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Abstract

R is a dynamic programming language used mainly in statistics and data visualization. Its
unique set of features and extensive ecosystem of packages enables statisticians to write software
without the need to be software engineers. The GNU R implementation of an interpreter for R
programming language is considered primary implementation. To speed up the execution of the
R programs, the bytecode interpreter was implemented next to the standard AST interpreter.
To compile the AST representation of the program into its bytecode representation, the compiler
for GNU R bytecode was introduced.

This thesis explores one possibility of improvement for this compilation process, namely
the out-of-process compilation. This approach allows the implementation of the compilers in
different languages and could unlock more possibilities for sharing the compiled code between
clients. Moreover, the compiler process can be located outside of the machine on which the R
interpreter is running, which can be used to move the compilation overhead to a more powerful
machine.

I describe the process of creating the experimental implementation of such a solution done in
Rust programming language, which can serve as a baseline for future work. To achieve this, the
custom representation of R values and serialization of those values was created. This was then
used to implement the compiler and server, which communicates with the package that can be
used by the interpreter.

Finally, I evaluate the current state of implementation of my compilation server. This is
split into two parts: correctness and performance. Both of these criteria are compared against
the current implementation embedded in the GNU R interpreter. The result of this evalutation
showed that the compilation process could be sped up 20 times in best case scenario, when only
compilation it self is counted. When the loading of the data is included the speed up ended up
being 3 times compared to GNU R implementation.

Keywords R programming language, GNU R, compilation, JIT, server, RDS, bytecode, in-
terpreter

Abstrakt

R je dynamický programovańı jazyk, který je převážně použ́ıvaný ve statistice a pro vizualizaci
dat. Jeho netypické vlastnosti a bohatý ekosystém baĺıčk̊u umožňuje statistik̊um psát software
bez pokročilých programátorských znalost́ı. Hlavńı implementace toho programovanćıho jazyka
je GNU R. Pro zrychleńı běhu R programů, byla vytvořena GNU R implemetace bytekódu inter-
pretru, který se použ́ıvá souběžně s AST interpretrem. Součást́ı tohoto rozš́ı̌reńı byl kompilátor
pro GNU R bytekód.

vi
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Tato práce se zabývá jednou z možnost́ı pro vylepšeńı tohoto procesu, a to kompilace mimo
proces interpretru. Tento př́ıstup umožňuje implemetaci v jiných jazyćıch a otev́ırá nové možnosti
pro sd́ıleńı kompilovaného kódu. Dále by toto řešeńı umožnilo kompilátor přesunou ze zař́ızeńı, na
kterém je spuštěn interpreter, což by umožnilo přesunout náročný výpočet na výkoněǰśı zař́ızeńı.

Dále popisuji pr̊uběh vývoje experimentálńı implemetace v programovaćım jazyce Rust tohoto
řešeńı, která může sloužit jakožto počátečńı bod pro budoućı práci. Pro tyto účely byla vytvořena
nová reprezentace hodnot v programovaćım jazyce R a serializačńı formát pro tyto hodnoty.
Toto bylo následně využito k implementaci samotného kompilátoru a serveru, který je schopný
komunikovat s interpretem pomoćı baĺıčku pro programovaćı jazyk R.

Na závěr se zabývám zhodnoceńım aktuálńıho stavu kompilačńıho serveru. Tato kapitola
je rozdělena do dvou část́ı a to na část, která se zabývá korektnost́ı implementace, a na část
která hodnot́ı jej́ı výkon. V těchto kritéríıch je moje impletace porovnána s implemetaćı, která
je součást́ı GNU R intepretu. Výsledky těchto test̊u ukázaly, že v nejlepš́ım př́ıpadě je možné
zrychlit proces kompilace až 20 krát, pokud je pouze čas na kompilaci poč́ıtán, a když bylo do
měřeńı přidáno i nač́ıtáńı data, tak zrychleńı bylo trojnásobné.

Kĺıčová slova R programovaćı jazyk, GNU R, kompilace, JIT, server, RDS, bytekód, intepret
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Introduction

The R is a programming language used in statistical computing and data visualization. The
language is known for its flexibility, extensibility, and rich ecosystem of libraries written either
in R itself or some lower-level language such as C or C++. The GNU R implementation of R
programming language interprets R programs in two forms, either as an AST representation or as
a bytecode compiled code. The bytecode representation was added to speed up the notoriously
slow execution of R programs. The compiler for GNU R bytecode is currently implemented
mainly in R itself, with parts written in C.

The compilation outside of the process of the interpreter can enable implementation of the
compiler in different languages other than those used in the interpreter and the possibility to
speed the compilation by using one faster machine for compilation to compile code from multiple
clients, which would free up the resources of client interpreters. These techniques were used to
implement the JIT compilation of programming languages such as Java.

The goal of this thesis is to implement the proof of concept of similar solution for a compilation
of GNU R bytecode, on which it would be possible to build up the full solution and experiment
with possible improvements.

At the start of the thesis I introduce the R programming language, following that I examine
the implementation of all relevant parts of the GNU R implementation of interpreter, this include
the compiler itself but also the parts of the interpreter that are relevant to implementation.
Next I explore the similar solutions for different languages and what possible improvements the
compilation done out of the process of the interpreter.

In the second chapter I discuss the design and implementation of compilation server. The
implementation was done mainly in Rust programming language and to reach the goals of the
thesis it had to reimplement multiple parts of GNU R interpreter. These include:

The representation of the internal values of R programming languages, also known as SEXP,
is the serialization format in which the values and expressions could be sent between client and
server. For this purpose, the RDS serialization format was implemented. This serialization
format is a proprietary serialization format implemented for R values.

The compiler itself had to be reimplemented in the server language, and the parts of the
data that are stored in the interpreter and necessary for compilation had to be identified and
queried by the interpreter before compilation on the server could proceed. The original compiler
implements a few optimizations, which would have to be implemented to achieve full feature
parity with the current implementation. However, at the current point, only a subset of this
optimization has been implemented.

1



Introduction 2

In the end, communication between the client and server had to be implemented. To achieve
this, the basic TCP server was implemented, and to enable a client to communicate with the
server, the package for R programming language was implemented that handles the querying,
serialization, and deserialization of the data that are requested and needed for compilation.

The last chapter explains the process that was used to assess the properties of the implemented
compiler. The implementation was measured in terms of correctness and performance. To achieve
this, I used the GNU R as baseline implementation. The Rust solution contains a subset of
the logic provided by the reference compiler since the goal of the thesis was to create a proof
of concept that would create a framework for future work. However, when compared to the
GNU R compiler, my implementation can compiler 45% of functions from the base environment
identically and is able to do so more efficiently.



Chapter 1

Background

In this chapter, I discuss prerequisite knowledge for the implementation of the out-of-process
compilation. The first section contains a basic introduction to R programming language, its
usage, and properties, which become important in the thesis going forward.

The second section discusses the current implementation of GNU R interpreter, which is
considered the main implementation of the R programming language, and the implementation
of the interpreter of bytecode, which is the target of the implemented compilation server. The
relevant parts of the interpreter for this thesis are the internal representation of the values known
as SEXP, the RDS serialization format, and the compiler. However, the compiler is discussed in
a separate section this section contains description of the representation of the bytecode, basic
structure of the compilator and optimizations that are implemented in compiler.

The last section explores the implementation of compilation servers, most importantly what
are the challenges compared to implemention within the interpreter and what are the possible
gains from the implementing the compiler out of the process.

1.1 The R programming language
R is a dynamic programming language that is used mainly in statistics, which is part of the GNU
project. Its origins could be traced to the S programming language, which was created by Bell
Labs in the 1980s. Another big part of the R is its development environment and its package
ecosystem, which are either built-in or hosted on CRAN. The package could be written using
the R programming language itself, or if the task it is performing is performance-sensitive, C,
C++, or Fortran could be used.[1] [2]

The R programming language has an unusual set of features that have been implemented
mostly with statisticians’ needs in mind. The main data structure that R operates on is a
vector, which represents ordered homogeneous data. You can operate on these values via vector
arithmetic that allows users to use normal arithmetic, such as:

c(1, 2) + 1

The function is a first-class object in R, and in fact, many of the constructs that would be in
different languages implemented as core parts of the language are in R implemented as normal
function calls. To this set of functions belongs, for example, the if, which is implemented as
a primitive in the interpreter. However, since the R interpreter handles it as a normal func-
tion, it allows its reassignment to a different definition. This would be achieved by just simple
reassignment such as:

`if` <- function(...) print("if")

3



GNUR implementation 4

This complicates the implementation of the compiler since the AST interpreter handles all of
these situations dynamically, but if the compiler would like to create a more optimized version
of the if statement, the implementation must consider all of these possibilities, and I will discuss
what decisions were made in GNU R implementation to overcome these problems.

Other than the environments, the objects in R follow the value semantics with the copy-on-
write mechanism. Most of the function arguments are lazily evaluated. Exceptions are built-in
functions that are written in C or other lower-level language.

1.2 GNUR implementation
The GNU R is not only the implementation of interpreter of R programming language, how-
ever it is considers as default implementation. Moreover for purposes of this thesis this is the
implementation that uses GNU R bytecode which is the target bytecode of the implemented
compiler.

The implementation of the interpreter is done in C and R. The C is used for the interpreter
itself and build-ins, and the R is used to implement libraries, most importantly for our purposes,
the compiler library. [3]

Other then compiler itself the relevant parts of GNU R, to implement goals of this thesis, are
representation of the R values in the interpreter and RDS serialization format. The representation
is called SEXP and must have been reimplemented within my implementation, reasoning for this
is discussed at start of the chapter 2. The RDS serialization was chosen as a format that is used
for communication between client and server, again reasoning for this is discussed in further
chapters.

1.2.1 SEXP
SEXP is the way that the GNUR represents the R data and expressions. SEXP is a pointer to a
structure SEXPREC. The SEXPREC contains a header and union of possible SEXP types. The
header contains metadata such as the type of the SEXP and has attributes or tag flag and flag
that are set for all objects that contain class as one of their attributes. Most of this information is
stored in sxpinfo struct structure, which you can see in 1.2. Additional metadata, not stored
in sxpinfo struct, are attributes and previous and next node in same generation of GC, all of
these values are represented as pointers to SEXPREC. You can see the whole structure in code
snippet 1.1. [4]

There are 27 types of SEXP, of which 25 refer to actual value type, and the rest, such as
FUNSXP, are used as wildcards for matching some class of the SEXPs. The type of the SEXP
can be found via the typeof function in R. [4]

The data in SEXP are, in most cases, represented as a triplet of pointers to SEXPREC, as
you can see in example 1.3, which is used to represent list expression and language expressions.
The exception to this rule is primsxp struct and vecsxp struct. Structure primsxp struct
is used to represent specials and build-ins to achieve this only offset to table internally stored in
R interpreter. The vector expression is a bit out of the ordinary compared to other SEXP values
since their structure only shares a header with SEXPREC and is otherwise different. The rest
of the vector expression contains length and true length, which are usually the same value but
may differ in some circumstances, and aligned data itself. You can see all the structures that are
used to achieve this in code 1.4. [4]

To create and manipulate SEXPs, the interpreter implements many macros and functions that
let you use these structures without needing to delve into representation itself. These constructs
include CAR and CDR for manipulating lists or CHAR and PRINTNAME, which are used to
get the value of the symbol from symbol expression. To inspect the structure of the SEXP you
can use internal function inspect by calling:
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.Internal(inspect(sexp))

The most important SEXP types for compilers are those representing language, closure, list,
symbol, environment, and bytecode. The list is represented by three SEXPREC pointers to the
head (car) of the list, tag, and tail (cdr) of the list. The language does not have a special
structure and is represented as a list in whose head is the function that should be called, and the
rest of the list are arguments to this function. The tag can be used to represent named arguments
by storing the name of the argument, which is stored in the car of the list. This representation
creates a tree structure for expressions. For example, you can see the representation in code
example 1.5, which corresponds to expression [4]

f(1 + a)

The closure is represented as a triplet of pointers to SEXPREC, and you can see this structure
in code reference 1.6. The formals represent the names of the arguments of the function, with
an optional default value. This value is stored as a list. The body field stores the body of the
function. This can represented in multiple ways, most importantly by language expression or
bytecode. The env field stores the environment in which the closure should be called. [4]

The environments form a tree-like structure of parents and children. This structure has
its roots in an empty environment. Moreover, there are multiple special environments, such
as the base environment, that are maintained as singleton in runtime. There are two types of
environments: list environments and hash environments. The environment can be only one type,
and the other must be set to the null value. The list environment is represented as a list in which
the tags are names of the variables that exist in this environment, and the car stores the value
of the variable. The hash environment is represented as a generic vector with a fixed size, which
contains the lists with names and values of the variables, similar to the list environment. The
index into the vector position is calculated with the hash of the name of the variable. [4]

The bytecode is stored similarly to the language expression without any dedicated structure
and reuses the listsxp structure. The car in the list stores the bytecode instructions, which are
represented as integer vectors, and the cdr stores the constant pool of bytecode. The constants
contain not only the values that are used by bytecode instructions but also the expression and
source location for each bytecode instruction. [4]

1.2.2 RDS serialization
R has builtin way to serialize any SEXP into ASCII or binary format, which could even be
compressed. For our purposes, we will cover only uncompressed binary format since that is a
format that will be used in the implementation.

There are multiple functions implemented in the interpreter that handle serialization and
deserialization. Most important for the rest of the theses are saveRDS, readRDS, and serialize.
Function saveRDS and readRDS are used to write and load R objects into the file. Another
argument of saveRDS that is important for us is compress, which is a boolean argument that
must be set to FALSE to force uncompressed serialization. [5]

As an example of the serialized data, you can see in code 1.7 the serialization of function:

function(x) x + 1

The data starts with the header, which contains the type of the format (0x58 in this case),
format version, writer version, and minimal reader version. If the format version has value 3,
then the format that is used for representation of strings is outputted. In our case, since the
format version is 3, the end of the header contains:

05 55 54 46 2d 38
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Code listing 1.1 Representation of list

#define SEXPREC_HEADER \
struct sxpinfo_struct sxpinfo; \
struct SEXPREC *attrib; \
struct SEXPREC *gengc_next_node, *gengc_prev_node

typedef struct SEXPREC {
SEXPREC_HEADER;
union {

struct primsxp_struct primsxp;
struct symsxp_struct symsxp;
struct listsxp_struct listsxp;
struct envsxp_struct envsxp;
struct closxp_struct closxp;
struct promsxp_struct promsxp;

} u;
} SEXPREC;

Code listing 1.2 Structure of sxpinfo struct

struct sxpinfo_struct {
SEXPTYPE type : TYPE_BITS;

/* ==> (FUNSXP == 99) %% 2ˆ5 == 3 == CLOSXP
* -> warning: `type' is narrower than values
* of its type
* when SEXPTYPE was an enum */

unsigned int scalar: 1;
unsigned int obj : 1;
unsigned int alt : 1;
unsigned int gp : 16;
unsigned int mark : 1;
unsigned int debug : 1;
unsigned int trace : 1; /* functions and memory tracing */
unsigned int spare : 1; /* used on closures and when REFCNT is defined */
unsigned int gcgen : 1; /* old generation number */
unsigned int gccls : 3; /* node class */
unsigned int named : NAMED_BITS;
unsigned int extra : 32 - NAMED_BITS; /* used for immediate bindings */

}; /* Tot: 64 */

Code listing 1.3 Representation of list

struct listsxp_struct {
struct SEXPREC *carval;
struct SEXPREC *cdrval;
struct SEXPREC *tagval;

};
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Code listing 1.4 Representation of vector

struct vecsxp_struct {
R_xlen_t length;
R_xlen_t truelength;

};

...

typedef struct VECTOR_SEXPREC {
SEXPREC_HEADER;
struct vecsxp_struct vecsxp;

} VECTOR_SEXPREC, *VECSEXP;

Code listing 1.5 Representation of the language expression

@587566950a68 06 LANGSXP g0c0 [REF(1)]
@587563975db8 01 SYMSXP g0c0 [MARK,REF(177)] "f"
@587566950a30 06 LANGSXP g0c0 [REF(1)]

@58756380ec10 01 SYMSXP g0c0 [MARK,REF(76),LCK,gp=0x5000] "+" (has value)
@587566947cc8 14 REALSXP g0c1 [REF(2)] (len=1, tl=0) 1
@587563c14230 01 SYMSXP g0c0 [MARK,REF(23)] "a"

Code listing 1.6 Representation of closure

struct closxp_struct {
struct SEXPREC *formals;
struct SEXPREC *body;
struct SEXPREC *env;

};
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The 05 is the length of the string end, and the rest is the hexadecimal values of the string
”UTF-8”.

Following the header, the data itself continues. Every value starts with a flag, which is 4 bytes
in size and contains the type of the value and metadata, such as if the value has the attribute.
You can see the implementation of the serialization flag in code snippet 1.8 after the flag follows
data that are part of the value if needed.

As an example, we can look at what follows after header in 1.7. The first value is closure,
which type has value 3. The other metadata that its flag contains is the bit that signals that
this closure has a tag, which is always set in serialized closure value. The data continues with
environment in which this closure was created, formals which represent the arguments for the
function and are represented as a list. As you can see in 1.3, the list SEXP is represented as a
head (car) and tail (cdr) with the possibility of a tag, the same is true in RDS. In the case of
formals in our example, the head is the possible initial value of the variable, and the tag is the
name of the variable.

At the end, the body of the function itself is serialized, which contains language expres-
sion. This is represented similarly to the list expression, so much so that it even shares the
listsxp struct with the list expression. The value of language expression in our example starts
with symbol expression, which represents the name of the function, namely ”+”, followed by a
list of arguments, which is closed with the null value.

To shrink the final size of the serialized data, the RDS format implements interning for
symbols, environments, namespaces, and external and weak pointers into the references. In
some cases, they are even necessary to be able to serialize the cyclic data structures. These
references are used implicitly in the resulting data, meaning that the reference is created when
the value that has to be treated as a reference is encountered for the first time, is added to the
reference pool, and is outputted in its normal form. The reference is represented with its own
type identifier, with the index in the reference pool, which is either stored within the flag field
of value or as an int following the flag, depending on the value of the index.

Moreover, the bytecode serialization implements a separate version of the references used in
the constant pool serialization. These kinds of references are done only for repeating values and
must be explicitly stated in the serialized data with a flag that represents the definition value
followed by the serialized value itself and a tag that represents the reference of the value. The
set of the values the are represented with usage of these references must be selected before the
start serialization of the bytecode value.

1.3 Compiler implementation
The implementation of the current bytecode compiler is part of the standard library of the R
programming language and is written in the R language itself, with parts of the implementation
done by C functions which provide performance sensitive operations. By default, the interpreta-
tion of the R program is done in an AST interpreter, but for performance purposes, the function,
library, or file can be compiled into bytecode either ahead-of-time (AOT) or just-in-time (JIT).
The JIT compilation is enabled by default and is done on the function and package level. [6]

1.3.1 GNU R bytecode
The runtime for bytecode interpretation is a stack-based virtual machine. Virtual machine (VM)
and bytecode is designed to be able to reuse as much of the AST interpreter as possible. The
bytecode is represented via SEXP with type BCODESXP, which contains the instruction buffer
and constant pool. The instruction buffer is represented by an integer vector, which starts
with the bytecode version (currently version 12) and continues with instruction, indexes into a
constant pool, and jumps values for the branch instruction. The constant pool is represented
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Code listing 1.7 RDS serialization of the function(x) x + 1

// header
58 0a 00 00 00 03 00 04 03 03 00 03 05 00 00 00 00 05 55 54 46 2d 38

// closure tag
00 00 04 03
// environment (fd represents global environment)
00 00 00 fd
// formals
00 00 04 02 00 00 00 01 00 04 00 09 00 00 00 01 78 00 00 00 fb 00 00 00 fe

// body (x + 1)
00 00 00 06 00 00 00 01 00 04 00 09 00 00 00 01 2b // 2b - ascii code for +
00 00 00 02 00 00 01 ff // reference to symbol "x"
00 00 00 02 00 00 00 0e 00 00 00 01 3f f0 00 00 // real vector - c(1)
00 00 00 00 00 00 00 fe // null

Code listing 1.8 Code for packing flags into flag integer

static int PackFlags(int type, int levs, int isobj, int hasattr, int hastag)
{

/* We don't write out bit 5 as from R 2.8.0.
It is used to indicate if an object is in CHARSXP cache
- not that it matters to this version of R, but it saves
checking all previous versions.

Also make sure the HASHASH bit is not written out.
*/
int val;
if (type == CHARSXP) levs &= (˜(CACHED_MASK | HASHASH_MASK));
val = type | ENCODE_LEVELS(levs);
if (isobj) val |= IS_OBJECT_BIT_MASK;
if (hasattr) val |= HAS_ATTR_BIT_MASK;
if (hastag) val |= HAS_TAG_BIT_MASK;
return val;

}
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Code listing 1.9 Disassembly of compiled function

str(compiler::disassemble(compiler::cmpfun(function(x) x + 1)))

list(.Code, list(12L, GETVAR.OP, 1L, LDCONST.OP, 3L, ADD.OP,
0L, RETURN.OP), list(x + 1, x, structure(c(1L, 44L, 1L, 60L,

44L, 60L, 1L, 1L), srcfile = <environment>, class = "srcref"),
1, structure(c(NA, 1L, 1L, 3L, 3L, 0L, 0L, 0L), class = "expressionsIndex"),
structure(c(NA, 2L, 2L, 2L, 2L, 2L, 2L, 2L), class = "srcrefsIndex")))

List of 3
$ : symbol .Code
$ :List of 8
..$ : int 12
..$ : symbol GETVAR.OP
..$ : int 1
..$ : symbol LDCONST.OP
..$ : int 3
..$ : symbol ADD.OP
..$ : int 0
..$ : symbol RETURN.OP

$ :List of 6
..$ : language x + 1
..$ : symbol x
..$ : 'srcref' int [1:8] 1 44 1 60 44 60 1 1
.. ..- attr(*, "srcfile")=Classes 'srcfilecopy', 'srcfile' <environment: 0x60a5317aa9b0>
..$ : num 1
..$ : 'expressionsIndex' int [1:8] NA 1 1 3 3 0 0 0
..$ : 'srcrefsIndex' int [1:8] NA 2 2 2 2 2 2 2
..$

via a list of the SEXPs and contains the constant, symbols, expression locations, and source
locations. You can see an example of a compiled function in code snippet 1.9, which is displayed
with the disassemble function provided by the compiler package.[6]

1.3.2 Compiler structure
The compiler implements the interface for compiling functions, expressions, and files, namely
cmpfun, compile, and cmpfile. The implementation of the compiler is done via recursive code
generation that traverses the expression that is being compiled. [6]

The compiled instruction, indexes into the constant pool, and constants are stored in the
code buffer, which is a structure that contains functions such as putcode of putconst that are
used to manipulate the code buffer. Additionally, the code buffer contains the current expression
and source location, if available. Moreover, the context contains functions that are used to signal
warnings and errors to the user and the current compiler environment. [6]

Next to the code buffer, the compiler uses the current context in which the compilation
is done. The context contains information about current compiler settings, most importantly
whether the expression is in the tail position and if the expression must be compiled in loop
context. For creating a different context, the compiler package provides a number of functions
that either create a whole new context or create a new context from the current context. These
function are: [6]
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make.toplevelContext

make.callContext

make.nonTailCallContext

make.nonTailCallContext

make.noValueContext

make.functionContext

make.loopContext

make.argContext

make.promiseContext

1.3.3 Basic compilation
Any R expression can be compiled with a small subset of bytecode instructions. When using this
subset, the bytecode interpreter mimics the flow of the AST interpreter very closely. The set of
these instructions contains instructions for loading constant, pushing argument for function calls,
creating promise, querying function from the environment, calling the function, and returning
the function. This kind of compilation is done when the inlining level is set to 0.

As explained above, the constructs that would be generally seen as a part of the language,
such as the if statement, are implemented in R as a function. This allows for the compilation
of without any special bytecode instructions for logic or branching. This is true for all other
kinds of language constructs. This creates significant overhead, and the next subsection explores
optimizations that are used to improve these cases.

1.3.4 Optimizations
The compiler implements the main way to optimize the bytecode, namely inlining and constant
folding. The constant folding is done only for the selected set of functions, and inlining is done
depending on the inlining level for all of the functions in the base environment. However, there
are some functions that are considered syntactically special or part of the language. You can
see these selected functions in code example 1.11 in which the foldFuns variable is for constant
folding, and the languageFuns variable is for functions that are considered syntactically special or
part of the language. There are four levels of inlining, which increasingly broaden the number of
functions that could be inlined and loosen the check of correctness. The default level of inlining
is currently set to level 2. These levels are:[6]

Level 0 : No inlining

Level 1 : Function found from base packages found through namespace that are not shadowed
and add base guard

Level 2 : Level 1 + base package function found via a global environment that is not shadowed
during compilation and the base guard is omitted for syntactically special or considered part
of the core language.

Level 3 : Any function from base packages found via the global environment can be inlined
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We can see the comparison of the compiled function with inlining in code example 1.9 and
without inlining in 1.10. We can see that without inlining, the compiled code must find a
function for addition and then call this function. On the other hand, the inlined version can use
the addition instruction. These optimizations are implemented in the tryInline function in the
compiler package, which tries to use one of the inlining handlers and return a boolean informing
the compiler about the result.

There is many handlers for different kinds of function that occur in R programs. For func-
tion like if there are special handlers that are capable of compiling these function without any
additional call. However for generic function from base environment that are builtins or spe-
cials the inlining only uses different kind of call function and slightly different way of argument
compilation. You can see example of custom inline handler in code example 1.12

You can notice that if the inlined function does not need the base guard the behaviour
that was expected during the compilation persist even when the function is override during the
execution. This is different compared to AST interpreter which would change the behaviour to
new function, this is solved by addition of the base guard.

The base guard instruction is emitted if needed, and its arguments is the expression that
runtime needs to check if the function that should be called is the same as in the base package
and the position where to resume bytecode interpretation if the interpretation must be handed
over to AST interpreter.

The constant folding is done very similarly. There are a small amount of functions that can be
constant fold. When the compiler detects that the call can be constant folded and the function
is coming from the base package, then the expression is computed at compile time by calling the
function. This process can be done multiple times on the result of the constant folded expression.
For example, expression

1 + 2 * 3

is optimized to only load constant instruction with the value of 7. The constant folding is done
on all levels of the optimizations. [6]

1.4 Compilation server
To achieve the speedup of JIT compilation the time that is spend compiling the original intepreted
bytecode or AST as in case of the GNU R must be smaller that the time that would be gained
in execution of the resulting compiled code. This is tradeof the is constant problem that is at
heart of the all intepreters that use this technique. The compilation done outside of the compiler
is one of the ways to mitigate the cost of the compilation by moving the computation into the
server that could have more resources than the client machine.

This however adds cost of the comunication, this include not only the code that would be
requested for compilation but also the data necessary for compilation such as environment in
which the compilation is done and the information about the context gather during the execution
that is used during the compilation to implement optimizations.

Despite these challenges the there are alot of posibilities to optimize compilation process. For
example to run a compilation for multiple clients on one server that has more computational
power or caching results of the compilation and reusing it in different clients.
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Code listing 1.10 Compiled bytecode of closure function(x) x + 1 without inlining

str(compiler::disassemble(compiler::cmpfun(function(x) x + 1, options=list(optimize=0))))

list(.Code, list(12L, GETFUN.OP, 1L, MAKEPROM.OP, 3L, PUSHCONSTARG.OP,
4L, CALL.OP, 0L, RETURN.OP), list(x + 1, `+`, structure(c(1L,

44L, 1L, 60L, 44L, 60L, 1L, 1L), srcfile = <environment>, class = "srcref"),
list(.Code, list(12L, GETVAR.OP, 0L, RETURN.OP), list(x,

x + 1, structure(c(1L, 44L, 1L, 60L, 44L, 60L, 1L, 1L
), srcfile = <environment>, class = "srcref"), structure(c(NA,
1L, 1L, 1L), class = "expressionsIndex"), structure(c(NA,
2L, 2L, 2L), class = "srcrefsIndex"))), 1, structure(c(NA,

0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L), class = "expressionsIndex"),
structure(c(NA, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L), class = "srcrefsIndex")))

List of 3
$ : symbol .Code
$ :List of 10
..$ : int 12
..$ : symbol GETFUN.OP
..$ : int 1
..$ : symbol MAKEPROM.OP
..$ : int 3
..$ : symbol PUSHCONSTARG.OP
..$ : int 4
..$ : symbol CALL.OP
..$ : int 0
..$ : symbol RETURN.OP

$ :List of 7
..$ : language x + 1
..$ : symbol +
..$ : 'srcref' int [1:8] 1 44 1 60 44 60 1 1
.. ..- attr(*, "srcfile")=Classes 'srcfilecopy', 'srcfile' <environment: 0x5c2a091d92b0>
..$ :List of 3
.. ..$ : symbol .Code
.. ..$ :List of 4
.. .. ..$ : int 12
.. .. ..$ : symbol GETVAR.OP
.. .. ..$ : int 0
.. .. ..$ : symbol RETURN.OP
.. ..$ :List of 5
.. .. ..$ : symbol x
.. .. ..$ : language x + 1
.. .. ..$ : 'srcref' int [1:8] 1 44 1 60 44 60 1 1
.. .. .. ..- attr(*, "srcfile")=Classes 'srcfilecopy', 'srcfile' <environment: 0x5c2a091d92b0>
.. .. ..$ : 'expressionsIndex' int [1:4] NA 1 1 1
.. .. ..$ : 'srcrefsIndex' int [1:4] NA 2 2 2
..$ : num 1
..$ : 'expressionsIndex' int [1:10] NA 0 0 0 0 0 0 0 0 0
..$ : 'srcrefsIndex' int [1:10] NA 2 2 2 2 2 2 2 2 2
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Code listing 1.11 Syntactically special function or consider part of the language

foldFuns <- c("+", "-", "*", "/", "ˆ", "(",
">", ">=", "==", "!=", "<", "<=", "||", "&&", "!",
"|", "&", "%%",
"c", "rep", ":",
"abs", "acos", "acosh", "asin", "asinh", "atan", "atan2",
"atanh", "ceiling", "choose", "cos", "cosh", "exp", "expm1",
"floor", "gamma", "lbeta", "lchoose", "lgamma", "log", "log10",
"log1p", "log2", "max", "min", "prod", "range", "round",
"seq_along", "seq.int", "seq_len", "sign", "signif",
"sin", "sinh", "sqrt", "sum", "tan", "tanh", "trunc",
"baseenv", "emptyenv", "globalenv",
"Arg", "Conj", "Im", "Mod", "Re",
"is.R")

languageFuns <- c("ˆ", "˜", "<", "<<-", "<=", "<-", "=", "==", ">", ">=",
"|", "||", "-", ":", "!", "!=", "/", "(", "[", "[<-", "[[",
"[[<-", "{", "@", "$", "$<-", "*", "&", "&&", "%/%", "%*%",
"%%", "+",
"::", ":::", "@<-",
"break", "for", "function", "if", "next", "repeat", "while",
"local", "return", "switch")

Code listing 1.12 Example of custom inline handler

setInlineHandler("function", function(e, cb, cntxt) {
forms <- e[[2]]
body <- e[[3]]
sref <- if (length(e) > 3) e[[4]] else NULL
ncntxt <- make.functionContext(cntxt, forms, body)
if (mayCallBrowser(body, cntxt))

return(FALSE)
cbody <- genCode(body, ncntxt, loc = cb$savecurloc())
ci <- cb$putconst(list(forms, cbody, sref))
cb$putcode(MAKECLOSURE.OP, ci)
if (cntxt$tailcall) cb$putcode(RETURN.OP)
TRUE

})



Chapter 2

Design and implementation

The aim of the implementation was to create an experimental implementation of a compilation
server for GNU R byte code. The original implementation of the compiler has all of the nec-
essary information for compilation that is reachable from the interpreter itself. However, the
server, by definition, must run separately from the interpreter. Because of this constraint, the
way of communication between the interpreter (client) and compiler (server) must have been
implemented.

For the implementation of the server and compiler, I decided to use the Rust programming
language. This language was chosen because of my prior familiarity with the language, good
support for algebraic data types, and low runtime overhead. To implement the client, I cre-
ated a package for R programming language. This was done with a combination of R and C
programming languages.

There have been multiple options as to how the basic structure of the implementation could be
done. Firstly, the Rust library libR sys implements the Rust binding for the GNU R interpreter.
However, for this to work, the Rust compiler would be dependent on R binary. Moreover, the
representation of the R values that is provided by this library strictly follows the representation
used in GNU R implementation since the library provides only bindings. For this reason, I
decided against the use of this library.

The option I chose was to implement all the necessary parts without the need to rely on the
implementation of the GNU R. To achieve this, the custom representation of the SEXP, RDS
serialization, and deserialization, compiler with an implemented subset of inlining, the server
which is able to communicate with the client.

This approach requires more work at the beginning of the implementation since there is more
prerequisite functionality before the implementation of the compiler and communication can be
started. However, the advantage of this approach is the isolation of the compiler from the GNU R
interpreter and better representation of the R values, which helps when with the implementation
of the logic in the compiler itself. I discuss advantages and disadvantages of each part of the
implementation in the following chapters.

2.1 Value representation
The original SEXP implementation representation is very permissive when it comes to what kind
of data can be set to many fields. The example of this is could be seen in hash environments, the
implementation is done via vector of lists but in the data structure for representing environments
the hash environment field is represented with pointer to SEXPREC. This enables to have any
data into position where only either vector or nil value should be.

15
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Code listing 2.1 Enum representing SEXP types

// SXP
#[derive(Debug, PartialEq, Clone)]
pub enum SexpKind {

Sym(lang::Sym),
List(data::List),
Nil,

// language contructs
Closure(lang::Closure),
Environment(lang::Environment),
Promise {

environment: lang::Environment,
expr: Box<Sexp>,
value: Box<Sexp>,

},
Lang(lang::Lang),
Bc(Bc),
Buildin(lang::Sym),

// vecs
Char(Vec<char>),
NAString,
Logic(Vec<data::Logic>),
Real(Vec<f64>),
Int(Vec<i32>),
Complex(Vec<data::Complex>),
Str(Vec<String>),
Vec(Vec<Sexp>),

MissingArg,

BaseNamespace, // as in GnuR fake namespace
}

I wanted to reduce these possibilities to in my implementation to be able to take advantage
of Rusts compile time checks. You can see the part of the implementation that represents all
the possible types of SEXPs in code example 2.1. As you can see the data are more structured.
When we look on the environment and more specifically the hash environment implementation in
code example 2.2, we can see that compared to GNU R implementation in the hash environment
there has to be vector of the SEXP which is more restrictive.

2.2 Data serialization
To communicate between server and client, the data must be serialized. For this purpose, you can
use multiple possibilities. First, let’s look at the data that we need to send between endpoints.
The first and most important part of the request is the code that is to be compiled. Second, the
environment in which the code is currently running, in the end, the three sets of the string that
inform the compiler what function can be considered part of some distinct set, such as builtins.
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Code listing 2.2 Hash environment implementation

#[derive(Debug, PartialEq, Clone)]
pub struct NormalEnv {

pub parent: Box<Environment>,
pub locked: bool,
pub frame: ListFrame,
pub hash_frame: HashFrame,

}

...

#[derive(PartialEq, Clone, Default)]
pub struct HashFrame {

pub data: Option<Vec<super::Sexp>>,
pub env: HashMap<String, (usize, usize)>,

}

I discuss why these data are needed for compilation both in sections 1.3 and 2.3.
Any format that would be used in communication has to be able to serialize all of these data

types. The code could be easily represented in its textual form. This would require parsing the
R code on the server, which could prove more complicated than necessary. The same approach
would be feasible for sets of functions since the only information that is needed is the names of the
functions. However, this simple format fails when it comes to the serializing environment since it
contains general data. Another possibility was to create a specialized format that would match
all of my criteria; I ultimately decided against it because this would require the implementation
of serialization and deserialization on both client and server.

In the end, I settled on the RDS serialization format since the GNU R interpreter that plays
the role of the client already implements this serialization format. This let me save some time
that would have to be spent implementing different ways of serialization. Moreover, any property
of the RDS format that could be seen as nonoptimal is the server interacts with this serialization
format only at the start and end of the request, and in between, the custom representation of
the R values is used.

The reader is implemented as a trait that extends the Reader trait. This way, any Reader can
implement RDSReader without any modifications. For example, you can implement RDSReader
on File by writing.

impl RDSReader for File {}

The writer is implemented the same way, except that the extended trait is Writer. The error
handling in both of these traits is done with the Result type with a special error type, which
represents either RDSReader or RDSWriter errors. You can see these types in code example 2.3.

The implementation of the RDS reader and writer follows the C implementation, which is
part of the GNU R interpreter. However, there are parts of serializations that could not be
implemented the same way. These are caused by the more rigid SEXP type in Rust implemen-
tation. In the original implementation, there are two main functions that handle the parsing of
the RDS format ReadItem Recursive and ReadItem Iterative, the first of which can be followed
quite closely. However, the iterative version implements reading for all items whose type follows
the shape of the list. So this means that one function implements reading LISTSXP, LANGSXP,
CLOSXP, PROMSXP, and DOTSXP. Since these types are represented differently from each
other in my implementation, their reading is implemented differently from each other.
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Code listing 2.3 RDSReaderError and RDSWriterError types

#[derive(Debug)]
pub enum RDSReaderError {

DataError(String),
WrongFlag(i32),
IO(std::io::Error),

}

...

#[derive(Debug)]
pub enum RDSReaderError {

DataError(String),
WrongFlag(i32),
IO(std::io::Error),

}

Moreover, when reading RDS data, my implementation of SEXP requires transformation and
checks of a few data types, such as environments or formals in closure value. These values must
be read in a way that is not only good for handling in Rust but also able to be written out in
the same way as it came in, which is essential for testing. The most interesting example is in
environments that are represented as hash maps. These, however, do not maintain the same
structures or order as in the original data that were read from RDS. For this reason, we must
not only store the hash map but also the original value, as can be seen in code example 2.2.

2.3 Compiler
The compiler implements basic compilation and inlining that follows the rules of inlining on the
second level in the GNU R implementation. So far, only a subset of inline handlers has been
implemented. The implementation follows the original implementation as closely as possible.
The main structure of the compiler remains the same. You can see the structure that is used
for implementation in code example 2.4. You can see that this structure contains additional
information that the original compiler used runtime itself to get, and since my implementation
is outside of the interpreter process, this information must be passed to the compiler with the
code that is requested for compilation. These values include base environment, specials, builtins,
and builtin internal values.

As in the original implementation, the code buffer handles the addition of the instruction,
constants, and labels. You can see this data structure of the code buffer in code example 2.5. The
instructions buffer itself represents the instructions as a vector of i32. This allows for straight-
forward serialization and deserialization since this is the way that the original implementation
represents bytecode instructions.

To add data into a code buffer, it implements an interface, which can be seen in code reference
2.6. All of the interaction with outputted code is done via this interface. Other than handling
instructions and constants, the code buffer handles labels. In the resulting bytecode, the labels
are represented as an integer that has the value of the absolute position of the instruction to
which the label points. In the original implementation of the compiler, the labels are represented
during the compilation as strings, which contain the name of the label and store the map from
the name of the label to the position in the bytecode. These labels are then patched to match
the correct values at the end of the compilation. Since the bytecode instructions are represented
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even during the compilations as a vector of i32, the labels cannot be represented as a string. To
overcome this, the information about the labels is stored entirely out of the bytecode instruction
buffer, and dummy labels are inserted throughout the compilations. These dummy labels are
patched at the end of the compilation using stored data.

The context is handled in the same way as in the original implementation. At the current
point, the context contains less information than in the GNU R implementation. You can see
structures that represent the context in the code reference 2.7. Similarly, the helper functions that
act as the constructors for different kinds of contexts are implemented. During the compilation,
the context is used to guide compilation and store information that is necessary for compilation
in the future.

The entry point for compilation is the cmpfun method, which can be seen in code reference
2.8. The function sets up the environment for compilation collects local variables with find local
method and call gen code method which creates the code buffer itself stars the compilation.
After the compilation is finished the body of closure, that has been passed into the method, by
resulting bytecode and this closure is returned.

Same as the original implementation root part of the compilation is implemented in cmp
method which contains the match expression that call other methods that implements compila-
tion of individual expressions. As you can see the structure of the compiler follows as closely as
possible the original source code written in R.

Without inlining, the compilation uses only the instructions that load the constant from the
constant pool, push arguments into the stack, query the environment for the function by its
name, set tags, and create the promise. The inlining is triggered when compiling the language
expression and only when the inlining is allowed. The disallowing of the inlining is triggered
if the inlining fails and must be called from inline handling to prevent the cyclic calling of
inlining. Rules for inlining follow level 2 of inlining from the original implementation. First, the
information about the function to be inlined is figured out in the method get inlineinfo. You can
see this method in code reference 2.9. This function, depending on the inline level and if the
function can be found via base environment, either returns None or inline information containing
if the function call requires base guard instruction. The base guard is omitted for a set of chosen
defined in global constant LANG FUNCS. Right now, the base guard is omitted even when the
inline level is set to 3 or more, however, this option has not been tested so far. Depending on
the result of the get inline info the inlining either ends unsuccessfully and basic function call
compilation is done, or the compilation continues with or without the base guard instruction
inserted.

The inlining itself is handled in method handle inline, this function returns boolean that sig-
nals if the inlining succeeded. The handlers that implement inlining for different kind of function
are selected with match expression. Most of the handlers can be selected my simple string match
however there are few inline handlers that require more complex check. Basic example of this is
that there are two different handlers for the addition (function with the name +) for unary plus
operator and binary plus operator. There are currently 35 special inline handlers out of which 9
are handlers for is functions, these functions are:
if, {, <-, +, -, *, /, ,̂ exp, sqrt, while, break, function, [[, .Internal, ==, !=,
<, <=, >=, >, &, |, !, &&, ||
is.character, is.complex, is.double, is.integer, is.logical, is.name, is.null, is.object,
is.symbol

Moreover, over the inline handlers for builtins, specials, and math functions are implemented.
The builtins and specials are dependent on the environment. To determine if the function is
builtin or special, the compiler stores a hash set of the string of names for both of these sets of
functions. Math functions are hardcoded into the compiler the same as in the original compiler
in global constant MATH1 FUNCS, and these functions are:
floor, ceiling, sign, expm1, log1p, cos, sin, tan, acos, asin, atan, cosh, sinh,
tanh, acosh, asinh, atanh, lgamma, gamma, digamma, trigamma, cospi, sinpi, tanpi
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Code listing 2.4 Compiler structure

pub struct Compiler {
options: CompilerOptions,
context: CompilerContext,
code_buffer: CodeBuffer,

pub warnings: Vec<Warning>,

env: lang::Environment,
localenv: HashSet<String>,
baseenv: Option<lang::NormalEnv>,
namespacebase: Option<lang::NormalEnv>,

pub specials: HashSet<String>,
pub builtins: HashSet<String>,
pub internals: HashSet<String>,

}

Code listing 2.5 Code buffer structure

pub struct CodeBuffer {
pub bc: Bc,
pub current_expr: Option<Sexp>,
pub expression_buffer: Vec<i32>,
labels: Vec<Label>,

}
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Code listing 2.6 Code buffer interface

impl CodeBuffer {
...

pub fn insert_currexpr(&mut self, bc_count: usize) { ... }

pub fn add_instr(&mut self, op: BcOp) { ... }

pub fn add_instr2(&mut self, op: BcOp, idx: i32) { ... }

pub fn add_instr_n(&mut self, op: BcOp, idxs: &[i32]) { ... }

pub fn add_const(&mut self, val: Sexp) -> i32 { ... }

pub fn set_current_expr(&mut self, sexp: Sexp) -> Option<Sexp> { ... }

pub fn restore_current_expr(&mut self, orig: Option<Sexp>) { ... }

pub fn make_label(&mut self) -> LabelIdx { ... }

pub fn set_label(&mut self, label: LabelIdx) { ... }

pub fn put_label(&mut self, label: LabelIdx) { ... }

pub fn patch_labels(&mut self) { ... }
}

Code listing 2.7 Code buffer interface

#[derive(Default, Clone)]
pub struct LoopContext {

pub loop_label: LabelIdx,
pub end_label: LabelIdx,
pub goto_ok: bool,

}

#[derive(Default, Clone)]
pub struct CompilerContext {

pub top_level: bool,
pub need_returnjmp: bool,
pub tailcall: bool,
pub loop_ctx: Option<LoopContext>,
pub call: Option<Sexp>,

}
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Code listing 2.8 Code buffer interface

pub fn cmpfun(&mut self, closure: lang::Closure) -> lang::Closure {
let mut closure = closure;
self.env = lang::NormalEnv::new(

Box::new(closure.environment.clone()),
false,
lang::ListFrame::new(

closure
.formals
.iter()
.map(|x| {

data::TaggedSexp::new_with_tag(
x.value.as_ref().clone(),
x.name.data.clone(),

)
})
.collect(),

),
lang::HashFrame::new(vec![]),

)
.into();
if self.options.inline_level > 0 {

self.localenv = HashSet::new();
self.find_locals(&closure.body);

}
let body =

SexpKind::Bc(self.gen_code(closure.body.as_ref(), Some(closure.body.as_ref()))).into();
closure.body = Box::new(body);
closure

}

Code listing 2.9 get inlineinfo method

fn get_inlineinfo(&self, function: &str) -> Option<InlineInfo> {
let base_var = self.is_base_var(function);
if self.options.inline_level > 0 && base_var && self.has_handler(function) {

let info = InlineInfo {
guard: !(self.options.inline_level >= 3

|| (self.options.inline_level >= 2 && LANG_FUNCS.contains(&function))),
base_var,

};
Some(info)

} else {
None

}
}
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Code listing 2.10 Main server loop

pub fn run() {
let listener = TcpListener::bind("127.0.0.1:1337").unwrap();

for conn in listener.incoming() {
match conn {

Ok(stream) => handle_conn(stream),
Err(x) => println!("{}", x),

}
}

}

2.4 Server
Server is implemented as via TCP server from standard library. The server is able to handle
multiple clients at one. Every request creates new thread, you can see this creation in main loop
of the server in code example 2.10. All data must be newly loaded and no such as data, such as
environments, are maintained throughout the request. The data are send exclusively through out
the RDS format. Since the TcpStream implements the Reader trait in Rust, the implementation
of RDS reading and writing can be done trivially by just declaring:
impl RDSReader for TcpStream {}

impl RDSWriter for TcpStream {}

After reading through the full request, the necessary data are extracted from the loaded
SEXP. The SEXP must be a generic vector that has as a first argument closure to be compiled,
followed by options and optionally other data that could be used for compilation.

Following the extraction of the data, the compiler is set up. The inlining level is set to 2 if
not set otherwise throughout the options from request. If the information about what contains
the base environment, what the builtins, specials, and the builtins internal are, the empty set is
assumed. After all the settings are set, the closure is handed over to the compiler. The compiled
closure is then serialized with TcpStream. At the end, the stream is flushed and closed.

In its current form, the server is a basic implementation without any advanced features. Most
importantly, as mentioned above, there is no maintenance of data between requests, even from
the same client. This would allow to slim down the request by not needing to send the whole
environment and other additional information with every request for compilation and reuse of
some compiled functions.

2.5 Client
The client is implemented as an R package written mainly in C programming language with some
parts written in R programming language that handle the correct collection of the needed data for
the compilation. The package exposes as its public interface one function named server cmpfun.
The header of this function is defined as:
server_cmpfun <- function(sexp, options=NULL, bundle_env=FALSE)

The first and second arguments are directly into the C part of the implementation, and depending
on the last argument, the base environment is queried for necessary data. All of the data are
bundled into a list, and this list is passed as a single argument into the C function with the same
name.
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The C function implements serialization, deserialization, and communication with the server.
For serialization into RDS format, the functions implemented in the interpreter are used. The
communication is implemented via TCP connections in the standard library. The inputted data
are first serialized into the buffer, and this buffer is written into the TCP socket. After the server
handles the request, the result is read from the same socket, deserialized, and returned.
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Assessment

This chapter contains the practices and results of the evaluation of the state of the compilation
server and its parts at the current point. There are two considerations: correctness and perfor-
mance. The correctness is assessed throughout the testing parts of the compiler. The testing is
done using the Rust standard testing tools. The performance was measured against the GNU R
implementation of the compiler.

3.1 RDS serialization testing
The RDS serialization is tested with a set of R expressions, which are evaluated and serialized
with an R script that stores this evaluated data in the file. After the data are stored, my
implementation of the RDS reader reads data from the file and compares the output with a
snapshot of the data. Insta library is used to create and handle these snapshots. In order to test
the implementation of the RDS writer, the test function loads the data and serializes it into the
buffer. The result in the buffer is compared to the original input.

Since I compare the result to the results of the writer to the original values, there are some
serializations that would represent the same values but would not be considered correct by
the testing that is set up. The example would be the serialization of the hash environment,
which could be represented with different order of insertion of values, resulting in different data
serialization, but the value itself has the same properties. This is done because the alternative
would require being able to compare the values that would be represented by the resulting data.

To streamline this testing, I implemented a macro, which creates test functions in a standard
Rust testing environment for both reader and writer. You can see an excerpt from this macro in
code reference 3.1 with example usage of this macro.

3.2 Compiler testing
The compiler is tested on two levels of inlining, either 0 or 2. The testing is done in two ways:
the first is similar to RDS serialization testing, and the second is a compilation of the function
queried from the base environment. The first method uses two macros for both inlining levels,
similar to the RDS testing, and an example of usage can be seen in code reference 3.2. These
macros use the R script that saves inputted closure, compiled code, and any additional data that
are needed for compilation, depending on the inline level, into RDS format in files. Afterward,
these files are used to load testing data into the SEXP. The closure is compiled, and the result
from the Rust compiler is compared to the result of the original compiler.

25
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The second type of compiler testing is used to benchmark how a large part of the compiler is
implemented. Since, at the current time, only a subset of the inlining handler is implemented,
there should be no possibility of compiling correctly all functions when compiling with inlining
level 2. The R script is used to create test data. This script queries the base environment and
then stores all the closures that can be compiled in both the compiled version and the AST
version. Moreover, the script stores all additional information needed for compilation, such as
a list of builtins. These data are then loaded into the test, and as in the first type of test, the
result of my implementation of the compiler and the original compiler is compared. This testing
is dependent on the base environment of the installed R binary. The current implementation can
correctly compile 540 out of 1146 queried functions at inline level 2.

Similar to the RDS testing, these approaches disqualify some results that have the same
properties. In the case of the compiler, there are more possibilities for creating outputs that
represent the correct solution. However, to show that the compiled bytecode from my implemen-
tation is correct would require proof that it is equivalent to the output of the original compiler.
In some cases, this could be possible, but unfortunately, in general cases, this is not feasible.
More importantly, since the definition of the semantics of the bytecode is dependent only on
the implementation of the GNU R bytecode interpreter, that would mean that if two bytecode
representations are equal at the current time, they will not necessarily be equal in the future.

3.3 Performance testing
To assess the performance, I compared my compiler implementation to the original solution.
This was done in the same way as the second type of compiler testing. All closures from the
base environment are stored with all necessary data for compilation with inline level 2, and this
data is then loaded and compiled with the Rust implementation of the compiler. The two times
that have been examined are compilation itself, without the time that is necessary to read all
the data and compilation with reading all data. These two times have been chosen since these
actions are necessary for the whole process, but the loading of the whole environment and other
additional data, other than the code itself, is strictly necessary only once per client initialization,
although this is not part of the implementation as of yet.

To evaluate the results of my implementation, I measured the time that it took to compile
all of the same functions. However, the time to load data is not counted since the interpreter
already has all the data that are needed to compile the function. You can see the script that
was used for this purpose in code reference 3.3.

These tests were then run multiple times, more precisely 100 times, to account for random
time fluctuations within the execution times. These timings were then used to calculate the
mean values of executions and speed up compared to original implementation. These tests were
run on the machine with AMD Ryzen 5 7600X 6-Core with 16GiB of RAM. You can see results
in table 3.1.

Table 3.1 Result of measurements

Times Speedup
Original implentation 4.065 s 1
My implementation with RDS data loading 1.130 s 3.598
My implementation without RDS data loading 0.193 s 21.009
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Code listing 3.1 RDS test macro

macro_rules! testR {
( $name :ident, $code :expr) => {

mod $name {
use super::*;
#[test]
fn reader() {

...

let mut file = std::fs::File::open(path).unwrap();
let RDSResult { header: _, data } = file.read_rds().unwrap();

insta::assert_debug_snapshot!(data);
std::fs::remove_file(path).unwrap();

}

#[test]
fn writer() {

...

let mut file = std::fs::File::open(path).unwrap();
let RDSResult { header, data : input } = file.read_rds().unwrap();

...

writer.write_rds(header, input).unwrap();
writer.flush().unwrap();

assert_eq!(writer.get_ref(), &input_vec);
std::fs::remove_file(path).unwrap();

}
}

}
}

...

testR![intsxp_02, "as.integer(c(1, 2))"];
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Code listing 3.2 Compiler test macro

// compiler test for inlining level 0
test_fun_noopt![

block,
"
function(a, b = 0) {

x <- c(a, 1);
x[[b]];

}"
];

// compiler test for inlining level 2
test_fun_default![

block02_opt,
"
function(x) {

if (x) 1 else 2;
if (x) 3 else 4

}"
];

Code listing 3.3 RDS test macro

#!/usr/bin/Rscript

# load all the names of variables from base package
basevars <- ls("package:base", all.names = TRUE)

# get types of the values in basevars variable
types <- sapply(basevars, \(x) typeof(get(x)))

# get only closures in their AST form
orig <- sapply(basevars[types == "closure"], \(x) {

tryCatch(eval(parse(text=deparse(get(x)))[[1]]), error = function(e) {
NULL

})
})

start_time = Sys.time();
# compiler these functions with default compiler
x <- sapply(orig, \(x) tryCatch(compiler::cmpfun(x), error=function(e) NULL));
end_time = Sys.time();
end_time - start_time
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Conclusion

The goals of this thesis was to create the proof of concept implementation which could be
used to experiment in this space. To achieve this I created the custom representation of R
values, RDS serialization, compiler for GNU R bytecode, basic TCP server and client package
that communicates with the server. The server part was implemented with Rust programming
language and client code was implemented with combination of R and C programming languages.

This implementation was then tested for its correctness and performance. These proper-
ties were tested against the GNU R implementation of compiler. This showed that the part of
compiler that is already implemented can be more then 20 times faster then the baseline imple-
mentation and if the reading of the data that are necessary for compilation my solution can be
around 3 times faster. Although these results are promising there must be more measurements
to truly find the performance characteristics of Rust implementation.

The compiler implementation is at current point still incomplete, however the main structure
of compiler is done. The main part that is necessary to implement, to achieve feature parity with
the GNU R implementation, are not yet implemented inline handlers and constant folding. The
support for inline handler is already created within the compiler, however the constant folding
would need additional design.

Moreover the server and client implementation is done by basic TCP communication which
does not implement more sophisticated scheme for communication. This could create possibilities
for lowering overhead of communication and sharing the resulting compiled code.
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