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Instructions

Cloud detection is crucial in the preprocessing of optical satellite imagery because it 

directly impacts the quality and accuracy of subsequent remote sensing applications, 

including weather forecasting, climate monitoring, and environmental analysis. Accurate 

cloud detection enables the effective differentiation between clouds and other high-

reflectance ground features, ensuring that the data used for analysis is reliable and 

precise. This process is essential for enhancing the accuracy of earth observation data 

interpretations, which supports a wide range of scientific research and practical 

applications. By improving cloud detection methods, researchers and practitioners can 

significantly reduce misclassification errors and enhance the utility of satellite imagery 

for studying and monitoring the Earth's surface and atmosphere, contributing to better-

informed decision-making in areas like agriculture, disaster management, and climate 

change mitigation.

The tasks for the student:

1/  Review the literature. Review the existing cloud detection methods, focusing on deep 

learning approaches. Mention their advantages and disadvantages, especially in terms 

of handling spatial information and cloud boundary refinement.

2/ Choose and study in detail two methods, one standard (e.g. UNET) and one advanced 

(e.g. CDUNet). Understand how the advanced components work together to improve 

cloud detection accuracy.

3/ Choose, acquire, understand, and preprocess a cloud dataset: Collect dataset for 

Electronically approved by Ing. Magda Friedjungová, Ph.D. on 8 February 2024 in Prague.



training and testing the model, such as cloud datasets and SPARCS datasets. Prepare the 

data by performing any necessary preprocessing steps to ensure it is suitable for input 

into the deep learning model. The student will choose publicly available dataset.

4/ Implement and train the model: Implement the chosen models using the pytorch 

deep learning framework. Train the model on the prepared datasets, carefully adjusting 

parameters and settings to optimize performance. Utilize techniques like cross-

validation to ensure the model's generalizability.

5/ Evaluate the results: Evaluate the model's performance using relevant metrics, such 

as segmentation accuracy. Compare the results between the methods. Analyze some 

instances of misclassification or errors to understand the model's limitations.

6/ Document the process: Document the research process, model architecture, training 

procedure, evaluation results, and comparison with existing methods in detail. Analyze 

the implications of the findings for cloud detection and remote sensing.
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May 16, 2024



Czech Technical University in Prague
Faculty of Information Technology
© 2024 Jaroslav Hradil. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic. It has been submitted at
Czech Technical University in Prague, Faculty of Information Technology. The thesis is protected by the
Copyright Act and its usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis: Hradil Jaroslav. Detection of cloud coverage using advanced deep learning meth-
ods. Bachelor’s thesis. Czech Technical University in Prague, Faculty of Information Technology, 2024.



Contents

Acknowledgments vi

Declaration vii

Abstract viii

List of Abbreviations ix

Introduction 1
Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1 Cloud Detection 3
1.1 Importance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Satellite Imagery 5
2.1 Key Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1 Landsat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.1.1 Landsat-7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.1.2 Landsat-8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.2 Sentinel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.2.1 Sentinel 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.3 Others . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Deep Learning Background 9
3.1 Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1.1 Convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1.2 Pooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1.3 Transposed Convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Transformers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2.1 Attention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2.2 Multi-Head Attention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3.1 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3.2 Intersection over Union (IoU) . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3.3 F1 score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Related Work 16
4.1 Traditional Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.1.1 Threshold-Based Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.1.2 Temporal Change-Based Methods . . . . . . . . . . . . . . . . . . . . . . 16
4.1.3 Machine Learning Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 17

ii



Contents iii

4.2 Modern Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2.1 Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2.2 Transformers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.3 Other Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3.1 Cloud Shadow Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3.2 Cloud Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5 Examined Methods 21
5.1 U-Net . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2 SegFormer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.2.1 Hierarchical Transformer Encoder . . . . . . . . . . . . . . . . . . . . . . 23
5.2.2 MLP Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6 Implementation 25
6.1 Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.2 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.3 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.4 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.5 Hyperparameter Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

7 Evaluation 29
7.1 Performance Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.2 Cross-validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.3 Spatial Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.4 Cloud Boundary Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.6 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Conclusion 34

A Samples of Predicted Cloud Masks for Unseen Patches 35

Concents of the Attachment 49



List of Figures

3.1 Example of convolutional neural network architecture . . . . . . . . . . . . . . . 10
3.2 Example of convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 Max-pooling and avergage-pooling examples . . . . . . . . . . . . . . . . . . . . . 11
3.4 Example of transposed convolution . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.5 Architecture of transformer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.6 Confusion matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.1 Structure of related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.1 U-Net architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.2 U-Net overlap-tile strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.3 SegFormer architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6.1 Example of a patch and its corresponding cloud mask from the 38-Clouds dataset 26
6.2 Comparison of the class distributions in the train and test subsets. . . . . . . . . 27

7.1 Developement of loss and accuracy over epochs of the best U-Net . . . . . . . . . 30
7.2 Samples of predicted cloud masks with focus on spatial handling . . . . . . . . . 31
7.3 Samples of predicted cloud masks with focus on cloud boundary . . . . . . . . . 32
7.4 Example of a patch from the 38-Cloud dataset with its controversial mask . . . . 33

A.1 Samples of predicted cloud masks for unseen patches . . . . . . . . . . . . . . . . 36
A.2 Samples of predicted cloud masks for unseen patches . . . . . . . . . . . . . . . . 37
A.3 Samples of predicted cloud masks for unseen patches . . . . . . . . . . . . . . . . 38

iv



List of Tables

2.1 Spectral and spatial resolutions of Landsat-7 . . . . . . . . . . . . . . . . . . . . 6
2.2 Spectral and spatial resolutions of Landsat-8 . . . . . . . . . . . . . . . . . . . . 7
2.3 Spectral and spatial resolutions of Sentinel-2 . . . . . . . . . . . . . . . . . . . . 8

6.1 Configurations of hyperparameters tuned for U-Net . . . . . . . . . . . . . . . . . 28
6.2 Configurations of hyperparameters tuned for SegFormer . . . . . . . . . . . . . . 28

7.1 Performance comparison of the configurations of U-Net from the Table 6.1 . . . . 29
7.2 Performance comparison of the configurations of SegFormer from the Table 6.2 . 29
7.3 Performance comparison of the configurations of SegFormer from the Table 6.2 . 31
7.4 Validation accuracy for each fold of the 4-fold cross-validation . . . . . . . . . . . 31
7.5 Performance comparison of our best U-Net and SegFormer models with the results

from papers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

v



I would like express my sincere gratitude to my supervisor, Mgr.
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Abstract

Accurate cloud detection is a key component of the preprocessing needed to prepare optical
satellite imagery for various remote sensing applications. In recent years, numerous deep learning
methods for cloud detection, such as convolutional neural networks or visual transformer, have
been introduced, and this thesis aims to compare them.

In the thesis, current literature on cloud detection methods is reviewed, and the deep learning
architectures U-Net and SegFormer are investigated in detail. They are implemented in the Py-
Torch framework, trained on the 38-Cloud dataset, which consists of Landsat-8 satellite imagery.
Their performance is evaluated using accuracy, intersection over union (IoU) and F1 score.

The results show that SegFormer slightly outperforms the U-Net based architecture in terms
of accuracy, while U-Net slightly outperforms SegFormer in the IoU and F1 score. Moreover, the
U-Net based architecture has much shorter training time. This proves that even though being
relatively simple and old, U-Net is still relevant and efficient architecture today.

The findings of this study can help other professionals choose the most suitable deep learning
architecture for their use-case and provide a solid basis for further research.

Keywords cloud detection, optical satellite imagery, remote sensing, deep learning, U-Net,
SegFormer

Abstrakt

Přesná detekce mrak̊u je kĺıčovou součást́ı předzpracováńı satelitńıch sńımk̊u pro r̊uzné aplikace
dálkového pr̊uzkumu Země. V posledńıch letech byla navržena řada metod hlubokého učeńı pro
detekci mrak̊u, jako jsou např́ıklad konvolučńı neuronové śıtě nebo vision transformery, a ćılem
této práce je tyto metody porovnat.

V této práci je provedena rešerše aktuálńı literatury zabývaj́ıćı se detekćı mrak̊u a jsou po-
drobně zkoumány architektury U-Net a SegFormer. Ty byly implementovány ve frameworku
PyTorch a trénovany na datasetu 38-Cloud, který obsahuje sńımky ze satelitu Landsat-8. Výkon
těchto dvou metod je pak hodnocen pomoćı metrik přesnosti, Intersection over Union (IoU) a
F1 skóre.

Výsledky ukazuj́ı, že SegFormer mı́rně překonává architekturu založenou na U-Netu v přesnosti,
zat́ımco U-Net mı́rně překonává SegForer v metrikách IoU a F1. U-Net nav́ıc potřebuje výrazně
méně času k natrénováńı. To dokazuje, že i přesto, že je U-Net poměrně jednoduchý a starý,
stále z̊ustává relevantńı a efektivńı architekturou hlubokého učeńı.

Zjǐstěńı této práce mohou pomoci ostatńım odborńık̊um zvolit vhodný model hlubokého učeńı
pro jejich aplikaci a poskytuj́ı dobrý základ pro daľśı výzkum.

Kĺıčová slova detekce mrak̊u, optické satelitńı sńımky, dálkový pr̊uzkum Země, hluboké učeńı,
U-Net, SegFormer
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Introduction

Every day, almost every person on our planet relies on weather forecasts. From making simple
decisions about going for a walk, to farmers planning their spraying schedules, to managing
extreme weather and disaster management. The quality of weather forecasts, as well as the
quality of many other remote sensing applications such as climate monitoring, depends on the
quality of preprocessing of optical satellite imagery, where cloud detection is a crucial component.

The task of cloud detection in optical satellite imagery is non-trivial for two main reasons.
Firstly, clouds have variable characteristics and can vary widely in terms of their shape, size,
texture, or opacity. Secondly, they might be highly similar to other bright features in satellite
images, such as snow, ice, or reflective surfaces like rooftops or water surfaces.

To tackle these challenges, various novel deep learning-based methods, such as the U-Net
architecture-based RS-Net [1] or transformer architecture-based Cloudformer [2], were introduced
in recent years. However, the last paper reimplementing and comparing the performance of cloud
detection methods is from 2020 [3] and compares only traditional algorithms based mainly on
thresholding.

The aim of this thesis is therefore to conduct a review of modern methods based on deep
learning, to reimplement the two most relevant deep learning-based architectures, to select suit-
able datasets, and to test and compare their performance on these datasets. The objectives of
the work are described in more detail in the following subsection.

Objectives
This bachelor’s thesis aims to review the recently published cloud detection methods, focusing
on deep learning approaches, and to reimplement the most relevant ones and compare their
performance using the most relevant datasets.

The main goal of the research part of this bachelor’s thesis is to review literature and research
the existing cloud detection methods. The focus will be on deep learning approaches and their
respective advantages and disadvantages, especially in terms of handling spatial information and
cloud boundary refinement, and to study in detail at least two of them, one based on the U-Net
and one based on the transformer architecture. These will be reimplemented in the practical
part. The subsequent goal of the research part is to review the existing cloud detection datasets
as well as suitable evaluation metrics and choose the most relevant ones for the experiments.

The key objective of the practical part of this bachelor’s thesis is to reimplement the chosen
cloud detection methods and evaluate their performance on relevant datasets. That consists of
setting up the data loading pipeline, reimplementing the methods, setting up the model training
and hyperparameter tuning pipeline and evaluating the models using the chosen metrics. Finally,
the obtained results will be carefully examined and we will attempt to explain the limitations of
the chosen methods.

1
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Structure
This thesis is divided into seven chapters. The first chapter provides an introduction to the
domain of cloud detection, emphasizing its importance and the challenges it presents. Chapter
2 gives a brief overview of satellites, their key characteristics, and the most commonly used
satellite imagery datasets for cloud detection. Chapter 3 explains selected concepts of deep
learning that the reader needs to understand the subsequent chapters. Chapter 4 comprehensively
reviews the related work on cloud detection, and Chapter 5 describes the chosen methods for
reimplementation and experiments in detail. Chapter 6 explains the implementation, from the
selected datasets, through the hardware and software used, to the training procedure. Finally,
Chapter 7 discusses the results of the performed experiments.



Chapter 1

Cloud Detection

First, we will define the task of cloud detection in satellite imagery. The task of object detection
usually refers to identifying objects within an image and defining a bounding box around each
object of interest. However, in the domain of satellite imagery, it usually refers to delineating
the exact boundaries of clouds at the pixel level and providing a precise mask that highlights the
shape of the cloud—a task that is otherwise known as segmentation. Given that this designation
is more commonly used in scientific papers, we will adhere to it as well.

1.1 Importance
Various remote sensing applications across different domains rely on cloud-free satellite imagery.
To obtain cloud-free satellite imagery, the cloud detection is an essential part of the satellite
imagery preprocessing. Examples of such domains include, but are not limited to:

agriculture: crop health monitoring [4] or yield estimation [5, 6]

disaster response and management: floods monitoring [7, 8], hurricane damages mapping [9],
earthquakes and landslides detection [10] or forest fires monitoring [11, 12]

environmental monitoring: deforestation [13, 14], desertification [15] or size changes of water
bodies [16]

urban development monitoring [17].

However, according to [18], 67-68 percent of satellite imagery is on average obstructed by
clouds. Accurate cloud detection is therefore an essential part of the satellite imagery prepro-
cessing.

1.2 Challenges
As mentioned in the Introduction, the task of cloud detection in satellite imagery is challenging
for various reasons:

Variable cloud characteristics: Clouds can vary widely in terms of shape, size, texture, and
opacity, making it difficult to design an algorithm that reliably detects all the possible vari-
ations of clouds across different types of satellite imagery.

3



Challenges 4

Similarity to other features: Clouds can often look similar to other bright or white features
in satellite imagery, such as snow, ice, or reflective surfaces like metal rooftops or water
surfaces. This similarity often leads to misclassification, where clouds are either not detected
or non-cloud elements are incorrectly labeled as clouds.

Sensor limitations and variations: Different satellites have different sensors with varying
resolutions, spectral bands, and sensitivities. These differences make it challenging to design
an algorithm capable of detecting clouds consistently across satellite imagery from different
sources.

Complexity of dataset preparation: Researchers must first manually select a sufficiently large
and representative dataset of satellite images and then manually label it using annotation
software, such as eCognition and commercial MODIS, which is a process both time-consuming
and susceptible to human error. According to [19], the inter-annotator agreement was only
96 % when independent interpreter annotated one of the most used datasets, proving the
inherent susceptibility to human subjectivity.

Computational complexity: The datasets for training deep learning-based methods for cloud
detection in satellite imagery are large (see next section) which results in long training time
even when being run on high end GPUs [20].



Chapter 2

Satellite Imagery

Satellite imagery refers to images of Earth collected by imaging satellites orbiting the Earth,
operated by various government agencies and businesses. This chapter aims to briefly introduce
the characteristics of satellite imagery and the most commonly used datasets for cloud detection.

2.1 Key Characteristics
Satellite images are primarily defined by the following three main characteristics, which may
vary among satellites with different sensors:

Spectral resolution: Satellites capture data at various wavelengths across the electromagnetic
spectrum. Different spectral bands are sensitive to different cloud properties, such as water
vapor content and cloud thickness, which can significantly enhance the model’s ability to
segment clouds accurately.

Spatial resolution: Refers to the size of one pixel on the ground. High spatial resolution
helps in distinguishing fine details within cloud formations, which is essential for accurate
segmentation by deep learning models. Sensors for various spectral bands might have different
spatial resolution.

Temporal resolution: Also called the revisit time, it refers to the frequency at which satellites
capture imagery of the same area. Higher temporal resolution allows for better tracking of
cloud movement and development over time, and some of the proposed methods utilize it for
cloud segmentation. [21, 22, 23]

2.2 Datasets
According to the UCS Satellite Database [24], there were 7,560 satellites orbiting Earth as of 2023.
Of these, approximately 1,260 are designated for Earth observation and have some capability of
satellite imaging.

Based on the analysis of [25], the satellite imagery most commonly used for cloud detection
datasets comes from the Landsat Program by National Aeronautics and Space Administration
(NASA), the Sentinel Program by European Space Agency (ESA), and the Gaofen Program by
China National Space Administration (CNSA).

5
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Spectral Band Wavelength range (µm) Resolution (m)
1 Blue 0.45–0.52 30
2 Green 0.52–0.60 30
3 Red 0.63–0.69 30
4 Near-infrared 0.77–0.90 30
5 Short-wave Infrared 1.55–1.75 30
6 Thermal 10.40–12.50 60
7 Mid-Infrared 2.08–2.35 30
8 Panchromatic 0.52–0.90 15

Table 2.1 Spectral and spatial resolutions of Landsat-7 [21]

2.2.1 Landsat
The Landsat program, launched in 1972 by NASA, is the longest-running program for Earth’s
satellite imagery acquisition. Since its inception, a total of nine satellites, named Landsat 1
through Landsat 9, have been launched within this program, with the most recent being launched
in 2021 [26]. The datasets for cloud detection most commonly utilize the satellite imagery from
the Landsat-7 and Landsat-8 satellites.

2.2.1.1 Landsat-7
Launched in 1999, Landsat-7 captures high-resolution imagery while orbiting at an altitude of
705 kilometers [21]. The revisit time, which is the period in which it captures the same land
under the same viewing angle, is 16 days. The spectral and spatial resolutions are summed up
in Table 2.1.

The most used dataset based on its imagery is the L7-Irish dataset [27, 28]. It contains
206 Landsat-7 scenes that are evenly divided among 9 different biomes around the Earth, with
manually generated cloud masks, which distinguish three classes: cloud, thin cloud, and clear.
Additionally, 45 scenes are labeled for cloud shadows too. The scenes were acquired between
June 2000 and December 2001.

2.2.1.2 Landsat-8
Launched in 2013 as the successor to Landsat-7, Landsat-8 is equipped with two advanced sensors,
the Operational Land Imager (OLI, bands 1-9) and the Thermal Infrared Sensor (TIRS, bands
10-11), improving both the spectral and spatial resolution of the imagery and among others
allowing researchers to detect clouds more accurately [22]. The revisit time of Landsat-8 is 16
days and the spectral and spatial resolutions are summarized in Table 2.2.

Numerous popular datasets for cloud detection utilize the Landsat-8 imagery:

L8-Biome [29, 28]: Consists of 96 Landsat-8 scenes evenly divided between eight different
biomes around the Earth with manually generated cloud masks, which distinguish three
classes: cloud, thin cloud, and clear. Additionally, 32 scenes are labeled for cloud shadows as
well. The scenes were acquired between April 2013 and October 2014 with the resolution of
8000 × 8000 pixels.

L8-SPARCS [30]: Contains 80 Landsat-8 scenes with manually generated masks, that dis-
tinguish six different classes: cloud, cloud shadow, snow/ice, water, flooded and clear. The
size of each scene is 1000 × 1000 pixels, making this dataset much smaller than the L8-Biome
dataset.
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Spectral Band Wavelength range (µm) Resolution
1 Coastal Aerosol 0.43–0.45 30
2 Blue 0.45–0.51 30
3 Green 0.53–0.59 30
4 Red 0.64–0.67 30
5 Near-infrared 0.85–0.88 30
6 Short-wave Infrared 1 1.57–1.65 30
7 Short-wave Infrared 2 2.11–2.29 30
8 Panchromatic 0.50–0.68 15
9 Cirrus 1.36–1.38 30
10 Thermal Infrared 1 10.6–11.19 100
11 Thermal Infrared 2 11.5–12.51 100

Table 2.2 Spectral and spatial resolutions of Landsat-8 [22]

38-Cloud [31, 32]: Was created by dividing 38 Landsat-8 scenes into 384 × 384 patches and
constitutes of 8,400 such patches for training and 9,201 patches for testing. The number
of bands is reduced to four, keeping only red, green, blue and near-infrared. According to
authors, using all the bands might slightly improve the accuracy, but these bands are provided
by most satellites, making the algorithm trained using this dataset more universal.

95-Cloud [31, 32, 33]: Is an extension of the 38-Cloud dataset. The number of training scenes
is increased to 95, resulting in 34,701 patches, while the test set remains the same. It is worth
mentioning that most scenes are from North America.

2.2.2 Sentinel
The Sentinel missions are a key part of the Copernicus program, managed by the European
Commission and aims to provide comprehensive datasets for Earth observation. As of 2024,
there have been six missions named Sentinel-1 through Sentinel-6, each focusing on collecting
different observations and each based on a constellation of two satellites to provide redundancy
and increased coverage [34].

2.2.2.1 Sentinel 2
The datasets for cloud detection utilize observations from the Sentinel-2, which focuses on high-
resolution multi-spectral imaging for land monitoring [23]. It has 13 high-resolution spectral
bands allowing to improve the precision of remote sensing applications, which are summed up
in the Table 2.3. The revisit time under the same viewing angle is 10 days when using only one
satellite, and 5 days when using imagery from both Sentinel-2 satellites.

Numerous commonly used datasets for cloud detection utilize the Sentinel-2 imagery:

S2-Hollstein [35]: Is a pixel-wise dataset that consists of 5,647,725 labeled pixels from various
regions around the Earth. The labels distinguish six classes: cloud, cirrus, snow/ice, shadow,
water and clear sky.

S2-BaetensHagolle [36, 37]: Contains 38 Sentinel-2 scenes from ten different locations around
Earth to ensure diversity that were manually labeled for six categories: land, water, snow,
high clouds, low clouds, and cloud shadows. The scenes were acquired during 2017 and 2018.

WHUS2-CD+ [38, 39]: Consists of 36 Sentinel-2 scenes from various areas distributed around
mainland China. The scenes are labeled at 10-meter resolution, and the labels distinguish
only classes: clear and cloud.
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Spectral Band Central wavelength (µm) Bandwith (nm) Resolution
1 Coastal aerosol 0.443 21 60
2 Blue 0.490 66 10
3 Green 0.560 36 10
4 Red 0.665 31 10
5 Vegetation Red Edge 1 0.705 15 20
6 Vegetation Red Edge 2 0.740 15 20
7 Vegetation Red Edge 3 0.783 20 20
8 Near-infrared 0.842 106 10
9 Narrow Near-infrared 0.865 21 20
10 Water vapor 0.945 20 60
11 Short-wave Infrared 1 1.375 31 60
12 Short-wave Infrared 2 1.610 91 20
13 Short-wave Infrared 3 2.190 175 20

Table 2.3 Spectral and spatial resolutions of Sentinel-2 [23]

2.2.3 Others
Gaofen: The Gaofan series is a fleet of high-resolution satellites developed and operated
by China National Space Administration (CNSA) for both civilian and military purposes.
There are various datasets based on its imagery, such as GF1-WHU [40], GF1MS-WHU and
GF2MS-WHU [41], or AIR-CD [42], used almost solely by Chinese research teams. They
differ in the number of scenes, covered regions, distinguished classes, and resolutions.

HRC-WHU [43]: This dataset comprises 150 high-resolution scenes (0.5 m to 15 m spatial
resolution, 3 RGB channels) from Google Earth that were labeled for clouds. The scenes
are globally distributed across five main land-cover types: water, vegetation, urban, snow/ice
and barren.



Chapter 3

Deep Learning Background

This bachelor thesis covers the application of deep learning methods for the cloud detection
task. This chapter describes selected concepts in neural networks and deep learning necessary
to understand this thesis.

It is assumed that the reader is familiar with basic neural networks concepts, such as percep-
tron, activation functions, loss function, backpropagation, gradient descent and optimizers like
Adam, as well as with basic model validation techniques, particularly the train validation test
split and cross-validation.

3.1 Convolutional Neural Networks
A convolutional neural network (CNN) is a type of neural network that is designed to learn
spatial features within grids of data [44]. It is widely used for tasks involving pattern recognition
in images, such as object detection, image classification, or image segmentation.

In general, CNNs consist of several building blocks, which are the convolutional layers, pool-
ing layers, and fully connected layers. A block of one or multiple convolutional layers, each
immediately followed by an activation function to introduce nonlinearity, with one pooling layer
at the end, is repeated multiple times to perform the feature extraction. The obtained feature
maps are then passed to the fully-connected layers, with the last fully-connected layer computing
the output, such as predicted label, as shown in Figure 3.1.

Thanks to the pooling layers, the feature maps that are passed to the fully-connected layers
have much smaller dimensions than the original input data. That greatly reduces the number of
parameters of the fully-connected layers, makes the computations more efficient, and allows the
CNNs to process high-resolution data.

3.1.1 Convolution
The mathematical operation of convolution is an essential component of each convolutional layer.
The convolution is performed using a kernel, which is a two-dimensional array of weights of
dimensions k×k, that is slided across a two-dimensional array of dimensions H ×W representing
an image to calculate the dot product of the kernel and the part of the image currently overlapping
with the kernel, where k is the kernel size and H and W the height and width of the input image.

This produces a two-dimensional output, usually called feature or activation map, and the
network iteratively learns what kernels are activated when sliding over a particular visual feature,
such as specifically oriented edge or a specific color [46]. Hence the kernels are often called

9
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Figure 3.1 An example of CNN architecture. Image from [45]

learnable, as their weights are adjusted during the training process. The calculation of feature
map is illustrated in Figure 3.2.

Figure 3.2 Example of convolution with 3 × 3 kernel, stride of 2 and no padding. Image from [47]

Usually, there is a need to detect more features or to extract features from images with more
than one color channel. In such cases, a collection of multiple kernels is used, which is called a
filter, or a learnable filter. From now on, kernel and filter will be used interchangeably.

Besides the kernel size k, convolution has two additional parameters, stride and padding.
Stride represents the size of the step that the kernel makes when moving to the next position.
Padding refers to adding extra pixels around the borders of the input to preserve information
near the edges. The final dimensions of the output feature map can then be computed as

(H + 2p + k

s
+ 1,

W + 2p + k

s
+ 1, nk), (3.1)

where H and W are the dimensions of the input image or feature map, p is the size of the
padding, k is the size of the kernel, s is the stride and nk is the number of kernels in the filter.
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3.1.2 Pooling
Pooling layers are used in CNNs to progressively reduce the spatial dimensions of images and
feature maps, while retaining essential information to represent the input data efficiently and
to reduce the computational complexity of the following layers. Similarly to the convolution,
it can be imagined as a kernel of size k × k sliding across the input image or feature map and
applying an aggregation function to the values within the kernel. The most commonly used
aggregation functions are maximum and average, which have edge extracting and smoothing
effect, respectively. Also similarly to the convolution, their configurable hyperparameters are
the kernel size and stride [46]. On the other hand, unlike convolution, they have no trainable
weights. This process is also known as downsampling and is illustrated in Figure 3.3.

Figure 3.3 Max-pooling and avergage-pooling examples. Image from [48]

3.1.3 Transposed Convolution
This operation is not used in traditional CNNs, but it is necessary to explain as it is used in
more advanced methods introduced later in the thesis.

The transposed convolution is similar to a regular convolution, except that it performs the
convolution operation in the opposite direction. While convolution reduces the input image or
feature map dimensions by sliding a kernel across it, transposed convolution increases the spatial
dimensions of the input feature map by applying a kernel that effectively projects the input
feature map onto a larger grid, as demonstrated in Figure 3.4. This is often called upsampling,
and the size of the output is again controlled by the kernel size, stride and padding. Similarly
to convolution, the weights in the kernel are learnable.

It is worth mentioning that transposed convolution should not be confused with deconvolu-
tion. If the output of convolution is deconvoluted, the result would be the same as the original
input for the convolution. If the output of convolution is passed through a transposed convolu-
tion, the result is not the same as the original input for the convolution, it only has the same
dimensions as it has been upsampled.

3.2 Transformers
Transformer is a deep learning architecture, first introduced for natural language processing
(NLP) [50], but later successfully extended to image processing tasks [51]. The architecture
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Figure 3.4 Example of transposed convolution with 2 × 2 kernel, stride of 1 and no padding. Image
from [49]

consists of an encoder that encodes the input sequence into a more efficient representation that
captures the relationships between different parts of the input, and a decoder that decodes it
and generates the output sequence, as shown in the Figure 3.5. Both components rely on a
mechanism known as self-attention to process the sequential data, such as natural language or
imagery. However, unlike other architectures that process the data sequentially, transformers
can be parallelizable.

3.2.1 Attention
The attention mechanism, originally introduced in [50], simulates how human attention works
by assigning different levels of importance to different parts of the sequential input, be it words
in natural language or patches of an image.

It allows the model to focus on specific parts of the input at each decoding step by enabling
the decoder to periodically revisit the input sequence. That is done by the encoder producing a
representation of the same length as the input sequence, while the decoder receives a weighted
vector of these representations where the weights decide how much attention should be given to
each input token. This way, the model focus only to the parts of the input that are likely to be
relevant for the current prediction.

The attention usually used in transformers is known as scaled dot-product attention and is
defined as

Attention(Q, K, V ) = Softmax(QKT
√

dk

)V. (3.2)

The inputs to the attention function are the queries, keys, and values, which are all vectors
derived from the same input sequence through linear transformations. For each position in the
input sequence, a query vector is computed and then used to score its relationship with every
key vector from all positions in the sequence. The scoring is done through a dot product, which
is then scaled down by the square root of the dimension of the key vector. The scaling helps to
stabilize the gradients during training, as it prevents the softmax function from having extremely
small gradients in cases when the dot product is large. The softmax function then converts them
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Figure 3.5 The architecture of transformer. Image from [50]

into probabilities, which determine how much each part of the input sequence contributes to the
output at each position. The probabilities add up to 1. Finally, the output of softmax function
is multiplied by the value vectors, which aggregates the information from different parts of the
input sequence, weighted by their relevance to the query, into a single output vector for each
position.

To sum it up, each output vector of the attention mechanism is a weighted sum of the value
vectors, where the weights are the softmax probabilities. The output then serves as an input for
the next layer in the transformer.

3.2.2 Multi-Head Attention
This mechanism further improves the ability of transformers to focus on different parts of the
input sequence. It consists of multiple attention heads, each performing the scaled dot-product
attention independently with different linear transformations of the input vectors. The multiple
outputs are then concatenated and linearly transformed into the expected dimension. That
allows the transformer to capture more complex relationships within the input sequence.

3.3 Evaluation Metrics
Measuring the performance of models and the quality of their predictions is a crucial part of ma-
chine learning as the evaluation metrics allow us to compare the results of various architectures.
This section introduces metrics relevant for evaluating the task of image segmentation, which is
essentially pixel-wise classification.
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First, we will introduce the confusion matrix, which is a tabular summarization of the per-
formance of a classification model. The confusion matrix consists of four values:

True Positives (TP): number of positive samples correctly classified as positive

False Positives (FP): number of negative samples incorrectly classified as positive

True Negatives (TN): number of negative samples correctly classified as negative

False Negatives (FN): number of positive samples incorrectly classified as negative

It compares the actual labels with the predicted labels, provides insight into the types of
errors made by the model, and its values are also necessary for calculating other metrics. The
confusion matrix is visualized in Figure 3.6.

Figure 3.6 Confusion matrix. Image from [52]

3.3.1 Accuracy
Pixel accuracy is the proportion of correctly classified pixels to the total number of pixels. It is
easy to understand metric, however, it might be misleading when handling imbalanced classes.
For example, in a scenario where one of the classes is much more frequent than the other, high
accuracy can be achieved by predicting the dominant class. It is defined as

Accuracy = TP + TN

TP + TN + FP + FN
. (3.3)

Accuracy can take a value between zero and one, where zero indicates that no correct pre-
dictions were made, and 1 indicates perfect prediction.

3.3.2 Intersection over Union (IoU)
Intersection over union, also known as the Jaccard index, measures the overlap between the
predicted mask and the ground truth. As the name suggests, it is the ratio of the intersection of
the mask with the ground truth to the union of the mask with the ground truth. Compared to
accuracy, it gives better measurement of how much the predicted mask overlaps with the ground
truth. However, it can penalize predictions with small mismatches quite heavily, especially when
the segmentation mask is relatively small. It can be defined as
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IoU = TP

TP + FP + FN
(3.4)

or alternatively as

IoU = ∥A ∩ B∥
∥A ∪ B∥

, (3.5)

where A is the predicted mask and B is the ground truth. IoU can take a value between one
and zero, where zero means no overlap between the predicted and actual mask, while 1 means
perfect overlap.

3.3.3 F1 score
The F1 score, also known as Dice score or Dice coefficient, is similar to IoU, but emphasizes the
overlap between the predicted mask and the ground truth more. The sensitivity to the overlap is
crucial in fields such as medical image segmentation, where accurate boundary detection is vital.
Although less penalizing than IoU, the F1 score can still be influenced by small mismatches. It
is defined as

F1 = 2 · TP

2 · TP + FP + FN
(3.6)

or alternatively as

F1 = 2∥A ∩ B∥
∥A ∪ B∥

, (3.7)

where A is the predicted mask and B is the ground truth. The F1 score can take a value
between one and zero, where zero indicates completely incorrect prediction with either precision
or recall being zero, while one indicates completely correct prediction with both precision and
recall perfect.



Chapter 4

Related Work

The majority of the research conducted to date can be divided into two categories: traditional
methods, such as physical rule-based thresholding algorithms, and deep learning-based methods,
such as convolutional neural networks or transformers, which are the focus of this bachelor’s
thesis.

4.1 Traditional Methods
The traditional cloud detection methods can be divided into three main categories: threshold-
based methods, temporal change-based methods, and machine learning (excluding deep learning)
methods.

4.1.1 Threshold-Based Methods
These methods are usually constructed based on the physical features of clouds that can be
extracted by thresholding the spectral bands of the satellite imagery, such as high brightness,
low temperature, and high elevation [53]. The thresholds can be fixed or dynamic and are
usually determined through initial manual judgment and then automatically and systematically
optimized [54]. These methods are widely used in cloud detection due to their simplicity and
relatively fast inference.

For example, the Automatic Cloud Cover Assessment (ACCA) algorithm [55] contains 26
thresholding conditions based on which it segments the clouds in the images and has been used
as the official method to evaluate the quality of the Landsat-7 satellite imagery. Another relevant
examples of this approach are FMask [56, 54] or Sen2Cor [57], that are used to generate cloud
masks that are distributed together with Landsat 4-8 and Sentinel-2 imagery, respectively.

However, this approach has some limitations. Most importantly, this approach rely heavily on
the contrast between clouds and the earth surface and cannot cope with complex surfaces well due
to the phenomenon of homospectral foreign matter [58]. That usually results in misclassification
of other bright and highly reflective features such as snow, ice, water surfaces or large metal
rooftops as clouds.

4.1.2 Temporal Change-Based Methods
This approach treats the cloud detection task as a change detection task and achieves it by
detecting sudden changes in image time series. Pixels with abrupt increase in reflectance are
more likely to be clouds, while on the other hand pixels with abrupt decrease in reflectance
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are more likely to be land cover. The cloud-free land is assumed to change relatively smoothly
compared to the sudden changes in reflectance caused by clouds.

For example, [59] designed a simple method called multi-temporal cloud detection (MTCD)
that detects clouds by detecting steep increase of reflectance of a pixel in the blue band and
verifying that the increase correlates with the neighbouring pixels.

[60] proposed Tmask, which combines the threshold-based Fmask method and multi-temporal
imagery for cloud detection. The method first applies the Fmask algorithm to obtain the cloud
masks and then models mask changes based on multi-temporal imagery to detect final cloud
masks, significantly improving performance compared to the mono-temporal Fmask method.

Another relevant method based on temporal changes and used mostly for the European
Sentinel-2 imagery is the MACCS-ATCOR Joint Algorithm (MAJA) [61], which is a joint project
of French and German research teams and combines temporal change-based and threshold-based
approach: it detects low clouds using their spectral differences relative to the most recent cloud-
free reference image, but high clouds are detected using a single-date imagery.

In general, temporal change-based cloud detection methods benefit from the use of multi-
temporal information and usually outperform the mono-temporal threshold-based methods. How-
ever, this approach requires either selection of a cloud-free reference image or construction of a
cloud-free reference image by combining multi-temporal images over a short period of time, but
both is difficult to impossible in areas with rapid land cover changes.

4.1.3 Machine Learning Methods
These methods treat the cloud detection task as an image classification task by constructing and
optimising a machine learning model that classifies each pixel for either clear or clouds. For this
approach, it is essential to select sufficiently representative training data and use appropriate
strategies to optimise the model parameters so that the model can generalise for unseen satellite
imagery.

Traditional machine learning algorithms, such as classical Bayesian [62], random forests [62,
63, 64, 65], XGBoost [66, 67], support vector machines (SVM) [68, 69, 70], and simple neural
networks [71, 72], have been widely used for cloud detection in satellite imagery. Furthermore,
some papers proposed ensembles combining these algorithms or domain-specific improvements
of these methods [73, 74].

Summarily, with sufficient amount of sufficiently diverse training data, the machine learning
methods can achieve better cloud detection results than traditional methods, but they still rely
almost solely on spectral features and have only very limited capability to exploit the spatial
features.

4.2 Modern Methods
With the acceleration of GPU, deep learning approaches have witnessed significant breakthroughs
in recent years and have been successfully applied in various domains, including remote sensing
[75, 76], as they have powerful feature extraction capabilities and are able of learning from both
spatial and spectral features.

4.2.1 Convolutional Neural Networks
Inspired by the great performance of CNNs such as FCNs [77], SegNet [78], U-Net [79] or
DeepLabV3+ [80] for semantic segmentation tasks in other fields, numerous papers adopted
these methods for cloud detection.

For example, [81, 82] proposed methods for cloud detection based on the FCNs called Cloud-
FCN and Cloud-Net respectively, [83] utilised the SegNet architecture for cloud detection and
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[1] introduced cloud detection methods based on the U-Net architecture. [84, 85] extended the
U-Net based architecture with spatial attention and [86] investigated thoroughly the effect of
U-Net parameters on its receptive field.

[87, 88] proposed deep learning-based cloud detection algorithms exploiting multi-scale fea-
tures. In the context of deep learning for cloud detection in satellite imagery, multi-scale features
refer to the extraction and usage of features at multiple resolutions to effectively detect clouds.
According to the results and analysis of [87, 88], this approach is beneficial for two main reasons.
Firstly clouds can appear in various sizes and shapes, and some types of cloud coverage can have
distinct textures and boundaries that might be more or less visible at different scales. Secondly,
different satellites are orbiting at different heights, meaning that the same type of clouds look
differently in satellite imagery from different satellite, and using multi-scale features may allow
the detection algorithm to be used for imagery from different satellites.

[89] introduced weakly supervised deep learning-based cloud detection algorithm (WDCD)
that reduces the labour needed to annotate the training data by needing less annotated data
to train the model and [90] proposed a deformable contextual and boundary weighted network
(DABNet) that improves the detection of clouds at their boundaries.

Keeping in view the high computational complexity and a large number of parameters of
deep convolutional neural networks, attention was also paid to lightweight models for devices
with limited computational resources, such as micro-satellites. For example [91] developed a
lightweight U-Net based model and [92] designed a lightweight model based on DeeplabV3+
architecture with attention for Landsat-9 imagery, while [93] proposed a lightweight network
fusing multi-scale spectral and spatial features tailored for Sentinel-2 imagery.

4.2.2 Transformers
The CNN-based methods mentioned in the previous chapter achieve very good results, however,
their receptive field is inherently local due to convolution operations, which makes it challenging
to capture global semantic features and long-range dependencies.

In other domains, this limitation of CNNs for semantic segmentation tasks was successfully
tackled by using Vision Transformer (ViT) models recently, such as SETR [94], SegFormer [95],
MaskFormer [96], Mask2Former [97], Segmenter [98] and lightweight MobileViT [99]. They use
self-attention mechanism which allows them to model both local and global features of an image.
For large inputs such as satellite imagery data, transformers can be more efficient since they can
be parallelized. They also proved efficient in other remote sensing applications [100].

Compared to CNNs, much less research has been done on utilisation of transformers for cloud
detection tasks. [101] introduced a transformer-based model for Sentinel-2 imagery over India.
[2] proposed Cloudformer, a model with architecture that combines CNNs with transformer, and
CloudformerV2 [102] and CloudformerV3 [103] further improves the accuracy and reduces the
training time. [104] designed CloudViT based on the lightweight MobileViT in order to control
the large number of parameters.

They achieved better performance than CNN-based models, as the transformer-based models
attend to every part of the image and are able to capture global semantic features exploiting
both spectral and spatial features. On the other hand, it makes the transformer-based models
even more computationally expensive to train [105].

The structure of related work is shown in Figure 4.1.
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4.3 Other Related Work

4.3.1 Cloud Shadow Detection
Numerous papers aim to detect not only clouds, but cloud shadows as well [54, 106, 107], as
detection of them is also important for many remote sensing applications in various domains
such as agriculture. The methods employed for this task are similar to the methods for cloud
detection described above, the only difference is the number of classes detected.

4.3.2 Cloud Removal
Some related papers go even one step further and aim to remove the detected clouds and recover
the pixels obstructed by clouds using various approaches such as generative adversarial networks
(GANs) [108, 109].



Chapter 5

Examined Methods

This chapter provides a detailed description of selected methods that are implemented in the
following chapter, namely U-Net and SegFormer. By choosing SegFormer, we slightly deviate
from the assignment, which mentions CDUnet as an example of an advanced model. CDUnet is
based on U-Net enhanced with a spatial attention module, which was introduced to establish the
cloud spatial position information [85]. However, a transformer-based model inherently captures
global spatial features more effectively [95], and therefore we consider it a more suitable choice for
examination. From the transformer-based models mentioned in the previous chapter, SegFormer
was chosen, particularly due to its state-of-the-art performance, but also because, unlike other
models, its architecture is clearly and transparently described in [95].

5.1 U-Net
The U-Net architecture has been first proposed for biomedical image segmentation in [79]. It
consists of three main parts: the contracting path consisting of encoder layers, the bottleneck,
and the expansive path consisting of decoder layers. These parts are typically visualized in the
shape of the letter U, as can be seen in the Figure 5.1, hence the name.

In the contracting path, each encoder layer consists of repeated convolutions, each followed
by a nonlinear function such as ReLU, and a pooling operation for downsampling. The nonlinear
function is crucial as it allows the neural network to learn and model complex patterns and
relationships that are not possible to capture using only linear operations. The convolution and
nonlinear function can be repeated multiple times in one encoder layer, extracting and learning
the image features. The pooling operation then reduces the resolution of the input image in
order to reduce the computational complexity.

The bottleneck is similar to the encoder layers, as it consists of convolution and nonlinear
function. The only difference is that it lacks the pooling operation.

In the expansive path, each decoder layer starts with upsampling the output of the previous
decoder layer or the bottleneck. That is done by using a transposed convolution, which increases
the resolution while decreasing the number of features. At the final layer a 1x1 convolution is
used to map each feature map to the desired number of classes.

In each encoder layer, fine details and higher spatial frequency are lost, as the convolution
and pooling operations act as a low-pass filter. To address this, [original paper] introduced skip-
connections, which concatenate feature maps before pooling from the contracting path with the
respective upsampled feature maps from the expanding path. This is illustrated be the grey
arrows in the Figure 5.1.

The U-Net architecture only uses the part of the convolution for which the full context is
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Figure 5.1 U-Net architecture as proposed in [79]. The blue boxes represent the multi-channel feature
maps, while the number of channels is denoted on top of each of them. The resolution of each feature
map is provided at the lower left edge of each box. The white boxes correspond to the feature maps
copied by the skip connections. The arrows denote the different operations. Image from [79]

available in the input image. This allows for segmentation of arbitrarily large images using an
overlap-tile strategy as illustrated in Figure 5.2. The missing context around the edges of the
input image is extrapolated by mirroring the input image. This approach is crucial for making
predictions for high resolution imagery, as the resolution would otherwise be limited by the GPU
memory.

In conclusion, U-Net is simple, yet powerful architecture, that has been applied in various
domains, including the cloud detection task [1, 84].

5.2 SegFormer
This section introduces SegFormer [95], a transformer-based model for semantic segmentation.
As depicted in Figure 5.3, SegFormer consists of two main parts: a hierarchical transformer
encoder to generate multi-scale features, and a lightweight MLP decoder to fuse these multi-
scale features, and thus combining both local and global attention, to obtain the final semantic
segmentation masks.

Given an input image of size H × W × 3, it is first divided into a grid of patches of size 4 × 4,
where each patch is treated somewhat like a token in NLP transformers: flattened, and linearly
projected to a higher-dimensional space. These patches are then used as input to the hierarchical
transformer encoder to obtain multi-scale feature maps at 1

4 , 1
8 , 1

16 and 1
32 of the original input

image resolution. The obtained multi-scale feature maps are then passed to the MLP decoder to
predict segmentation mask at a H

4 × W
4 ×Ncls resolution, where Ncls is the number of categories.
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Figure 5.2 The overlap-tile strategy allows for segmentation of arbitrarily large images. Segmenta-
tion of the yellow area requires input image information from the blue area, which is extrapolated by
mirroring. Image from [79]

5.2.1 Hierarchical Transformer Encoder
The goal of the hierarchical transformer is to generate multi-scale features to improve the se-
mantic segmentation performance by capturing both local and global features. The hierar-
chical feature map is, given an input image with a resolution of H × W × 3, constructed as

H
2i+1 × W

2i+1 × Ci, where i ∈ {1, 2, 3, 4}, and Ci+1 is larger than Ci, using patch merging.
The patch merging process, as proposed in ViT [51], unifies a N ×N ×3 patch into a 1×1×C

vector, which can be easily extended to unify a 2 × 2 × Ci feature map into a 1 × 1 × Ci+1
vector. This is utilized for the construction of hierarchical feature maps, as for example to
obtain H

8 × W
8 × C2 from H

4 × W
4 × C1. To allow for continuity around the borders of patches,

overlapped patch merging is used with the following parameters: K = 7, S = 4andP = 3 where
K is the patch size, S is the stride between two adjacent patches and P is the padding size.

Self-attention is computationally the most expensive part of the encoder. In the paper that
introduced self-attention [50], each of the heads Q, K and V have same dimensions N ×C, where
N = H ×W is the length of the sequence, and the computational complexity for self-attention as
defined in Equation 3.2 is O(N2) [50], which is limiting for high resolution imagery. Therefore,
the SegFormer architecture uses the following sequence reduction that was introduced in [110]

K̂ = Reshape(N

R
, C · R)(K)

K = Linear(C · R, C)(K̂),
(5.1)

where K is the sequence to be reduced, R is the reduction rate, Reshape( N
R , C ·R)(K) denote

reshaping K to the shape of N
R ×(C ·R), and Linear(Cin, Cout)(·) denotes a linear layer that takes

Cin-dimensional tensor as input and outputs a Cout-dimensional tensor. After the reduction, the
new K has dimensions N

R × C, resulting in the complexity of the self-attention to O( N2

R ). In the
default configuration of SegFormer, the R is set to 64, 16, 4and1 from first transformer block to
the last one, respectively [95].

The ViT [51] and similar models use positional encoding to retain the positional information of
each patch, since the self-attention treats each input independently of its position in the sequence.
Without positional encoding, the transformer-based models would lose the spatial information.
The SegFormer authors however argue, that positional encoding is not necessary for retaining the
positional information, and use the findings of [111] that the positional information is implicitly
encoded in CNNs. Based on that, Mix Feed Forward Network (Mix-FFN) is designed, which
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Figure 5.3 The SegFormer architecture consists of two main parts: a hierarchical transformer encoder
to extract multi-scale features, and a lightweight MLP decoder to fuse these multi-scale features, and
thus obtain the final semantic segmentation mask by combining both local and global features. Image
from [95]

incorporates convolution operation and an MLP directly into the feed-forward network instead.
That can be formulated as

xout = MLP(GELU(Conv3×3(MLP(xin)))) + xin, (5.2)
where xin is the output from the self-attention and GELU is the Gaussian Error Linear Unit.

5.2.2 MLP Decoder
A lightweight decoder consisting only of MLP layers is used, which is enabled by the hierarchical
transformer encoder that has larger receptive field than CNNs.

The decoder consists of four parts. Firstly, multi-scale features from the encoder are passed
through an MLP layer to unify the channel dimension. Secondly, the features are upsampled
to 1

4 th of original resolution and concatenated together. Thirdly, the concatenated features are
fused using another MLP layer. Finally, the last MLP layer predicts a segmentation mask M
with resolution of H

4 × W
4 × Ncls based on the fused features. This can be formulated as

F̂i = Linear(Ci, C)(Fi), ∀i

F̂i = Upsample(H

4 × W

4 )(F̂i), ∀i

F = Linear(4C, C)(Concat(F̂i)), ∀i

M = Linear(C, Ncls)(F ),

(5.3)

where Ncls denotes the number of categories, M denotes the predicted segmentation mask,
and Linear(Cin, Cout)(·) denotes a linear layer that takes Cin-dimensional tensor as input and
outputs a Cout-dimensional tensor.

In conclusion, SegFormer is simple, yet efficient transformer-based architecture for semantic
segmentation. Thanks to the hierarchical transformer encoder and MLP decoder, the SegFormer
does not need any too complex hand-crafted modules common in similar methods, leading to
both lower computational efficiency and better performance.



Chapter 6

Implementation

This chapter introduces the technologies used for implementation and training of the models,
describes the used dataset and how it has been preprocessed as well as the specific model archi-
tectures and the training pipeline.

6.1 Technologies

The project was implemented in Python 3.111 using deep learning framework PyTorch 2.2 [112]
with CUDA 12.12.

The deep learning models were trained using two NVIDIA A100 Tensor Core GPUs with
40 GB of high-bandwidth memory, which is a high-performance GPU designed specifically for
training large deep learning models, and which was provided by the Data Science Laboratory at
FIT CTU.

Moreover, the following machine learning libraries were used:

NumPy [113] for array operations,

Python Imaging Library3 (PIL) for imagery preprocessing,

Python NVIDIA Management Library4 (pynvml) for choosing the currently less busy GPU,

scikit-learn [114] for cross-validation,

HuggingFace5 PyTorch-based datasets, transformers [115] and evaluate for implementation
of SegFormer,

Matplotlib [116] for visualizations.

The implemented code is attached to this bachelor thesis, mostly in the form of commented
Jupyter notebooks.

1https://www.python.org/downloads/release/python-3110/
2https://pytorch.org/get-started/locally/
3https://pillow.readthedocs.io/en/stable/
4https://pypi.org/project/pynvml/
5https://huggingface.co/docs
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6.2 Dataset
The dataset chosen for the experiments is the 38-Cloud dataset mentioned in Section 2.2.1.2. It
is sufficiently large and representative, and also used in papers such as [2] and [84], allowing us
to verify the performance of our models.

It consists of 38 scenes from various biomes acquired by the Landsat-8 satellite that are
divided into 8,400 patches with the resolution of 384 × 384 and labeled for clouds. The number
of bands is reduced from the 9 that Landsat-8 captures to four, keeping red, green, blue and
near-infrared, as these are usually provided by other satellites such as Sentinel-2 or Gaofen-2 as
well [31, 32].

The patches are separated into bands and each band is stored as a one channel TIF file. The
preprocessing therefore consists of combining the separate bands into a multi-channel image,
using the NumPy and PIL libraries, and then normalizing it. We do not apply any augmentation,
as the dataset is already sufficiently large and representative. The manually labeled masks are
also stored as TIF files and are normalized into the range [0, 1]. Figure 6.1 shows an example of
a patch with its corresponding cloud mask.

Figure 6.1 Example of a patch and its corresponding cloud mask from the 38-Clouds dataset.

6.3 Models
For the U-Net, a similar architecture to the one in the original paper [79] has been chosen, as
it was successfully utilized in [1] and [84] for cloud detection. In the original paper, the U-Net
consists of five blocks of convolution and downsampling in the contracting path and of five blocks
of transposed convolution and convolution in the expansive path. In Section 6.5, we have tested
removing some blocks and our final PyTorch implementation only employs four such blocks in
the contracting and expansive path as they have comparable performance while reducing the
computational complexity.

For SegFormer, its PyTorch-based implementation from the HuggingFace library was utilized,
which has the exact architecture as in the original paper [95]. The original paper introduces six
variants called SegFormer-B0 to Segformer-B6, where the B0 version is the most compact and
lightweight, and B5 is the largest with 22 times more parameters. Due to limited available
computational resources, we have chosen the smallest SegFormer-B0 pretrained model.
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(a) Distribution of the train set (b) Distribution of the test set

Figure 6.2 Comparison of the class distributions in the train and test subsets.

6.4 Training
In order to achieve reproducibility of all results, the seed for all random number generators
(RNG) was fixed. This was accomplished by generating three random numbers, running the
training and evaluation for one of them, and then verifying the results for the other two.

Furthermore, the dataset was divided into training and testing subsets, in a ratio of 80 %
and 20 % respectively. Figure 6.2 shows that the distribution of cloud pixels in the subsets is
balanced. Both train-validation-test split approach and cross-validation approach were explored.
In the first case, a validation subset of 25 % was separated from the training set, while in the
other case, 4-fold cross-validation was utilized.

Similarly to other papers on cloud detection using deep learning methods, we chose the
cross-entropy as the loss function. Hyperparameters such as optimizer, learning rate, batch size,
number of contracting and expansive block in the U-Net and size of the pretrained SegFormer
model were subject to tuning.

6.5 Hyperparameter Tuning
Initially, we planned to use systematic methods such as GridSearch or Optuna for finding values
of hyperparameters that lead to the best performance. However, the performance of U-Net was
tuned quite quickly and the training time of SegFormer combined with small improvements was
too long to justify running larger tuning. Therefore, we decided to only use manual tuning, as
even that is beyond the scope of the assignment of this thesis.

The combinations of hyperparameters tested for U-Net and SegFormer are summed up in
Tables 6.1 and 6.2, respectively. Their performance is to be found in the Section 7.1.
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U-Net epochs optimizer blocks batch size learning rate
1 25 Adam 4 16 0.001
2 25 AdamW 4 16 0.001
3 25 AdamW 3 16 0.001
4 25 AdamW 5 16 0.001
5 50 AdamW 4 16 0.001
6 50 AdamW 4 16 0.0001

Table 6.1 Configurations of hyperparameters tuned for U-Net

SegFormer version optimizer epochs batch size learning rate
1 b0 AdamW 25 16 0.00005
2 b0 AdamW 25 16 0.0001

Table 6.2 Configurations of hyperparameters tuned for SegFormer



Chapter 7

Evaluation

In this chapter, the conducted experiments are presented and evaluated. These include the
comparison of the performance of U-Net and SegFormer models on an unseen test set and both
qualitative and quantitative analysis of their predictions. Special attention is given to how they
handle spatial information and cloud boundary refinement. At the end of this chapter, we discuss
how our results compare to the available papers and suggest the directions of future research.

7.1 Performance Comparison
The performance of the configurations of U-Net and SegFormer presented in Tables 6.1 and
6.2 was evaluated on an unseen test set using accuracy (Acc), Intersection over Union (IoU),
F1 score, training time and the number of parameters, with accuracy and IoU being the key
metrics optimized. The results for U-Net and SegFormer are summarized in Tables 7.1 and 7.3,
respectively.

U-Net Acc ↑ IoU ↑ F1 ↑ training time ↓) parameters ↓)
1 0.962 0.875 0.932 45:43 2.2M
2 0.965 0.883 0.937 35:32 2.2M
3 0.953 0.846 0.915 46:12 0.6M
4 0.962 0.872 0.930 37:36 8.7M
5 0.961 0.872 0.930 1:59:38 2.2M
6 0.967 0.894 0.943 1:20:04 2.2M

Table 7.1 Performance comparison of the configurations of U-Net from the Table 6.1

SegFormer Acc ↑ IoU ↑ F1 ↑ training time ↓ parameters ↓
1 0.980 0.889 0.916 6:05:23 3.8M
2 0.981 0.892 0.919 5:50:48 3.8M

Table 7.2 Performance comparison of the configurations of SegFormer from the Table 6.2
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In Table 7.1, it can be observed that:

The model using AdamW as an optimizer expectably performs better than model employing
Adam, as AdamW decouples weight decay from the gradient updates [117], leading to more
effective regularization and therefore improved generalization performance.

The model with only three contracting and expansive blocks predictably performs worse as
it can capture less information. The model with four blocks performs the best, and a model
with five blocks might capture slightly more information if trained for more epochs, but that
would be at the cost of longer training time.

The tested learning rates do not make much difference.

The best-performing U-Net is therefore the version 7 with the following parameters:

epochs = 5
blocks = 4

batch size = 16
learning rate = 0.001.

(7.1)

Figure 7.1 then captures the development of the loss function and accuracy over epochs for
the configuration six of the U-Net model, from which can be deduced from the shape of the
graph that 50 epochs are sufficient, and that further training would not bring any significant
improvement.

(a) Loss per epoch (b) Accuracy per epoch

Figure 7.1 Developement of loss and accuracy over epochs of the best U-Net

In the Table 7.3, it can be observed that:

Using a larger learning rate than the Hugging Face library default of 0.00005 improves the
performance.

The best-performing SegFormer is therefore version 3 with the following parameters:

version = b0
epochs = 10

batch size = 16
learning rate = 0.0001.

(7.2)
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7.2 Cross-validation
We have employed cross-validation to obtain a more accurate estimate of the performance of
the best U-Net. The validation accuracy for each fold has been calculated, and then they were
averaged to obtain the estimate, as shown in Table 7.4. The variance in accuracy is small, and
the average 0.971 is even slightly higher than the accuracy of 0.967 from Table 7.1 measured on
a test set, indicating that both are good estimates of how the model would generalize on unseen
data, and that the result in Table 7.1 is not the product of a fortunate data distribution in the
test set.

Table 7.3 Performance comparison of the configurations of SegFormer from the Table 6.2

Fold 1 2 3 4 avg
Accuracy 0.970 0.961 0.976 0.975 0.971

Table 7.4 Validation accuracy for each fold of the 4-fold cross-validation

7.3 Spatial Information
We carefully examined how both models handle spatial information. Intuitively, we expect that
the transformer-based SegFormer, due to its ability to better capture global features, will perform
better compared to U-Net, whose receptive field is local and limited by the size of the convolution
kernel. Examination of the predictions confirms our hypothesis, as shown in Figure 7.2, where
U-Net struggles to detect the cloud over a bright background. More examples of predictions are
to be found in Appendix A.

Figure 7.2 Samples of predicted cloud masks. The first column is the image, the second column is
the ground truth, the third column is the prediction of the best U-Net model and the last column
is the prediction of the best SegFormer model. Notice how U-Net struggles to detect the cloud over a
bright background.

7.4 Cloud Boundary Detection
We also carefully investigated how both models handle cloud boundaries. Intuitively, we expect
the U-Net to perform slightly better, due to its relatively small receptive field, that is capable
of capturing fine details. Examination of the predictions confirmed our hypothesis, as shown in
Figure 7.3. More examples of predictions are to be found in Appendix A.
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Figure 7.3 Samples of predicted cloud masks. The first column is the image, the second column is
the ground truth, the third column is the prediction of the best U-Net model and the last column is
the prediction of the best SegFormer model. Notice the difference in cloud boundary detection between
the U-Net and Segformer prediction.

7.5 Discussion
The obtained results are fundamentally in agreement with the papers that focused on U-Net [84]
and transformer-based [2] methods with this dataset, as summarized in Table 7.5. However, it
does not make sense to make any further direct comparisons since none of these papers provide
a transparent description of methodology used for training and evaluation.

U-Net based Acc ↑ IoU ↑ F1 ↑
U-Net [84] 0.958 0.861 0.923
Cloud-AttU [84] 0.971 0.887 0.941
U-Net (ours best) 0.975 0.919 0.957
Transformer based Acc ↑ IoU ↑ F1 ↑
CloudFormer [2] 0.979 0.907 -
SegFormer-B0 (ours best) 0.982 0.894 0.920

Table 7.5 Performance comparison of our best U-Net and SegFormer models with the results from
papers [84] and [2]

Generally, the results show that SegFormer slightly outperforms the U-Net based architecture
in terms of accuracy, while U-Net slightly outperforms SegFormer in the IoU and F1 score.
Moreover, the U-Net based architecture has much shorter training time. This proves that even
though being relatively simple and old, U-Net is still relevant and efficient architecture today.

It would be interesting to conduct more extensive hyperparameter tuning or to use a larger
dataset with more channels; however, it is questionable how much room for improvement actually
exists. During data exploration, we encountered a number of controversially labeled masks, such
as shown in Figure 7.4. According to the study in [19], the inter-annotator agreement was 96 %
when a cloud dataset was annotated by an independent interpreter, implying that around 4 %
of the pixels in the dataset are ambiguous, and that the performance of cloud detection models
will always be to an extent limited by the accuracy of human annotators.
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Figure 7.4 Example of a patch from the 38-Cloud dataset with its controversial mask. The lower
part is suspiciously smooth and the upper right corner lacks a few small clouds, while clouds of this size
are perfectly labelled in other patches.

It is also necessary to note that, as shown in Figure 6.2, the number of clear and obstructed
pixels in the entire dataset is not balanced, meaning that all the models in Table 7.5 might be
slightly biased towards predicting clear pixels.

7.6 Future Work
Even though the room for improvements in terms of accuracy is limited for this dataset, there
are other directions for further research:

Reducing the computational complexity: As shown in Table 7.3, the training time is still
major drawback of deep learning-based methods. Techniques designed to efficiently fine-
tune large-scale pre-trained models, such as Low-Rank Adaptation (LoRA) [118] might be
examined and utilized.

Integrating multi-source data from various satellites: Practically all current algorithms are
trained and evaluated using datasets consisting of imagery from a single satellite. Designing
a model capable of processing datasets fro various satellites would broaden its applicability.

Utilizing all available bands and temporal history: Various traditional algorithms utilize all
available bands and exploit the temporal history, but only a few deep learning-based methods
do. This approach has the potential to increase accuracy, especially for very small and thin
clouds.

Improving the performance in more complex tasks: Such tasks include cloud and cloud shadow
detection, or even cloud classification based on its thickness.

Exploring the possibilities to remove the detected clouds: Some methods, such as generative
adversarial networks, have been researched [108], but their performance is not yet convincing.

In general, these directions could improve the usability of satellite imagery in numerous
remote sensing applications. However, in general, most of them require more computational
resources and are far beyond the scope of bachelor’s thesis.



Conclusion

This bachelor thesis aimed to review the recently published cloud detection methods, focusing
on deep learning approaches, and to reimplement the most relevant ones and compare their
performance using the most relevant datasets.

In the first part of this thesis (Chapters 1, 2 and 3), the introduction to cloud detection and
satellite imagery has been made, and the deep learning background necessary to understand the
thesis was defined.

In the second part of this thesis (Chapters 4 and 5), the current literature has been reviewed
with focus on deep learning approaches. Based on the findings, the U-Net based architecture
and transformer-based Segformer architecture have been chosen for further examinations, and
have been explained in detail.

Finally, in the last part of the thesis (Chapters 6 and 7), our PyTorch implementation of
the U-Net and SegFormer models is described, as well as all experiments performed. Generally,
the results show that SegFormer slightly outperforms the U-Net based architecture in terms of
accuracy, while U-Net slightly outperforms SegFormer in the IoU and F1 score. Moreover, the
U-Net based architecture has much shorter training time. This proves that even though being
relatively simple and old, U-Net is still relevant and efficient architecture today.

However, the analysis of the results also showed that each model has its strengths. U-Net,
thanks to its convolutional layers, has a strong local receptive field, which enables it to effectively
detect cloud boundaries. On the other hand, SegFormer, although it does not perform as well
in cloud boundaries detection, can thanks to its transformer-based architecture capture complex
and global spatial features, which enables it to detect clouds in challenging conditions, such as a
cloud over a bright background, better.

Overall, the findings of this study can help other professionals choose the most suitable deep
learning architecture for their use-case and provide a solid basis for the future research directions
mentioned in Chapter 7.
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Appendix A

Samples of Predicted Cloud
Masks for Unseen Patches
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Figure A.1 Samples of predicted cloud masks. The first column is the image, the second column is
the ground truth, the third column is the prediction of the best U-Net model and the last column is
the prediction of the best SegFormer model.
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Figure A.2 Samples of predicted cloud masks. The first column is the image, the second column is
the ground truth, the third column is the prediction of the best U-Net model and the last column is
the prediction of the best SegFormer model.
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Figure A.3 Samples of predicted cloud masks. The first column is the image, the second column is
the ground truth, the third column is the prediction of the best U-Net model and the last column is
the prediction of the best SegFormer model.
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