
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of master’s thesis

Nested loops and path explosion in symbolic execution

Bc. Vojtěch Rozhoň

Pierre Donat-Bouillud, Ph.D.

Informatics

System Programming

Department of Theoretical Computer Science

until the end of summer semester 2024/2025

Instructions

Symbolic execution is a program analysis technique that explores all the paths of a

program and solve the various conditions along the paths using a SMT solver. It can

create concrete examples of what leads to a particular path, what leads to some bug.

Symbolic execution must explore all the paths of the program to give sound results but

the number of paths can increase exponentially, especially in the presence of loops,

leading to "path explosion".

Some techniques to reduce the number of paths exist, such as loop summarization, path

subsumption, state merging and leveraging static analysis techniques (see Baldoni,

Roberto, Emilio Coppa, Daniele Cono D’elia, Camil Demetrescu, and Irene Finocchi. "A

survey of symbolic execution techniques." ACM Computing Surveys (CSUR) 51, no. 3

(2018): 1-39). Nested loops are particularly challenging.

The goal is to implement existing techniques that tackle path explosion due to loops on

micro-c programs (https://courses.fit.cvut.cz/NI-APR/microc.html), adapt or even create

new approaches for nested loops, and evaluate them. micro-c is an educational

language with just a few programs so typical real world programs and nested loops

heavy program will have to be written.

1) Research the principles of symbolic execution

2) Research the approaches to solve path explosion

3) Implement path explosion techniques for (nested) loops in Scala for micro-c programs

Electronically approved by doc. Ing. Jan Janoušek, Ph.D. on 23 January 2024 in Prague.

4) Create representative micro-c programs

5) Compare and evaluate the approaches

Electronically approved by doc. Ing. Jan Janoušek, Ph.D. on 23 January 2024 in Prague.

Master’s thesis

NESTED LOOPS AND
PATH EXPLOSION IN
SYMBOLIC EXECUTION

Vojtěch Rozhoň

Faculty of Information Technology
Department of computer science
Supervisor: Pierre Donat-Bouillud, Ph.D.
May 9, 2024

Czech Technical University in Prague
Faculty of Information Technology
© 2024 Vojtěch Rozhoň. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic. It has been sub-
mitted at Czech Technical University in Prague, Faculty of Information Technology. The thesis
is protected by the Copyright Act and its usage without author’s permission is prohibited (with
exceptions defined by the Copyright Act).

Citation of this thesis: Rozhoň Vojtěch. Nested loops and path explosion in symbolic execution.
Master’s thesis. Czech Technical University in Prague, Faculty of Information Technology, 2024.

Contents

Acknowledgments viii

Declaration ix

Abstract x

Acronyms xi

1 Introduction 1
1.1 Goals of the thesis . 2

2 The microc programming language 3
2.1 Overview of microc programs . 3
2.2 Statements . 5
2.3 Expressions . 5
2.4 Possible errors in microc . 7

3 Basics of symbolic execution 9
3.1 Control flow graphs . 9
3.2 Symbolic execution . 10
3.3 Symbolic state . 11
3.4 Constraint solving . 12
3.5 Unbounded loops . 13
3.6 Path scheduling . 14
3.7 Properties of symbolic execution . 15

4 Nested loops and solving the path explosion 17
4.1 Path pruning . 18
4.2 Path subsumption . 18

4.2.1 Subsumption and unbounded loops 20
4.2.2 Path subsumption for nested loops 22

4.3 State merging . 22
4.3.1 Query count estimation . 25
4.3.2 Dynamic state merging . 27

4.4 Loop summarization . 27
4.4.1 Summarization of single-path loops 28
4.4.2 Summarization of multi-path loops 30

4.4.2.1 Classification of path interleaving within a loop 30
4.4.2.2 Classification of conditions 33

iii

iv Contents

4.4.2.3 Summarization of type 1 loops 34
4.4.2.4 Summarization of cycles in PDA 35
4.4.2.5 Summarization of loops of types 2, 3, and 4 35

4.4.3 Summarization of nested loops . 36

5 Implementation 39
5.1 Design . 39

5.1.1 Workflow of the executor . 42
5.2 Program representation . 42

5.2.1 AST normalization . 43
5.2.2 Supported values . 43

5.3 Symbolic executor . 44
5.3.1 Symbolic state . 45
5.3.2 Evaluation of statements . 47

5.3.2.1 Constraint solving . 48
5.3.2.2 Search strategies . 48

5.3.3 Evaluation of expressions . 50
5.3.3.1 Error detection . 50
5.3.3.2 Evaluation of array indexing 50
5.3.3.3 Evaluation of function calls 52

5.3.4 Statistics . 53
5.4 Path explosion optimizations . 53

5.4.1 Path pruning . 54
5.4.2 Path subsumption . 54

5.4.2.1 Computation of annotations 56
5.4.3 State merging . 57

5.4.3.1 The algorithm for merging two states 58
5.4.3.2 Heuristic-based state merging 62

5.4.4 Loop summarization . 63
5.4.4.1 Path dependency automaton 63
5.4.4.2 Getting summary from the PDA 64
5.4.4.3 Summarization of nested loops 64

6 Experiments 65
6.1 Microc code generation . 65
6.2 Metrics . 66
6.3 Experiments . 66

6.3.1 Parameters for merge strategies . 66
6.3.2 Comparing search and merge strategies 69
6.3.3 Final experiments . 73

6.4 Discussion . 76

7 Conclusion 79
7.1 Future Work . 79

List of Figures

3.1 An example of a control flow graph for program 3.1 10
3.2 An example of a control flow graph of the example program with a while

statement for program 3.2 . 14

4.1 An example of graphs of paths in the loops 32

5.1 An example of a symbolic state . 46
5.2 An example of a merged frame . 60
5.3 An example of a merged storage . 61

List of Tables

3.1 Paths present in a basic program 3.1 (CFG 3.1) 11
3.2 Symbolic execution of a basic program 3.1 (CFG 3.1) step1 11
3.3 Symbolic execution of a basic program 3.1 (CFG 3.1) step2 12
3.4 Symbolic execution of a basic program 3.1 (CFG 3.1) step3 12
3.5 Symbolic execution of a basic program 3.1 (CFG 3.1) step4 12

4.1 An example of the traces of a summary computed for a loop 4.9 29
4.2 Classification of loops by combination of the interleaving pattern and the

type of the inner conditions. 30
4.3 An example of paths of a loop (paths graph 4.1b, code snippet 4.10) with

a periodic path interleaving pattern . 31
4.4 An example of paths of a loop (paths graph 4.1c, code snippet 4.11) with

an irregular path interleaving pattern . 33
4.5 An example of edges in a PDA graph of a sequential loop (paths graph

4.1a, code snippet 4.9) . 34
4.6 An example of edges in a PDA graph of a periodic loop (paths graph 4.10,

code snippet 4.10) . 35

5.1 Costs and probabilities of being picked in the coverage strategy 49

6.1 Definitions of program sets for the first experiment 67
6.2 Number of timeouts for precomputation of query count analyses 67

v

6.3 Total time (ms) spend precomputing variable costs for different program
sets . 67

6.4 Path coverage for different values of the parameter limit-cost 68
6.5 Path coverage for different values of the parameter limit 68
6.6 Path coverage for different values of the parameter limit 68
6.7 Path coverage for different search and merge strategies on smaller programs 69
6.8 Errors detected for different search and merge strategies for smaller pro-

grams . 70
6.9 Total time in ms for different search and merge strategies for smaller

programs . 70
6.10 Runs timeouted for different search and merge strategies for smaller pro-

grams . 70
6.11 Path coverage for different search and merge strategies on larger programs 71
6.12 Errors detected for different search and merge strategies on larger programs 71
6.13 Total time in ms for different search and merge strategies for larger programs 72
6.14 Runs timeouted for different search and merge strategies for larger programs 72
6.15 (Runs timeouted + Error detected) for different search and merge strate-

gies for larger programs . 72
6.16 Definitions of program sets . 73
6.17 Final test with no path explosion techniques enabled 74
6.18 Final test with state merging enabled . 75
6.19 Final test with subsumption enabled . 76
6.20 Final test with summarization enabled . 77

List of code listings

2.1 The grammar of the microc language in EBNF format 4
2.1 An example of a micro program . 6
2.2 An example of a micro program with errors 7

3.1 An example of symbolic execution analyses 9
3.2 An example of microc program with while and if statements 13

4.1 An example of the pruning of unrealizable paths 18
4.2 An example of the path subsumption optimization 19
4.3 An example of path subsumption and loops. 21
4.4 An example of path subsumption and loops. 21
4.5 An example of path subsumption and loops. 22
4.6 An example of beneficial state merging . 23
4.7 An example of possibly unbeneficial state merging 24
4.8 An example of query count estimation with κ 25
4.9 An example of loop summarization . 28

vi

List of code listings vii

4.10 An example of a loop with an periodic path interleaving pattern 31
4.11 An example of a loop with an irregular path interleaving pattern 32
4.12 An example of a loop with a niv condition 33
4.13 An example of nested loop summarization 36
4.14 An example of outer loop after summarization of the inner loop 37
4.15 An example of an outer loop after summarization of the inner loop (sim-

plified) . 37

5.1 An example of a cfg normalization . 43
5.2 An example of a simple program for the visualization of the symbolic store. 45
5.3 An example of a symbolic value being an array index 51
5.4 An example of a program using factorial 52
5.5 An unreachable error when collecting paths 55
5.6 An example of a possible error that removes annotations 56
5.7 An example of a possible error that modifies annotations 57

6.1 An example of a random generated program with an array access out-of-
bounds error . 65

I would like to express my sincere gratitude to my supervisor
Pierre Donat-Bouillud, Ph.D. for his valuable help, guidance
and patience.

viii

Declaration

I hereby declare that the presented thesis is my own work and that I have cited all sources
of information in accordance with the Guideline for adhering to ethical principles when
elaborating an academic final thesis. I acknowledge that my thesis is subject to the
rights and obligations stipulated by the Act No. 121/2000 Coll., the Copyright Act, as
amended, in particular that the Czech Technical University in Prague has the right to
conclude a license agreement on the utilization of this thesis as a school work under the
provisions of Article 60 (1) of the Act.

In Prague on May 9, 2024

ix

Abstract

The thesis evaluates techniques for tackling path explosion in symbolic execution. There
is a particular focus on the interaction of the techniques with nested loops. Path prun-
ing, path subsumption, state merging, and loop summarization techniques are discussed
using examples. Symbolic execution and these techniques are implemented to analyze
programs written in an educational language called microc, a language inspired by C.
The thesis describes experiments performed to compare the techniques, especially to
find out how well the techniques deal with many loops or deep nested loops. A random
microc program generator is developed to experiment with the symbolic executor.

Keywords symbolic execution, path explosion, nested loops

Abstrakt

Práce vyhodnocuje techniky pro řešeńı problému exploze cest v symbolické exekuci.
Obzvláštńı d̊uraz je kladen na interakce jednotlivých technik se vnořenými cykly. Metody
ořezáváńı cest, subsumpce cest, slučováńı stav̊u a shrnováńı cykl̊u jsou diskutovány na
př́ıkladech. Symbolická exekuce je spolu s těmito metodami implementována pro analýzu
programů napsaných v edukačńım programovaćım jazyce microc, který je inspirován
jazykem C. Práce představuje experimenty, které porovnávaly jednotlivé metody, obzvláště
aby zjistili jak dobře se tyto metody vypořádávaj́ı s mnoha cykly a se vnořenými cykly.
Generátor náhodných programů v jazyce microc byl implementován pro experimentováńı
s implementovanou symbolickou exekućı.

Kĺıčová slova symbolická exekuce, exploze cest, vnořené cykly

x

Acronyms

AST Abstract Syntax Tree
BFS Breath First Search
CFG Control Flow Graph
DFS Depth First Search

FIT CTU Faculty of Information Technology at Czech Technical University in Prague
IV Induction Variable

NIV Non-Induction Variable
PDA Path Dependency Automaton

xi

xii Acronyms

Chapter 1

Introduction

Testing program correctness is a crucial part of the software development cycle. Devel-
opers often manually develop test suites to check that a program behaves as expected
for various kinds of inputs.

Automatic program testing seeks to find errors in the program without the devel-
oper having to write manual tests. Techniques based on random fuzzing do this by
automatically generating numerous input values for the program.

Symbolic execution uses the source code information to enhance the analyses. Instead
of generating concrete inputs and running the program with them, it reasons about the
program abstractly, evaluating all the execution paths in the code symbolically.

The problem with this approach is that the number of execution paths in the program
is typically infinite. Most programming languages have constructs, such as loops or
recursive functions, that can exponentially increase the number of paths within the
program. This problem is called path explosion.

There are many possible approaches to reduce the impact of path explosion and to
allow the analyses to find the errors in the code faster.

This thesis examines different strategies for dealing with path explosion. The tech-
niques include path pruning, path subsumption, state merging, and loop summarization.
It examines loops, especially those that provide the biggest challenge for the symbolic
executor. These loops contain another loop within their body, and they are called nested
loops.

For this thesis, I developed a symbolic executor to analyze programs written in a
programming language called microc from the NI-APR course at FIT CTU. Chapter 2
describes this language. Chapter 3 explains how symbolic execution works. Chapter 4
looks at different strategies to reduce the impact of path explosion and also discusses
their effect on nested loops.

Chapter 5 examines the implementation of the symbolic executor and the path ex-
plosion techniques developed for this thesis. Chapter 6 discusses the experiment results
after using the developed symbolic executor to analyze microc programs. The programs
are randomly generated because there are not many programs written in microc since it
is an educational language. The last chapter, chapter 7, summarizes the whole thesis.

1

2 Introduction

1.1 Goals of the thesis

The thesis aims at analyzing different techniques for tackling path explosion. It discusses
their effectiveness on loop-heavy programs.

A symbolic execution engine should be developed, and path explosion reduction
techniques should be implemented.

An experiment that analyses the effectiveness of different techniques on loop-heavy
programs should be performed, and its results should be analyzed.

Chapter 2

The microc programming
language

The thesis uses the microc language that is used in the NI-APR course (Selected Methods
for Program Analysis) at FIT CTU. The language is based on a TIP language from the
SPA book [1], inspired by the language C [2]. This chapter provides an overview of the
language. Section 2.1 defines the basic structure of microc programs. Sections 2.2 and
2.3 define all microc statements and expressions. Section 2.4 talks about errors that we
can encounter in microc.

2.1 Overview of microc programs

The microc language is extended to support a few more operators for the purposes of this
thesis. The grammar of microc is shown in the Extended Backus–Naur Form (EBNF)
[3] format in 2.1.

The language supports numbers, arrays, records, pointers, and functions. The num-
ber type can hold only integers. In the original microc, variables can be of a function
type, and thus functions can be stored as values of program variables. This feature
was disabled for the purposes of this thesis to make code analyses easier. Since the
language does not support the boolean type, any condition is expected to be evaluated
to a number. If the number is zero, it is evaluated as false. Otherwise, it is true.

A microc program consists of a list of named functions. Each function takes a fixed
amount of named parameters and returns a value. The function also contains two blocks
of statements and a final return statement. A microc program has to contain the main
function. The execution of the program starts with this function.

The first block of statements is the variables declaration block. This block contains
variable declaration statements that start with a keyword var. A variable declaration
statement can define multiple variables. All variables that are not function parameters
must be declared here before they can be used in the function body. The second block of
statements is the function body block. It contains the logic of the function. No variable
declaration statement or return statements can be placed in this block. Thus, every
function has one return statement that is always placed at the end of the function.

3

4 The microc programming language

⟨Program⟩ ::= { ⟨FunDecl⟩ }

⟨FunDecl⟩ ::= Identifier ([⟨IdentifierDecl⟩ { , ⟨IdentifierDecl⟩ }])

⟨IdentifierDecl⟩ ::= Identifier

⟨FunBlockStmt⟩ ::= { { ⟨VarStmt⟩ } { ⟨Stmt⟩ } ⟨ReturnStmt⟩ }

⟨VarStmt⟩ ::= var ⟨IdentifierDecl⟩ { , ⟨IdentifierDecl⟩ } ;

⟨ReturnStmt⟩ ::= return ⟨Expr⟩ ;

⟨Stmt⟩ ::= ⟨OutputStmt⟩ | ⟨WhileStmt⟩ | ⟨IfStmt⟩ | { { ⟨Stmt⟩ } } | ⟨AssignmentStmt⟩

⟨IfStmt⟩ ::= if (⟨Expr⟩) ⟨Stmt⟩ [else ⟨Stmt⟩]

⟨WhileStmt ⟩ ::= while (⟨Expr⟩) ⟨Stmt⟩

⟨OutputStmt⟩ ::= output ⟨Expr⟩ ;

⟨AssignmentStmt⟩ ::= ⟨Expr⟩ = ⟨Expr⟩ ;

⟨Expr⟩ ::= ⟨LogicalExpr⟩

⟨LogicalExpr⟩ ::= ⟨EqualityExpr⟩ { (&& | ||) ⟨EqualityExpr⟩ }

⟨EqualityExpr⟩ ::= ⟨RelationalExpr⟩ { (== | !=) ⟨RelationalExpr⟩ }

⟨RelationalExpr⟩ ::= ⟨AdditiveExpr⟩ { (> | >= | < | <=) ⟨AdditiveExpr⟩ }

⟨AdditiveExpr⟩ ::= ⟨MultiplicativeExpr⟩ { (+ | -) ⟨MultiplicativeExpr⟩ }

⟨MultiplicativeExpr⟩ ::= ⟨UnaryExpr⟩ { (* | /) ⟨UnaryExpr⟩ }

⟨UnaryExpr⟩ ::= ⟨Deref ⟩ | ⟨Ref ⟩ | ⟨Input⟩ | ⟨Alloc⟩ | ⟨Null⟩ | ⟨PostfixExpr⟩ | ⟨Not⟩

⟨Deref ⟩ ::= * ⟨UnaryExpr⟩

⟨Ref ⟩ ::= & ⟨Identifier⟩

⟨Input⟩ ::= input

⟨Alloc⟩ ::= alloc ⟨Expr⟩

⟨Null⟩ ::= null

⟨PostfixExpr⟩ ::= ⟨PrimaryExpr⟩ ⟨FieldAccess⟩ | ⟨ArrayAccess⟩ | ⟨Call⟩

⟨Not⟩ ::= ! ⟨Expr⟩

⟨FieldAccess⟩ ::= . ⟨Identifier⟩

⟨ArrayAccess⟩ ::= [⟨Expr⟩]

⟨Call⟩ ::= ([⟨Expr⟩ ’, ⟨Expr⟩])

⟨PrimaryExpr⟩ ::= ⟨Number⟩ | ⟨Identifier⟩ | ⟨Array⟩ | ⟨Record⟩ | ⟨Paren⟩

⟨Record⟩ ::= { [⟨Field⟩ , ⟨Field⟩] }

⟨Array⟩ ::= [[⟨Expr⟩ , ⟨Expr⟩]]

⟨Paren⟩ ::= (⟨Expr⟩)

⟨Field⟩ ::= ⟨Identifier⟩ : ⟨Expr⟩

⟨Number⟩ ::= [-] (0 ... | 9)

⟨Identifier⟩ ::= (_ | A ... Z | a ... z) { (_ | A ... Z | a ... z | 0 - 9) }

Code listing 2.1 The grammar of the microc language in EBNF format

Statements 5

2.2 Statements

This section lists all microc statements.

VarStmt The statement defines a list of variables.

OutputStmt The statement outputs the evaluated expression to the terminal.

AssignmentStmt The statement is used to update the value of a variable. The ex-
pression on the right side of the assignment is evaluated, and its value is assigned to
a memory location specified by the expression on the left side.
The expression on the left side can be Identifier, Deref, ArrayAccess, or
FieldAccess expressions.

ReturnStmt The statement is the final statement of a function. The expression in
the statement is evaluated, and the value is returned from the function. The main
function always returns a number.

IfStmt The statement contains at least one block of statements. If the else keyword
is present, there is one more block of statements. It also contains a condition. The
condition will sometimes be referred to as the guard. The condition is an expression
that is expected to be evaluated to a number, If the condition does not evaluate
to zero, the first block of statements gets executed. Otherwise, the second block of
statements gets executed.

WhileStmt The statement contains a block of statements and an expression. If the
expression is not evaluated to zero, the block of statements is executed. When the
execution of the statements finishes, we repeat the check of the condition and the
execution of the statements until the condition evaluates to zero.

2.3 Expressions

This section lists all microc expressions.

Binary expression The binary expression is used to compute a value from two input
expressions. The original microc grammar supports the operators ==, >, +, -, * and
/. In this thesis the operators <, <=, >=, and != are added too.

Not The expression is a unary operator. It expects a number and returns the number
one if the input number is 0. Otherwise, it returns the number zero. It is not part
of the original microc but was added to this thesis.

Input The expression is used to load a user input number. It can be any number.

Identifier The expression is used to load a value of a variable from the memory.

Null The expression is used to create a null pointer.

Alloc The expression evaluates a subexpression and adds the created value to the mem-
ory. A pointer pointing to this memory location is returned.

6 The microc programming language

Varref The expression returns a pointer to the value of an identifier.

Deref The expression contains an inner expression. This expression is expected to be
evaluated to a pointer value. The value at the memory location this pointer points
to is returned.

Record The expression is used to create a record value. A record value can contain
several fields. Every field has a name, and it can hold a value. Nested records are
not allowed.

Record Field A record field is defined by a name followed by an expression. A field
has to hold values of the same type at any time of the execution.

FieldAccess The expression is used to access a field of a record. The accessed record
is retrieved by evaluating a subexpression.

Array The expression produces an array with a fixed amount of elements of the same
data type. Every element of an array is initialized by an expression.

ArrayAccess The expression evaluates a subexpression that is expected to return an
array value. The other subexpression is expected to return a number. The element
at the index of the number in the array is accessed.

Code listing 2.1 shows a simple program written in microc. The program consists of
two functions called main and f.

Code listing 2.1 An example of a micro program
1 f(n) {
2 var r;
3

4 if (n == 0) {
5 r = 1;
6 } else {
7 r = n * f(n - 1);
8 }
9 return r;

10 }
11

12 main () {
13 return f(5);
14 }

The function f takes a parameter called n. The list of variable declaration statements
consists of one declaration statement that declares a variable named r. The body con-
tains a if statement that contains a block with one assign statement in both branches.
The return statement of the function returns the variable r.

The main function contains just a return statement, meaning that both the list of
variable declarations and the list of body statements are empty.

Possible errors in microc 7

2.4 Possible errors in microc

In the microc language, there are several possible errors related to variable types. A vari-
able needs to have the same type at any time during the execution, and every condition
has to be evaluated to a number.

Other invalid programs are produced by using an identifier whose value is not a
function for a function call or missing the main function in the program.

We leave the detection of these errors for a different sort of analysis, such as a type
analysis. We will assume that the programs are correctly typed.

There are also situations when a program is syntactically valid and type correct, yet
there is a problem that causes a crash of the program during runtime.

division by zero Division by zero is not a mathematically defined operation.

nullptr dereference A null pointer is a pointer that points to nowhere. Thus, deref-
erencing it does not make sense.

array access out of bounds If we try to access an element of an array at a negative
index or index behind the end of the array, then there is nothing to retrieve, and an
error occurs.

use of an uninitialized value It is forbidden to use a variable that has not yet been
initialized.

The following code 2.2 snippet shows a microc program with several errors.

Code listing 2.2 An example of a micro program with errors
1

2 main () {
3 var arr , res , a, ptr;
4 arr = [1, 0, 2, 2];
5 ptr = null;
6 res = 1 / arr [1];
7 res = a + a;
8 res = arr [4];
9 res = *ptr;

10 return 0;
11 }

Line 6 contains a division by zero error, line 7 contains the use of an uninitialized
value, line 8 contains an array access out-of-bounds error, and line 9 shows a null pointer
dereference error.

8 The microc programming language

Chapter 3

Basics of symbolic execution

This chapter discusses the basic concepts of symbolic execution. Section 3.1 discusses
the control flow graphs. Section 3.2 defines symbolic execution. Section 3.3 explains
the concept of symbolic states. Section 3.4 discusses the problem of constraint solving.
Section 3.5 discusses the problem of unbounded loops. Section 3.6 discusses the problem
of path scheduling, and section 3.7 lists other properties of symbolic execution.

An automated program testing technique takes a program as input and tries to find
as many errors in the program as possible. The tested program is loaded into memory
and analyzed. There are multiple ways of representing a program within a program
testing framework, one of which is the control-flow graph (CFG).

3.1 Control flow graphs

The CFG is a graph whose nodes can contain one or more statements. The statements
within one node are always executed sequentially. A directed edge is present between
two vertices if the execution of the target vertex can immediately follow the execution of
the source vertex. The entrypoint statement of the program is the only vertex with only
outgoing edges in the graph, while the exitpoint statements only have ingoing edges.
The nodes with several successors in the CFG are called control nodes. These nodes
correspond to conditions in the source program.

Code snippet 3.1 shows an example of a small program written in microc.

Code listing 3.1 An example of symbolic execution analyses
1 main () {
2 var y,z;
3 z = input;
4 y = 1;
5 if (z == 0) {
6 y = 2;
7 }
8 else {
9 y = 3 / z;

10 }
11 return y;

9

10 Basics of symbolic execution

12 }

Figure 3.1 shows the CFG of this program.

Start

var y, z; z = input; y = 1;

z == 0

y = 2 y = 3 / z

return y

yes no

Figure 3.1 An example of a control flow graph for program 3.1

We can see that the CFG contains one control node because of the if statement in
the source program. Also, note that the statements from lines 2, 3, and 4 are grouped
into one node because they are always executed sequentially.

3.2 Symbolic execution

Concrete execution is the usual way of executing a program. All the values acquired
from the environment, called input values (for example, a user input or a configuration
file), hold a concrete value. The random fuzzing-based methods usually execute a target
program with concrete execution. The executed program is called a fuzzed program. The
methods try to find bugs by generating random concrete inputs for each input variable
of the fuzzed program.

Symbolic execution is another way of evaluating a program. Instead of all variables
holding a concrete value, they can also hold a symbolic value. A symbolic value represents
multiple possible concrete values. The set of different concrete values of program input
variables is typically extremely large, and thus, proving the presence of a bug by running
the program for every possible combination of input values is impossible. Symbolic
execution can help by analyzing the execution paths because it represents all these
concrete values with one symbolic value.

An execution path in a program is a unique sequence of statements beginning at the
entrypoint of the program and ending at the exitpoint. In a program represented as
CFG, an execution path is a unique path through the graph from the entrypoint to an
exitpoint.

Symbolic state 11

Assume the program in code snippet 3.1 whose CFG is 3.1. Table 3.1 shows both
the paths present in the program and the statements that are part of these paths.

Table 3.1 Paths present in a basic program 3.1 (CFG 3.1)

paths statements
path1 var y, z; z = input; y = 1; z == 0; y = 2; return y;
path2 var y, z; z = input; y = 1; z == 0; y = 3 / z; return y;

A concrete execution of a program leads to one path being executed. Notice that
different values of input variables can still lead to the same path being executed if all
conditions are evaluated the same way. Symbolic execution explores a path abstractly
using symbolic values, so the correctness of the program for all the different concrete
input values is checked in one analysis of the path.

This means that in the presented example 3.1, we only have to analyze two paths
listed in 3.1.

3.3 Symbolic state

The symbolic state represents the current situation of the symbolic executor.
It consists of the following parts.

Program location The symbolic state remembers the current location in the CFG.

Path condition A path condition is an expression that represents all the decisions
made so far in executing the current path.
We define an update operation for a path condition. Updating a path condition with
an expression results in a conjunction of the old path condition and the expression.

Symbolic store A symbolic store is used in the symbolic executor when we need to get
a value of a variable, a record field, an element inside an array, or a value referenced
by a pointer.

The symbolic execution engine starts the analyses by creating a symbolic state with
an empty symbolic store, a path condition having a value true, and the program location
being the entrypoint of the program.

Now assume that we start to symbolically execute the program 3.1, and we will try
to show that it is correct. Table 3.2 shows the initial state we create.

Table 3.2 Symbolic execution of a basic program 3.1 (CFG 3.1) step1

state program location path condition symbolic store
s1 start true

The basic workflow of a symbolic executor is such that the statements at the current
program location are examined, the path condition and the symbolic store are modified
based on the statements, and then we move to the next program location. Since the

12 Basics of symbolic execution

Table 3.3 Symbolic execution of a basic program 3.1 (CFG 3.1) step2

state program location path condition symbolic store
s1 var y, z; z = input; y = 1; true

entrypoint does not contain any statements, we can move to the next node in the CFG
graph, as table 3.3 shows.

A variable declaration statement makes the symbolic store register new variables.
An assign statement updates the value of a variable in the symbolic store. Thus, we can
apply the effects of the statements var x, z;, z = input; and y = 1;. Notice that
the value of the variable z has to be represented as a symbolic value. We will call it k.
Table 3.4 shows the symbolic state after we move to the next statement.

Table 3.4 Symbolic execution of a basic program 3.1 (CFG 3.1) step3

state program location path condition symbolic store
s1 z == 0 true y ⇒ 1, z ⇒ k

We reached a control node. The condition can be evaluated either as true or as
false. Thus, we will split the execution into two states. One state will continue exe-
cuting the then branch with its path condition updated with the condition. The other
state will continue executing the else branch, with its path condition being updated
with the negation of the condition. The states can be seen in table 3.5.

Table 3.5 Symbolic execution of a basic program 3.1 (CFG 3.1) step4

state program location path condition symbolic store
s1 y = 2 z == 0 y ⇒ 1, z ⇒ k

s2 y = 3 / z z! = 0 y ⇒ 1, z ⇒ k

Assume that the state s1 is explored first. The variable y is updated, and then we
move to the exitpoint, so we can stop exploring this state and start exploring the state
s2.

The statement y = 3 / z potentially causes an error if z == 0. However, the path
condition z! = 0 makes this situation impossible, so we update y in the symbolic store
and move to the exitpoint. The mechanism of checking the satisfiability of expressions
is further discussed in 3.4.

There is no other unexplored path, proving that the program cannot crash for any
input value.

Notice that every state corresponds to one path in the program. The benefit of this
approach is that if two paths share the same sequence of instructions at their beginning,
the sequence is analyzed only once.

3.4 Constraint solving

In the example 3.1, it is necessary to check the possibility of a division by zero error. The
error occurs if the variable z equals 0. Recall that the path condition was z != 0. Thus,

Unbounded loops 13

to check whether an error is possible, it is necessary to check whether the constraint z
== 0 && z != 0 is satisfiable.

There are various implementations of a constraint solver. Many of them utilize
different strategies and work best for different kinds of constraints. A strategy proposed
in the paper [4] tries to utilize different strengths of various constraint solvers by calling
them in parallel and waiting for the first result.

Symbolic execution presents more cases when a constraint solver might be used.
Assume an array index expression that accesses an element of some array. The index
is a symbolic value. The constraint solver can be used to check whether an index can
be out of bounds of the array. Other potential uses for the constraint solver will be
discussed in chapter 4 and in chapter 5.

3.5 Unbounded loops

Unbounded loops are those that do not have a predetermined number of iterations.
Their opposite, bounded loops, can be unrolled, meaning that the statements within

the loop are extracted outside it. The loop is removed, and the block of statements from
the body of the loop is copied as many times as the maximum number of iterations.
However, we still might have to have conditions around each if it is a bounded loop that
can finish earlier than the maximum number of iterations.

On the other hand, the unbounded loops present a big challenge to the symbolic
executor. After an iteration of the loop body, we split the current state into two. One
path executes the body of the loop again, and one leaves it. This process can be done
an unknown number of times. Thus, there can be an infinite number of paths in the
program when an unbounded loop is present.

Code snippet 3.2 shows an example of a small microc program that includes an
unbounded loop.

Code listing 3.2 An example of microc program with while and if statements
1 main () {
2 var i, n;
3 n = input;
4 i = 0;
5 while (i < n) {
6 if (i < 100) {
7 output 1;
8 }
9 else {

10 output 2;
11 }
12 i = i + 1;
13 }
14 return y;
15 }

The CFG of this program can be seen in figure 3.2.
Notice that if we go through the yes edge at node i < n, we always reach the node

i < n again. Thus, unless i < n becomes unsatisfiable, we are stuck in the body of the

14 Basics of symbolic execution

Start

var i, n;, i = 0, n = input()

i < n

i < 100

output 1 output 2

i = i + 1

return y

yes

yes no

no

Figure 3.2 An example of a control flow graph of the example program with a while statement
for program 3.2

loop for an unbounded number of iterations.

3.6 Path scheduling

The section 3.3 discussed that we sometimes have multiple discovered but yet unex-
plored states during symbolic execution. We add all such states into a data structure
called worklist. Generally, since running an unbounded number of states in parallel is
impossible, the worklist is always needed. If the number of states in the worklist is small,
sufficient hardware allows us to explore them all in parallel.

The ordering in which the paths are explored is essential because a bad ordering
might cause the executor to be stuck in the same place in the program and not explore
other parts. This may happen with loop bodies, when a strategy may spend too much
time executing a big number of iterations of a body of a loop and not paths that leave
the loop. A search strategy is the function that picks the next state to execute from the
worklist. The article [5] presents the following search strategies.

The DFS strategy chooses a new path to explore by choosing the last encountered
unexplored path. The worklist can then be implemented as a stack. The strategy is
memory efficient but runs into problems when dealing with loops and recursive functions.

The BFS strategy chooses the first encountered path, that is not yet explored. We
can implement it with a queue. Despite the higher memory usage, the ability to not get
stuck in a loop usually makes this strategy better than DFS.

The random strategy chooses the next state randomly from a set of discovered but

Properties of symbolic execution 15

not explored states. Usually, using a uniform distribution is possible.
Another strategy is used in Klee [6]. During the symbolic exploration, they create a

graph whose vertices are the symbolic states created during the execution. A directed
edge is added from a source node to a target node when the target state is created during
the execution of the source state. The graph is a tree, and its root is the first state that
the symbolic executor tries to explore. We call the graph an Execution Tree.

The execution tree is kept so that all leaves belong to states that have yet to be
explored. The next state to explore is picked by traversing the tree randomly from the
root until a leaf is reached. After the new state is taken, nodes are removed from the
tree, so all the leaves in the tree are those still unexplored states.

This strategy favors states that are closer to the root of the symbolic execution tree
and usually have simple path conditions. The symbolic execution engine that uses this
strategy does not get stuck in loops and prefers states that do not repeat the loop body
many times in a row.

A random strategy based on non-uniform weights is also possible. The algorithm for
assigning the weights should assign bigger weights to the states that we consider more
interesting. Some tools, such as [6], assign higher probabilities to states expected to
increase coverage. Thus, the strategy should prioritize the paths that leave loops early.

Other works [7] try to prioritize states that have already found minor but not ex-
ploitable bugs. We can also remember how many times each branch was encountered
and then choose the state that got split from the least encountered branch.

Moreover, all the above strategies can be easily parallelized, with small synchroniza-
tion costs, and combined.

An important parameter for search strategies is how well they deal with a larger
worklist. The smaller the number of states in the worklist, the less space and time the
search strategy algorithm requires. Search strategies that perform more complicated
work to pick a state from the list can achieve bad performance for large programs.

3.7 Properties of symbolic execution

Soundness is the ability of an analysis to prove the absence of errors. Thus, a sound
analyzer can find all errors that are in the program. On the other hand, completeness
is the ability of an analysis to prove the presence of errors. Thus, if the analyzer signals
an error, this error is really present in the source code.

Notice that an analysis that never detects errors is complete but unsound, and an
analysis that considers any piece of code to contain an error is sound but incomplete.

Theoretically, if we can explore all paths of the program and if our constraint solver
can solve all constraints, the symbolic execution is both sound and complete,

However, in practice, symbolic execution is usually unsound because we cannot ex-
plore all paths in the program due to the path explosion. The symbolic execution is
usually complete, but some design decisions can make it incomplete. For example, we
can decide to detect a possible error if a constraint can not be solved.

The most significant advantage of symbolic execution is its precision. With standard
symbolic execution, there are no false positives. It is also important to note that the set
of execution paths is smaller than the set of different combinations of concrete inputs.

Symbolic execution can suffer from several different problems.

16 Basics of symbolic execution

The first and the most important is the path explosion problem. This problem means
that every conditional statement in the program can potentially increase the number of
paths to explore twice. Unbounded loops can even generate an infinite amount of paths.
Thus, the program generally contains an exponential number of paths compared to its
size. The strategies to deal with the problem are further discussed in the chapter 4.

Constraint solving is a complex problem. Since our path conditions get bigger and
bigger during the symbolic execution, the constraint solver is under more pressure and
can become a bottleneck. Furthermore, using more complicated expressions than the
basic arithmetic ones can be problematic. This problem will be further discussed in the
chapter 4.

The other challenge is handling the interactions with the environment correctly.
All the individual system calls must reasonably update the affected variable without
sacrificing precision [5].

The presented challenges often force the symbolic executors to suffer from the lack
of scalability.

Chapter 4

Nested loops and solving the path
explosion

As discussed in chapter 3, loops provide a severe challenge for symbolic execution because
a loop can generate an infinite number of paths. A loop can also have a complicated
body with many different paths within its body itself, increasing the complexity of the
analyses.

Similarly to loops, recursive functions also repeat the execution of the same set of
statements, and the number of these executions may depend on input variables and be
unbounded.

This chapter focuses on path explosion reduction techniques that might be useful for
a loop-heavy program. Any recursion can be rewritten using loops, so the techniques
are also relevant for solving the path explosion problem for recursive functions.

The article [5] suggests splitting the input program into parts, such as individual
functions, and analyzing each part in isolation may greatly decrease the number of paths
we need to check. The problem with this technique is the possibility of encountering
false positive inputs. Some inputs can cause an error in our code fragment, but a deeper
analysis of the whole code could show us that these values can never reach our code
fragment.

Other works, such as [8], deal with the unbounded loops by unrolling the loop multiple
times and trying different unrollings. However, this approach generally results in an
incomplete analysis unless we try all the possible unrollings.

This chapter consists of four sections, each dedicated to a technique used to tackle
path explosion. The section 4.1 talks about path pruning, the section 4.2 talks about
path subsumption, the section 4.3 talks about state merging, and the section 4.4 talks
about loop summarization.

Each technique is first discussed theoretically, and then an example showing the
benefits of the technique is presented.

17

18 Nested loops and solving the path explosion

4.1 Path pruning

The most basic idea for discarding unnecessary paths is to remove those whose path
conditions become unsatisfiable. The technique is discussed in the article [5]. Consider
the following code snippet 4.1:

Code listing 4.1 An example of the pruning of unrealizable paths
1 main () {
2 var a, res;
3

4 a = input;
5

6 if (a > 1) {
7 res = someFnc ();
8 }
9 if (a < 0) {

10 res = someFnc2 ();
11 }
12

13 return res;
14 }

For the sake of simplicity, assume that the functions someFnc and someFnc2 perform
some complicated computations but that the paths are not split during the execution of
these functions.

The initial path reaches line 6 and encounters an if statement, which consists of
two branches. The former is the then branch, and the latter is the else branch. In the
presented example, the else branch is empty. The path gets split into two to explore
both branches. Consider the else branch path first. Its path condition is a <= 1, and
thus, the expressions a < 0 && a <= 1 and a >= 0 && a <= 1 are both satisfiable, and
we split the path again on line 9.

The then path split on line 6 has the path condition of a > 1. An expression a < 0
&& a > 1 is unsatisfiable. A constraint solver is used to check the satisfiability. Thus,
we can prune the then branch path on line 9 and continue only with the else branch
path. In the presented example, it means one less call of a potentially computationally
demanding function someFnc2.

4.2 Path subsumption

Subsumption is a relationship between two formulas. When formula A subsumes formula
B, any interpretation that makes A true makes B also true. The path subsumption is a
technique inspired by this concept.

The paths that have already been explored can be used to collect conditions associ-
ated with a program location. The conditions are created so that if the conjunction of
the negations of all conditions is unsatisfiable, it is impossible for an error to happen in
the later exploration of the path. Thus, the path can be pruned. Notice that the pruned
path subsumes the condition since there is no combination of variable values for which
the state would be valid, and the condition non-satisfiable.

Path subsumption 19

The article [9] presents a possible implementation of path subsumption. It expects
that the program has only explicit error locations, meaning that the only statement that
can produce an error is a special error statement. When a path finishes its execution
without finding an error, the program locations are annotated with conditions under
which it is known that no further error would be reached from the program location.

The annotations are added during backtracking from a path that finished its execu-
tion towards the entrypoint of the program. The statements are visited in the reversed
order compared to how they were evaluated. The initial annotation is true, meaning that
all future paths should always stop the exploration when they encounter this statement.
Other annotations are computed from the annotations of the successor statements.

To compute an annotation of a conditional statement, the annotation from the first
statement in the then branch is combined with the guard of the condition. Combining
expressions in this context means creating a conjunction. Similarly, the annotation from
the first statement in the else branch is combined with the negation of the condition.
The computed annotation is a disjunction of these two expressions.

To get an annotation of an assign statement, the annotation of the successor state-
ment is modified by replacing all occurrences of the left side of the assign statement with
the right side.

The annotation is copied from the successor statement for the other types of state-
ments with only one successor.

Assume the following program 4.2 in microc. Notice that the program is written so
it has only explicit error locations.

Code listing 4.2 An example of the path subsumption optimization
1 main () {
2 var x, y;
3 x = 0;
4 if (input) {
5

6 }
7 else {
8 y = input;
9 if (y < 0) { // (x - y >= 0 and y < 0)

10 // or (x + y >= 0 and y >= 0)
11 y = 0 - y; // x - y >= 0
12 }
13 x = x + y; // x + y >= 0
14 }
15 if (x >= 0) { // x >= 0
16

17 }
18 else {
19 x = 1 / 0;
20 }
21 return 0; // true
22 }

Assume that when our symbolic executor encounters a conditional statement, it
follows the then branch first and explores the paths in the worklist with a DFS search

20 Nested loops and solving the path explosion

strategy. Notice that the else branch in the last conditional statement is unreachable
because the variable x is always greater or equal to zero.

The initial path executes the then branch on line 5 and the then branch on line 16.
On line 21, the path is stopped, and an annotation whose value is true is added to line
21. Then, the path backtracks to line 15, where it tries to execute the else path, but
the path gets pruned because the value of the variable x in the symbolic state is 0, and
thus, the condition x < 0 is unsatisfiable.

Thus, the path proceeds to compute the annotation for line 15. The annotation
from the then branch is combined with the guard of the conditional statement into a
conjunction. The first statement in the then branch is line 21, and its annotation is
true. By combining true with the guard x >= 0, we got an annotation x >= 0. Recall
that the annotation signals to the future paths that no error can be found if x >= 0 is
always true.

After placing the annotation, the path backtracks to the conditional statement on
line 4, and the else path starts its execution. The statements on lines 8, 9, 11, and
13 proceed to be executed. Notice that on line 13, the value of the variable y is always
greater or equal to zero. Thus, after executing line 13, x is greater or equal to zero.
After line 13, the line 15 is reached. This line already contains an annotation x >= 0.
The annotation is always true, given our symbolic state. Thus, we stop the execution
of the current branch, and we backtrack.

Line 13 has only one successor, with the annotation x >= 0. Since the statement
updates the variable x, the occurrences of x in the annotation are replaced with the
right side of the assign statement. Thus, the annotation that is placed on line 12 is x +
y >= 0.

On line 9, the else branch starts its execution. The first statement encountered is
line 13, which was recently annotated. In the current symbolic state, x is 0, while y is a
symbolic value. The current path condition is y >= 0. Thus, x + y is always greater or
equal to zero, and the current path can start backtracking.

The annotation for line 9 is computed as (x - y >= 0 and y < 0) or (x + y >=
0 and y >= 0)

Finally, the path backtracks through other statements to the program entrypoint,
and there is no other path to explore, so line 19 is proved unreachable.

4.2.1 Subsumption and unbounded loops
However, the presented algorithm is not able to handle unbounded loops. This is because
we would need to run infinite iterations of the body of the loop to collect the annotations.

A new variable t is introduced to handle unbounded loops. This variable is de-
creased by one at the end of the body of the loop, and every program point within the
loop is annotated with a temporary annotation t < 0. Thus, all paths leave the loop
body after t + 1 iterations. For example, the variable t can be zero. Thus, all paths
that reach the loop body perform one iteration and then leave the loop.

When the path that performed one iteration of the body of the loop and all the
paths split from it after the loop finishes their execution, the path backtracks to the
beginning of the loop. The computed annotations are an approximation of the fixpoint.
The inductivity of the annotations of the statements within the loop is checked.

Path subsumption 21

The algorithm described in [9] first plugs zero to variable t in the annotation and
checks whether the expression is satisfiable. If so, it checks whether the expression
is always satisfiable after n + 1 iterations of the loop if it is also satisfiable after n
iterations, where n >= 0.

If one of the induction check steps fails, the annotation is removed. Then, the value
of t can be increased, and the algorithm is repeated.

If the annotation is kept instead, the annotations t < 0 are removed.
Now assume the following program 4.3.

Code listing 4.3 An example of path subsumption and loops.
1 main () {
2 var x, y, i, n;
3 x = input;
4 i = input;
5 n = input;
6 y = x;
7 while (i < n) {
8 x = x + 1;
9 i = i + 1;

10 }
11 if (x < y) {
12 x = 1 / 0;
13 }
14 return 0;
15 }

The loop on line 7 is unbounded, and even though the error statement on line 12 can
not be reached, the default symbolic execution would not terminate because the loop
creates an infinite number of paths. Subsumption can be used to deal with such cases.

When we first reach the loop, we can try to execute it only a fixed number of times,
collect these incomplete annotations, and check whether they are generally applicable
for any number of iterations of the loop. This checking is done by induction.

The code snippet 4.4 shows the loop from the previous example with the variable t
added.

Code listing 4.4 An example of path subsumption and loops.
_t = number_of_iterations_of_the_loop - 1;
while (i < n) {

x = x + 1; // _t < 0
i = i + 1; // _t < 0
_t = _t - 1;

}

All statements within the loop are annotated with an expression t < 0. At the
end of the loop, the variable t is decremented. After the fixed amount of iterations of
the loop, the symbolic executor is forced to leave the loop.

After exploring the whole execution subtree, we backtrack. The annotation x >=
y is computed on line 11. Then, we backtrack to line 7. We copy the annotation
from line 11 to line 7. Only then do we backtrack to the loop body and annotate its
statements based on the annotation from the successor states of each statement. Thus,

22 Nested loops and solving the path explosion

every statement within the loop is annotated with x >= y && t >= 0. When we reach
the top loop statement on line 7, we take the annotations of all statements within the
loop and replace all occurrences of the variable t with zero. Thus, all annotations are
transformed to x >= y. Then, we check whether the annotations are inductive. In our
case, the annotations are inductive because they are satisfiable if only one iteration of
the body was performed, and also it is true that if x >= y is satisfiable after k iterations
of the loop, then it is definitively also satisfiable after k + 1 iterations.

An example of an annotation that would not be inductive for our loop is i < n. It
is possible that i < n is always true after k iterations but not after k + 1 iterations.

Now, we check whether the computed annotation for line 7 is subsumed by our path
condition. In our case, x >= y can not be evaluated to false, so the current path is
stopped.

4.2.2 Path subsumption for nested loops
The construct we are particularly interested in is the nested loops. The code snippet 4.5
shows one.

Code listing 4.5 An example of path subsumption and loops.
1 main () {
2 var x, y, i, j, n;
3 x = input;
4 i = input;
5 j = input;
6 n = input;
7 y = x;
8 while (i < n) {
9 i = i + 1;

10 while (j < n) {
11 x = x + 1;
12 j = j + 1;
13 }
14 }
15 if (x < y) {
16 x = 1 / 0;
17 }
18 return 0;
19 }

The nested loops are handled similarly to the simple loops. There are several different
t variables introduced. Each of them is for one loop. Thus, the statements that are

part of multiple loops have multiple annotations of type t < value.

4.3 State merging

As discussed in chapter 3, the paths that share the same sequence of statements at their
beginning have these statements being analyzed together. That is the reason why the
paths are split during the execution. There are probably paths that share the same

State merging 23

sequence of instructions at different stages of the program other than its beginning.
Those paths can be merged and analyzed together.

The following snippet 4.6 shows an example of a part of a program where state
merging could be very beneficial.

Code listing 4.6 An example of beneficial state merging
if (input) {

output 0;
}
else {

output 1;
}
...

The if statement splits the execution into two parts. If multiple paths reach the if
statement, the number of the paths leaving the statement is twice as big. However, the
paths share the same statements that they must explore in the future, so it would be
great if the exploration could be done once for multiple paths.

The paths to be merged must currently be at the same program point. When two
states are merged, variables whose symbolic values are the same are reused in the merged
state. An ite (if-then-else) expression is constructed for those whose symbolic values
differ. The ite expression contains two values and an expression. If the expression
evaluates to true, then one of the values is used. Otherwise, the second value is used.
The path condition of the merged state is a disjunction of initial path conditions. The
ite expressions may be hard for a constraint solver to handle.

As the article [10] discusses, the effect of merging states into a symbolic state can
also be described in the following way. Without state merging, the states are kept as a
disjunction. For example, imagine a symbolic executor that currently has two symbolic
states. The overall state of the symbolic executor can be expressed as a disjunction of
those states. In the following example, the states are called s1 and s2. The field loc
in a symbolic state is the program location of the symbolic state. The field cond is the
path condition, and the field store is the symbolic store.

executionState = s1(loc1, cond1, store1) or s2(loc2, cond2, store2)

To merge the two states, the disjunction of two states can be replaced with a state
whose fields are disjunctions of the fields of the original states.

executionState = merged(loc1 or loc2, cond1 or cond2, store1 or store2)

The program location must be the same in both to-be-merged states for the merged
state to be executable. The merged path condition is a disjunction of the initial path
conditions. The variables stored in the merged symbolic store are a disjunction of the
values of the variables in the initial stores. Those variables that are the same in both
states can be simplified to a simple value because (a || a) == a. Other variables in
the new symbolic store must be encoded with an ite expression. The ite expression is
essentially just a disjunction, where the expression condition adds additional knowledge
about the value.

24 Nested loops and solving the path explosion

It can be observed that when a path is split upon reaching a branch and the two new
paths are immediately merged, the path condition of the merged state is the same as
before the split. Thus, the technique is particularly effective for conditional statements
and loops, whose bodies do not affect the symbolic states. The code snippet 4.9 is an
example of such a loop.

If the states are merged immediately after the if statement, the merged state does
not contain any ite expression, and the path condition is the same as before the merge.

Generally speaking, while the technique can significantly reduce the number of paths,
both the symbolic values and path conditions can become more complicated, thus mak-
ing the state more computationally demanding for the symbolic executor. Thus, the
optimization effect of state merging can even be negative.

One such problem arises when a variable whose value is symbolically represented
with an ite expression is part of the state of the path and when the path reaches a
branch containing this variable. In such a case, we would have to rely on our constraint
solver and its ability to solve this constraint efficiently, which may be a problem.

Moreover, symbolic values can replace some concrete values during the state merge.
This can happen, for example, when merging concrete values assigned to a variable in
different branches of a conditional statement. In such a case, we might be forced to call
the constraint solver more times than without the actual state merging. We can see the
problem in the following example:

Code listing 4.7 An example of possibly unbeneficial state merging
a = 0;
if (input) {

a = 1;
}
else {

a = 2;
}
...
return 1 / a;

First, assume that no state merging is used. The execution is split into two states in
the if statement. When the return statement is reached, the value of a is checked with
a simple number comparison because a is a concrete number in both states.

If the states are merged directly after the if statement, the value of the variable a is
an ite expression. In the small presented example, the values within the ite expression
could be compared to zero, and thus, it could be decided whether an error is possible.
However, for more complicated constraints, it is necessary to call the constraint solver to
check the possibility of the error. One call to a constraint solver is always more expensive
than two simple comparisons performed without the state merging.

An extreme case of state merging that occurs when the created states are merged
right away after we perform a split is called static state merging. Symbolic execution
then becomes similar to verification condition generation [10].

The other extreme case on the other side of the spectrum is the basic symbolic
execution, which performs no state merging.

The tradeoff on this spectrum is between reducing the state space by merging many
states and not having any complicated states with no states merging. When we have

State merging 25

complicated states, we rely on the ability of the constraint solver to solve more compli-
cated constraints efficiently.

4.3.1 Query count estimation
A technique presented in [10] does not pick its place on the merging spectrum globally.
Yet, it automatically detects whether a few more complicated states or a bigger number
of simpler states will likely be more efficient in a particular case. Generally, solving a
constraint that contains conditions with variables consisting of ite expressions slows
down the executor considerably. Thus, we can preprocess a program with a static anal-
ysis technique, which computes how often the program variables are used in a constraint
solver after a program point.

The number of solver invocations for a variable and a program point is computed as
a sum of solver invocations for a variable in the successor statements in the CFG. This
number is increased by the number of solver invocations of constraints containing the
variable the current line causes. Thus, for the program without loops, the algorithm is
as follows.

compute_future_solver_invocations(variable, location) {
sum = 0;
for (successor in location.successors) {

sum += compute_sum(variable, successor)
}
sum += number of solver invocations containing the variable

at the current program location
}

The technique is controlled by several parameters. One of them is named κ, and it
is used as a global limit for a maximal number of iterations of any loop.

Assume the following code:

Code listing 4.8 An example of query count estimation with κ

1

2 main () {
3 var r, arg , argc , argv , i;
4

5 r = 1; // {}
6 arg = 1; // {r -> 6}
7 argc = input; // {r -> 6, arg -> 24}
8 argv = []; // {r -> 6, arg -> 24, argc -> 9}
9 if (arg < argc) { // {r -> 6, arg -> 24, argc -> 9,

10 // argv -> 7}
11 if (argv[input]) { // {r -> 3, arg -> 16, argc -> 6,
12 // argv -> 5}
13 r = 0; // {arg -> 8, argc -> 3,
14 // argv -> 2}
15 arg = arg + 1; // {r -> 3, arg -> 8, argc -> 3,
16 // argv -> 2}
17 }

26 Nested loops and solving the path explosion

18 }
19 while (arg < argc) { // {r -> 3, arg -> 8, argc -> 2,
20 // argv -> 2}
21 i = 0; // {r -> 2, arg -> 7, argc -> 2,
22 // argv -> 2}
23 while (argv[arg][i] != 0) {// {r -> 2, arg -> 7, argc -> 2,
24 // argv -> 2, i -> 5}
25 i = i + 1; // {r -> 1, arg -> 4, argc -> 1,
26 // argv -> 1, i -> 3}
27 output argv[arg][i]; // {r -> 1, arg -> 4, argc -> 1,
28 // argv -> 1, i -> 3}}
29 }
30 arg = arg + 1; // {r -> 1, arg -> 1, argc -> 1}
31 }
32 if (r) { // {r -> 1}
33 output 10; // {}
34 }
35

36 return 0; // {}
37 }

Assume that we want to merge two states whose current instruction is the beginning
of the outer while loop on line 19. The states differ in the value of the variable arg.
Thus, the maximal amount of future constraint solver invocations of constraints that
contain the variable arg should be computed. The κ is set to one.

The constraint solver uses the variable arg on line 19 to check the satisfiability of
the condition. The numbers computed for the successor lines 21 and 32 for the variable
arg are added to this number. On line 32, the number of future invocations using the
variable arg is zero. Thus, the value for line 19 would be one if no iteration of the body
of the outer loop was performed.

We will now compute the number for the body of the loop. The value on line 21 is
the same as on line 23. The condition of the loop on line 23 adds two solver invocations.
This is because we need to use the solver to check a possible array access out-of-bounds
error, and then we need to use the solver to check the satisfiability of the guard.

We also add the values from the successor states on lines 25 and 30. The value on line
30 is like the value on line 19 if no other iteration of the body of the loop was performed.
We already computed this number as one. Thus, the value for line 23 would be three if
no iteration of the inner loop body was performed.

The line 27 adds another invocation. However, the expression causing it on line 27
is the same as on line 23, so running an available expressions analysis could remove the
need for this invocation. We also have to add again value for line 23 if no iteration of the
body was performed. Thus, assuming no available expression analyses were performed,
the number of possible future solver invocations on line 27 is 4. Thus, the number of
line 25 is 3 is 4. The final number for line 23 is the sum of the values for line 30 (1), line
25 (4), and the number of solver invocations on line 23, which is 2. Hence, the value for
line 21 is also 7, and on line 19 it is 8. Note that the real number of invocations can be
higher, and the maximum is not bounded. A bigger value of κ would result in a bigger
number being computed.

Loop summarization 27

4.3.2 Dynamic state merging
Merging can coincide with some state search strategies. Merging benefits from repeating
the body of a loop multiple times in a row and then merging the states that left the
loop. However, a coverage-guided search strategy wants to cover the less explored parts
of the program first. The dynamic state merging presented in the article [10] aims to
solve this problem. The technique uses a merge strategy that chooses those states from
the worklist that are expected to become mergeable with some states in the worklist
soon.

Assume that we store the predecessors of each state. When we check whether a state
s1 can become mergeable with another state s2 in the near future, we can check whether
the state s1 is mergeable with a predecessor of s2. If so, we can prioritize exploring
s1 because there is a high chance that we will be able to merge it with s2 in the near
future.

4.4 Loop summarization

We have already dealt with the fact that unbounded loops in a program can potentially
generate an infinite number of paths. Notice that even though only one path reaches
such a loop, there may be infinite ways of how many times the loop iterates and what
path within the loop is taken in each iteration. The basic idea of loop summarization
is to compress all the states that can emerge after leaving the loop body into a small
set of states, so this set of states still represents all the original states without a loss of
precision. This is not doable for all loops, as discussed later in this chapter.

Successful loop summarization analyses result in a loop summary. A requirement
for computing a loop summary is that the effect of every statement in a loop can be
captured as a function whose parameters are the initial values of the variable before
the loop and the number of times the statement is invoked.s. The function returns a
symbolic expression.

The summary is a structure that captures all possible patterns in which a loop can
be executed. Every such pattern is called a trace. A trace contains a function that
transforms the initial value of a variable into a symbolic expression that encapsulates
the possible values of the variable after leaving the loop. A trace also has its own
condition. It represents the constraints on the variables if the loop is executed in a
pattern the trace captures.

To apply the loop summary to a symbolic state, the state is duplicated, so there
is one state for each trace. The path condition of each state is updated, so the new
condition is a conjunction of the old condition and the trace condition. The functions
associated with a trace are used to update the variables in the symbolic store.

A state that emerges after applying a trace can be imagined as one created by merging
many original states. The states are not merged by using ite expressions but by using
symbolic values and specifying which real values the symbolic values can hold within the
path condition.

After the summary is applied, all the created states are added to a worklist, and the
symbolic executor continues.

Subsection 4.4.1 describes how to summarize loops contacting just one inner path.

28 Nested loops and solving the path explosion

Subsection 4.4.2 extends the technique to support conditional statements.
The last subsection 4.4.3 discusses the summarization of loops containing other loops.

4.4.1 Summarization of single-path loops
First, only assume loops that do not contain any statements, such as conditional state-
ments or loops that could split the execution. Thus, there is only one path within the
loop. In the case of the microc language, it means that the loop does not contain any
if or while statements.

A simple concept of path counters [4] can be utilized to create loop summaries. A
path counter is a variable assigned to a path within a loop that says how many times
the path is iterated.

Statements can be split into multiple categories, given how they interact with the
symbolic executor after multiple iterations of the statement within the loop body.

First, there are statements whose effect on the symbolic state is the same after any
number of iterations of the path. An example of such a statement in microc might be the
output statement, which does not affect the state. Another example is an assignment of
a constant, which does not change within a loop. After multiple iterations, the effect of
these statements can be summarized by applying the statement once.

Then there are the assign statements, whose effect can be summarized with a math-
ematical formula using the path counters. Statements that add a value to a variable
can be summarized based on the initial value of the variable and the value of the path
counter. The variables that are updated in such a way are called induction variables.

The following example shows a loop with several summarizable statements. The
number of iterations of the body of the loop is unknown.

while (input) {
a = a + inc; -> a = initial_a + inc * path counter of the path
b = b - inc; -> b = initial_b + inc * -(path counter of the path)
e = e; -> e = initial_e

}

The example shows how incrementation statements of various operators can be sum-
marized. Each line within the loop contains a statement on the left side, while the right
side shows a formula computing all possible values of the variable after the loop finishes.
The path counter of the path is a symbolic value. For this to work, the variable inc
has to behave as a constant within the loop and must not be updated within the loop.

The consequences of summarization of simple loops are shown in the following ex-
ample 4.9.

Code listing 4.9 An example of loop summarization
main () {

var a, i, n;
a = 0;
i = input; // v1

Loop summarization 29

n = input; // v2

while (i < n) {
a = a + 2;
i = i + 1;

}

if (a == 15) {
some_fnc ();

}
else {

some_fnc2 ();
}

return 0;
}

The code snippet contains variables i and n, which are part of the guard of the loop.
Assume their initial values are symbolic values v1 and v2, respectively.

The loop is summarized into two traces. The first one does not iterate the loop body
at all. A symbolic state that gets updated with this trace does not update its symbolic
store since no statements are evaluated. The path condition of the state is updated with
an expression v1 < v2.

The other trace is created to encapsulate iterating the loop body an unknown amount
of times. The loop updates the variables in the following way. The variable n is not
updated within the loop, and its value remains v2. The variable i is incremented until
it holds the same value as the variable n. The formula of the update function is i = i
=> i + path counter.

The last variable, a, increases by 2 in every loop iteration. Thus, the formula is a =
a => a + 2 * path counter.

Thus, when the formulas are applied with the initial values of the variables before
the loop is summarized, the new value of i is v1 + path counter, and the new value
of a is 2 * path counter.

Table 4.1 shows the update functions for the traces.

Table 4.1 An example of the traces of a summary computed for a loop 4.9

traces update functions
t1
t2 i = i⇒ i+ path counter

a = a⇒ a + 2∗ path counter

The path condition also gets updated with an expression v1 + path counter ==
v2.

The condition a == 15 of the if statement is not satisfiable since 2 * path counter
== 15 is not satisfiable for integers.

30 Nested loops and solving the path explosion

4.4.2 Summarization of multi-path loops
This subsection discusses the summarization of loops that may contain a conditional
statement. In such loops, there are multiple ways of executing the loop body. The
analyses of such loops are discussed in the article [11].

Whether we can summarize a multi-path loop depends not only on our ability to sum-
marize individual statements within the loop but also on the pattern of the interleaving
of the paths within the loop and the type of all the conditions within the loop.

The loops are classified into four types, depending on how the paths within the loop
interleave and how the conditions within the loops behave. Table 4.2 shows how the
loops are classified.

Table 4.2 Classification of loops by combination of the interleaving pattern and the type of
the inner conditions.

Interleaving pattern/Conditions only IV conditions has a NIV condition
Sequential Type 1 Type 3
Periodic Type 1 Type 3
Irregular Type 2 Type 4

The subsection 4.4.2.1 discusses the path interleaving types. The types of conditions
are discussed in 4.4.2.2.

4.4.2.1 Classification of path interleaving within a loop

To classify the path interleaving within a loop, we will build its path dependency au-
tomaton [11].

A path dependency automaton (PDA) is a tuple (S, Init, Accept, E). S is a finite
set of states. Every state corresponds to a path in a loop. The states remember the
condition of its path and summarized statements of the path. The Init set is a subset of
S containing the states whose path might be the first path in the loop that is executed.
The Accept set of states is another subset of S, containing those states that are the last
executed before the executor leaves the loop. The last member of PDA is a set of edges of
vertices from S. A directed edge between a source vertex and a target vertex exists when
an execution of the path associated with the target vertex might immediately follow the
execution of the path associated with the source vertex.

To detect this, we assume that the source path is correctly executed and its path
condition is evaluated as true. Then, we apply the changes to the variables performed
by one iteration of the source path and check whether the path condition of the target
path may be satisfiable.

We choose a symbolic value k for the value of the path counter of the source path. We
assume that if the value is k - 1, the condition of the path associated with the source
vertex evaluates to true, but if the value is k, the condition of the path associated with
the target vertex evaluates to true. Thus, it would be the path associated with the
target vertex that would be executed. The expression k > 0 must also be true, so the
number of iterations of the path is positive.

Thus, the constraint that detects an edge between two vertices is a conjunction of
the source vertex path condition after the k - 1 iteration of the source path, the target

Loop summarization 31

path condition after the k iterations, and an expression k > 0. The constraint will be
referred to as cond. If cond is satisfiable, we create the edge. An edge remembers the
cond and the changes of the variables after k interactions of the source path.

We analyze the newly created graph as follows. We call the execution sequential if
there is no cycle in it. An example of a sequential path interleaving pattern is also the
loop in 4.9. If there are cycles, the execution is either periodic or irregular.

To decide whether a loop is periodic, we define the periodicity of a cycle. A cycle is
periodic if all paths within it have a period. A period is a constant value that specifies,
after how many iterations of the path start, the execution of the next path. If all cycles
within a loop are periodic, the loop is also periodic. Otherwise, it is irregular.

The code snippet 4.10 shows an example of a loop with a periodical execution pattern.

Code listing 4.10 An example of a loop with an periodic path interleaving pattern
main () {

var n, x, z;
n = input;
x = input;
z = input;
while (x < n) { // p1 , p2 , p3

if (z > x) { // p2 , p3
x = x + 1; // p2

}
else {

z = z + 1; // p3
}

}
return 1 / (x - n);

}

The loop contains three paths. Table 4.3 shows the paths of the loop with their path
conditions and the statements they execute. The table also contains the children of the
paths in the PDA graph. The statements within the loop in the code snippet 4.10 are
annotated with a comment that lists all the paths that the statement is part of.

Table 4.3 An example of paths of a loop (paths graph 4.1b, code snippet 4.10) with a periodic
path interleaving pattern

Paths in the graph Path condition evaluated statements children
p1 x >= n

p2 x < n ∧ z > x x = x + 1 p1, p3
p3 x < n ∧ z <= x z = z + 1 p2

The first path starts with the expression x < n being evaluated as false, and it
contains no other statements. The second starts with x < n being evaluated as true
and z > x as true. The statement x = x + 1 is then executed. The last path has x
< n evaluated to true and z > x evaluated to false. The statement z = z + 1 is then
evaluated. These three paths form the PDA graph.

The path p1 has no children in the PDA graph. This is because the path condition
can not be evaluated differently after an iteration of the path if the path contains no

32 Nested loops and solving the path explosion

statements. The path p2 has p1 as a child. This is because x < n && (x + 1) >= n
can be possibly true. Similarly, p3 is also a child of p2 because z > x && z > (x + 1)
can be true. The path p3 has the path p2 as the child.

The figure 4.1b shows the graph. The graph contains only one cycle between paths
p1 and p2. The paths inside the cycle take turns after one iteration. Thus, the periods
of both paths are one, and the execution pattern is periodic.

(a) A PDA graph of a loop with
a sequential path interleaving

(b) A PDA graph of a loop with
a periodical path interleaving

(c) A PDA graph of a loop with
an irregular path interleaving

Figure 4.1 An example of graphs of paths in the loops

The code snipped 4.11 shows a loop with an irregular execution pattern that can not
thus be summarized.

Code listing 4.11 An example of a loop with an irregular path interleaving pattern
main () {

var i, j, a;
i = input;
j = input;
a = input;
while (i < 100) {

if (a <= 5) {
a = a + 1;

}
else {

a = a - 4;
}
if (j < 8) {

j = j + 1;
}
else {

j = j - 3;
}
i = i + 1;

}
return 1 / (x - z);

}

Table 4.4 lists all the paths within the loop.
One of the paths has zero children in the graph, while all the others have four. As

seen in the figure 4.1c, there are many connected cycles in the graph. The paths in
the cycles can not be given constant periods. Thus, the execution pattern is irregular.
The article [11] presented analyses performed on real-world programs that failed to find

Loop summarization 33

Table 4.4 An example of paths of a loop (paths graph 4.1c, code snippet 4.11) with an
irregular path interleaving pattern

Paths Path condition evaluated statements children
p1 i >= 100
p2 i < 100 ∧ a <= 5 ∧ j < 8 a = a + 1; j = j + 1; i = i + 1 p1, p2, p3, p4
p3 i < 100 ∧ a <= 5 ∧ j >= 8 a = a + 1; j = j − 3; i = i + 1 p1, p2, p3, p5
p4 i < 100 ∧ a > 5 ∧ j < 5 a = a− 4; j = j + 1; i = i + 1 p1, p2, p4, p5
p5 i < 100 ∧ a > 5 ∧ j >= 5 a = a− 4; j = j − 3; i = i + 1 p1, p3, p4, p5

any real-world connected periodic cycles. Thus, the graphs with connected cycles are
regarded as irregular execution.

4.4.2.2 Classification of conditions

All conditions can be classified into two categories based on how much they complicate
the analyses of the loop. A condition is converted to a form when an expression is
compared to zero. If it is updated in the loop, as it was an induction variable, the
condition is an IV condition. An induction variable (IV) is a variable that is increased
or decreased in the loop predictably by a fixed number.

The only loop in the code snippet 4.10 contains conditions x < n and z > x.
The condition x < n can be converted to a form E < 0, where E = x - n. The

variable E is updated predictably within the loop because one path increments it by one,
and the other does not change its value.

The condition z > x can be converted to a form E > 0, where E = x - z. The
variable E is updated predictably within the loop because one path increments it by one,
and the other decrements it by one.

The following code snippet 4.12 shows a loop with a NIV condition.

Code listing 4.12 An example of a loop with a niv condition
main () {

var i, j, k, n;
i = input;
k = input;
n = input;
while (i < n) {

j = input;
i = i + j;
k = k + 1;

}
return k;

}

The condition i < n can be converted to a form E < 0, where E = i - n. The
variable E is a non-induction variable because the value by which it is incremented can
not be predicted.

34 Nested loops and solving the path explosion

4.4.2.3 Summarization of type 1 loops

To get a summary, we perform a DFS-based search on the PDA graph, traversing from
the Init states through the transitions towards the Accept states. During each transi-
tion through an edge, we collect the path condition of the edge and the variable changes.
A trace is constructed for each disjunctive path in the graph from an Init node to an
Accept node.

First, we will look at the summarization of a single-path loop. We will reuse the
example 4.9.

main () {
var a, i, n;
a = 0;
i = input; // v1
n = input; // v2

while (i < n) {
a = a + 2;
i = i + 1;

}

if (a == 15) {
some_fnc ();

}
else {

some_fnc2 ();
}

return 0;
}

The loop contains a path that executes the body of the loop and a path that leaves the
loop right after the condition check.

Table 4.5 shows the edges within the PDA graph. There is only an edge from p2 to
p1. Both nodes in the graph are in the Init set, and the path p1 is in the Accept set.

Table 4.5 An example of edges in a PDA graph of a sequential loop (paths graph 4.1a, code
snippet 4.9)

source target edge condition changes

p2 p1 i + k − 1 < n ∧ i + k >= n ∧ k > 0 i = (it)⇒ (initi)⇒ initi + it
n = (it)⇒ (initn)⇒ initn+2∗it

The it parameter in the changes field in the table is a symbolic value representing
the number of iterations of the loop. The Init value is the value of the variable before
the loop was started to be summarized.

We collect two traces. One of them starts in p1 and ends in p1. This trace captures
the path where the body of the loop is not executed. Since we did not traverse any edge
in the PDA graph, the path condition is updated just with the negation of the guard,
and the symbolic store is not modified.

Loop summarization 35

The second trace starts in the node p2 and ends in the node p1. This trace represents
all the states that would be created after different numbers of iterations of the body of
the loop. The path condition of the new state is updated with i + k1−1 < n∧ i + k1 >=
n ∧ k1 > 0, which is the edge condition.

The values n and i are updated in the symbolic store based on the update functions
associated with the edge. The changes field in table 4.5 shows these update functions.

4.4.2.4 Summarization of cycles in PDA

The Proteus framework supports the summarization of periodic cycles [11]. If a cycle is
found in the PDA graph, and the execution of it has a pattern, we can summarize an
iteration of the cycle.

The cycle can be interpreted as an actual state in the PDA graph. An iteration of
the cycle is equivalent to sequentially applying the paths in the cycle. The number of
times each path is applied depends on its period.

Assume the periodic loop in the example 4.10. The edges in the PDA graph of this
loop are shown in table 4.6.

Table 4.6 An example of edges in a PDA graph of a periodic loop (paths graph 4.10, code
snippet 4.10)

source target trace condition
p2 p1 x + k − 1 < n ∧ z > x + k − 1 ∧ x + k >= n ∧ k > 0
p2 p3 x + k − 1 < n ∧ z > x + k − 1 ∧ x + k < n ∧ z <= x + k ∧ k > 0
p3 p1 x + k − 1 < n ∧ z <= x + k − 1 ∧ k > 0

The only path in the Accept set is the path p1. All paths are in the Accept set. The
loop has five traces. The first starts in p1 and ends in p1. Another trace starts in p2
and ends in p2. Another trace starts in p2 and then goes to p3. From p3, it returns to
p2, and a cycle is detected. The periods of both states are one. The cycle p3, p2, p3
is periodic and can be abstracted into a state that performs an iteration of p3 followed
by an iteration of p2. There can be any number of iterations of this cycle. After that,
there is an iteration of p1, which is a state in the Accept states with no children in the
graph. The traces that start in p3 can be computed similarly.

4.4.2.5 Summarization of loops of types 2, 3, and 4

Summarizing loops belonging to types 2, 3, and 4 is hard. The article [11] lists several
approximation techniques that aim at summarizing at least some of these loops.

For example, input-dependent guard conditions can be evaluated as true in any
iteration based on the actual input. Thus, approximating such a condition to be true is
possible.

Interestingly, the authors of [11] performed an experiment on real-world programs
and failed to find any actual type 2 loops.

36 Nested loops and solving the path explosion

4.4.3 Summarization of nested loops
In some cases, creating a summary of a loop containing another loop is possible. We
first summarize the inner loop. The summarization of the outer loop proceeds as if the
variable changes stored in the summary were actual program statements updating the
variables.

The code snippet 4.13 shows an example of such a loop.

Code listing 4.13 An example of nested loop summarization
main () {

var n, x, z, res , i, realX , realZ;
n = input;
x = input;
z = input;
res = 0;
if (n <= 0) {

n = 1;
}
if (x >= n) {

x = n - 1;
}
if (z >= n) {

z = n - 1;
}
realX = x;
realZ = z;

i = 0;
while (i < n) {

x = realX;
z = realZ;
while (x < n) {

if (z > x) {
x = x + 1;

}
else {

z = z + 1;
}

}
res = res + x;
i = i + 1;

}

if (res == n * n) {
res = 1;

}
else {

res = 0;
}

return 1 / res;
}

Loop summarization 37

Notice that the inner loop of the program is the same as in the example 4.10. Thus,
we can summarize the loop in the same way. We know that if the loop body gets to be
executed, then both x and z will be set to n. The initial values are initialized, so the
body of the inner loop is always executed. The outer loop resets x and z to the original
values and then calls the inner loop. Finally, it updates res, based on x, and increments
i.

The following code snippet 4.14 shows how the structure of the outer loop can be
imagined if the summarization of the inner loop is correct.

Code listing 4.14 An example of outer loop after summarization of the inner loop
while (i < n) {

x = realX;
z = realZ;
if (x < n) {

if (z > x) {
x = n;
z = n;

}
else {

x = n;
z = n;

}
}
else {

}
res = res + x;
i = i + 1;

}

This can be simplified into the code snippet 4.15

Code listing 4.15 An example of an outer loop after summarization of the inner loop (sim-
plified)
while (i < n) {

x = realX;
z = realZ;
x = n;
z = n;
res = res + x;
i = i + 1;

}

The first four statements, which just set the value of a variable to the value of a
different variable, are easily summarizable. The last two both increase the value of the
variable by a fixed value and thus we can summarize these statements too. The outer
loop should update x, z, and i to n, and the value of res should be realX * path
counter. Both the path counter and realX have the value of n. The res variable
should thus hold the value n * n.

38 Nested loops and solving the path explosion

Chapter 5

Implementation

This chapter discusses the implementation of the symbolic executor and the techniques
for tackling path explosion.

Section 5.1 discusses the overall design of the implementation. Section 5.2 describes
how microc programs are represented. Section 5.3 describes the implementation of the
general symbolic executor without path explosion optimizations. Section 5.4 describes
the implementation of techniques for tackling path explosion.

5.1 Design

The programming language used for the implementation is Scala 2 [12]. The code is
split into the following packages.

interpreter The implementation contains an AST interpreter of the microc language
developed for the NI-APR course. The interpreter is completely independent of the
symbolic execution part of the implementation. It does not support arrays.

generation The package offers to generate random microc programs. It is further
discussed in the experiments chapter.

analysis The query count analyses 4.3.1 can be performed for state merging before the
symbolic executor starts.

parser The implementation of the symbolic executor consists of several parts. The
program is parsed into an internal representation using a slightly modified parser
provided for the NI-APR class. The parser is modified to support the operators
added to the language for this thesis as described in chapter 2. No type checking
is implemented, and there are expected to be no type-related errors in the source
programs.

ast Contains AST classes of the microc language. The ASTNormalizer class present in
the package can normalize ASTs as will be discussed in 5.2.1.

cfg Contains the Cfg and CfgNode classes for representing CFGs. The CfgFactory
transforms an AST into CFG.

39

40 Implementation

symbolic execution The package contains the code of the basic symbolic executor
and the techniques for tackling path explosion.

util The package contains several utility classes that were provided for the NI-APR
course.

cli

The package cli provides a command line interface for the various provided features.
The program supports The following command line options.

symbolicallyExecute The command symbolicallyExecute is used to symboli-
cally execute a program. There are several techniques for tackling path explosion,
but enabling more than one is forbidden. The command supports the following
options.
search-strategy The parameter specifies the search strategy that is used. The

possible values are bfs, dfs, random, tree, coverage, and klee. The bfs
search strategy is the default. The implementation of the strategies is further
discussed in 5.3.2.2.

merging-strategy The parameter specifies what state merging strategy is used.
The possible values are none, aggresive, lattice-based and recursive. The
default value is none. The implementation of the strategies is discussed in 5.4.3

smart-merging-limit-cost The parameter is of type Integer, and it is used
when merging lattice-based or recursive is enabled. The default value is
1. The parameter is further discussed in 5.4.3.2.

kappa The parameter is of type Integer, and it is used when merging recursive
is enabled. The default value is 1. The parameter is further discussed in 5.4.3.2.

summarization The parameter is of type Boolean, and it specifies whether loop
summarization is enabled. The default value is false. The implementation of
loop summarization is discussed in 5.4.4.

subsumption The parameter is of type Boolean, and it specifies whether path
subsumption is enabled. The default value is false. The implementation of
path subsumption is discussed in 5.4.2.

timeout The parameter is of type Integer, and it specifies for how long can the
symbolic executor run in seconds. The default value is 30.

output The parameter specifies an output folder. If some values are speci-
fied, the program uses the folder to store there the achieved path coverage
in file coverage.txt, the time that the symbolic execution took into the file
time.txt, and the number of found errors into error.txt.

generateProgram The command generateProgram generates random microc pro-
grams. The program generator supports the following parameters, which are then
further discussed in chapter 6.

program The parameter is a path to a file where the generated program should
be stored.

Design 41

forLoopGenProb The parameter specifies the probability of generating an it-
erative loop. Its value is a Double, and it must be bigger or equal to zero and
lower or equal to one.
A variable of type number is incremented at the end of the loop until it is at
least equal to another variable of number type from the program. The loop
body is generated randomly based on the generator settings.

loopGenProb The parameter specifies the probability of generating a general
loop. Its value is a Double, and it must be bigger or equal to zero and lower or
equal to one. The sum of forLoopGenerationProbability and
generalWhileLoopGenerationProbability must be lower or equal to one.
A general loop is a loop whose body and condition are random. The condition
and loop body are generated based on the settings of the generator.

maxBlockDepth The parameter maxBlockDepth defines the maximal depth of
a block of statements. This is necessary because, at some point, a while or if
statements must only generate statements that do not create any blocks.

maxTopLvlStmtsCount The parameter specifies the maximum number of top-
level statements in the main function. The actual number of statements to
generate is taken with a uniform probability from the interval between 1 and
maxTopLevelStatementsCount.
The variable declaration statements are not counted in this count.

maxStmtsWithinABlock The parameter specifies the maximum number of
statements in a nested block. The actual number of statements to generate
is taken with a uniform probability from the interval between 1 and
maxStmtsWithinABlock.

errorGuaranteed The parameter is a Boolean. A random statement that pro-
duces an error is plugged at a random program location if the value is true.

generateDivisions The parameter is a Boolean. If the value is false, no di-
visions will be generated in the program, thus significantly reducing the prob-
ability of generating an error. However, it is still possible that the program
contains an access out-of-bounds error or a null pointer dereference.

precomputeVariableCosts The command precomputeVariableCosts is used to
precompute query count estimation. We can output the time that the analyses
took to a file.
program The parameter is the input file with the program to be analyzed.
merging-strategy The parameter specifies what analyses will be used. The

possible values are lattice-based and recursive. There is no default value.
The implementation of the precomputations is discussed in 5.4.3.2

timeout . The parameter is of type Integer. If the time spent by the analyses
exceeds the timeout, the analyses stop.

kappa The parameter is of type Integer, and it is used when merging recursive
is enabled. The default value is 1. The parameter is further discussed in 5.4.3.

output The parameter specifies an output file. The standard input is the default.
The time spent doing the analyses is stored in the file.

export The export command takes a program and exports its AST as JSON. The
functionality was provided for the NI-APR course.

42 Implementation

program The input file name
output The output file name
indent Number of spaces in the output.

run The run command executes the program with an AST interpreter using concrete
execution. However, arrays are not supported.
program The name of a file containing the source program.
input-file The optional name of a file containing inputs to the file read by the

input expressions.
input If input-file is missing, the input data can be passed through the com-

mand line with the input parameter. If both parameters input-file and
input are missing, the standard input is used instead.

args Arguments for the main function.
time If this flag is enabled, the elapsed program execution time is outputted.
ascii If this flag is enabled, the outputted numbers are converted to ascii.

cfg The cfg command takes a program and returns it as a CFG. The CFG is out-
putted to the standard output.
program The input file name
norm The norm parameter is a flag. The AST is normalized if the flag is present.

5.1.1 Workflow of the executor
The parser outputs the program in the AST format. The parsed code proceeds to a
normalizer, which transforms it so that it can be analyzed more easily. The normalizer
takes an AST representation of a program and returns it normalized.

The normalized code is being transformed to CFG using the CfgFactory class from
the cfg package.

The symbolic executor uses the CFG as input. The code of symbolic executor is
present in the package symbolic execution. It is further discussed in the section 5.3.

The execution is stopped after the first error is found, after all paths are explored,
or after the time spent doing the analyses exceeds the timeout.

5.2 Program representation

The program is represented as a set of CFGs. A separate CFG is constructed for each
function. Each node in the control flow graph is of type CfgNode. The node contains an
ID number, one statement, and its predecessors and successors in the graph. Contrary
to the CFG shown in chapter 3, every node in the CFG can not contain more than one
statement.

The implementation supports all statements presented in chapter 2. All statements
are implemented as classes inheriting from the trait Stmt. The statements contain
expressions.

The implementation supports all expressions described in chapter 2. All binary
operators are represented by the BinaryOp class. All other expressions have their own
class that represents them. All expressions are implemented as classes inheriting from
the trait Expr. The traits Expr and Stmt both inherit from the trait Ast.

Program representation 43

5.2.1 AST normalization
The program AST is normalized so that complicated expressions are split into multiple
assignments. Any expression containing a subexpression can be normalized if the subex-
pression contains another subexpression. A result of such a subexpression is assigned
to a new variable. The name of such a temporary variable is such that it can not come
from the source code. The new variable is then used instead of the subexpression. This
is done recursively. In the final normalized program, all subexpressions do not contain
any inner subexpression.

The left sides of the assign statements are not normalized.
Code snippet 5.1 shows an example of a normalization of a statement. The statements

on the right side of the example are the normalized statements.

Code listing 5.1 An example of a cfg normalization
1 *x[0]. field = *y + z[i + 1]; -> _t0 = *y;
2 _t1 = i + 1;
3 _t2 = z[_t1];
4 *x[0]. field = _t0 + _t2

5.2.2 Supported values
In the symbolic store, there are several types of values, we can use.

UninitializedRef UninitializedRef

Stands for a defined variable that has not yet been assigned to.

Nullref NullRef

Stands for a null pointer.

PointerVal PointerVal(address: Int)

Stands for a non-null pointer. It takes a number as an argument, which points to a
memory location.

ArrVal ArrVal(elems: Array[PointerVal])

Stands for an array value. The individual elements are pointers that point to a
memory location, where the actual value of the element is stored.

RecVal RecVal(fields: Map[String, PointerVal])

Stands for a record value. The individual fields are named pointers that point to a
memory location where the actual value of the field is stored.

SymbolicVal SymbolicVal()

Stands for a value that was acquired from an environment whose value is unclear.
However, it must be a number.

44 Implementation

ITEVal IteVal(trueState: PointerVal, falseState: PointerVal, expr: Expr)

Stands for an if-then-else expression variable. It can hold different values depending
on the result of a condition. It takes three arguments. One of them is the expression
that determines what value the expression evaluates. The other two arguments
are called trueVal and falseVal. If the expression evaluates to true, the ITEVal
evaluates to a value pointed to by the trueVal. Otherwise, it evaluates to a value
pointed by falseVal.

All these values are implemented as classes inheriting from trait Val.

5.3 Symbolic executor

class SymbolicExecutor(
program: ProgramCfg,
subsumption: Option[PathSubsumption],
ctx: Context,
searchStrategy: SearchStrategy,
executionTree: Option[ExecutionTree],
covered: Option[mutable.HashSet[CfgNode]],
createITEAtSymbolicArrayAccess: Boolean,
printStats: Boolean

)

The class that performs the actual symbolic execution is called SymbolicExecutor.
It has the following parameters.

program This parameter program is the program to be symbolically executed.

subsumption The parameter subsumption is further explained in 5.4.2.

ctx The parameter ctx is an instance of z3 Context class that is supplied for the
constraint solver discussed in 5.3.2.1.

searchStrategy The parameter searchStrategy, is described in 5.3.2.2.

executionTree The parameter ExecutionTree is described in 5.3.2.2.

covered The parameter covered is described in 5.3.2.2.

createITEAtSymbolicArrayAccess The parameter createITEAtSymbolicArrayAccess
is discussed in 5.3.3.2.

printStats The parameter printState controls whether the executor outputs the cur-
rent number of explored paths to the standard output.

The most crucial method of the SymbolicExecutor class is run. It does not take
any arguments. It finds the entrypoint of the program supplied to the class by the
constructor. We use this entrypoint as the program location of the initial symbolic state.

Symbolic executor 45

Since the language does not support booleans, the initial path condition is represented
by number one instead of true.

The initial state is added to the empty worklist of states, a field of the SymbolicExecutor
class. The basic workflow of the executor is such that a path is taken from the worklist
in each iteration and executed. The execution of a path starts with calling the step
method. The run method stops executing when there is no other state to take from the
worklist or when an error in the program is found.

Before explaining the step method, we will explain the implementation of symbolic
states.

5.3.1 Symbolic state
SymbolicState(

programLocation: CfgNode,
pathCondition: Expr,
symbolicStore: SymbolicStore,
callStack: List[CfgNode]

)

The symbolic state is implemented in class SymbolicState. Parameters of the class
are a program location of type CFGNode, the path condition of type Expr, the symbolic
store of type SymbolicStore, and call stack which is a list of elements of type CfgNode.

The call stack is needed to evaluate function calls and will be later discussed in
subsection 5.3.3.3.

The SymbolicStore contains member Storage, and member frames.
The storage is a growable array whose values have type Val. It is used to store the

values of the variables. If a value is a PointerVal, the address of the pointer value is
used as the index at which the value that is pointed to lays.

The frames are a list of hash maps. The keys in the maps are variable names, and
the values are of type PointerVal that are used as pointers to the storage. Each element
in the list stores variables of one function invocation on the call stack.

Assume the following code snippet 5.2.

Code listing 5.2 An example of a simple program for the visualization of the symbolic store.
1 foo () {
2 var x,y,z;
3 x = 2;
4 x = 4;
5 y = &x;
6 z = &x;
7 return -1;
8 }
9

10

11 main () {
12 var y;
13 y = 1;
14 return foo ();

46 Implementation

15 }

Assume that the program already called the foo function, and the current program
location is line 7. The path condition is true. The following example shows 5.1 what
the symbolic store looks like.

Variable Pointer

y ptr(0x00)

frame1 Variable Pointer

x ptr(0x02)

y ptr(0x03)

z ptr(0x03)

frame2
Address Value

0x00 num(1)

0x01 num(2)

0x02 num(4)

0x03 ptr(0x02)

storage

Figure 5.1 An example of a symbolic state

There are two frames. The one called frame1 contains the variables defined in the
main function. The one called frame2 contains the variables defined in the foo function.
The pointers stored in both frames point to the same storage.

The class offers many methods to modify the symbolic store or retrieve some infor-
mation from it:

addToPathCondition The method is used to add another expression to the path
condition. It takes an expression of type Expr as the parameter. It updates the
path condition of the state to be a conjunction of the old path condition and the
expression.

The class also offers several methods to allow modifying the symbolic store.

addVar The method takes a value of type IdentifierDecl and registers the variable
in the symbolic store. The initial value of a registered variable is UndefinedVal.

updateVar The method takes a variable name and a value of type Val as parameters
and updates the value of the variable name in the symbolic store with the provided
value.

updateMemoryLocation The method works similarly to updateVar, but it takes a
pointer of type PointerVal as a parameter instead of the name.

addVal This method takes a value of type Val as a parameter and adds it to the
symbolic store. It returns the PointerVal pointing to the address to which the
value was added.

Symbolic executor 47

The class supports several methods to modify the current program location.

step The method changes the program location to the successor of the current program
location. The method should be called only if the current statement has only one
successor.

getIfTrueState This method is expected to be used only if the current program loca-
tion is a control node. In microc the control nodes are the if and while statements.
The method returns a symbolic state for the path that executes the branch that
gets executed if the guard is evaluated to true. The method changes the program
location accordingly and updates the path condition with the guard.

getIfFalseState This method is expected to be used only if the current program lo-
cation is a control node. The method returns a symbolic state for the path that
executes the branch that gets executed if the guard is evaluated to false. The
method changes the program location accordingly and updates the path condition
with the negation of the guard.

There are several methods for retrieving values from the symbolic state.

getValOnMemoryLocation The method takes a pointer value of type PointerVal
and returns a value present on that address from the symbolic store.

getValueOfVar The method takes a variable name as a parameter and returns the
value associated with this variable in the symbolic store.

associatedPathsCount Each symbolic state is associated with one execution path, so
the method returns the number one.

The class also supports several methods related to path explosion reduction tech-
niques.

mergeStates The method takes another symbolic state of type symbolic state as a
parameter. The result of the function is a merged symbolic state of type
MergedSymbolicState. The algorithm for merging symbolic states is further dis-
cussed in section 5.4.3.

5.3.2 Evaluation of statements
The step method takes a symbolic state as an argument. It looks at the current program
location of this state and decides what to do based on the type of the statement.

The assign statement evaluates the right part of the statement and updates a mem-
ory cell defined by the left side of the statement. The method getTargetMemoryCell is
used to determine the memory location of the left side of the statement.

The output statement does not update the symbolic state. However, an error might
be present in the expression, so we have to evaluate it anyway.

When an if statement is encountered, the current path splits in two. The feasibility
of the then branch is checked by calling the method solveCondition of the constraint

48 Implementation

solver that is discussed in 5.3.2.1. The method checks whether a constraint made of the
current path condition and the guard condition is satisfiable. If so, we get a new state
by calling the getIfTrueState of the symbolic state and continue exploring the then
branch.

When the exploration of this path finishes or if the then path is unfeasible, we
move to the else branch. The feasibility of the else branch is checked by calling
solveCondition for the path condition and the negation of the guard. The method
solveCondition calls the constraint solver. If the method returns that the condition is
satisfiable, we call the getIfFalseState of the symbolic state to get a new state that
we add to the worklist and backtrack back to the run function.

The treatment of while statements is similar. The difference is that the state that
executes the body of the loop is added to the worklist, while the state created for the
path that leaves the loop gets executed immediately. If the path executing the body was
explored right away, it could lead to the executor being stuck exploring a body of one
loop. This functionality is implemented in the method stepOnLoop.

5.3.2.1 Constraint solving

The implementation utilizes the z3 solver [13] developed by Microsoft to solve the satis-
fiability of the constraints. Class ConstraintSolver provides an interface between the
z3 solver and the present symbolic execution engine.

The class provides the following methods:

createConstraint The method gets an expression of type Expr and a symbolic state
of type SymbolicState as parameters and converts it to a z3 representation of the
expression. The symbolic state is used to get the values of the variables present in
the expression.

solveConstraint The method takes a z3 constraint as a parameter, checks its satisfia-
bility using the z3 API, and returns the satisfaction status.

solveCondition The method takes a guard of type Expr, a path condition of type
Expr, and a symbolic state of type SymbolicState. The guard and path condition
are combined into a conjunction, and a z3 constraint is created with the function
createConstraint. The function returns the result of the method solveConstraint
with the constraint as the argument.

5.3.2.2 Search strategies

The strategies for picking a state from the worklist are implemented as classes that
inherit from the SearchStrategy trait. The trait offers the following methods:

addState Takes a symbolic state of type SymbolicState as a parameter. The state is
added to the worklist. Each strategy implements the worklist differently.

getState It takes no parameter and retrieves a state from the worklist.

statesCount Returns the size of the worklist as an integer.

Symbolic executor 49

updateExecutionTree Takes two symbolic states of type SymbolicState as parame-
ters. The only strategy that implements this method is Tree.

The implementation supports the following search strategies.

BFS The oldest state in the worklist gets picked. Implemented with a queue.

DFS The newest state in the worklist gets picked. Implemented with a stack.

Radnom A random state is picked from the worklist. Implemented with a stack and
an array with the same elements. A random valid index of the array is generated,
and the element on the index is removed from both the array and the set.

Tree This strategy uses a symbolic execution tree implemented in the ExecutionTree
class discussed in chapter 3.
It implements the updateExecutionTree method so that an association between a
parent state and a child state is added to the ExecutionTree.
The state is picked by traversing the tree randomly from the root to a leaf and
returning the leaf.

Coverage When this search strategy is enabled, the field covered of the SymbolicExecutor
class is used to collect statements that were already encountered in the execution of
some path. For each state in the worklist, the strategy computes a cost as an inverse
of the distance to the nearest statement that the symbolic executor has not encoun-
tered yet. A random state is picked so that the states with lower costs have a bigger
chance of being picked.
Assume that we computed the following costs 5.1 for the states.

Table 5.1 Costs and probabilities of being picked in the coverage strategy

name of the state cost probability of being picked
a1 1/10 1/13
a2 1/5 2/13
a3 1 10/13

The state a1 have cost 1/10, the state a2 have cost 2/10, and the state a3 have the
cost 1. We sum all the costs. The probability of being picked for every state is the
cost of the state divided by the sum of all costs.

Klee The strategy was inspired by a default Klee [6] strategy and combines the Tree
and the Coverage strategies. In every even invocation of the getState method, the
Tree search strategy is used. Every odd invocation of the getState method of the
coverage search strategy is used.

The strategies can also be combined with state merging, as will be further discussed
in the subsection 5.4.3.

50 Implementation

5.3.3 Evaluation of expressions
Statements usually consist of expressions. The method evaluate evaluates an expres-
sion. The main parameters of the method are an expression and a symbolic state.
A boolean parameter ignoreUncertainErrors disables asking the constraint solver to
check a potential error. By default, the parameter is set to false, and the use cases when
it is set to true are discussed in 5.4. The return value is a symbolic value.

The expression of types Number, Array, Record, and Null are dealt with by simply
returning these expressions as values. The expression Input returns a new symbolic
value.

If the expression is Identifier, we return the value of the variable from the symbolic
state.

The expressions such as Deref, BinaryOp, FieldAccess, or Not contain inner ex-
pressions. The evaluation of the inner expression is used to compute the result of the
outer expression.

The evaluation of the expressions ArrayAccess and CallFuncExpr is more compli-
cated, and it is further discussed in 5.3.3.2 and 5.3.3.3, respectively.

5.3.3.1 Error detection

Some expressions can cause an error. In some cases, we can prove the absence of an
error by a simple number comparison. For example, in the case of division by a number,
we check whether the number is zero.

For other cases, the constraint solver is needed to prove the absence of an error. We
check for this possibility if the parameter ignoreUncertainErrors is set to false. The
constraint solver is invoked when we evaluate a division when the divisor is a symbolic
value. We check if the divisor may be zero. Similarly, the constraint solver is invoked
when an element of an array is accessed with a symbolic index. We check whether access
out of the bounds of the array is possible.

5.3.3.2 Evaluation of array indexing

The ArrayAccess expression consists of an array subexpression and index subexpres-
sion.

ArrayAccess(array: Expr, index: Expr)

We evaluate the array subexpression and expect the result to be an array. We also
evaluate the index subexpression. If it is a number, we use it to access the element at
the index of the array.

If the value is symbolic, we must call the constraint solver to check whether an out-
of-bounds array access is possible. We check this possibility with the constraint solver.
If the error is impossible, we iterate through array indices and check with the constraint
solver whether it is possible that the element at the index was accessed. The parameter
createNewStateAtSymbolicArrayAccess of the SymbolicExecutor class decides the
strategy for continuing the analysis for all the possible indexes.

Symbolic executor 51

If createNewStateAtSymbolicArrayAccess is false, the elements at indices of the
array that could be accessed are combined into an ITE expression. The ITE expression
is returned as the result of the evaluation.

However, the ITE expression could slow down the executor. Thus, another strategy
is used if createNewStateAtSymbolicArrayAccess is true. Notice that since the AST
is normalized, the only expression that can evaluate to a symbolic value is Identifier.

Recall that all expressions that contain an expression within themselves are normal-
ized so that the inner expression does not contain any inner expression themselves. As
the following example shows, if the expression gets normalized, the final index is an
always Identifier expression.

a = arr[k + 2]; -> _t1 = k + 2;
a = arr[_t1];

There are three expressions that can be evaluated into a number and do not contain
any expression within itself. The first is Number, which can not be evaluated into a
symbolic value. The second is Input, which would always cause an out-of-bounds error.
The last possible expression is Identifier.

Thus, if in the normalized AST, an index is a symbolic value, it comes from an
Identifier expression. For each element that can be accessed, we duplicate the current
symbolic state multiple times. In each state, we update the value of the index variable
with one of the possible indices.

Finally, we add all these states to the worklist and backtrack back to the run function,
where we pick another state from the worklist that gets explored.

Code snippet 5.3 is an example of a program having a symbolic value as an index.

Code listing 5.3 An example of a symbolic value being an array index
1 main () {
2 var arr , i, res;
3 arr = [0, 1, 2];
4 i = input;
5 res = 0;
6 if (i < 3 && i >= 0) {
7 arr[i] = -1;
8 res = arr[i];
9 }

10 return res;
11 }

In lines 7 and 8, an array element is accessed, but the index is symbolic. Thus, we
do not know what element of the array was accessed. If the value of the parameter
createNewStateAtSymbolicArrayAccess is false, all possible memory locations would
be merged into an ITE val.

If createNewStateAtSymbolicArrayAccess is false, then a new state is created at
line 7 for each possible value of the index i. The value of i is set in each state to be the
value of the index.

That means that in our example, three states would be created. They would all be
located on line 8. The first would set the variable i to zero. The second would set the
variable i to one. The third would set the variable i to two.

52 Implementation

Then, all these states are added to the worklist, and the current path is stopped.

5.3.3.3 Evaluation of function calls

The symbolic execution of function calls is implemented in the method runFunction, and
the following text discusses it in detail. First, recall that thanks to the code normalization
discussed in the subsection 5.2.1, every function call is normalized, so it is always the
single expression on the right side of an assign statement.

To execute a function call, we have to symbolically execute the called function, return
to the current function, and continue executing the code from the successor statement
of the statement with the function call.

Before the function is called, a new frame must be pushed to the symbolic state, and
the evaluated arguments of the function must be copied to the new frame. Also, the
current program location is saved. Then, the CFG associated with the called function
is found, and the program location of the symbolic state is changed to the entrypoint
node of the function CFG.

When we return from the function, the frame is popped from the symbolic state, and
the current program location in the state is set to the successor of the saved program
location.

Notice that sometimes, when a state is picked from the worklist in the run method, it
has a program location located in a different function than main. This is a problem when
we want to return from the function since the call of the runFunction method that called
the current function is not on the system stack anymore. Thus, we do not know who the
callee of the current function was and what was the program location of the function
call. For this reason, every state has to remember all the program locations of the chain
of function calls that led to the current location of the state. In the implementation,
these program locations are stored in the field callStack in the SymbolicState class.

The following example 5.4 shows the problem.

Code listing 5.4 An example of a program using factorial
1 fac(n) {
2 var f;
3

4 if (n == 0) {
5 f = 1;
6 } else {
7 f = n * fac(n - 1);
8 }
9

10 return f;
11 }
12

13

14 main () {
15 var a,b;
16 b = input;
17 a = fac(b);
18 output (a);
19 return 1 / (a - 2);

Path explosion optimizations 53

20 }

The program computes an inversion of a factorial number depending on an input
value subtracted by 2. Thus, if the factorial is 2, the program should result in a division
by zero error.

The initial state reaches line 17 and calls the runFunction method of the symbolic
executor to execute the fac function. Line 4 is the only place in the program where
we split the execution into multiple states. In the first visit to this statement, we add
the else state, which executes line 7, to the worklist, and we finish the execution of the
then state, which executes line 5. The function ends its execution and returns the value
1 at line 10. After backtracking to the runFunction function, we continue the execution
of main function on lines 18 and 19 and do not find any error.

In the symbolic executor, we backtrack to the run function and pick the only present
state from the worklist. Notice that no runFunction call is now present on the system
stack. The state starts its execution on line 7 and calls the fac function again. On line
4, the state is split again. We add the else state to the worklist and continue executing
the then state on line 5. On line 10, we return from the function, but we backtrack all
the way to the run function since there is no runFunciton on the stack.

Therefore, we have to remember the program locations of the function calls. If we
did so, we can now pick a location from the top of this call stack. Recall that since
the CFG is normalized, all the calls to a function are always the only expression on the
right side of an assigned statement. Thus, we update the variable on the left side of this
statement with the function call result and call the step function on the successor of this
statement in the CFG. In our example, we update the variable a and move to line 18.

5.3.4 Statistics
The Statistics class contains the information about how many paths were already
explored. When a state finishes its execution, the associatedPathsCount method of
the SymbolicState is called, and the number of explored paths is increased by this
number.

5.4 Path explosion optimizations

This section discusses the implementation of the techniques for tackling path explosion
discussed in chapter 4. This section is structured similarly to that chapter, discussing
each technique in a subsection.

The subsection 5.4.1 discusses the implementation of path running, the subsection
5.4.3 discusses the implementation of the state merging, the subsection 5.4.4 discusses the
implementation of the loop summarization, and the 5.4.2 discusses the implementation
of the path subsumption.

In the following text, we will use the concept of a general symbolic state. A general
symbolic state is a state in which all values are symbolic. It is created by copying
all values from a standard symbolic state to the general state but turning them into
symbolic ones. We can do this because all variables are guaranteed to have the same
type during the execution of the program.

54 Implementation

5.4.1 Path pruning
The path pruning is implemented as an internal part of the symbolic executor. When an
if statement or a while statement is encountered, and the path condition is updated,
the satisfiability is checked. If it is not satisfiable, the path is pruned, and another state
gets to be executed. Thus, the implementation is present in the SymbolicExecutor class
itself.

5.4.2 Path subsumption
The path subsumption technique is implemented in the PathSubsumption class. The
constructor of the class takes a constraint solver of type ConstraintSolver as a parame-
ter. Path subsumption in the symbolic executor is enabled by passing a PathSubsumption
class as an argument to the SymbolicExecutor. The class contains a map called
annotations, whose keys are CFGNode, and values Expr. In this map, we store an-
notations that may potentially prune the current path for every program point.

In the implementation, the maximal number of iterations of the body of the loop for
the computation of the annotations before the execution leaves the loop is set to one.
If the annotations collected by running one iteration of the body of the loop are not
sufficient, the standard symbolic execution is run.

The implementation provides the following methods.

addAnnotation addAnnotation(node: CfgNode, expr: Expr): Unit

The method takes a node of type CFGNode, and an expression of type Expr as pa-
rameters.
It puts the node as the key and the expression as the value to the annotations map.
If an expression is already present, a disjunction of the original expression and the
new expression is created.

addAnnotations addAnnotations(nodes: List[CfgNode], expr: Expr): Unit

The method takes a list nodes of type CFGNode, and an expression of type Expr as
parameters. . It calls addAnnotation for each node.

computeAnnotationFromSuccessors
computeAnnotationFromSuccessors(node: CfgNode): Unit

The method takes a node in the CFG and computes the annotation for the node
from the successors of the node in the CFG. The computed annotation is added
to the annotations map. The detailed rules for computing annotations based on
annotations of the successor nodes are described in the 4.2 section.

checkSubsumption checkSubsumption(state: SymbolicState): Boolean

The method takes a symbolic state of type SymbolicState, and returns a boolean
that says whether the path condition subsumes the annotation stored for the program
location of the symbolic state.
Recall that subsumption is a relationship between formulas A and B, where every
interpretation that makes A true makes B true too. The method combines the path

Path explosion optimizations 55

condition and the negation of the annotation into a conjunction. The subsumption
relationship is present if this constraint is unsatisfiable.

performInduction performInduction(nodes: List[CfgNode],
identifier: Identifier,
symbolicState: SymbolicState,
executor: SymbolicExecutor,
loop: CfgNode): Unit

The method performs the induction discussed in the section 4.2. For annotations
of every loop, we plug the number zero instead of the identifier. Recall that the
annotations of one node are stored as a disjunction. We split the disjunction into
individual elements.
For example, by splitting the following disjunction of three elements, we get those
three elements.

a1 or a2 or a3 -> (a1, a2, a3)

We check whether each element is inductive by using a general symbolic state. For
each path in the loop, we apply the effect of the path to the symbolic state. We also
have one symbolic state that is not updated by any path.
We use the constraint solver to check whether there is some interpretation of the
formula so that the element was satisfiable before the path was executed, but its
negation became satisfiable after the path was executed.
Thus, we check whether an element is satisfiable using the non-updated general state,
but its negation is satisfiable with one of the updated general states.
While executing the paths to create the updated general states, a path that has not
yet been explored can contain an error. In that case, we stop the symbolic execution
with an error found. This way, we can also detect unreachable errors. During the
execution of these paths, we set the ignoreUncertainError parameter of method
evaluate to ensure that only errors independent of the current symbolic state are
detected. Otherwise, errors dependent on a path condition could be detected.
Code snippet 5.5 shows it in an example.

Code listing 5.5 An unreachable error when collecting paths
1

2 main () {
3 var a,b,c,i,n;
4 n = input;
5 a = input;
6 b = 0
7 c = [1, 2, 3];
8 i = 0;
9 if (a != 0) {

10 a = 1;
11 }
12

56 Implementation

13 while (i < n) {
14 b = b / a;
15 if (i == -1) {
16 b = c[3];
17 }
18 i = i + 1;
19 }
20 return b;
21 }

On line 13, we collected an annotation after running the body of the loop once, and
we wanted to make sure that the annotation was inductive. Thus, we execute all
paths in the loop to create the updated general states.
There are statements, such as the one on line 14, that can produce an error based
on the current symbolic state. When updating the general symbolic states, we have
to ignore these errors. We do it by passing ignoreUncertainError=true to the
method evaluate.
During the execution of the path containing line 16, an error is detected, even though
it is unreachable. The symbolic execution stops there.

5.4.2.1 Computation of annotations

The annotations are checked before evaluating a statement by calling the checkSubsumption
method. If the method returns true, the path is pruned. Otherwise, we continue with
standard symbolic execution.

The algorithm for computing annotations works as described in the section 4.2. When
the ReturnStmt statement is encountered, the annotation true is added by calling the
addAnnotation method.

While backtracking from the invocations of the step method, the method
computeAnnotationFromSuccessors is invoked to compute the annotations for the non-
return statements.

Recall that in the section 4.2, the technique was presented using programs with
explicit error locations. However, microc contains expressions that produce an error
only for some values of the variables.

The solution for this is not to propagate annotations from the successor in the CFG
if the current statement can contain an error. Code snippet 5.6 shows an example of
this.

Code listing 5.6 An example of a possible error that removes annotations
1

2 main () {
3 var x, y, i;
4 x = input; // false
5 i = input; // false
6 y = x; // false
7 if (i == 0) { // false
8 i = 1; // false
9 }

Path explosion optimizations 57

10 i = 1 / i; // false
11 if (x < y) { // x >= y
12 x = 1 / 0;
13 }
14 return 0; // true
15 }

The statement on line 10 can possibly cause an error if i is zero. Thus, the imple-
mentation does not propagate any annotations from the successors of the statement on
line 10 to its predecessors, so we do not prune any path that can reach line 10 in the
future.

A better strategy would be to either transform the program to have only explicit error
locations or to try to modify the annotations so that only those paths that definitely
can not produce an error on line 10 are pruned. The annotations could look like this in
code snippet 5.7

Code listing 5.7 An example of a possible error that modifies annotations
1

2 main () {
3 var x, y, i;
4 x = input; // true
5 i = input; // true
6 y = x; // true
7 if (i == 0) { // x >= y
8 i = 1; // x >= y
9 }

10 i = 1 / i; // x >= y and i != 0
11 if (x < y) { // x >= y
12 x = 1 / 0;
13 }
14 return 0; // true
15 }

The treatment of loops works as described in the section 4.2. A variable t is
introduced, and annotations preventing it from being smaller than zero are added for each
node in the loop. The CFG of the loop is temporarily modified by plugging a statement
at the end of the loop that decrements the variable t. In the implementation, we collect
the annotations by running only one iteration of the body of the loop. After collecting the
annotations, we keep only the inductive ones by calling the performInduction method.

5.4.3 State merging
The implementation supports enabling state merging.

A symbolic state created by merging two original symbolic states is implemented in
class MergedSymbolicState, which inherits from SymbolicState. The class takes all
parameters that class SymbolicState takes and initializes the parent class with them.
The last parameter of MergedSymbolicState is a pair of two symbolic states of type
SymbolicState called innerStates. These are the states out of which the merged
state is formed. Class MergedSymbolicState overrides the methods getIfTrueState,

58 Implementation

and getIfFalseState. The implementation is the same as in the parent class, but a
MergedSymbolicState instance is returned. Also, the method associatedPathsCount
that returns the number of paths associated with a state is overridden and returns a
sum of associatedPathsCount of the subStates.

Both to-be-merged states must have the same call stacks and program locations, and
the merged state will reuse both. The path condition of the merged state is a disjunction
of the path conditions from the to-be-merged states.

5.4.3.1 The algorithm for merging two states

The following algorithm describes how the symbolic stores are merged. It will first be
explained theoretically and then explained with an example.

We create a new symbolic store. We go through all frames and each variable in the
frames of the original stores. We add a frame to the merged store for each frame in the
original store. We compare the values of the variables in both symbolic stores. If the
values are the same, we add the variable with its value to the new store. Otherwise, we
must create an ITEVal.

Some values contain a pointer to another value in the original symbolic state. We
must also copy the values that are pointed to and change the values of the pointer to
point to the right location in the merged symbolic state. We also have to ensure that if
two pointers point to the same address in the original symbolic state, they also point to
the same address in the merged store.

The algorithm 1 moveValues is used to move the values of a variable from the source
states to the merged state. The function is called for each variable in each frame. The
algorithm also uses the algorithm 2 inside.

The parameter resStore is the symbolic store where we put the merged values. The
parameters sourceState1 and sourceState2 are the symbolic stores we are currently
merging.

The parameter ptr1 is a pointer to the value that we want to merge in the sourceStore1.
Similarly, ptr2 is a pointer to the value we want to merge in the sourceStore2.

In the first call of the function for each variable, we pass the pointer to the value of
the variable in the sourceStore1 as ptr1, and the value in the sourceStore2 as ptr2.

The pointerMapping1 parameter is a map where addresses from
sourceState1 are mapped to addresses from resStore. Each time we move a value to
the resStore, we update this map with the address of the value in the sourceState1
being mapped to the address of the value in the resStore.

The parameter pointerMapping2 works similarly, but it maps addresses from
sourceStore2 to addresses in resStore.

If the value that we want to move to the new state is a pointer, we must follow the
chain of pointers in the symbolic store until a non-pointer is reached. Since all variables
are the same type at any time, the only situation when the pointer chains have different
sizes is if one state has the variable still uninitialized. If the values at the end of the
chain of pointers are the same, we add the chain of pointers and the value to the store
once. Otherwise, we have to add both chains and create an ITEVal that encapsulates
both values at the end of the chains.

Figure 5.3 shows three storages, and figure 5.2 shows three frames. We will show

Path explosion optimizations 59

Algorithm 1 Move Values
1: function MoveValues(resStore, sourceStore1, sourceStore2, ptr1, ptr2, point-

erMapping1, pointerMapping2) ▷ Returns a pair of pointers to new values in
resStore

2: if pointerMapping1.contains(ptr1) & & pointerMapping2.contains(ptr2)
then

3: return (pointerMapping1.get(ptr1), pointerMapping2.get(ptr2))
4: end if
5: if pointerMapping1.contains(ptr1) then
6: return (pointerMapping1.get(ptr1), MoveV alue(..., ptr2, ...))
7: end if
8: if pointerMapping2.contains(ptr2) then
9: return (MoveV alue(..., ptr1, ...), pointerMapping2.get(ptr2))

10: end if
11: val1← sourceStore1.getV al(ptr1)
12: val2← sourceStore2.getV al(ptr2)
13: if val1 and val2 are both pointers, arrays, records or ite then
14: (ptr1, ptr2)←MoveV alues(..., val1, val2, ...)
15: if ptr1 == ptr2 then
16: r ← resStore.addNewV al(ptr1)
17: pointerMapping1.put(ptr1, r)
18: pointerMapping2.put(ptr2, r)
19: return (r, r)
20: else if else then
21: r1← resStore.addNewV al(ptr1)
22: r2← resStore.addNewV al(ptr2)
23: pointerMapping1.put(ptr1, r1)
24: pointerMapping2.put(ptr2, r2)
25: return (r1, r2)
26: end if
27: else if val1 and val2 are both arrays, records or ite then
28: Handle similarly to pointers
29: else if values are identical then
30: r ← resStore.addNewV al(val1)
31: pointerMapping1.put(ptr1, r)
32: pointerMapping2.put(ptr2, r)
33: return (r, r)
34: else
35: r1←MoveV alue(..., ptr1, ...)
36: r2←MoveV alue(..., ptr2, ...)
37: ite← createITE(r1, r2)
38: return (ite, ite)
39: end if
40: end function

60 Implementation

Algorithm 2 Move Value
1: function MoveValue(resultStore, sourceStore, ptr, pointerMapping)
2: if pointerMapping.contains(ptr.address) then
3: return PointerV al(pointerMapping(ptr))
4: end if
5: Match (sourceStore.getV al(ptr)):
6: if the value is pointer, array, record or ite:
7: Recursive call to MoveV alue on inner pointers.
8: Use the returned pointers to create new value in the resultStore.
9: else:

10: Add the val to the resultStore.
11: pointerMapping.put(ptr, address of the new value)
12: return address of the new value
13: end function

how to merge two symbolic stores called store1 and store2 into a merged store. The
storage1 is a storage associated to store1, and frame1 is a frame associated with
store1. The same is true for store2, storage2 and frame2. The merged frame and
merged storage belong to merged store.

The value of type num stands for numbers, and the numbers of type ptr point to a
memory cell in the store.

Variable Pointer

x ptr(0x01)

y ptr(0x03)

frame1

Variable Pointer

x ptr(0x02)

y ptr(0x04)

frame2

Variable Pointer

x ptr(0x01)

y ptr(0x06)

merged frame

Figure 5.2 An example of a merged frame

We create a new symbolic store to move the merged variables there. Since the
symbolic stores that will be merged have only one frame, we create one frame in the
merged store.

First, we move the values of the variable x. We call the function moveValues with
the values being the pointers stored in the frames.

moveValues(merged store, store1, store2, ptr(0x01), ptr(0x02),
pointerMapping1, pointerMapping2)

In storage1 the value at address 0x01 is ptr(0x00), and in the storage2 the value
at address 0x02 is ptr(0x00). Thus, we call the moveValues function for these values.

moveValues(merged store, store1, store2, ptr(0x00), ptr(0x00),
pointerMapping1, pointerMapping2)

Path explosion optimizations 61

Address Value

0x00 num(1)

0x01 ptr(0x00)

0x02 num(2)

0x03 ptr(0x01)

storage1
Address Value

0x00 num(1)

0x01 num(3)

0x02 ptr(0x00)

0x03 ptr(0x01)

0x04 ptr(0x03)

storage2 Address Value

0x00 num(1)

0x01 ptr(0x00)

0x02 num(3)

0x03 ptr(0x02)

0x04 ptr(0x01)

0x05 ptr(0x03)

0x06
ite(cond,

ptr(0x04),
ptr(0x05))

merged storage

Figure 5.3 An example of a merged storage

The values at address 0x0 are num(1) in both source stores. Thus, we add num(1)
to the merged storage at the address 0x00. The moveValues returns (ptr(0x0),
ptr(0x0)) to the previous call moveValues.

Since the returned values are the same, the value ptr(0x00) is added to the merged
store, and the value ptr(0x01) is returned from the function moveValues. The variable
x is added to the merged frame with the value ptr(0x01).

The value x is successfully merged and moved to the merged state. Now, we proceed
to move the variable y. First, we call the moveValues with the following arguments.

moveValues(merged store, store1, store2, ptr(0x03), ptr(0x04),
pointerMapping1, pointerMapping2)

The values on the addresses of the pointers are pointers themselves, so we call
moveValues with the following arguments.

moveValues(merged store, store1, store2, ptr(0x01), ptr(0x03),
pointerMapping1, pointerMapping2)

The address 0x01 in the store1 is already present in pointerMapping1. It is mapped
to the address 0x00 in the merged store. Thus, this value is reused, and the function
moveValue is called for the other pointer.

moveValue(merged store, store2, ptr(0x03), pointerMapping2)

62 Implementation

In this function, moveValue is called again.

moveValue(merged store, store2, ptr(0x01), pointerMapping2)

The function adds the value num(3) to the merged storage and returns the address
0x02. The first call of moveValue adds ptr(0x02), and returns its address.

We return to the function moveValues, and since the returned pointers are different,
we add them both to the merged store. The function returns the addresses of these
newly added values. Since the returned values differ, we construct an ITEVal from them.
This value is added to the merged frame for the variable y.

The implementation supports several state merging strategies. They all share the
same algorithm for merging two states described above, but they differ when it is decided
that two states should be merged.

All state merging strategies implement the trait StateMerging that extends the
SearchStrategy trait described in the subsection 5.3.2.2.

The AgressiveStateMerging strategy merges the states whenever it can. Recall
that the states are mergeable if they share the same program location and call stack.
The HeuristicBasedStateMerging strategy merges the states only if the future number
of constraint solver invocations is expected to be low.

5.4.3.2 Heuristic-based state merging

The heuristic-based state merging algorithm merges states only if the additional pressure
on the constraint solver is expected to be low. This is computed by estimating how
many times ITE values would be part of the constraints in the future constraint solver
invocations. For each program point and each variable, an estimation of future constraint
solver calls containing the variable is computed.

We later use this information during symbolic execution to decide whether to merge
the two states. For each variable whose values differ in the two symbolic stores, we sum
the precomputed values for the variables at the current program point. We compare the
sum with the limit-cost parameter of the technique. If the sum is lower, we merge the
states.

The thesis implements two different algorithms for the precomputation. Since the
final experiments were performed on single-function programs, both algorithms are im-
plemented as intraprocedural. Notice that handling guards of unbounded loops can be
challenging. The constraint solver is called an unknown number of times, so it is impos-
sible to precompute these numbers precisely. The solution to this problem is a little bit
different in both approaches.

recursion-based-approach The recursive-based algorithm was already discussed in
4.3.1.
The solution of the algorithm for the problem of unbounded loops is to introduce a
parameter κ that specifies a maximal number of iterations of every loop.

lattice-based-approach A lattice is a data structure that allows the merging of in-
formation from different paths in a program. For any two elements in the lattice,
there is a least upper bound representing the smallest element that is greater than

Path explosion optimizations 63

or equal to both. Similarly, there is the greatest lower bound for any two elements.
It represses the largest element, which is less than or equal to both.

The dataflow lattice analysis aims at gathering information about the behavior of the
program at every program point. It propagates values through the CFG and merges
them using lattices until a fixpoint is reached, meaning that running the analysis
further does not change the result.

We also differentiate between forward analyses and backward analyses. In the for-
ward analyses, the information of the node is computed from its predecessor, while
in the backward analyses, the information is computed from the successors.

In the implementation of the symbolic executor, the lattice-based query count esti-
mation is implemented using backward analyses. The solution of the analyses for
the problem of unbounded loops is to introduce a limit for the computed value that
can not be exceeded. We can do it because we are interested only in smaller com-
puted values of future constraint solver invocations, and we do not mind that the
computation of big values will be imprecise. This allows us to reach a fixpoint.

In the implementation, the maximal computable value for a variable and a program
location is 10. We can set the value this low since the experiments performed in
6 showed that heuristic-based state merging performs best with small values of the
parameter limit-cost.

5.4.4 Loop summarization
The loop summarization technique is implemented in classes LoopSummarization, PDA,
and Trace. Class LoopSummarization inherits from the SymbolicExecutor class.

The method stepOnLoop is overridden so that the loop is tried to be summarized. If it
is impossible to summarize the loop, the stepOnLoop method of the SymbolicExecutor
class is called.

The loops are summarized lazily when they are first encountered by the symbolic
executor. If it is possible to summarize the loop, we create the PDA. Otherwise, we
remember that the loop is unsummarizable, and the next time we encounter the loop,
we do not try to summarize it.

We analyze the loop and find all inner paths. For this, we need to create general
symbolic states. For each path, we capture the effect of its execution by updating the
general symbolic state. If there is an unsummarizable statement, the loop is registered
as unsummarizable.

We must also ensure all conditions within the loop are IVs, as discussed in 4.4.2.2. A
condition is updated predictably if all variables inside it are updated predictably. Thus,
we register the loop as unsummarizable if there is one variable in a condition that is not
updated by the same value in an iteration of a path belonging to the loop. This is also
true for the case when the variable is updated in a nested loop.

5.4.4.1 Path dependency automaton

The collected paths are the vertices for the PDA graph.

64 Implementation

The function computePathRelationship is used to detect whether there is a directed
edge from a source vertex to a target vertex.

A vertex is in the Init set if the condition of the path associated with it is satisfiable.
Thus, all paths with satisfiable path conditions are in the Init set.

The vertices with no successors in the graph are put in the Accept set.
The PDA is checked to see whether it contains connected cycles. If there are some,

the loop is registered as unsummarizable.

5.4.4.2 Getting summary from the PDA

The PDA is traversed from the vertices in the Init set through the computed edges
until a vertex in the Accept set is reached. All such paths within the graph are collected
into a trace. A trace consists of a trace condition and of the changes to the variables
that the trace summarizes. During each transition through an edge, the edge condition
is added to the trace condition, and the changes associated with the edge are added to
the changes associated with the trace.

A cycle in the graph is detected by reaching a vertex for the second time within
one trace. We try to compute the periods for every vertex in the cycle. A period is a
known number of iterations of a path in the cycle before the next path in the cycle gets
executed. The z3 solver supports returning a value for a variable and a constraint that
satisfies the constraint when the variable holds this value.

If multiple numbers could be a period for one of the paths in the cycle, then we
cannot produce a summary. To check whether a period p provided by a constraint
solver is the only possible solution, we repeat the constraint solver query, but we add an
expression p != solution for the number of iterations to the query. Thus, if the
solver returns that the constraint is satisfiable, there are multiple possible values for the
period. Otherwise, there is only one.

5.4.4.3 Summarization of nested loops

An inner loop can be encountered when summarizing an outer loop. To summarize the
outer loop, the inner loop must be summarizable. If the summarization of the inner loop
finishes well, we split the paths collected for the summarization of the outer loop several
times so that there is a new path for every combination of the outer loop path and inner
loop trace. The path condition of every such path is a conjunction of the condition of
the path from the outer loop and the condition from the trace. The changes of variables
stored for the new path are those stored for the outer loop path, updated by the changes
associated with the trace. Then, we continue to summarize the next statement after the
inner loop.

Chapter 6

Experiments

This chapter discusses the experiments to evaluate the techniques that were imple-
mented. Section 6.1 discusses the inner workings of the microc program generator that
had to be developed because of the lack of real-world microc programs. Section 6.2
discusses the metrics used during the experiments. Section 6.3 discusses the settings
and results of the experiments. Finally, section 6.4 discusses the limitations of the ex-
periments.

6.1 Microc code generation

The class ProgramGenerator generates random microc programs. The generator guar-
antees that all variables are initiated before use, but other errors can be randomly
generated. There can be divisions by a value that can be zero or accesses out of bounds
for an array. There is only one function generated for each program. There can also be
guaranteed errors when errorGuaranteed is set to true.

The generator supports the parameters described in chapter 5. Both statements
and expressions are randomly generated. The probabilities of generating a particular
statement or expression follow a uniform distribution. However, the probabilities of
generating a general while loop or a for loop can be specified by a parameter. Recall
that a for loop in microc is a while loop with a comparison of two variables in the guard
and an incrementation of one of the variables at the end of the loop.

The generator generates only array access expressions indexed by a number to re-
duce the number of access out-of-bounds errors. Early experiments with the program
generator showed that when other expressions, such as an identifier, can be used as array
indices, the errors are very common.

It also remembers the initial size of each variable of the type array. It only generates
array accesses, so the index is within the initial size. However, if a smaller array is
assigned to the variable, an array out-of-bounds error can happen when an array element
is accessed. Code snippet 6.1 shows this situation.

Code listing 6.1 An example of a random generated program with an array access out-of-
bounds error

1

65

66 Experiments

2 main () {
3 var var1;
4 var1 = [0, 1, 2, 3, 4, 5] // The initial size is 6
5 // So the maximal index of array access
6 // for var1 that we generate is 5
7 ...
8 var1 = [0, 1, 2, 3];
9 var1 [5]; // error

10 return 0;
11 }

The array var1 is initialized with 6 elements, so every time we want to retrieve an
element from var1, we use an index between zero and five. An error is possible after an
array with a smaller size is assigned to var1.

6.2 Metrics

The techniques will be compared based on several metrics:

Path coverage: we count the number of paths in the program that were explored. We
do not count the paths during which an error was found. Thus, if an error is found
in the first path that is executed, the outputted coverage by the symbolic executor
is zero.

Time to finish: we measure the time from when the symbolic executor starts to when
it stops. The symbolic executor has a timeout that defaults to 30 seconds.

Error found: we measure the number of errors detected. The symbolic executor is
designed to stop after finding one error, so the number is either zero or one.

6.3 Experiments

The experiments were split into three parts. The first part served to find the best
parameters for the parametrizable algorithms. The experiment is discussed in 6.3.1
subsection.

The implemented symbolic executor is parametrizable in the following ways:
There are six search strategies. Each one can be combined with one of three merge

strategies, or no merge strategy can be used. The path subsumption and loop summa-
rization can be enabled or disabled. That is 96 different configurations in total. Thus, in
part two of the experiment 6.3.2, a small experiment is performed using all configurations
to pick a smaller subset on which a bigger experiment is going to be performed.

In path three of the experiments 6.3.3, we evaluate how the techniques perform on
programs generated under different settings of the program generator.

6.3.1 Parameters for merge strategies
An experiment was performed to evaluate different settings for lattice-based and
recursive state merging strategies. We were interested in the total achieved path

Experiments 67

coverage in a set of programs. Both strategies have the parameter limit-cost, which
defines the maximal amount of future constraint solver invocations on constraints with
ITE values that we consider to be bearable enough to still merge the states.

The strategy recursive also has the parameter kappa discussed in 4.3.1. That
specifies the number of times a body of a loop is executed for all loops in the program.

We generated three different sets of programs based on their expected size. Table 6.1
shows the values of the parameters of the program generator used for the generation.

Table 6.1 Definitions of program sets for the first experiment

program set maxBlockDepth maxTopLvlStmtsCount maxStmtsWithinABlock
small programs 3 10 5
medium programs 4 10 10
large programs 5 20 10

The other parameters shared the same values for every set. The parameter loopGenProb
had the value 0.15. The parameter forLoopGenProb had the value 0.10. The parameter
errorGuaranteed was false. The parameter generateDivisions was also false.

First, we did an experiment using just the precomputeVariableCosts command
of the implementation to compare how fast the algorithms for precomputation of the
variable costs discussed in 5.4.3.2 are. We set the timeout for 30 seconds. In 6.2, we may
see the number of programs for each set whose precomputation exceeded the timeout.

Table 6.2 Number of timeouts for precomputation of query count analyses

merge strategy recursive lattice-based
small programs 0 0
medium programs 10 5
large programs 39 33

We can see that while the precomputation for small programs does not usually last
very long and is never timeouted, the large programs generally cause a timeout. We can
see that there were more timeouts using the strategy recursive. In table 6.3, we can
see the total time spent doing the precomputation.

Table 6.3 Total time (ms) spend precomputing variable costs for different program sets

merge strategy recursive lattice-based
small programs 7109 12765
medium programs 454663 377573
large programs 1210021 1121559

The trend is similar to when we looked at the results for timeouts. We can see that
the lengths of computations rise rapidly as the programs get bigger. We also see that
the strategy recursive took more time than the strategy lattice-based.

We can look at how good the path coverage is when we use different values of
the parameter limit-cost. First, we executed the programs with merging strategy
lattice-based and the search strategy BFS. The timeout was 30 seconds. Recall that

68 Experiments

the precomputation of the query count estimation is not considered within the timeout.
We tried several different values for the parameter limit-cost. Table 6.4 shows the
sum of achieved path coverage values for different values of limit-cost.

Table 6.4 Path coverage for different values of the parameter limit-cost

Limit cost Path coverage
1 14562
2 15135
3 16200
5 17442
10 15165

We can see that while there is no big difference between the results, the best results
were achieved when limit cost was five. Parameters 3 and 5 seem to be a little bit
more favored than the others.

We repeated the same for the strategy recursive. Recall that the strategy also uses
a parameter kappa. The results can be seen in table 6.5.

Table 6.5 Path coverage for different values of the parameter limit

Limit cost/κ 1 2 3 5 10
1 16514 17170 13545 17662 18562
2 18078 14470 15228 19518 20819
3 18272 14651 12685 16718 17460
5 17492 14788 13393 17705 19960
10 17300 13270 15267 18176 18149

We can again see that the differences between individual results are rather small.
The best results we achieved for a combination of limit-cost being 2 and kappa being
10.

Lastly, another experiment comparing different values of limit-cost was performed
on the large program set. Since the precomputation times for the recursive strategy
were rather large, the experiment was performed only for the lattice-based strategy.
Table 6.6 shows the results.

Table 6.6 Path coverage for different values of the parameter limit

Limit cost Path coverage
1 24136
5 20576
10 20363
20 20101

In the experiment, the value limit-cost archives the best results when it is 1. The
differences between other values are very small. Thus, it seems that very low values for
limit-cost are preferred for larger programs.

Experiments 69

6.3.2 Comparing search and merge strategies
An experiment was performed to compare different search strategies and state-merging
strategies. The test was split into two parts. In the first part, smaller programs were
generated with the following settings.

number of test programs: 50

forLoopGenerationProbability: 0.15

generalWhileLoopGenerationProbability: 0.10

maxBlockDepth: 3

maxTopLevelStatementsCount: 10

maxNumberOfStatementsWithinABlock: 5

guaranteedError: false

generateDivisions: true

The programs were then run with a timeout of 30 seconds, kappa of 10 and limit-cost
of 2.

In table 6.7, we can see the computed path coverage for different types of search
strategies and merge strategies.

Table 6.7 Path coverage for different search and merge strategies on smaller programs

search strategy/merge strategy none recursive lattice-based aggressive
dfs 35463 26495 22923 26114
bfs 34809 25134 22499 25906
random 34187 25914 22761 24877
tree 34860 25391 22416 19328
coverage 29553 25053 24277 23167
klee 30945 24558 23491 23943

We can see that the merge strategy performing the best is none. The other merge
strategies afford roughly the same performance. The likely reason is that the costs to
merge the states were higher than the optimization gained by exploring multiple parts
simultaneously. The merging was especially slow for states that were already merged
from other states and contained a lot of ITE expressions.

The results for search strategies are very similar, and there is no clear winner or
loser.

In table 6.8, we can see how many errors were detected during the experiment.
We can see that no error was detected at all. This probably means that the testing

programs had almost no reachable error. This might be possible because of our settings
where errorGuaranteed=false and generateDivisions=true combined with smaller
programs being generated.

70 Experiments

Table 6.8 Errors detected for different search and merge strategies for smaller programs

search strategy/merge strategy none recursive lattice-based aggressive
dfs 0 0 0 0
bfs 0 0 0 0
random 0 0 0 0
tree 0 0 0 0
coverage 0 0 0 0
klee 0 0 0 0

Table 6.9 Total time in ms for different search and merge strategies for smaller programs

search/merge strategy none recursive lattice-based aggressive
dfs 901 880 ms 908 698 ms 902 027 ms 901 872 ms
bfs 925 980 ms 901 641 ms 901 806 ms 904 023 ms
random 901 721 ms 901 954 ms 902 166 ms 901 939 ms
tree 901 939 ms 901 380 ms 901 694 ms 901 953 ms
coverage 902 209 ms 901 658 ms 901 544 ms 902 193 ms
klee 901 924 ms 902 081 ms 901 926 ms 902 308 ms

Table 6.9 shows the total time for the analyses of all programs for every combination
of a search strategy and merge strategy.

We can see that execution times are similar. In table 6.10, we can see how many runs
were stopped because the timeout was exceeded. Recall that the timeout is 30 seconds.

Table 6.10 Runs timeouted for different search and merge strategies for smaller programs

search strategy/merge strategy none recursive lattice-based aggressive
dfs 30 30 30 30
bfs 30 30 30 30
random 30 30 30 30
tree 30 30 30 30
coverage 30 30 30 30
klee 30 30 30 30

For all the different combinations, 20 programs finished before the timeout of 30
seconds and had to be stopped. Since the programs are small, this probably means
there are 20 programs in the dataset with a finite number of reachable paths and 30
programs with an infinite number of reachable paths.

In the second part of the experiment, larger programs were generated.

number of test programs: 20

forLoopGenerationProbability: 0.15

generalWhileLoopGenerationProbability: 0.10

maxBlockDepth: 5

Experiments 71

maxTopLevelStatementsCount: 20

maxNumberOfStatementsWithinABlock: 10

guaranteedError: false

generateDivisions: true

The programs were then run with a timeout of 30 seconds, kappa of 10, and limit-cost
of 2.

The merge strategy recursive was not included in this test because of the experi-
ment and the results of the first part of the experiment, where the strategy recursive
and lattice-based achieved similar performance.

Table 6.11 shows the total path coverage achieved on the dataset for different search
and merge strategy combinations.

Table 6.11 Path coverage for different search and merge strategies on larger programs

search strategy/merge strategy none lattice-based aggressive
dfs 42342 25439 22246
bfs 42245 24987 22078
random 42789 25185 23270
tree 44839 24840 18697
coverage 44981 26891 24489
klee 45272 26456 25275

Similarly to the experiment with smaller programs 6.7, the none merging strategy is
the best performing. The difference is even bigger than for smaller programs. This can be
explained by the fact that more merging can be present in larger programs than in smaller
programs. However, contrary to the test with smaller programs, the lattice-based
strategy achieves visibly better performance than the aggressive strategy. This may be
because larger programs contained situations when merging was very disadvantageous,
and heuristic state merging was able to spot that.

Table 6.12 shows how many errors were detected for each combination of the merge
strategy and search strategy.

Table 6.12 Errors detected for different search and merge strategies on larger programs

search strategy/merge strategy none lattice-based aggressive
dfs 6 6 6
bfs 6 6 6
random 6 6 4
tree 7 6 5
coverage 5 6 4
klee 7 6 6

We can see that the numbers range from 4 to 7, and the higher numbers are generally
achieved by combinations that also achieve larger path coverage. An outlier is the com-
bination of search strategy coverage and merge strategy none. It detected fewer errors

72 Experiments

than the combination of search strategy coverage and merge strategy lattice-based,
which achieved smaller path coverage.

Table 6.13 shows the total time to analyze the dataset for each combination of merge
and search strategies.

Table 6.13 Total time in ms for different search and merge strategies for larger programs

search strategy/merge strategy none lattice-based aggressive
dfs 1 175 992 ms 1 286 597 ms 1 163 204 ms
bfs 1 176 129 ms 1 221 521 ms 1 162 780 ms
random 1 167 890 ms 1 195 775 ms 1 218 451 ms
tree 1 154 474 ms 1 225 384 ms 1 183 792 ms
coverage 1 189 595 ms 1 167 928 ms 1 207 693 ms
klee 1 152 564 ms 1 168 480 ms 1 164 299 ms

The numbers are quite similar, but the combinations that found more errors spent
less time, which is expected.

Table 6.14 shows for how many programs the execution timeouted.

Table 6.14 Runs timeouted for different search and merge strategies for larger programs

search strategy/merge strategy none lattice-based aggressive
dfs 38 38 38
bfs 38 38 38
random 38 38 40
tree 37 38 39
coverage 39 38 40
klee 37 38 38

The numbers are interesting when we sum them with the number of detected errors
for each combination. This can be seen in table 6.15.

Table 6.15 (Runs timeouted + Error detected) for different search and merge strategies for
larger programs

search strategy/merge strategy none lattice-based aggressive
dfs 44 44 44
bfs 44 44 44
tree 44 44 44
coverage 44 44 44
klee 44 44 44

The sum is the same for each combination of strategies. Thus, there are probably 6
correct programs with a finite number of reachable paths. For the other programs, we
either detected an error or the computation was timeouted.

Experiments 73

6.3.3 Final experiments
The last experiment was performed to compare how the techniques deal with different
types of programs. The program sets are listed in table 6.16.

Table 6.16 Definitions of program sets

program set forProb whileProb maxBlockDepth errorGuarateed generateDivs
15-10-3-f-f 0.15 0.1 3 false false
15-10-5-f-f 0.15 0.1 5 false false
50-10-3-f-f 0.50 0.1 3 false false
50-10-5-f-f 0.50 0.1 5 false false
15-50-3-f-f 0.15 0.5 3 false false
15-50-5-f-f 0.15 0.5 5 false false
15-10-3-t-t 0.15 0.1 3 true true
15-10-5-t-t 0.15 0.1 5 true true
50-10-3-t-t 0.50 0.1 3 true true
50-10-5-t-t 0.50 0.1 5 true true
15-50-3-t-t 0.15 0.5 3 true true
15-50-5-t-t 0.15 0.5 5 true true
15-10-3-f-t 0.15 0.1 3 false true
15-10-5-f-t 0.15 0.1 5 false true
50-10-3-f-t 0.50 0.1 3 false true
50-10-5-f-t 0.50 0.1 5 false true
15-50-3-f-t 0.15 0.5 3 false true
15-50-5-f-t 0.15 0.5 5 false true

The first six program sets were generated with errorGuaranteed=false and
generateDivisions=false. Thus, these programs have a small probability of contain-
ing an error. Contrary to that, the next six program sets are guaranteed to have an
error because errorGuaranteed=true. The error can be, however, generated unreach-
able, so it can be impossible to find it. The final six program sets were generated with
generateDivisions=true, making the probability of the program containing an error
significantly higher than for the first six program sets.

There are also program sets containing a lot of while loops like 15-50-3-t-t or
15-50-5-f-f, program sets containing a lot of for loops like 50-10-3-t-t. The sets also
differ in the parameter maxBlockDepth, which controls how deep the nested statements
can be.

We executed the program using the techniques implemented for tackling path explo-
sion. Some parameters of the symbolic executor were the same for each technique. The
timeout was 30 seconds, and the search-strategy was Tree. Before the experiment, a
small optimization was added to the state merging code, annotating the merged states
that took too long to merge. These states will never be merged again. Thus, the state
merging in this experiment was slightly faster than in the previous ones. The experi-
ment was also performed with only the basic symbolic executor without any additional
techniques. Table 6.17 shows the results.

We can see that no errors were found in the first six sets. In the next six sets, errors

74 Experiments

Table 6.17 Final test with no path explosion techniques enabled

settings path coverage time (ms) timeouted errors detected
15-10-3-f-f 37806 901 826 ms 30 0
15-10-5-f-f 40581 872 229 ms 29 0
50-10-3-f-f 47607 1 141 582 ms 38 0
50-10-5-f-f 50149 1 141 485 ms 38 0
15-50-3-f-f 28069 724 232 ms 24 0
15-50-5-f-f 28011 874 873 ms 29 0
15-10-3-t-t 3041 62 081 ms 2 48
15-10-5-t-t 7868 151 910 ms 5 45
50-10-3-t-t 5657 152 193 ms 5 45
50-10-5-t-t 3419 62 452 ms 2 48
15-50-3-t-t 825 46 485 ms 1 49
15-50-5-t-t 4492 123 366 ms 4 46
15-10-3-f-t 28667 784 102 ms 26 11
15-10-5-f-t 33562 933 317 ms 31 1
50-10-3-f-t 43290 1 085 621 ms 36 6
50-10-5-f-t 43131 966 059 ms 32 9
15-50-3-f-t 19869 741 374 ms 24 7
15-50-5-f-t 28916 994 137 ms 33 0

were found in almost every program. Notice that all programs in these sets were stopped
because of the timeout or an error was found. In the last six sets, the errors were found
in several programs.

Another observation we can make is that programs generated with a big probability
of general while loops have a lot of timeouts. This can probably be attributed to many
loops whose guard is always true being generated, and thus, the execution gets stuck in
an unbounded loop forever.

More errors were found in the programs with maxBlockDepth=3. Since the same
later happens with other techniques, it is probably just a coincidence that more errors
were generated with maxBlockDepth=3 than with maxBlockDepth=5.

Table 6.18 shows the results when state merging lattice-based was enabled. The
limit-cost was set to one.

We can see that the results when state merging is enabled are very similar to the
results with no state merging. As the previous experiment indicated, the path coverage
is lower than if state merging is not used. An interesting result can be seen for the
program set 15-50-3-t-t. This was the only time any technique found bugs in all
programs in a set. However, it is unsurprising because the basic symbolic executor with
no state merging found errors in 49 out of 50 sets.

Table 6.19 shows the results when subsumption is enabled. The state merging is
disabled in this test.

The subsumption ended with significantly fewer timeouts and shorter execution times
than the previous methods. The fewer timeouts are likely a result of subsumption being
able to prove some programs correct, and the shorter execution times are a consequence of

Experiments 75

Table 6.18 Final test with state merging enabled

settings path coverage time (ms) timeouted errors found
15-10-3-f-f 33542 901 403 ms 30 0
15-10-5-f-f 35889 871 625 ms 29 0
50-10-3-f-f 36455 1 141 582 ms 38 0
50-10-5-f-f 40295 1 141 203 ms 38 0
15-50-3-f-f 24357 723 835 ms 24 0
15-50-5-f-f 22908 874 392 ms 29 0
15-10-3-t-t 2414 62 152 ms 2 48
15-10-5-t-t 7342 151 616 ms 5 45
50-10-3-t-t 5696 151 771 ms 5 45
50-10-5-t-t 2844 61 835 ms 2 48
15-50-3-t-t 505 35 563 ms 0 50
15-50-5-t-t 4100 122 836 ms 4 46
15-10-3-f-t 24676 783 858 ms 26 11
15-10-5-f-t 28680 932 748 ms 31 2
50-10-3-f-t 35522 1 085 621 ms 36 6
50-10-5-f-t 36124 964 590 ms 32 9
15-50-3-f-t 16948 731 073 ms 24 7
15-50-5-f-t 27241 993 267 ms 33 0

that. This is further supported by subsumption having essentially the same performance
as the previous techniques for program sets guaranteed to have an error.

The subsumption performed very well for programs in the first six sets. This makes
sense because these programs contain a small number of expressions that can generate
errors because there are no divisions. Contrary to the basic symbolic execution and
state merging, errors were found already in these first sets. Interestingly, four errors
were found in the set 15-50-5-f-f where previously no error was found.

However, there are other test sets where subsumption was less successful in finding
errors compared to the basic symbolic executor or state merging, such as 15-50-3-t-t.
The reason why the technique is sometimes more successful and sometimes less successful
than the other methods might be that, given how it is implemented, it usually explores
paths in a different order than if subsumption is disabled. When subsumption is disabled
and a loop is encountered, we first explore the path that leaves the loop and add the
path that stays in the loop to the worklist. Contrary to that, subsumption explores the
path that executes the body of the loop right away to collect the annotations.

When the summarization results of the first six sets and the last six sets are compared,
we can see that the last six sets have slightly more timeouts, even though there are also
more detected errors. This is probably caused by the generated divisions that are making
the annotations much less efficient.

Thus, whether the subsumption is enabled might significantly affect which parts of
the program are explored faster. However, the biggest advantage that subsumption
brings is analyzing programs with a small number of statements that can possibly cause
an error quickly.

76 Experiments

Table 6.19 Final test with subsumption enabled

settings path coverage time (ms) timeouted errors detected
15-10-3-f-f 15272 55 836 ms5 18 0
15-10-5-f-f 19099 603 792 ms 19 2
50-10-3-f-f 24668 947 529 ms 31 0
50-10-5-f-f 23842 929 905 ms 30 1
15-50-3-f-f 12478 455 024 ms 13 0
15-50-5-f-f 4322 429 401 ms 11 4
15-10-3-t-t 817 64 676 ms 2 47
15-10-5-t-t 6968 152 370 ms 5 45
50-10-3-t-t 1554 44 621 ms 1 45
50-10-5-t-t 2104 67 741 ms 2 48
15-50-3-t-t 1875 109 909 ms 3 47
15-50-5-t-t 2188 162 591 ms 5 44
15-10-3-f-t 17037 587 409 ms 18 11
15-10-5-f-t 19369 715 169 ms 22 2
50-10-3-f-t 26851 785 561 ms 25 6
50-10-5-f-t 29095 918 933 ms 29 7
15-50-3-f-t 9566 422 012 ms 12 7
15-50-5-f-t 8098 670 180 ms 19 3

Table 6.20 shows the results for loop summarization.
The number of errors detected using summarization is similar to previous techniques.

However, we can see quite low values for the column time. When the summarization
results of the first six sets and the last six sets are compared, we can see that there are
more timeouts in the last six sets, even though there are also many more detected errors.
This is probably because the generated divisions make more loops unsummarizable.

Similarly to the previous techniques, there were significantly fewer timeouts for pro-
grams with for loops than for programs with general while loops.

6.4 Discussion

Experiments showed how efficient different search strategies, state merging strategies,
and other techniques were when analyzing randomly generated microc programs. While
the results for search strategies were very similar, state merging was significantly slower
than if no state merging was enabled. Profiling indicated that merging states that were
already merged from several states takes a lot of time. This may be one of the reasons
why state merging harmed efficiency.

The experiments also showed that techniques like subsumption and summarization
can often prove the correctness of a program significantly faster than standard symbolic
execution. However, the number of detected errors compared to state merging and the
basic test with no additional techniques was similar.

All the experiments had a timeout of 30 seconds. We can see that the time needed
for the execution in seconds was often very close to timeouts ∗ 30, meaning that the

Discussion 77

Table 6.20 Final test with summarization enabled

settings path coverage time (ms) timeouted errors detected
15-10-3-f-f 3099 251 633 ms 8 0
15-10-5-f-f 9422 498 189 ms 16 1
50-10-3-f-f 9468 640 904 ms 21 0
50-10-5-f-f 8529 502 850 ms 16 0
15-50-3-f-f 2507 203 684 ms 6 0
15-50-5-f-f 5362 305 749 ms 9 0
15-10-3-t-t 456 35 600 ms 1 49
15-10-5-t-t 212 33 980 ms 1 45
50-10-3-t-t 760 36 435 ms 1 45
50-10-5-t-t 1895 65 962 ms 2 48
15-50-3-t-t 1810 106 600 ms 3 47
15-50-5-t-t 2121 104 310 ms 3 44
15-10-3-f-t 6503 434 515 ms 14 10
15-10-5-f-t 7960 497 141 ms 16 3
50-10-3-f-t 10525 584 797 ms 19 5
50-10-5-f-t 4786 293 972 ms 9 7
15-50-3-f-t 5393 318 674 ms 10 5
15-50-5-f-t 4689 329 352 ms 10 0

programs that were proved correct or had an error found finished very quickly. Hence,
there would probably not be a bigger number of detected errors or programs proved
correct if the timeout was increased.

All the tested techniques achieved quite similar performance for both maxBlockDepth=3
and maxBlockDepth=5. However, this may be a consequence of randomly generated
larger programs having more bugs in them. Thus, it was not proven or disproven that
deeper loops with more blocks in them are harder to analyze,

There are several limitations to the presented experiments. The generated programs
did not resemble programs written by humans. To reduce the final number of errors,
the programs consisted of fewer expressions that could contain an error.

Moreover, the programs probably shared many of the same features because the prob-
abilities of generating statements other than loops and the probabilities of generating
different expressions were the same for all programs.

The number of timeouted runs was similar for programs with a lesser amount of
loops and for programs with a lot of for loops. The reason why programs with a lot of
general while loops had significantly more timeouts are loop bodies that are impossible
to leave. This makes the general while loops quite unrepresentative of the human-written
programs.

78 Experiments

Chapter 7

Conclusion

The thesis explains the symbolic execution technique with examples and provides an
overview of the microc language, and describes its features.

The thesis presents several techniques for tackling path explosion in symbolic execu-
tion, which are important for analyzing programs containing a large number of nested
loops.

A symbolic executor supporting the presented techniques and a generator of ran-
dom programs based on several parameters were developed. Both implementations are
provided in the thesis.

The experiments were performed using different types of generated programs and
different settings of the symbolic executor. Path subsumption and loop summarization
techniques were both able to prove some programs correct quickly, thus providing bet-
ter overall time than the standard symbolic execution. However, they found a similar
amount of bugs as standard symbolic execution. State merging performed similarly to
the standard symbolic executor, while also being slower.

All the techniques but also the basic symbolic executor performed reasonably well
on programs with more loops or with deeper more nested loops.

7.1 Future Work

Extending the algorithms Subsumption can be improved to support collecting anno-
tations from more than one run of the body of the loop. The mechanism for treating
statements that contain a possible error may be greatly improved to compute stronger
annotations, as discussed in 5.4.2.
The dynamic state merging discussed in 4.3.2 can be implemented.

Comparison of the interactions between the techniques In the provided imple-
mentation, we implemented state merging, subsumption, and summarization. How-
ever, only one of the techniques can be used at once. If enabling multiple techniques
at once would be supported, we could do an experiment to determine how well the
techniques work together.

Extending the program generator The program generator can be improved. The

79

80 Conclusion

solution of the current implementation for generating large programs that are not
full of errors is to greatly limit the number of generated expressions that can contain
an error. This may be a great advantage to subsumption in particular because then
it may prove very fast that there are no potential errors in the program.
Thus, it would be good to develop a program generator that is able to return larger
programs with a small number of errors that contain many expressions that can
generate an error.

Bibliography

1. MØLLER, Anders; SCHWARTZBACH, Michael I. Static Program Analysis. De-
partment of Computer Science, Aarhus University, 2020. Available also from: https:
//cs.au.dk/˜amoeller/spa/.

2. KERNIGHAN, Brian W.; RITCHIE, Dennis M. The C Programming Language.
2nd ed. Prentice Hall, 1988.

3. SCOWEN, Roger S. Extended BNF — A generic base standard. In: [online]. 1998.
Available also from: https://www.semanticscholar.org/paper/Extended-BNF-
%E2%80%94-A-generic-base-standard-Scowen/ed89e6f749768cc4fc585e6ef406afeace436a19?
p2df.

4. TRTÍK, Marek. Symbolic Execution and Program Loops. 2013. Available also from:
https://theses.cz/id/p8lj1h/. PhD thesis. Masaryk University, Faculty of
Informatics Brno. SUPERVISOR: prof. RNDr. Antońın Kučera, Ph.D.

5. BALDONI, Roberto; COPPA, Emilio; D’ELIA, Daniele Cono; DEMETRESCU,
Camil; FINOCCHI, Irene. A Survey of Symbolic Execution Techniques. CoRR.
2016, vol. abs/1610.00502. Available also from: http://dblp.uni-trier.de/db/
journals/corr/corr1610.html#BaldoniCDDF16.

6. CADAR, Cristian; DUNBAR, Daniel; ENGLER, Dawson R. KLEE: Unassisted
and Automatic Generation of High-coverage Tests for Complex Systems Programs.
In: Proc. 8th USENIX
Conf. on Operating Systems Design and Implementation (OSDI’08). San Diego,
California: USENIX Association, 2008, pp. 209–224.

7. AVGERINOS, Thanassis; CHA, Sang Kil; HAO, Brent Lim Tze; BRUMLEY,
David. AEG: Automatic Exploit Generation. In: Network and Distributed System
Security Symposium. 2011.

8. GODEFROID, Patrice; KLARLUND, Nils; SEN, Koushik. DART: directed auto-
mated random testing. In: Proceedings of the 2005 ACM SIGPLAN Conference
on Programming Language Design and Implementation. Chicago, IL, USA: Asso-
ciation for Computing Machinery, 2005, pp. 213–223. PLDI ’05. isbn 1595930566.
Available from doi: 10.1145/1065010.1065036.

81

https://cs.au.dk/~amoeller/spa/
https://cs.au.dk/~amoeller/spa/
https://www.semanticscholar.org/paper/Extended-BNF-%E2%80%94-A-generic-base-standard-Scowen/ed89e6f749768cc4fc585e6ef406afeace436a19?p2df
https://www.semanticscholar.org/paper/Extended-BNF-%E2%80%94-A-generic-base-standard-Scowen/ed89e6f749768cc4fc585e6ef406afeace436a19?p2df
https://www.semanticscholar.org/paper/Extended-BNF-%E2%80%94-A-generic-base-standard-Scowen/ed89e6f749768cc4fc585e6ef406afeace436a19?p2df
https://theses.cz/id/p8lj1h/
http://dblp.uni-trier.de/db/journals/corr/corr1610.html#BaldoniCDDF16
http://dblp.uni-trier.de/db/journals/corr/corr1610.html#BaldoniCDDF16
https://doi.org/10.1145/1065010.1065036

82 Bibliography

9. MCMILLAN, Kenneth L. Lazy Annotation for Program Testing and Verification.
In: TOUILI, Tayssir; COOK, Byron; JACKSON, Paul (eds.). Computer Aided Ver-
ification. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 104–118. isbn
978-3-642-14295-6.

10. KUZNETSOV, Volodymyr; KINDER, Johannes; BUCUR, Stefan; CANDEA, George.
Efficient State Merging in Symbolic Execution. In: Proceedings of the 33rd ACM
SIGPLAN Conference on Programming Language Design and Implementation. Bei-
jing, China: Association for Computing Machinery, 2012, pp. 193–204. PLDI ’12.
isbn 9781450312059. Available from doi: 10.1145/2254064.2254088.

11. XIE, Xiaofei; CHEN, Bihuan; LIU, Yang; LE, Wei; LI, Xiaohong. Proteus: com-
puting disjunctive loop summary via path dependency analysis. Proceedings of the
2016 24th ACM SIGSOFT International Symposium on Foundations of Software
Engineering. 2016. Available also from: https://api.semanticscholar.org/
CorpusID:18032345.

12. LIGHTBEND, INC. Scala 2. 2024. Available also from: https://www.scala-
lang.org/. Programming language.

13. MOURA, Leonardo de; BJØRNER, Nikolaj. Z3: An Efficient SMT Solver. In: RA-
MAKRISHNAN, C. R.; REHOF, Jakob (eds.). Tools and Algorithms for the Con-
struction and Analysis of Systems. Berlin, Heidelberg: Springer Berlin Heidelberg,
2008, pp. 337–340. isbn 978-3-540-78800-3.

https://doi.org/10.1145/2254064.2254088
https://api.semanticscholar.org/CorpusID:18032345
https://api.semanticscholar.org/CorpusID:18032345
https://www.scala-lang.org/
https://www.scala-lang.org/

	Acknowledgments
	Declaration
	Abstract
	Acronyms
	Introduction
	Goals of the thesis

	The microc programming language
	Overview of microc programs
	Statements
	Expressions
	Possible errors in microc

	Basics of symbolic execution
	Control flow graphs
	Symbolic execution
	Symbolic state
	Constraint solving
	Unbounded loops
	Path scheduling
	Properties of symbolic execution

	Nested loops and solving the path explosion
	Path pruning
	Path subsumption
	Subsumption and unbounded loops
	Path subsumption for nested loops

	State merging
	Query count estimation
	Dynamic state merging

	Loop summarization
	Summarization of single-path loops
	Summarization of multi-path loops
	Classification of path interleaving within a loop
	Classification of conditions
	Summarization of type 1 loops
	Summarization of cycles in PDA
	Summarization of loops of types 2, 3, and 4

	Summarization of nested loops

	Implementation
	Design
	Workflow of the executor

	Program representation
	AST normalization
	Supported values

	Symbolic executor
	Symbolic state
	Evaluation of statements
	Constraint solving
	Search strategies

	Evaluation of expressions
	Error detection
	Evaluation of array indexing
	Evaluation of function calls

	Statistics

	Path explosion optimizations
	Path pruning
	Path subsumption
	Computation of annotations

	State merging
	The algorithm for merging two states
	Heuristic-based state merging

	Loop summarization
	Path dependency automaton
	Getting summary from the PDA
	Summarization of nested loops

	Experiments
	Microc code generation
	Metrics
	Experiments
	Parameters for merge strategies
	Comparing search and merge strategies
	Final experiments

	Discussion

	Conclusion
	Future Work

