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Abstract

This thesis explores the problem of analyz-
ing tabular data using natural language,
focusing on the utilization of Large Lan-
guage Models (LLMs). A comprehensive
literature review addresses various aspects
of LLMs, including their coding capabil-
ities, LLM Agents, and techniques for
enhancing generation quality. An LLM-
based Agent program was developed and
is now publicly available on GitHub, also
forming the basis for the experimental
part of this work. Several datasets were
hand-crafted and collected to facilitate
the fine-tuning aimed at enhancing the
performance of small, open-source models
in tabular data analysis tasks. An evalua-
tion benchmark was created, allowing for
the comparison of numerous LLM Agent
configurations, including those using fine-
tuned LLMs and state-of-the-art (SOTA)
API-based models (i.e. Claude3 and GPT
models). Fine-tuning was performed on
the Code Llama 7B family of models us-
ing LoRA and QLoRA techniques, which
improved the performance of the Code
Llama 7B Python model from 35.3% to
60.3% on the proposed evaluation bench-
mark. This work demonstrates that task-
specific Parameter-Efficient Fine-Tuning
(PEFT) on a small dataset can signifi-
cantly enhance performance of LLMs. All
fine-tuning experiments were tracked us-
ing MLOps tools to ensure reproducibility.
Overall, this work offers a valuable com-
parative review of the application of LLM-
based systems and associated techniques
in tabular data analysis.

Keywords: LLM, Agent, NLP, Data
Analysis, TableQA, LoRA, MLOps,
GPT, Claude, Llama

Supervisor: Ing. Jan Sedivy, CSc.
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Abstrakt

Tato prace se zabyva problematikou ana-
lyzy tabulkovych dat pomoci prirozeného
jazyka se zamérenim na vyuziti velkych
jazykovych modeli (LLM). Obsahly pre-
hled literatury se zabyva rtuznymi aspekty
LLM, vc¢etné jejich programovacich schop-
nosti, LLM agentii a technik pro zvyseni
kvality. Byl vyvinut program zalozeny na
LLM agentech, ktery je nyni vefejné do-
stupny na GitHub a tvori zaklad expe-
rimentalni ¢asti této prace. Bylo rucné
vytvoreno a shromazdéno nékolik dato-
vych sad pro doladéni (fine-tuning) za-
mérfené na zvyseni vykonu malych open-
source modelta v tloze analyzy tabulko-
vych dat. Byl vytvoren hodnotici ben-
chmark, ktery umoznil porovnani mnoha
konfiguraci LLM agenti, vcCetné téch,
které vyuzivaji doladéni pomoci metod
LoRA a QLoRA a nejmodernéjsi modely
s pristupem pies API (Claude3 a GPT
modely). Fine-tuning na modelové radé
Code Llama 7B, zejména na modelu Code
Llama 7B Python, zlepsilo jeho vykon z
35,3% na 60,3% na navrzeném hodnoticim
benchmarku. Tato prace ukazuje, ze speci-
fické fine-tuning doladéni pro danou lohu
muze na malé datové sadé vyznamné zvy-
it vykon modeli. VSechny experimenty
byly sledovany pomoci nastroji MLOps,
aby byla zajisténa jejich reprodukovatel-
nost. Celkové tato prace nabizi cenny srov-
navaci prehled pouziti systému zalozenych
na LLM a souvisejicich s nimi technik v
uloze analyzy tabulkovych dat.

Klicova slova: Velké jazykové modely,
Agenti, Zpracovani prirozeného jazyka,
Analyza tabulkovych dat, TableQA,
LoRA, MLOps, GPT, Claude, Llama

Preklad nazvu: Optimalizace LLM
agentl pro analyzu tabulkovych dat:
Integrace LoRA pro zvyseni kvality
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Chapter 1

Introduction

B 11 Background and Motivation

B 1.1.1 Reflections on History of Labor Automation

The history of automation and the evolution of abstractions in the work
process of humanity unfolds as an amazing journey. This journey has signifi-
cantly transformed the labor landscape, improving productivity and creating
new realms of possibilities across industries.

The First Industrial Revolution, spanning in the period from 1760 to 1820,
marks a pivotal point. The invention of machinery, such as the steam engine,
automated manual labor, particularly in textile manufacturing, agriculture,
and mining. The invention of the assembly line revolutionized manufacturing,
enabling mass production of goods, notably automobiles. Those shifts not
only increased production rates but also altered the overall society dynamics,
leading to further urbanization and the birth of factory work.

The mid-20th century started the advent of the digital age, with the in-
vention of the first electronic computers in the 40s, such as ENIAC [I], and
the commercial release of IBM’s 650 in mid 50s [l In a span of less than 10
years a (by that time huge) number of 2000 systems were produced. These
machines were initially designed for complex computations, such as ballistic
calculations and business data processing, marking the beginning of digital
automation. However, programming them required intricate understanding
and manipulation of hardware, limiting their accessibility and application.

The development of higher-level programming languages, starting with
Fortran, and followed by COBOL and Lisp during the late 1950s, presented
new significant abstractions over machine code and assembly language.
These languages allowed people to express computations in a more natural
and readable form, significantly reducing the complexity of programming.
The subsequent development of structured programming languages like C and

Ihttps://www.cs.odu.edu/~tkennedy/cs300/development /Public/ |
MO1-HistoryOfComputers/index.html|
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object-oriented languages such as Smalltalk and C++ in the 1980s further
abstracted the coding process, enabling even more complex software develop-
ment and wider adoption of computer technology.

The proliferation of the internet in the 1990s transformed the global econ-
omy, enabling instantaneous communication, information dissemination, and
digital commerce. Programming languages such as Java, with it’s slogan
"write once, run anywhere'?, and the emergence of web technologies like
HTML, JavaScript, and later Python, expanded the scope of automation
from local machines to global networks. The introduction of APIs (Appli-
cation Programming Interfaces) further streamlined software development,
allowing applications to interact and share data seamlessly, encouraging new
projects and leading to the development of many more services and platforms.

Currently, it seems like the automation landscape is undergoing yet another
drastic transformation with the emergence of Large Language Models (LLMs).
These models, powered by research in the field of artificial intelligence and ma-
chine learning, are set to revolutionize automation by transcending traditional
programing. LLMs can understand natural language, generate code, analyze
data, and provide insights with minimal human input, potentially rendering
traditional programming languages and manual data analysis obsolete.

B 1.1.2 Evolving Landscape of Exploratory Data Analysis

Exploratory Data Analysis (EDA) has been a fundamental process in statistics
and data science, enabling analysts to understand the distributions, trends,
and patterns within their data. The concept of EDA was popularized by
John Tukey in the 1970s [2], advocating for an approach that emphasized
the important role of visual methods in analyzing data, alongside traditional
statistical tests. Tukey’s work laid the groundwork for a more intuitive
and investigative approach to data analytics, highlighting the importance of
graphical representations in discovering underlying structures, patterns, and
relationships.

The popularization of computers and statistical software in the late 20th
century significantly expanded the capabilities of EDA. Tools like SAS (Statis-
tical Analysis System), also in the 70s, and later R and Python programming
languages, have provided powerful platforms for data manipulation. These
tools allowed for more sophisticated analyses, including the ability to handle
large datasets and perform complex statistical modeling. The need for more
intuitive and efficient tools has so far led to the development of advanced data
visualization software and automated analysis platforms, such as Tableau,
which, once again, aims to democratize data analysis by making it more
accessible to a higher number of people.

Zhttps://www.tug.ca/articles/Volume12/V12N4/V12N4_Javier_Java.html
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1.2. Objectives of This Study

As we stand on the edge of a new era in data analysis, Large Language
Models (LLMs) offer unprecedented opportunities to revolutionize EDA. Us-
ing their ability to understand and generate natural language, LLMs assist in
automating the data exploration process, providing insights and generating
code for data manipulation and visualization with minimal input. By lever-
aging the natural language processing capabilities of LLMs, analysts can now
interact with their data in more intuitive ways, asking complex questions and
receiving answers directly, without the need for extensive coding or statistical
expertise. This advancement underscores the potential of LLMs in making
data analysis more efficient and accessible across various domains.

W12 Objectives of This Study

B 1.2.1 Current Tendencies in Natural Language EDA

The research towards automating data analytics with LLMs, with tabular
data in particular, confronts several significant challenges. Predominantly,
current methodologies exhibit limitations in language model’s hallucination,
non-determinism, autonomous reasoning and ensuring accuracy, all of which
severely impact the quality of insights derived from automated data analysis.
Ensuring security and safety of manipulating the data is a long way to improve
as well.

Existing commercial solutions, such as well-known ChatGPT (OpenAl),
Gemini (Google), etc., offer improved speed and performance on data ana-
lytics tasks, however, the underlying language models are private and huge,
making the use of them contradictory. Private companies that strive for good
natural language data analysis tools want to get their hands on a solution,
that wouldn’t allow their private data to be sent to the cloud via an API.
Therefore, there is a need for accessible open-sourced models and methods,
that can be instantiated on-premise. Progress in this direction would allow
more independent people and companies to conduct data analysis faster, safer
and cheaper.

The recent advancements in data analysis using LLM-based agents, partic-
ularly in 2022-2023, have left this area largely unexplored. The absence of
comprehensive benchmarks and datasets for evaluating autonomous analysts
complicates the assessment of new systems. Consequently, comparing au-
tonomous agents with one another, especially in tasks requiring visualization
creation, remains a significant challenge.

3



1. Introduction

B 1.2.2 Research Goals

This study aims to advance the described field of data analytics through the
development of a natural language interface, facilitating the direct querying
of tabular data files using natural language questions. The primary objective
revolves around empowering users with a simple LLM-based agent to perform
data analysis efficiently, enabling them to derive insights as well as to generate
simple statistical visualizations.

Natural Language Processing and LLM Optimization. A key focus is
on investigating and deploying generative large language models to produce
Python code for given analytical tasks. This includes electing appropriate
LLMs for tabular data analytics tasks, and fine-tuning those using advanced
techniques such as LoRA or QLoRA, aiming to improve accuracy and efficiency
of retrieved answers. The integration of the optimized LLM into an LLM-
powered Agent program is also ensured. Experiments with combining
the strengths of different LLMs to provide a more robust solution for data
analytics are conducted.

Dataset Contribution. Another output of this research will be the creation
and sharing of a comprehensive dataset, consisting of sample analytics ques-
tions, sheet data, and corresponding reference outputs, including generated
code. This dataset will serve not only as a foundation for model training and
evaluation but also as a valuable contribution to the open-source community,
addressing the current shortage of datasets for advanced tabular data analysis.

Methodology and Metrics for Accuracy Assessment. The research system-
atically reviews methodologies for measuring the accuracy of the researched
and optimized models and proposes a set of metrics to evaluate the improve-
ments brought by the assembly of the LLM-powered agent. This involves a
detailed examination of the model’s performance, focusing on precision and
the ability to reduce mistakes in conducted data analysis, as well as the time
and resource consumption.

B 1.2.3 Thesis Structure

This is a brief guide to what each chapter of this work contains and where
the general research goals are approached:

B Literature Review and Existing Solutions delves into the tran-
sition from statistical NLP to the first neural models, introduces the
Transformer architecture, and discusses the current state of LLMs, par-
ticularly their code generation, quantization, and debugging abilities.
It further explores solutions for natural language tabular data analysis
and identifies gaps in current research, positioning this work within that
context.



1.2. Objectives of This Study

® System Design and Implementation describes the technical stack
used and the architecture of the Agent system developed. It covers
the modular components of the system, including the agent, LLMs,
and code manipulation modules, and emphasizes MLOps practices for
reproducibility.

8 Experiments and Results presents the process of the training data
creation, fine-tuning experiments, and evaluation metrics used to assess
the performance of the developed systems. After that, it comparatively
discusses the performances of different LLM-based Agent systems that
were obtained.






Chapter 2

Literature Review and Existing Solutions

. 2.1 From Statistical NLP to First Neural Models

This section very briefly describes the core principles and historical develop-
ment of Natural Language Processing (NLP), highlighting key milestones and
foundational techniques that have shaped the field. It covers the evolution
from rule-based and statistical approaches to the early use of machine learning
in language tasks. This background is provided for context, as the primary
emphasis of this work is on contemporary high-level abstractions rather than
the statistical underpinnings of early language modeling approaches.

First Neural Large Pre-trained
Statistical Methods Models Models
M-grams Word2Vec, GloVe Transformer block
TF-IDF. SVD, LDA CMNs, RNNs BERT, T5
PMI, Perplexity LSTMs GFPTs, Llama

Figure 2.1: Evolution of main technological trends in NLP over time.

Probabilistic models serve as the cornerstone for understanding and predict-
ing linguistic patterns in NLP. These models assign probabilities to sequences
of words, allowing for predictions of word occurrences and facilitating tasks
such as text classification and generation. To create the simplest probabilistic
model one would need to know the notion of an N-gram model, which assigns
a probability of a certain next token (could be a letter, a syllable, a word, etc.)
to appear after N previously given tokens. An N-gram of size 1 is referred
to as a "uni-gram’, size 2 is a "bi-gram ', and so on. The process of N-gram
language model creation involves counting the occurrences of N-grams within
the corpus and using these counts to estimate the likelihood of a given token
following a sequence of N — 1 tokens. For instance, the probability of the
word "Then" following the bi-gram "Now and" in a tri-gram model would be
calculated based on how frequently the sequence "Now and" is followed by
"Then" in the training corpus, Ex.
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Count(Now and Then)
Count(Now and)

One fundamental concept in evaluating the performance of these models
is perplexity, a measure that quantifies how well a model predicts a sample.
Lower perplexity indicates that the model is better at predicting the sample,
making it a crucial metric for assessing model quality. It is an inverse proba-
bility of the unseen test set normalized by the number of words, Ex. 2.2l

P(Then |Now and) = (2.1)

PP(W) = IK/P(wl,w;,...,wN) € (1,00). (2.2)

In the realm of text classification, Bayes’ rule emerges as a pivotal founda-
tion, enabling the categorization of text into predefined groups based on the
learned probabilities. This rule applies the principles of probability to text
data, offering a statistical basis for classifying text according to its content.

The evolution of NLP models introduced vector-based representations,
notably through embeddings. Embeddings map discrete words into continuous
vector spaces, enabling the computation of semantic similarity between words.
Simplest techniques to generate embeddings include using term-document ma-
trices, Term Frequency-Inverse Document Frequency (TF-IDF), and Singular
Value Decomposition (SVD). While effective, these methods face challenges,
such as the high computational cost of SVD for large datasets and the limita-
tions of TF-IDF in capturing the full semantic context of words. Similarity
metrics for embeddings, like cosine similarity and dot product, address these
issues by quantifying the closeness between vectors, enhancing the model’s
ability to understand semantic relationships between words.

Despite their advancements, simple statistical NLP methods encounter
limitations, such as handling the sparsity of data and capturing long-range
dependencies. Researchers have developed several solutions and workarounds,
including smoothing techniques for sparse data and probabilistic models for
better context capture, paving the way for more sophisticated models.

The research evolution in NLP has been marked by the introduction of
simple neural networks, such as word2vec and Global Vectors for Word Repre-
sentation (GloVe), Recurrent Neural Networks (RNNs), and Long Short-Term
Memory networks (LSTMs), addressing traditional statistical methods’ chal-
lenges. Word2vec and GloVe have been instrumental in the advancements
of embeddings, while Convolutional Neural Networks (CNNs), RNNs, and
LSTMs have contributed to the development of language models capable of
understanding sequential data, context, and temporal dependencies. These
innovations tried to tackle the problems such as short context windows, the in-
ability to capture long-range dependencies within the text, and the challenges
associated with understanding the nuanced meanings of words in varying

8



2.2. Transformer Architecture

contexts. By leveraging the strengths of deep learning researchers were able
to create models that not only learned word representations more effectively
but also improved the accuracy of tasks like text classification, sentiment
analysis, and machine translation.

. 2.2 Transformer Architecture

"Attention Is All You Need" [3], a research paper released in 2017, has become
incredibly popular, with more than 120 thousand citations to date. This is
because the new way of building neural networks introduced in this paper
has led to big changes not just in NLP but also in many other areas like
Computer Vision (CV) [4, 5, 6], Drug Discovery [7], Multimodal AT [8], 9], and
more. During the writing process, the authors didn’t expect it to have such
a big impact, that’s why they kept the paper consise and straightforward,
focusing on the theoretical aspects and their experiments.

The smart aspect of the new network design lies in its adoption of the at-
tention mechanism. This innovative feature enables the network to selectively
concentrate on various positions of the input tokens, significantly improving
its ability to grasp the overall meaning. By weighing the importance of each
input token differently, the attention mechanism ensures that the model pays
"attention" to the most relevant parts of the input as needed for the task at
hand, whether it’s understanding context, detecting relationships between
words, or capturing nuances in language. This focused approach allows for a
deeper and more nuanced understanding of the input data.

In a Transformer block, the attention mechanism is mixed with fully con-
nected layers in both the encoder and the decoder parts. Sometimes, people
tweak the original Transformer design for specific tasks. For example, if
you're not trying to translate text but just create embeddings from it (e.g.
ERNIE[10] model) or classify it (ELECTRAJLI]), you might only use the
encoder part (encoder-only models). On the other hand, the decoder-only
models are used for plain auto regressive text generation.

Cosine positional encodings are a crucial component in the transformer
architecture, enabling the model to understand the order of input tokens,
which is vital for processing sequences of data like text. Unlike sequential
and recurrent models, transformers treat input data as sets and, therefore,
require a method to capture positional information. Cosine positional en-
codings introduce this information by adding vectors whose elements are
computed using sine and cosine functions of different frequencies to the input
embeddings. This method allows each position to have a unique encoding,
yet maintains a consistent relationship between positions.

Overall, when comparing the original Transformer to previous neural
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network architectures for natural language modeling, quite a few benefits
stand out:

® [t has better focus; it is better at dealing with distant parts of the input
text: Traditional methods like RNNs and LSTMs go through a sentence
one word at a time, which makes it hard to link parts that are really far
apart. Transformers "look" at the whole sentence at once, making this
easier.

B [t is faster and more efficient: Because they process all parts of the
sentence at the same time, Transformers can be trained faster, especially
with the help of modern GPUs.

® Simpler design: Even though they’re very powerful, Transformers are
actually simpler than older methods. This makes them easier to work
with and integrate.

Even though the ’standard’ Transformer architecture underpins every lan-
guage model nowadays, it is still evolving continuously. Developers are actively
working on creating innovations and refinements to boost its performance and
efficiency. Here are a few examples of significant improvements, employed for
instance in the original Llama models:

® Different modifications of attention mechanisms [12], such as employing a
singular Key-Value (K-V) pair matrix for a group of Query (Q) matrices,
primarily optimize inference. Additionally, various strategies have been
developed to reduce the quadratic complexity associated with attention
calculations.

® Traditional sinusoidal positional encoding has given way to Rotation-
based Positional Encoding (RoPE) [13] and Positional Interpolation (PT)
[14], which adjust token embeddings based on their position through a
rotation mechanism. This innovation has proven effective to enable the
model to handle vastly expanded context windows.

® The transition from post layer normalization to pre layer normalization
has boosted convergence stability [I5]. In this new approach, embeddings
directly proceed through decoder blocks, with contributions from the feed-
forward layers and attention mechanisms being integrated subsequently.

® The switch from the ReLU activation function to other types, like
SwiGLU [16], a type of Gated Linear Unit, introduces an additional level
of control over the signal flow through element-wise multiplication. This
change slightly improves performance across various tasks.

® Replacing regular Layer Normalization with RMSNorm [I7] simplified
computations without compromising on performance, maintaining oper-
ational quality while reducing complexity.

10
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B 23 Large Language Models (LLMs)

Following the introduction of the Transformer architecture, researchers began
to explore the effects of increasing the model size. The idea that greater GPU
computational capacity, when utilized on larger datasets, would enhance the
performance of language models, was once again validated.

In 2018, BERT [18], encoder-only model was released in two sizes: BERT pasp
and BERT [ argE, with the bigger one having 340 million parameters. Ac-
cording to the paper, BERT was pre-trained on two corpora, one of which
being the English Wikipedia (2,500M words). The model noticeably outper-
formed previous State-Of-The-Art (SOTA) results on several NLP problems,
including important benchmarks, such as GLUE [19], SQuAD [20] and SWAG
[21]. The simplicity of usage and modifications of BERT paved the way for
numerous research papers introducing new BERT inspired models. The model
of this size was considered a Large Language Model (LLM) at that time,
however, there is no specific threshold of size from which the neural network
is considered large, thus making original BERT a really small language model
nowadays.

The introduction of GPT-1 (Generative Pre-trained Transformer) by Ope-
nAT in 2018 represented an advancement in the domain of text generation,
demonstrating the substantial benefits of comprehensive semi-supervised pre-
training followed by task-specific fine-tuning on enhancing performance across
a wide array of text-based applications [22],23]. Subsequently, OpenATI’s devel-
opment of GPT-2 further expanded the model itself, adding more Transformer
blocks. GPT-2 model has 1.5 billion parameters, which allows for compression
[24] of much more information; the training dataset for GPT-2 contained
40GB of text. It’s size and size of the training corpus made the model stand
on the SOTA stage of numerous benchmarks. The source code and weights are
public and those are the last weights to date released by OpenAl to the public.

With the paper "Fxploring the Limits of Transfer Learning with a Unified
Text-to-Text Transformer" [25] by Google, submitted in 2019, the encoder-
decoder model - T5 (Text-to-Text Transfer Transformer; name comes from
the term Transfer learning) was released in several sizes. The 3 billion pa-
rameter model (3B) did achieve SOTA results on some benchmarks, but the
biggest - 11B variant really showed the importance of scaling the number of
parameters, beating previous best models.

By 2020, the presentation of GPT-3 with a paper "Language Models are Few-
Shot Learners"[26] positioned it as the most advanced language model to date,
distinguished by its exceptional abilities in translation, question-answering,
instruction following, etc. The model possesses 175 billion parameters, making
it at least ten times larger than any prior language model. In the paper, Ope-
nAl discusses the concept of meta-learning, that includes the term few-shot
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learning, stated in the title. They research how much does it help the LLM
to show it one or multiple examples of the task during the inference.

On November 30, 2022, OpenAl introduced ChatGPT, a groundbreaking
application that achieved a remarkable milestone by attracting 1 million users
within just five days of its release. This rapid adoption not only highlighted
ChatGPT’s immediate impact and the public’s growing interest in advanced
conversational Al but also underscored the vast potential of large language
models in various applications. The app’s success served as a catalyst, prompt-
ing other companies to accelerate their efforts in developing their own LLMs
to compete in the rapidly growing AI market. In the wake of ChatGPT’s suc-
cess, OpenAl continued to innovate in the field by releasing GPT-3.5, which
was trained using Reinforcement Learning from Human Feedback (RLHF)
[27]. This technique involved training the model based on preferences and
corrections derived from human feedback, allowing GPT-3.5 to achieve higher
levels of accuracy, relevance, and safety in its outputs.

Meta’s unveiling of LLaMA [28], which offers a spectrum of LLMs ranging
from 7B to 65B parameters, tries to demonstrate their dedication to open
science and the democratization of Al research. By providing a powerful yet
more accessible tool, LLaMA caters to a wide research community. These
efficient, high-performance models demand fewer computational resources, al-
lowing for the exploration of foundational models on a broader scale. Trained
on an extensive dataset of 1.4 trillion tokens across 20 major languages,
LLaMA is released under a noncommercial license for research, making a
significant pre-trained LLM available to the public, including academic circles.

Afterwards, numerous notable models have emerged, including GPT-4 with
its iterations, LLaMA 2 models [29], and Mixtral 8x7b [30]—comprising eight
7B parameter feedforward modules, with two selected for each token based
on the Mixture-Of-Experts concept. Additionally, several proprietary Claude
models from Anthropic [31], Vicuna—an open-source, straightforward, and
adaptable model [32], among others, have made their mark, showcasing the
diverse approaches to advancing LLM technology.

Bl 2.3.1 Ability to generate code: benchmarks and models

In addition to general-purpose text-generating LLMs, this research extensively
utilizes LLMs specialized in code generation. Such code-generating LLMs
have gained significant attention in recent years, paralleling the interest in
chat-based LLMs, due to their potential to noticeably enhance programmers’
productivity and efficiency. So-called LLM-based coding assistants started to
emerge. Among the most prominent of the programs that utilize LLMs to
help people write code are ChatGPT, GitHub Copilot, and Amazon Code-
Whisperer [33]. Programmers typically engage with these coding assistants
in one of two ways: they either have a clear sequence of steps in mind and
use the assistant to streamline the coding process, or they seek guidance on
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unfamiliar problems, leveraging the assistant as a source of suggestions for
various solutions [34]. The ability to write more complex code also seems to
be really useful when developing autonomous LLM agents.

While choosing the main base coding model for this project’s experiments,
numerous web pages and papers were looked at, so let us briefly review the
best coders up to date. Models that we are going to discuss were all selected
based on the following criteria, as it makes little sense to compare all LLMs,
even those that could not useful for this project, as there are too many of
them:

® Performance on the popular Python code writing benchmarks,
® Size of the model (smaller — better),

® Open-sourced weights,

® Fase of integration and possibility of fine-tuning.

First of all, the benchmarks that show how models perform on specific
tasks. The original HumanEval by OpenAl [35] is a standard metric to
measure LLM abilities to write code. Given a function signature with a
docstring, that describes the problem, the LLM needs to generate the code
below. Then the percentage of the right solutions is calculated as the final
metric. Since the release, multiple improvements of HumanEval were released,
for example HumanEval+ [36] is an expanded version, that contains 80 times
more problems to be tested.

CoNaLa dataset [37] was created to test the ability to write small (even
one-line) code snippets. One instance out of more than 2000 is for example:

input is "Sum of all values in a Python dict" and the reference output should
be ‘sum(d.values())".

An older benchmark - APPS [38], consists of 10000 problem descriptions
from trivial to complex with example outputs, and also the test cases that
cover the generated code.

Two benchmarks from a single paper [39]: MBPP (Mostly Basic Program-
ming Problems) and MathQA-Python serve as a solid baseline to test the
Python generation. MathQA-Python challenges the LLM to extract relative
data from longer texts to generate the right code.

DS-1000 [40] is a dataset collected from StackOverflow with data science
related code snippets. Snippets contain code that uses typical libraries for
data analysis, such as numpy, matplotlib, pandas; which strongly relates to
the experimental part of this thesis. For the pandas library, it contains two
types of tasks: completion and infilling. Even though the format of the data
instances isn’t well-suited for this project, this dataset is still used during the
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fine-tuning experiments.

MultiPL-E [41] is a benchmark containing translated HumanEval and
MBPP to 18 different programming languages. Even when focusing on pure
Python generation, it is useful to see how models perform in different lan-
guages, which can show how well the model can generalize the algorithmic
processes. For example, one research also introduces a set of 852 "TransCoder’
pairs, where one item is one programming language, and the second one is
another language (C++4, Python, Java) to test the ability to convert one
language to another [42).

Another interesting benchmark worth mentioning, is SWE-bench [44],
which tests the models for the ability to resolve GitHub issues, i.e. given
issue text, the code segment containing a bug and the overall context of the
project structure fix the given bug. The paper compares the capabilities of
SOTA LLMs and talks about challenges in debugging the code autonomously.
Debugging abilities of LLMs will be reviewed later on in this text, as they
are a "part of the crew, part of the ship" in most LLM-agent systems nowadays.

There are also multiple leader boards available online, that compare
LLMs specifically on the ability to write code. One such table is Big Code
Models Leaderboard ", which encompassed HumanEval and MultiPL-E tests.
It allows to simply filter out models that don’t fulfill your research intentions,
and shows the models performances compared to each other in an interactive
chart. It also shows which models are open-source, and whether a particular
model has a proof of the result, or the authors just claim it in the release note.
Another leader board is called EvalPlus [43] and it also references several
other similar ones.

To start off with actual SOTA coding LLMs, the paper "StarCoder: may the
source be with you!" introduces two LLMs: StarCoder (fine-tuned for Python)
and StarCoderBase. Both having 15 billion parameters, they outperform
previous best coding models on HumanEval and MBPP. A significant aspect
of StarCoder’s introduction is also its exceptional by that time ability to
process over 8000 tokens of input, surpassing any other similar open LLM in
terms of context length. Now, not even one year later, due to the invention of
several positional encoding techniques, discussed briefly in the Transformer
architecture section, this number seems really small. The model also has
infilling capabilities, which means that the model can fill a missing code
snippet into the prescribed place in the input prompt.

WizardCoder [45] is a series of coding LLMs that was trained using the
Evol-Instruct [46] technique that was applied on the domain of programming.
Evol-Instruct is a data generation method, which iteratively increases the
complexity of a given problem via asking another LLM to modify the problem

"https://huggingface.co/spaces/bigcode/bigcode-models-1leaderboard
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by adding constraints, complicating inputs, etc. This allows to create massive
amounts of training data. Later, this technique serves as an inspiration
for other similar methods (such as OSS-Instruct [47] that creates new data
instances with references to open-source code snippets). Again, a smaller
open-source LLM comes closer to the performance of the closed-source giants
such as GPT family and Claude.

"Textbooks Are All You Need" [48] is a paper by Microsoft Research, where
they introduce an LLM called phi-1, with a tiny amount of 1 billion parame-
ters. They state that there are two ways to improve the quality of a language
model: either by increasing the number of parameters, or by improving the
quality of the training dataset. Inspired by TinyStories [49], they generate
synthetic data, focusing on completion of Python code, achieving perfor-
mance comparable with WizardCoder-16B on HumanEval and MBPP. It’s
also noteworthy that there is also a thing called topic tree creation of synthetic
data, which was used to create a similar dataset named Code Ezercises .
It is a sibling method to Evollnstruct, where a tree with various topics is
generated, which increases the diversity and randomness of the synthetic data.

Code Llama [50] are 9 LLMs that were released by Meta Al as fine-tuned
versions of Llama 2 models released earlier. 9 models come from a Cartesian
product of 3 different sizes (7B, 13B, 70B) and 3 specializations, Fig. 2.2.

CopE Lrama

Long context (7B =, 13B =, 34B)
fine-tuning -
A Instruction
Lrama 2 Code training 208 T CopE LLAMA - INSTRUCT

Foundation models — Infilling code training = (7B =, 13B =, 34B)
5B

(78, 138, 348) 2008, Python code Long context

training  —»  Fine-tuning CopE LrLAMA - PYTHON

(7B, 13B, 34B)

100B 20B

Figure 2.2: How Code Llama models were fine-tuned. Taken from the original
release paper [50]. Infilling-capable models are marked with the = symbol.

This series of models offered a variety of SOTA foundational models under a
permissive license, allowing both research and commercial applications. The
sizes of the training corpora result in a massive knowledge within billions of
parameters. 7B models can easily be run on a single GPU with VRAM of
around 20GB and the 70B serves as a solid foundation for bigger projects.
Here’s a brief explanation of models’ specializations:

# Completion. Similarly as any other foundational auto-regressive model,
the Code Llamas can generate text completing the input text. Typi-
cal applications are completing the function body, given it’s docstring
description.

® Infilling. Causal infilling prediction allows to complete the missing code
segment, that is indicated as a special token: <FILL_ME>. E.g. useful
for assistants integrated to IDEs.

%https://huggingface.co/datasets/jinaai/code_exercises
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® Instruction tuning allows for chat like experience with the model. While
using instruction tuned Code Llama models, the input prompt should
be placed in-between two tokens: [INST] and [/INST].

The simplicity of the model usage and it’s further fine-tuning is also a key
factor when choosing a simple, yet effective coding LLM for personal projects.
It’s popularity implies a lot of resources and articles with comparisons to
other models and usage examples.

"Magicoder: Source Code Is All You Need" [47], which was already ref-
erenced in the WizardCoder paragraph for it’s OSS-Instruct method, also
introduced a novel model - MagicoderS-CL-7B, which was born by fine-tuning
the Code Llama 7B Python model. Authors claim that the model outperforms
the ChatGPT on HumanEval, which is amazing, keeping in mind it’s size.

B 2.3.2 Quantization

This study will also touch on the concept of model quantization. Quantization
[51] optimizes LLMs for better efficiency, especially for use on devices with
limited resources. The technique converts the model’s parameters from high
to low precision, e.g., turning float32 with 32-bit precision into 4-bit precision,
where each parameter of the model takes only 4 bits of memory. This reduc-
tion not only dramatically decreases the model’s size and potentially increases
its processing speed but also could lower power consumption, which is crucial
for running models locally. The main quantization strategies include post-
training quantization, applied after training, and quantization-aware training,
integrated during the model’s learning process. Although quantization can
introduce errors affecting model accuracy, careful adjustment can mitigate
these effects, balancing efficiency with performance.

A recent paper called "The Era of 1-bit LLMs: All Large Language Mod-
els are in 1.58 Bits" [52] goes to the extreme and proposes a quantized
transformer in which the usual linear layer is replaced with a BitLinear
layer, where weights are trained and quantized during the forward pass (the
weights are divided by the mean absolute value and rounded to the near-
est value from a set of —1,0,1). This model uses 20 times less energy, 3.5
times less memory at inference, and is 2.7 times faster than the fp16 model
while maintaining the same quality after training on the same dataset, which
envisions the potential of effective model quantization techniques in the future.

B 2.3.3 Debugging Abilities

The term debugging refers to the act of identifying and rectifying errors in
specific code, often accompanied by an explanatory note. Programmers fre-
quently seek guidance from LLMs when debugging their code, which typically
includes error messages generated during compilation or execution. Given

16



2.3. Large Language Models (LLMs)

that debugging with LLMs is a common feature in numerous autonomous
agent systems, including the one implemented for this project, this section
provides a brief summary of various research studies on this subject.

First, a recent paper on evaluating the debugging capabilities of LLMs with
a new benchmark, DebugBench (4253 instances), compares GPT models from
OpenAl with Code Llama and BLOOM [53] and states that "while closed-
source models like GPT-/4 exhibit inferior debugging performance compared to
humans, open-source models such as Code Llama fail to attain any pass rate
scores"; reports accuracy being equal to 0 for all Code Llama family models
[54]. The statement about GPT models is valid, as the GPT models show
remarkable debugging capabilities. However, the claim that Code Llama mod-
els don’t have internal knowledge on fixing code mistakes, as those probably
weren’t in the training corpora, seems biased. After examining their Appendix
section with examples of used prompts and seeing an instruction-style prompt
being used for the base Code Llama 34B model, which wasn’t trained for
instruction alignment, the bar for this research paper had fallen lower. It was
decided to showcase the Code Llama 7B model’s debugging abilities via a
simple, non-biased demonstration, shown in Appendix [Al Further evaluations
with the tabular data analysis benchmark in the experiments section also
show that debugging abilities are present even in 7B models and improve the
performance significantly.

"Large Language Models Cannot Self-Correct Reasoning Yet" [55] studies
the intrinsic abilities of LLMs to self-correct their initial reasoning without any
other additional information. They test this on math problems as well as on
common sense question answering and conclude that self-correction without
outside knowledge can be beneficial, however sometimes the performance
degrades after introducing self-correction.

Self-Debugging [56] is a straightforward method to correct faulty code via a

cycle that repeatedly calls the LLM with additional feedback from unit tests
and a few examples. This significantly helps the model, improving its scores
on popular programming benchmarks. On a Text-to-SQL dataset, Spider,
the unit tests are not available, but the system’s capabilities still improve
after the introduction of the code explanation feature.
2 "LDB: Large Language Model Debugger via Verifying Runtime Execution
Step-by-step” [57] goes further and propose using LLMs in a IDE-style debug-
ging, i.e. creating a branching tree of a program and executing it step by
step, showing that open-source models such as StarCoder and Code Llama
can improve on HumanEval even more, when compared to Self-Debugging.
Both Self-Debugging and LDB fall more into the topic of autonomous LLM
agents, which is discussed in the next section.
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B 24 Natural Language Tabular Data Analysis

B 2.4.1 Solutions without LLMs

Before LLMs became popular, a challenge with performing basic operations
on tables using natural language had been present for a while, here, we’ll
briefly focus on methods that were developed earlier. Recent work reviewing
every major research in this field [58] divides table processing tasks to three
groups. First, prediction of trends and different kinds of classifications.
Some traditional approaches may include tree-based approaches, such as
decision trees, simple convolutions and recurrent networks, etc. Second,
there is data generation. This is used to augment the data or model the
tabular data. And thirdly, and most importantly for this work, is table
understanding. In other words - question answering e.g. by using filtering,
doing statistical and mathematical operations, and sorting samples. This is
exactly what this work focuses on, along with creating simple visualizations,
which could highlight statistical findings or reveal patterns, since people often
understand visual information better than text. We’ll revisit these two types
of tasks (statistical analysis and visualizations) several times when we talk
about the experimental part of this study.

Easy Extra Hard
What is the number of cars with more than 4 cylinders? What is the average life expectancy in the countries
SELECT COUNT (*) where English is not the official language?

FROM cars data

SELECT AVG(life_ expectancy)
WHERE cylinders > 4

FROM country

WHERE name NOT IN
(SELECT T1.name
FROM country AS Tl JOIN
country language AS T2
ON Tl.code = T2.country_code
WHERE T2.language = "English"

AND T2.is official = "T")

Figure 2.3: Easy and Extra Hard queries from Spider [61] - a Text2SQL dataset.

One major challenge in understanding tables is converting natural language
requests into SQL query statements, known as Text2SQL or NL2SQL. This
issue has led to various solutions, ranging from semantic parsing, which fills
in missing parts of a query, to sketch-based methods using dependency graphs
[59], and even employing deep neural networks with techniques like reinforce-
ment learning. The Seq2SQL paper [60] introduced the WikiSQL dataset, a
large collection of queries for over 24,000 small tables from Wikipedia, along
with their corresponding SQL statements. However, most of these queries
are simple, single-line SELECT statements focused mainly on selecting cells
from poorly specified attribute names. This simplicity means the dataset
does not pose a significant challenge to advanced LLM Agent systems or
directly contribute to their enhancement without further modifications to
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it. Another dataset for the Text2SQL task is Spider [61]. Annotated by
humans, it contains a large amount of queries, which also range from ’'Easy’
to 'Extra Hard’ posing a challenge even for current SOTA systems, Fig. [2.3.
WikiTableQuestions [62] is an old dataset similar to WikiSQL, which contains
answers to each question in a form of a number, a string or a list of those. It
was developed in 2015 to test their logical-form semantic parsing system.

As for the automatic data visualization from natural language (NL2VIS),
there were also quite a few attempts based in semantic parsing and heuristic
algorithms. Later, Transformer-based encoder-decoder model - ncNet [63]
was implemented as a sequence-to-sequence model, that generates so-called
Vega format outputs, which are essentially JSON-like objects with predefined
fields specifying values to be displayed, colors, positions, etc., serving as
configuration files for the resulting visualization. They also allowed passing
the selected type of plot as one of the inputs to the network, which resulted
in improvement in generation quality as expected. In addition, RGVisNet
[64] uses a database of Vega format JSONs to automatically select similar
templates for the output visualization. In other words, it outperformed the
ncNet by introduction of a simple retrieval system. Some works have also
addressed the evaluation of quality of generated plots. "DeepFEye: Towards
Automatic Data Visualization" [65] train several binary classifiers and ranking
systems, that tell which kinds of plots would be best suited for the data.

B 2.4.2 From Prompt Design to LLM Agents

Since the introduction of LLMs, which in contrast to other, more traditional
approaches to TableQA were finally able to tackle much more complex prob-
lems and to obey natural language instructions on a new level, the field dived
into the research of LLM reasoning capabilities, or simply put the research of
LLM intelligence. This resulted in several new sub-fields of Machine Learning
(ML) and AI, which are a direct focus of this work. This includes Prompt
Design problem, Retrieval Augmented Generation (RAG) problem,
and the challenge of application construction that utilizes LLMs for human-
like reasoning, i.e. LLM-based Agents.

As the definition of this term is vague, for this study prompt will be defined
as a simple textual input to the LLM. It may also include special tokens -
words or phrases encased in specific symbols or formatting that signal the
LLM to perform certain actions or interpret the text in a particular way.
These special tokens serve various purposes, such as specifying the format of
the output, indicating the start and end of a segment of text for processing, or
triggering a specific mode of response from the LLM (e.g. [INST] and [/INST]
instruct Code Llama models to reply in instruction or chat-like manner).

Retrieval Augmented Generation (RAG) enhances language models by

integrating them with external factual knowledge, thus addressing their
inherent limitations in accessing specific or current information. This method
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increases language models’ effectiveness in tasks demanding precise factual
knowledge. RAG operates through a two-component system: the retriever
and the generator. The retriever sources relevant facts from an external
database or a knowledge base in response to an input prompt. These facts
are then embedded into the input for the language model, equipping it with
the necessary context to produce accurate and informed responses. "Survey
on Factuality in Large Language Models: Knowledge, Retrieval and Domain-
Specificity" [67] meticulously discusses all the details on fact-consistency and
describe how and where methods of RAG can be applied. For instance, when
asked to identify the best dystopian novel, a language model might choose any
novel it recalls from its training data. However, using RAG, we can enhance
the query by pre-loading a vector database (e.g., FAISS [68], ElasticSearch
[69]) with data on the top 1000 best-sellers. This allows us to match the
query with relevant entries using embedding similarity. Consequently, the
model can provide a more accurate answer, such as '1984 by George Orwell,’
by leveraging specific, targeted information.

4 ~

Agent f-_¢_1 Tool selection
L") | Actions to take
LLM Reflects on feedback Goal
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Decides on actions to achieve the goal Instruments
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Figure 2.4: A general definition of an LLM-based Agent.

It is also crucial to define an Agent 70} [71]. There are many definitions
of agents, but sticking to the main one, similarly to a concept of an agent
in reinforcement learning, we can say that agents are systems that interact
with the dynamic environment, perceive it, and act to achieve their goals or
prescribed tasks, Fig. The LLM then becomes the brain of the agent.
Simply put, an LLM-based Agent is typically a "scaffolding" E| program,
that calls the language model to generate text that could in-turn give next
instructions to the program. Here are some use-cases where agents operate:

B Perceiving information from the outside world, even from various sources.
This information can be, for example, a response from a user, web page

3|h‘ctps ://metr.org/blog/2023- 08—01-new-report/|
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content, a database view, or the result of a program execution. Even
though LLMs work with text inputs only, it is possible to modify them
to accept other data types, such as images. This can be achieved with
multi-modal models that encode the input image to the same vector
space and then decode it into textual output [72]. In this way, pure
LLM-based Agents can be transformed into embodied robots that see
and act in the physical world.

B Keeping a memory. Other than the compressed training information in
the model’s parameters, the memory of an LLM agent can be of two
types. First, there is short-term memory stored in the input prompt
to the model. Given that the context windows of modern LLMs are
becoming increasingly large, this can usually hold a long conversation
or even several smaller books, to which an agent can refer. The second
type of memory is achieved through RAG, so the agent has factual
support for its answers. Another angle to look at agents is as if they
were intermediate steps in the RAG pipeline. Agents are able to format
the initial query, navigate the search for information in the multi-page
database, and apply tools to the retrieved data. Besides information
retrieval, RAG can also be utilized when an agent has a large set of
available actions. It can then apply vector similarity search on the
definitions and retrieve the best action to achieve its goal.

® Planning, reasoning, and reflecting back on itself through feedback.
Through prompting, an agent can be instructed to plan the steps to
achieve a goal, to reason, and to conclude which sequence of actions to
take. Given that the text from the feedback loop usually goes to the
LLM input, it can reflect on the achieved results and control its next
actions based on it.

® Using instruments available in the environment. An agent typically has
a set of tools that it can use. For instance, these tools can range from a
Python interpreter, where the code generated by an LLM is executed, to
a browser search bar, where the agent can find additional information, or
even to robotics components, which are activated by simple instructions
generated or selected by an LLM. The LLM can be trained to use these
tools by formatting the output with special characters and specifying
parameters for a selected API call [73].

® Playing a role can also be considered as a minor high-level LLM agent
ability. By extensively prompting the LLM to act in a certain manner,
the user could have an experience of communication with a specific profile.
For example, simply telling the LLM to act as a language teacher, could
redirect the feel of interaction with a user, and could even improve the
response quality.

Every application utilizing LLMs faces the problem of effectively selecting
prompt carcasses. Many works have already addressed this and underlined
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the importance of suitable prompt design. As LLMs are shown to be prompt-
sensitive [74], it is usually necessary to perform prompt-tweaking tests when
evaluating the final system. Such tests can show how much the system is
sensitive to small and large changes in the prompt format and the overall
language quality (prompt degradation), which can also examine the ability of
the model to ignore harmful prompt injections.

When instructing the model to generate text in a specific format or show
the model the preferred thought process, it is very useful to use so-called
In-context learning (few-shot prompting) [75]. This means including one to
several examples in the input prompt. It has been shown that LLMs improve
their scores on most popular benchmarks when provided examples compared
to zero-shot prompting. Studies also show that larger models exhibit more
improvement when faced with a few-shot prompt compared to smaller LLMs,
partially due to their limited ability to follow instructions.

Chain-of-Thought (CoT) |76} [T7] is a highly discussed prompting method
that was popularized due to its simplicity and effectiveness. The method
instructs the model to produce its response in a style similar to a human
thinking out loud. It can be achieved in multiple different ways, for example,
directly telling the model to "think step by step”’, or employing few-shot
examples, Fig. [2.5. A method without changing the prompt was even
proposed [78], which only alters the model’s decoding process, eliminating
the need for manual prompt creation.

Standard Prompting Chain-of-Thought Prompting
| Model Input ﬂ ~ Model Input \
Q: Roger has 5 tennis balls. He buys 2 more cans of Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now? tennis balls does he have now?
A: The answer is 11. A: Roger started with 5 balls. 2 cans of 3 tennis balls
each is 6 tennis balls. 5 + 6 = 11. The answer is 11.
Q: The cafeteria had 23 apples. If they used 20 to
make lunch and bought 6 more, how many apples Q: The cafeteria had 23 apples. If they used 20 to
do they have? make lunch and bought 6 more, how many apples
k J do they have? j
Model Output Model Output
A: The answer is 27 x A: The cafeteria had 23 apples originally. They used
' ’ 20 to make lunch. So they had 23 - 20 = 3. They
bought 6 more apples, so they have 3+ 6 = 9. The
\answer is9. o /

Figure 2.5: Chain-of-Thought style prompting by showing an example. "Chain-
of-Thought Prompting Elicits Reasoning in Large Language Models" [70].

This helps the model to generate more precise answers and improves the
model’s accuracy on math and logical questions. As a side effect, it also makes
the LLM more interpretable and comprehensible, since a human can more
easily identify the reasons why the model made a certain decision. However,
it was also shown that the CoT with Few-shot examples can hurt the model’s
performance by generating texts unsupported factual information from the
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context [79].

Self-Consistency [80] is a new decoding method that uses CoT prompting
and samples several reasoning paths diversely instead of greedily and then
marginalizes over the most consistent answers using majority voting with
possible multiplication by predefined parameters. The paper shows a dramatic
increase in accuracy on popular reasoning benchmarks. Self-Discover [81] is a
more complex approach, building further on top and beating Self-Consistency
on general world knowledge benchmarks.

Another method to improve the model’s ability to produce the best reason-
ing path that converges to a correct solution is Step-Back Prompting [82]. It
consists of two steps, which already falls into a category of simple LLM-based
agents. First, the program asks the language model to generate an abstract
higher-level question that relates to the original query and answer it. This
helps the model to come up with additional context hint for itself, which
is included to the input for the next step, actually answering the original
question. The paper also discusses the results of experiments with open-source
models, such as PaLM-2 and Llama-70B and presents the improvements over
basic CoT and In-Context learning.

Plan-and-Solve Prompting [83] was proposed to improve the zero-shot CoT
accuracy on various benchmarks. Similarly to Step-Back Prompting, this
approach also consists of two trivial steps. Given a question to answer, the
LLM is first prompted to generate a multistage plan and then giving the plan
to the model for it to follow while answering the question. This method is
also easily adapted to any reasoning tasks, not related to math or logic, such
as common sense and programming. Looking ahead, it’s worth noting that
the method also proved to be useful in the experimental section, as we will
discuss later. Least-to-Most prompting [84] decomposes the initial problem
into smaller sub-problems, and then, sequentially solves using two different
prompts, which is highly analogous to Plan-and-Solve.

Tree of Thoughts [85] and Graph of Thoughts [86] are methods that general-
ize the concept of Chain-of-Thought allowing the model to generate multiple
reasoning paths, evaluate the potential of continuing that path, and select the
best one at the end. Since it’s usually not possible to go through all solutions,
similarly to Monte Carlo Tree Search (MCTS) algorithm, these approaches
constraint itself to the most perspective ones according to LLM’s opinion.
They dramatically beat classical CoT on very specific problems like Game of
24 or sorting an array.

Some attempts were also made to automate manual prompt creation, as
it can take a lot of time for a human to properly design one. For example,
"Automatic Prompt Selection for Large Language Models" [87], a multi-step
approach, utilizes LLMs to generate prompts for each cluster of questions
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Majonty vote

(a) Input-Output  (c) Chain of Thought () Self Consistency
Prompting (10) Prompting (CoT) with CoT (CoT-SC)

(d) Tree of Thoughts (ToT)

Figure 2.6: Visualization of described prompting strategies, taken from [85].

in the training dataset, as well as to select the best ones and evaluate them.
In "Large Language Models As Optimizers" [88], the authors repeatedly call
the LLM, each time with an updated solution and the value of an objective
function for a given problem (e.g., Traveling Salesman Problem), and success-
fully optimize it, i.e., literally using an LLM as a very generalized numeric
optimizer.

Diving deeper into the concept of an LLM Agent, ReAct (Reasoning +
Acting) [8Y)] is a classical, highly-cited approach that combines CoT prompting
for reasoning and tool selection for acting in the given environment. It is
a very general and simple framework that allows better performance on a
variety of reasoning tasks (e.g., on specialized topics with fact-checking and
question answering). Given the reasoning history, an agent instance enters a
loop (a reasoning chain) where in each step it proposes the next action (a
thought) and executes it. The main point of the method is that the agent uses
the results of its actions to think about the next step. The method is currently
implemented in the Langchain library and supports question answering with
tabular data. Reflexion [90] is another similar approach, where instead of
passing the text result of an executed action (e.g., a number), another expert
LLM is utilized to "reflect" on the achieved result. This additional step helps
the agent significantly and improves performance on multiple benchmarks.

The ReAct authors also propose fine-tuning the models for further im-
provements and discuss the possibilities of combining RL paradigms with
LLM-based Agents. The case study [91] unfolds this idea and proposes a
system that combines a RL agent with a language-driven one as a simple
teacher and student system.

A large number of public projects without papers about LLM-Agents also
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exist, and one good example is DemoGPT [*, where a complex agent system
is utilized to automate the initial creation of LLM-based applications, which
could serve as a Proof-Of-Concept (POC) for the final product. It involves the
utilization of multiple databases for retrieval, planning steps, code generation,
code concatenation, and code testing.

MetaAgents paper [92] contains a description of tests on the ability of LLM
agents to behave in a social multi-agent environment. It describes the simula-
tions that were conducted and show promising performance along with several
limitations of such systems. This shows that the memory-keeping multi-agent
systems are also capable of task solving and can be utilized for specific
needs. LLM-Coordination study [93] compares multi-agent systems to SOTA
RL methods for playing 4 pure coordination games and claim that agents
equipped with the GPT-4-turbo model achieve comparable results and even
indicate that LLM-based agents are more stable to new unseen game partners.

There is also a significant need for a good benchmark for every researched
task. AgentBench [94] is such a benchmark for LLMs and agents. It includes
eight different tasks, such as web browsing, lateral thinking puzzles, and
database operations. Therefore, this is a benchmark to consider when dealing
with SQL-generating systems. However, it focuses solely on the SQL language
and includes operations on multiple-table databases. The study additionally
reveals that LLM systems available through commercial APIs tend to surpass
their open-source counterparts in performance, pinpointing the primary
challenges in developing practical LLM agents as their limited capabilities in
long-term memory, decision-making, and following instructions.

B 2.4.3 Serialization of Tabular Data

Due to the fact that the database tables can be large in size, it is needed to
find a way how to serialize them into the string format for further exposure to
the LLM. This section is a short condensation of mainly two big studies. One
has already been mentioned, it is a recent TableQA survey paper [58] and
another one is "Table Meets LLM" [95], which tests GPT models on under-
standing the serialized table that has been passed as an input to the LLM as is.

The focus of this thesis is on processing tabular data of all sizes, i.e., tables
could be large in rows and columns. That’s why it is important to consider
an approach whose serialization would:

® Fit in the context window of most LLMs, preferably minimizing the
number of input tokens used,

8 Maximize the LLM’s understanding and performance,

® Make the process of altering the structure and adding new information
as simple as possible.

Yhttps://github.com/melih-unsal/DemoGPT
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Method Description Example Papers that investigated this
DFLoader Python code where a dictio- pd.DataFrame ({ Singha et al. (2023)
nary is loaded as a Pandas name:[‘helen’], age:[47] })
dataframe
JSON Row number as indexes, with  {"0": {"name": "helen", "age": Singha et al. (2023); Sui et al. (2023b)
each row represented as a "47"}}
dictionary of keys (column
names) and values
Data Ma- Dataframe as a list of lists, [[‘’, ‘name’,‘age’] Singha et al. (2023)
trix where the firm item is the col- [0, ‘helen’, 47]]
umn header
Markdown  Rows are line-separated, | | name | age | Singha et al. (2023); Liu et al. (2023e);
columns are separated by “|” |:==|:===—=]-===:] Zhang et al. (2023d); Ye et al. (2023b);
! 10 lhelen |  47] Zhao et al. (2023d); Sui et al. (2023b)
X- Rows are line-separated, , name, age Singha et al. (2023); Narayan et al.
Separated columns are separated by “,”, 0, helen, 47 (2022)
“\t”, €7 ete.
Attribute- Concatenation —of paired name:helen ; age:47 Wang et al. (2023c)
Value Pairs  columns and cells {c : v}

HTML element for tabular
data

HTML <table><thead><tr><th></th>
<th>name</th><th>age</th></tr>
</thead><tbody><tr><th>0</th>
<td>helen</td><td>47</td></tr>
</tbody></table>

name is helen, age is 47

Singha et al. (2023); Sui et al. (2023c;b)

Rows are converted into sen-
tences using templates

Sentences Yu et al. (2023); Hegselmann et al.

(2023); Gong et al. (2020)

Figure 2.7: Possible table serialization techniques [5§].

The most straightforward approaches that fulfill these requirements are
listed in Fig. [2.7. As the studies state, the most commonly used format is
the Markdown. They indicate that JSON and DataFrame formats excel in
tasks related to facts and table manipulations. On the other hand, at the
cost of higher token usage, GPT models have a better grasp of HTML or
XML formats for tabular QA and feature visualization. Markup languages,
especially HTML, perform superiorly with GPT models in comparison to
formats separated by characters like commas or tabs. This is believed to be
due to the GPT models’ extensive training on web data, making them more
familiar with HTML and XML when it comes to processing table data.

Other approaches employ graph-based, tree-based and embedding-based
methods for table serialization. While being more sophisticated, additional
computation and less comprehensibility are seen as not justified for LLMs
that work well with simpler methods. Training models to generate a table
description is another way to tackle the problem, but it falls short because of
possible hallucinations.

B 2.4.4 Domain specific solutions and results

All of the techniques described above can be utilized to analyze the tabular
data. More existing solutions and applications of those are discussed here.

Chat2VIS [96] is a paper that was published shortly after the emergence
of ChatGPT. The authors propose and test the simplest possible agent by
carefully constructing prompts, generating code with an LLM, then filtering,
formatting, and executing it to create a plot for a user’s query on a selected
table. This approach also serves as a de facto baseline for this thesis, where
several more improvements are applied.
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_______ ——
Python ! . . \l .
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| | " 1
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Streamlit Natural Large Language
Language Interface Models

Figure 2.8: Chat2VIS approach: prompt the LLM to generate Python code,
process it and execute [96].

They conduct several case studies and empirically compare results achieved
with three different models (GPT-3, Codex, ChatGPT), also testing the abil-
ity to handle misspelled or ambiguous queries. However, the study lacks any
numerical evaluation, which is one of the goals of this work. "Visualization in
the Era of Artificial Intelligence" [97] expands on the same thoughts while
also assessing the LLM capabilities to generate code for 2D and 3D scenes in
different programming languages.

Text2Analysis [98] is an important paper for this work because it signifi-
cantly contributed to the ideas of evaluating the agents for table analysis and
also provided a large dataset of various types of questions for both statistical
and visualization questions. To the date of writing this thesis, the dataset
wasn’t available on the GitHub page stated in the paper; however, the authors
kindly gave me access to the pre-release version of the dataset. The dataset
contains 2249 question-answer instances with the correct code. Questions
are on 347 different tables. The questions ultimately fall into one of the
four categories: Rudimentary Operations, Basic Insights, Forecasting, and
Chart Generation. The Rudimentary Operations category contains queries
on selecting, filtering, and performing simple aggregation operations on the
tabular data. Each Rudimentary Operation query instance also has an ac-
companying list of operation names that are supposed to be performed, e.g.,
[’Pivot/groupby’, "Aggregation’]. Basic Insights are more difficult tasks, where
the agents should know how to see trends in the data, how to detect outliers,
etc. The authors state implementing 7 custom functions to get the result for
each query. The Forecasting category is aimed at testing the ability to predict
the next samples from the available data. This, however, implies generating
longer code that uses other Python modules, e.g., Greykite or Prophet. The
Chart Generation question set encompasses queries on visualizing the tabular
data. The authors also state ambiguities for every task, if those are present,
e.g., "Unspecified tasks" ambiguity for the query "Analyze the data." They
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put additional effort into making queries more difficult and concentrate on
more unclear queries, where the column names are not specified directly or
the task could easily be interpreted differently.

Regarding the evaluation, the authors introduce 3 metrics: Executable
Code Ratio (ECR), pass@1 accuracy, and regression scores. For the pass@1
accuracy, the output of the LLM-agent must be one of the following data
types: pd.DataFrame, List[int], List[float], List[str], int, float, str, dict. The
comparison is conducted via a simple equality between the model’s output and
the reference object. Every value is transformed into a string for the purpose
of comparison, encompassing all values in lists, dictionaries, and DataFrames.
If the value is a number, it is rounded to two decimal places before being
converted into a string. If the value is a timestamp, it is converted into a
string using a single format. If the DataFrame consists of a single value,
meaning it has one row and one column, this value is extracted. If there is
only one column, its values are extracted as a list for additional comparisons.
All these comprehensive details are crucial, as coming up with a dependable
evaluation strategy was a requirement for the implementation part of this
project.

The results of the evaluation of different LLMs on all 4 types of tasks
are presented in detail. They show that rudimentary operations and chart
generation are 2 tasks that LLMs can tackle tolerably well. But the models
still struggle when presented with an unclear query where a good system
would first reason on. Forecasting is the task where LLMs struggle the most
as shown by all 3 metrics and especially the regression score metrics.

In November 2023, OpenAl announced and released the ability of ChatGPT
to read and process files of different formats, including tabular formats: xlsx,
csv. The proceses, algorithms, and prompts behind the tabular analysis are
not publicly available, but as of the time of writing this text, the GPT models
employed a Python interpreter to execute generated code and debug it if the
result of execution wasn’t as expected or produced an exception. This implies
the usage of some sort of an Agent loop similar to the one implemented in
this study.

There are also several public repositories available on GitHub that focus on
tabular data analysis and visualization. For example: PlotAI® and PandasAl
5. Both place simple LLM agent systems in a small Python package with a
simple interface. This kind of project design inspired the implementation
part of this work.

Shttps://github.com/mljar/plotai/tree/main
Shttps://github.com/sinaptik-ai/pandas-ai
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B 25 Fine-tuning

Pre-trained LLMs can be further enhanced through a process known as fine-
tuning. This involves training an existing base model on a specific, smaller
dataset tailored to a particular task or domain of interest. By doing so, the
model adapts its knowledge and capabilities to better suit the requirements
of the task at hand. Fine-tuning allows for the customization of a general-
purpose LLM to perform specialized functions, improving its performance on
niche tasks without the need for expensive and time-consuming training a
model from scratch. This is particularly beneficial in situations where data is
scarce or highly specialized. The fine-tuning process essentially leverages the
broad knowledge already encapsulated within the LLM, directing it towards
the nuances of the specific task, leading to more accurate and contextually
relevant responses.

Nevertheless, fine-tuning of a full model (i.e. modifying every learnable
parameter) is still costly and requires the memory and computational power
setup being the same as training the base model. That’s why, numerous
Parameter-Efficient Fine-Tuning (PEFT) [99] were developed and continue
to be developed rapidly.

"Mini-Giants: The Triumph of ’Small’ Language Models and Open Source’
study [I00] provides an excellent synopsis of a multitude of PEFT strategies
developed up until the summer of 2023. Strategies are categorized into 3
classes: Addition-based, Selection-based, and Reparametrization-based, see

Fig.

additive selective

BitFit LN Tuning
Attention Tuning

Ladder-Side
Tuning
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Figure 2.9: Visualization of three main classes of PEFT methods: Addition-
based, Selection-based, and Reparametrization-based. Within additive methods,
we distinguish two large included groups: Adapter-like methods and Soft prompts

[100].
Addition-based methods introduce new parameters in addition to the
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initial architecture of the model and train only those. Many works focused
on variations of sizes, placements and types of the introduced layers exist;
where the most simple approaches insert simple linear feed-forward layers.
Selective methods select a subset of parameters of the base model for the
training. This subset could e.g. consist of full layers, of biases only, or even
from randomly picked single parameters. Fine-tuning methods that are based
on reparametrization utilize low-rank representations to reduce the count of
parameters that will be trained. Likely the most recognized such method is
Low-Rank Adaptation of Large Language Models (LoRA) [101].

B 251 LoRA and QLoRA

To improve the efficiency of fine-tuning, the LoRA technique utilizes low-rank
decomposition to express weight updates with two smaller matrices, known
as update matrices, Fig. |2.10. These matrices are trained to adjust to
new data while maintaining a minimal number of overall changes. For the
time of training the original weight matrix is preserved without additional
adjustments. The final output is derived by merging both the original W and
trained weights: A and B. While LoRA can be implemented on any set of
weight matrices within a neural network to cut down on trainable parameters,
it is often used specifically in the attention blocks of Transformer models for
simplicity and increased parameter efficiency. The total number of trainable
parameters in a LoRA module is influenced by the size of the low-rank update
matrices, which depends on the rank r and the dimensions of the original
weight matrix.

output output output

LT[ T LT[ T LT [T ]

A
Additional weights +
Selected weights B [

Pre-trained
Pre-trained Pre-trained weights

T
weights weights
W
A

T

input input input

Figure 2.10: Comparison of Selective PEFT (left), Adaptive PEFT (middle)
and Reparametrization-based PEFT, namely LoRA (right) methods. Since
the merged weights would be just a new "Pre-trained weights" block, LoRA is
visualized during a phase before merging.

LoRA is compatible with numerous other methods aimed at efficient pa-
rameter usage and can be integrated with them. There is also no increase
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in inference latency with LoRA, as the adapter weights can be seamlessly
integrated into the base model.

QLoRA [102] method significantly advances the fine-tuning of LLMs by
improving the efficiency of memory usage, making it feasible to fine-tune
models up to 65 billion parameters on a single 48GB GPU while maintaining
the performance standards of full 16-bit fine-tuning. QLoRA achieves this
through an innovative combination of gradient backpropagation through a
frozen, 4-bit quantized pre-trained weights into Low Rank Adapters. This
method integrates novel techniques such as 4-bit NormalFloat (NF4), which
optimizes data representation for normally distributed weights, and Double
Quantization, which further reduces memory demands by quantizing the
quantization constants themselves. Additionally, the method employs Paged
Optimizers to efficiently handle memory spikes. QLoRA’s popularity in
academia and general public circles has surged due to its low memory usage
and training outcomes that are on par with LoRA and full fine-tuning.

B 25.2 PEFT for coding LLMs

This small section is fully denoted to a research paper named "Exploring
Parameter-Efficient Fine-Tuning Techniques for Code Generation with Large
Language Models" [103], which scrupulously evaluates and compares several
fine-tuning techniques applied on several small (< 1B) and large language
models in order to improve the coding abilities. They also compare fine-tuning
techniques, i.e. prompt tuning, prefix tuning, A3, full fine-tuning and LoRA
with QLoRA, with In-Context learning. Tested models are CodeGen, CodeT5
and Code Llama models. The coding datasets are curated versions of CoNalLa
[37] and CodeAlpaca |". Let us see the relevant findings of the conducted
research step by step.

First, "LLMs with PEF'T consistently and significantly outperform small
language models under the same GPU limit. Specifically, the best-performing
LLM with PEFT surpasses the best small model by 39.8 — 72.3% in terms of
EM@k. Among different PEFT techniques, LoRA is the most effective one’.
Which means that when adapting an LLM to a domain-specific task it is
usually better to invest into the model size rather than to try to conduct
fine-tuning on smaller models. And then to fine-tune the selected model,
LoRA is the most stable and still performs better than TA3, which was initially
developed as a LoRA improvement.

In-Context Learning was also systematically outperformed by PEFT meth-
ods. However, ICL and PEFT are not exclusive and that means that can
be both used to improve the performance, but the authors decided not to
include this sort of experiments.

"https://github.com/sahil280114/codealpaca
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In conclusion, the authors emphasize that QLoRA significantly cuts down
on memory consumption, attaining a reduction of up to twice as much as
LoRA, without compromising and even enhancing the model’s performance
on both CoNaLa and CodeAlpacaPy datasets. Moreover, QLoRA is able
fine-tune LLMs having as many as 34B parameters, using just 24GB of GPU
memory.

B 26 Gaps In Research

Significant advancements have been made in the realms of training and eval-
uating LLMs and general LLM-based agent systems. Yet, there remains a
distinct gap in domain-specific adaptations, especially in areas like TableQA
and data visualization. Methodological diversity and comprehensive compar-
isons of LLM capabilities in these specialized tasks are largely underexplored.
The Exploratory Data Analysis (EDA) sector, in particular, presents unique
challenges and intricate relationships that generic models often struggle to
address effectively without tailored adjustments.

On another side, despite notable progress in proprietary commercial LLMs
for code generation and tabular data analysis, there is an increasing demand
for more compact, on-premise systems. Organizations are driven by the
need to reduce deployment costs and the time required to integrate these
systems, and to adhere to privacy regulations that restrict sharing sensitive
data externally. The development of robust, standalone agent systems that
do not rely on external APIs would be a significant gift for companies looking
to keep their data analysis internal.

Recent research indicates that smaller language models, usually those with
less than 34 billion parameters, often fail to follow instructions and generate
domain-specific code as effectively as their larger or close-sourced counterparts.
These smaller models frequently struggle with generalizing from prompts and
show high sensitivity to the specific phrasing of prompts. Addressing these
issues could involve the creation of new, specialized models or the fine-tuning
of existing general models to improve their performance in specific tasks.

Moreover, there is an acute need for reliable evaluation methods for
TableQA tasks. Traditional benchmarks for agent systems and method-
ologies for comparing agent responses are in need of refinement. Current
methods, such as direct string matching and using LLMs as evaluators, are
fraught with notable limitations. Developing a hybrid evaluation framework
that incorporates multiple techniques could provide a more objective means
of assessing the textual responses from LLM-based systems. The evaluation
of generated visualizations also demands attention. The prevalent approaches,
which often rely on comparing text-based plot specifications, execution ratios,
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and subjective human assessments, fail to adequately capture the effectiveness
of data visualization tools produced by LLMs. Establishing more sophisti-
cated evaluation metrics that can both quantitatively and qualitatively assess
the quality of visual outputs is crucial for advancing the field.

B 2.6.1 Contributions of This Work to Research Gaps

This work directly addresses several underexplored areas identified in the re-
search gaps, thereby making substantial contributions to the field of TableQA
and data visualization with LLMs:

# Comprehensive Comparison of Agent Systems: This research
conducts a thorough comparison of data analysis LLM-based agent
systems, employing diverse metrics such as execution ratios, object
comparison post-execution, and employing LLMs as evaluators. This
comparison is enriched by examining the effects of multi-stage query
processing, debugging, and varied prompting techniques, thus providing
insights into practical implementation strategies.

8 Development of Specialized Datasets: Recognizing the scarcity of
domain-specific training and evaluation data, this work develops new
handcrafted datasets tailored for both training and testing LLM agents.
These datasets encompass a variety of general and visualization queries,
along with corresponding answers and Python code for actual analysis.
Additionally, datasets incorporating artificially generated samples from
sources like Pandas documentation and filtered datasets such as OSS-
Instruct and DS-1000 have been created, enhancing the diversity and
representativeness of training and testing materials.

8 Exploration of Fine-Tuning Techniques: Addressing the noted
sensitivity of smaller models to prompt phrasing and their generaliza-
tion challenges, this research explores and verifies hypotheses regarding
Parametric Efficient Fine-Tuning techniques such as LoRA and QLoRA
specifically for table analysis tasks.

33



34



Chapter 3

System Design and Implementation

The primary objective of this project was to synergize various Machine Learn-
ing (ML) tools to develop an application capable of interpreting natural
language queries about selected tabular data files. The application is designed
to deliver responses in various formats, including text, images, or a combina-
tion of both. To facilitate this, I developed a versatile open-source Python
library. This library encompasses not just the application but also includes
all auxiliary datasets and evaluation scripts employed in the experimental
phase of this thesis. This library serves as a foundational framework that can
be customized to meet individual requirements.

Additionally, particular attention was given to integrating the application
with web platforms, where text and image responses are dispatched from
endpoints. This integration had to be combined with straightforward Python
usage, such as in Google Colab, where it’s unnecessary to store images—they
can simply be displayed using matplotlib’s show method. Accordingly, the
LLM is tasked with generating code that directly shows the visualizations,
ensuring seamless operation across different environments. Moreover, more
agent flow and prompt strategies can be easily added to the source code, as
it is highly configurable.

It is my aspiration that both the library and this thesis will advance the
field of tabular data analysis by offering an easy-to-use interface coupled with
a comprehensive description and analysis documented in this text.

This chapter begins by detailing the selection of tools and frameworks
that were instrumental not only in crafting the library but also in exploring
various configurations of the agent and in testing and fine-tuning the internal
LLMs. It then progresses to a discussion on the architecture of the package,
illustrating usage examples and outlining the software design. The subsequent
chapter will delve into the experimental aspects of the project, focusing on
training, testing, and evaluating the agents.
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. 3.1 Tech Stack

This section describes the tools and frameworks that are used either in the
source code or were used in various training and testing pipelines. The
choice of technologies was guided by their proven efficacy in machine learning
tasks, compatibility with LLM architectures, and ease of integration into the
Python ecosystem. In addition, the selected stack ensures that the application
remains user-friendly, scalable and maintainable, making it ideal for both
academic research and practical deployments. These instruments make the
tech stack not only foundational but also adaptable to future changes and
improvements to the code base.

B 3.1.1 Available resources

This project, focusing on open-source LLMs, necessitates careful management
of both storage and GPU memory due to the substantial sizes of these models.
For example, the smallest Llama 2 model contains a little under 7 billion
parameters, which occupy approximately 14 GB. To facilitate fast inference,
this model must be loaded onto a GPU. While quantizing the weights can
reduce the necessary video memory, it may also lower the model’s performance
and potentially increase computational time.

This woek was conducted as part of the Czech Institute of Informatics,
Robotics, and Cybernetics (CIIRC) research. CIIRC provided access to a
computational cluster managed by the Slurm workload manager, which al-
lowed for efficient allocation of GPU resources through simple command-line
statements. For the experiments, the NVIDIA A40 graphics card with 45GB
VRAM was primarily utilized for larger model inference and smaller model
fine-tuning. Additionally, the NVIDIA GeForce RTX 3060, with 12GB of
dedicated GPU memory, was employed for running experiments on smaller,
quantized models, including the 4-bit QLoRA fine-tuning of 7B models.

B 3.1.2 Used Packages

Here, the libraries and dependencies that were used in the development pro-
cess are briefly described.

Langchain'| is a versatile library designed to facilitate the integration
of language models with external knowledge bases and actionable systems.
It primarily supports the creation and management of LLM-based agents
capable of performing complex reasoning and interactive tasks. This package
provides a robust framework for chaining together natural language under-
standing, decision-making processes, and action execution within diverse

"https://python.langchain.com/docs/get_started/introduction
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applications. Langchain’s modular architecture allows developers to easily
incorporate advanced features such as reasoning chains, data retrieval, and
dynamic response generation into their projects. Utilizing this library, devel-
opers can easily create LLM-based agents or use pre-existing ones, e.g. the
general ReAct agent. The library undergoes rapid refactoring and develop-
ment and the version compatibilities have to be controlled with additional care.

Transformers.? Developed by Hugging Face, the Transformers library
is a comprehensive suite for NLP that provides state-of-the-art pre-trained
models designed to perform a wide range of tasks. This library is instru-
mental in enabling quick and efficient utilization of LLMs. It simplifies the
process of model loading, training, and inference, making it accessible even
to those new to the ML field. It has become a standard place to store newly
developed models not only for NLP, but also for other ML fields like CV. Its
consistent API and easy integration with other Python libraries allow for
seamless development workflows and experimentation with different models.

Datasets’|is tightly integrated with the Transformers module, leverages
concepts similar to Git and Data Version Control (DVC) for efficient dataset
management. It allows users to commit and store datasets directly on the
Hugging Face platform using concise Python syntax. With just a single line
of code, users can upload to or load datasets from Hugging Face, streamlining
the data handling process significantly. The Datasets library also features
a user-friendly dataset viewer, along with straightforward mechanisms for
converting dataset objects into PyTorch Dataloaders or Pandas DataFrames
for easy integration into machine learning workflows. Additionally, the library
supports caching mechanisms to optimize loading times and reduce redundant
data processing, making it ideal for iterative machine learning tasks.

BitsAndBytes® is a specialized library designed to facilitate the quanti-
zation of machine learning models, enabling more efficient use of storage and
computational resources.

PEFT.°| This package, integrated with the Transformers library, simplifies
the training of models and facilitates various operations on model adapters,
including merging and switching. It provides an efficient approach to ap-
plying Parameter-Efficient Fine-Tuning techniques, enhancing the flexibility
and scalability of model customization. Fine-tuning a model from Hugging
Face platform is as straightforward as defining a Trainer object, specifying
hyperparameters along with a dataset, and starting a training loop.

PyTorch.’[n this project, PyTorch was employed in conjunction with

Zhttps://huggingface.co/docs/transformers/index
3https://huggingface.co/docs/datasets/index
“https://huggingface.co/docs/bitsandbytes/index
Shttps://huggingface.co/docs/peft/index
Shttps://pytorch.org/
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the Transformers library to handle various aspects of model management,
including parameter loading and tokenization. This integration facilitates
seamless interactions between the deep learning model architecture and the
preprocessing or fine-tuning stages of development. PyTorch’s flexible and
dynamic nature allows for straightforward customization of neural network
layers and efficient data manipulation, which is critical when working with
the complex models typical in natural language processing tasks. The synergy
between PyTorch and Transformers is crucial for optimizing the performance
and scalability of LLMs used locally in the application.

The OpenAI API’ was used to perform inference with GPT family models
and to explore the capabilities of the AssistantsAPI, which supports Python
REPL and internal function calling. The API provides a seamless integration,
allowing for fast access to GPT models and enabling simple analysis tasks
directly within the application. The API was also used to automate the
datasets creation, formatting and filtering by repeatedly calling GPT models
similarly to utilizing ChatGPT.

Pandas® and Matplotlib®| are foundational libraries for this project. Pan-
das, with its robust and intuitive interface, serves as the backbone for handling
and analyzing tabular data within the application. It allows for a variety of
data manipulations that mirror SQL operations such as sorting, grouping, and
filtering, in addition to offering comprehensive support for merging, joining,
and time-series functionalities. Integration with libraries like NumPy and
support for data serialization formats such as Pickle enhance its versatility.
Matplotlib complements Pandas by providing the capability to visualize data.
It enables the generation of a wide range of static, animated, and interactive
visualizations, which are essential for interpreting the results of data analysis
conducted by the LLMs. The integration of Pandas and Matplotlib ensures
that the LLM-generated Python code can effectively process data and present
insights through detailed graphical representations, solving the tasks that the
user has provided.

QLoRA" public GitHub repository was utilized for fine-tuning LLMs.
The repository was forked and modified for the needs of this project by adding
additional parameters and incorporating support for the collected datasets.

llama.cpp!'['?| and vLLM" are packages designed for various operations
on LLMs, including inference, quantization, and conversion of weights file
types. These tools provide developers with the flexibility to optimize model

"https://platform.openai.com/docs/api-reference
8https://pandas.pydata.org/docs/index.html
%https://matplotlib.org/stable/api/index
Ohttps://github.com/artidoro/qlora
"https://github.com/abetlen/1lama-cpp-python
%https://github.com/ggerganov/1lama. cpp
13https://github.com/vllm-project/vllm
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performance across different computing environments, streamlining the de-
ployment and scaling of LLM applications. Moreover, they offer APIs that
facilitate seamless integration with existing machine learning workflows, en-
hancing efficiency in model management and experimentation.

Streamlit' is an open-source Python framework specifically designed for
data scientists and AI/ML engineers. It allows users to create and deploy
dynamic data-driven applications with minimal coding effort—often just a
few lines. This framework streamlines the process of building interactive and
visually appealing applications that can showcase data analyses, machine
learning models, and more. It can quickly transform data scripts into share-
able web apps, significantly reducing development time. It was used to create
a minimalistic UI for the implemented agent.

The Flask'®| framework is a lightweight and flexible micro web framework
for Python, suited for small web applications. It provides simple tools
necessary to build a web service with minimal setup. During this work it was
used to write several endpoints to integrate with the streamlit application.

B 3.1.3 MLOps and Reproducibility

In response to the growing concern over unverified research outputs, it is
essential for every machine learning project to implement an MLOps pipeline.
MLOps includes practices and tools that automate and streamline the lifecycle
of machine learning systems from development to production and maintenance.
It integrates best practices from software development and IT operations
to ensure continuous integration (CI), continuous delivery (CD), and con-
tinuous monitoring of ML systems. This approach not only improves the
reproducibility and reliability of models but also ensures that they remain
robust and performant over time in real-world applications. By standardizing
and automating model training, testing, deployment, and evaluation, MLOps
facilitates faster experimentation and more consistent delivery of ML-driven
solutions. It also includes version control, data tracking, and experiment
logging, which are essential for tracing the evolution of models and their per-
formance over time, ensuring that all results can be replicated and validated
independently.

1. Version control. To track the code development process, public GitHub
and private GitLab repositories'®| were created and used.

2. PyPI was used to share the created Python package so that it could
easily be installed via a pip install command. Poetry'’ package was
used as a dependency manager because it supports the uploading of the
project to the PyPI.

Mhttps://docs.streamlit.io/
https://flask.palletsprojects.com/en/3.0.x/
https://github.com/poludmik/TableQA-LLMAgent/tree/master
"https://github.com/python-poetry/poetry.
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3. Basic CI/CD process has been set up in the GitHub repository using
GitHub Actions. At present, these actions are configured to test basic
prompt creation due to the extensive variety of prompting strategies
that require consistent verification. The setup is designed to be easily
scalable to include additional tests as needed.

4. Weights & Biases (W&B) is both a web interface and a Python li-
brary that serves as a powerful tool for tracking experiments, visualizing
data, and managing machine learning projects. It provides a centralized
platform to log and compare experiments, enabling researchers to track
the progress of models, understand parameter impacts, and optimize
ML workflows. W&B integrates seamlessly with most machine learning
frameworks (e.g., Transformers), simplifying the process of capturing hy-
perparameters, outputs, system metrics, and model predictions to ensure
comprehensive documentation of each experiment. This integration is
crucial for MLOps setups as it supports reproducibility and collaborative
analysis, allowing teams to efficiently scale and iterate on machine learn-
ing projects. This work primarily used W&B to track the fine-tuning
of LLMs, i.e., visualize each training run (losses, speed, learning rate
curves) and store hyperparameters. Configuration files (.yaml) were
used to simplify running experiments with a single script and to connect
corresponding hyperparameters with a W&B run. This way, anyone can
access detailed information about each conducted fine-tuning cycle on
the page of the W&B project/'®|

5. Data version control was done through both the GitHub repository for
smaller files and through Hugging Face datasets interface. Created
datasets are publicly available on my HF profilg'|

6. Hydra’ is an open-source Python framework that simplifies the devel-
opment of research applications. In the 'LLM as evaluator’ experiments
in this work, Hydra was used for managing configuration files and logging,
ensuring streamlined and organized experiment setups.

B 3.2 Architecture of the Agent System

This section outlines the implementation details of the application designed
to respond to user queries based on selected tabular data. The goal is to
ensure the reproducibility of this work; therefore, the project structure and
related details are thoroughly described. The system is organized as a Python
package, featuring a structure typical of machine learning projects, as shown
in Fig. [3.1l All development procedures are intended to be conducted from
the root directory. The main.py script demonstrates the basic functionalities

"8https://wandb.ai/poludmik/codellama_LoRA?nw=nwuserpoludmik
Yhttps://huggingface.co/poludmik
2%nttps://hydra.cc/docs/intro/
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of the package.

TableQA-LLMAgent/ Root directory
.github/
| workflows/ CI/CD workflows
README/
tableqallmagent/ Source code of the package
__init__.py
agent.py Constructor and the main interface
code_manipulation.py Processing generated code
coder_llms.py Forward passes for coding LLMs
1llms.py Higher level methods for LLMs
logger.py Color constants for readadbility
prompts.py Prompting strategies and formatting
dataset/ Multiple datasets and preprocessing
dist/ PyPI versions
evaluation/ LLM-as-evaluator
finetuning/
lora/ LoRA training scripts and configs
plots/ Directory to store generated images
tests/ Tests for CI/CD or pytest
.gitignore
README.md
main.py Agent usage example
poetry.lock Poetry dependency management
pyproject.toml Readable dependencies

Figure 3.1: Directory structure of the project.

At a high abstraction level, to answer a user query in natural language, an
LLM must generate Python code that will later be applied to a loaded pandas
DataFrame, and the execution result will be sent back as an answer, which is
precisely the approach used in the Chat2VIS [96] method. To ensure robust
performance and experiment with different agent setups, additional details
and conditions were incorporated into the project. First, the concept of LLM
Experts was introduced: one or several specialized models are called with
different prompts to solve a smaller task. Expert LLMs in this project can
be categorized into three types.

The Planner LLM draws inspiration from the Plan-and-Solve (PS) method
[83], where the LLM is tasked with breaking down the given task into several
subtasks designed to simplify the subsequent code generation process. The
Coder LLM is prompted to generate Python code to answer the user’s
question. The input prompt may be augmented with subtasks identified by
the Planner, theoretically reducing the likelihood of producing incorrect or
irrelevant code. The Debugger LLM expert is activated in a loop whenever
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the code generated by the Coder leads to an exception or fails to produce
the desired output. This debugging loop continues until the code executes
successfully or a predefined maximum number of iterations is reached. The
input prompt for the Debugger can include the initial user query, the previ-
ously generated code, and the exception message.

Moreover, the experimental section of this thesis introduces different evalu-
ation approaches, leading to the development of two distinct code generation
styles: "simple” and "functions'. The simple style involves directing a Coder
LLM to generate a code snippet that executes within a 'main’ block, without
the need to create a separate function to fulfill the user’s request. The text
answer is simply retrieved from print () statements, generated directly by an
LLM. In contrast, the functions style involves prompting an LLM to either
generate or fill in a specific function (i.e., def solve(df: DataFrame)) that
can later be called on a DataFrame object, allowing the execution result
to be conveniently captured in a variable. This method facilitates direct
comparison with a reference output, ensuring accurate and straightforward
1-to-1 evaluation.

1, Identify rows date in June

User Query:
What weather prevailed
during June?

Tag
Query
Type

PragueWeather23

Date

T(€) | Type

Planner LLM
GPT or any other

general reasoning model

2. Aggregate the Type

4. Return the first row

3. Sort the aggregated df

Coder LLM

GPT, Codellama,

228 Sunny 6.8

13.37 Rainy 7.3

Possibly showing or saving a chart

Debugger LLM
Any capable of

| WizardCoder, Magicoder

import pandas as pd

def solve(df):

return weather

depending on the tagged query type
P & gged query yp debugging LLM

Output: V h 4
Sunny e eeeeeereeeeeeesssmsnssmreeenererneeseeeeaaaasannnnnnnne Filtering
P Formatting

~ Executing

Figure 3.2: Flow diagram of the implemented LLM-based agent system.

The proposed scaffolding program, also referred to as an Agent, is schemat-
ically depicted in Fig. |3.2. The program follows these sequential steps to
respond to the user’s query:

1. The program receives the user’s query and the selected table.

2. The query is automatically classified/tagged into one of two categories:
"nlot" for visualization intents or "gemeral" for textual TableQA queries.

3. Optional step: The Planner LLM is prompted to outline a sequence of
steps to address the query without directly generating code.

4. The query, potentially augmented with a plan, is then used to create a
prompt through a selected strategy. The prompt strategies are described
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in details in one of the subsequent sections.

5. The Coder LLM generates Python code which utilizes standard libraries
such as Pandas, Matplotlib, and Numpy.

6. The generated code is filtered, formatted, and executed. Depending on
the results, the Debugger LLM may be invoked. The output is either
returned as a text response or, in the case of an image, stored in a folder
or displayed interactively.

The following subsections provide detailed descriptions of each of the
program modules.

Bl 3.2.1 Agent module

Agent module contains the creation and high-level operation of the Agent
itself. It supports flexible configuration options, allowing for customization
of the language models used, the level of detail in data descriptions, and
strategies for debugging and code generation. The answer__query() method
is the main communication point. It controls the flow of the agent, handling
condition branching, query tagging, filenames, etc. It calls the LLMs to plan,
write code and debug sequentially. To collect valuable data, the method
returns a set of information about each step of the process, including execution
results, tagged query type, filenames, and prompts used.

B 3.2.2 LLMs module

This module handles the calls to the LLMs for multiple purposes. First and
most importantly, it calls the prompt configuration module and the code
generation LLMs depending on the parameters set to the agent. Then it can
also call planner LLM or call the OpenAl AssistantsAPI to solve the entire
problem. The query type tagging is also performed here.

B Tagging

Tagging *! is the process of labeling text into several, not only predefined,
data fields. It was introduced into this project because one of the possible
use cases for the agent is to call it inside a back-end application. Therefore,
to send data via an endpoint, the agent must first classify the user’s intent,
whether he wants a text or an image answer. Then, the last line of generated
code will either contain a statement to save the image to a storage folder (i.e.,
plt.savefig(” filename™)) to further send it from the endpoint or to display
it interactively on the screen for local runs, e.g., in Jupyter Notebooks (i.e.,
plt.show()). In the first case, the filename of the image can be set as an
object constructor argument, or it will be generated randomly. After the
image file has been sent as a response to the endpoint request, the image

“Ihttps://python.langchain. com/docs/use_cases/tagging/
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could be safely automatically deleted from the machine.

The default tagging strategy that was implemented for the project was
using OpenAls functions. In particular, tagging is performed with a help of
a Langchain pipeline that takes in a Pydantic{ﬂ class definition that is then
parsed to the format of an OpenAl function and processed by an LLM, see
Listing [I. This high-level approach is an innovative way to define several
LLM call templates in a visually appealing way.

from langchain.pydantic_vl import BaseModel, Field

class Tagging(BaseModel):
nimnn
Tag a piece of text with specific information.
Classify if the user requested a visualization,
e.g., a plot or graph, or some general numerical result,
e.g., finding a correlation or maxzimum value.
nimnn
topic: str = Field(description="The topic of the \
user's query, must be 'plot' or 'general'.")

Listing 1: Pydantic class definition. An instance of it is then processed by
Langchain and OpenAl API to tag a user query.

To keep the ability of the implemented Agent to run locally without calling
external APIs another tagging technique was introduced. DeBERTa@ model
modification was used for it. It was trained for simple zero-shot classification
between given labels and for hypothesis checking. Introducing two classes:
"true” and "neutral” along with a hypothesis: "A plot, a chart, a visualization,
or a graph', the model outputs two numbers, which go through a softmax
function, resulting in two probabilities. The model itself contains 184 million
parameters and is a fine-tuned version of the original DeBERTa from Microsoft

Research [104].

B 3.2.3 Coder LLMs module

Due to the fact that multiple LLMs were tested during this project, this mod-
ule handles all the configurations and calls to the Coder LLMs. This means
it defines the generation parameters, quantizes models, and loads PEFT
adapters. All these can again be configured through the Agent constructor
arguments. Quantization is performed by passing a BitsAndBytesConfig
object to the from_ pretrained method of the transformers library to load the

?Zhttps://docs.pydantic.dev/latest/

https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli

2
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base model.

Another important functionality of this module is final prompt formatting
for each LLM separately. That is because every model has it’s own format
that it was trained on. As it was briefly mentioned in the literature review
section, Code Llama - Instruct models expect the input text to be between
two special tokens: [INST] and [/INST]. Similarly, another integrated LLM -
the Magicoder—S—CL—?Blﬂ prefers the inputs to use "@@ Instruction” and
'"@@ Response" notation in a completion manner, Listing

MAGICODER_PROMPT = """You are an exceptionally intelligent
coding assistant that consistently delivers accurate and
reliable responses to user instructions.

@@ Instruction
{instruction}

0@ Response

Listing 2: A completion-style input template for the Magicoder-S-CL-7B model.
The constructed instruction prompt is inserted in place of {instruction}.

The module also handles situations where the model’s output includes the
input. This requires a separate approach for each model. Taking the Code
Llama family as an example, to ensure proper extraction of the generated
code from the model’s output, one must first remove instruction prompts from
the Code Llama - Instruct output. Additionally, it is necessary to smartly
replace the "<FILL ME>" token when utilizing the infilling capabilities of
the base Code Llama model, or when using Code Llama - Python to cleverly
create a completion prompt format.

The learned LoRA adapters can be loaded by providing a folder path
containing the weights. The module structure supports activating 2 PEFT
adapters on the base model.

B 3.2.4 Prompts module

This module is designed to serve two main purposes. The first is to store all
the prompt templates for the planner, coder, and debugger LLMs. These
prompt templates are essentially strings that contain instructions for the
model or wrap the same instruction in a completion or infilling-like manner.
The second is to define the functions that insert the information relevant to

24|https ://huggingface.co/ise-uiuc/Magicoder-S-CL- 7B|
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each individual processed query into those templates. Each query can contain
these variable details:

B A user query text. A question that the user has written, e.g., "What is
the most frequent fruit mentioned in the table?’.

®m A table itself. The table should be parsed into a string in any way
(discussed in the literature review, Fig. 2.7, so that the language model
has crucial information about the column names and the types of values
stored in rows. The current implementation supports three types of
information to be inserted into the instruction prompt, as shown in Table
3.1. 1). Converting the head of a pandas DataFrame to a string with
N rows and passing it directly to the prompt formatter. This is the
simplest approach, which has the advantage of user-friendliness - the
user perceives this part of the prompt in a tabular format. However,
although the models are fully capable of dealing with this format, for a
large number of table columns the structure is lost and the model could
potentially pay attention to unrelated column names and values. This
is why the second parsing type was introduced. 2). Creating a list of
JSON objects, where each object represents one column and contains
the column name and sample values from this column. In addition to
maintaining structural integrity, this approach also shows the model the
individual column data types more clearly. For example, when a column
contains string values in the form of "20250/ ", the pandas DataFrame
head approach shows it to the model as 202504, and the JSON approach
as "202304’, indicating the correct string type and not an integer. 3).
Adding a description of each individual column is also supported in the
current implementation and will henceforth be referred to as column
annotation. This is helpful when dealing with nondescriptive or similar
column names, where the Agent could have trouble selecting the right
ones. Currently, annotations can only be added by the user by specifying
a path to the JSON file with the information, however, there appears to
be a good idea to generate such annotations automatically, which could
be another step in the Agent program flow (Fig. [2.4).

® Then, when the LLM is tasked with generating code to create a visualiza-
tion and subsequently store it at a specific path, this path and filename
are inserted into the prompt. Additionally, using the Plan-and-Solve flow
method, the second generation step requires the previously constructed
plan to be passed to the prompt, which is accomplished through several
specific prompt strategy types.

B Prompt strategy types

In this work, the term prompt strategy is defined as a collection of prompt
templates systematically employed in each specific agent flow. These strategies
are characterized by the nature of the generation process—namely, instruction,
completion, or infilling. Furthermore, the architecture of the agent, which
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Parsing

How the table is represented as a string

df.head(2)

The resut of ‘print(df.head(2))‘ is:

Robot ID Distance Traveled Object ... Error Codes
0 1 708.1 Broken cord

1 2 941.4 Sensor fail

JSONSs list

Here is also a list of column names along with the first sample values
for your convenience (each column is represented as a separate json
object within a list):

[{’column name’: 'Robot ID’, 'sample values’: [1, 2]}, ... ,

{’column_ name’: "Error Codes’, ’sample_ values’: ['Broken cord’, *../]}]

Column
annotation

{"table_name": "robot__execution_ results",
"description": "table that describes robot execution

on a planning/driving task",

"columns":[{

"'name": "Distance",

"description": "distance covered by robot in a run cycle',
"type": "float64"

1 ..

Table 3.1: Three non-exclusive types of table parsing available in the current
implementation. Can be used separately or together in a single prompt.

may or may not include components such as a debugger or planner, as well as
the style of code generation—ranging from a straightforward 'main’ script to
a function definition—also define the characteristics of the prompt strategy
employed. As for now, there are 6 prompt strategy sets and 2 debugger
specific prompt strategies, the most distinct and important examples of which
that show the nature of each prompt set are attached in the Appendix.

® Simple prompt strategy (Listings 7/ and |8 examples). Characterized by
the Plan-and-Solve flow in the second step of which the code is generated
in a form of a simple Python script. This way, the coder prompt contains
also the plan generated in the first step. Textual response is then
produced by the LLM itself that generates a print statement with a
result. Saving the created visualization and showing it interactively are
placed into two distinct prompts.

# Coder-only simple strategy removes the planning step from the Simple
strategy and the Coder LLM is asked to generate the Python script
without a plan.

8 Functions strategy asks the Coder LLM to generate a function defi-
nition def solve(df: pd.DataFrame): that returns values that are
supposed to answer the user’s question. For instance, for the question
"By how much the average temperature in spring is larger than autumn?’
the LLM generates a function that returns a single float value. Moreover,
the LLM is instructed not to include the print statements, so that the
consequent result parsing was correct. Such approach enables to evaluate
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the Agent quantitatively, which is described in the experiments section.
Conversely, while generating a block of code with a print statement in
the end allows for less robust evaluation with another LLM, keyword
finding or manual human comparisons.

# Coder-only functions follows the same way as the Coder-only simple
strategy, removing the planning step. See Listing |9 for an example.

B Coder-only completion functions is a strategy that is needed specifi-
cally for completion based models, such as Code Llama - Python. Here,
the Coder LLM is given the function’s signature with a docstring and
the model proceeds to generate the body of the function. The docstring
then contains the description what that function does and states that
the df in the arguments is always the same and fixed. Listing |10 for an
example of a completion prompt.

® Coder-only infilling functions. The core idea is the same as with
the completion strategy, however, other than a function signature with
a docstring, it also specifies the last line of the body. For the general,
i.e., textual answers it is a return result statement. For plot saving
and showing those are plt.savefig("filename") and plt.show() statements
respectively. A special infilling token is inserted in between the docstring
and the last line.

B Two debugger strategy sets both consist of a single prompt. Basic
debug prompt asks an LLM to look at the previously generated code
and read the error message, and then write a new code snippet that fixes
the error (Listing |11). Completion debug prompt is intended for
completion models.

Bl 3.2.5 Code cleaning and execution

Another crucial step in the scaffolding program is filtering and extracting
the executable code snippet from the LLM response. This is handled in the
code manipulation module. By default, the LLM is asked to return code
enclosed in backticks, with a python keyword. However, when working with
small local models, it is usually the case that the output will be in another
format or it will contain additional information. The model could start to
explain its thought process, add descriptions of the used libraries, define a
new DataFrame object, or test generated code with subsequent test cases.
Moreover, base models that weren’t aligned for instructions or fine-tuned
(e.g., Code Llama and Code Llama - Python) are not used to stop the auto-
regressive generation at any time, given the close to zero temperature and no
repetition penalties. Those models generate the output until they reach a set
max token limit. This is why it is also essential to cut the generated code
in certain places so that the code includes only the needed functionalities.
To fix possible indentation issues and transform the code into a conventional
format, the autopep8 library is used. All of these cases are considered in this
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module.

The code execution itself is performed through Python’s:
exec(code, {'df': df})

where code is a string containing the extracted snippet and the dictionary
defines variables to be pre-defined in the exec scope.

For safety purposes, a "blacklist" of keywords was introduced. It is a simple
way to ensure that a harmful prompt injection won’t compromise the local
machine. These keywords include operating system processes, multi-threading,
exec and ast.literal_eval statements, and similar commands.
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Chapter 4

Experiments and Results

The main goal of this project is to propose, implement, and compare LLM-
based Agents in the task of natural language-controlled tabular data analysis
(TableQA). This chapter focuses on the experimentation and observation of
how the implemented Agent performs when supported by different LLMs and
defined by various parameters. Given that this task has not been extensively
researched, this work attempts to discover what works best and how modern
LLMs can operate within an agent-like structure. The main research questions
that I have sought to answer with the experiment results include:

1. To what extent do smaller open-source LLMs trail behind API-based
giants in quantitative measures during the TableQA task?

2. Is it possible to perform task-specific fine-tuning of a small open-source
model to achieve performance on par with other state-of-the-art (SOTA)
coding LLMs in the TableQA task (compare open-source and API-based
models)?

3. What is the overall performance of a generic LLM-based Agent and what
are the challenges the system struggles with the most?

To answer these questions, this chapter was divided into several sections:
collection and creation of training data for the consequent fine-tuning, the
actual fine-tuning setup, proposal and creation of an evaluation benchmark,
and finally, the comparison of the Agents and LLMs themselves.

B a1 Training data

The target for training is the Coder LLM. It was decided to stick with the
Coder-only functions prompt strategy for instruction training and Coder-only
completion functions for completion training to later compare the performance
versus Plan-and-Solve Functions prompt strategy. To fine-tune a model this
specific task, the training corpora for the Coder LLM must contain instances
with a textual input and a desired textual output. However, such dataset
isn’t trivial to construct, as each input prompt includes information taken
from: a tabular file (e.g. csv, zlsz), a user query, all additional parameters to
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the prompt (number of rows to sample, column description, etc.). This way,
it is needed to:

1. Stick to one prompt parameter configuration, collect a diverse set of
table files, and come up with user questions on these specific table files,

2. Construct prompts from each distinctive table-query pair as they would
be constructed for the LLM in the Agent pipeline,

3. Collect the desired outputs of the model, i.e., functional Python code in
the exact format that is implied by the used prompt strategy.

First, I created a training corpora containing 250 instances manually. A
total of 66 tables was collected either by synthetic generation using ChatGPT,
where the names of the columns and the general instructions about values
were given to the model to produce a .zlsz file, or by collecting and slightly
modifying the tables from sources such as WikiTableQuestiong'. The majority
of 250 questions that query these table files were designed to align with the
general tasks that are needed to be accomplished by the trained system with
around 50 of those being taken and modified from WikiTableQuestions, which
also provides the correct answers for each query. A total of 65 questions out
of 250 are dedicated to visualizations - the user asks to create a chart of some
kind. Each instance has a boolean field has_plot_answer that indicates that
the correct output has to be an image. This will allow to evaluate the tagging
accuracy, where the LLM decides between general and plot types of prompts.
Collected datasets also include fields containing information about prompts
used, correct answers to the questions, generated codes, and the filenames
of the correct chart images which are stored in the datasets/ folder of the
repository.

Other training instances were extracted from the Text2Analysis dataset.
The queries for Forecasing and Basic Insights were left out, because of the
first category being outside of the goal of this work and the second providing
code with unknown custom functions that usually output simple "yes” or
'no”. Initial fine-tuning experiments also left out the chart generation, as the
main focus was to accurately measure the model’s performance on general, i.e.
math and statistics queries. This way, a total of 486 instances were processed
and formatted. The code was automatically rewritten for the completion code
generation training and the correct outputs in a numeric form were collected
by running these new solve(df) functions.

This collection process resulted in two JSONL files that contain instances
with input and output fields: one for completion generation style and one for
instruction generation. An example of a single training instance is depicted on
Listings |3/ and 4. This is one of the simpler tasks, but also the one requiring
the distinguishing of the date-time column type correctly.

"https://ppasupat.github.io/WikiTableQuestions/
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" python

tmport pandas as pd

tmport matplotlib.pyplot as plt
import numpy as np

def solve(df: pd.DataFrame) :
""" Function to solve the user query: 'Revenue with
Launch Date in January'.

DataFrame “df’ is fized. The resut of print(df.head(2))
15:
Campaign Owner Campaign Name Launch Date ...
0 Halima, Yakubu Late Jan Email 2023-01-27 ...
1 Kowaleva, Anna Billboards small 2023-01-29 ...

Here is also a list of column names along with the first

sample wvalues for your conventience ...:

[{'column_name': 'Campaign Owner', 'sample_values': [...
., 'Engaged Users', 'sample_walues': [465, 500]}]

Args:
df: pandas DataFrame

Returns:
Vartable containing the answer to the task 'Revenue
with Launch Date in January' (typed e.g. float,

DataFrame, list, string, dict, etc.).

Listing 3: Input part of a single completion training instance as a Python string.
Ellipses (...) indicate the omission of some words to better fit the text on the
page.

ne df0 = df[df['Launch Date'].dt.month == 1]
revenue_with_launch_date_in_january = df0[["Launch Date",
"Revenue"]]

return revenue_with_launch_date_in_january
rr

Listing 4: Output part of a single completion training instance as a Python
string. Four spaces at the string start are for the input-output concatenation.
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The average input length for the completion style instances is 1807 char-
acters, which is in range of 200 to 450 tokens. The average output length
is 378 characters, which is usually below 100 tokens. Mostly, the dataset
contains queries on smaller tables that have under 10 columns, which results
in a shorter input length.

Campaign Owner Campaign Name Launch Date ‘ Revenue

Halima, Yakubu Late Jan Email 27.1 $6 980
Kovaleva, Anna Billboards small 29.1 $4 732
Smith, Avery Billboards large 03.11 $5 632
Lawson, Andre Product review 3x 16.1 $5 676
Cartier, Christian Targeted - Group 1 26.1 $136
Billboards small 03.1 $8 703
Barden, Malik Industry Conference 23.IT $4 540

Table 4.1: An example of a table that is queried in one of training instances.
Four out of eight columns are displayed for convenience.

The Code Llama family of language models was selected as a target for
fine-tuning experiments. Due to its popularity and the simplicity of its archi-
tecture, it seems to be a good foundation upon which to base the research.
This study may later serve as a reference for other enthusiasts and researchers.
Looking a little further into the evaluation section, Code Llama - Instruct
and Code Llama - Python significantly outperformed the base infilling Code
Llama. Consequently, it was decided to perform training with instruction-
style inputs on the Instruct model and with completion-style prompts on the
Python model.

The main focus of the fine-tuning was to enforce correct formatting of the
generated code (using backticks) and to promote better reasoning by the
model. Correct formatting is crucial for two reasons. First, post-generation
code processing and execution require it. Sometimes, the Code Llama models
tend to overlook the formatting instructions and generate the output in their
own way, often including unnecessary comments, notes, and redundant code.
The second reason concerns inference cost and execution time. The most
costly aspect of the generation is not the input but the number of output
tokens. When prompting base Code Llama models with a task, the redundant
explanations, comments, and code testing parts significantly increase the
number of output tokens. Conversely, when the LLM has learned to generate
concise and straight-to-the-point code that spans only a few lines of Python,
the generation time is dramatically reduced. The insertion of comments and
self-explanatory variable names is designed to help maintain a linear reasoning
process, preventing the model from deviating from the correct solution. By
'reminding’ itself of the actual analysis tasks, the model can more clearly and
autoregressively focus on the intended tasks.

As part of this research, another dataset containing only Python code using
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Pandas was collected”. The intention for it was to pre-train a base model on
a general corpus without any formatting and using a small learning rate, so
that the model had a better idea about all the available functionalities in
the Pandas framework. This dataset consists of 3 parts and totals around
5000 instances. First two parts come from filtered DS1000 and OSSInstruct
datasets. Filtering was performed by matching the presence of keywords that
occur most frequently while using Pandas library, e.g. DataFrame, pandas or
df. Then, the third part of this corpus comes from a web-scraped pandas
documentation with definitions of all the class names and available methods.
Then, for each instance, the gpt-3.5-turbo-instruct model was called and
asked to generate a usage example along with a comment what this method
is supposed to do or which values it returned, Listing [5l Most of the time the
examples were already in the web-scraped text, however, the format wasn’t
consistent and it would worsen the data quality.

Instance: pandas.plotting.scatter_matrix

Output:

"7 python

df = pd.DataFrame(np.random.randn(1000, 4),
columns=['Height', 'Weight', 'Age','Income'])

pd.plotting.scatter_matrix(df, alpha=0.2)

Listing 5: A single example out of 2130 Pandas documentation examples. This
one shows the usage of scatter_matrix method.

B a2 Fine-tuning

This section focuses on enhancing the performance of natural language data
analysis, specifically improving answer accuracy and inference speed by utiliz-
ing LoRA and QLoRA PEFT techniques to train Code Llama models on the
collected training corpora. It describes the training process and highlights
relevant details.

B 4.2.1 Setup

All the experiments and the training process should strive to be reproducible
and that’s why MLOps techniques were applied. Given that the two datasets
are fixed, it is needed to ensure logging and storage of all the parameters used
for every run of the training. As described in the Tech Stack section of this
work, configuration files and Weights&Biases (W&B) were the main pillars to
rely on. Combining two of theses technicalities with setting a fixed random
seed for each training cycle we achieve full reproducibility of the training.

“https://huggingface.co/datasets/poludmik/pandas_documentation
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The configuration file is passed to the W&B logger at the start of the run
and is stored along with the training progress insights. The experiment name
is generated using the current time stamp and by clicking a corresponding
view on the W&B project page’| everyone can access those details.

LoRA and QLoRA PEFT techniques were both experimented with. To run
QLoRA fine-tuning I modified the official GitHub code to support training
with my custom datasets as it required some changes?. For LoRA training I
used the peft and transformers libraries from HuggingFace which support
seamless training interfaces that require passing all of the hyper-parameters
to the Trainer object and running the trainer.train().

The output of each training method is a model adapter with learned weights.
The best performing adapters, as well as the Pandas pre-trained one, are
stored on my HuggingFace profile’k

There are several hyper-parameters that were experimented with during
this work. Let’s briefly look at the most significant ones:

B Learning rate. There are two things to set. First, the learning rate
scheduler type (a function), and secondly, the values for the function
initialization. I've experimented mainly with two scheduler types: cosine
and constant. The cosine scheduler for learning rates is valuable in
machine learning for its smooth, gradual reductions that help prevent
training instability. It effectively balances higher early learning rates for
navigating noisy gradients and lower rates later on for precise convergence,
leading to improved generalization on test data. Combined with a
warmup it is often a well-suited scheduler for general deep learning
training. The values for the learning rate were under 0.0005, but varied
across the experiments.

® LoRA hyperparameters. Target modules are a set of specified com-
ponents within the model’s architecture where low-rank matrices will be
applied to modify the existing weights. Given the following set of weight
layers some of them were selected for every training run:

gate_proj,q_proj,v_proj, k_proj,o_proj, down_proj, up_proj

All of which refer to the components of the transformer architechture,
i.e. ¢, k, and v projections refer to the Queries, Keys, and Values in the
attention mechanism. r and « parameters set the dimensions and the
impact of the new weights. Mostly, those were kept low with r € (8, 32)
and « € (16,64). For instance, when conducting LoRA fine-tuning on
Code Llama 7B model on all 7 target modules with »r = 8 and o = 16,
the total number of trainable parameters is 19,988, 480. Relatively to

3https://wandb.ai/poludmik/codellama_LoRA?nw=nwuserpoludmik
4https://github.com/poludmik/qlora_for_codegen
Shttps://huggingface.co/poludmik
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the total number of model parameters (6,758,404, 096) it takes up only
0.296%.

® Evaluation was performed every 5 steps on validation data. The
validation data was ~ 2% 4 1% of the training data.

® Total number of steps usually varied depending on the number of
training instances, mostly corresponding to 1.2 epochs. And the learned
weights were saved every 25 to 50 steps. The optimizer for LoRA was
always set to paged_adamw_32bit.

B 4.2.2 Comparative Insights and Observations

First, let’s briefly look at how the fine-tuning run looked for the general
Pandas corpus pre-training, Fig. |4.1. Two runs were conducted: on all 3
corpora (including filtered OSSInstruct and DS1000) and solely on Pandas
documentation examples. The learning rates were set really low together with
constant schedulers. The intention was to slightly refresh the base model’s
memory on Pandas usage. The evaluation loss doesn’t decrease to 0, which
means that the model+adapter combination did not over-fit on the training
data. Training losses follow the same pattern as the training was performed
in under one epoch and the model did not even see a new training instance
that it was provided with. The only target module was gate_proj.

eval/loss
— pretrain_on_3pandas_corpora: Apr 28, 12:14:25 = pretrain_on_pandas: Apr 27, 15:41:06 v

1.5

0.5
train/global_step

1k 2k 3k 4k 5k

Figure 4.1: Smoothed out evaluation losses during adapter training on 3 pandas
corpora and pandas documentation corpus.

When looking at several training runs on the completion task for the Code
Llama 7B-Python model, the first thing to notice is how similar the losses
appear. Due to the fixed random seed, the training instances are processed in
the same order each time, and the only variable is the hyperparameters, which
affect the gradient values and hence the speed of convergence. Fig. 4.2 depicts
this pattern. The interactive report is also publicly available online®, By
examining the hyperparameters, it is observed that LoRA adapters focusing on

Shttps://api.wandb.ai/links/poludmik/inz1dpvb
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more target modules tend to converge faster. This underscores the importance
of selecting the correct learning rate, which allows for at least one epoch of
training where each instance contributes to near-optimal gradient updates.

eval/loss

= Viclns_LoRA_CL_Python_fixed: Apr 21,20:48:40 VicIns_LoRA_CL_Python_fixed: Apr21, 1
Vicins_LoRA_CL_Python_fixed: Mar 22,

6:59
58:01 = Viclns_LoRA_CL_Python_fixed: Mar 22, 13:21:48
= Viclns_LoRA_CL_Python_fixed: Mar 22, 09:28:24 2

—— o folobol cioo
12 =T

200 300 400 50

train/learning_rate train/grad_norm train/loss

— Viclns_LoRA_CL_Python_fixed: Apr 28, 10:08:45 Viclns_LoR Python_fixed: Apr 2
_CL_Python_fixed: Apr 21, 20:48:40 — Viclns_LoRA_CL_Python_fixed: Apr
Vicins_LoRA_CL_Python_fixed: Apr 21, 16:56:50 : A_CL_Python_fixed: Apr

0.0005

0.0004

0.0003

0.0002

0.0001

0

100 200 300 400 501

Figure 4.2: Comparison of CL-7B-Python for completion training cycles. Ran-
dom seed stays the same, hyperparameters are different for every run.

The only exception to the loss pattern is the upper pink line, which
was trained on a modified and slightly expanded training corpus. Here,
30 additional training instances were added, thereby shuffling the order of
instance processing.

eval/loss

0.8
0.6

0.4

0.2

train/global_step

200 400 600 800

Figure 4.3: Training second LoRA adapter on top of firstly pre-trained on
Pandas corpus adapter.

When examining the validation losses of the training runs where the model
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was fine-tuned atop a pre-trained general Pandas corpus adapter (Fig. 4.3),
it is evident that training from scratch takes more time to converge. There
is also noticeable slight overfitting on the training data, as indicated by the
validation loss beginning to increase after 500 steps. The loss function does
not converge to zero because a single evaluation sample encapsulated a long
code that returns a dictionary with multiple key-value pairs; the training
corpus did not contain similar instances.

Returns:
Variable containing the answer to the task 'What is
the average SoC start' (typed e.g. float, DataFrame,
list, string, dict, etc.).
nnn
# Your code here
df ['soc_start'] = df['soc_start'].astype(float)
df['soc_end'] = df['soc_end'].astype(float)
df['soc_diff'] = df['soc_end'] - df['soc_start']
df ['soc_diff'] = df['soc_diff'].astype(float)
df['soc_diff'] = df['soc_diff'].replace(np.inf, np.nan)
df ['soc_diff'] = df['soc_diff'].replace(-np.inf, np.nan)
df['soc_diff'] = df['soc_diff'].replace(np.nan, 0)
df ['soc_diff'] = df['soc_diff'].astype(float)
df['soc_diff'] = df['soc_diff'].astype(int)
df ['soc_diff'] = df['s

Returns:
Variable containing the answer to the task 'What is
the average SoC start' (typed e.g. float, DataFrame,
list, string, dict, etc.).

i

# Calculate the average SoC start

average_soc_start = df['soc_start'].mean()

return average_soc_start

/s>

Figure 4.4: Comparison of outputs for a base CL-7TB-Python model (upper)
and the same model fine-tuned with LoRA (lower). The completion generation
begins after the triple quotation marks ("""), which mark the end of the input
prompt.

Figure 4.4] illustrates the improvements that LoRA fine-tuning has made to
the quality of the CL-7B-Python model’s generation on a simple user query
to calculate the average value of a column. The upper illustration highlights a
common issue in the base completion generation, where the model repeatedly
generates nonsensical lines of code until reaching the maximum token limit.
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Consequently, the code cannot be extracted from the output due to the
absence of a return statement or backticks, which would indicate the end
of the function. This also results in prolonged inference times. In contrast,
the lower code snippet demonstrates how the fine-tuned model efficiently
writes code, correctly terminating it with backticks and a special token. The
forward pass on a single A40 GPU takes about one second.

The main problem of the CL-7B-Instruct model was to obey the given
prompt instruction that states which output format must be followed. Due
to the model’s instruction alignment it has a strong tendency to generate
explanations and testing snippets, often splitting the code into several parts.
This is fixed by fine-tuning, after which, the model seems to always generate
an output in a desired format with backticks.

. 4.3 Evaluation Metrics

Several evaluation metrics were developed and implemented in this study
to quantitatively compare the performance of different LLMs and Agent
configurations. This chapter outlines these metrics, explaining how they are
used to assess and compare each configuration effectively.

B 4.3.1 Numeric Accuracy Benchmark

The most important evaluation metric for this work is the numeric accuracy
benchmark, which comprises a set of 206 test cases designed to assess the
performance of an LLM-based Agent on general math and statistical problems.
These questions are based on large tables with approximately 50 columns,
focusing on the automotive industry and vehicle tracking to evaluate how the
systems perform in a single commercial use case.

A set of comparison functions was implemented, with each test case being
evaluated by one or multiple functions. These functions compare the reference
object returned by the reference code with the value returned by the agent,
depending on the type of the expected reference object. For instance, for the
test query ’Select rows where distance values exceed the 100 to 300 range’,
the expected output is a DataFrame that represents a subset of rows from
the given table. The comparison functions could test three aspects: whether
all values between the reference DataFrame and the output are identical,
whether the number of rows is the same, and whether the column names
are correct. Then, based on the implementation of the test case, either each
correct point contributes to the response accuracy or a single point is added
if any criteria are met.

Test Cases are organized into Test Suites, with each Test Suite having the

same types of reference values, i.e., comparison functions. However, Test
Cases within a single Test Suite can have different object values, but the
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comparison function remains the same.

1.

This benchmark consists of seven separate question sets:

CT - Core Tests. These tests comprise simple questions that represent
the core functionalities an LLM Agent needs to perform. For example,
the questions include finding the minimums, maximums of columns, and
performing simple row selections.

AE - Annotations Exploiting tests. This set is designed to assess the
model’s ability to deduce column names from unclear user queries or to
utilize JSON annotations injected into the prompts.

MO - Math Operations. Primarily focused on testing numeric out-
put values, this set combines simple numerical operations with other
DataFrame functionalities performed on a single column. An example is
"What is the minimum of the averaged out maximum speed per grouped
car type data?’

NLU - Natural Language Understanding tests. The main focus here
is to discern the user’s intent from unclear queries. For example, to
correctly answer the question "Which trips drained more than half of the
battery?’, the LLM needs to understand what the values in the columns
represent, whether they are in percent (50) or floating points (0.5), or
something else.

ST - Selection Tests. These questions focus strictly on filtering a
DataFrame and returning either a subset of it or the number of rows
or columns. An example question is "Show rows in a DataFrame where
ts_first is not earlier than ts_last."

CG1 and CG2 - Comprehensive General tests. These two larger question
sets cover all sorts of possible queries. From applying multiple filters,
such as ‘rows with battery on km bigger or equal to 0.3, current abs
diff mean smaller than 19, in str ts first 2028 and timezone is Berlin
and the ride was on Wednesday’, to more complex table modifications
like 'Find cycles with high speed variance of more than 5.2 and create a
high_variance label.” CG1 test set also contains some questions that could
potentially have multiple right answers. For example when asked ’all
vehicle types’ a valid answer could e.g. be a list of strings or a pd.Series
object. Each possible reference value is checked and the pass is assigned
when at least one of those matches the agent’s output.

The output of a benchmark run is an automatically generated HTML report,

Fig. 4.5, that comprehensively shows all the details about each test case, gen-
erated codes and the resulting accuracy numbers. It also distinguishes agent’s
mistakes because of an execution exception or a wrong output. In case of
an exception, the full traceback of an error is shown next to the generated code.
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What is the highest of voltage_mean. compare_floats
Get peak and mean p -
. 'What is the highest mean voltage. compare_{floats
values of various - =
Give me the lowest voltage last. compare_floats
voltage columns - S =
Give me the mean value of mean voltage. compare_{floats

Tell me the number of missing values in the 'soc_start'

compare_{floats
column —

Count total number of missing entries in both
'voltage _mean' and 'voltage last' columns.

Count total number of missing values in both
'payload_ts_first' and 'payload ts_last' timestamp compare_{floats
columns.

compare_floats

Missing Values Analysis

Count total number of missing values in both
'temperature_ambient max' and compare_floats
'temperature_ambient_min' columns.

Figure 4.5: An example how each individual test case is highlighted in the
resulting HTML report. Two Test Suites are shown and both use the same
comparison function to compare to floating point numbers.

B 4.3.2 LLM as evaluator

Given the reference answer and the textual output from an LLM Agent, it
is possible to compare the two with the assistance of a modern and capable
LLM. Contemporary models, such as the latest GP'T versions, have the ability
to determine whether the agent’s response aligns with the reference. This
metric iterates over all Test Cases from the numerical test described in the
previous section, and prompts the gpt-3.5-turbo-1106 model to assign a
score of 1 if the answer is correct, and 0 otherwise. Prompting is conducted
by providing the model with several examples of answers that are considered
correct according to the ground truth, thereby enhancing the model’s ability
to generalize across all answer pairs, as shown in Listing [6]

- Correct answer: "[2023-03-11, 2023-03-31, 2023-02-19]",
agent's answer: "O  2023-02-19

1 2023-03-11

8 2023-03-31

Name: Last restock date, dtype: datetime64[ns]

", score: 1.

- Correct answer: "CGATCGCCGT", agent's answer: "TGCTTACGGA",
score: O.

- Correct answer: "0.85", agent's answer: "0.8494521",
score: 1.

Listing 6: Few-shot prompting technique. Three out of six examples that are
shown to the GPT evaluator.

B 4.3.3 Tagging Accuracy

It is also crucial to assess the accuracy of the query type classification. For
the agent to function as a simple server for a web application, it must

62



4.4. Results

first determine whether the user wants a textual answer or an image (since
images are sent back differently in responses). This metric thus displays the
percentages of correctly classified query types. A handcrafted dataset of 250
instances was used for this purpose. The total time taken to classify all 250
instances is also a subject to be inspected.

B 4.3.4 Visualization Execution Ratio

The simplest baseline for evaluating the created visualizations is to count the
number of successful code executions and compute the accuracy. Inspired
by the Text2Analysis paper, this metric represents the upper bound for
correctly created plots. For this test, a handcrafted dataset of 250 queries
and the Text2Analysis dataset were both considered. Of the 250 instances,
64 are labeled as ’plot’, and there are 787 instances of plot creation in the
Text2Analysis dataset.

. 4.4 Results

This section sums up the results of the experiments, evaluating different
LLM-based Agents with the proposed metrics. Here, the research questions
that were put in the beginning of this chapter are answered based on the
gathered numbers.

Table 4.2 presents evaluation metrics for various LLM-based agent config-
urations on the proposed Numeric Accuracy Benchmark. The LLM Agent
column details the LLMs utilized by the agent along with additional parame-
ters, such as (A), which denotes the inclusion of JSON column annotations in
the constructed prompts. To improve readability, details concerning prompt
strategies are excluded. The sole model family utilizing the completion strat-
egy is Code Llama Python. All models were instructed with the functions
strategy, requiring the generated code to include the def solve(df) function
definition for later comparisons of output objects. The () column specifies
whether quantization was applied to the language model during inference and
displays the number of quantization bits employed. The D column discloses
whether the agent had the chance to debug potential errors in the generated
code. Typically, two attempts were permitted, viewed as a reasonable com-
promise that allows an agent to fix erroneous code. The debugging model
was consistently the same as the coding model. Additionally, one segment
in the results table illustrates the combined use of two models to replicate
the Plan-and-Solve (PS) method. The gpt-3.5-turbo-1106 model was re-
sponsible for generating plans, which were subsequently incorporated into
the CL-7B-Instruct prompt. Subsequent columns with abbreviated titles
reflect the accuracy percentages detailing how the agent performed on each
set of questions from the benchmark. The ACC column indicates the overall
accuracy across all tests.
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Numeric Accuracy Benchmark % (Base LLMs)

LLM Agent Q|D| ACC| CT | AE | MO | NLU| ST | CGl1| CG2
4 | - 494 | 771 | 139 | 475 | 29.0 | 75.8 | 36.5 | 41.9

CL-7B-Istruct 8 | - 48.0 | 68.8 | 30.6 | 475 | 3.2 | 339 | 83 0.0
- | - 51.0 | 83.3 | 22.2 | 425 | 29.0 | 74.2 | 34.6 | 48.8
4 | - 385 | 79.2 | 27.8 | 275 | 194 | 41.9 25 37.2

CL-7B-Python 8 | - 324 | 729 | 56 | 25.0 | 16.1 | 35.5 | 26.9 | 30.2

- | - 353 | 75.0 | 28 | 350 | 9.7 | 43.6 | 32.7 | 27.9

CL-7B, Infilling mode - |- 176 | 25.0 | 13.9 | 15.0 | 29.0 | 226 | 5.8 | 14.0

MC-S-CL-7B - || 60.9 | 833 | 27.8 | 65.0 | 51.6 | 66.1 | 51.9 | 69.8

=1 535 | 89.6 | 16.7 | 57.5 | 29.0 | 67.7 | 44.2 | 48.8
CL-13B-Instruct 59.6 | 93.8 | 13.9 | 55.0 | 32.3 | 77.4 | 481 | 72.1

- 50.3 | 75.0 | 27.8 | 42,5 | 35.5 | 74.2 | 30.8 | 48.8
54.2 | 85.4 | 33.3 | 425 | 38.7 | 72.6 | 28.9 | 62.8

QO H=| CO |1
1

CL-13B-Python

CL-7B-Instruct - |2 56.7 | 87.5 | 33.3 | 57.5 | 48.4 | 75.8 | 32.7 | 48.8
MC-S-CL-7B 2 | 65.7 | 87.5 | 25.0 | 70.0 | 51.6 | 82.3 | 50.0 | 76.7

4] - |[ 340 | 604 | 83 | 275 | 484 | 53.2 | 13.5 | 18.6

gpté?’L“:’;g“}bo‘”% Tols | | 484 | 646 | 222 | 500 | 452 | 742 | 385 | 27.9
-(B-Instruct | - || 532 | 66.7 | 16.7 | 57.5 | 484 | 77.4 | 40.4 | 48.8
CL-7B-Instruct (A) | - | - || 59.6 | 85.4 | 38.9 | 625 | 45.2 | 79.0 | 44.2 | 46.5
CL-13B-Instruct (A) | 8 | - || 52.0 | 83.3 | 27.8 | 62.5 | 35.5 | 64.5 | 32.7 | 51.2
CL-13B-Python (A) | 8 | - || 5.9 | 62.5 | 36.1 | 50.0 | 35.5 | 74.2 | 404 | 48.8
Claude3 Haiku 12 | 740 | 917 | 472 | 725 | 61.3 | 90.3 | 65.4 | 744
Claude3 Sonnet “ 2| 744 | 854 | 50.0 | 775 | 548 | 95.2 | 635 | 76.7
Claude3 Opus 2| 817 | 979 | 472 | 925 | 71.0 | 96.8 | 76.9 | 74.4
Llama3 - 8B - 55.0 | 91.3 | 278 | 564 | 441 | 742 | 481 | 34.1
Llama3 - 70B o760 | 91.3 | 52.8 | 89.7 | 61.8 | 79.0 | 71.1 | 77.3
opt-3.5-turbo-1106 | - | - || 78.2 | 95.8 | 41.7 | 80.0 | 74.2 | 774 | 78.9 | 90.7
opt-3.5-turbo-1106 | - | 2 || 785 | 95.8 | 63.9 | 75.0 | 61.3 | 75.8 | 80.8 | 88.4
gpt-3.5-turbo-1106 (A) | - | 2 || 744 | 958 | 44.4 | 70.0 | 61.3 | 82.3 | 65.4 | 88.4
opt-d-turbo-2024-04-09 | - | 2 || 86.2 | 93.8 | 72.2 | 90.0 | 74.2 | 93.6 | 88.5 | 81.4
gpt-d-turbo-2024-.. (A) | - | 2 || 84.0 | 89.6 | 72.2 | 92.5 | 645 | 95.2 | 86.5 | 74.4
opt-40 2881 | 97.9 | 61.1 | 90.0 | 71.0 | 96.8 | 885 | 97.7

Table 4.2: Evaluation of agents with base LLMs. Q column indicates quanti-
zation bits of a loaded LLM (’-’ means full precision) and D tells how many
debugging attempts the agent had (- means no debug possibility). In case of
Plan-and-Solve combination of GPT + CL the quantization bits are shown for
the CL. Symbol (4) means the annotations were added to the prompts.

As observed, the 7B Code Llama models consistently achieve up to 51%
accuracy. Among these, the CL-7B-Instruct model significantly outperforms
the Python and Base models, which were prompted for completion and infill-
ing, respectively. The primary challenge for the CL-7B-Python model appears
to be in the Annotation Exploiting and Natural Language Understanding tests,
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where its Instruction counterpart is better. Quantization does not markedly
affect accuracy, but it does influence inference speed. Among models with 7B
parameters, the recent Magicoder-S-CL-7B (MC-S-CL-7B) model is the top
performer, reaching 60.9% accuracy without debugging enabled. With 2 de-
bugging attempts, the performance of the MC-S-CL-7B model improves by 5%.
Similarly, providing debugging attempts to the CL-7B-Instruct agent yields
comparable improvements, showcasing the robust debugging capabilities of
these LLMs. Interestingly, adding column annotations to the prompts of the
CL-7B-Instruct model enhances accuracy more than employing debugging.

Models with 13 billion parameters, quantized at 4 or 8 bits, outperform
the 7B Code Llamas. Yet, they still do not surpass the Magicoder-S-CL-7B.
Annotations do not enhance the accuracy of the 13B models.

The Plan-and-Solve method offers modest improvements to the quality of
code generated by the CL-7B-Instruct model, particularly in the Natural
Language Understanding test. The observed decline in Core Tests may be
attributed to the GPT model generating plans that aim to return more so-
phisticated values than required. Although the resulting output is technically
correct, it is not recognized as such because it exceeds the test requirements.
For 4-bit quantized Code Llama models, the Plan-and-Solve method signifi-
cantly worsens the overall performance.

The API-based Claude3 models exhibit superior performance, signifi-
cantly outshining the 7B to 13B open-source models. The Haiku vari-
ant of Claude3 conducts inferences instantly, delivering results on par with
gpt-3.5-turbo-1106. Although the Sonnet variant shows only modest im-
provements over Haiku, the most advanced model, Claude3 Opus, exceeds
the 81% threshold, showcasing highly sophisticated reasoning capabilities.
Achieving such performance necessitates that a model adeptly discern the
subtlest nuances and user intentions. It must seamlessly associate user queries
with the correct column abbreviations and appropriate return values, which
are often implicit.

Similarly, the API-based GPT models generally match the performance of
Claude3 models, yet the latest gpt-4-turbo-2024-04-09 and gpt-4o0 models,
with 2 debugging attempts, achieve the highest accuracy at impressive 86.2%
and 88.1% respectively. This superior performance is expected as the recent
GPT models are designed to function as agents—that is, to write code, initiate
execution, and debug if necessary. These numbers higher than Claude3 Opus
stem partially from the exceptional performance in the Complex General
test sets, which significantly impact the overall accuracy due to their size.
Column annotations provide little benefit to GPT models, as these mod-
els inherently possess a robust capability to interpret column names effectively.
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Answering Research Question #1: To what extent do smaller open-
source LLMs trail behind API-based giants in quantitative measures
during the TableQA task?

The smaller open-source coding LLMs significantly lag behind the
large API-based models in the TableQA task. However, by employing
strategies such as enabling debugging or adding additional column
descriptions, these models perform only about 10% worse than Claude3
Haiku or gpt-3.5-turbo-1106. Notably, the MC-S-CL-7B outperforms
base Code Llama models, as it represents a fine-tuned and thus better-
optimized version of the Code Llama model.

Numeric Accuracy Benchmark % (LoRA PEFT)

W&B Run ID Step || ACC| CT | AE | MO | NLU| ST | CG1l| CG2
QLoRA-test15631219101 200 53.5 | 87.5 | 38.9 | b7.5 | 355 | 67.7 | 46.2 | 25.6
LoRA gate_only 150 474 | 83.3 | 27.8 | 47.5 | 45.2 | 56.5 | 28.9 | 34.9

Apr21 15:03:45 200 || 58.3 | 91.7 | 38.9 | 55.0 | 54.8 | 72.6 | 32.7 | 53.5

400 53.9 | 75.0 | 44.4 | 425 | 41.9 | 742 | 32.7 | 535

LoRA 5targets 150 50.0 | 81.3 | 36.1 | 52.5 | 32.3 | 66.1 | 32.7 | 34.9

Apr21 16:56:59 200 574 | 81.3 | 33.3 | 57.5 | 5b4.8 | 72.6 | 404 | 51.2

LoRA Ttargets 100 97.4 | 68.8 | 44.4 | 55.0 | 51.6 | 71.0 | 44.2 | 58.1

Apr21 20:48:40 150 54.8 | 79.2 | 41.7 | 35.0 | 45.2 | 75.8 | 42.3 | 48.8

LoRA pandas Apr 27 20:42:26 | 550 58.7 | 85.4 | 50.0 | 52.5 | 51.6 | 77.4 | 34.6 | 48.8
LoRA Ttargets Apr28 10:09:45 | 250 || 60.3 | 75.0 | 38.9 | 67.5 | 41.9 | 83.9 | 44.2 | 53.5
50 52.2 | 87.5 | 27.8 | 37.5 | 48.4 | 71.0 | 26.9 | 53.5

LoRA CL-Instruct Ttargets 75 55.1 | 79.2 | 30.6 | 50.0 | 45.2 | 79.0 | 34.6 | 51.2
Apr22 11:30:44 100 50.3 | 81.3 | 25.0 | 40.0 | 35.5 | 77.4 | 25.0 | 48.8

150 36.9 | 81.3 | 13.9 | 20.0 | 32.3 | 56.5 | 13.5 | 25.6

Table 4.3: Evaluation of agents equipped with QLoRA and LoRA fine-tuned
Code Llama 7B models. Coder-only configurations and the most important
results were manually selected and shown here.

Table [4.3] displays the Numeric Accuracy Benchmark results for several
fine-tuned Code Llama models. The W&B Run ID column includes training
run names, accessible on the W&B project pagd’. While not exhaustive,
this table highlights the most significant or best-performing runs. Other
experiments conducted did not provide additional insights as they showed
results that were either consistent with those presented or were not significant
enough to alter the conclusions drawn from these highlighted results. The
table features a comparison of the top QLoRA result against various LoRA
configurations. The terms ’gate_only’, ’5targets’, and ’7targets’ specify the
number of LoRA target layers used for adapter application. The designa-
tion pandas indicates that the model was additionally fine-tuned using a

"https://wandb.ai/poludmik/codellama_LoRA?nw=nwuserpoludmik
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pre-trained Pandas adapter. The Step column indicates the training step at
which the trained adapter was saved. All runs presented show the fine-tuning
of CL-7B-Python on completion with an exception of the last row, where the
Instruct model with instruction training data was used.

Several observations can be made regarding the convergence process. Firstly,
it is noted that the use of more target layers accelerates the model’s conver-
gence to its optimal result. This acceleration is attributable to the increase
in trainable parameters that accompanies additional target layers. Secondly,
models tend to quickly overfit the training data, underscoring the necessity of
continually evaluating performance on unseen data throughout the training
process. This phenomenon is clearly illustrated in the last Run row of the
table, where performance significantly deteriorates after an additional 25 or
50 training steps.

Furthermore, regardless of how hyperparameters are set, the fine-tuning
runs consistently yield results above the 55% mark. This consistency suggests
that for a dataset of this size and for the specific requirements of the TableQA
task, the quality of the training data is more crucial than the number of
LoRA parameters, target layers, learning rate, etc. Adequately setting these
parameters will likely yield favorable outcomes. The most effective LoRA
adapter for the CL-7B-Python that I achieved demonstrates a total accuracy
of 60.3%, marking a significant 25% improvement over the base model. This
also represents the best result among all techniques applied to the Code
Llama models. Moreover, these weights also match the performance of the
SOTA Magicoder-S-CL-7B model when given only one try to generate the
code.

Answering Research Question #2: Is it possible to perform task-
specific fine-tuning of a small open-source model to achieve performance
on par with other state-of-the-art (SOTA) coding LLMs in the TableQA
task (compare open-source and API-based models)?

This study demonstrates that task-specific fine-tuning using LoRA on
the Code Llama 7B Python model, executed in completion mode sig-
nificantly enhances its performance in TableQA. A dataset comprising
approximately 200 handcrafted and 400 modified Text2Analysis train-
ing instances was utilized. Post fine-tuning, the model’s performance
aligns closely with the Magicoder-S-CL-7B and the 13B Code Llama
models, which are recent open-source models. However, achieving a
performance level comparable to API-based models, or larger models
such as Llamad 70B, appears to necessitate a substantial increase in
both the quality and quantity of training data or an expansion in model
size.
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—o— CL-7B-Python

««e+. Best CL-7B-Python LoRA
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ST NLU

Figure 4.6: Comparison of selected evaluation results showing the improvements
of the fine-tuned model against more performant models.

Figure 4.6| graphically illustrates the performance of five selected LLM
Agents on the Numeric Evaluation Benchmark. It is evident that the LoRA
fine-tuned CL-7B-Python model shows substantial improvement across all
test sets. The most notable enhancements are observed in the Selection Tests
and Math Operations, where its results are nearly equivalent to those of the
Claude3 Haiku. Such improvements can be attributed to a significant portion
of the training data being specifically focused on these tasks. However, in the
Natural Language Understanding task, this model still falls short compared to
other, instruction-aligned models, due to its inferior reasoning and association
abilities, which are typically enhanced by training on a large corpus.

LLM Agent (Coder Only) LLM-as-Eval Score
LoRA gate_only Apr21 15:03:45 - 200 steps 0.565
LoRA Ttargets Apr28 10:09:45 - 250 steps 0.548
gpt-3.5-turbo-1106 0.7
MC-S-CL-7B 0.53

Table 4.4: LLM as evaluator (gpt-3.5-turbo-1106) comparing the ground
truth answers to best performing agents’ answers. The score is the amount of
matching answers divided by the number of questions.

Table |4.4) presents the Numeric Evaluation Benchmark accuracies, with
scores for each test case assigned by an LLM. The data here strongly correlates
with the results obtained when answers are compared programmatically. The
models fine-tuned with LoRA achieve even higher scores than Magicoder,
further demonstrating the enhancements gained through fine-tuning. The
method itself exhibits a degree of conservativeness, with the GPT model
cautiously avoiding the assignment of correct labels to incorrect answers. This
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cautious approach may also stem from the fact that some answers consist
of lengthy strings from displayed DataFrames, which pose challenges for the
GPT model in terms of comparison.

Executable Ratio (ER) %

LLM Agent Q| D 64 from 250 787 from T2A
CL-7B-Instruct - - 71.9 78.5
CL-7B-Python - - 40.6 63.2
CL-13B-Instruct 8 | - 57.8 70.0
CL-13B-Python 8 | - 76.6 66.2
MC-S-CL-7B - - 75.0 76.2
gpt-3.5-turbo-1106 - - 85.9 84.6
gpt-3.5-turbo-1106 - 2 95.3 90.9
CL-7B-Instruct - 2 71.9 80.6
CL-13B-Instruct - 2 68.8 70.1
MC-S-CL-7B -1 2 84.4 80.7

Table 4.5: Ratio of generated codes that were executed successfully for every
visualization query from handcrafted 64 and 787 Text2Analysis sets.

Table |4.5] is presented to illustrate the Executable Ratio of visualization
queries. It distinguishes between accuracies derived from the handcrafted
dataset and those from Text2Analysis. Although this evaluation method
provides an upper limit to the true accuracy, it is insightful to explore the
effects of enabling debugging and to observe how the CL-13B-Instruct model
in 8 bits underperforms compared to the 7 billion parameter model. Notably,
the Magicoder achieves the same execution ratio as the instruction-aligned
Code Llama 7B. Some of the generated plots are in the Appendix |C.

Metric gpt-3.5-turbo | DeBERTa
Overall Accuracy (%) 95.6 82.0
Accuracy on ‘plot’ (%) 100.0 86.2
Accuracy on ‘general’ (%) 94.1 80.5
Time taken (s) 174.68 178.46

Table 4.6: Tagging accuracy on 250 handcrafted questions. Comparing the
usage of Langchain’s ChatOpenAI Tagging with gpt-3.5-turbo to the usage of
a small DeBERTa-v3-base-mnli-fever-anli classifier model.

The final aspect to assess is the accuracy of query tagging, as shown in
Table 4.6l I compare the use of Langchain’s ChatOpenAI object, augmented
with a small Pydantic class that converts to the OpenAl function, with
the use of a simple generic classification model, namely DeBERTa. The
OpenAl approach achieves 100% success in predicting the ’plot’ class, but
it encounters some errors with the ’general’ class. Consequently, it is more
likely to generate a visualization for a general text query, which is acceptable
because, usually, a visualization can precisely represent the intended answer.
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The DeBERTa classifier was introduced to the project as a proof of concept
to demonstrate that the designed LLM Agent can operate without internet
access. However, its classification performance is inferior, similarly, with the
‘general’ class lagging behind the ’plot’ class by 6%. The overall time taken
to tag all 250 queries is almost the same for both approaches.

Answering Research Question #3: What is the overall perfor-
mance of a generic LLM-based Agent and what are the challenges the
system struggles with the most?

After conducting several evaluation procedures, it has been observed
that an LLM Agent system equipped with state-of-the-art (SOTA)
API-based LLMs can consistently perform general tabular analysis
tasks without any exceptions in the pipeline. Subjectively, tasks such
as Classification, Coding, and Debugging are performed at a level
comparable to that of a competent human. The primary challenge for
such systems arises from unclear queries, particularly when the user
poses a question that is too broad. For systems utilizing smaller, SOTA
open-source LLMs, the predominant challenge lies in capturing all
intricate details and accurately interpreting the user’s intent, which may
be vaguely or subtly expressed. For example, selecting the appropriate
column names can be problematic if they are difficult to interpret. Also,
small open-source LLMs often don’t seem to achieve the user request
precisely. Generally speaking, these lack maximizing the satisfaction of
the user’s intended return value with their output. Speaking about code
correction, although, these models demonstrate debugging capabilities,
there is room for improvement, as smaller open-source coding models
are primarily trained on code itself.

B a5 Proposal of Visual Evaluation

The Execution Ratio metric provides a basic assessment of an LLM-based
agent’s ability to generate visualizations from data. While this metric is
straightforward, it does not fully evaluate the plot correctness.

DePlot [105], a model developed by Google, translates images containing
data visualizations into textual descriptions, which can then be transformed
into structured formats like pandas DataFrames. This capability suggests
that visualizations generated by an LLM-based agent could be converted into
text and compared against a reference output, which might also be an image
or a pre-converted text string.

To explore the effectiveness of DePlot’s plot2text feature, we® tested it on

8Cooperative work with fellow student Be. Jan Cuhel. Data aggregation and evaluation.
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a collection of 60 visualization images created during the development and
testing of the implemented agent program. These images were converted into
text and categorized as either correct, weakly correct (correct in essence but
with minor errors), or incorrect. The categorization yielded 25 accurately
converted images, 14 weakly correct, and 21 incorrect, resulting in 41.67%
accuracy for correct conversions and 65% when including weakly correct
results.

It’s crucial to note that the dataset included not only straightforward bar
or line charts but also more complex visuals like confusion matrices, and
some unsuccessful plots. These results indicate that the plot2texrt method
has an ability to contribute to evaluating the quality of visualizations beyond
mere visual checks, providing a quantifiable measure of their accuracy and
relevance.
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Chapter 5

Conclusion

To summarize, this thesis explores the challenges of analyzing tabular data,
discussing its evolution, briefly covering the world of Natural Language Pro-
cessing (NLP) and Transformer-based Large Language Models (LLMs), their
current applications, and the general methods to enhance the quality of
Agent-like systems and code generation.

A Natural Language Interface (NLI), an LLM-based Agent program, was
developed, allowing for extensive parameter adjustments to alter the agent’s
configuration. This scaffolding program serves as a robust foundation for
future use and modifications.

Datasets specifically designed for training models on TableQA tasks were
created and collected, and a comprehensive and multifaceted evaluation bench-
mark was developed to measure the performance of various LLM Agents.

Furthermore, Code Llama 7B models were fine-tuned in both completion
and instruction modes using both LoRA and QLoRA techniques. The pro-
cess was meticulously documented using MLOps techniques to ensure the
experiments are fully reproducible.

Lastly, numerous LLM-based Agents were evaluated and compared using
different metrics, highlighting how the fine-tuned models enhanced perfor-
mance compared to some of the best state-of-the-art open-source coding
LLMs, specifically in TableQA tasks. Notably, the performance of the Code
Llama 7B Python model improved significantly from 35.3% to 60.3%, match-
ing the performance of the Magicoder-S-CL-7B, one of the top-performing
open-source coding LLMs. Major challenges and issues that need to be ad-
dressed to further improve the performance of LLM-based Agents in tabular
data analysis were also identified and discussed.

Overall, this work provides valuable and broad insights into the use of
LLM-based Agent systems for tabular data analysis and aims to serve as a
resource for further research, helping others leverage powerful technologies
for the benefit of humanity.
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. 5.1 Final Notes and Future Work

In future studies, it would be beneficial to experiment with emerging open-
source systems such as OpenCodelnterpreter[107] and QWEN [106], which
are coding models known for their enhanced debugging capabilities. Exploring
these models could provide valuable insights into improving error detection
and correction mechanisms in code generation tasks.

Another area for further investigation emerged from observations made
later in this research, regarding the handling of multiple return values in
training data. Typically, dictionaries are used for clearer interpretation dur-
ing training, yet evaluation sometimes involves tuples and other data types.
Future work could involve augmenting and improving the existing training
dataset with more complex queries that demand extensive reasoning and
creating reference codes annotated with comments to clarify the thought
process behind the solutions.

Additionally, the integration of DePlot for assessing the quality of plot
generation offers a promising direction. By converting visual data into
text representations, DePlot would enable a structured evaluation of the
outputs produced by LLM-based agents. Integrating this tool would allow to
measure the effectiveness of the agents in generating accurate and informative
visualizations.
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Appendix A

Demonstration of basic Code Llama 7B
Instruct debugging abilities

Black color is an input prompt, and green color is the output. It successfully
changes int to float, that was implicitly written in the error message.

<s> You are a helpful assistant that corrects the python code that resulted in an error and returns the
corrected code.

The code was designed to achieve this user request: 'standard deviation of irish speakers
percentage’.
The DataFrame "df’, that we are working with has already been defined and populated with the
required data, so don't load it and don't create a new one.
The result of “print(df.head(2)) is:
County English area name Irish area name Population Irish speakers
0 County Donegal Altnapeaste Alt na Péiste 188 55%
1 County Donegal Annagry Anagaire 2235 55%

Here is also a list of column names along with the first sample values for your convenience (each
column is represented as a separate json object within a list):
[{'column_name": 'County’, 'sample_values': [County Donegal’, 'County Donegal’]},

'sample_values": ['55%, '55%T)]

The execution of the following code that was provided in the previous step resulted in an error:
" python
import pandas as pd

def solve(df):

# 1. Extract the 'Irish speakers’ column from the DataFrame and convert the percentage values to
numeric.

dff'Irish speakers'] = dff'Irish speakers'].str.replace('%', ").astype(int)

# 2. Calculate the standard deviation of the numeric values in the 'lIrish speakers’ column.
std_dev = df'Irish speakers’].std()

# 3. Return the standard deviation value as the result (Python data type: float).
return std_dev

Rrinh{solve[df})

The error message is: ' File "&It;string&gt;", line 13, in &lt;module&gt;
File "&It;string&gt;", line 5, in solve
ValueError: cannot convert float NaN to integer’

## Solution
" python
import pandas as pd

def solve(df):

# 1. Extract the ‘Irish speakers' column from the DataFrame and convert the percentage values to
numeric.

dfTIrish speakers’] = dff'Irish speakers’].str.replace('%', ").astype(float)

# 2. Calculate the standard deviation of the numeric values in the ‘Irish speakers' column.
std_dev = dfT'Irish speakers'].std()

# 3. Return the standard deviation value as the result (Python data type: float).
return std_dev

R(int[solve{df}}

<[s>
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Appendix B

Selected prompt strategy examples

Here, several prompts from the prompt strategy set are shown. All prompt
sets can be found in the main Github repository.

"""You are an AI data analyst and your job is to assist
the user with simple data analysts.
The user asked the following question: '{inputl}t’.

Formulate your response as an algorithm, breaking the
solution into steps, including any values necessary to
answer the question, such as names of DataFrame columns.

This algorithm will later be used to write Python code
and applied to the existing pandas DataFrame 'df'.

The DataFrame 'df' is already defined and populated with
necessary data. So there is no need to define it again
or load %t.

{df_head}

{column_description}

{column_annotation}t

Present your algorithm with at most siz simple, clear
English steps. Remember to explain steps rather than
to write code. Don't include any visualization steps
like plots or charts. You must output only these steps,
the code generation asstistant is going to follow them.

Here's an example of output for your inspiration:
. Find and store the minimal value in the 'Speed’ column.
. Find and store the mazimal value in the 'Voltage’' column.

. Raise the result to the third power.

1
2
3. Subtract the minimal speed from the mazimal voltage.
4
5. Print the result.

Listing 7: Simple strategy - Planner LLM. Generate a plan for a textual "general”
answer.
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B. Selected prompt strategy examples

"""The user provided a query that you need to help
achieve: '{input}’'. You also have a list of subtasks
to be accomplished using Python.

You have been presented with a pandas DataFrame named “df’.
The DataFrame “df° has already been defined and populated
with the required data, so don't load tt and don't create

a new one.

{df_head}

{column_description}

{column_annotation}

Return only the Python code that accomplishes the following
tasks:

{plan}

Approach each task from the list im isolation, advancing

to the next only upon its successful resolution.

Strictly follow to the prescribed instructions to avoid
oversights and ensure an accurate solution.

Basic tbraries are already imported: pandas as pd,
matplotlib.pyplot as plt, and numpy as np, so you don't

need to import those. You must not include “plt.show() .

Just save the plot the way it is stated in the tasks.

You must include print statements to output the final result
of your code. You must use the backticks to enclose the code.

Ezample of the output format with backticks:
T python

nnn

Listing 8: Simple strategy - Coder LLM. Create a visualization and save the
image.
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B. Selected prompt strategy examples

"""You are really good with Python and the pandas library.
The user provided a query that you need to help achieve:
"{input}'.

A pandas DataFrame named “df° s fixed. The DataFrame “df’
has already been defined and populated with the required
data, so don't load it and don't create a new one.
{df_head}

{column_description}

{column_annotation}

Return the definition of a Python function called

“def solwve(df):  that accomplishes the user query and
returns the result of the analysis (a DataFrame, a list,
a number, a string, etc.).

Basic ibraries are already imported: pandas as pd,
matplotlib.pyplot as plt, and numpy as np, so you don't
need to import those. You must use the backticks to
enclose the code. Do not test the function with anything
similar to “print(solve(df))’, only define the function
to answer the user query, in the format of the following
example:

Ezample format:
T python
def solve(df):
# Code to achieve the user query

# Finally return the result
return result

nimnn

Listing 9: Coder-only functions strategy - Coder LLM. Answers the general-
answer query.
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B. Selected prompt strategy examples

rrors

" python

import pandas as pd

tmport matplotlib.pyplot as plt
import numpy as np

def solve(df: pd.DataFrame):
men Fynction to solve the user query: '{input}'.

DataFrame “df” ts fized.
{df_head}
{column_description}t
{column_annotation}t

Args:
df: pandas DataFrame

Returns:

Variable containing the answer to the task '{input}’

(typed e.g. float, DataFrame, list, string, dict,
etc.).

nnn

rr

Listing 10: Coder-only completion functions strategy - Coder LLM. Intended to
answer the general query.
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B. Selected prompt strategy examples

"""You are a helpful assistant that corrects the Python code
that resulted in an error and returns the corrected code.

The code was designed to achtieve this user request: '{inputl}’.
The DataFrame df that we are working with has already been
defined and populated with the necessary data, so there is

no need to load or create a mew one.

{df_head}

{column_description}

{col_annotation}

The exzecution of the following code that was by a low-quality
assistant resulted im an error:

T python

{code}

The error message was: "{error}".

Return only corrected Python code that fizes the error.
Use the same format with backticks.
If part of the code is not defined, or the whole code is a

complete nonsense, define or rewrite it.
mnimn

Listing 11: Basic debugging prompt.
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Funds

Appendix C

Reference data visualizations produced by
LLM Agents
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