,1 \cdot 10^{7}$	5,94
19	$1,5 \cdot 10^8$	$2,3 \cdot 10^{7}$	6,56
20	$1,7 \cdot 10^8$	$2,5 \cdot 10^{7}$	6,73
21	$2,1 \cdot 10^{8}$	$3,0 \cdot 10^{7}$	6,98

Tabulka 4.2: Porovnání naměřeného a simulovaného zisku neutronů, poměr Y_n je poměr neutronového zisku ze simulace ku zisku z měření.

4.4 Měření při 22 kV

Nejvyšším napětím, na kterém byly prováděny výboje, bylo napětí 22 kV, při němž bylo dosahováno průměrného maximálního proudu 257 kA. Oproti předchozím neutronovým ziskům zde nedocházelo k odpovídajícímu zvýšení, ale k dramatickému poklesu měřených hodnot. Naměřené neutronové zisky lze pozorovat na Obr. 4.6. Většina výstřelů se naměřenými hodnotami blíží hranici dvojnásobku měřeného pozadí. Při porovnání s nejnižším použitým napětím 14 kV jsou zisky pro 22 kV téměř desetinové. Jediné výstřely, při kterých docházelo signifikantnímu zisku oproti zbytku, byly výstřely, kde nebyla odčerpána komora a výboj probíhal již v jednou použité náplni. Při předpokladu úměry mezi hodnotou uložené energie v baterii a neutronovým ziskem lze zjistit, že při odpovídající energii 4,84 kJ by zisk měl dosahovat neutronů, i to je ovšem několikanásobek naměřených zisků. Navíc podle porovnání s předchozí kapitolou 4.3 víme, že předpokládané zisky jsou dokonce násobně vyšší.

Po postupném zvyšování tlaku jako u předchozích měřených napětí bylo provedeno 8 výstřelů při tlaku 380 Pa s průměrnými zisky okolo 3 \cdot 10⁶ neutronů. Při snížení tlaku na 300 Pa a provedení dalších 4 výstřelů se snížily průměrné zisky na 1,2 \cdot 10⁶ neutronů. Při všech těchto výstřelech bylo

Obrázek 4.6: Naměřené neutronové zisky pro maximální proudy při napětí 22 kV.

stabilně dosahováno maximálního proudu 254 kA pro tlak 300 Pa a 257 kA pro 380 Pa. Dále bylo provedeno několik výstřelů pro jiné tlaky pro ověření nedostatečného neutronového zisku při tomto napětí. Výstřely pro všechny tlaky jsou shrnuty v tabulce 4.3 níže. Pro dosažení neutronů alespoň odpovídajícím předpokladům by bylo potřeba více detailní měření pro různé tlaky. Velmi pravděpodobným vysvětlením může být také skutečnost, že se jedná již o napětí na hranicích aparatury, která je dimenzovaná na 18 kV, tedy v tomto případě se jedná o překročení navrhovaného napětí téměř o 23 %.

Tlak	Maximální proud	Neutronový zisk
(Pa)	(kA)	(neutrony/výstřel)
280	253	$2,7 \cdot 10^{6}$
300	254	$1,2 \cdot 10^{6}$
320	257	$2,8 \cdot 10^{7}$
350	257	$4, 1 \cdot 10^{6}$
380	257	$4,0 \cdot 10^{6}$
400	260	$9,4 \cdot 10^5$

Tabulka 4.3: Naměřené proudy a zisky pro různé hodnoty tlaku pro napětí 22 kV.

Při porovnání naměřených hodnot neutronových zisků a vypočtených hodnot pomocí simulace, viz tabulka 4.4, docházíme k opačnému závěru než při ostatních hodnotách napětí. To je možné považovat za samozřejmé, vzhledem k velmi nízkému zisku během měření. Nejlepšího poměru neutronového zisku ze simulace ku hodnotám z experimentu bylo dosaženo při tlaku 320 Pa, při takového hodnotě se naměřené zisky alespoň blíží simulovanému zisku. Pro nižší volené tlaky 280 Pa a 300 Pa se poměr pohybuje v řádu jednotek, oproti tomu vyšší tlak 380 Pa a 400 Pa se pohybuje poměr v řádu nižších desítek.

Tlak	Neutronový zisk měření	Neutronový zisk simulace	Poměr \mathbf{Y}_n
(Pa)	(neutrony/výstřel)	(neutrony/výstřel)	(-)
280	$2,2 \cdot 10^{7}$	$2,7 \cdot 10^{6}$	8,20
300	$2,4 \cdot 10^7$	$3,2 \cdot 10^{6}$	7,62
320	$2,6 \cdot 10^{7}$	$2,8 \cdot 10^{7}$	0,95
350	$3,0 \cdot 10^7$	$4,1 \cdot 10^{6}$	7,31
380	$3,3 \cdot 10^7$	$1,2 \cdot 10^{6}$	26,66
400	$3,5 \cdot 10^7$	$9,4 \cdot 10^{5}$	$36,\!85$

Tabulka 4.4: Porovnání naměřeného a simulovaného zisku neutronů pro různé tlaky při napětí 22 kV, poměr Y_n je poměr neutronového zisku ze simulace ku zisku z měření.

Po provedení základního fitování modelových parametrů pro simulaci můžeme na Obr. 4.7 pozorovat rychlejší průběh výboje pro simulaci než z experimentu. Přestože je maximum proudu sníženo na podobnou hodnotu a propad při kompresi je také podobný, pořád získáváme z simulačního modelu vyšší neutronové zisky, což je stále v rozporu s ostatními volenými napěťovými hodnotami i při jejich nepřesné simulaci.

Obrázek 4.7: Srovnání průběhu proudu v čase pro simulaci a experiment pro napětí 22 kV.

Závěr

V úvodní části této práce byl krátce popsán princip z-pinčových výbojů. Dále byly popsány rozdílné konfigurace a dvě konkrétní zařízení, PFZ-200 na kterém probíhala praktická část a PF-1000. Později byla popsána kapitola věnovaná diagnostickým zařízením, které byly použity během tohoto experimentálního měření. Dále byl sledován vliv maximálního proudu na neutronové zisky.

Hlavním cílem této práce bylo určit přibližné neutronové zisky v z-pinčových výbojích s různými maximy proudu. Za tímto účelem bylo systematicky voleno nabíjecí napětí generátoru v rozsahu 14 - 22 kV s odpovídajícími hodnotami proudu 160 - 260 kA. Z naměřených dat bylo možné sestrojit grafické závislosti neutronových zisků pro maxima dosahovaných proudů a pro uloženou energii v baterii generátoru. Tato naměřená data byla porovnána s odhadovanými průběhy a hodnotami získanými ze simulačního modelu. V rámci této práce došlo k proměření škálování pro plazmatický fokus PFZ-200, které doposud nebylo známo. Naměřeným hodnotám nejvíce odpovídá 3,47 ± 0,01 mocnina proudu, tedy lze zapsat tuto závislost jako $Y_n \sim I^{3,47\pm0,01}$. Pro energii zaznamenaným průběhům odpovídá mocnina 1,9±0,7, tedy závislost odpovídá $Y_n \sim E^{1,9\pm0,7}$. Dalším přínosem je základní popis operace s Lee kódem a změnách průběhů v závislosti na jednotlivých parametrech. Práce splnila všechny body ze zadání.

Hlavním přínosem této práce pro autora bylo bližší poznání výzkumnému při experimentu. Pro skupinu silnoproudých výbojů může být tato práce přínosná již zmíněným prozkoumáním škálovacího zákona pro školní zařízení PFZ-200 a také porovnáním se simulačním modelem pro další práci.

V budoucnu by bylo možné tuto práci rozvinout zejména objasněním již zmíněného poklesu neutronových zisků při nabíjecím napětí 22 kV. Zdali se jedná problém technický, či fyzikální, by mohlo objasnit použití vizualizační diagnostiky plazmatu. Kupříkladu se nabízí šlírová diagnostika, založená na laserovém prosondování plazmového výboje, nebo rentgenová kamera s MCP, která je citlivá na měkké rentgenové záření, jenž z-pinčové plazma emituje. Další možností, jak obohatit tuto práci, by bylo zpřesnění vlastního měření. Za tímto účelem by mohl být přepracován jeden z již použitích, nebo 4. Experiment na PFZ-200

vyvinut zcela nový vlastní detektor pro měření neutronových zisků, případně sonda pro měření vysokofrekvenčních elektrických proudů.

Příloha A Literatura

- M. Krishnan. The dense plasma focus: A versatile dense pinch for diverse applications. *IEEE Transactions on Plasma Science*, 40(12):3189–3221, 2012.
- [2] D. Klir et al. Deuterated fibre z-pinch on the s-300 generator. *Physica Scripta*, 2006(T123):116, 2006.
- [3] D. Klir, J. Kravarik, P. Kubes, K. Rezac, E. Litseva, K. Tomaszewski, L. Karpinski, M. Paduch, and M. Scholz. Fusion neutron detector for time-of-flight measurements in z-pinch and plasma focus experiments. *Review of Scientific Instruments*, 82(3):033505, 2011.
- [4] P. Kulhánek. Vybrané kapitoly z teoretické fyziky: Teorie plazmatu-Numerické simulace. III. AGA, 2020.
- [5] P. Kubeš. Impulsní silnoproudé výboje a jejich diagnostika. Skriptum FEL ČVUT, Praha, 2004.
- [6] J. A. Gomez et al. Results of three neutron diagnosed subcritical experiments. Nuclear Science and Engineering, 193(5):537–548, 2019.
- [7] S. F. Horne, J. Silterra, and W. Holber. A compact soft x-ray microscope using an electrode-less z-pinch source. In *Journal of Physics: Conference Series*, volume 186, page 012028. IOP Publishing, 2009.
- [8] J. Deng, S. Jinshui, X. Weiping, Z. Linwen, F. Suping, L. Jin, W. Meng, X. Lianshen, D. Zhiyong, L. Hongtao, et al. Overview of pulsed power research at caep. *IEEE Transactions on Plasma Science*, 43(8):2760–2765, 2015.
- [9] J. D. Craggs and J. M. Meek. *Electrical breakdown of gases*. Wiley, 1982.
- [10] J-I. Sakai and C. De Jager. High-energy flare explosions driven by 3-dimensional x-type current loop coalescence. *Solar physics*, 134(2):329– 352, 1991.
- [11] G. F. Knoll. Radiation detection and measurement. John Wiley & Sons, 2010.

A. Literatura

- [12] S. Lee and S. H. Saw. The plasma focus—trending into the future. International journal of energy research, 36(15):1366–1374, 2012.
- [13] H. Krompholz, F. Rühl, W. Schneider, K. Schönbach, and G. Herziger. A scaling law for plasma focus devices. *Physics Letters A*, 82(2):82–84, 1981.
- [14] B. L. Bures and M. Krishnan. An alternative scaling model for neutron production in z-pinch devices. *Physics of Plasmas*, 19(11):112702, 2012.
- [15] S. Lee. Plasma focus radiative model: Review of the lee model code. Journal of Fusion Energy, 33(4):319–335, 2014.
- [16] J. Cikhardt. High energy density plasma diagnostics using neutron and gamma detectors. 2017.
- [17] J Novotný. Vliv tvaru anody plazmatického fokusu na produkci rentgenového záření a neutronů. Master's thesis, České vysoké učení technické v Praze. Vypočetní a informační centrum., 2021.
- [18] J. Bailey, Y. Ettinger, A. Fisher, and N. Rostoker. Gas-puff z pinches with d2 and d2-ar mixtures. *Applied Physics Letters*, 40(6):460–462, 1982.
- [19] J. L. Bobin. Nuclear fusion reactions in fronts propagating in solid dt. In *Laser Interaction and Related Plasma Phenomena*, pages 465–494. Springer, 1974.
- [20] L. Soto, H. Chuaqui, M. Favre, and E. Wyndham. Novel gas embedded compressional z-pinch configuration. *Physical review letters*, 72(18):2891, 1994.
- [21] D. Klir. The study of a fibre z-pinch. arXiv preprint physics/0703207, 2007.
- [22] M. G. Haines. A review of the dense z-pinch. Plasma Physics and Controlled Fusion, 53(9):093001, 2011.
- [23] N. V. Filippov, T. I. Filippova, and V. P. Vinogradov. Dense hightemperature plasma in a non-cylindrical z-pinch compression. In *Plasma Physics and Controlled Nuclear Fusion Research: Conference Proceedings, Salzburg, 4-9 September 1961: Translated from Preprints of Russian Papers Presented at the Conference*, page 311. US Atomic Energy Commission, Division of Technical Information, 1963.
- [24] J. W. Mather. Formation of a high-density deuterium plasma focus. The Physics of Fluids, 8(2):366–377, 1965.
- [25] R. Mongkolnavin, S. Damrongsakkul, O. H. Chin, D. Subedi, and C. San Wong. Cost-effective plasma experiments for developing countries. In *Plasma Science and Technology for Emerging Economies*, pages 475–525. Springer, 2017.

- [26] P. Kubes, D. Klir, J. Kravarik, E. Litseva, and K. Rezac. Research of the small plasma focus with an auxiliary electrode at deuterium filling. *Plasma physics reports*, 35(10):824–827, 2009.
- [27] M. Scholz, R. Miaszewski, V G., and F. Mezzetti. Pf-1000 device. Nukleonika, 45(3):155–158, 2000.
- [28] A. Gentilini, J. P. Rager, K. Steinmetz, M. Tacchi, D. Antonini, B. Arcipiani, P. Moioli, E. Pedretti, and R. Scafé. Comparison of four calibration techniques of a silver activated geiger counter for the determination of the neutron yield on the frascati plasma focus experiment. *Nuclear Instruments and Methods*, 172(3):541–552, 1980.
- [29] N. Kondrath and M. K. Kazimierczuk. Bandwidth of current transformers. *IEEE Transactions on Instrumentation and Measurement*, 58(6), 2008.
- [30] W. Rogowski and W. Steinhaus. Die messung der magnetischen spannung. Archiv für Elektrotechnik, 1(4):141–150, 1912.
- [31] J. D. Ramboz. Machinable rogowski coil, design, and calibration. IEEE Transactions on Instrumentation and measurement, 45(2):511–515, 1996.
- [32] M. Argüeso, G. Robles, and J. Sanz. Measurement of high frequency currents with a rogowski coil. *Rev. Sci. Instrum*, 76(6):065107–1, 2005.
- [33] W. F. Ray and R. M. Davis. Wide bandwidth rogowski current transducers: Part i: The rogowski coil. EPE Journal, 3(1):51–59, 1993.

Shot parameters								
Shot number	Time	Press [Pa]	U _{load} (kV)	I _{max} (kA)	SAC [-]	Yn SAC	I _{max} (V) signal	T _{impl} (μs)
24031201	9:15	300	18	211	63	1,2E+06	10,0	
24031202	9:34	300	18	215	72	2,1E+06	10,2	
24031203	9:45	300	18	213	112	5,8E+06	10,1	
24031204	9:52	300	18	213	485	4,1E+07	10,1	
24031205	9:57	300	18	213	87	3,5E+06	10,1	
24031206	10:03	300	18	213	68	1,7E+06	10,1	
24031207	10:08	280	18	213	60	9,4E+05	10,1	
24031208	10:10	338	18	213	86	3,4E+06	10,1	
24031209	10:14	377	18	222	69	1,8E+06	10,5	
24031210	10:24	350	18	213	651	5,7E+07	10,1	1,97
24031211	10:37	350	18	213	67	1,6E+06	10,1	2,14
24031212	10:40	350	18	213	66	1,5E+06	10,1	2,00
24031213	10:48	382	18	213	453	3,8E+07	10,1	2,02
24031214	10:54	350	18	213	69	1,8E+06	10,1	2,17
24031215	10:57	380	18	217	1253	1,1E+08	10,3	1,99
24031216	12:55	350	18	213	69	1,8E+06	10,1	
24031217	12:57	372	18	213	95	4,2E+06	10,1	
24031218	13:01	300	18	213	61	1,0E+06	10,1	
24031219	13:03	325	18	181	365	3,0E+07	8,6	2,16
24031220	13:07	327	18	213	61	1,0E+06	10,1	
24031221	13:23	300	18	213	61	1,0E+06	10,1	
24031222	13:28	330	18	217	518	4,4E+07	10,3	2,00
24031223	13:32	358	18	219	230	1,7E+07	10,4	
24031224	13:39	340	18	215	98	4,5E+06	10,2	1,90
24031225	13:43	365	18	217	454	3,8E+07	10,3	2,00
24031226	14:02	350	19	226	61	1,0E+06	10,7	
24031227	14:37	300	19	224	51	9,4E+04	10,6	
24031228	14:39	330	19	228	231	1,7E+07	10,8	1,94
24031229	14:47	354	20	236	62	1,1E+06	11,2	1,90
24031230	15:00	300	18	213	58	7,5E+05	10,1	
24031231	15:02	319	18	215	607	5,3E+07	10,2	1,96
24031232	15:05	339	18	219	198	1,4E+07	10,4	
24031233	15:13	300	18	213	88	3,6E+06	10,1	
24031234	15:16	321	18	215	247	1,9E+07	10,2	
24031235	15:19	400	18	217	307	2,4E+07	10,3	
24031236	15:25	400	18	217	187	1,3E+07	10,3	
24031237	15:28	418	18	219	54	3,8E+05	10,4	
24031238	15:33	320	18	213	312	2,5E+07	10,1	1,88
24031239	15:37	342	18	215	413	3,4E+07	10,2	
24031240	15:42	320	18	213	441	3,7E+07	10,1	1,88

Shot parameters								
Shot number	Time	Press [Pa]	U _{load} (kV)	I _{max} (kA)	SAC [-]	Yn SAC	I _{max} (V) signal	T _{impl} (μs)
24031301	9:20	320	18	213	89	3,7E+06	10,1	1,9
24031302	9:22	352	18	219	957	8,6E+07	10,4	1,93
24031303	9:29	320	18	213	606	5,2E+07	10,1	1,87
24031304	9:37	320	18	213	116	6,2E+06	10,1	1,87
24031305	9:39	339	18	215	776	6,8E+07	10,2	1,92
24031306	9:46	320	18	211	873	7,8E+07	10.0	1.85
24031307	9:53	344	18	217	150	9,4E+06	10.3	1.97
24031308	9:59	350	18	213	1026	9,2E+07	10.1	1.86
24031309	10:03	340	18	215	931	8.3E+07	10.2	1.85
24031310	10:10	350	18	213	106	5.3F+06	10,2	1.8/
24031311	10.15	350	18	215	797	7 0F+07	10,1	1.04
24031311	10.13	350	18	213	1175	1 1F±08	10,2	1,04
24031312	10.21	350	18	211	611	5 3F±07	10,0	1,90
24031313	10.20	350	18	213	2155	2 0F+08	10,1	1.07
24031314	10.33	350	10	213	2135	2,02+00 2 3E+08	10,1	1,04
24031315	10:41	350	20	236	2033	1.9E+08	11,2	1,00
24031317	10:54	350	20	234	985	8,8E+07	11,1	1,74
24031801	9:19	350	18	219	58	7,5E+05	10,4	2,316
24031802	9:27	350	18	213	443	3,7E+07	10,1	1,98
24031803	9:34	350	18	213	77	2,5E+06	10,1	1,96
24031804	9:37	374	18	217	996	8,9E+07	10,3	1,96
24031805	9:49	350	18	213	334	2,7E+07	10,1	1,92
24031806	9:56	375	18	215	78	2,6E+06	10,2	
24031807	10:05	350	18	215	89	3,7E+06	10,2	
24031808	10:10	350	20	236	50	0,0E+00	11,2	
24031809	10:16	350	20	236	81	2,9E+06	11,2	
24031810	10:23	350	18	213	71	2,0E+06	10,1	
24031811	10:26	363	18	215	510	4,3E+07	10,2	
24031812	10:31	350	18	213	1122	1,0E+08	10,1	1,84
24031813	10:40	350	18	215	1/1/	1,6E+08	10,2	1,87
24031614	10.47	250	10	215	2007	1,2E+00	10,2	1 07
24031815	10.51	350	18	215	568	4 9F+07	10,1	1,07
24031817	12:33	350	18	213	922	4,52+07 8.2E+07	10,2	1.91
24031818	12:41	350	18	215	800	7.1E+07	10.2	1.84
24031819	12:47	350	18	215	1313	1,2E+08	10,2	1,84
24031820	12:53	350	16	166	297	2,3E+07	7,9	<u>.</u>
24031821	12:58	350	16	121	120	6,6E+06	5,7	
24031822	13:02	350	16	192	843	7,5E+07	9,1	2,00
24031823	13:10	320	16	192	922	8,2E+07	9,1	1,96
24031824	13:15	320	16	192	894	8,0E+07	9,1	1,96
24031825	13:21	320	16	192	965	8,6E+07	9,1	1,96
24031826	13:35	320	16	192	196	1,4E+07		
24031827	13:39	320	16	192	844	7,5E+07	9,1	1,96

Shot number Time Press [Pa] Unask (kV) Isak (kA) SAC [-] Yn SAC I _{nax} (V signal T _{impi} (µs) 24031828 13:52 320 16 190 1055 9,5E+07 9,0 1,96 24031830 13:57 320 16 192 1466 1,8E+08 9,1 1,96 24031901 9:14 320 16 190 54 3,8E+05 9 1 24031901 9:12 320 16 190 54 3,8E+07 9,0 1 2 24031904 9:33 320 16 190 74 3,8E+07 9,0 1 2 24031905 9:37 320 16 190 775 6,8E+07 9,0 1 2 2 16 190 16 1,0 1,1E+08 9,0 1 2 2 16 190 16 1,0 1,1E+08 9,0 1 2 2 1 1 <	Shot parameters								
24031828 13:48 320 16 190 1055 9,5F+07 9,0 1,96 24031820 13:52 320 16 192 946 8,4F+07 9,1 1,96 24031830 13:57 320 16 192 1466 1,3F+08 9,1 1,96 24031902 9:21 320 16 190 54 3,8F+07 9,0	Shot number	Time	Press [Pa]	U _{load} (kV)	I _{max} (kA)	SAC [-]	Yn SAC	I _{max} (V) signal	T _{impl} (μs)
24031829 13:52 320 16 161 387 3,2E+07 7,6 24031830 13:57 320 16 192 946 8,4E+07 9,1 1,96 24031831 14:02 300 16 192 1466 8,4E+07 9,1 1,96 24031903 9:21 320 16 190 792 7,0E+07 9,0 24031903 9:27 320 16 190 792 7,0E+07 9,0 24031906 9:33 320 16 192 453 3,8E+07 9,1 24031906 9:44 320 16 192 1050 9,4E+07 9,0 24031906 9:44 320 16 190 1751 6,8E+07 9,1 2403190 24031910 10:09 320 16 190 1761 1,6E+08 9,0 2403191 10:27 320 16 190 1226 1,1E+08 9,0 2403191 <t< td=""><td>24031828</td><td>13:48</td><td>320</td><td>16</td><td>190</td><td>1055</td><td>9,5E+07</td><td>9,0</td><td>1,96</td></t<>	24031828	13:48	320	16	190	1055	9,5E+07	9,0	1,96
24031380 13:57 320 16 192 946 8,4+07 9,1 1,96 24031301 9:14 320 16 190 54 3,8+08 9,1 1,96 24031901 9:14 320 16 190 574 3,8+07 9,0 24031902 9:21 320 16 190 72 7,0E+07 9,0 24031904 9:33 320 16 192 453 3,8E+07 9,1 24031905 9:37 320 16 192 1050 9,4E+07 9,1 24031907 9:44 320 16 190 775 6,8E+07 9,1 24031907 9:44 320 16 190 1250 1,1E+08 9,0 24031901 10:03 320 16 190 126 1,1E+08 9,0 24031912 10:31 320 16 190 525 1,1E+08 9,0 24031912	24031829	13:52	320	16	161	387	3,2E+07	7,6	
24031331 14:02 300 16 192 14:66 1,3:+08 9,1 1,96 24031902 9:21 320 16 190 54 3,8:+05 9 24031902 9:27 320 16 190 721 5,9:+07 9,0 24031905 9:33 320 16 192 453 3,8:+07 9,0 24031905 9:37 320 16 190 844 7,5:+07 9,0 24031905 9:44 320 16 192 173 6,8:+07 9,1 24031908 9:55 320 16 190 1761 1,6:+08 9,0 24031910 10:09 320 16 190 151 5,0:+07 9,0 24031911 10:23 200 16 190 151 5,0:+07 9,0 24031912 10:31 320 16 190 153 5,0:+07 9,0 24031914 10:42	24031830	13:57	320	16	192	946	8,4E+07	9,1	1,96
24031901 9:14 320 16 190 54 3,8E+05 9 24031903 9:21 320 16 190 671 5,9E+07 9,0 24031903 9:27 320 16 190 792 7,0E+07 9,0 24031904 9:33 320 16 192 453 3,8E+07 9,1 24031905 9:37 320 16 190 844 7,5E+07 9,0 24031906 9:49 320 16 190 175 6,8E+07 9,1 24031907 9:49 320 16 190 1761 1,6E+08 9,0 24031910 10:09 320 16 190 581 5,0E+07 9,0 24031911 10:22 320 16 190 1226 1,1E+08 9,0 24031913 10:37 320 16 190 1226 1,1E+08 9,0 24031913 10:42 300	24031831	14:02	300	16	192	1466	1,3E+08	9,1	1,96
24031902 9:21 320 16 190 671 5,9E+07 9,0 24031904 9:33 320 16 190 792 7,0E+07 9,0 24031904 9:33 320 16 192 453 3,8E+07 9,1 24031905 9:37 320 16 190 775 6,8E+07 9,0 24031907 9:44 320 16 192 773 6,8E+07 9,0 24031908 9:55 320 16 190 1761 1,6E+08 9,0 24031910 10:03 320 16 190 581 5,0E+07 9,0 24031911 10:23 320 16 190 583 5,6E+07 9,0 24031913 10:37 320 16 190 963 8,6E+07 9,0 24031914 10:42 300 16 190 1528 1,4E+08 9,0 24031915 11:00 300	24031901	9:14	320	16	190	54	3,8E+05	9	
24031903 9:27 320 16 190 792 7,0E+07 9,0 24031905 9:33 320 16 192 453 3,8E+07 9,1 24031905 9:34 320 16 190 844 7,5E+07 9,0 24031905 9:44 320 16 190 775 6,8E+07 9,1 24031909 9:55 320 16 190 775 6,8E+07 9,1 24031909 10:03 320 16 190 1250 1,1E+08 9,0 24031911 10:22 320 16 190 581 5,0E+07 9,0 24031912 10:31 320 16 190 1226 1,1E+08 9,0 24031913 10:37 320 16 190 963 8,6E+07 9,0 24031914 10:42 300 16 190 1528 1,4E+08 9,0 24031917 12:35 300 <td>24031902</td> <td>9:21</td> <td>320</td> <td>16</td> <td>190</td> <td>671</td> <td>5,9E+07</td> <td>9,0</td> <td></td>	24031902	9:21	320	16	190	671	5,9E+07	9,0	
24031904 9:33 320 16 192 453 3,8+07 9,1 24031905 9:37 320 16 190 844 7,5E+07 9,0 24031906 9:44 320 16 192 1050 9,4t+07 9,1 24031907 9:49 320 16 190 775 6,8E+07 9,0 24031908 9:55 320 16 190 1761 1,6E+08 9,0 24031910 10:09 320 16 190 1250 1,1E+08 9,0 24031911 10:31 320 16 190 505 4,3E+07 9,0 24031913 10:37 320 16 190 1226 1,1E+08 9,0 24031913 10:37 320 16 190 963 8,6E+07 9,0 24031913 10:42 300 16 190 1824 1,7E+08 9,0 24031917 12:35	24031903	9:27	320	16	190	792	7,0E+07	9,0	
24031905 9:37 320 16 190 844 7,5E+07 9,0 24031906 9:44 320 16 192 1050 9,4E+07 9,1 24031908 9:55 320 16 190 775 6,8E+07 9,0 24031909 10:03 320 16 190 1250 1,1E+08 9,0 24031910 10:02 320 16 190 1581 5,0E+07 9,0 24031911 10:22 320 16 190 1581 5,0E+07 9,0 24031912 10:31 320 16 190 1226 1,1E+08 9,0 24031913 10:37 320 16 190 1684 602 5,2E+07 8,9 24031915 11:00 300 16 190 1528 1,4E+08 9,0 24031915 12:50 300 16 190 1493 1,4E+08 9,0 24031914 1	24031904	9:33	320	16	192	453	3,8E+07	9,1	
24031906 9:44 320 16 192 1050 9.4F+07 9.1 24031907 9:49 320 16 190 775 6.8E+07 9.1 24031908 9:55 320 16 192 773 6.8E+07 9.1 24031909 10:03 320 16 190 1250 1.1E+08 9.0 24031911 10:22 320 16 190 581 5.0E+07 9.0 24031912 10:31 320 16 190 581 5.0E+07 9.0 24031913 10:37 320 16 190 1226 1.1E+08 9.0 24031912 10:30 16 190 1874 1.7E+08 9.1 24031915 12:00 300 16 190 1893 8.6E+07 9.0 24031917 12:35 300 16 190 1528 1.4E+08 9.0 24031919 12:42 300<	24031905	9:37	320	16	190	844	7,5E+07	9,0	
24031907 9:49 320 16 190 775 6,8E+07 9,0 24031908 9:55 320 16 192 773 6,8E+07 9,1 24031909 10:03 320 16 190 1250 1,1E+08 9,0 24031911 10:22 320 16 190 581 5,0E+07 9,0 24031912 10:31 320 16 192 505 4,3E+07 9,1 24031914 10:42 300 16 190 963 8,6E+07 9,0 24031915 11:00 300 16 190 963 8,6E+07 8,9 24031915 11:00 300 16 190 894 8,0E+07 9,0 24031917 12:35 300 16 190 1528 1,4E+08 9,0 24031917 12:54 300 16 190 1433 1,4E+08 9,0 24031921 13:00 300	24031906	9:44	320	16	192	1050	9,4E+07	9,1	
24031908 9:55 320 16 192 773 6,8E+07 9,1 24031910 10:09 320 16 190 1250 1,1E+08 9,0 24031911 10:22 320 16 190 581 5,0E+07 9,0 24031912 10:31 320 16 190 581 5,0E+07 9,0 24031913 10:37 320 16 190 126 1,1E+08 9,0 24031914 10:42 300 16 190 963 8,6E+07 9,0 24031915 11:00 300 16 190 894 8,0E+07 9,0 24031916 12:30 300 16 190 1828 1,4E+08 9,0 24031917 12:35 300 16 190 1433 1,4E+08 9,0 24031919 12:50 300 16 190 137 3,2E+07 8,9 24031921 13:00 <td>24031907</td> <td>9:49</td> <td>320</td> <td>16</td> <td>190</td> <td>775</td> <td>6,8E+07</td> <td>9,0</td> <td></td>	24031907	9:49	320	16	190	775	6,8E+07	9,0	
24031909 10:03 320 16 190 1250 1,1E+08 9,0 24031910 10:09 320 16 190 761 1,6E+08 9,0 24031911 10:02 320 16 190 581 5,0E+07 9,0 24031912 10:31 320 16 190 1226 1,1E+08 9,0 24031913 10:37 320 16 190 963 8,6E+07 9,0 24031915 11:00 300 16 192 1874 1,7E+08 9,1 24031916 12:30 300 16 190 894 8,0E+07 9,0 24031917 12:35 300 16 190 1528 1,4E+08 9,0 24031919 12:50 300 16 190 691 6,0E+07 9,0 24031920 12:54 300 16 190 387 3,2E+07 9,0 24031921 13:00	24031908	9:55	320	16	192	773	6,8E+07	9,1	
24031910 10:09 320 16 190 1761 1,6E+08 9,0 24031911 10:22 320 16 190 581 5,0E+07 9,0 24031912 10:31 320 16 192 505 4,3E+07 9,0 24031913 10:37 320 16 190 963 8,6E+07 9,0 24031914 10:42 300 16 192 1874 1,7E+08 9,1 24031915 11:00 300 16 192 1874 1,7E+08 9,1 24031917 12:35 300 16 190 894 8,0E+07 9,0 24031918 12:42 300 16 190 1493 1,4E+08 9,0 24031920 12:54 300 16 190 691 6,0E+07 9,0 24031921 13:00 300 16 190 337 3,2E+07 9,0 24031922 13:07	24031909	10:03	320	16	190	1250	1,1E+08	9,0	
24031911 10:22 320 16 190 581 5,0E*07 9,0 24031912 10:31 320 16 192 505 4,3E+07 9,1 24031913 10:37 320 16 190 1226 1,1E+08 9,0 24031914 10:42 300 16 190 963 8,6E+07 9,0 24031915 11:00 300 16 192 1874 1,7E+08 9,1 24031916 12:35 300 16 190 894 8,0E+07 9,0 24031917 12:35 300 16 190 1528 1,4E+08 9,0 24031919 12:50 300 16 190 691 6,0E+07 9,0 24031920 12:54 300 16 190 387 3,2E+07 9,0 24031921 13:00 300 16 190 381 3,2E+07 9,0 24031923 13:1	24031910	10:09	320	16	190	1761	1,6E+08	9,0	
24031912 10:31 320 16 192 505 4,3E+07 9,1 24031913 10:37 320 16 190 1226 1,1E+08 9,0 24031914 10:42 300 16 190 963 8,6E+07 9,0 24031915 11:00 300 16 192 1874 1,7E+08 9,1 24031916 12:30 300 16 190 884 8,0E+07 9,0 24031917 12:35 300 16 190 1528 1,4E+08 9,0 24031920 12:54 300 16 190 1691 6,0E+07 9,0 24031920 12:54 300 16 190 387 3,2E+07 9,0 24031921 13:00 300 16 190 387 3,2E+07 9,0 24031923 13:12 300 15 178 809 4,1E+07 8,4 24031924 13:19	24031911	10:22	320	16	190	581	5,0E+07	9,0	
24031913 10:37 320 16 190 1226 1,1E+08 9,0 24031914 10:42 300 16 190 963 8,6E+07 9,0 24031915 11:00 300 16 192 1874 1,7E+08 9,1 24031916 12:30 300 16 192 1874 1,7E+08 9,0 24031916 12:35 300 16 190 894 8,0E+07 9,0 24031917 12:35 300 16 190 1528 1,4E+08 9,0 24031920 12:54 300 16 190 691 6,0E+07 9,0 24031921 13:07 300 16 188 861 7,6E+07 8,9 24031922 13:07 300 16 190 1031 9,3E+07 9,0 24031924 13:19 300 15 178 490 4,1E+07 8,4 24031926 13:30 <td< td=""><td>24031912</td><td>10:31</td><td>320</td><td>16</td><td>192</td><td>505</td><td>4,3E+07</td><td>9,1</td><td></td></td<>	24031912	10:31	320	16	192	505	4,3E+07	9,1	
24031914 10:42 300 16 190 963 8,6E+07 9,0 24031915 11:00 300 16 192 1874 1,7E+08 9,1 24031916 12:35 300 16 190 894 8,0E+07 9,0 24031917 12:35 300 16 190 1528 1,4E+08 9,0 24031918 12:42 300 16 190 1493 1,4E+08 9,0 24031920 12:54 300 16 190 691 6,0E+07 9,0 24031921 13:00 300 16 190 387 3,2E+07 9,0 24031923 13:12 300 16 190 1031 9,3E+07 9,0 24031924 13:19 300 15 180 379 3,1E+07 8,4 24031925 13:26 300 15 178 579 5,0E+07 8,4 24031926 13:30	24031913	10:37	320	16	190	1226	1,1E+08	9,0	
24031915 11:00 300 16 192 1874 1,7E+08 9,1 24031916 12:30 300 16 188 602 5,2E+07 8,9 24031917 12:35 300 16 190 894 8,0E+07 9,0 24031918 12:42 300 16 190 1493 1,4E+08 9,0 24031920 12:54 300 16 190 691 6,0E+07 9,0 24031921 13:00 300 16 190 387 3,2E+07 9,0 24031922 13:07 300 16 190 1031 9,3E+07 9,0 24031923 13:12 300 15 178 490 4,1E+07 8,4 24031924 13:19 300 15 178 490 4,1E+07 8,4 24031925 13:30 280 15 178 577 5,0E+07 8,4 24031926 13:30 2	24031914	10:42	300	16	190	963	8,6E+07	9,0	
24031916 12:30 300 16 188 602 5,2E+07 8,9 24031917 12:35 300 16 190 894 8,0E+07 9,0 24031918 12:42 300 16 190 1528 1,4E+08 9,0 24031919 12:50 300 16 190 1493 1,4E+08 9,0 24031920 12:54 300 16 190 691 6,0E+07 9,0 24031921 13:00 300 16 190 387 3,2E+07 9,0 24031922 13:07 300 16 190 387 3,2E+07 9,0 24031921 13:12 300 15 180 379 3,1E+07 8,4 24031924 13:19 300 15 178 490 4,1E+07 8,4 24031925 13:30 280 15 176 577 5,0E+07 8,4 24031921 13:40 <t< td=""><td>24031915</td><td>11:00</td><td>300</td><td>16</td><td>192</td><td>1874</td><td>1,7E+08</td><td>9,1</td><td></td></t<>	24031915	11:00	300	16	192	1874	1,7E+08	9,1	
24031917 12:35 300 16 190 894 8,0E+07 9,0 24031918 12:42 300 16 190 1528 1,4E+08 9,0 24031919 12:50 300 16 190 1493 1,4E+08 9,0 24031920 12:54 300 16 190 691 6,0E+07 9,0 24031921 13:00 300 16 188 861 7,6E+07 8,9 24031922 13:07 300 16 190 387 3,2E+07 9,0 24031924 13:12 300 16 190 1031 9,3E+07 9,0 24031924 13:19 300 15 178 490 4,1E+07 8,4 24031926 13:30 280 15 176 577 5,0E+07 8,4 24031927 13:36 280 15 178 396 3,3E+07 8,4 24031928 13:41 280 15 178 457 3,8E+07 8,4 24031930 <	24031916	12:30	300	16	188	602	5,2E+07	8,9	
24031918 12:42 300 16 190 1528 1,4E+08 9,0 24031919 12:50 300 16 190 1493 1,4E+08 9,0 24031920 12:54 300 16 190 691 6,0E+07 9,0 24031921 13:00 300 16 188 861 7,6E+07 8,9 24031922 13:07 300 16 190 387 3,2E+07 9,0 24031923 13:12 300 16 190 1031 9,3E+07 9,0 24031924 13:19 300 15 178 490 4,1E+07 8,4 24031925 13:26 300 15 178 579 5,0E+07 8,4 24031926 13:30 280 15 178 396 3,2E+07 8,4 24031928 13:41 280 15 178 36 3,2E+07 8,4 24031930 13:52 28	24031917	12:35	300	16	190	894	8,0E+07	9,0	
24031919 12:50 300 16 190 1493 1,4E+08 9,0 24031920 12:54 300 16 190 691 6,0E+07 9,0 24031921 13:00 300 16 188 861 7,6E+07 8,9 24031922 13:07 300 16 190 387 3,2E+07 9,0 24031923 13:12 300 16 190 1031 9,3E+07 9,0 24031924 13:19 300 15 180 379 3,1E+07 8,4 24031925 13:26 300 15 178 490 4,1E+07 8,4 24031926 13:30 280 15 178 5,0E+07 8,4 24031927 13:36 280 15 178 396 3,3E+07 8,4 24031929 13:46 280 15 178 457 3,8E+07 8,4 24031930 13:52 280 15	24031918	12:42	300	16	190	1528	1,4E+08	9,0	
24031920 12:54 300 16 190 691 6,0E+07 9,0 24031921 13:00 300 16 188 861 7,6E+07 8,9 24031922 13:07 300 16 190 387 3,2E+07 9,0 24031923 13:12 300 16 190 1031 9,3E+07 9,0 24031924 13:19 300 15 180 379 3,1E+07 8,5 24031925 13:26 300 15 178 490 4,1E+07 8,4 24031926 13:30 280 15 176 577 5,0E+07 8,4 24031927 13:36 280 15 178 579 5,0E+07 8,4 24031928 13:41 280 15 178 396 3,3E+07 8,4 24031930 13:52 280 15 178 617 5,3E+07 8,4 24031931 13:57 280	24031919	12:50	300	16	190	1493	1,4E+08	9,0	
24031921 13:00 300 16 188 861 7,6E+07 8,9 24031922 13:07 300 16 190 387 3,2E+07 9,0 24031923 13:12 300 16 190 1031 9,3E+07 9,0 24031924 13:19 300 15 180 379 3,1E+07 8,5 24031925 13:26 300 15 178 490 4,1E+07 8,4 24031926 13:30 280 15 176 577 5,0E+07 8,4 24031927 13:36 280 15 178 579 5,0E+07 8,4 24031928 13:41 280 15 178 396 3,3E+07 8,4 24031929 13:46 280 15 178 457 3,8E+07 8,4 24031930 13:52 280 15 176 690 6,0E+07 8,4 24031931 13:57 280 15 176 451 5,5E+07 8,4 2	24031920	12:54	300	16	190	691	6,0E+07	9,0	
24031922 13:07 300 16 190 387 3,2E+07 9,0 24031923 13:12 300 16 190 1031 9,3E+07 9,0 24031924 13:19 300 15 180 379 3,1E+07 8,5 24031925 13:26 300 15 178 490 4,1E+07 8,4 24031926 13:30 280 15 176 577 5,0E+07 8,4 24031927 13:36 280 15 178 579 5,0E+07 8,4 24031928 13:41 280 15 178 396 3,3E+07 8,4 24031929 13:46 280 15 178 396 3,3E+07 8,4 24031930 13:52 280 15 178 457 3,8E+07 8,4 24031931 13:57 280 15 178 617 5,3E+07 8,4 24031932 14:00 280 15 178 617 5,3E+07 8,4 2	24031921	13:00	300	16	188	861	7,6E+07	8,9	
24031923 13:12 300 16 190 1031 9,3E+07 9,0 24031924 13:19 300 15 180 379 3,1E+07 8,5 24031925 13:26 300 15 178 490 4,1E+07 8,4 24031926 13:30 280 15 176 577 5,0E+07 8,4 24031927 13:36 280 15 178 579 5,0E+07 8,4 24031928 13:41 280 15 151 154 9,8E+06 7,2 24031929 13:46 280 15 178 396 3,3E+07 8,4 24031930 13:52 280 15 178 457 3,8E+07 8,4 24031931 13:57 280 15 178 617 5,3E+07 8,4 24031932 14:00 280 15 178 617 5,3E+07 8,4 24031933 14:12 280 15 176 431 3,6E+07 8,4 2	24031922	13:07	300	16	190	387	3,2E+07	9,0	
24031924 13:19 300 15 180 379 3,1E+07 8,5 24031925 13:26 300 15 178 490 4,1E+07 8,4 24031926 13:30 280 15 176 577 5,0E+07 8,4 24031927 13:36 280 15 178 579 5,0E+07 8,4 24031928 13:41 280 15 151 154 9,8E+06 7,2 24031929 13:46 280 15 178 396 3,3E+07 8,4 24031930 13:52 280 15 178 457 3,8E+07 8,4 24031931 13:57 280 15 178 617 5,3E+07 8,4 24031932 14:00 280 15 178 617 5,3E+07 8,4 24031933 14:06 280 15 176 431 3,6E+07 8,4 24031934 14:12 280 15 176 693 6,1E+07 8,4 24031935	24031923	13:12	300	16	190	1031	9,3E+07	9,0	
24031925 13:26 300 15 178 490 4,1E+07 8,4 24031926 13:30 280 15 176 577 5,0E+07 8,4 24031927 13:36 280 15 178 579 5,0E+07 8,4 24031928 13:41 280 15 151 154 9,8E+06 7,2 24031929 13:46 280 15 178 396 3,3E+07 8,4 24031930 13:52 280 15 178 457 3,8E+07 8,4 24031931 13:57 280 15 178 617 5,3E+07 8,4 24031932 14:00 280 15 178 617 5,3E+07 8,4 24031933 14:06 280 15 176 431 3,6E+07 8,4 24031934 14:12 280 15 176 431 3,6E+07 8,4 24031935 14:17 280 15 176 693 6,1E+07 8,4 24031936	24031924	13:19	300	15	180	379	3,1E+07	8,5	
2403192613:30280151765775,0E+078,42403192713:36280151785795,0E+078,42403192813:41280151511549,8E+067,22403192913:46280151783963,3E+078,42403193013:52280151784573,8E+078,42403193113:57280151766906,0E+078,42403193214:00280151786175,3E+078,42403193314:062801518010469,4E+078,52403193414:12280151766936,1E+078,42403193514:17280151785554,8E+078,42403193614:26280151785554,8E+078,02403193714:31280141682341,7E+078,02403193914:39280141693973,3E+078,02403193914:39280141693092,4E+078,02403194014:43260141693092,4E+078,0	24031925	13:26	300	15	178	490	4,1E+07	8,4	
2403192713:36280151785795,0E+078,42403192813:41280151511549,8E+067,22403192913:46280151783963,3E+078,42403193013:52280151784573,8E+078,42403193113:57280151766906,0E+078,42403193214:00280151786175,3E+078,42403193314:062801518010469,4E+078,52403193414:12280151766936,1E+078,42403193514:17280151785554,8E+078,42403193614:26280151785554,8E+078,42403193714:31280141682341,7E+078,02403193914:39280141693973,3E+078,02403194014:43260141693092,4E+078,0	24031926	13:30	280	15	1/6	577	5,0E+07	8,4	
2403192813:41280151511549,8±+067,22403192913:46280151783963,3±+078,42403193013:52280151784573,8±+078,42403193113:57280151766906,0±+078,42403193214:00280151786175,3±+078,42403193314:06280151764313,6±+078,42403193414:12280151764313,6±+078,42403193514:17280151766936,1±+078,42403193614:26280151785554,8±+078,42403193614:26280151785554,6±+078,02403193714:31280141682341,7±+078,02403193914:39280141693973,3±+078,02403194014:43260141693092,4±+078,0	24031927	13:36	280	15	1/8	579	5,0E+07	8,4	
2403192913:46280151783963,3E+078,42403193013:52280151784573,8E+078,42403193113:57280151766906,0E+078,42403193214:00280151786175,3E+078,42403193314:06280151764313,6E+078,42403193414:12280151764313,6E+078,42403193514:17280151766936,1E+078,42403193614:26280151785554,8E+078,42403193714:31280141682341,7E+078,02403193814:35280141693973,3E+078,02403193914:39280141693092,4E+078,02403194014:43260141531247,0E+067,2	24031928	13:41	280	15	151	154	9,8E+06	7,2	
2403193013.32280131784373,8±078,42403193113:57280151766906,0E+078,42403193214:00280151786175,3E+078,42403193314:062801518010469,4E+078,52403193414:12280151764313,6E+078,42403193514:17280151766936,1E+078,42403193614:26280151785554,8E+078,42403193714:31280141682341,7E+078,02403193814:35280141685364,6E+078,02403193914:39280141693973,3E+078,02403194014:43260141693092,4E+078,02403194114:46260141531247,0E+067,2	24031929	13:40	280	15	178	390	3,3E+U7	8,4	
2403193113.37280131760906,0E+078,42403193214:00280151786175,3E+078,42403193314:062801518010469,4E+078,52403193414:12280151764313,6E+078,42403193514:17280151766936,1E+078,42403193614:26280151785554,8E+078,42403193714:31280141682341,7E+078,02403193814:35280141693973,3E+078,02403194014:43260141693092,4E+078,02403194114:46260141531247,0E+067,2	24031930	12.52	280	15	176	437 600	5,0E+07	0,4 0.4	
2403193214:00260151760175,51:078,42403193314:062801518010469,4E+078,52403193414:12280151764313,6E+078,42403193514:17280151766936,1E+078,42403193614:26280151785554,8E+078,42403193714:31280141682341,7E+078,02403193814:35280141685364,6E+078,02403193914:39280141693973,3E+078,02403194014:43260141693092,4E+078,02403194114:46260141531247,0E+067,2	24031931	14.00	280	15	170	617	5 3E+07	8.4	
24031934 14:12 280 15 176 431 3,6E+07 8,4 24031935 14:17 280 15 176 693 6,1E+07 8,4 24031935 14:17 280 15 176 693 6,1E+07 8,4 24031936 14:26 280 15 178 555 4,8E+07 8,4 24031937 14:31 280 14 168 234 1,7E+07 8,0 24031938 14:35 280 14 168 536 4,6E+07 8,0 24031939 14:39 280 14 169 397 3,3E+07 8,0 24031940 14:43 260 14 169 309 2,4E+07 8,0 24031940 14:43 260 14 169 309 2,4E+07 8,0 24031941 14:46 260 14 153 124 7,0E+06 7,2	24031932	14:06	280	15	180	1046	9.4F+07	85	
24031935 14:17 280 15 176 693 6,1E+07 8,4 24031936 14:26 280 15 178 555 4,8E+07 8,4 24031937 14:31 280 14 168 234 1,7E+07 8,0 24031938 14:35 280 14 168 536 4,6E+07 8,0 24031939 14:39 280 14 168 536 4,6E+07 8,0 24031939 14:39 280 14 169 397 3,3E+07 8,0 24031940 14:43 260 14 169 309 2,4E+07 8,0 24031941 14:46 260 14 153 124 7,0E+06 7,2	24031934	14:12	280	15	176	431	3.6F+07	8,4	
24031936 14:26 280 15 178 555 4,8E+07 8,4 24031937 14:31 280 14 168 234 1,7E+07 8,0 24031938 14:35 280 14 168 536 4,6E+07 8,0 24031939 14:39 280 14 168 536 4,6E+07 8,0 24031939 14:39 280 14 169 397 3,3E+07 8,0 24031940 14:43 260 14 169 309 2,4E+07 8,0 24031941 14:46 260 14 153 124 7,0E+06 7,2	24031935	14:17	280	15	176	693	6.1E+07	8.4	
24031937 14:31 280 14 168 234 1,7E+07 8,0 24031938 14:35 280 14 168 536 4,6E+07 8,0 24031939 14:39 280 14 169 397 3,3E+07 8,0 24031940 14:43 260 14 169 309 2,4E+07 8,0 24031941 14:46 260 14 153 124 7,0E+06 7,2	24031936	14:26	280	15	178	555	4,8E+07	8.4	
24031938 14:35 280 14 168 536 4,6E+07 8,0 24031939 14:39 280 14 169 397 3,3E+07 8,0 24031940 14:43 260 14 169 309 2,4E+07 8,0 24031941 14:46 260 14 153 124 7,0E+06 7,2	24031937	14:31	280	14	168	234	1,7E+07	8.0	
24031939 14:43 260 14 169 397 3,3E+07 8,0 24031940 14:43 260 14 169 309 2,4E+07 8,0 24031941 14:46 260 14 153 124 7,0E+06 7,2	24031938	14:35	280	14	168	536	4,6E+07	8.0	
24031940 14:43 260 14 169 309 2,4E+07 8,0 24031941 14:46 260 14 153 124 7,0E+06 7,2	24031939	14:39	280	14	169	397	3,3E+07	8.0	
24031941 14:46 260 14 153 124 7,0E+06 7,2	24031940	14:43	260	14	169	309	2,4E+07	8.0	
	24031941	14:46	260	14	153	124	7,0E+06	7,2	

Shot parameters								
Shot number	Time	Press [Pa]	U _{load} (kV)	I _{max} (kA)	SAC [-]	Yn SAC	I _{max} (V) signal	T _{impl} (μs)
24031942	14:52	260	14	163	305	2,4E+07	7,7	
24031943	14:56	280	14	169	258	2,0E+07	8,0	
24031944	15:02	280	14	169	471	4,0E+07	8,0	
24031945	15:14	280	14	169	698	6,1E+07	8,0	
24031946	15:38	280	14	169	448	3,8E+07	8,0	
24031947	15:44	280	14	166	199	1,4E+07	7,9	
24031948	15:48	280	14	139	73	2,2E+06	6,6	
24031949	15:53	280	14	169	358	2,9E+07	8,0	
24031950	15:57	280	14	166	747	6,6E+07	7,9	
24031951	16:02	280	14	169	250	1,9E+07	8,0	
24031952	16:07	300	14	169	249	1,9E+07	8,0	
24031953	16:11	280	14	138	150	9,4E+06	6,5	
24031954	16:14	280	14	168	269	2,1E+07	8,0	
24031955	16:21	350	18	213	1409	1,3E+08	10,1	
24032001	9:13	350	18	213	80	2,8E+06	10,1	
24032002	9:16	350	18	213	121	6,7E+06	10,1	
24032003	9:21	350	18	213	1294	1,2E+08	10,1	1,84
24032004	9:28	350	18	213	848	7,5E+07	10,1	
24032005	9:37	350	18	213	2554	2,4E+08	10,1	
24032006	9:50	350	18	213	912	8,1E+07	10,1	
24032007	9:56	350	18	213	1325	1,2E+08	10,1	
24032008	10:08	360	19	226	2160	2,0E+08	10,7	
24032009	10:19	360	19	226	1521	1,4E+08	10,7	
24032010	10:25	370	19	228	1142	1,0E+08	10,8	
24032011	10:30	370	19	228	1467	1,3E+08	10,8	
24032012	10:35	380	19	228	1247	1,1E+08	10,8	
24032013	10:41	380	19	228	1420	1,3E+08	10,8	
24032014	10:47	360	19	228	1431	1,3E+08	10,8	
24032015	10:54	350	19	226	1361	1,2E+08	10,7	
24032016	13:58	350	19	226	56	5,7E+05	10,7	
24032017	14:03	350	19	226	49	-9,4E+04	10,7	
24032018	14:06	350	19	226	517	4,4E+07	10,7	
24032019	14:11	350	19	224	2125	2,0E+08	10,6	
24032020	14:17	350	19	226	1577	1,4E+08	10,7	
24032021	14:25	350	19	226	2199	2,0E+08	10,7	
24032022	14:32	350	19	228	1833	1,7E+08	10,8	
24032023	14:40	350	19	226	3434	3,2E+08	10,7	
24032024	14:51	350	19	228	1921	1,8E+08	10,8	
24032025	15:00	350	20	234	3190	3,0E+08	11,1	
24032026	15:13	350	20	236	90	3,8E+06	11,2	
24032027	15:19	350	20	234	2434	2,2E+08	11,1	
24032028	15:26	350	20	234	1830	1,7É+08	11,1	
24032101	9:26	350	20	236	46	-3,8E+05	11,2	
24032102	9:31	350	20	236	61	1,0E+06	11,2	
24032103	9:38	350	20	236	393	3,2E+07	11,2	

Shot parameters								
Shot number	Time	Press [Pa]	U _{load} (kV)	I _{max} (kA)	SAC [-]	Yn SAC	I _{max} (V) signal	T _{impl} (μs)
24032104	9:42	350	20	236	2318	2,1E+08	11,2	1,73
24032105	9:50	350	20	236	127	7,3E+06	11,2	
24032106	9:53	360	20	236	3338	3,1E+08	11,2	
24032107	10:02	360	20	236	2032	1,9E+08	11,2	
24032108	10:08	360	20	234	1360	1,2E+08	11,1	
24032109	10:14	360	20	236	2478	2,3E+08	11,2	
24032110	10:24	360	20	236	1485	1,4E+08	11,2	
24032111	10:32	360	20	236	3272	3,0E+08	11,2	
24032112	10:42	360	20	236	1207	1,1E+08	11,2	
24032113	10:47	350	20	236	111	5,8E+06	11,2	
24032114	10:53	350	20	236	122	6,8E+06	11,2	
24032115	10:56	360	20	236	1763	1,6E+08	11,2	
24032116	12:24	360	21	228		-4,7E+06	10,8	
24032117	12:33	360	21	200		-4,7E+06	9,5	
24032118	12:42	360	21	234		-4,7E+06	11,1	
24032119	12:48	360	21	188		-4,7E+06	8,9	
24032120	12:54	360	21	245	91	3,9E+06	11,6	
24032121	12:59	360	21	245	2579	2,4E+08	11,6	
24032122	13:04	360	21	247	166	1,1E+07	11,7	
24032123	13:09	380	21	247	2236	2,1E+08	11,7	
24032124	13:19	380	21	245	2806	2,6E+08	11,6	
24032125	13:25	380	21	247	100	4,7E+06	11,7	
24032126	13:30	340	21	245	61	1,0E+06	11,6	
24032127	13:34	340	21	247	94	4,1E+06	11,7	
24032128	13:37	400	21	247	120	6,6E+06	11,7	
24032129	13:41	380	21	245	3145	2,9E+08	11,6	1,71
24032130	13:49	380	21	247	512	4,4E+07	11,7	
24032131	13:53	380	21	247	97	4,4E+06	11,7	
24032132	13:57	380	21	208	1289	1,2E+08	9,9	
24032133	14:03	380	21	238	2289	2,1E+08	11,3	
24032134	14:10	380	21	245	2154	2,0E+08	11,6	
24032135	14:19	380	21	247	117	6,3E+06	11,7	
24032136	14:23	380	21	245	1847	1,7E+08	11,6	
24032137	14:29	380	21	249	106	5,3E+06	11,8	
24032138	14:35	380	21	245	2836	2,6E+08	11,6	
24032139	14:41	380	21	247	1563	1,4E+08	11,7	
24032140	14:47	380	22	257	107	5,4E+06	12,2	
24032141	14:55	380	22	255	102	4,9E+06	12,1	
24032142	15:01	380	22	257	64	1,3E+06	12,2	
24032143	15:04	380	22	257	88	3,6E+06	12,2	
24032144	15:08	400	22	260	60	9,4E+05	12,3	
24032501	9:26	350	20	238	64	1,3E+06	11,3	
24032502	9:33	380	22	257	57	6,6E+05	12,2	
24032503	9:58	380	22	257	110	5,7E+06	12,2	
24032504	10:02	380	22	257	84	3,2E+06	12,2	

Shot parameters								
Shot number	Time	Press [Pa]	U _{load} (kV)	I _{max} (kA)	SAC [-]	Yn SAC	I _{max} (V) signal	T _{impl} (μs)
24032505	10:07	380	22	257	164	1,1E+07	12,2	
24032506	10:13	380	22	257	60	9,4E+05	12,2	
24032507	10:18	300	22	255	57	6,6E+05	12,1	
24032508	10:25	300	22	253	73	2,2E+06	12,0	
24032509	10:30	300	22	253	59	8,5E+05	12,0	
24032510	10:32	300	22	257	1899	1,7E+08	12,2	
24032511	10:42	300	22	253	63	1,2E+06	12,0	
24032512	10:45	333	22	260	1220	1,1E+08	12,3	
24032513	10:52	350	22	257	93	4,1E+06	12,2	
24032514	10:54	381	22	260	748	6,6E+07	12,3	
24032515	12:43	280	22	253	79	2,7E+06	12,0	
24032516	12:46	320	22	257	344	2,8E+07	12,2	
24032517	12:50	320	17	202	651	5,7E+07	9,6	
24032518	12:56	320	17	202	909	8,1E+07	9,6	
24032519	13:01	320	17	200	938	8,4E+07	9,5	
24032520	13:08	320	17	205	695	6,1E+07	9,7	
24032521	13:13	320	17	202	898	8,0E+07	9,6	
24032522	13:15	320	17	200	818	7,2E+07	9,5	
24032523	13:21	320	17	168	353	2,9E+07	8,0	
24032524	13:28	320	17	200	987	8,8E+07	9,5	
24032525	13:34	320	17	202	1293	1,2E+08	9,6	
24032526	13:42	320	17	226	1283	1,2E+08	10,7	
24032527	13:48	320	17	202	1320	1,2E+08	9,6	
24032528	14:06	320	17	202	1173	1,1E+08	9,6	
24032529	14:11	320	17	202	1292	1,2E+08	9,6	
24032530	14:16	320	17	202	807	7,1E+07	9,6	
24032531	14:20	320	17	202	1197	1,1E+08	9,6	
24032532	14:24	320	17	200	1407	1,3E+08	9,5	