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Abstract
This thesis focuses on the virtual com-
missioning of a robotic flexible produc-
tion line integrated with a montrac con-
veyor system. The study makes use of the
digital twin technology to simulate and
optimize the production process, aiming
to reduce downtime and improve system
performance. Various simulation tools,
including Process Simulate, TIA Portal,
PLCSim Advanced, KUKA WorkVisual,
and KUKA OfficeLite on Microsoft Hyper-
V, are utilized to create an accurate digital
representation of the production line. The
thesis details the design and implemen-
tation of virtual commissioning, shuttle-
oriented control logic for the conveyor sys-
tem, and the integration of this control
logic with robotic operations. The be-
havior is tested and validated through a
series of experiments that demonstrate
the efficacy of virtual commissioning in
replicating real-world behavior and iden-
tifying areas for improvement.

Keywords: virtual commissioning;
digital twin; production line simulation;
montratec; robotic flexible line

Supervisor: Ing. Tomáš Jochman

Abstrakt
Tato práce se zaměřuje na virtuální zpro-
voznění flexibilní výrobní linky s roboty
a dopravníkovým systémem montrac. Vy-
užívá technologii digitálních dvojčat k si-
mulaci a optimalizaci výrobního procesu,
s cílem snížit prostoje a zlepšit účinnost.
Různé simulační nástroje, včetně Process
Simulate, TIA Portal, PLCSim Advanced,
KUKA WorkVisual a KUKA OfficeLite
s Microsoft Hyper-V jsou použity k vy-
tvoření přesné digitální reprezentace vý-
robní linky. Práce popisuje návrh a imple-
mentaci virtuálního zprovoznění, logiku
řízení orientovanou na vozíky pro doprav-
níkový systém a integraci této logiky ří-
zení s robotickými operacemi. Chování je
testováno a ověřováno pomocí série experi-
mentů, které ukazují účinnost virtuálního
zprovoznění při replikaci reálného chování
a identifikaci oblastí pro zlepšení.

Klíčová slova: virtuální zprovoznění;
digitální dvojče; simulace výrobní linky;
montratec; flexibilní robotická linka
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Chapter 1

Introduction

With the increasing degree of automation and the corresponding design
complexity of modern factories, implementing solutions without thorough
testing is not optimal. While programs themselves can be simulated with mock
data easily, the effect of real-world interactions such as object collisions and
other physical constraints are missing. In order to prepare for the smoother
construction of a complex assembly line, covering these points is essential.
This can be achieved by creating a digital twin or Virtual Commissioning (VC)
of the assembly line, specified such that most, if not all, impactful interactions
are covered in the simulation.

Virtual Commissioning is the process of design, testing, and validation of
software without the need for additional production downtime by using a
digital twin. The results of this are significantly lower deployment costs,
on-site time requirements, and the ability to try new processes and teach
operators without the risk of damaging equipment. [1, 2, 3, 4, 5]

A digital twin can refer to various kinds of software simulations of real
systems. Such simulations are usually much more complex than just Virtual
Commissioning, which can be a part of them. These digital twins can reflect
the state of the line in real time and be interconnected such that they can
also affect said line with actuators or other control resources, creating a
closed-loop system.

This work aims to create a VC of an existing line and use it for the design of a
new shuttle-oriented control logic. This VC focuses on correctly simulating the
robots, conveyor system, material flow, Programmable Logic Controller (PLC)
program, and robot programs. It must also be able to connect to the existing
Manufacturing Execution System (MES) via Open Platform Communications
– Unified Architecture (OPC-UA) interface and be controlled in the same way
the real line is.

The need for these changes on this specific line stems from the fact that before
writing this thesis, the line used outdated components, which needed to be
replaced, and the control system was no longer maintainable because it could

1



1. Introduction .....................................
not be accessed properly.

The montrac conveyor system used in the real line did not have a digital
counterpart yet, so the behavior had to be implemented from scratch in
simulation software. The software used in this thesis includes the following:

. Process Simulate (PS). Totally Integrated Automation (TIA) Portal. PLCSim Advanced.KUKA WorkVisual.KUKA OfficeLite.Microsoft Hyper-V

2



Chapter 2

Related work

Virtual Commissioning (VC) has emerged as a pivotal methodology in the
design, integration, and validation of complex manufacturing systems. VC al-
lows for the pre-implementation testing of control systems by connecting them
to simulation models that replicate the behavior of real plants. This approach
mitigates risks and identifies potential issues before physical deployment,
enhancing the efficiency and reliability of manufacturing operations. The
concept of VC is integral to the implementation of Digital Twins (DTs), which
are virtual representations of physical assets synchronized in real-time. This
section reviews relevant literature on Digital Twin frameworks, methodologies,
and Virtual Commissioning. [6, 7, 8]

Digital Twin frameworks provide the foundation for integrating DTs into
manufacturing systems. Kritzinger et al. [9] define Digital Twins as virtual
models that utilize real-time data to forecast and optimize production systems
across different lifecycle phases. Various frameworks have been proposed to
facilitate DT integration. Lu et al. [10] present a framework comprising an
information model, communication mechanisms, and data processing modules.
Tao et al. [11] introduce a five-dimensional DT framework including physical
entities, virtual models, services, data, and connections. These frameworks
share common elements such as the presence of a physical and virtual space,
bilateral communication, and additional intelligence layers to support decision-
making.

The design of DTs involves multiple stages, each enhancing the digital rep-
resentation’s capabilities. Kritzinger et al. [9] outline a methodology that
progresses from Digital Models (DMs) to Digital Shadows (DSs), and finally
to Digital Twins. This approach emphasizes the gradual enhancement of
digital representations and their communication capabilities. However, tra-
ditional methodologies often overlook the intermediate steps necessary for
developing the intelligence layer required for decision-making. Barbieri et al.
[6] propose a stepwise approach using Virtual Commissioning (VC) to design,
integrate, and verify DT architectures, providing a structured pathway for
DT development.

3



2. Related work.....................................
Virtual Commissioning is a crucial tool for integrating and validating DT
architectures within manufacturing systems. VC involves using virtual mod-
els to simulate and verify the control software of manufacturing systems,
thus reducing deployment time and mitigating potential issues. Scheifele et
al. [7] discuss a real-time co-simulation platform for VC, highlighting the
integration of powerful simulation solutions based on integration interfaces
and real-time co-simulation architectures. This platform utilizes the available
computing power in real-time simulations through partitioning, parallelization,
synchronization, and data exchange mechanisms.

Practical applications of Digital Twins and Virtual Commissioning have
been explored in various manufacturing domains. For instance, Shen et al.
[12] apply VC to tune control parameters of Computer Numerical Control
(CNC) machine tools, while Burghardt et al. [13] use an immersive robotics
environment integrating VC and Virtual Reality for automatic programming
of industrial robots. Barbieri et al. [6] validate their methodology through a
case study involving the integration of a DT into a flow shop for implementing
a scheduling reactive to machine breakdowns.

Two studies explored the use of the Montrac line, a single-rail automated
conveyor system, for the development of production control systems. In
one study, the Montrac line was utilized to develop and test a system for
automated control and monitoring. This study used the physical line directly
and did not perform Virtual Commissioning. [14]

Another study applied a multi-agent system (MAS) to the Montrac line
to enhance production planning and control. The MAS approach allowed
for flexible and adaptive scheduling, accommodating dynamic changes in
production requirements. This study partially used VC to test the developed
algorithms, but the line simulation environment was not explored in detail
and the focus was put on the real line. [15]

The approach in this thesis is to create a Virtual Commissioning environment
based on the real modular montrac line, which will then be used to virtually
develop and test a control system capable of handling the real line. This
system logic will be designed such that possible changes in the line layout will
be easy to implement. To achieve this, individual line components will be
modeled as almost isolated objects that define the line layout via references.
This introduces a sense of multi-agency in the system as their logic can be
processed separately in each cycle.

4



Chapter 3

Workplace configuration

The line that was modeled already existed in Testbed and consisted of four
robot workplaces and a monorail conveyor system used to transport resources
between them.

Robot workplaces used KUKA Cybertech KR 8 R1620, and KUKA KR
10 Agilus 2. The monorail conveyor was a modular system called montrac
produced by montratec GmbH. It consisted of plain rail segments, crossings,
stations, shuttles, routers, sensors, and small metal block attachments that
adjusted the speed of shuttles passing over them. The conveyor system was
controlled by a network agent and the rest of the workplace with a Siemens
SIMATIC S1500 PLC.

A photo of the assembly line can be seen in 3.1 and a top-down view diagram
in 3.2. Components were specified by their identifier and an overview can be
seen in 3.1. Details of how each component type works will be discussed in
upcoming sections.

Figure 3.1: Photo of the montrac line

5



3. Workplace configuration ................................

MA121

MA123

MA142

MA143

MA144

MA101 MA105

S200

S100

S110

S12

S23
MA146

MA148

MA141

R20 Cybertech

R3 Agilus
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R2 Agilus

R10 iiwa

S300

AGV Rack parking spot

MA106

Figure 3.2: Top-down diagram of the montrac line

6



............................... 3.1. Montrac conveyor system

Identifier Description
R1, R2, R3 Robots KUKA Agilus for pick and place oper-

ations
R20 Robot KUKA Cybertech for transferring mate-

rials from Autonomous Guided Vehicle (AGV)
shelf to shuttles

S110 Stop station between R1 and R10
S12 Stop station between R1 and R2
S23 Stop station between R2 and R3

S100 Stop station at R20
S200 Stop station for manual pickup
S300 Virtual stop station for camera image capture

MA123 Crossing toward S100
MA148, MA146, MA141 Crossings joining S23, S12 and S110 with main

loop
MA142, MA143, MA144 Crossings toward S23, S12 and S110 respec-

tively
MA101 Crossing toward S200
MA105 Crossing joining S200 with main loop
MA106 Crossing toward S300
MA121 Crossing joining S300 with main loop

Table 3.1: Overview of components by identifier

3.1 Montrac conveyor system

Montrac used a modular system that could be customized to specific needs.
Some modules used Infrared Modules (IRMs) to transfer information back
and forth with shuttles. The line building blocks consisted of:

. Straight or slightly curved rail segments. Curved rail segment – Required IRM to prevent shuttles from crashing.. Routers – Allowed control and configuration of connected modules,
remote management via User Datagram Protocol (UDP) or a web server.. Physical station – Required IRM, allowed locking shuttles, and could be
configured to act as the following station types:. Stop Station – Basic configuration, stops the arriving shuttle if it

has an entry in routing tables and releases it otherwise. Allows
setting a new target for the current shuttle.. StopWait Station – Allows setting a new target for a specific shuttle.
If this shuttle is not currently in the station, the station sends the
occupying shuttle away and checks the next one.. Edit Station – Allows for preloading of target assignments via
processing table and automatically assigns the new addresses to

7



3. Workplace configuration ................................
arriving shuttles. If a target is assigned, the shuttle stays in the
station and departs otherwise.. EditBusy Station – Similar to Edit station but allows selection from
multiple tables..Virtual station – Required IRM and did not have physical construction.. Signoff sensor – Used to detect shuttles leaving an outlink (module

output).. Crossings – Required one or more IRMs, one placed on each inlink
(module input), and had multiple variations:. Collect L/R – Merged multiple inlinks into one outlink.. Divide L/R – Split one inlink into multiple outlinks..Arena – Connected multiple inlinks into multiple outlinks.. Lift – Transferred shuttles between two z-levels of the track.

Photos of chosen modules can be seen in 3.3 and 3.4. An overview of used
crossings sorted by type is shown in 3.2.

Type Crossings
Arena MA123

Divide Right MA101
Divide Left MA106, MA142, MA143, MA144

Collect Right MA105, MA121
Collect Left MA141, MA146, MA148

Table 3.2: Overview of crossings by type

8



............................... 3.1. Montrac conveyor system

(a) : Router (b) : IRM Module

(c) : Curve (d) : Physical station

Figure 3.3: Montrac modules 1
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3. Workplace configuration ................................

(a) : Crossing Collect (b) : Crossing Divide

(c) : Crossing Arena

Figure 3.4: Montrac modules 2
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............................... 3.1. Montrac conveyor system

3.1.1 Routers

Before the control logic rework, new routers were installed. The new routers
will be used in the rest of this thesis, but a short rundown of the old routers
is in order. Those routers used UDP-based Montrac Data Acquisition and
Control (MDAC) protocol for management such as configuration and sending
commands to be performed. The routers were connected with each other via
Controller Area Network (CAN) bus, which also connected modules to their
routers. Each router also had a web server for easier configuration.

The new routers used PROFINET for connecting to the PLC and daisy-chain
interconnection with other routers. This allowed for communication with each
router from the PLC via library blocks provided by montratec and thus easier
access to the router’s data. Modules and signoff sensors were still connected
to their routers using CAN bus.

3.1.2 Module configuration

As mentioned above, routers could be configured using their integrated web
server. This was done following the montratec manuals [16]. The configuration
needed was extensive and only an example can be seen in 3.5, 3.6, 3.7, and
3.8. The other modules followed the same principle.

Figure 3.5: Configuration example – overview

11



3. Workplace configuration ................................
Configuration available in 3.5 consisted of route settings, inlink settings,
outlink settings, and MFC mode. Routes were defined by their name and the
inlink and outlink they connected. Their configuration consisted of priority
and timeout. Priority determined the order of routing in cases where multiple
inlinks were occupied at the same time. In such cases, the shuttle waiting for
a route with higher priority would be handled first. When a shuttle wanted
to take a specific route but that route was blocked, it would wait for the
duration of that route’s timeout. If the route was still blocked, the shuttle
would take the default route for its inlink or continue waiting for a route
release if the default route could not be taken.

Inlinks showed which IRM they were connected to and could have their
default route and table handling behavior set. Besides being taken after the
timeout passes, the default route is always taken if the “Ignore Tables” toggle
is set.

Outlinks show their corresponding signoff sensor and current occupancy
status. They could also have their signoff edge behavior and departure speed
configured. Signoff edge behavior determined whether the sensor would fire
on a rising or falling edge.

Each route of a crossing had a control table and a chaos table. These were
used for defining routing behavior, which is further described in a later section.
Control tables could have up to 32 entries that matched the exact shuttle
address or exact target address and would be discarded after successful routing.
Chaos tables could have up to 16 entries that matched a range of shuttle
addresses or a range of target addresses and would not get discarded. Both
tables could have entries added at runtime, which was particularly useful for
control tables considering their discarding nature. Figures 3.6, 3.7, and 3.8
show example configurations of chaos tables. Control tables had no entries
for this crossing, but their configuration was almost identical to that of chaos
tables.

Figure 3.6: Configuration example – Route 1

12



............................... 3.1. Montrac conveyor system

Figure 3.7: Configuration example – Route 2

Figure 3.8: Configuration example – Route 3

3.1.3 Logic and routing

When a shuttle was idle in a station (it had arrived at its destination) a new
target could be set. Shuttles would depart from stations after setting the
corresponding start bit. Every time a shuttle entered an inlink of a crossing
on its way, it would stop on the IRM and wait for the crossing’s router to
handle routing.

Routing consisted of three steps: checking routing tables, waiting for route
change, and moving across the crossing. Table lookup was performed by first
checking the control table for a shuttle address match, then checking the
chaos table for a shuttle address match, then checking the control table for a
target address match and finally checking the chaos table for a target address
match. If a match was found at any point, the route for that inlink would be
considered resolved. If no match was found and a default route was specified,
the default route would be chosen, otherwise, the shuttle would wait (for a
new entry in the tables). When all inlinks had their routes resolved, the route
with the highest priority would be chosen to take place first. A routing was
considered finished when the corresponding signoff sensor sent a signal that a
shuttle had passed over it and thus left the crossing.

When shuttles departed from their inlinks, their speed was set to the speed
configured on the corresponding outlink. Aside from that, shuttles could
have their speed adjusted by passing over certain placements of metal blocks
(called stones) attached to the track as described in 3.3. The tall stone would
take up both rail slots and the long stone one rail slot. Shuttles would also
decrease their speed as they approached objects, down to a full stop when

13



3. Workplace configuration ................................
within 13 cm of them to avoid collisions.

Upper slot Lower Slot Resulting speed
Long Empty Full stop

Empty Long One higher unless maximum speed
One lower otherwise

Long Long Same as Long in top slot
Tall Tall Medium speed

Table 3.3: Effect of track stones on shuttle speed

3.2 Robots

Each robot had its designated workspace as shown in 3.2 by dashed rectangles
around them. Workplaces of robots R1, R2, R3, and R10 overlapped on
neighboring stations. This is shown as a crossed area. Each robot had
a tool changer attached to it and up to 8 tools placed on a holder in its
workplace. This allowed for different types of operations to be performed
by every robot without the need for a manual change of the mounted tool.
The tool-changing system used was a pneumatic solution SWK 007 from
SCHUNK. All robots also had to be connected to their controllers to supply
them with power, provide low-level control, host an OPC-UA server, allow
for remote programming and access over the network via various protocols
such as PROFINET and EtherCAT, and facilitate several other functions,
most of which were not used. As typical for most modern robot controllers,
they also had a teach pendant which was used for on-site programming and
control of robots without the need of a computer.

The robotic programs used at the time were based on OPC-UA and allowed
for the starting of different operations by setting a desired program number
and then switching data ready.

3.3 Control system

The previous implementation of the montrac control system used an external
server for sending UDP packets to routers and the source code could not
be recovered. Overall behavior could be described as MES sending the
server a message saying which shuttle should go to which station. The
server would then take care of sending the MDAC messages to routers. The
upgrade to PROFINET-capable routers allowed for the merging of the control
functionality into the PLC together with robot control and the rest of the
functions used, such as power consumption monitoring and OPC-UA access.
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3.4 Communication

Different parts of the line used different communication media and protocols.
The most important part was the OPC-UA communication between the MES
and PLC. A MES schedules the execution of operations in a plant to increase
the efficiency of production while observing the processes and devices to
obtain real-time data. This means that MES has to know the status of
shuttles, robots, and other resources. [17, 18, 19]

Altogether, communication in the line consists of:

. Customer to Enterprise Resource Planning (ERP) – Internet. ERP to MES – Internet or intranet.MES to PLC – OPC-UA. PLC to Routers – MDAC over UDP, PROFINET after upgrade. Routers to Modules – CAN

3.5 Safety

The safety of workers and other people around the line was ensured by Light
Detection And Ranging (LIDAR) scanners or light curtains in open areas and
metal fences with safety doors in others. The controlling PLC had dedicated
safety blocks for handling inputs from these sensors to prevent overwriting
by unauthorized personnel and to ensure safe logic evaluation.
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Chapter 4

Shuttle-oriented control

The base station-oriented control of the montrac line was impractical for the
use cases of Testbed so a new shuttle-oriented control had to be designed.
The digital image of the montrac line was divided into router objects, which
along with their diagnostic and control information contained module objects.
These module objects also contained their own diagnostic data and control
bits. These data blocks were updated to reflect the status of the real line
cyclically via PROFINET communication blocks provided by montratec.
Visual representation of this structure can be seen in 4.1.

Router Object Data Bits

Status

Modules

Info

Command

(a) : Router datastructure

Module Object Data Bits

Status

Info

Command

(b) : Module datastructure

Figure 4.1: Montrac data structures

In each PLC cycle, all modules were iterated through after being updated.
Shuttle data was updated during this process with information about where
the shuttle was last seen and whether the shuttle was in a station or not.
After updating shuttle data, the control logic was handled for each station.
If there was a shuttle present and data ready edge was detected, the validity
of input data was checked before sending the shuttle. This check consisted of
detecting whether only the lock state was changed, whether the target station
name was valid, and other miscellaneous checks regarding the system status.
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4. Shuttle-oriented control ................................
The router objects were handled as instances of the “SRPN Router” Function
Blocks (FBs) and individual modules as instances of the “SRPN Module
SingleIRM” FBs. These library blocks were connected to the line Data
Block (DB), where all router, module, and shuttle data was stored as well as
to the hardware configuration via the tilde (’∼’) notation. An example router
FB can be seen in 4.2 and module FB in 4.4. The shuttles were modeled as a
simple User Data Type (UDT) with inputs and outputs to fit the structure
of their MES counterparts for easier integration. An example can be seen in
4.3.

Figure 4.2: Example of a router Function Block

Figure 4.3: Example of a shuttle UDT
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Figure 4.4: Example of a module Function Block
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Chapter 5

Virtual Commissioning

As mentioned in the introduction, Virtual Commissioning of a line allows
for the design, testing, and validation of software without the need for
additional production downtime. This lowers deployment costs and on-site
time requirements while also allowing for testing new processes and teaching
operators without risking damaging the equipment.

Virtual Commissioning refers to both visually and functionally representative
software simulation of the real line. Achieving this requires creating 3D models
of all objects, adding kinematics to moving objects, simulating hardware
behavior, control logic and Human-Machine Interfaces (HMIs), material
flow, virtual robotic controllers, AGVs, and more. For this specific project,
the virtual commissioning process was proposed as seen in 5.1 and had to
encompass the following:

. Creating a 3D representation of the line (provided by Testbed). Creating kinematics of crossings. Simulating montrac routing, station, and shuttle behavior. Integrating control logic. Simulating robots. Simulating production material flow for an example process. Integrating production requests
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PLCSim

Process Simulate

VRC

OPC Control (MES)

Simulate
hardware

visuals

Render
current
state

Simulate
additional

logic

Simulate
hardware
behavior

Perform
control logic

Provide OPC
control

Provide OPC
control

Simulate real
robot behavior

Send
production
requests

Simulate
material flow

Allow
diagnostic

access

Provide
camera output

Read required
data

Provide
sensor

detection

Figure 5.1: Diagram of proposed Virtual Commissioning
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..................................5.1. Software tools used

5.1 Software tools used

5.1.1 Process Simulate

Process Simulate is a simulation software for industrial automation and
robotics shop floors by Siemens. It allows for simulating physical interactions
between objects, processes such as welding, connecting with simulated PLCs,
simulating material flow, viewing processes in virtual reality, and more. PS
projects are called studies and have two modes of operation – standard and
line simulation. Standard mode allows for easy simulation with predefined
operation within PS and line simulation mode connects the study to a PLC
and allows for event-based simulation.

The main benefits of Process Simulate include the capability to import custom
3D models in the JT format as components, adding Logic Blocks (LBs) and
Structured Control Language (SCL) scripts to any resources present in the
study, connecting to multiple Virtual Robot Controllers (VRCs) and PLCs
at the same time and implementing custom features not found in Process
Simulate itself via Microsoft .NET extensions.

5.1.2 TIA Portal

Totally Integrated Automation (TIA) Portal is a software development suite
that integrates the design of PLC code, hardware configuration, HMIs, and
other features in one place. It supports coding in multiple languages like Lad-
der and SCL, real-time debugging, and much more. Additional information
can be found in [20].

5.1.3 PLCSim Advanced

PLCSim Advanced is a virtual PLC simulator by Siemens. It supports
simulating multiple PLCs of S7-1500, S7-1500R/H, ET 200SP, or ET 200pro
families with either local or Transmission Control Protocol/Internet Protocol
(TCP/IP) access. Additionally, it allows for virtual time scaling, which is
a very useful function for either precise debugging (lower scaling) or quick
automated testing (higher scaling).

5.1.4 KUKA WorkVisual

WorkVisual is an environment for managing, programming, and diagnosing
KUKA robots. WorkVisual also supports non-KUKA kinematic systems to a
certain degree and allows for communication via PROFINET, PROFIBUS,
EtherCAT, EtherNet/IP, DeviceNet, and VARANBUS. [21]

23
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5.1.5 KUKA OfficeLite on Microsoft Hyper-V

In order to use multiple KUKA.OfficeLite VRCs at the same time as required
by the simulation, Microsoft Hyper-V hardware virtualization platform was
used. This platform allows for virtualizing multiple operating systems, hard
drives, switches, and other devices on one host system. The advantage of
using KUKA.OfficeLite VRCs is that they behave the same way the real
controllers do, so any programs created can be transferred straight to real
robots after being tested virtually. [22, 23]

5.2 Implementation

5.2.1 Creating a Simulation Study

The base model for the assembly line was provided by Testbed, which made
the process of creating the VC significantly shorter. The study contained the
montrac conveyor system without kinematics, robot fixtures, robot tables,
tool racks, and grippers without kinematics. The study can be seen in 5.2.

Figure 5.2: Base study
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................................... 5.2. Implementation

5.2.2 Adding kinematics to the virtual line

To visualize the process of crossings changing routes, kinematics had to be
added to their models. This was done in PS via the kinematics control menu
as seen in 5.3 and 5.4. To be able to change these routes from a PLC, a
logic block was added to each crossing with input selectRoute and output
currentRoute. The inner logic consists of move pose action, as seen in 5.5,
and joint value sensor, as seen in 5.6, for each route possible. Since the
crossing can only be in one position at a time and the joint angle distance
between each position is sufficient for the joint value sensor to not falsely
trigger, the actual route output can be easily calculated by multiplying each
sensor output by a distinct value. This can be seen in 5.7. This approach
allows for easy implementation of any routing setup possible.

Figure 5.3: Setup of route 1 as HOME pose for crossing MA141
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Figure 5.4: Setup of route 2 as additional pose for crossing MA141

Figure 5.5: Route control actions for crossing MA141

Figure 5.6: Joint value sensors for crossing MA141
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................................... 5.2. Implementation

Figure 5.7: Calculation of current route for crossing MA141

5.2.3 Modeling shuttles as Autonomous Guided Vehicles

To create shuttles that can move on the conveyor rails, Autonomous Guided
Vehicles (AGVs) were used. AGVs in PS can have custom 3D models as their
visual representation and support kinematics and interactions with other
objects, such as gripping in this case. The shuttle model with its gripping
area, which is normally invisible during simulation, can be seen in 5.8.

Figure 5.8: Model of the shuttle AGV with gripping area (light blue)

AGVs move between targets based on numeric identifiers. If an object is set
as AGV carpet using the “Create AGV Carpet” button, AGVs only move
on it when they can. This allows for limiting movement area as desired.
The carpet in this study was modeled as wires laid on top of the montrac
rail to make the shuttles move the same way they do on the real line. Two
possible unintuitive behaviors of the AGV carpet were observed. First was
that every time the Line Simulation mode was exited and re-entered, such
as when quickly switching to Standard mode to change the part setup, the
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carpet object was reset and had to be defined again. The second was that
upon simulation start and whenever shuttles had their targets changed, they
did not resume their routing on the carpet unless they were at a point where
two individual wires connected and instead first returned to the closest such
point. These had to be kept in mind while setting up the carpet and targets.

The control logic is represented by a Logic Block which gets automatically
created when an object is designated as a AGV. The movement of AGVs is
defined by their target, movement speed, motion planner type, path planner
type, rotation method and control signals such as emergency stop and auto
acquire. Each AGV also has an ID and provides several outputs, for example,
the ID of the currently acquired target, actual speed, and whether the AGV
is busy. The base AGV object had itsLB interface extended to allow for
signal-based gripping of objects above it and additionally defined as a gripper
to allow for this behavior. This extended interface can be seen in 5.9.

Figure 5.9: Extended interface of a shuttle

Each station is represented by one target and crossings have a target on
each of their inlinks. These targets were color-coded for easier recognition
at first glance. Stations used orange circular targets as seen in 5.10a and all
other targets were grey circles, as seen in 5.10b. Since shuttles can only move
in one direction on the real line and AGVs move between two targets via
the shortest path available, additional targets to enforce the travel direction
were added. For easier recognition at first glance, targets had a numbering
system implemented. Stations have their target IDs represented with up to
3 digits the same way they are numbered. Crossing inlink targets take the
3-digit crossing identifier and add a digit in front of it based on the inlink ID.
For example, inlink 1 of crossing MA123 has identifier 1123 and inlink 2 of
crossing MA146 has identifier 2146. Targets added to enforce travel direction
have 4-digit identifiers starting with the number 9. Having customized IDs
also meant that each target had to be saved as a new component because
multiple instances of a component share the same values for constants.
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(a) : Example of a station target (b) : Example of a generic target

Figure 5.10: AGV targets

The shuttle slowdown behavior when approaching an object was simplified
only to the full stop when within 13 cm. This was implemented by attaching a
proximity sensor to the front of each shuttle and appropriately configuring the
sensing range and detection list. This sensor can be seen in 5.11. Attention
should be paid to how proximity sensors work in PS because they sense in all
directions and thus detect objects even to the sides and behind. This was
not a major problem in this case because the rails were always far enough
from each other but the stops on crossings had to be put far enough.

Figure 5.11: Sensor body (blue) on a shuttle
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5.2.4 Adding kinematics to robots and grippers

When robots were added to the study, their 3D models were downloaded
from the KUKA Download Center with already defined kinematics [24]. The
grippers present in the study did not have kinematics yet and had to be
implemented manually. This was done using the kinematics editor in PS by
first defining individual parts of the gripper as separate links connected by
prismatic joints as seen in 5.12 and then defining an “Open” and “Closed”
poses as seen in 5.13.

Figure 5.12: Gripper links definition
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(a) : Open pose (b) : Closed pose

Figure 5.13: Gripper poses

5.2.5 Simulating conveyor components

In the process of simulating montrac hardware, modules were first generalized
into crossings and stations. The behavior of these module types was then
described with a state diagram to make implementation easier. The diagram
for crossings can be seen in 5.14 and for stations in 5.15. Both diagrams were
then converted into Finite-State Machines (FSMs) and implemented in the
PLC. All modules also had to be parameterized to reflect the real setup.

When converting the crossing behavior into an FSM, the stage of route
resolving was the most complex to implement. This was because routing
tables had to be searched through correctly and handling results was also a
multi-step process. Implementing table searching to be efficient was crucial
as this process looped through and compared hundreds of entries and could
cause a significant slowdown of the simulation when scaled to the whole line.
This was done by tightly following the real hardware behavior described in
3.1.3, specifically considering routing resolved as soon as a match is found
and stopping the search. Invalid table entries were also made to be identified
before the data comparison started to avoid wasting computation resources.

Stations also used route resolving when deciding whether the shuttle that
just arrived there should stop or be sent off again.
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Figure 5.14: Diagram of physical crossing behavior
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Figure 5.15: Diagram of physical station behavior

5.2.6 Connecting Process Simulate with a virtual PLC

PS study and the simulated PLC are both separate environments that had to
be connected. This was done using the tag system and a self-made Python
script for automatically generating both sides of this connection quickly.

In the PLC, tags are specified in tables and assigned addresses. An example
can be seen in 5.16. These tags can then be used in the program and either
read from or written to. It is common not to work directly with the tags but
to rewrite their content to user DBs and work with those. Tag definitions
can be imported from a specially formatted Excel workbook.

On the PS side, tags are connected to the inputs and outputs of resources.
These tags can then be controlled from within PS or connected to a PLC.
When connecting tags to a PLC a connection has to first be set up and then
each tag has to be set to “PLC Connected”, assigned a connection and an
address corresponding to the one in the PLC. An example of these tags can
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Figure 5.16: An example section of the PLC tag table

be seen in 5.17. Tag definitions can also be imported from an Excel workbook
with a different format.

Figure 5.17: An example section of the PS tags

Setting up the tags and DB updates is simple but can be time-consuming
with a large number of tags and mistakes can happen. A common mistake is
using overlapping addresses for tags with larger data types which can lead
to unexpected behavior. To avoid these issues, a Python script was written.
This script takes shuttle count, crossing name list, station name list, and
passthrough waypoint name list as inputs and automatically generates all 3
parts of the connection – the TIA portal tag Excel workbook (ex. 5.18), the
PS Excel workbook (ex. 5.19), and TIA portal DB assignment SCL code.

Figure 5.18: Example section of the generated TIA workbook
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Figure 5.19: Example section of the generated PS workbook

The script allowed for generating multiple tag targets at the same time. In
this case Process Simulate and TIA Portal. After defining tag templates and
file headers, the individual tags could be generated in loops by using indexes
or looping through lists. A pseudocode example for generating shuttle tags
can be seen in 5.1.

1 # AddSw takes swType , typeStr , addrOffset , ioDest and ioFormat
2 typeBool = TagType ()
3 typeBool .AddSw( SWType .TIA , "Bool", 0.1, "", r" %{0}{1}{2:.1 f}")
4 typeBool .AddSw( SWType .PS , "BOOL", 0.1, "", r" {0}{1}{2:.1 f}")
5
6 typeInt = TagType ()
7 typeInt .AddSw( SWType .TIA , "Int", 2, "W")
8 typeInt .AddSw( SWType .PS , "INT", 2, "", r" {0}{1}{2: d}")
9

10 typeReal = TagType ()
11 typeReal .AddSw( SWType .TIA , "Real", 4, "D")
12 typeReal .AddSw( SWType .PS , "REAL", 4, "", r" {0}{1}{2: d}")
13
14 typeDword = TagType ()
15 typeDword .AddSw( SWType .TIA , "DWord", 4, "D")
16 typeDword .AddSw( SWType .PS , "DWORD", 4, "", r" {0}{1}{2: d}")
17
18 addrI = 1000
19 addrQ = 1000
20
21 tags = [
22 [typeBool , "Trace", "Q"],
23 [typeBool , " AutoAcquire ", "Q"],
24 [typeBool , " PauseShuttle ", "Q"],
25 [typeInt , " TargetIndex ", "Q"],
26 [typeReal , "Speed", "Q"],
27
28 [typeBool , " DataReady ", "I"],
29 [typeBool , " LockTarget ", "I"],
30 [typeBool , " OnTarget ", "I"],
31 [typeBool , " Sensor ", "I"],
32 [typeBool , " RoundTrip ", "I"],
33 [typeInt , " Acquired ", "I"],
34 [typeDword , " ManualTarget ", "I"],
35 ]
36
37 for shuttleId in range (1, 7):
38 for tag in tags:
39 ... # Perform assignments as defined by user

Listing 5.1: Part of tag autogeneration pseudocode
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5.2.7 PLC code imlementation

As mentioned in sections 5.2.5 and 5.2.6, the PLC had to simulate the mon-
trac hardware and exchange data with Process Simulate. Besides these
functions, the PLC also had to communicate with MES via OPC-UA, pro-
vide utility functions that the hardware simulation built on top of, and
facilitate unit testing. These utility functions were mostly simple lookups
of objects based on various parameters, such as GetShuttleIndexByAddr,
GetStationAddrByName, or GetStationIndexByPSID. An exception was
the SearchCrossingTables function which was a composite function imple-
menting the crossing table lookup behaviour for routing inbound shuttles.
This used four sub-functions for searching the Chaos and Control tables for
shuttle ID and target addresses respectively. This modularity allowed for the
re-use of the table lookup functions in stations, where the behavior was much
simpler than in crossings but used the same principles.

The code consisted of the setup part, as seen in 5.20, and the main loop, as
seen in 5.21. The MES OPC-UA access was solved by creating an interface
to the required parameters in Data Blocks.

Set default values and
reset connection

validity

Perform initial DB
update regardless of
connection validity

Yes

No
Unit tests enabled?

Run unit tests Done

Figure 5.20: Diagram of PLC setup phase
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Validate PS connection Perform direct writes

Yes No
PS Connection valid?Update DBs

Process Shuttles Process Crossings

Process StationsProcess Interstops

Figure 5.21: Diagram of the main PLC loop

5.2.8 Basic robotic operations

The task to be simulated was dynamically taking apart a battery based on the
color of slotted modules to simulate their state. A green module represented
a re-usable part without damage and a red module represented a part that
was somehow damaged and not fit for immediate use. An example of a real
testing battery can be seen in 5.22 and the virtual counterpart (in a different
configuration) in 5.23. After the battery was initially loaded onto a shuttle in
the manually operated station S200, the battery lid was removed in station
S23 using robot R3. Next, the battery was sent under the detection camera
at S300, where a photo of the battery was taken and module recognition
was performed. After that, the battery was sent to station S12 for module
disassembly by robots R1 and R2, finishing the process.
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Figure 5.22: Example testing battery – reality

Figure 5.23: Example testing battery – simulation

The first step in creating robotic programs was testing basic robotic operations
in PS using the standard simulation mode and internal robot controllers called
Motion Planner (MOP). These operations were:.Mounting a tool from the rack. Unmounting a tool into the rack. Picking a module from the battery. Placing a module onto the tray

Every operation was divided into the following locations: Home, Approach,
PreAct, Act, PostAct, Depart, and End. These locations were chosen in order
to make the motion smooth and safe. All four operations had Offline Pro-
gramming (OLP) commands assigned to the Act location. These commands
are specific for each robot controller and most of the commands available
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in PS are only for the purpose of simulating robot actions using the MOP
controller. Each location had several parameters associated with it. The ones
used in this thesis are as follows:

. Robot configuration – Consisted of “Status” and “Turn” to define in
which configuration the robot should arrive at the location.Tool Nr – What tool offset should be used when determining the location. Reference base – In what base should the coordinates be saved (adds the
ability to calibrate parts of trajectories).Motion type – Point to Point (PTP), Linear (LIN), and others. PTP is
the most efficient and usually fastest motion type possible but does not
guarantee what trajectory the robot will take. LIN is less efficient but
guarantees the path to be a linear interpolation of the two locations and
can have the speed specified in meters per second.. Speed – What percentage of maximum speed or what exact speed should
the robot move to this location at. Zone – How far the robot can be from the exact location while still
counting as reaching it, specified as a radius of a sphere around the
location.

The Tool Nr and Reference Base options required defining tools and bases
for the robot. This was done using the “Base and Tool Setup” in the “Robot
Setup” menu as seen in 5.24.

Figure 5.24: Robot setup example

An example operation flow can be seen in 5.25. This operation represents
picking a module from the battery after a shuttle with the lid removed has
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arrived at the station. The Start and End operations represent the home
position of the robot. Approach and Depart are located 13 cm above the
primary Act location for safe traversal of the robotic workspace. Having
approached above the target, PreAct and PostAct locations allow for saving
time by moving at a greater speed than what is safe for finally picking the
target at the Act location.

Figure 5.25: Example robot operation – pick from battery

The Accuracy and Tool Nr options were explicitly set to be identical in all
locations. The Config option was only set explicitly on the Start and End
locations, being implicitly defined for the rest. This was possible because
the simulation correctly processed robot motion with joint configurations in
mind, making accidental re-configuration during the operation observable
when testing. The Base Nr option was set to Station Table for the Start
and End operations and Battery_S12 for the rest. This allowed for separate
calibration of the home position and battery position bases in reality.

Motion, Speed, and Zone options were the most important for the correct
execution of the planned path, and extra attention was paid to their design.
When moving in a space where there could be objects and robot movement
had to be deterministic, the LIN motion was used. In free space, the faster
but non-deterministic PTP motion was used. Specifically in this operation,
the robot moved to Start and Approach using PTP, then through PreAct to
Lin and back through PostAct to Depart using LIN and finally back home to
End using PTP again. The distance traversed using PTP and speed during
the whole operation were maximized without compromising safety to make
the final process more time-efficient. The Zone option also contributed to
the time saved by essentially allowing the robot to “eyeball” the movement
and only get within 5 mm of the Start, Approach, Depart, and End locations
before continuing to the next. This option can cause unintended behavior,
especially in cases where there are multiple co-linear locations, and should be
tested before implementing it.

After picking a module, the robots would continue with the Place operation
and put modules on the trays in their workspaces.
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5.2.9 Implementing VRCs

The first step to implement Virtual Robot Controllers (VRCs) was preparing
the environment. This meant setting up three virtual machines to run
the controllers, adding sensors to facilitate the behavior of simulation OLP
commands, and creating interfaces to control the VRCs. The virtual machines
running virtual robotic controllers were set up in Hyper-V by doing the installs
and generic configuration on one instance and then cloning it two times before
proceeding with station-specific configuration.

With the transition from MOP controllers to VRCs, simulation OLP com-
mands no longer worked. This meant that gripping, releasing, mounting,
and unmounting had to be done programmatically via signals. Gripping and
releasing functionality was already present in PS using Logic Blocks added
to the grippers themselves. The mounting and unmounting functionality was
not available during Line Operation runtime and had to be implemented
externally as further discussed in section 5.2.10. The triggers for mounting
and unmounting tools were added as direct write to robotic signals in the
KUKA Robot Language (KRL) scripts, whereas the gripper triggers were
implemented via proximity sensors in PS. These sensors for gripping and
releasing were located in the gripper heads and placement trays respectively.

These mounting signals could be seen as an interface from VRCs to PS. In
order to control the robots and thus create an interface from the outside, the
VRC OPC-UA servers were used. The robot operations developed earlier were
exported from PS and downloaded to the VRCs as individual programs using
KUKA WorkVisual. To allow the starting of these programs via OPC-UA in
a controlled manner, a new script was written in KRL. This script waited for
a rising edge in ProgramReady and then started the corresponding program
based on the provided ProgramNumber, waited for it to finish and unless
an error had occurred went back to waiting for ProgramReady again. This
behavior can be seen in diagram 5.26. The .dat files of the main script
and programs that required runtime updates were exposed to the OPC-UA
interface by setting them as “Public” in their headers.

The tool mounting and unmounting programs did not require runtime updates
in this case since each robot only had one tool available. Although even if
they had more than one tool, using separate programs could still be favorable
as each tool-robot set had a dedicated mounting signal. This would result in
the need for dynamically changing which output signals are written to and
such overhead would not outweigh the simplicity of adding new programs for
each tool. In contrast, the programs for picking and placing battery modules
were implemented as parametrized instances because there are many possible
locations for modules, and managing tens of programs would not be feasible.

After downloading a program to the robot, the process of integrating it
with the main script was the following. The program was added to a new
program selector branch with a (unique) program number as seen in 5.27.
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Wait for ProgramReady
rising edge

No

Yes

Command result OK?

No

Yes

Program with selected
number defined?

Set Program Running
to true and run program

Write error identifier to
output and wait for user

acknowledge

Set Program Running
to false

Initialize program

Figure 5.26: Diagram of a robot program cycle

The program’s .dat file was set to public as required and if that included
OPC-UA access to any position variables, those had to be changed from
the E6POS type to the POS type because there was a bug in the KUKA
OPC-UA implementation at the time. This bug caused the A parameter of
E6POS type to not be writable from OPC-UA and default to zero. Additional
commands for robot signals or other OLP commands were added to the .src
file as necessary. For the programs used in these robots. only the tool grip
and release robot output signals were toggled in the corresponding places.
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Figure 5.27: Example of the robot program selector

5.2.10 Extending Process Simulate

At the time of creating the Virtual Commissioning, PS was missing some
functions that were required for correct simulation. Namely, these were
creating snapshots (saving images) from cameras automatically during runtime
and mounting and unmounting tools during line operation mode with virtual
robotic controllers. To get this functionality, the PS support for Microsoft
.NET extensions was made use of. An extension was created using the
provided Tecnomatix.dll library and required registration to PS via the
CommandReg executable provided [25, 26]. This extension included three
functions that could be called with buttons from the control ribbon as shown
in 5.28.

Figure 5.28: Montrac extension ribbon bar

The first function allowed a camera to be bound to a signal and when that
signal’s integer value changed from zero to a positive number, a snapshot
from that camera would be saved next to the project file. Attaching a camera

43



5. Virtual Commissioning.................................
to a signal using this function opens a new graphics viewer for that camera
if it does not exist yet. Whenever a new snapshot is taken, it uses the
current configuration of the camera and focuses the graphics viewer unless
the “Tabbed” viewers mode is selected. An example snapshot can be seen in
5.29.

Figure 5.29: Camera snapshot example

The second function required a selection of one robot, one frame, and one
gripper. In turn, it would create two robotic signals, one for mounting and the
other for unmounting said gripper at any time, even during line simulation
runtime. The selected gripper also had to be defined in the relevant robot’s
toolbox under the name of its model component. If the operation could not be
finished for any reason, the user would get an error message explaining what
went wrong. An example of binding gripper “R1_PGN_plusP_64_assembly”
to robot R1 at frame “DATUM_CSYS(1)” can be seen in 5.30 and the
resulting signals in 5.31.

The last function would save time by automatically assigning the first object
called "AGV_CARPET" as the AGV carpet when switching to line simulation
mode, which would have to be done manually otherwise.
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Figure 5.30: Gripper binding setup

Figure 5.31: Gripper mounting signals

5.2.11 Communication

To allow control from MES and other possible clients, control via OPC-UA
was implemented alongside control from PS. Only one of these input methods
can be used at once but outputs are always sent to the OPC-UA interface.
The interface was created using Siome and gives access to shuttles and robots.
To simulate MES without the need for it to be deployed a Python script
that mimics the way MES interacts with montrac was written. This script
also allowed for automated testing of shuttles, robotic operations, and a full
sample production process. This means that integrating the real MES is
trivial by simply connecting it to the same interface. The script was based
on a OPC-UA shuttle sender randomizer by Petr Douda.

The diagram 5.32 was created to help visualize the communication happening.
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Process Simulate

PLCSim

Python (MES) Robot R1

Robot R2

Robot R3

Legend

----- OPC Exchange

----- PS-VRC Link

----- PS-PLC Tag exchange

Figure 5.32: Diagram of communication channels

5.3 Overview

Considering the number of individual components and interconnected behavior
present, this section provides a reference overview for them.

The final PS study can be seen in 5.33 and consisted of the following objects:

.Montrac conveyor system:. Rail segments. Crossings with kinematics, which connected a specific route based
on the request on their logic block input and outputted the current
route.. Stop targets, which represented either a station, crossing inlink, or
an inter-stop for fine-tuning shuttle paths.. AGV-based shuttles, which allowed for the gripping of objects
above them in order to transport them and were controlled via
Logic Blocks. Each shuttle also had a proximity sensor to prevent
collisions..Wire-based AGV carpet which shuttles moved on. Support structure. Robot R1, R2 and R3, each with:.Mounting fixture.Tool changer.Tool rack
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.Gripper with a pickup senor and a logic block, which handled
gripping and releasing objects based on the inputs.Workspace table.Module storage trays for R1 and R2, which contained sensors on each

position and a logic block that triggered its output when a new part was
placed in any position. Robot R20 with:.Mounting fixture.Tool changer.Tool rack. Camera above station S300, which took pictures of shuttles in the station
and was used for module detection. Logic block “Bit Flipper” to allow detection of running simulation by
the PLC. Switchboards

In addition to the objects, the ability to automatically take snapshots with
cameras and the ability to mount or unmount tools based on robotic signals
was present from the extension developed in 5.2.10.

The PLC implementation details can be seen in section 5.2.7. The code
consisted of several utility functions and the following main modules:

. Process Simulate connection setup. Unit tests. Direct writes between OPC-UA and PS. Updating Data Blocks. Processing shuttles (control logic). Processing crossings (FSM). Processing stations (FSM). Processing interstops
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Figure 5.33: Process Simulate study image
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Chapter 6

Experiments

6.1 Testing conveyor line

6.1.1 Table lookup

Before testing the table lookup itself, the function for discarding entries in
control tables was tested first. This consisted of testing both valid and invalid
indices of an empty table and tables with various data arrangements to cover
most possible scenarios. Next, table lookup was tested with only the control
table having entries, only the chaos table having entries and both tables
having entries. These tests were done purely in TIA Portal.

6.1.2 Crossing and station objects

Having tested the table lookup functionality, the crossings and stations could
be tested. Each type of crossing was tested in simulation with shuttles being
routed based on their routing tables. Both visual and functional correctness
were verified.

6.1.3 Operation

After testing stations and individual types of crossings, the full conveyor
system was tested using the Python script from 5.2.11 extended to send
shuttles to random stations and verify that they arrived at the correct station
on time. This script allowed for semi-automatic testing where no manual
input was required unless an error had happened.
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6.2 Testing robotic workplaces

6.2.1 Operations in standard mode

The behavior of both individual mount, pick, place, and unmount operations
as well as their compound operation was tested. Attention was especially
paid to safe picking and placing, meaning proper speed when close to the
objects, correct gripping positions, and not changing the robot configuration
during the motion.

6.2.2 Operations in line simulation with Virtual Robot
Controllers

The VRC line simulation was tested to make sure that each robot performed its
assigned operations correctly. This included correct tool and base definitions,
correct behavior when starting and performing programs, and proper OPC-UA
access.

6.3 Flexible line operation

Lastly, the whole line was tested on a sample production cycle consisting of
loading a battery module, removing the lid, detecting two module types, and
picking the modules from the battery based on their type. This process was
performed using the MES substitution script which should behave the same
way a real MES would. This test was recorded as proof of correct behavior
and the video can also be found in the attachments. A link to the whole
project on GitHub with access limited to Testbed members is also in the
attachments.

The battery module detection part of the MES substitution script was based
on a version by Martin Jílek, thresholding the image in Hue-Saturation-
Value (HSV)-spectrum and detecting continuous shapes using OpenCV2 [27].
The modules were then either identified as “OK” or “NOK” based on their
color and their positions were discretized to represent which battery slots
they were in. For example, the snapshotted module configuration in 5.29
would be detected as visualised in 6.1, returning the following values:

1 modulesOk = [(1 ,0) , (1 ,1) , (2 ,1)]
2 modulesNok = [(2 ,0) , (0 ,1)]

A real robot picking a module detected as “OK” can be seen in 6.2.
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Figure 6.1: Detection result

Figure 6.2: Real robot picking a detected module
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Chapter 7

Conclusion

The Virtual Commissioning accurately replicated the physical behavior of
the production line, including the movement and interaction of shuttles and
robots. This fidelity is crucial for validating control logic and ensuring that
the virtual model can be relied upon for system design and testing. The inte-
gration of VRCs allowed for control of robotic operations within the simulated
environment. This integration ensured that the robots performed their tasks
like picking and placing modules correctly. The VC also demonstrated the flex-
ibility of the production line to adapt to changes in production requirements.
The ability to simulate different configurations and operational conditions
without disrupting the actual production line is a significant advantage. The
virtual environment facilitated testing of the PLC code, robotic programs,
and overall system integration. Issues that might have gone unnoticed in a
physical setup were identified and addressed in the simulation, ensuring a
smoother deployment process.

While the VC achieved its primary objectives, several areas for potential
improvement were identified. The VRC gripping mechanism could be changed
from sensor-based to robot-signal-based gripping, enhancing the reliability
of robotic operations. Automating the generation of robot signal operations
during the export process would also be possible, potentially using free-text
OLP to streamline this transition. The user interface could be improved for
configuring and monitoring the VC, making the system more accessible to
operators and engineers. This includes better visualization tools and more
intuitive controls for managing the simulation. A big step towards creating
a full Digital Twin would be incorporating real-time data from the physical
production line into the VC, enhancing the simulations.

The successful implementation of a Virtual Commissioning process for a
robotic flexible line with a montrac conveyor system demonstrates the signifi-
cant benefits of digital twin technology in manufacturing. The VC provided
a platform for testing and optimizing the production line, especially the MES.
By addressing the identified areas for improvement, future work can further
enhance the capabilities of Virtual Commissioning and simplify the process.
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