
Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Cybernetics

From EigenTrust To SHAPE-Trust

Bachelor’s Thesis

Jan Rutterle

Study program: Open Informatics
Specialisation: Artificial Intelligence and Computer Science

Supervisor: doc. Ing. Tomáš Kroupa, Ph.D.

Prague, May 2024

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

507642 Personal ID number: Rutterle Jan Student's name:

Faculty of Electrical Engineering Faculty / Institute:

Department / Institute: Department of Cybernetics

Open Informatics Study program:

Artificial Intelligence and Computer Science Specialisation:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

From EigenTrust to SHAPE-Trust

Bachelor’s thesis title in Czech:

Od EigenTrust k SHAPE-Trust

Guidelines:

The EigenTrust algorithm [1] is a reputation management system used in peer-to-peer networks to assess the trustworthiness
of peers. It assigns each peer a trust score based on the history of interactions, with higher scores for peers that consistently
provide reliable content. Trust scores are calculated using a decentralized, iterative process similar to Google's PageRank,
where the trustworthiness of a peer is influenced by the trustworthiness of its neighbors. This system is dynamic, adjusting
over time based on peer behavior, and includes measures to prevent abuse by malicious actors. The SHAPE-Trust
(SHApley value for PEer-to-peer Trust) is a novel alternative to the EigenTrust algorithm, utilizing the Shapley value from
game theory to compute trust scores based on local trust values among peers. This bachelor thesis aims to achieve several
objectives:
1. Implement both the EigenTrust and SHAPE-Trust algorithms using the Julia programming language.
2. Conduct a comparative analysis of the trust scores generated by both methods. This comparison will utilize real or
simulated transaction data from small to moderately sized peer-to-peer networks, focusing on how each method ranks
peers.
3. Examine SHAPE-Trust's characteristics, either theoretically or through practical experiments, highlighting its distinctions
from EigenTrust. This includes exploring situations where iterative methods for calculating eigenvalues might not converge
[2] and examining cases where EigenTrust's transitive trust scoring is pivotal.
4. (Optional) Investigate potential applications of SHAPE-Trust outside of peer-to-peer network environments.

Bibliography / sources:

[1[Kamvar, S. D., Schlosser, M. T. & Garcia-Molina, H. The Eigentrust algorithm for reputation management in P2P
networks. in Proceedings of the 12th international conference on World Wide Web 640–651 (Association for Computing
Machinery, 2003).
[2] Afanador, J., Oren, N., Baptista, M. & Araujo, M. From Eigentrust to a Trust-measuring Algorithm in the Max-Plus
Algebra. ECAI 2020.
[3] Bandhana, A., Kroupa, T., Garcia, S. Trust in Shapley: A Cooperative Quest for Global Trust in P2P Network. Přijato
na konferenci AAMAS 2024.

Name and workplace of bachelor’s thesis supervisor:

doc. Ing. Tomáš Kroupa, Ph.D. Artificial Intelligence Center FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 24.05.2024 Date of bachelor’s thesis assignment: 23.01.2024

Assignment valid until: 21.09.2025

___________________________ ___________________________ ___________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
prof. Dr. Ing. Jan Kybic

Head of department’s signature
doc. Ing. Tomáš Kroupa, Ph.D.

Supervisor’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZBP-2015.1

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZBP-2015.1

Author statement for undergraduate thesis:
I declare that the presented work was developed independently and that I have listed all
sources of information used within it in accordance with the methodical instructions for
observing the ethical principles in the preparation of university thesis.

Prague, 24. May 2024

..
Jan Rutterle

Used Software

• ChatGPT (OpenAI) for text rephrasing and code tips for packages in Julia
(https://chatgpt.com/)

Abstract

Peer-to-peer (P2P) networks have been rising in popularity, therefore the need to create
and maintain a secure environment is pivotal. Security of a P2P network is preserved
via Trust (Reputation) Management Systems (TMSs). Those systems use some form of
local trust values, to compute global trust assigned to each peer in the network. This
thesis focus on a comparison of three TMSs applied in simulated networks with specific
properties. EigenTrust, is an iterative algorithm, which assigns a trust score to each peer
through aggregating the opinions. MaxTrust is an expansion of EigenTrust to a non-linear
algebra called Max-Plus algebra. SHAPE-Trust uses coalitional game theory and Shapley
value, to fairly distribute the global trust scores. All algorithms were implemented in the
Julia programming language. In case of EigenTrust only the centralized versions were
implemented, because the remaining algorithms do not have a decentralized version yet.

Keywords: Trust (Reputation) Management Systems; P2P network; EigenTrust; Max-
Trust; SHAPE-Trust.

Abstrakt

Peer-to-peer śıtě jsou stále populárněj́ı, a proto je zásadńı v nich vytvořit a udržet
bezpečné prostřed́ı. Bezpečnost P2P śıtě je zajǐstěna prostřednictv́ım systémů pro správu
d̊uvěry (reputace) (TMS). Tyto systémy použ́ıvaj́ı nějakou formu lokálńıch hodnot d̊uvěry
k výpočtu globálńı d̊uvěry přidělené každému uzlu v śıti. Tato práce se zaměřuje na po-
rovnáńı tř́ı TMS aplikovaných ve simulovaných śıt́ıch se specifickými vlastnostmi. Eigen-
Trust je iterativńı algoritmus, který přǐrazuje skóre d̊uvěry každému uzlu prostřednictv́ım
agregace názor̊u. MaxTrust je rozš́ı̌reńı EigenTrust do nelineárńı algebry zvané Max-Plus
algebra. SHAPE-Trust použ́ıvá koaličńı teorii her a Shapleyovu hodnotu k spravedlivému
rozděleńı globálńıch hodnot d̊uvěry. Všechny algoritmy byly implementovány v progra-
movaćım jazyce Julia. V př́ıpadě EigenTrust byly implementovány pouze centralizované
verze, protože zbylé algoritmy zat́ım nemaj́ı decentralizovanou verzi.

Kĺıčová slova: Systémy ř́ızeńı d̊uvěry (reputace), P2P śıt’, EigenTrust; MaxTrust; SHAPE-
Trust.

Contents

Introduction 5

1 EigenTrust 7
1.1 Normalized Trust Matrix . 7
1.2 Main idea behind EigenTrust . 9
1.3 EigenTrust Algorithm . 10
1.4 Convergence and nonconvergence of EigenTrust 10
1.5 Pre-trusted Peers . 11

2 MaxTrust 13
2.1 Max-Plus Algebra . 13

2.1.1 Eigenvalues and eigenvectors 14
2.1.2 Normal form . 15

2.2 Power Method and MaxTrust . 17
2.2.1 Normalization of eigenvector/eigenmode 20
2.2.2 Summary . 20

3 SHAPE-Trust 21
3.1 Model design of SHAPE-Trust 21

3.1.1 Trust game . 21
3.1.2 Solution concept and Shapley value 23

4 Numerical Experiments 27
4.1 Experiment #1 . 27
4.2 Experiment #2 . 29
4.3 Experiment #3 . 30
4.4 Experiment #4 . 31

Conclusions 33

References 35

Appendix 37
Link to the GitHub repository with algorithm implementations 37

1

List of Figures

1.1 Trust graph . 8
1.2 Trust matrix . 8
1.3 Normalized trust matrix . 9
1.4 Algorithm 1 - EigenTrust . 10
1.5 Algorithm 2 - EigenTrust with pre-trusted peers 11

2.1 Normal form . 15
2.2 Trust Graph - Normal Form Example 15
2.3 Trust Matrix - Normal Form Example 15
2.4 Reduced Trust Graph . 16
2.5 Trust Matrix in Normal Form . 16
2.6 Normal form blocks . 16
2.7 Algorithm 3 - max_power . 17
2.8 Algorithm 4 - MaxTrust . 18
2.9 Normal form . 19

3.1 Trust matrix . 23

4.1 Trust matrix - Exp #1 . 27
4.2 Max-Plus Trust matrix . 28
4.3 Trust - Exp #1 . 28
4.4 Graph - Exp #2 . 29
4.5 Trust - Exp #2 . 29
4.6 Trust Graph - Exp #3 . 30
4.7 Trust - Exp #3 . 31
4.8 Trust Graph - Exp #4 . 32
4.9 Trust - Exp #4 . 32

2

List of Tables

4.1 Ranking - Exp #1 . 29
4.2 Ranking - Exp #2 . 30
4.3 Ranking - Exp #3 . 30
4.4 Ranking - Exp #4 . 31

3

4

Introduction

In our modern world the most known type of digital networks for file sharing
is client/server architecture but it has some limitations in security. A good
alternative to clients/server networks are peer-to-peer networks (P2P). In P2P
every peer acts as a client and a server. This means that peers provide for
example storage for data or processing power but at the same time receive
data from other peers. The success of these kind of networks was proven by
Napster or Gnutella [1]. Because there is no central authority (a single server)
the possibility of a failure of the whole network because of a single node failure
is minimal. Still there are security threats and possibilities of malicious attacks.
Some threats may come from the presence of malicious peers, that tries to
damage the network from inside. To help with recognizing these malicious
peers from others, reputation management systems are introduced.

Reputation or Trust management systems (TMS) use trust to determine whom
to block and who is reliable. Those systems mostly use some form of local trust
values, which are based on the direct interactions of two peers, to calculate global
trust. Global trust values are assigned to each peer in a network according to
how much they are trusted in the network. These trust management models are
essential for security measures. There is already series of models which can differ
in their approach but all have a common purpose: establishing a framework to
minimize risk of unwanted peer communication.

Each TMS is different with its approach and field of use. Therefore the local
trust values can be very simple (calculated only based on good and bad trans-
actions) or somewhat more complicated when there are more factors in each
transaction that can be rated. There are many papers that describe the differ-
ences and applications of these various algorithms [2, 3], but the most cited one
for its simplicity and effectivity is the EigenTrust.

Throughout this thesis the local trust values of a P2P network can be viewed
as weighted directed graph (trust graph) 𝒢 = (𝑁, 𝐸), where 𝑁 = {1, … , 𝑛}
is the set of peers. 𝐸 is the set of edges (𝑖, 𝑗), where the weights describe
how much peer 𝑖 trusts peer 𝑗. This graph can be written as a trust matrix
𝐴 ∈ ℝ𝑛×𝑛, where every edge (𝑖, 𝑗) ∈ 𝐸 can be found in this matrix as 𝑎𝑖𝑗.
However, if 𝑎𝑖𝑗 = 0, it can be either because the edge weigh is zero or the

5

edge does not exist. This problem appears only in EigenTrust. In the rest
of discussed algorithm, there are measures for differentiating between the two
cases. It will be also assumed that 𝒢 is simple, meaning there are not loops (𝑖, 𝑖)
(peers cannot assign trust to themselves). The trust matrix is essential part of
the input for each presented algorithm, but its form may be a little different for
each of them. For more detailed description of used graphs and matrices with
some examples see Section 1.1.

This thesis will be focus on comparison of EigenTrust and its expansion to Max-
Plus algebra with a new algorithm called SHAPE-Trust [4]. We will introduce
their methodologies and theoretical background, cover their strong and weak
sides and compare them in numerical experiments. The implementation of these
algorithms can be found in the appendix.

6

Chapter 1

EigenTrust

EigenTrust calculates global trust values from normalized trust matrix of a net-
work as an eigenvector of this matrix. For this it uses Power Method which
guarantees to converge to the dominant eigenvector if some conditions are sat-
isfied. In this part the assumptions of EigenTrust will be introduced as well
as the description of the main idea, pseudocode of the algorithm and finally
some issues that come along with those conditions. This thesis will be mainly
focused on cases, where there are no pre-trusted peers and the trust matrices
are reducible and therefore the EigenTrust should perform poorly.

1.1 Normalized Trust Matrix
The normalized trust matrix 𝐶 = [𝑐𝑖𝑗] is a square matrix of local trust values
which every peer assigns to his companions. Each row represents normalized
trust values from a peer to his companions, meaning 𝑐𝑖𝑗 is a value how much
peer 𝑖 trusts peer 𝑗. To obtain the 𝑐𝑖𝑗 value, we firstly need non-normalized
local trust values (𝑠𝑖𝑗) which are calculated as the difference in the count of
satisfactory 𝑠𝑎𝑡(𝑖, 𝑗) and unsatisfactory 𝑢𝑛𝑠𝑎𝑡(𝑖, 𝑗) transactions between peer 𝑖
and 𝑗. 𝑠𝑖𝑗 is the evaluation of transaction between 𝑖 and 𝑗 from the view of peer
𝑖.

𝑠𝑖𝑗 = 𝑠𝑎𝑡(𝑖, 𝑗) − 𝑢𝑛𝑠𝑎𝑡(𝑖, 𝑗)

The final normalized local trust value 𝑐𝑖𝑗 is then calculated using this formula.

𝑐𝑖𝑗 = {
max(𝑠𝑖𝑗,0)

∑𝑗 max(𝑠𝑖𝑗,0) ∑𝑗 max(𝑠𝑖𝑗, 0) ≠ 0
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

7

If there is at least one value 𝑠𝑖𝑗 in every row which is positive, all values 𝑐𝑖𝑗
will be non-negative and the sum of each row will be 1, therefore it is a row
stochastic matrix or essentially a transition matrix of a Markov Chain. However,
if ∑𝑗 max(𝑠𝑖𝑗, 0) = 0 the 𝑐𝑖𝑗 is undefined and we then set the whole row to 0 and
the trust matrix is not row stochastic. This problem is solved by introducing
globally pre-trusted peers. This solution is represented in Section 1.5 but for
the comparison with the rest of the algorithms, there will not be any pre-trusted
peers. This normalized trust matrix also does not distinguish between a peer
that 𝑖 had bad experience with and a peer it did not communicate with at all [5].
This issue is solved by the next algorithm called MaxTrust, which is introduced
in Section 2.

Example 1.1.1. Consider a network with 3 peers. The 𝑠𝑖𝑗 values are: 𝑠12 =
7, 𝑠21 = 5, 𝑠13 = 4, 𝑠31 = −2 and 𝑠32 = −1 as can be seen in the graph below

Figure 1.1: Trust graph

This graph can be written into a matrix

𝐴 = ⎛⎜
⎝

0 7 4
5 0 0

−2 −1 0
⎞⎟
⎠

Figure 1.2: Trust matrix

Firstly we apply max(𝑎𝑖𝑗, 0) for 𝑖, 𝑗 ∈ (1, 2, 3). Then we will calculate the sum
for each row and divide each element in a row by the corresponding sum. If the
sum of a row is zero (as in the last row) we set every element in this row to zero.
The final normalized matrix then looks like this:

8

𝐶 = ⎛⎜
⎝

0 7
11

4
11

1 0 0
0 0 0

⎞⎟
⎠

.

Figure 1.3: Normalized trust matrix

1.2 Main idea behind EigenTrust
EigenTrust uses aggregation of the normalized local trust values (transitivity of
opinions). Peer 𝑖 simply weights opinions of other peers by its trust in them.

𝑡𝑖𝑘 = ∑
𝑗

𝑐𝑖𝑗𝑐𝑗𝑘

𝑡𝑖𝑘 is then trust that peer 𝑖 has for peer 𝑘 based on asking others. This can be
also rewritten in matrix notation where 𝐶 = [𝑐𝑖𝑗] (normalized matrix of local
trust values) and ⃗𝑡𝑖 is a vector of values 𝑡𝑖𝑘.

⃗𝑡𝑖 = 𝐶𝑇 ⃗𝑐𝑖

To get greater reach to others opinions, the multiplication continues.

⃗𝑡 = (𝐶𝑇)2 ⃗𝑐𝑖 … ⃗𝑡 = (𝐶𝑇)𝑛 ⃗𝑐𝑖

After large number of iterations (𝑛) the peer will have a complete view of the
network and the vectors ⃗𝑡𝑖 for every peer 𝑖 converge to the same vector under
the conditions that the matrix 𝐶 is irreducible and aperiodic. If the conditions
are satisfied the final vector is the stationary distribution of the Markov Chain.
The stationary distribution is equal to the dominant eigenvector of C. Because
of the Perron-Frobenious Theorem for row stochastic matrices this eigenvector
is associated with the dominant eigenvalue which absolute value is always 1
[6]. Therefore this problem can be also viewed as a solution of linear equations.
Recall the definition of eigenvectors and eigenvalues is 𝐶𝑇 𝑣 = 𝜆𝑣. If 𝜆 = 1 then

𝐶𝑇 𝑣 = 1𝑣

and this can be further rewritten as the system of linear equations

(𝐶𝑇 − 𝐼)𝑣 = 0,

where the sum of coordinates of 𝑣 is 1.

9

1.3 EigenTrust Algorithm
The basic non-distributed version of EigenTrust looks like this:

⃗𝑡(0) = ⃗𝑒
repeat

⃗𝑡(𝑘+1) = 𝐶𝑇 ⃗𝑡(𝑘)

𝛿 = ‖ ⃗𝑡(𝑘+1) − ⃗𝑡(𝑘)‖
until 𝛿 < 𝜖

Figure 1.4: Algorithm 1 - EigenTrust

In this most basic EigenTrust version, the initial vector ⃗𝑡(0) is set to ⃗𝑒 which is
a uniform probability distribution over all 𝑛 peers, which means that ⃗𝑒𝑖 = 1/𝑛.
This algorithm is based on Power iteration. The initial vector could be set
to some probability distribution and the algorithm should still converge to the
dominant eigenvector. The stopping condition for the cycle is that the difference
between last two iterations is a small number[5].

1.4 Convergence and nonconvergence of Eigen-
Trust

As we already mentioned the EigenTrust algorithm guarantees convergence only
under some assumptions. The trust matrix has to be irreducible and aperiodic.

Definition 1.4.1. An 𝑛×𝑛 non-negative matrix T is irreducible if for every pair
𝑖, 𝑗 of its index set, there exists a positive integer 𝑚 ≡ 𝑚(𝑖, 𝑗) such that 𝑡(𝑚)

𝑖𝑗 > 0.
An irreducible matrix is said to be cyclic (periodic) with period 𝑑, if the period
of any of its indices satisfies 𝑑 > 1, and is said to be acyclic (aperiodic) if 𝑑 = 1
[7].

To rewrite this definition in a less formal way. A Markov chain is irreducible if
every node (peer) can reach every other node, it is a strongly connected graph.
Whether a Markov chain is periodic or aperiodic comes in question only for
irreducible Markov chains. We can calculate a period for a single node and this
period will be same for others. Period of a node is a greatest common divisor
(gcd) of all cycles starting in the node. As mentioned in the definition above,
Markov chain is aperiodic if its period is equal to one, otherwise it is periodic.

If the normalized trust matrix is irreducible and aperiodic, the EigenTrust will
converge to the dominant eigenvector with 𝜆 = 1 under the Perron-Frobenius
theorem.

10

1.5 Pre-trusted Peers
The convergence problem and other practical issues such as having inactive peers
and malicious collectives are solved in EigenTrust using a set of pre-trusted
peers 𝑃 . This slightly changes the structure of the algorithm, but it guarantees
the convergence of the algorithm and breaks out the malicious collectives and
therefore the presence of pre-trusted peers is essential to this algorithm.

⃗𝑡(0) = ⃗𝑝
repeat

⃗𝑡(𝑘+1) = 𝐶𝑇 ⃗𝑡(𝑘)
⃗𝑡(𝑘+1) = (1 − 𝑎) ⃗𝑡(𝑘+1) + 𝑎 ⃗𝑝

𝛿 = ‖ ⃗𝑡(𝑘+1) − ⃗𝑡(𝑘)‖
until 𝛿 < 𝜖

Figure 1.5: Algorithm 2 - EigenTrust with pre-trusted peers

The initial vector change from ⃗𝑒 to ⃗𝑝 which is a distribution over 𝑃 and is defined
as follows:

𝑝𝑖 = {1/|𝑃 | 𝑖 ∈ 𝑃
0 otherwise

Once we have the this distribution we can redefine the normalization of matrix.

𝑐𝑖𝑗 = {
max(𝑠𝑖𝑗,0)

∑𝑗 max(𝑠𝑖𝑗,0) if ∑𝑗 max(𝑠𝑖𝑗, 0) ≠ 0
𝑝𝑗 otherwise

The value 𝑎 is some constant between 0 and 1.

11

12

Chapter 2

MaxTrust

MaxTrust [8] is another trust measuring algorithm which tries to solve the prob-
lems EigenTrust have with reducible matrices. It deals with this issue situating
the EigenTrust within Max-Plus algebra [9, 10]. The main reason is the possi-
bility of differentiating a communication of a node with inactive peers and with
peers it has no connection with. For this the normalized trust matrix 𝐶 = [𝑐𝑖𝑗]
is then transformed as 𝐶 = [̄𝑐𝑖𝑗] where

̄𝑐𝑖𝑗 = {𝑐𝑖𝑗 𝑖𝑓(𝑖, 𝑗) ∈ 𝐸
−∞ otherwise

Because of the existence of −∞ the Max-Plus algebra is needed.

2.1 Max-Plus Algebra
We will describe Max-Plus algebra in more informal way, to show how basic
mathematical operations, needed for MaxTrust algorithm, works.

Max-Plus algebra works over ℝ𝑚𝑎𝑥 = ℝ∪{𝜖}, where ℝ is the set of real numbers
and 𝜖 = −∞. The addition and multiplication is then defined as follows:

𝑥 ⊕ 𝑦 = max(𝑥, 𝑦)
𝑥 ⊗ 𝑦 = 𝑥 + 𝑦

The “zero element” is 𝜖 = −∞ and the “unit element” is 𝑒 = 0.

𝜖 ⊕ 𝑎 = max(𝜖, 𝑎) = 𝑎
𝜖 ⊗ 𝑎 = 𝜖 + 𝑎 = 𝜖

13

𝑒 ⊗ 𝑎 = 𝑒 + 𝑎 = 𝑎

The basic operations for matrices are naturally extended to Max-Plus as follows:

[𝐴 ⊕ 𝐵]𝑖𝑗 = [𝐴]𝑖𝑗 ⊕ [𝐵]𝑖𝑗 = max([𝐴]𝑖𝑗, [𝐵]𝑖𝑗)

[𝐴 ⊗ 𝐵]𝑖𝑗 =
𝑛

⨁
𝑘=1

([𝐴]𝑖𝑘 ⊗ [𝐵]𝑘𝑗) = max([𝐴]𝑖1 + [𝐵]1𝑗, … , [𝐴]𝑖𝑛 + [𝐵]𝑛𝑗)

where 𝑛 is number of columns in 𝐴 and number of rows in 𝐵.

ℰ is a 𝑚 × 𝑛 matrix where all elements are equal to 𝜖. Identity matrix of
dimension 𝑛 × 𝑛 𝐸𝑛 is defined as:

[𝐸]𝑖𝑗 = {𝑒 𝑖 = 𝑗
𝜖 𝑖 ≠ 𝑗

The power of a matrix 𝐴 ∈ ℝ𝑛×𝑛
max :

𝐴⊗0 = 𝐸𝑛

𝐴⊗𝑘 = 𝐴 ⊗ 𝐴⊗𝑘−1 for 𝑘 > 1

2.1.1 Eigenvalues and eigenvectors
Eigenvectors (scalars 𝜆 ∈ ℝmax) and eigenvalues (vectors 𝑣 ∈ ℝ𝑛

max where 𝑣 ≠
(𝜖, … , 𝜖)) in Mas-Plus for some matrix 𝐴 ∈ ℝ𝑛×𝑛

max satisfy this equation:

𝐴 ⊗ 𝑣 = 𝜆 ⊗ 𝑣

Because we will be using a Power Method similar to the one in EigenTrust, the
output will be a dominant eigenvector. The eigenvalue will be obtained using

(𝐴 ⊗ 𝑣) ⊗ (−𝑣) = 𝜆.

You can see that lambda in this case will be a vector with all elements equal to
the eigenvalue.

14

𝐷 =
⎛⎜⎜⎜⎜⎜⎜
⎝

𝐷11 𝐷12 ⋯ ⋯ 𝐷1𝑛
ℰ 𝐷22 ⋯ ⋯ 𝐷2𝑛
ℰ ℰ 𝐷33 ⋯ ⋮
⋮ ⋮ ⋮ ⋱ ⋮
ℰ ℰ ℰ ⋯ 𝐷𝑛𝑛

⎞⎟⎟⎟⎟⎟⎟
⎠

Figure 2.1: Normal form

2.1.2 Normal form
An essential part of Max-Trust algorithm is rewriting the trust matrix into its
normal form. In Max-Plus is the normal form of a reducible matrix 𝐴 ∈ ℝ𝑛×𝑛

max
defined as a block upper triangular matrix as in Figure 2.1.

Note that in the normal form the matrix 𝐷𝑛𝑛 is irreducible and 𝐷𝑖𝑖 are either
irreducible or equal to 𝜖, for all 𝑖 ∈ (1, 2, … , 𝑛). Also note that the normal
form may not be unique. The normal form can be obtained via simultaneous
row/column permutation 𝑃𝐴𝑃 𝑇 , where 𝑃 is and 𝑛 × 𝑛 permutation matrix.

As in EigenTrust, we will be using the transposition of the trust matrix 𝐶𝑇
and

therefore the normal form will be created from 𝐶𝑇
.

Example 2.1.1.

Figure 2.2: Trust Graph - Normal Form Example

𝐶 =
⎛⎜⎜⎜
⎝

𝜖 𝜖 1 𝜖
0.4 𝜖 0.6 0
1 𝜖 𝜖 𝜖
𝜖 0.6 0.4 𝜖

⎞⎟⎟⎟
⎠

Figure 2.3: Trust Matrix - Normal Form Example

You can see in Figure 2.2, that there are two strong conected components

15

((1, 3), (2, 4)). From nodes (2, 4) we can reach the other component (1, 3), but
not the other way around. This examination of the trust graph is essential for
creating the normal form of a matrix. In ([7]) the strongly connected compo-
nents are called classes. There are two types of classes - essential and inessentail
(2, 4) is an inessential class and (1, 3) is an essential class.

Figure 2.4: Reduced Trust Graph

For better visualization of essential and inessential classes we can reduce the
graph as in Figure 2.4. The essential classes are terminal states in the reduced
graph.

Finally the trust matrix in Figure 2.3 can be converted to the normal form using
the permutation matrix generated from the permutation of nodes ((1, 2, 3, 4) ↦
(2, 4, 1, 3)). This permutation is obtained by firstly taking the inessential classes
and sorting them accordingly (earlier occuring classes cannot be reached from
later occuring classes). The essential classes follows the inessential classes.

The normal form for MaxTrust is created from 𝐶𝑇
which means that we can

look at the the trust graph as with switched directions of edges. This leads
to swapping of classes (inessential become essential and the other way around).
The final matrix 𝐷 ≡ 𝐶𝑇

with the permutation of nodes as (1, 3, 2, 4):

𝐷 =
⎛⎜⎜⎜
⎝

𝜖 1 0.4 𝜖
1 𝜖 0.6 0.4
𝜖 𝜖 𝜖 0.6
𝜖 𝜖 0 𝜖

⎞⎟⎟⎟
⎠

Figure 2.5: Trust Matrix in Normal Form

The blocks are then:

𝐷11 = (𝜖 1
1 𝜖) 𝐷22 = (𝜖 0.6

0 𝜖) 𝐷12 = (0.4 𝜖
0.6 0.4)

Figure 2.6: Normal form blocks

16

2.2 Power Method and MaxTrust
This thesis will not cover the full theoretical background of MaxTrust algorithm.
The main idea is to compute a generalized eigenmode of a reducible trust matrix
through calculating the eigenvalues and eigenvectors of irreducible blocks of
the matrix found on the diagonal of the normal form of the matrix using the
Power Method. The Power Method (Power iteration) is used in the most basic
implementation of the EigenTrust algorithm. As in EigenTrust, the calculation
uses the transposition of the trust matrix 𝐶 for the aggregation of opinions.

𝑝 = 0
𝑣𝑝 = 𝑟
repeat

𝑣𝑝+1 = 𝐶𝑇 ⊗ 𝑣𝑝
𝑝 = 𝑝 + 1

until (∃𝑞)(𝑣𝑞 = 𝑐 ⊗ 𝑣𝑝 and 𝑐 ≥ 0)
𝜆 = 𝑐

𝑝−𝑞
𝑣 = ⨁𝑝−𝑞

𝑖=1 (𝜆⊗𝑝−𝑞−𝑖 ⊗ 𝑣𝑞+𝑖−1)
return (𝜆, 𝑣)

Figure 2.7: Algorithm 3 - max_power

This procedure is by the authors of MaxTrust called max_power. Where the
input is an irreducible trust matrix 𝐶 and arbitrary vector of trust values 𝑟.
Note that the official implementation uses the standard algebra multiplication
(𝐶𝑇 𝑣𝑝) but other papers discussing this matter use the Max-Plus multiplication
[9, 10]. The Power Method computes the dominant eigenvector and eigenvalue
of a matrix, so when using the transposition as in the max_power, it computes
the eigenvalue and eigenvector for the transposed matrix. In this thesis we will
use the Max-Plus algebra multiplication, because when using the standard one,
the output after few iterations will be always a vector with all elements equal
to −∞, because there are always at least −∞ on the diagonal.

The max_power procedure can be used only for irreducible matrices. If used on
reducible matrices its convergence is uncertain. Therefore for the reducible cases,
the MaxTrust algorithm is introduced. However, the MaxTrust algorithm does
not calculate the eigenvector, but it is similar to the eigenmode computation of
the trust matrix 𝐶𝑇

[9, 11, 12]. There are some slight differences with the cited
papers, but the idea is similar.

17

Generalized eigenmode

A pair of vectors (𝜂, 𝑣) ∈ ℝ𝑛 × ℝ𝑛 is called a generalized eigenmode [9] of the
regular matrix 𝐴 if for all 𝑘 ≥ 0

𝐴 ⊗ (𝜂⊗𝑘 ⊗ 𝑣) = 𝜂⊗𝑘+1 ⊗ 𝑣

or rewritten
𝐴 ⊗ (𝜂⊗𝑘 ⊗ 𝑣) = 𝜂 ⊗ (𝜂⊗𝑘 ⊗ 𝑣).

Generalized eigenmode (or simply eigenmode) shows periodic behaviour of a
system.

The MaxTrust algorithm is then defined as follows:

𝐷 = 𝑔𝑒𝑡_𝑛𝑜𝑟𝑚𝑎𝑙_𝑓𝑜𝑟𝑚(𝐶)
𝜆𝑛, 𝑣𝑛 = 𝑚𝑎𝑥_𝑝𝑜𝑤𝑒𝑟(𝐷𝑛𝑛, 𝑤𝑛)
𝜉𝑛 = 𝜆𝑛
j = n - 1
while 𝑗 ≥ 1

𝜆𝑗 = 𝑚𝑎𝑥_𝑝𝑜𝑤𝑒𝑟(𝐷𝑗𝑗, 𝑤𝑗)
if 𝜆𝑗 > 𝜉𝑗+1 then

𝜉𝑗 = 𝜆𝑗
𝑣𝑗 = ⨁𝑛

𝑘=1 𝐷𝑗𝑘 ⊗ 𝑤𝑘 ⊗ 𝜆⊗𝑗−1
𝑗

else
𝜉𝑗 = 𝜆𝑗+1
𝑣𝑗 = (𝜉𝑗)−1 ⨁𝑛

𝑘=1 𝐷𝑗𝑘 ⊗ 𝑤𝑘 ⊗ 𝜆⊗𝑗−1
𝑗

𝑗 = 𝑗 − 1
return 𝑡 = 𝑣 ⊗ 𝜉⊗𝑇

Figure 2.8: Algorithm 4 - MaxTrust

This procedure takes as input a regular reducible trust matrix 𝐶, a unitary
vector of initial trust values 𝑤 and a terminal time 𝑇 corresponding to the 𝑘 in
the definition of generalized eigenmode. It returns a vector of trust values 𝑡 at
the terminal time. Note that 𝜂 = 𝜉 and the terminal time 𝑇 corresponds to 𝑘 in
the definition of eigenmode. Also note that for the algorithm to work properly,
the trust matrix has to be regular which means that every row must contain at
least one element different from 𝜖 [12].

Example 2.2.1. Let’s continue with the graph in Example 2.1.1. We already
have the normal form of the trust matrix. There are two diagonal blocks, so we
set 𝑛 = 2. We will also set the initial trust vector 𝑤 = (0.25, 0.25, 0.25, 0.25).
Firstly using the max_power procedure we will calculate the 𝜆2 and 𝑣2 of the last
diagonal block (𝐷22 in Figure 2.6) with the input trust vector 𝑤2 = (0.25, 0.25).
We obtain 𝜆2 = 0.3 and 𝑣2 = (0.85, 0.25). We set the 𝜉2 = 0.3.

18

𝐷 =
⎛⎜⎜⎜
⎝

𝜖 1 0.4 𝜖
1 𝜖 0.6 0.4
𝜖 𝜖 𝜖 0.6
𝜖 𝜖 0 𝜖

⎞⎟⎟⎟
⎠

Figure 2.9: Normal form

We can now set 𝑗 = 𝑛 − 1 = 1, therefore we have only one iteration left of the
main cycle. After calculating 𝜆1 = 1 from the first diagonal block with 𝑤1 = 𝑤2,
we can check the condition. 1 = 𝜆1 > 𝜉2 = 0.3, therefore we can set 𝜉1 = 1 and
calculate the 𝑣1 = ⨁2

𝑘=1 𝐷1𝑘 ⊗ 𝑤𝑘 ⊗ 𝜆⊗0
1 . Because the neutral element to the

Max-Plus multiplication is 0, the term 𝜆⊗0
1 will be 0 as well.

𝐷11 ⊗ 𝑤1 = (𝜖 1
1 𝜖) ⊗ (0.25

0.25) = (1.25
1.25)

𝐷12 ⊗ 𝑤2 = (0.4 𝜖
0.6 0.4) ⊗ (0.25

0.25) = (0.65
0.85)

𝑣1 = ⨁((0.65
0.85) , (1.25

1.25)) = (max(0.65, 1.25)
max(0.85, 1.25)) = (1.25

1.25)

As we have the whole vector 𝑣 = (1.25, 1.25, 0.85, 0.55), we need to apply the
terminal time. First we will set 𝑇 = 1. In this context, we take 𝜉 = (1, 1, 0.3, 0.3).
The final vector 𝑡 is then

𝑡1 = 𝑣 ⊗ 𝜉⊗1 =
⎛⎜⎜⎜
⎝

1.25
1.25
0.85
0.55

⎞⎟⎟⎟
⎠

⊗
⎛⎜⎜⎜
⎝

1
1

0.3
0.3

⎞⎟⎟⎟
⎠

=
⎛⎜⎜⎜
⎝

2.25
2.25
1.15
0.85

⎞⎟⎟⎟
⎠

,

which is our final trust vector. The output in time 𝑇 = 10 for example is

𝑡10 = 𝑣 ⊗ 𝜉⊗10 =
⎛⎜⎜⎜
⎝

1.25
1.25
0.85
0.55

⎞⎟⎟⎟
⎠

⊗
⎛⎜⎜⎜
⎝

10
10
3
3

⎞⎟⎟⎟
⎠

=
⎛⎜⎜⎜
⎝

11.25
11.25
3.85
3.55

⎞⎟⎟⎟
⎠

,

Recall that the normal form is permutated original matrix, so we need to bring
those values to the original permutation ([1, 2, 3, 4]). 𝑡 in time 𝑇 = 1 is 𝑡1 =
(2.25, 1.15, 2.25, 0.85) and in time 𝑇 = 10 is 𝑡10 = (11.25, 11.25, 3.85, 3.55).

19

Let’s check if the eigenmode definition for our output holds. Note that the nor-
mal form was created from the transposition of 𝐶, therefore we were computing
eigenvectors for the 𝐶𝑇

. Recall that 𝜂 = 𝜉 and 𝑡1 = 𝜂⊗𝑘 ⊗ 𝑣

𝐶𝑇 ⊗𝑡1 =
⎛⎜⎜⎜
⎝

𝜖 0.4 1 𝜖
𝜖 𝜖 𝜖 0.6
1 0.6 𝜖 0.4
𝜖 0 𝜖 𝜖

⎞⎟⎟⎟
⎠

⊗
⎛⎜⎜⎜
⎝

2.25
1.15
2.25
0.85

⎞⎟⎟⎟
⎠

=
⎛⎜⎜⎜
⎝

3.25
1.45
3.25
1.15

⎞⎟⎟⎟
⎠

=
⎛⎜⎜⎜
⎝

1
0.3
1

0.3

⎞⎟⎟⎟
⎠

⊗
⎛⎜⎜⎜
⎝

2.25
1.15
2.25
0.85

⎞⎟⎟⎟
⎠

= 𝜂⊗𝑡1

2.2.1 Normalization of eigenvector/eigenmode
If a pair (𝜂, 𝑣) creates a generalized eigenmode of a matrix, also the pair (𝜂, 𝛼⊗𝑣)
does for any 𝛼 ∈ ℝ [9]. Which means that we can add or subtract a real number
𝛼 from every element of vector 𝑣. This operation can be used on the eigenvector
of an irreducible matrix as well. We cannot always obtain a vector, which sum
of coordinates is 1, but we can subtract some value, for a better comparison
with other algorithms.

2.2.2 Summary
The MaxTrust algorithm can be used for irreducible and reducible trust matrices
which solves some issues EigenTrust has. However, there is still the condition
of regularity of the trust matrix and the output not being an eigenvector, but
similar to eigenmode, for reducible matrices.

20

Chapter 3

SHAPE-Trust

SHAPE-Trust [4] is another trust management system with a very different
approach on calculating the global trust values from the previous two methods.
This algorithm uses knowledge of Game Theory, more precisely the application
of Coalitional games and Shapley value.

Game Theory is a study of mathematical applications to model and analyze situ-
ations of interactive decision making of some “players” with different goals. The
game theory is divided into noncooperative (strategic) and cooperative (coali-
tional) games. In strategic games the players make decisions independently.
In coalitional games the players can form groups (coalitions) that make deci-
sion based on an agreed strategy. Shapley value [13] is a solution concept for
coalitional games. It represents the fair and efficient payoff of a player for par-
ticipating in a game. In the case of P2P networks it will represent the global
trust assigned to each peer.

3.1 Model design of SHAPE-Trust
3.1.1 Trust game
The SHAPE-trust is defined as a coalitional game of peers as player. A coalition
is a subset 𝑆 of all peers 𝑁 (𝑆 ⊆ 𝑁). The first problem is to find a suitable
definition of the game (trust game). In game theory, a coalitional game is a
function mapping over the set of all possible coalitions to a real number

𝑣 ∶ 𝒫(𝑁) → ℝ,

where 𝒫(𝑁) = {𝐴|𝐴 ⊆ 𝑁} is called the powerset and 𝑣(∅) = 0. The trust game
uses the decomposition into internal and external trust. The internal trust is
generated as the total intercoalitional trust among the peers of a coalition 𝑆.

21

The external trust is the trust given to the members of 𝑆 from peers outside of
this coalition and is based on the pessimistic evaluation. These two parts are
combined additively. The trust game is defined as follows.

Definition 3.1.1. Let 𝒢 = (𝑁, 𝐸) be a trust graph. For every coalition of
peers 𝑆 ⊆ 𝑁 , define

𝑆∗ = {𝑗 ∈ 𝑆|there exists 𝑖 ∉ 𝑆 such that (𝑖, 𝑗) ∈ 𝐸}

The trust game 𝑣𝒢 is given by

𝑣𝒢(𝑆) = ∑
𝑖,𝑗∈𝑆

(𝑖,𝑗)∈𝐸

𝑎𝑖𝑗 + ∑
𝑗∈𝑆∗

min
𝑖∉𝑆

(𝑖,𝑗)∈𝐸

𝑎𝑖𝑗, 𝑆 ⊆ 𝑁

As can be seen in the Definition 3.1.1 if 𝑆∗ = ∅, the second summand is equal
to zero by the definition of empty sum. This property of 𝑣𝒢 is essential to
ensure that the trust game is indeed a coalitional game. The first summand
sums up the trust values of peers inside the coalition, which represents the
internal trust. The second summand calculates the pessimistic evaluation of
the external trust using the minimum function. This sum takes all peers in 𝑆
that are directly rated by at least one peer from outside the coalition (𝑆∗) and
adds the minimal trust for each of them. “The use of minimum instead of, say,
multiplication, avoids paradoxical situations when the peer highly trusted by
many other peers would have very low trust.”[4] The trust game also has basic
properties of coalitonal games:

Monotony A coalitional game 𝑣 is called monotone if

𝑣(𝑆) ≤ 𝑣(𝑇)

for all 𝑆, 𝑇 ∈ 𝒫(𝑁) with 𝑆 ⊆ 𝑇 .

Supperadditivity A coalitional game 𝑣 is called superadditive if

𝑣(𝑆) + 𝑣(𝑇) ≤ 𝑣(𝑆 ∪ 𝑇)

for all 𝑆, 𝑇 ∈ 𝒫(𝑁) with 𝑆 ∩ 𝑇 = ∅.

For the proof of these properties see ([4] Preposition 3.3).

22

Example 3.1.1. Let’s take the same graph and its normalized trust matrix as
in Example 1.1.1. The graph 𝒢 = (𝑁, 𝐸) after normalization looks like this.

Figure 3.1: Trust matrix

Now let’s calculate the trust game for every possible coalition in the powerset
𝒫(𝑁) = {∅, {1}, {2}, {3}, {1, 2}, {2, 3}, {1, 3}, {1, 2, 3}}.

𝑣𝒢(∅) = 0
𝑣𝒢({1}) = 0 + min(1, 0) = 0

𝑣𝒢({2}) = 0 + min(7/11, 0) = 0
𝑣𝒢({3}) = 0 + min(4/11) = 4/11

𝑣𝒢({1, 2}) = (7/11 + 1) + min(0) + min(0) = 18/11
𝑣𝒢({2, 3}) = 0 + min(7/11) + min(4/11) = 1

𝑣𝒢({1, 3}) = (4/11 + 0) + min(1) = 15/11
𝑣𝒢({1, 2, 3}) = 7/11 + 4/11 + 1 + 0 + 0 = 2

3.1.2 Solution concept and Shapley value
Once the trust game is established a solution concept for this game is needed.
The Shapley value for a coalitional game 𝑣 refers to the allocation 𝜙(𝑣) ∈ ℝ𝑁 ,
where each coordinate is calculated as follows.

𝜙𝑖(𝑣) = ∑
𝑆⊆𝑁\𝑖

|𝑆|!(𝑛 − |𝑆| − 1)!
𝑛! ⋅ Δ𝑖𝑣(𝑆) 𝑖 ∈ 𝑁

where
Δ𝑖𝑣(𝑆) = 𝑣(𝑆 ∪ 𝑖) − 𝑣(𝑆)

is the marginal contribution of player 𝑖 ∉ 𝑆 to coalition 𝑆 and the first factor is
the probability distribution 𝑝𝑖 where

∑
𝑆⊆𝑁\𝑖

𝑝𝑖(𝑆) = 1.

The Shapley value has the null player property and is symmetric, efficient and
additive. Those features are called the basic axioms of fairness [13].

23

Null player property

A player is called a null player in a game 𝑣 if

𝑣(𝐴 ∪ 𝑖) = 𝑣(𝐴), for all 𝐴 ⊆ 𝑁 \ 𝑖.

The null player property is satisfied if for each game 𝑣 and each player 𝑖 ∈ 𝑁
the implication

𝑖 is a null player in 𝑣 ⟹ 𝜙𝑖(𝑣) = 0.

holds.

Symmetry

Players 𝑖, 𝑗 ∈ 𝑁 are symmetric in a game 𝑣 if

𝑣(𝐴 ∪ 𝑖) = 𝑣(𝐴 ∪ 𝑗), for each coalition 𝐴 ⊆ 𝑁 \ 𝑖𝑗.

The allocation is symmetric if for each game 𝑣 and all players 𝑖, 𝑗 ∈ 𝑁 the
following implication holds:

𝑖 and 𝑗 are symmetric ⟹ 𝜙𝑖(𝑣) = 𝜙𝑗(𝑣).

Efficiency

The allocation value is efficient when

𝜙1(𝑣) + ⋯ + 𝜙𝑛(𝑣) = 𝑣(𝑁) for every game 𝑣.

Additivity

𝜙(𝑢 + 𝑣) = 𝜙(𝑢) + 𝜙(𝑣) for every two games 𝑢, 𝑣.

Linearity

𝜙(𝛼𝑢 + 𝛽𝑣) = 𝛼𝜙(𝑢) + 𝛽𝜙(𝑣) for every two games 𝑢, 𝑣 and all 𝛼, 𝛽 ∈ ℝ.

In a more informal way, the Shapley value is a form of calculation of the contri-
bution of a single peer to all possible coalitions and therefore tells how much is
the peer valueable, or in the meaning of the trust game, how much is the peer
trusted.

24

Example 3.1.2. Let’s calcualte the Shapley value for trust game in Exam-
ple 3.1.1.

For player 1 the all possible 𝑆 ⊆ 𝑁\𝑖 are {∅, {2}, {3}, {2, 3}}.

𝑝1(∅) = 0!(3 − 0 − 1)!
3! = 2

6
Δ1𝑣(∅) = 𝑣({1}) − 𝑣(∅) = 0

𝑝1({2}) = 1!(3 − 1 − 1)!
3! = 1

6
Δ1𝑣({2}) = 𝑣({1, 2}) − 𝑣({2}) = 18/11

𝑝1({3}) = 1!(3 − 1 − 1)!
3! = 1

6
Δ1𝑣({3}) = 𝑣({1, 3})−𝑣({3}) = 15/11−4/11 = 1

𝑝1({2, 3}) = 2!(3 − 2 − 1)!
3! = 2

6
Δ1𝑣({2, 3}) = 𝑣({1, 2, 3})−𝑣({2, 3}) = 2−1 = 1

The Shapley value for player one is

𝜙1 = 2
6 ⋅ 0 + 1

6 ⋅ 18
11 + 1

6 ⋅ 1 + 2
6 ⋅ 1 = 51

66 ≈ 0.7727.

The Shapley value for player 2 and 3 are calculated using the same formula:

𝜙2 ≈ 0.5909 𝜙3 ≈ 0.6363

There are no null players nor symmetric players and we are using just single
game (trust game) so we do not need to check the additivity or linearity, but
we can check the efficiency property:

𝜙1 + 𝜙2 + 𝜙3 = 2 = 𝑣({1, 2, 3}).

25

26

Chapter 4

Numerical Experiments

In this section you will find numerical experiments which focus on different
scenarios of P2P networks and especially on the reducible cases. For all of
the following experimental scenarios the trust graphs were artificially created
to exhibit the different properties of theirs trust matrices. We will compare
the ranking of outputs of all three previously presented algorithms. In every
scenario we will assume, that there are no pre-trusted peers. This may cre-
ate a problematic environment for the EigenTrust algorithm. We will examine
only small networks of 3, 4, 5 and 10 peers. Every example will be presented
with its trust graph and/or trust matrix, to visualize the problematic aspects
of each example. The global trust vectors of each algorithm were calculated
by its implementation in Julia programming language (link in appendix). All
MaxTrust computations were done with the input vector 𝑤 set to a uniform
distribution vector and the time 𝑇 set to 1. EigenTrust’s initial vector was a
uniform distribution as well.

4.1 Experiment #1
The first experiment is based on the running Example 3.1.1. In this example
the malicious peer is 3. Peer-3 obtained a worse trust from 1, than 2 did and
intentionally set its trust for other peers low (after normalization it is 0). The
trust matrix of this network as the input for EigenTrust is

𝐶 = ⎛⎜
⎝

0 7
11

4
11

1 0 0
0 0 0

⎞⎟
⎠

Figure 4.1: Trust matrix - Exp #1

27

,which is a reducible matrix from the point of view of regular algebra. We
can calculate the eigenvectors and eigenvalues of this matrix, but since the
prerequisities for Perron-Frobenious theorem are not satisfied, there will not be
a dominant eigenvalue with value 1.

If we transform C to the Max-Plus algebra

𝐶 = ⎛⎜
⎝

𝜖 7
11

4
11

1 𝜖 𝜖
0 0 𝜖

⎞⎟
⎠

Figure 4.2: Max-Plus Trust matrix

the matrix becomes regular and irreducible according to this algebra, mean-
ing the max_power procedure is sufficient for calculating the eigenvector. The
EigenTrust’s Power iteration in this experiment returned a vector (0, 0, 0), there-
fore, there are only zeros in Figure 4.3, where there should be blue bars. In the
graph below we subtracted 1.5 from the output of MaxTrust.

Figure 4.3: Trust - Exp #1

In Figure 4.3, you can see, that MaxTrust better distributed the trust. But our
main focus is on the ranking of nodes.

28

algorithm peer-1 peer-2 peer-3
MaxTrust 1. 2. 3.
SHAPE-Trust 1. 3. 2.

Table 4.1: Ranking - Exp #1

Both algorithms ranked peer-1 as the most trusted as it rationally should be, but
unfortunately SHAPE-Trust ranked peer-3 as the second most trusted, which
is not ideal.

4.2 Experiment #2
The second experiment is based on Example 2.2.1. The malicious peer is peer-4.
He did not rated intentionally badly, but he has been sending malicious files to
peer-2.

Figure 4.4: Graph - Exp #2

Figure 4.5: Trust - Exp #2

As can be seen in the Figure 4.5 and Table 4.2. All algorithms recognized that
peer 4 is malicious.

29

algorithm peer-1 peer-2 peer-3 peer-4
EigenTrust 1. 3. 2. 4.
MaxTrust 1. 3. 2. 4.
SHAPE-Trust 2. 3. 1. 4.

Table 4.2: Ranking - Exp #2

All algorithm rated the peers appropriately.

4.3 Experiment #3
In the third experiment we have five nodes and malicious peer was marked peer-
3. Peer-3 in this network intentionally gave low trust to peers-4 and peer-5 and
has been sending mix of fine and corrupted files to the peer-1 and peer-2. The
Figure 4.6 contains already normalized trust values.

Figure 4.6: Trust Graph - Exp #3

algorithm peer-1 peer-2 peer-3 peer-4 peer-5
EigenTrust 3. 4. 5. 1. 2.
MaxTrust 4. 3. 5. 1. 2.
SHAPE-Trust 4. 1. 5. 2. 3.

Table 4.3: Ranking - Exp #3

As can be seen in Figure 4.6, EigenTrust kind of failed again, as expected. Both
Maxtrust and SHAPE-Trust recognized the malicious peer, but they ranked
them quite differently. However, for the sake of security of the network, both
rankings are fine.

In Figure 4.6 can be seen one the property of symmetric peers, in the trust
distribution of peer-4 and peer-5.

30

Figure 4.7: Trust - Exp #3

4.4 Experiment #4
In this experiment we have two groups, the smaller one containing four nodes
is malicious and the bigger one is good. The malicious peers were sending
some corrupted files to some peers from the other group, but have not been
receiving any files. Therefore, there are local trust values assigned only in one
way between these groups.

algorithm
peer-

1
peer-
2

peer-
3

peer-
4

peer-
5

peer-
6

peer-
7

peer-
8

peer-
9

peer-
10

EigenTrust 3. 7. 6. 4. 10. 8. 5. 9. 2. 1.
MaxTrust . 7. 8. 9. 10 1. 4. 5. 6. 3. 2.
SHAPE-Trust 5. 10 7. 4. 8. 3. 6. 9. 2. 1.

Table 4.4: Ranking - Exp #4

As can be seen in the Table 4.4 and Figure 4.8, MaxTrust dominated in recogniz-
ing the two groups of good and malicious peers. SHAPE-Trust and EigenTrust
in this scenario ranked the peers quiet similarly. The ranking of SHAPE-Trust,
again for the sake of security, is quite fine, when the the first three nodes are
from the group of good peers.

31

Figure 4.8: Trust Graph - Exp #4

Figure 4.9: Trust - Exp #4

32

Conclusions

This thesis focused on comparing three Trust Management Systems for P2P
networks: EigenTrust, MaxTrust and SHAPE-Trust. The main point was to
compare only EigenTrust and SHAPE-Trust, but we look at the MaxTrust al-
gorithm as an expansion of EigenTrust. The first objective was implementing
these algorithms in Julia programming language. Link to the GitHub repository
can be found in the appendix. The algorithms are described with their basic
theoretical background in the first three chapters. Chapter 4 focuses on the
comparison of these algorithms in simulated experiments, mainly on reducible
cases, which can create a problem for EigenTrust. These experiments showed,
that for a network without pre-trusted peers and with, for example, only one way
communication between some peers, it creates a problematic environment for
the EigenTrust. SHAPE-Trust, however, acts quite well in all situations, with
fairly distributing the trust between all peers and with prioritizing the good
peers over the malicious ones. The MaxTrust algorithm, as can be seen in the
experiments, usually behaved well, but its implementation is quite challenging,
due to many parameters of the original algorithm.

33

34

References

[1] Aberer K, Hauswirth M (2002) An overview of peer-to-peer information
systems. In: WDAS

[2] Hendrikx F, Bubendorfer K, Chard R (2015) Reputation systems: A
survey and taxonomy. Journal of Parallel and Distributed Computing
75:184–197. https://doi.org/10.1016/j.jpdc.2014.08.004

[3] Novotný M Trust management systems in P2P networks. PhD thesis,
Charles University in Prague

[4] Bandhana A, Kroupa T, García S (2024) Trust in shapley: A cooperative
quest for global trust in P2P networks. In: AAMAS 2024. IFAAMAS

[5] Kamvar SD, Schlosser MT, Garcia-Molina H (2003) The eigentrust algo-
rithm for reputation management in p2p networks. In: WWW 2003

[6] Meyer CD (2000) Matrix analysis and applied linear algebra

[7] Seneta E (1981) Non-negative matrices and markov chains

[8] Afanador J, Oren N, Baptista M, Araujo M (2020) From eigentrust to a
trust-measuring algorithm in the max-plus algebra. ECAI 2020

[9] Heidergott B, Olsder GJ, Woude J van der (2006) Max plus at work:
Modeling and analysis of synchronized systems: A course on max-plus
algebra and its applications. Princeton University Press

[10] Al Bermanei H (2021) Applications of max-plus algebra to scheduling.
PhD thesis

[11] Mursyidah H, Subiono N (2017) Eigenvalue, eigenvector, eigenmode of
reducible matrix and its application. AIP conference proceedings. https:
//doi.org/10.1063/1.4994447

[12] Konigsberg ZR (2009) A generalized eigenmode algorithm for reducible
regular matrices over the max-plus algebra. International Mathematical
Forum 4(24):1157–1171. https://doi.org/10.1109/ccdc.2009.5195195

[13] Maschler M, Solan E, Zamir S (2013) Game theory. Cambridge Univer-
sity Press

35

https://doi.org/10.1016/j.jpdc.2014.08.004
https://doi.org/10.1137/1.9780898719512
https://doi.org/10.1007/0-387-32792-4
http://www.jstor.org/stable/j.ctt7zv8k3
http://www.jstor.org/stable/j.ctt7zv8k3
http://www.jstor.org/stable/j.ctt7zv8k3
https://doi.org/10.1063/1.4994447
https://doi.org/10.1063/1.4994447
https://doi.org/10.1109/ccdc.2009.5195195
https://doi.org/10.1017/CBO9780511794216

36

Appendix

Link to the GitHub repository with algorithm im-
plementations
https://github.com/ruttejan/TMS

37

https://github.com/ruttejan/TMS

	Abstract
	Abstrakt
	Introduction
	EigenTrust
	Normalized Trust Matrix
	Main idea behind EigenTrust
	EigenTrust Algorithm
	Convergence and nonconvergence of EigenTrust
	Pre-trusted Peers

	MaxTrust
	Max-Plus Algebra
	Eigenvalues and eigenvectors
	Normal form

	Power Method and MaxTrust
	Normalization of eigenvector/eigenmode
	Summary

	SHAPE-Trust
	Model design of SHAPE-Trust
	Trust game
	Solution concept and Shapley value

	Numerical Experiments
	Experiment #1
	Experiment #2
	Experiment #3
	Experiment #4

	Conclusions
	References
	Appendix
	Link to the GitHub repository with algorithm implementations

