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Abstrakt / Abstract

Vzhledem k rozvoji kvantových počí-
tačů se běžné metody používané v po-
čítačové kryptografii, jako je RSA, stá-
vají zranitelnými a potenciálně nebez-
pečnými k dalšímu používání. Kvantová
distribuce klíčů (QKD) je alternativním
přístupem ke kryptografii. Namísto asy-
metrické kryptografie se zaměřuje na ná-
hodné šifrovací klíče neodhalitelné pro
třetí stranu, která by chtěla komunikaci
zachytit.

Tato bakalářská práce se zaměřuje
na realizaci kvantové distribuce klíčů
ve větším měřítku. Cílem práce je na-
vrhnout a vytvořit proof of concept
kvantové distribuční sítě klíčů.

V rámci přípravy implementace jsem
prošel existující specifikace k tématu a
definoval nutné komponenty ke správ-
nému chodu sítě.

Závěrečná část mé práce je implemen-
tace s demonstrací základních principů
a funkcionalit souvisejících s kvantovou
distribucí klíčů.

Klíčová slova: Distribuce kvantového
klíče, Software-defined networking,
Java, Spring Boot, REST,

In the face of the development of
quantum computers, common methods
used in computer cryptography, like
RSA, are becoming vulnerable and
potentially not safe to use anymore.

Quantum key distribution (QKD) is
an alternative approach to computer
cryptography, where rather than focus
on asymmetric cryptography, attention
is turned to random key generation for
symmetric cryptography, which should
be more resilient against eavesdropping.

My thesis focuses on enabling Quan-
tum key distribution on a larger scale.
The thesis aims to design and create a
proof of concept of the Quantum key
distribution network.

To achieve this, I reviewed numer-
ous existing specifications related to
the topic and designed the interactions
and security measures for the system
components.

The final part of my thesis is an im-
plementation with a demonstration of
the basic principles and functionalities
related to the quantum key distribution.

Keywords: Quantum key distribu-
tion, Software-defined networking, Java,
Spring Boot, REST,
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Chapter 1
Introduction

The main aim of this work is the implementation of the key management system for the
quantum key cryptography network. Quantum key distribution is now a popular topic,
and it is constantly developing and becoming more used in industries where security is
crucial.

There are already existing commercial vendors of the Quantum key distribution hard-
ware that provide software solutions for the Quantum key distribution network. These
solutions are often the trade secret of the producers, so we cannot simply see how their
solution is implemented. This is a problem, for example, for system security certi-
fication because one can’t trust the solution and does not know many details about
implementation.

Hence, the main goal of my thesis is to develop a working prototype of a Quantum
key cryptography Key management system. To achieve this goal, I followed these steps:

1. Gather a complete set of functional requirements for the QKD network.
2. Select the most suitable architecture for the QKD network.
3. Select the software components that will be part of the QKD network.
4. Design the core software components of the QKD network following existing specifi-

cations and industry standards.
5. Implement the proof of concept with the system’s key components working together.

1.1 Aims of the thesis
The main tasks are related to the design and implementation of the QKD network and
are defined by the following requirements (references to the corresponding sections
with solutions are provided):
1. Establishing connections to QKD modules using ETSI protocols.
2. Managing keys locally.
3. Generating keys through trusted nodes.
4. Creating a web interface to control key generation.
5. Enabling key relay to third-party applications.

1.2 Why is the Quantum key distribution developed
and used?

Quantum Key Distribution (QKD) is a solution to the threat that quantum com-
puters pose to asymmetric cryptography. We can simplify the problem by stating
that a quantum computer could compute the private key from the public key in real
time. By this, the third party could decrypt intercepted communication encrypted
by asymmetric cryptography like RSA.

1



1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
RSA is based on the idea that the factorization of a large integer, which is a

product of two large prime numbers, is very difficult and practically impossible within
a reasonable time frame. As a result, asymmetric ciphers like RSA depend on the
impracticality of determining the original prime numbers from the public key.

The development of quantum computers could threaten this. A well-known quan-
tum algorithm is the Shor’s algorithm. It was created by Peter Shor in 1994 as an
example of an algorithm that could break the RSA [1]. However, to this day, it has
not been proven on a large integer.

Two possible solutions to this threat are now considered [2]:

. Post-quantum cryptography - Development of algorithms focused on being resistant
against quantum computers and related algorithms.

. Quantum key distribution - Method focused on the randomness of the key and
maximizing the disability to derive the key by brute force attack.

1.3 Basics of Quantum key distribution

Quantum cryptography uses the laws of quantum physics to provide the highest
possible level of security. The quantum cryptography addressed here is based on
the superposition of quantum states and the probability of measuring certain states.
The underlying fact is that by observing a particle, we cannot always find its original
state. Moreover, the states are disturbed by the measurement itself, and with this
knowledge, we can detect if a third party eavesdropped or intercepted the key.

My thesis focuses on the Quantum key distribution technology. As stated in its
name, it provides secure generation of the key rather than encrypting the data, which
must be sent secretly. When we use Quantum key distribution, we ensure that both
sides get a random key that is not eavesdropped by a third party. The encryption
of the secure communication is then the responsibility of the client side, typically
comprising of the symmetric cryptosystem, e. g. Advanced Encryption Standard
(AES), for secure data encryption.

The first protocol for Quantum key distribution was BB84, which was created in
1984 by Charles H. Bennett and Gilles Brassard [3]. This protocol encodes logical
bits into a sequence of photons, which are polarized in 4 directions (two polarization
states within one measurement basis) and sent from one module to another. The
receiving module then attempts to measure bases of polarized photons and exchanges
data about measurement bases using a public channel (not the sequence of photons
itself). The random key, which is available for applications and enables data relay, is
composed of the photons where both QKD modules agree on the basis.

2



. . . . . . . . . . . . . . . . . . . . . . . . . 1.4 Introduction to Quantum key distribution networks

Figure 1.1. Example of a QKD module, which is sold by company ID Quantique [4].
I would like to introduce a few essential terms for quantum key distribution.

Definition 1.1. QKD module — The Hardware module runs the QKD protocol con-
nected to another QKD module. These modules exchange the keys using the QKD
protocol.

Definition 1.2. QKD link — Connection of two QKD modules, which are connected
and exchange the keys between themselves.
Definition 1.3. Random key — Truly random key generated by the QKD modules
using the QKD protocol.

1.4 Introduction to Quantum key distribution
networks

3



1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Figure 1.2. Scheme of quantum key distribution network [5].

One downside of the quantum key distribution is the limited distance on which the
quantum link can operate correctly [6]. To fix this issue and enable the generation
of the random key for longer distances, it is necessary to make a setup consisting of
more quantum links.

However, because the quantum link always consists of a pair of QKD modules, it
is necessary to combine multiple quantum links when generating a key between two
modules that are not directly connected by a quantum link. This operation happens
in a place called a trusted node. A trusted node has a secure environment to exchange
keys between modules without any security risks that a standard connection would
pose.
Definition 1.4. Trusted node — Secure location, where one or more QKD modules
are located. It also serves as the start or end point of the whole key relay operation.
Definition 1.5. QKD network — Combination of connected trusted nodes by QKD
link

A trusted node needs to store the received keys before they are sent to another
trusted node. It is also necessary for the trusted node to have information about the
routing of the keys. The component of the trusted node responsible for this is called
a Key management system.
Definition 1.6. Key management system — Component of the trusted node respon-
sible for storing and forwarding random keys.

Random keys are fetched from the trusted nodes by the clients. The clients always
exist in pairs; one fetches the key from the start node and the other from the end
node. The encryption of the data is the client’s responsibility. The QKD network is
responsible for delivering the secure random keys only.
Definition 1.7. QKD secured application — Entity connected to the trusted node,
fetching the random keys from the QKD network.
Definition 1.8. QKD application session — Combination of two QKD secured appli-
cationsthat want to fetch the same random keys from the QKD network.

4



Chapter 2
Requirements for the QKD network

The first step of creating a functional QKD network is to establish the requirements
for the design phase of development. These requirements should consider the needs
of the clients, represented by the QKD-secured applications, which consume the keys
from the network, as well as the operational aspects of the network. The network
needs to have the key generation running, correctly handle error states, and notify
about them. [7].

2.1 Functionalities
The basic functionality of the QKD network is to connect two QKD-secured applica-
tions and supply both with single-use keys. The keys should be transferred without
interception. If intercepted, the affected part is excluded from the key. If the in-
tercepted part is too significant, the generation is considered unsuccessful, and both
sides acknowledge that.

2.1.1 Requirement: Identification of QKD-Secured Applications
The network must be able to identify and authenticate QKD-secured applications to
ensure their identity is accurately verified. Each QKD-secured application must have
a unique identifier within the network to facilitate this identification and authenti-
cation process.

2.1.2 Requirement: Network Registration and Monitoring
Requirements for Trusted Nodes in QKD Networks

The trusted node must be registered within the network and provide information
about connections to other trusted nodes. The trusted node must be able to notify the
network about closed or malfunctioning connections between the node and the other
nodes. The trusted node must also inform the network about its own malfunctions or
any malfunction inits QKD modules. Additional information, e.g., the relay capacity
of the node, the bandwidth, and the availability of keys within the node, should also
be provided to the network.

2.1.3 Requirement: Creation of key exchange session for the
key relay

The network must be able to provide a key exchange session for two QKD-secured
applications connected to different trusted nodes. These two applications must be
verified, as mentioned in the first requirement. Session creation includes finding
a path within the network and notifying all trusted nodes within the path about
creating the new session. In case of an error occurring in some of the nodes, the
route must be replanned, or the applications on both sides must be notified about
the unavailability of the desired session. The session must also be correctly closed,
and all nodes along the path must be informed to increase capacity.

5



2. Requirements for the QKD network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.1.4 Requirement: Production of key on demand

When a QKD application requests to supply the key for both sides of an open session,
the key must be fetched from a QKD module, or a new key has to be generated using
the single-use key generator. Then, the key has to be transmitted to the trusted
node connected to the other QKD-secured application. If there is a problem during
the transfer, a new key can be resent via a new route, or both applications must be
notified that the key relay is unavailable.

2.2 Security requirements
Due to the highly secure nature of the QKD, we need to ensure that the network
is protected from any interference. Security must also be ensured for the hardware,
which is composed mainly of QKD modules, servers providing the network control,
and the software running inside the servers, acting as a network control layer [5].. Physical security - The hardware must be located in secured locations with re-

stricted access for authorized personnel only to protect unauthorized access to
network equipment.. Security of deployed services - All running services should be locked inside con-
tainers to restrict access to their interfaces. All secrets or certificates of confidential
character should be located inside an external key store, to which the service will
connect on startup.. Security of communication between services - All control layer communication
between the services is vulnerable and needs to be secured. Also, the author
of the message must always be verified to prevent false communication towards
any network component. Another critical point is the transfer of the random key
between the trusted node and the QKD-secured application. The safest option
for this is a physical connection within a secured location. Still, the possibility
of sending the key through a public channel with appropriate encryption must be
considered.
The purpose of the quantum key distribution is to replace asymmetric cryptogra-

phy. Therefore, we need to use single-use keys for communication.

2.2.1 Fulfilling of base IT security principles

The so-called CIA triad, consisting of confidentiality, integrity, and availability, is
one of the basic cryptography models [8].. Confidentiality - All data should be available for authorized entities only. The de-

crypted data should be inaccessible to others. The network must supply keys only
to secured applications inside the session, and the keys must be deleted securely
after finishing the generation. When a key or its part is intercepted during a trans-
fer, the intercepted part is excluded if possible, or the whole key is flagged as not
confidential and discarded. The network supplies the keys with the highest level
of security. Confidentiality of client application data is in their scope of control.. Integrity - The data is trustworthy and free from tampering. We can ensure that
the keys coming from the network were only changed by the QKD modules if there
was a reason to do so.. Availability - The service of key generation must always be available. This is a
critical point and the hardest to fulfill. The QKD network needs to be protected
from attacks that can disable its ability to provide keys. This is done on the side

6



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2 Security requirements

of application interfaces by authorizing the secured applications. On the quantum
layer of the relay, there may be situations where a high interception rate results
in an insufficient number of generated keys. Additionally, some nodes or modules
may malfunction, and due to the network topology, the network graph may become
disconnected, preventing the relay of keys between certain points.

7



Chapter 3
Design of QKD SDN network

This chapter aims to use the requirements gathered in the previous chapter to design
the QKD network, specifying the components and their functionalities.

The chosen architecture for this network is a software-defined network (SDN).
This decision is supported by the existence of relevant ETSI protocols, which provide
architectural concepts and even communication schemes for the network components
[9] [10].

3.1 Software-defined network general idea

Software-defined network is a common type of network architecture [11]. The core
idea of software-defined networking is splitting data flow delivery and routing infor-
mation. These things are split into two separate planes (a plane is a part of the
architecture separated from the other parts of the system). We called these planes
the Data Plane, responsible for data delivery, and the Control plane, responsible
for network topology and routing tables. Structurally, a Software-defined network
consists of three components.

. SDN Controller - The Controller is a central component of the software-defined net-
work. It manages the control plane centrally in opposition to traditional solutions
like switches.

• The Northbound interface of the controller provides API for SDN applications
that want to relay data through the network controlled by the controller.

• The Southbound interface transfers data between the controller and the net-
working devices. It is used to manage the control plane of the network.

. SDN networking device - The networking device forwards data and processes the
data plane.

. SDN Application - The application is a client entity that sends data through the
SDN network. It sends API requests to the SDN controller to relay data.

8



. . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2 Software-defined network for QKD networks

3.2 Software-defined network for QKD networks

Quantum key distribution already has a functional solution for the software-defined
network. The Swiss company ID Quantique offers solutions based on the SDN [12].
There is also an existing ETSI standard for the Software-defined network in Quantum
key distribution. These existing projects supported my choice to use the Software-
defined network as the architecture for this project.

3.3 SD-QKD node

A software-defined enabled QKD node represents a location within the network where
one or more QKD modules are located. The node is connected to other SD-QKD
nodes using its KMS modules. The Key management system serves as a gateway
between these modules and provides an interface for the Node agent. It also provides
the interface for the QKD-secured applications to pull the keys. The node agent
provides control communication with the SDN.

The node is physically located in a secured location. The infrastructure of the
node will most likely be located in one rack.

3.3.1 Node agent

The Node agent of a node is a service responsible for communication with the SDN
controller. Its main purpose is to create an abstraction of a single communication
interface that represents multiple QKD modules. As a central point for the commu-
nication of the QKD node, it is also responsible for forwarding messages from the
KMS to the controller. The messages inform about creating or managing sessions
and recognizing the secured applications.

The node agent should provide the following functions:

. Initialization - On the first node startup, the node sends a heartbeat to the (pre-
defined) location of the controller, obtains the security credentials, and then sends
information about its topology (relations with other nodes). Technical parameters
essential for routing, like bandwidth or relay capacity, are also sent.

. Health checks - The node regularly transmits heartbeats to report its current
operational status, which can be categorized as UP or DOWN. This mechanism
is primarily designed to monitor the node agent and the key management system.
Additionally, these updates help in assessing and sorting the operational states of
various QKD modules.

. Updates - The node is able to update information about the QKD modules and
their linked counterparts. If a link is not active, the controller should be notified.
It is also possible to send information about, e.g., the storage of the keys, as an
update to enhance routing.

. Acknowledgements - The node can react to the network’s controller orchestra-
tion. This typically involves information about receiving and registering sessions
between two applications. The information about the remaining capacity of the
node should be sent as part of acknowledgments to support the load-balancing of
the network.

9
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3.4 Key management system
The key management system facilitates communication between the QKD modules
and supplies the keys to the secured applications. It represents the network’s data
plane responsible for forwarding the keys.

It must provide the following functions:. Creating sessions - the KMS should be able to forward a message from the QKD-
secured application. The message contains a request to open a new QKD ap-
plication session. The message is forwarded to the node agent and then to the
controller.. Registering sessions running through node - The KMS will be informed about
opening a new session using the node. The message will typically consist of the
ID of the session and information about the previous and next node.. Providing key fetching for QKD-secured application - Upon request from an ap-
plication, the key is fetched from the KMS via a selected link. This key is then
assigned to the open QKD application session. Once the application receives the
key at the link’s endpoint, it will temporarily store the key, allowing it to be
accessed before it is discarded after a predetermined period.

3.5 Network controller
The SDN controller is the centerpiece of the QKD Software-defined network. It incor-
porates standard SDN functionalities, enhanced with specific QKD-related features.
The first key functionality registers any incoming QKD application, authorizes it to
use the network, and provides credentials for secure communication with network
components. This is done by the Secured application service and the Authorization
service.

The second functionality is the management of the network topology itself. The
controller must have a real-time database of working nodes and their connections
and manage the requests for new sessions. The controller is the main point of failure
of the network, making it the most vulnerable part of the network. It needs to
be properly secured and have redundant computation power to ensure the highest
availability of the network.

3.5.1 Control plane service
The network’s main service is in charge of running the control plane of the session.
All node agents must be able to connect to this service. The service must have the
following functions:. Registering SDN-QKD nodes - The service must be able to register the node to the

network. This means as the node finishes its initialization at a startup, the first
heartbeat or the discovery call to register itself to the network. After that, he will
receive its unique node ID and can participate within the relays in the network.. Healtchecks and updates of the QKD links - The service must maintain the actual
topology of the network. While an SDN-QKD node agent is running, the state of
its QKD modules or their counterparts can change. The service must, therefore,
perform period health checks, including the QKD modules’ states.. Creating sessions - When there is a request from two QKD-secured applications
to open a key session between them, their existence and configuration are first

10
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checked in the Secured applications service. Once verified, the route is calculated,
and the nodes along the path are notified.

Certain parameters need to be taken into consideration when computing a path.
It is necessary to focus on particular specifications of the keys, such as the band-
width, and the network specifications, e.g., the relay capacity of the network.

3.5.2 Secured application service
This service is responsible for recognizing the QKD-secured applications and enabling
them to use the network. It should contain the database of registered secured ap-
plications, and in an attempt to connect, it should provide them with their unique
application ID. There is also an interface for the network administrator, which en-
ables registering more secured applications into the network or removing them.

If more organizations use the network for key relay, possibly as QAAS (QKD as a
service) [13], this service will be extended to provide usage statistics and, for example,
services such as billing.

3.5.3 Authorisation manager
The authorization manager is part of the network controller. However, it should be
physically separate from the other two components since it does not usually commu-
nicate with them directly. This service provides credentials based on the certificate
to connect to network components.

11



Chapter 4
Design proposal of the Key management
system

The Key management system is an orchestrating component of the SDN-QKD node.
It is responsible for manipulating the keys from QKD modules and delivering them
to QKD-secured applications.

In this chapter, I would like to present a more precise design of the KMS.1

4.1 Required functionalities for KMS
To design the network, I need to create a set of functionalities to be implemented
in my KMS. I have based these functionalities on the requirements formulated in
the Requirements chapter 2, ensuring they align with the ETSI QKD standards and
requirements.[9] [10].. Key relay - The so-called multihop or key forwarding is a core function of the KMS,

providing the path for synchronizing the key for two QKD-secured applications.. Key management - Disclosure of the keys is the worst-case scenario for the whole
QKD SDN network. Therefore, the keys must be stored securely within the KMS.
They must also be safely deleted when not used for a certain period. Key infor-
mation is also stored within the KMS, such as whether the key was synchronized
or delivered to the final trusted node.. Database synchronization - Due to the nature of the network, KMS is also a
distributed database. It is necessary to ensure that the keys and linked data
shared with the connected trusted nodes are equivalent, especially the data about
delivery, applications, states, and deletion.. Quality of service management regarding the availability of the network and the
node usage balancing - The KMS should provide information about the usage
of available keys to enhance route planning. Additional services such as logging
should also be implemented.

4.1.1 Key relay

Definition 4.1. Application key — A random key to be delivered to a QKD-secured
application.
Definition 4.2. Encryption key — A random key to be used to encrypt an Application
key when the key is sent between trusted nodes.

A key relay, or so-called multihop, is needed when the application key path contains
more than two trusted nodes.2 To create a multihop, it is necessary to use at least

1 Related literature also uses the term Q-KMS for KMS in QKD.
2 Two trusted nodes are the minimal QKD configuration containing just one combination of connected

QKD modules.
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one node as a transfer point. The following scheme is applied to secure key transfer
across multiple nodes.

Figure 4.1. Example of multihop key relay
The picture presents a typical multihop relay inside the network, where secured

applications Tom and Max want to fetch an application key X.
The fetching process is as follows:

1. The relay will start in a trusted node, Alice, connected to the QKD-secured appli-
cation Tom. The SDN controller had already set up the path, and all nodes along
the path have correct information in their routing tables.

2. Application key X in trusted node Alice is obtained either from the QKD module,
a random key generator connected directly to Alice’s KMS, or delivered by QKD
secured application Tom.

3. The key X is sent to the trusted node Bob. To do this, Alice’s KMS obtains
the synchronized application key X from the QKD module, directly linked to the
trusted node Bob. Alice’s KMS encrypts the application key X using the obtained
encryption key Y with the XOR function and sends it to Bob’s KMS.

4. When Bob’s KMS receives the message with the key encrypted by XOR, the KMS
obtains the key Y from its QKD module linked to Alice using the key ID in message
metadata and decrypts the application key X using the XOR function with the
encryption key Y.

5. Bob’s KMS then needs to send the application key X to the trusted node Cyril.
To do this, Bob’s KMS obtains the encryption key Z from the QKD module linked
to Cyril, just as Alice did.

6. Bob’s KMS then sends the key, which is a combination of the previously decrypted
application key X and the newly obtained encryption key Z synchronized with
Cyril, all encrypted by XOR, to Cyril’s KMS.

7. When Cyril’s KMS receives the encrypted key from Bob, it retrieves the corre-
sponding encryption key Z from its QKD module. Cyril’s KMS then applies the
XOR function to the encryption key Z to decrypt the original application key X
from the message.

8. Then Cyril notifies Alice about the successful relay. The application key X is
marked as synchronized and available to be fetched by both QKD-secured appli-
cations of Tom and Max.

4.1.2 Application key lifecycle inside of KMS

Two types of random keys are used to relay random keys for different purposes.
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. Application keys for QKD-secured application key delivery - Random keys are

ultimately used by the QKD-secured application for encryption. These keys are
relayed across the network, and encrypted using the XOR function with encryption
keys when passing between trusted nodes. Application keys can either be obtained
from the QKD modules or delivered using the QKD-secured application.. Encryption keys - Used by the QKD-secured applications for the XOR encryption
of application keys relayed between trusted nodes. Encryption keys are used for
the XOR encryption between trusted nodes. These synchronized encryption keys
are always fetched from the linked QKD modules related to the two trusted nodes,
directly linked to perform the XOR function for encryption and decryption of the
application key relayed across the network.

Figure 4.2. Diagram of the application keys states inside of KMS

The core functionality of the KMS is to store keys in a database. The states of these
keys are determined by the flow of incoming messages. The procedures described in
the previous section are executed with the keys to manage the network and ultimately
deliver keys to QKD-secured applications. Throughout these operations, the keys
transition through various states, as illustrated in the sequence flow diagram shown
in the picture.

The sequence begins when the KMS is informed about a key relay. This notification
can come from either a QKD-secured application requesting a key fetch or from a
trusted node, which is the preceding node in the path, requesting the KMS to send
an encrypted key for relay.

The possible states shown in the diagram are explained below:. RESERVED - Used when a new key is requested to be transmitted. The key for the
relay can be obtained from one of the QKD modules or delivered by the application
requesting the relay. The key is reserved when assigned to some session and is to
be transmitted soon.. RECEIVED - Used when the encrypted key has been received in a message from the
preceding node in the path. Then, the encrypted key from a recognized session is
stored in a database.. DECRYPTED - Used when the encrypted key has been received in a message from
the preceding node in the path. The encryption key used by the preceding node
in the path is fetched and used to decrypt the application key from the preceding
node using the XOR function.

The encryption key is fetched from the QKD module related to the preceding
node and is based on the key ID provided by the incoming message metadata.
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. FORWARDED- Used when the current node is not the final node and the key must
be forwarded. Forwarded means the key was successfully sent to the next trusted
node in the path. The forwarded key is sent encrypted using the XOR function
with a random key generated using the QKD modules. The information about the
ID of an encryption key for decryption is also sent in the metadata.. DELIVERED - Used when the node is the destination. The key is stored inside the
KMS and ready to be fetched to the QKD-secured application.. DELETED - After the key has been stored in a database for the time specified in
the session metadata, the key is deleted from the database. Periodic checks of the
database typically do this. This is essential for the system security.

4.1.3 API for client application
Client applications that connect to the key management system in order to consume
the key typically use the ETSI QKD 014 specification [9]. This specification uses
the REST API-based key delivery with a mutual TLS handshake to secure the key
delivery API.

I created a standardized OpenAPI YAML file representing a computer-readable
API specification. This specification allows me to generate the API client without
the need to specify the endpoints manually and create the API using one of the
numerous available OpenAPI libraries.

4.1.4 Control interface for Software-defined network
The ETSI GS QKD 015 [10] specification defines an interface for controlling the
network by the SDN controller.

4.1.5 Communication with QKD modules
The original ETSI-specified API for communication with QKD modules was the
ETSI 04 [14]. However, it has since been simplified into ETSI 014 [9], which now
serves as the standardized API for connecting with QKD modules. In my work,
this API is utilized for communication from the KMS towards the QKD module
and follows a standard REST architecture, using HTTPS and JSON objects for
communication. The QKD modules require the mTLS authentication, ensuring that
both sides authenticate themselves.

4.2 Database of KMS
The KMS database has to store two different types of content or two different entities.
The data is suitable for traditional SQL databases since it can be stored in rows.
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The first table is the routing table. It contains the following information to enable

key forwarding.. Application ID - The ID of an opened QKD session assigned by the SDN controller.
This value serves as the primary key.. Previous node identifier - Identifier of the preceding trusted node in the path. Set
to null if the node is the first node in the path.. Next node identifier - Identifier of the next trusted node in the path. Set to null
if the node is the destination node.. Identifier of QKD secured application A - Identifier of the application connected
to the first node.. Identifier of QKD secured application B - Identifier of the application connected
to the last node.. Additional metadata about the connection - Additional parameters regarding the
open session, e.g., the key bandwidth.

The second core entity is the application key stored in the database. The keys can
be in various states, as described in [4.1.2].

The application key table must have the following properties:. Key ID - Unique key identifier. Key material - The application key itself, encoded to String.. Assigned application ID - ID of the application session to which the key is assigned.
If null, the key is not assigned to any session.. Timestamp delivered - Date and time of the key delivery to KMS. Timestamp last update - Information about last updates or fetches from KMS,
essential for deleting the keys.. Additional Metadata - Information about the key parameters or, e.g., the time
required to delete the key.
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Chapter 5
Proof of concept and implementation

The primary goal of my thesis is to create and test the Key management system
for the QKD network. In this chapter, I want to show the minimal configuration
for the software-defined quantum key distribution network. To do this, I will specify
minimal components and related communication interfaces, which must rely on ETSI
specifications [9] [10].

5.1 Minimal configuration components
When designing a minimal proof of concept implementation, excluding components
necessary for a larger-scale network only is important. However, the design must
still meet the ETSI specifications and ensure that components are replaceable. This
way, future replacements can be made without disrupting the functionality of the
remaining system components.

SDN 
controller

KEY 
MANAGMENT 

SYSTEM

1 : 1..N

QKD 
MODULE

1 : 1..N

N : 1
QKD 

Secured 
Application

Trusted node

1:N

Figure 5.1. Diagram of components needed for minimal proof of concept implementation
with multiplicities of component relations.

The diagram illustrates the components needed for the minimal implementation. I
define a component as a part of the system that is implemented separately, communi-
cating with others through a communication interface. Some components mentioned
in the previous chapters are omitted because they are unnecessary for the proof of
concept.

Most of the reductions had to be made on the controller side of the project. The
authentication manager is replaced with pre-shared keys and certificates inside com-
ponents delivered before deployment. While a more dynamic security approach would
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be essential for a larger-scale network, it would significantly increase the complexity
of the proof of concept. Instead, a simpler yet fully functional and secure solution
is used. Also, the central service with a QKD-secured application is omitted in my
demonstration. The application would most likely be a REST client with additional
authorization.

The last reduction is a full-sized trusted node agent, which is combined with a key
management system to provide a single point of communication of the trusted node
for the SDN controller.

The diagram in Figure 5.1 shows the components with the multiplicities of the
dependent components:. SDN controller — This component must be implemented.. Key management system — This component must be implemented. It includes

the functionality of the node agent as well.. QKD secured application — An abstraction of an application or entity fetching
application keys from the network. For my demonstration, I use a REST API client
(Insomnia or similar) with a prepared workspace to fetch the keys, mimicking the
behavior of a secured application. QKD module — A Simulation of a QKD module is used.

5.2 Selection of technologies for implementation
To implement the key management system and the software-defined network con-
troller, I used a microservice architecture [15] because it is ideal for creating small
services with a standardized API. Another reason for choosing a microservice archi-
tecture is modularity. I need the whole system to be modular so that new modules
can be implemented or the old ones can be replaced.

5.2.1 Spring Boot
I decided to use Spring Boot, a Java framework providing easy creation of microser-
vices. Spring Boot is an extension of the Spring framework [16], a Java application
framework with the intervention of a control container. Spring Boot is ideal for this
use case since it provides numerous libraries for working REST APIs and enhanced
security libraries, offering many options for desired security levels, such as mTLS
(Spring Security). Also, it facilitates database manipulation, as running queries is
available through Spring JPA.

I will use the latest version of Spring 3 combined with Java 21 to provide an
application with long-term software support and good security of used frameworks
and other components.

5.2.2 H2 database
The H2 database is selected for use in the KMS. H2 is an in-memory database, mean-
ing that data persist only in the application memory and not anywhere else [17]. The
in-memory database is ideal for the KMS because, with each system restart, all data
becomes outdated, requiring the retrieval of new keys and related information from
scratch. Since this database exists only in the memory of the running program (as
an embedded database) inside the Docker container, it does not require encryption,
as it is not exposed externally outside the runtime environment.
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5.2.3 Memory safety of Java

Java has a managed memory, preventing direct memory control. This can pose
problems with safe deallocation and immediate disposal of private data stored in
memory (mainly application and encryption keys).

While new objects are created using the new keyword, the dereferenced objects
and no longer needed variables are managed by the garbage collector [18], which
disposes data and cleans memory. Especially with Spring JPA that uses Hibernate
to manage data, we could experience problems with data structures still existing in
memory after being dereferenced in code.

The problem arises mainly because we cannot directly control data deletion from
memory. On the other hand, we can call the garbage collector from the code. To
destroy and deallocate unused data structures, we call System.gc(). This command
instructs the Java runtime environment1 to clear memory. Deallocation is in its
power and cannot be directly manipulated.

I combine two approaches to prevent this vulnerability:. Safe value deletion - I overwrite all sensitive values (application and encryption
keys) in my code with nulls before deletion and then carefully dereference the sensi-
tive objects. Then, I instruct the database to perform the operations immediately
using the flush function. In the case of an in-memory database, this is still under
the control of runtime.. Other safety measures - These include locating the trusted node in a safe and
protected environment and running the software safely inside the docker container,
with access permitted to only API endpoints and additional external monitoring
services (Prometheus, logs, etc.).

5.2.4 Application deployment using Docker container

Application deployment is done using Docker. On initialization, the application
should connect to the key store of the system using AES. A key store is a secure
place that provides storage for all the secrets (certificates and keys for service-to-
service authorization) needed to operate the network. The KMS should be set up
with a file including the locations of the node’s QKD modules and the location of
the pre-shared secrets to communicate with them.

5.3 Database of the components
Each component has its own database. The databases are managed by the Spring
JPA framework, which utilizes the Hibernate framework. With these technologies,
it is possible to declare database queries without writing SQL. Writing custom SQL
queries is still possible and even necessary when the need for a more complicated
database query arises.

The data used for demonstration (network topology and QKD-secured applica-
tions) are added to the database after the Spring Boot application is successfully
initialized, using the interface ApplicationRunner.

1 Different virtual machines exist to execute Java programs. I am using GraalVM.
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5.3.1 Implemented database of KMS

Figure 5.2. Diagram illustrating the structure of the KMS database
The main task of the KMS is to generate the application keys. A simplified

database (illustrated in Figure 5.3.1) stores the application keys along with all sup-
porting information needed for the key relay.

The table key_routing stores the information about opened QKD application ses-
sions, delivered by the controller. The app_id value is used to identify related QKD
applications. The rest of the properties are analogically related to nodes and QKD-
secured applications.

Application keys in table application_key are stored using UTF-8 encoding. Each
application key inside the database holds the reference to related encryption keys.
Correct encryption keys are identified using information about related sessions and
nodes.2 Table encryption_key serves as an abstraction for the QKD modules.

5.3.2 Implemented database of the controller

Figure 5.3. Diagram shows the structure of the SDN controller database
The controller’s database contains data needed to set up the multi-hop path. The

data about trusted nodes and network topology is the main content of the controller
database. This data is predominantly used to determine the path of the key relay.

The essential entity of the database is the qkdqi_application3, which is equivalent
to the QKD application session. It stores all crucial information about the QKD
application session. I have omitted more detailed settings to keep a simple proof of
concept.

2 Key routing will identify the right QKD module from which the encryption key will be obtained.
3 I borrowed the name from ETSI 015 [10], which sometimes uses different terminology than other

literature regarding QKD topic [11]).
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A vital part of this database is generating the unique identifiers of the QKD ap-
plication session. The database generator generates the Application ID. The ID is
then distributed along with the routing information.

5.4 Communication between components
The components of the system must interact with each other. The network compo-
nents (both hardware and software) run separately, so we must provide the following
communication types:. Communication with routing information from the SDN controller towards the

trusted nodes.. Messages from QKD-secured applications towards the KMS and forwarded to the
SDN controller with requests to open QKD application sessions.. Information about trusted nodes and their connection to the SDN controller is
needed to provide actual information about the livability and topology of the
network.. Communication with key material between components of the system. This group
exchanges application keys between trusted nodes and QKD-secured applications,
and KMS fetches the encryption keys from related QKD modules.

SDN 
controller

KEY 
MANAGMENT 

SYSTEM

ETSI 015 CONTROL INTERFACE

QKD 
MODULE

ETSI 014 REST API

ETSI 014 REST API
QKD 

Secured 
Application

Trusted node

KEY RELAY REST API

Figure 5.4. Diagram of components of the application and their communication interfaces

The diagram shows the communication between components, along with specific
communication interfaces:

. ETSI QKD 014 REST API — Fully specified communication interface in the format
of REST API, used for fetching and requesting keys by both QKD-secured
applications to fetch the application keys from the KMS as well as for the KMS
tp fetch the encryption keys from the QKD modules.. ETSI QKD 015 control communication interface [10] — Control interface for the
SDN controller for communication towards the trusted nodes. Also, communi-
cation regarding the states of the KMS and QKD modules is included in this
specification. Specification is made using the yang model of an object holding
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the necessary data and messages, suggested in a sequence diagram. This inter-
face needs to be more specified for implementation and will be the subject of
the next section.. KEY RELAY API — Key relay API is an interface forwarding encrypted applica-
tion keys between the trusted nodes’ key management systems. This commu-
nication interface was not described in any material I could find, so I had to
design it myself.

5.5 Declaration of non-specified communication
between modules

Some communication interfaces are not specified in standards or literature known
to me. I had to declare the following interfaces myself:. Between the trusted nodes while exchanging the key during a multi-hop relay.. The API provided by trusted node KMS to specify routing within the QKD

modules inside the trusted node.. The API hosted by the SDN controller to register new sessions by the trusted
nodes. The trusted node forwards this information from the QKD-secured ap-
plication that wants to open a new session.

I chose to use a standard REST API because it is suitable for service-to-service
communication, which is also my case. Although a GraphQL API could be ben-
eficial due to its ability to selectively retrieve specific data, its implementation
requires a more complex library for both the client and server sides.

In my implementations of REST API clients and servers, I decided to use the
declarative approach. Therefore, I always need to prepare OPEN API specifica-
tions for the REST API containing the information about paths in URL, available
queries, and the related data structures needed for the REST API (request and
responses bodied). I generate the API clients and servers using these specifica-
tions. This approach helps to keep the code shorter and more readable because all
API-related files are kept outside the source code as the generated files.

5.5.1 API between trusted nodes for key relay
As defined in the section related to multihop key relays relay, trusted nodes KMS
have to communicate directly with each other using encrypted keys. I did not find
any standard or specification for this communication, so it is necessary to create the
communication format.

The messages sent from one KMS to another must contain the application key,
encrypted with the XOR function using the encryption key. The message between
two KMSs with the encrypted application key must contain the identification of the
used encryption key.

The REST API for the key relay consists of just one method, which is the POST
message with a container in the request body with the following content:

. Encrypted application key — In string format and encoded by UTF-8 in my spe-
cific case. Application key ID — A unique identification of the application key must be the
same in all trusted nodes along the path of the specific key relay.
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. Encryption key ID — Unique identification of the encryption key. The encryption
key ID is relevant to the sender and receiver KMS and related QKD modules.. QKD application ID — Identification of the QKD application session between two
QKD-secured applications related to the relayed key.

5.5.2 Control interface for routing setup by the SDN controller
on the individual KMSs.

Routing messages are used to set up the path for the QKD application session in
each trusted node along the key relay path. These messages are sent after the SDN
controller gets a request from the QKD-secured server and client applications. The
routing message has to contain the following properties:. QKD application session ID — Unique identification of the QKD application session

assigned by the SDN controller.. Previous trusted node ID — Unique identification of the previous trusted node in
the key relay path. The previous trusted node is the one from which the incoming
key relay will originate. If this identifier is null, it indicates that the receiver of
the message is the first trusted node in the path.. Next trusted node ID — Unique identification of the next trusted node in the
key relay path. The next trusted node is the one to which the incoming key is
forwarded. If null, it means that the receiver of the message is the last trusted
node in the path.. QKD application object — Object with all necessary details about the QKD ap-
plication.
This message container is distributed from the SDN controller towards each node

contained in a particular multi-hop key relay path. The container is sent by classical
POST request. The answer is a simple OK if the routing was added to the table.
When the SDN controller gets OK from all involved trusted nodes, the server marks
the QKD application as operational.

5.5.3 Communication from the trusted node to the KMS about
routing

ETSI 015 [10] specification presents a relatively large scale model designed for a much
bigger scale network than the QKD network used for testing proof of concept. I have
created an ETSI 015 yaml specification describing the models required for large-scale
networks. This API is implemented to exchange the topology data between the KMS
and the SDN controller.

For the proof of concept, I have created a small repository containing all related
data to create the path, overriding the KMS to control messages about topology.
However, the full-scale implementation of ETSI 015 was done to enable the project
to be updated if more complex information about topology is needed.

5.6 Sequence for creating QKD application session
Creating a QKD application session is a complicated sequence of multiple tasks spread
over multiple divided system components. I created a sequence diagram [5.5] of the
messages between components.
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Creating the QKD application session always starts with invoking the QKD-

secured applications that want to obtain the QKD application session ID, which
they then use to fetch the application keys from related application modules.

QKD Secured 
application

Local Trusted 
Node SDN Controller

App Id

Forwared request

App Id

Calculate path

Notify nodes about routing

OK

All trusted nodes 
in the path

Request to create QKD Appliation session

Routing information (for each node in path)

Figure 5.5. Sequence diagram of QKD application session creation

Explanation of the sequence elements shown in the diagram:. QKD secured application — The Application initializes the request for a QKD
application session. By ETSI 015 [10], two applications are needed to open the
QKD application session. However, the ETSI 014 [9] does not mention the session
opening. So, I decided that the session opening would be done by an external API
on the SDN controller or trusted node.. Local trusted node to secure application — The node from which the QKD-
secured application wants to fetch keys after the session is initialized. In the session
creation sequence, it is responsible for resending requests to the SDN controller.. SDN controller— Takes this sequence’s biggest portion of tasks. First, it must
validate all entities’ existence in the request. Then, it needs to find and set the
path for the key relay and finally return the information about the opened session.. All trusted nodes located in the path — Nodes included in the path, including
the local nodes for the QKD-secured application, must set their routing tables to
forward keys in the right direction.
My main concern regarding the session creation sequence is the length of the

sequence, especially for the QKD-secured applications. It could take a relatively
long time to differentiate from normal timeouts while retrieving the QKD application
session ID using REST communication. Solutions to this could be the following:. Splitting the original request into multiple requests. The first request contains

data required to open a QKD application session. The sender is a QKD-secured
application. Response to this request is a simple ACCEPTED, meaning the request
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was received and the path is now being created. When the path is created, the
app_id is sent to the QKD-secured application that requested the session, meaning
that the session is ready.. Using parallelism when it is suitable. The exact use case of this in the session
creation sequence is to send the routing messages toward trusted nodes in parallel.
The procedure, as proposed earlier, uses the normal sequential requests from the
controller towards the nodes, which can take a long time. Processing the request
inside the node is fast, but creating, sending, and receiving the HTTP request
takes much longer. Therefore, sending the individual routing information could
be done in parallel using the Spring Async technology, which could simplify the
process quite a bit.

Finally, I describe the whole sequence 5.5 step-by-step:
1. The QKD application sends the request to the trusted node. The request contains

specifications of the requested session to be opened. The request must contain the
names of both QKD-secured applications and the nodes at the start and end of
the path (Server and client nodes).

2. The request from the QKD-secured application is forwarded by the trusted node
only. Additionally, depending on the implementation of the network, the trusted
node can verify and check the settings of the secured application.

3. SDN controller checks if all entities mentioned in the request exist. Otherwise, it
throws an exception with the specification of the missing entity.

Some additional checks of the application settings and ordered services could be
done.

4. The following step is searching for a path within the network. The Dijkstra’s
algorithm is used for this task. In this context, the graph nodes are represented by
the trusted nodes, and the graph edges correspond to the QKD links connecting
the nodes. The weight of all edges is set to 1. The result of this stage is a sequence
of nodes that form the path.

5. Then, trusted nodes along the path are informed about the new routing. It is nec-
essary to provide information about the session, including technical information,
session identification, previous node, and most importantly, the next node in the
path. The distribution of the routing information could be done in parallel, as
described earlier in this section.

6. Each trusted node that receives the message adds the information about the session
to its routing table. Then, it sends an OK in response to the SDN controller.

7. When the SDN controller receives all responses with OK, it will mark the session
as OPERATION and send the ID of the newly opened session to the application
or trusted node that made the original request.

5.7 Event-based programming on the side of the
KMS

The Key management system within the trusted node has many functionalities that
must run in long sequences, which could lead to a potentially disastrous problem
with long timeouts.
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5.7.1 Problem of sequential key relay

The main problem arises during the invocation of the following sequence of methods:
1. The previous node in the path invokes the key relay API. A message with an

encrypted application key is forwarded to the service layer of the KMS.
2. Get the encryption key from the QKD module to decrypt the application key.
3. Retrieve the next trusted node in the path of the key from the routing table.
4. Decrypt the key and fetch the application key from the QKD module.
5. Send the encrypted application to the next key in the path.
6. Wait for a response that the next module in the path finished the same procedure,
7. Send an OK response to the previous node in the path – response on a call first

point.
The problematic fact is that the trusted node, which invokes the API of the next

node in the path, is waiting for a response until the next node in the path is finished.
Ultimately, this means that when the sequential solution is used, the first node in
the path has to wait for the last node, and during this time, timeouts can occur.

5.7.2 Asynchronous key forwarding
I want to propose a better solution by implementing the asynchronous server. It is
possible to split the original request into two parts. One of them will end after a
short initialization procedure, and the other will invoke further actions related to the
key relay. The procedures are the following:. Correctly receive the message and save the application key to the database.. Run the following tasks related to the current node and the next nodes within the

path (decryption, routing, encryption, and a message to the next trusted node in
the path of the key relay).
We can respond to the message sent by the previous trusted node once all the

data from the message has been saved to the local database. Before sending an
OK response to the previous node, we need to invoke the second (asynchronous)
procedure to relay the key to the next trusted node.

There are two main approaches to implement the asynchronous server in the Spring
framework:. Spring Async - Library that enables us to run more threads with the server context

simultaneously. The declaration is straightforward - we can specify methods that
should be executed asynchronously with @Async annotation.

The problematical part of Spring Async is passing the authorization for invoking
APIS to the threads. I am afraid that the implementation complexity is too high,
especially with passing the TLS certificates and encryption keys. This can be
fixed to a great degree by setting the thread with data regarding security passed
in constructors, but some issues might still occur.. Spring events - Using this technique, we can create events that will be claimed by
the job executor of the server asynchronously.

It is possible to publish an event inside the running method. The event is cap-
tured by an interceptor and asynchronously executed when the event propagates
to the top of the queue. The Interceptor then executes the method on the service
layer of the server. This solution does not require a server with multiple threads,
so there are no problems with passing request context to threads.
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5.7.3 Event-based key forwarding proposal
I decided to use the event-based approach because I consider it easier to implement.
I propose the following flow of events:

Figure 5.6. Sequence of events inside the KMS when the encrypted application key is
received.

The diagram shows the sequence of events that are executed when a key is received
by the KMS using the KEY RELAY API. The sequence is composed of events, which
are the original parts of the sequence split into logical blocks. The first event is
executed together with processing the incoming request. The others are invoked by
Spring Events.

Responsibilities of each event section are the following:. STORE — The encrypted application key is received by the KEY RELAY API and
stored inside the KMS database. Also, the additional information from the key
relay message, especially the encryption key ID, is essential for the next step.. DECRYPTION — During this phase, the KMS fetches the encryption key from
the related QKD module. The encryption key then decrypts the application key
using the XOR function. This phase can take a relatively long time, based on the
availability of the QKD module.. FORWARD — The routing table is checked to find the application key’s next hop
(Trusted node). Then, the KMS fetches the encryption key from the corresponding
QKD module, and the application key is encrypted with a fresh encryption key
using the XOR function.

The message for the KEY RELAY API is created and composed of the encrypted
application key, its ID, the ID of the encryption key, and the ID of the related QKD
application session. Then, the message is passed to the KEY RELAY API client,
which finds the right address of the next node in the path and sends the message.. SENT — In the final stage of the sequence, a counter is used to eventually safely
delete the key from the KMS. After that, the key is flagged as deleted and is
subsequently deleted from the database.
Using this event sequence, the methods located in the KMS server’s service layer

are invoked by events published by other methods. The invocation is done by event
listeners, which are located in the controller layer. Service layer methods are invoked
from there as a standard REST API request.

5.8 Implementation and code details
The proof of concept was implemented in Java 21, using the Spring Boot 3.2 frame-
work. In this section, I provide particular parts of code essential for the operation
of the network. I also explain and discuss some of the best practices used for the
implementation.
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For the development, I have used the IntelliJ Idea integrated development envi-

ronment. 4

5.8.1 Reduction of boilerplate code
Implementation in Java brings a lot of boilerplate code5 An example may be the
accessing and modifying methods to the object’s properties (Getters and Setters).
Also, long constructors of objects make the code less readable.

Therefore, I use the Lombok 6 library, which adds annotations to generate the
desired methods upon compiling the code.

5.8.2 Declarative generation of API servers and clients
Two common approaches to developing REST API in Spring Boot exist:. Code first approach — The API is first implemented, and the documentation of

the API is generated.. Design first approach — The API documentation is created first. Then, the API
implementation is generated from the documentation.
For my APIs, I am using the design-first approach, which enables the use of the

Maven Open API Generator 7. Using this technique, I am able to utilize the already
prepared yaml files, created in the OPEN API format, to generate the API and all
supportive files during the compilation. This is another step towards reducing the
length of the code and enhancing its cleanliness and readability.

Figure 5.7. Example of ETSI 014 specification [9] in OPEN API format in YAML, which
I have created.

4 https://www.jetbrains.com/idea/
5 Often repeated code that varies just a little.
6 https://projectlombok.org/
7 https://github.com/OpenAPITools/openapi-generator/blob/master/modules/openapi-generato
r-maven-plugin
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5.8.3 Safe deletion of application keys
One of the main security concerns regarding the implementation is the safe deletion
of old application keys from the KMS database. To enable the safe deletion of keys,
I follow the procedure designed in the section 5.2.3:
1. Overwrite the vulnerable value of the application key with nulls.
2. Dereference the key by deleting it from the database.
3. Flush the database to force the immediate execution of deletion of the old key.
4. Finally, the garbage collector will be urged to dispose of the dereferenced data

structures.
This technique is involved in the database by a scheduled event, implemented using

Spring Scheduling, which runs the deletion procedure every 2 minutes. For the proof
of concept implementation, the keys older than 10 minutes are considered old and
removed during the procedure.

The following application code snippet shows the exact procedure for deleting old
keys from the KMS. A functional approach is used to filter the keys for removal.

// Header with frequency, in which is the method invoked (2 minutes)
@Scheduled(fixedRate = 120000)
public void deleteOldKeys() {

log.info("Running key deletion procedure");
// Fetch of keys to enable the filterer of keys with
// functional interface used to commit
// operation with exact dates in SQL(2 minutes)
List<ApplicationKey> keys =
applicationKeyRepository.findAll();

// Functional finding of keys older than 10 minutes.
keys =

keys.stream()
.filter(key ->
key.getCreatedAt().isBefore(LocalDateTime
.now()
.minusMinutes(10)))
.toList();

for (ApplicationKey key: keys) {
log.info("Deleting key " + key + " because it is
outdated!");

//Overwrite the key
key.setApplicationKey(NULL_KEY);
applicationKeyRepository.save(key);

//Deletion and dereference of the key
applicationKeyRepository.deleteById(key.getId());

//Force of execution of the previous operation
applicationKeyRepository.flush();
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}
//Invocation of the garbage collector
System.gc();

}

5.8.4 Own implementation of Dijkstra’s algorithm for path
finding

The SDN Controller uses Dijkstra’s algorithm to create a key relay path. Dijkstra’s
algorithm is an algorithm for finding the shortest route in a weighted graph [19].

The algorithm input consists of the start and end nodes of the relay. During its
execution, the algorithm requests the node relations from the repository.

To keep the appropriate level of complexity, I have assigned weight 1 to all QKD
association links. In the future, the weight of the edge may reflect, e.g., the usage of
related nodes and their QKD modules.

As opposed to a classical Dijkstra algorithm returning just the length of the short-
est path, I need to obtain the whole sequence of nodes since it is essential for setting
up the path. I have included this adjustment in my implementation. Therefore, the
algorithm’s output is a full sequence of nodes forming the path.

Later, the routing information is sent to the Trusted nodes from this sequence.
Here, I present the detailed implementation of my Dijkstra algorithm.

private List<String> createRoutingPath(String startNodeName,
String endNodeName) {

log.info("Create Routing Path " + startNodeName + " " +
endNodeName);
// Initialization
Queue<List<String>> queue = new LinkedList<>();
List<String> solution = new ArrayList<>();
List<String> visited = new ArrayList<>();
visited.add(startNodeName);
// Initialize queue with paths from the start node
for (String node : getConnectedNodesNames(startNodeName)) {
List<String> arr = new ArrayList<>();
arr.add(startNodeName);
arr.add(node);
queue.add(arr);

}
//Get the first path in queue, if exists
while (!queue.isEmpty()) {
List<String> nodes = queue.poll();
// Skip if the last node in the path was already visited
if (visited.contains(nodes.getLast())) {

continue;
} else {

visited.add(nodes.getLast());
}
// End if solution was found
if (nodes.contains(endNodeName)) {
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solution = nodes;
break;

} else {
String lastNode = nodes.getLast();
// Insert new paths from node
getConnectedNodesNames(lastNode)

.forEach(
x -> {
ArrayList<String> addition = new ArrayList<>
(nodes);
addition.add(x);
queue.add(addition);

});
}

}
// If solution was not found throw an error
if (solution.isEmpty()) {
throw new IllegalStateException("Path " + startNodeName + "
" +
endNodeName + " not found");

}
log.info("Solution route is " + solution.toString());
// Return solution
return solution;

}

private TrustedNode getTrustedNodeByName(String name) {
return trustedNodeRepository

.findById(name)

.orElseThrow(() -> new NoSuchNodeExistsException(name));
}

private List<String> getConnectedNodesNames(String nodeName) {
return
getTrustedNodeByName(nodeName).getConnectedNodes().stream()

.map(TrustedNode::getName)

.toList();
}

5.8.5 Implementation of manipulation of keys with the XOR
function

Encryption of the application key with the utilization of the XOR function is one of
the core concepts of the QKD network. To apply the XOR function, the application
keys must be in the form of bits. However, these keys are transferred as strings8

when relayed between trusted nodes and QKD-secured applications. Additionally,
the keys are stored as strings in the KMS database. Therefore, a reliable method is
required to convert strings to bit sequences and back.

8 For my implementation, I am exclusively using UTF-8 encoding for strings.
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The first idea about changing formats was to use Java standard library BitSet,

which should enable straightforward parsing of BitSet to string and back, as shown
in the code snippet.

//String to a bit set
BitSet stringToBitSet(String string) {

return
BitSet.valueOf(string.getBytes(StandardCharsets.UTF_8));

}

//Bit set to string
String bitSetToString(BitSet bitSet) {

return new
String(bitSet.toByteArray(),StandardCharsets.UTF_8);

}

Contrary to my expectation, a String inputted and converted to BitSet and back
to string, as shown in the snippet, was never the same as the original inputted String.
So, I had to develop a different, more complicated solution.

I tested several prototypes until I found a robust solution. My current solution
is converting UTF-8 to a string composed of 0 and 1 bit by bit. This solution is
robust, and I have tested that the string can always be transferred to a bit sequence
and back. Utilizing this method, I have also implemented the XOR, as shown in a
code snippet.

public static String bitStringToString(String key) {
char[] chars = new char[32];
for (int i = 0; i < 32; i++) {
//Slice the string of bits to bytes
String curSeq = key.substring(i * 8, i * 8 + 8);
//Transfer bits to int
int codePoint = Integer.parseInt(curSeq, 2);
//Get a char from int
String utf8Char = new String(Character.toChars(codePoint));
chars[i] = utf8Char.charAt(0);

}
return new String(chars);

}

public static String stringToBitString(String key) {
StringBuilder builder = new StringBuilder();
for (int i = 0; i < 32; i++) {
//Read the character at a certain position
String binaryString = Integer.toBinaryString(key.charAt(i));
//Transfer char to binary
binaryString = String.format("%8s", binaryString)
.replace(' ', '0');
//Append to string
builder.append(binaryString);

}
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return builder.toString();
}

public static String xor(String applicationKey,
String decryptionKey){

applicationKey = stringToBitString(applicationKey);
decryptionKey = stringToBitString(decryptionKey);

StringBuilder result = new StringBuilder();

// Ensure both binary strings have the same length
int length = Math.min(applicationKey.length(),

decryptionKey.length());
for (int i = 0; i < length; i++) {
// Perform XOR operation on each pair of corresponding bits
char bit1 = applicationKey.charAt(i);
char bit2 = decryptionKey.charAt(i);
char xorResult = (bit1 != bit2) ? '1' : '0';
result.append(xorResult);

}

return bitStringToString(result.toString());
}

5.9 Connection for the QKD secured application to
the Trusted nodes

The QKD-secured application is connected to the trusted node by the ETSI 014 API
[9]. This API should be secured with a mutual TLS handshake.

I present the OPEN API specification for this API in Appendix C.1. The API can
be created from the specification using the generator described in section 5.8.2.

The generated API interface for the server part of the API (API will be invoked
by clients in QKD-secured applications) is then implemented in the application’s
controller layer. The particular services to process the corresponding requests are in-
jected into the controller layer. All data structures required for the API are generated
as well.
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Figure 5.8. Controller resolving the API for QKD secured applications. Also, the injection
of the related service layer class is shown

The main difference between ETSI 014 and ETSI 015 [10] lies in omitting the QKD
application session ID in ETSI 014, which makes no sense for the key fetching. So,
instead, I have to use the identification of both server and client QKD applications
(Described as MASTER and SLAVE in ETSI 014) to find the application session ID in
the routing table of KMS.

I have preregistered two applications, MASTER and SLAVE, to the network to
simplify the demonstration of fetching the application keys. I also have implemented
two essential methods to show the key relay from this specification (As shown in
the snippet of the implementation of API); other methods could be invoked, but
NOT_IMPLEMENTED response will be returned.

Due to the recurring problems with the mTLS certificates, I have turned off the
authentication to ensure a smooth demonstration of the core principles of the QKD
network for the proof of concept. However, I have implemented the required code
regarding mTLS (Keystores and authorization interceptors).

5.10 Connection of the KMS to QKD modules for
encryption key fetching

QKD modules provide API that can be invoked by KMS to fetch keys from the
QKD module. Typically, one KMS module will be connected to more than one QKD
module, so some abstraction above the QKD modules is needed.

QKD modules and the KMS provide the same API for key fetching. The ETSI 014
API is described in the previous section 5.9. The OPEN API generator is provided
with the specification for generating the API client instead of the API server.

As the physical infrastructure (QKD modules) was not ready for testing at the
time of finishing my thesis, I needed to find a solution to simulate the functionality
of QKD modules. This simulation is described in the demonstration section 7.1.1.

I have created a universal interface (Utilizing the service interface pattern) to fetch
encryption keys from the QKD modules.
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@Service
public interface EncryptionKeyService {

/*
* Get a new encryption key from the QKD module
*/

EncryptionKey getEncryptionKeyForRelayString(String toNode);

/*
* Get the decryption key by ID and related node
*/

String genEncryptionKeyIdById(String id, String fromNode);
}

This interface is implemented for both real and mock QKD module services. The
mocked QKD module service is used for demonstration, but a real QKD module
service for connection to real QKD modules is implemented and prepared for service.
Below, I present the core logic of service.

// @Service Uncomment when connected to the QKD modules
@RequiredArgsConstructor
public class RealQkdModuleService implements EncryptionKeyService {

private final QkdModuleClient qkdModuleClient;

/*This method is by the client calling the
GET /api/v1/keys/{slave_SAE_ID}/dec_keys
to fetch a new key
*/
@Override
public EncryptionKey getEncryptionKeyForRelayString(String
toNode)
{

KeyContainer keyContainer =
qkdModuleClient.getOneEcryptionKey(toNode);
Key key =

Optional.ofNullable
.orElse(Collections.emptyList()).stream()

.findFirst()

.orElseThrow(() -> new IllegalStateException("Module
return no encryption key"));

EncryptionKey encryptionKey = new EncryptionKey();
encryptionKey.setKeyId(key.getKeyID());
encryptionKey.setEncryptionKey(key.getKey());
return encryptionKey;

}

/*
This method is by the client calling the
GET /api/v1/keys/{master_SAE_ID}/dec_keys

to get a decryption key by ID.
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*/

@Override
public String genEncryptionKeyIdById(String id, String
fromNode)
{

String returnedKey =
qkdModuleClient.getOneEncryptionKeyByIdAndRelatedAdress(id,
fromNode);
if (returnedKey == null || returnedKey.isEmpty()) {
throw new NoKeyFoundException(id);

} else {
return returnedKey;

}
}

}

5.11 Interface to manage the key relay

One of the tasks in my thesis assignment was to provide an interface that enables
the control and configuration of the QKD network.

The users of the proof of concept will be individuals with knowledge of QKD
networks who are interested in observing the functionalities of the network.

The interface aims to provide the following methods to enable the demonstration
of the QKD network:

. Enable the MASTER QKD-secured app to fetch the application keys. Master
requests the parameters of keys and the number of keys to be generated.

. Enable the SLAVE QKD-secured app to fetch the application keys by ID.

. Set up the routing path on the SDN controller.

Due to the large scale of my project, I decided to use a simple Swagger interface
rather than implementing a full-scale web application. Spring Boot offers the Swagger
API explorer with documented Rest API as an interface to test the API.

Library SpringDoc OpenAPI Starter WebMVC UI 9 is added to both the KMS and
the controller. The interface is located at http://basepath/swagger-ui/index.
html##. The basepath is relevant to the component that provides the API.

9 https://github.com/springdoc/springdoc-openapi
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Figure 5.9. Interface of request made towards the KMS to fetch the keys as MASTER QKD
secured application

Figure 5.10. Interface of request made towards the KMS to fetch the keys as SLAVE QKD
secured application
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Figure 5.11. Interface of request on the controller to open new QKD application session
with parameters
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Chapter 6
Quality assurance of developed components

All components of the QKD network must be carefully tested to deliver the required
quality of service. The problematic part of testing the QKD network’s components is
the network’s distributed nature, which significantly complicates testing the network
as a unit. Moreover, because the network components should be modifiable, even
more focus should be put on testing the individual components.

In this chapter, I would like to focus on quality assurance for the components
delivered to the QKD network. I decided to write test levels for my components.
The test levels demonstrate all aspects of testing that should be done to prepare the
components for production operation.

6.1 Test levels
The test levels, or, more precisely, software testing levels, demonstrate the approach
to testing and quality assurance of software [20]. Software testing levels are method-
ologies or procedures that split the software’s development into multiple levels, which
are tested individually.

The following test levels are considered:. Unit testing — Lowest level testing used in software development. The focus
should lie on small parts of code, like individual functions, not complicated soft-
ware logic. The creation of unit tests is also important for future refactoring and
replacing of the logic because the refactored code must pass the same test as the
old code.

This layer of tests could be easily tested within the Spring Boot with frameworks
for unit testing, such as JUnit. Unit tests could also be a part of the CI/CD
pipelines, which can run the tests before deployment.. Integration testing — Integration testing focuses on testing the interaction be-
tween components. At this level, components on the module level are tested to-
gether to prevent issues like problematic inputs from one module to another. Also,
the microservice API should be tested at this level. This means that the REST
API provided by one of the system components in the form of a microservice will
be tested from outside.

This is the final part of testing for my proof of concept implementation. It
focuses on testing the services as a whole unit. Possible software for this part of
testing is the usage of frameworks like Selenium, which can call the REST API of
the microservice from the web browser.. System testing — System testing focuses on evaluating the entire integrated sys-
tem to ensure it functions correctly. This level of testing is typically conducted
by a quality assurance team and can be considered black-box testing, where the
emphasis is on verifying inputs and outputs without knowledge of the internal
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workings of the system. The testers performing system testing usually have no
prior knowledge of the system’s internal functions.

In relation to my implementation, system testing will be done when the whole
system, including physical parts, is prepared.. User Acceptance Testing — The last level of testing will be conducted before the
application is deployed to the production environment. Acceptance testing will be
purely black-box, focusing on several aspects:

• Security audit — Due to the system’s role in providing cryptographic and se-
cured services, it must be audited by a qualified individual or organization to
verify the security of all system components.

• Business requirements testing — Relevant stakeholders should conduct tests to
ensure the system meets the projected business requirements. Any discrepancies
or insufficiencies should be identified and reported.

• User testing — Real users should test the network for key generation, covering
all possible network states, including potential error states. During this phase,
tests for network availability and relay capacity should also be performed to
ensure the system can handle the required load and scenarios.
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Chapter 7
Demonstration of proof of concept

As the final part of my thesis, I want to demonstrate the fulfillment of my thesis
assignment. The practical output of my thesis is the proof-of-concept demonstration
of a functional software-defined network for a quantum key distribution network.
The network was implemented as proposed in the previous chapters, adhering to the
communications interfaces specified in the ETSI [9][10] standards while addressing
the gaps or ambiguities in these specifications.

7.1 Configuration of a demonstration network
To create a demonstration setup as close as possible to the future testing deployment
of the whole network, I replicated the same setup with the same components. In
my implementation, QKD modules are simulated. Still, the interchangeable setup
enables quick change of simulated QKD modules for the real ones with an already
created service according to interface [9].

Master Slave
Trusted node 

Alpha
Trusted node 

Beta
Trusted node 

Gamma

SDN 
Controller

Request key by Id

Externally exchanged information about application key Ids

Request App Id

Request Keys

Routing

Encrypted 
application 

key

Implemented 
components

Represented 
by graphical 

interface

Figure 7.1. Diagram of the setup of QKD distribution network used for testing and demon-
stration of proof of concept implementation

The diagram illustrates the network, including all its components, the direction
of sent requests, and the communication between the components. It is essential to
mention that the direction of the request is changeable, and any node can serve as
the start or the endpoint of an application key relay.

The following components are used for the testing setup:. SDN Controller — Provides an interface for routing requests and topological infor-
mation of the trusted nodes. However, for the proof of concept implementation,
the nodes, their addresses, and connections were loaded inside the startup of the
controller.
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. Trusted nodes — Provide all required APIs, mainly the API for the QKD-secured

applications to request keys and require opening a session. APIs for communication
with the controller are provided but not implemented.

There is no full coverage of the required data yet (some data structures are
initialized to default values). The last but essential API is the key relay API, which
has been implemented for both the client and server to send messages containing
encrypted application keys.. QKD secured applications — QKD secured application invoke the ETSI 014 API
[9], for key relays on the individual trusted nodes. The default Swagger API
explorer is used as a graphical interface for the key relay because of its simplicity.

7.1.1 Operation with mocked QKD modules

The demonstration is done with the simulated QKD modules. This brings a few
things that need to be solved.. Generation of application keys within the network and their usage for XOR en-

cryption.. Generation or supply of random application keys.
Mocking the QKD modules is problematic because synchronized encryption keys

are needed in linked trusted nodes. My solution is to use pre-shared keys for each
direction of each link between QKD modules. This key is retrieved from the service
that creates the abstraction of the QKD modules. The only thing that needs to be
done to run the demonstration with physical QKD modules (except for adding the
certificates) is replacing the mocked service with the clients for real QKD modules.
To simplify this process, both services implement the same interface.

The generation of random keys within the trusted node is solved with the standard
Java library SecureRandom. This library should provide a safe and non-deterministic
generation of random values according to the standard RFC 1750 [21]. Using this
library, the random key is generated as a sequence of boolean values. In my imple-
mentation, 256-bit long keys are exchanged for demonstration purposes. The KMS
database stores these bit sequences as strings with UTF-8 encoding. This encoding
is also used to provide the application keys to the QKD-secured applications.

7.1.2 Operation of the network

To start the network, download the code and build both services as described in the
README file with the code in the appendix B.1. By default, the components are
located at the following addresses:

Component address

Controller http://localhost:8080
ALPHA http://localhost:8081
BETA http://localhost:8082

GAMMA http://localhost:8083

All endpoints provided by the components are located at these addresses. For sim-
plicity of use, the address basepath/swagger-ui/index.html is located in the Swagger
API explorer. All endpoints can be invoked from this graphical interface, and de-
tailed descriptions of the invoked APIs are also provided. Additionally, it is possible
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to fetch the full specifications of each component on the path basepath/v3/api-docs
for use in external API clients like Insomnia or Postman.

All system components log their current states and operations to the console or
file if configured.

7.2 Demonstration of the Key Relay

The final part of my thesis demonstrates the key generation in the QKD-secured
application. To present the functionality of the key generation, I demonstrate how
both applications fetch the same application key from different nodes. I create a
scenario for the key relay to demonstrate this functionality and present screenshots
of send requests towards components along with their responses. Additionally, I
provide a detailed description of the log of the trusted node Beta.

7.2.1 Testing scenario

The testing scenario involves generating an application key between three trusted
nodes. The application invoking the relay of the key is named MASTER and is re-
sponsible for sending the key to the application SLAVE. The overall configuration of
the testing network is shown in diagram 7.1.

1. Session creation is invoked on the Controller. The request creates a QKD ap-
plication session between two QKD-secured applications MASTER and SLAVE,
connected to the trusted nodes ALPHA and GAMMA. The container with appId is
returned.

2. One application key is fetched from ALPHA with the target application SLAVE
stated in the request. In return, the MASTER will get one key with ID.

3. SLAVE will invoke the API of the trusted node GAMMA to receive the application
from the trusted node GAMMA with the ID of the application key that the master
received from ALPHA. In return, the SLAVE will receive the desired key, identical
to the one received by MASTER.

Verifying the successful end of the scenario involves comparing the keys fetched by
both the MASTER and SLAVE. If they are the same, the base functionality of the
network is verified.

7.2.2 Execution of demonstration

In this section, I present screenshots of the demonstration with descriptions.

1. Request to create a session is made towards the Controller. An error is thrown
if an unknown node or QKD-secured Application is input. Additionally, an error
could be thrown if there is no connection between known nodes or some node is
unresponsive to routing messages.
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Figure 7.2. Curl request to open a new QKD application session

2. Response with information about an opened session with appId is returned, mean-
ing that the multi-hop path for the key relay was set.

Figure 7.3. Curl request to open a new QKD application session
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3. The MASTER requests to fetch the number of application keys. The size of the
keys should be arbitrary, but the network is demonstrated with keys 256 bits long.
This request is specified by ETSI 014 QKD API [9], where an appId is not a part
of the request. So, the node finds the appId in its database.

4. Standardized key container with UTF-8-formatted decrypted application key is
returned. The MASTER must send the key ID outside the network towards the
slave.

Figure 7.5. Response to request to fetch a key by MASTER QKD secured application

5. The SLAVE now fetches the key with specification of the server QKD-secured
application MASTER and the ID of the application key are to be fetched. If the
application related to the QKD secured application is not found, an error is thrown.

6. As we can see in Figure 7.6, the received application key is identical to the
application key received by MASTER.
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Figure 7.6. Request and response of fetch of the application key by the client QKD secured
application.

7.2.3 Description of logs of transfer node

I want to present what happens inside the network during the key relay. I decided
to show the application log of the Trusted node BETA KMS and explain what is
happening inside the trusted node.

During the previous scenario, the trusted node BETA had to set the key routing,
receive the encrypted application key from ALPHA, and forward it to GAMMA.

In the following section, the raw application log was captured during the execution
of the demonstration. The path for the key relay was already set up when the log
was captured.
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Figure 7.7. Application log of trusted node BETA regarding the session initialization and
forwarding of one application key. Each line starts with the timestamp and specification
of the logger, followed by the application’s name and a detailed name of the execution.
This data is not crucial. Essentials are the following: the name of the class from which
the log came and the payload, which specifies what is happening during the process of key

forwarding.

1. First, the encrypted application key is received from the ALPHA. We can see that
a different key was received than what was mentioned in the previous section.
That happened because the key is encrypted using the encryption key, whose ID
is also part of the message.

2. Next, we can see logs of events and procedures related to the key processing. This
shows how the application key passes through a sequence of events. Logs of this
topic mainly indicate where errors happened during processes inside the KMS and
when some error state occurred.

3. The last part of the forwarding process is singing the application key to the next
trusted node. We can see that the encrypted application key is sent differently than
received because it was encrypted using the XOR function with a new encryption
key related to the QKD modules between which the forward happens.
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Figure 7.8. A log showing the deletion of the old keys from the KMS database. Essential
are the same messages as in the previous log. They show what is happening inside the

KMS.
4. After forwarding the key, it is deleted in 10 minutes (this default interval is set in

the system) from the KMS by the automatic procedure that runs inside the KMS
every 2 minutes to dispose of old keys.

Based on my demonstration, I want to state that the implemented components of
the QKD network (KMS and controller) work correctly.

7.3 Demonstration code
The code used for the demonstration, along with instructions on how to set and
execute the demonstration, is part of Appendix B.1.
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Chapter 8
Conclusion

I have successfully designed and implemented the proof of concept implementation
of the quantum key distribution network. The implementation satisfies the core
requirements of quantum key distribution while focusing on the path creation for the
key relay and the generation of application keys by the trusted nodes.

8.1 Thesis summary and contributions

Initially, I thoroughly researched the QKD network functionalities’ requirements,
summarized in Chapter 2.

The design is divided into two phases. The first phase 3 is more theoretical,
focusing on selecting QKD network architecture and providing definitions of the
main components of the network.

In the second design phase 4, I focus on the design of the Key management system.
My main contribution towards the topic is creating a state machine diagram of the
phases of the application key lifecycle 4.1.2.

Based on the design proposals, I implement a proof of concept in Chapter 5.
This part is vital since it focuses on creating an asynchronous event-based concept
for the key forwarding 5.7 (illustrated by the event flow diagram 5.6) and on its
implementation. Finally, in Chapters 6 and 7, I propose the QKD software testing
methods and demonstrate the desired functionalities in different scenarios.

8.2 Fulfilment of the requirements

The system created (Implementation of the KMS and the network controller) fulfils
all the assignment requirements. I have implemented the client protocol for commu-
nication with QKD modules 5.9. Unfortunately, the physical part of the system was
not yet ready for testing, so I created a simulation of the QKD modules 7.1.1.

I have implemented the KMS system, which enables storing the keys 5.7 5.3.1.
The most complex part of the implementation was the key generation across mul-

tiple nodes within the network. This combines the creation and setup of the path
5.5.2, communication between the trusted nodes 4.1.1 and management of the keys
inside the KMS 5.7.

The WEB interface for control of the key relay for creating routing paths was
provided 5.11.

The last implementation requirement is the key delivery towards the QKD-secured
application, which was implemented for the basic demonstration of functionality 5.10.
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For demonstration purposes, mTLS authorization was disabled because of problems
regarding the certificates’ formats.

All these functionalities were demonstrated in my thesis during the demonstration
part 7, which shows the basic scenario for the key generation.

8.3 Future plans
The future plans include finishing deploying the proof of concept, integrating it with
the physical QKD modules, and further testing. This also includes enabling the
mTLS authorization for the QKD client applications.

After the deployment, this work could serve as a demonstration of the QKD net-
work for educational purposes at the Faculty of Electrical Engineering at CTU.

50



References

[1] Unathi Skosana, and Mark Tame. Demonstration of Shor’s factoring algorithm
for N = 21 on IBM quantum processors. Scientific Reports. 2021, 11 (1).
DOI https://doi.org/10.1038/s41598-021-95973-w.

[2] Guobin Xu, Jianzhou Mao, Eric Sakk, and Shuangbao Paul Wang. An Overview
of Quantum-Safe Approaches: Quantum Key Distribution and Post-Quantum
Cryptography. 2023 57th Annual Conference on Information Sciences and Sys-
tems (CISS). 2023. DOI https://doi.org/10.1109/ciss56502.2023.10089619.

[3] Charles H. Bennett, and Gilles Brassard. Quantum cryptography: Public key
distribution and coin tossing. Theoretical Computer Science. 2014, 560 7–11.
DOI https://doi.org/10.1016/j.tcs.2014.05.025.

[4] clavis xg qkd system.
https://www.idquantique.com/quantum-safe-security/products/clavi
s-xg-qkd-system/.

[5] M. Sasaki, M. Fujiwara, H. Ishizuka, W. Klaus, K. Wakui, M. Takeoka, S. Miki,
T. Yamashita, Z. Wang, A. Tanaka, K. Yoshino, Y. Nambu, S. Takahashi, A.
Tajima, A. Tomita, T. Domeki, T. Hasegawa, Y. Sakai, H. Kobayashi, and T.
Asai. Field test of quantum key distribution in the Tokyo QKD Network. Optics
Express. 2011, 19 (11), 10387. DOI https://doi.org/10.1364/oe.19.010387.

[6] Miralem Mehic, Marcin Niemiec, Stefan Rass, Jiajun Ma, Momtchil Peev, Ale-
jandro Aguado, Vicente Martin, Stefan Schauer, Andreas Poppe, Christoph
Pacher, and Miroslav Voznak. Quantum Key Distribution. ACM Computing
Surveys. 2020, 53 (5), 1–41. DOI https://doi.org/10.1145/3402192.

[7] Paul James, Stephan Laschet, Sebastian Ramacher, and Luca Torresetti. Key
Management Systems for Large-Scale Quantum Key Distribution Networks.
In: 2023.

[8] Spyridon Samonas, and David Lewis Coss. The CIA Strikes Back: Redefining
Confidentiality, Integrity and Availability in Security. In: 2014.
https://api.semanticscholar.org/CorpusID:215838643.

[9] ETSI. Quantum Key Distribution (QKD); Protocol and data format of REST-
based key delivery API . ETSI GS QKD 014, 2019.

[10] ETSI. Quantum Key Distribution (QKD); Control Interface for Software Defined
Networks . ETSI GS QKD 015, 20202.

[11] Sumit Badotra, and S. N. Panda. Software-Defined Networking: A Novel Ap-
proach to Networks. In: Brij B. Gupta, Gregorio Martinez Perez, Dharma P.
Agrawal, and Deepak Gupta, eds. Handbook of Computer Networks and Cyber
Security: Principles and Paradigms. Cham: Springer International Publishing,
2020. 313–339. ISBN 978-3-030-22277-2.
https://doi.org/10.1007/978-3-030-22277-2_13.

51

http://dx.doi.org/https://doi.org/10.1038/s41598-021-95973-w
http://dx.doi.org/https://doi.org/10.1109/ciss56502.2023.10089619
http://dx.doi.org/https://doi.org/10.1016/j.tcs.2014.05.025
https://www.idquantique.com/quantum-safe-security/products/clavis-xg-qkd-system/
https://www.idquantique.com/quantum-safe-security/products/clavis-xg-qkd-system/
http://dx.doi.org/https://doi.org/10.1364/oe.19.010387
http://dx.doi.org/https://doi.org/10.1145/3402192
https://api.semanticscholar.org/CorpusID:215838643
https://doi.org/10.1007/978-3-030-22277-2_13


References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[12] ID Quantique product range.

https://www.idquantique.com/quantum-safe-security/products/##quan
tum_key_distribution.

[13] Ittipong Khemapech. Quantum as a Service (QaaS) in Digital Disruption Era
Quantum as a Service (QaaS) in Digital Disruption Era Ittipong Khemapech.
2024.

[14] ETSI. Quantum Key Distribution (QKD); Application Interface. ETSI GS QKD
004, 2020.

[15] Chris Richardson. Microservices patterns : with examples in Java. Shelter Island,
New York: Manning Publications, 2019. ISBN 9781617294549.

[16] Spring framework documenattion. 2017.
https://spring.io/projects/spring-framework.

[17] H2 database engine.
https://www.h2database.com/html/main.html.

[18] Alexander Obregon. Understanding Java’s Garbage Collection. 2023.
https://medium.com/@AlexanderObregon/understanding-javas-garbage-
collection-bc141a2ef31f.

[19] Chung-Yang (Ric) Huang, Chao-Yue Lai, and Kwang-Ting (Tim) Cheng.
CHAPTER 4 - Fundamentals of algorithms. Boston: Morgan Kaufmann, 2009.
ISBN 978-0-12-374364-0.
https : / / www . sciencedirect . com / science / article / pii /
B9780123743640500114.

[20] Mubarak Albarka Umar. Comprehensive study of software testing: Categories,
levels, techniques, and types. 2020.
https://www.techrxiv.org/users/662669/articles/675874-comprehen
sive-study-of-software-testing-categories-levels-techniques-and-
types.

[21] Steve Crocker, Donald E. Eastlake 3rd, and Jeffrey I. Schiller. Randomness
Recommendations for Security. RFC 1750. Request for Comments. 1994.
https://www.rfc-editor.org/info/rfc1750.

52

https://www.idquantique.com/quantum-safe-security/products/##quantum_key_distribution
https://www.idquantique.com/quantum-safe-security/products/##quantum_key_distribution
https://spring.io/projects/spring-framework
https://www.h2database.com/html/main.html
https://medium.com/@AlexanderObregon/understanding-javas-garbage-collection-bc141a2ef31f
https://medium.com/@AlexanderObregon/understanding-javas-garbage-collection-bc141a2ef31f
https://www.sciencedirect.com/science/article/pii/B9780123743640500114
https://www.sciencedirect.com/science/article/pii/B9780123743640500114
https://www.techrxiv.org/users/662669/articles/675874-comprehensive-study-of-software-testing-categories-levels-techniques-and-types
https://www.techrxiv.org/users/662669/articles/675874-comprehensive-study-of-software-testing-categories-levels-techniques-and-types
https://www.techrxiv.org/users/662669/articles/675874-comprehensive-study-of-software-testing-categories-levels-techniques-and-types
https://www.rfc-editor.org/info/rfc1750


Appendix A
Abbreviations

A.1 Abbreviations

AES Advanced Encryption Standard - A widely used symmetric encryption al-
gorithm for securing sensitive data.

API Application Programming Interface - A set of rules and protocols for build-
ing and interacting with software applications.

ETSI European Telecommunications Standards Institute - An organization re-
sponsible for defining telecommunications standards in Europe.

JSON JavaScript Object Notation - A lightweight data interchange format com-
monly used for transmitting data between a server and a web application.

mTLS Mutual Transport Layer Security - A security protocol that provides au-
thentication and encrypted communication between client and server.

QKD Quantum Key Distribution - A method for securely sharing encryption
keys using the principles of quantum mechanics.

KMS Key Management System - A software service for managing security keys.
REST Representational State Transfer - An architectural style for designing net-

worked applications, often used in web services development.
RSA Rivest-Shamir-Adleman - A public-key asymmetric encryption algorithm

widely used for secure data transmission.
SDN Software-Defined Networking - A programming architecture allowing net-

work administrators to control network behaviour programmatically.
SD-QKD Software-Defined Quantum Key Distribution - A framework for implement-

ing quantum key distribution protocols in software-defined networks.
SQL Structured Query Language - A standard language for managing and ma-

nipulating relational databases.
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Appendix B
Source code

B.1 Source code on the GitLab
The source code for proof of concept implementation is located on GitLab https://
gitlab.fel.cvut.cz/sobotvo2/qkd-sdn-network. The repository also contains
build components with instructions for the demonstration, as described in chapter 7.
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Appendix C
Created API specifications

C.1 ETSI 014 API
I present the created ETSI 014 YAML specification. I created this specification to
enable the API generation from the OPEN API specification. The source for this
was the original ETSI text specification [9]

openapi: 3.0.0
info:

title: ETSI GS QKD 014 V1.1.1 REST API
version: 1.0.0
description: OpenAPI Specification for ETSI GS QKD 014 V1.1.1
(2019-
02)

paths:
/api/v1/keys/{slave_SAE_ID}/status:

get:
summary: Get status
description: Retrieves status information from a KME to the
calling SAE.
parameters:

- name: slave_SAE_ID
in: path
required: true
description: URL-encoded SAE ID of the slave SAE.
schema:
type: string

responses:
'200':
description: Successful response
content:
application/json:
schema:

$ref: '#/components/schemas/Status'
'400':
description: Bad request format
content:
application/json:
schema:

$ref: '#/components/schemas/Error'
'401':
description: Unauthorized
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content:
application/json:
schema:

$ref: '#/components/schemas/Error'
'503':
description: Error on the server side
content:
application/json:
schema:

$ref: '#/components/schemas/Error'
/api/v1/keys/{slave_SAE_ID}/enc_keys:

get:
summary: Get key
description: Retrieves an encrypted key for a key
identified by
{slave_SAE_ID}.
parameters:

- name: slave_SAE_ID
in: path
required: true
description: URL-encoded SAE ID of the slave SAE.
schema:
type: string

- name: number
in: query
required: false
description: Number of keys requested.
schema:
type: integer

- name: size
in: query
required: false
description: Size of each key in bits.
schema:
type: integer

responses:
'200':
description: Successful response
content:
application/json:
schema:

$ref: '#/components/schemas/KeyContainer'
'400':
description: Bad request format
content:
application/json:
schema:

$ref: '#/components/schemas/Error'
'401':
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description: Unauthorized
content:
application/json:
schema:

$ref: '#/components/schemas/Error'
'503':
description: Error on the server side
content:
application/json:
schema:

$ref: '#/components/schemas/Error'
post:
summary: Get key with options
description: >-

Retrieves an encrypted key with additional options for a
key
identified
by {slave_SAE_ID}.

parameters:
- name: slave_SAE_ID
in: path
required: true
description: URL-encoded SAE ID of the slave SAE.
schema:
type: string

requestBody:
description: Key request data format
required: false
content:
application/json:
schema:
$ref: '#/components/schemas/KeyRequest'

responses:
'200':
description: Successful response
content:
application/json:
schema:

$ref: '#/components/schemas/KeyContainer'
'400':
description: Bad request format
content:
application/json:
schema:

$ref: '#/components/schemas/Error'
'401':
description: Unauthorized
content:
application/json:
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schema:

$ref: '#/components/schemas/Error'
'503':
description: Error on the server side
content:
application/json:
schema:

$ref: '#/components/schemas/Error'

/api/v1/keys/{master_SAE_ID}/dec_keys:
post:
summary: Get key container
description: Retrieves keys matching those previously
delivered
to a remote master SAE based on the Key IDs supplied from
the
remote master SAE.
parameters:

- name: master_SAE_ID
in: path
required: true
description: URL-encoded SAE ID of master SAE.
schema:
type: string

requestBody:
description: Key IDs data format
required: true
content:
application/json:
schema:
$ref: '#/components/schemas/KeyIDs'

responses:
'200':
description: Successful response
content:
application/json:
schema:

$ref: '#/components/schemas/KeyContainer'
'401':
description: Unauthorized
content:
application/json:
schema:

$ref: '#/components/schemas/Error'

get:
summary: Get key container for specified simple requests
description: Retrieves keys matching those previously
delivered
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to a remote master SAE based on the Key IDs supplied from
the
remote master SAE. Only for specified simple requests.
parameters:

- name: master_SAE_ID
in: path
required: true
description: URL-encoded SAE ID of master SAE.
schema:
type: string

- name: key_ID
in: query
required: true
description: Key ID in UUID format.
schema:
type: string

responses:
'200':
description: Successful response
content:
application/json:
schema:

$ref: '#/components/schemas/KeyContainer'
'401':
description: Unauthorized
content:
application/json:
schema:

$ref: '#/components/schemas/Error'
components:

schemas:
Status:
type: object
properties:

source_KME_ID:
type: string

target_KME_ID:
type: string

master_SAE_ID:
type: string

slave_SAE_ID:
type: string

key_size:
type: integer

stored_key_count:
type: integer

max_key_count:
type: integer

max_key_per_request:
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type: integer

max_key_size:
type: integer

min_key_size:
type: integer

max_SAE_ID_count:
type: integer

status_extension:
type: object

KeyRequest:
type: object
properties:

number:
type: integer
description: Number of keys requested. The default
value is
1.

size:
type: integer
description: >-
Size of each key in bits. Default value is defined as
key_size in
Status data format.

additional_slave_SAE_IDs:
type: array
items:
type: string

description: >-
Array of IDs of slave SAEs. Used for specifying two
or
more slave
SAEs to share identical keys.

extension_mandatory:
type: array
items:
type: object

description: >-
Array of extension parameters specified as name/value
pairs that KME
shall handle or return an error.

extension_optional:
type: array
items:
type: object

description: >-
Array of extension parameters specified as name/value
pairs that KME may ignore.

KeyContainer:
type: object
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properties:
keys:
type: array
items:
$ref: '#/components/schemas/Key'

KeyIDs:
type: object
properties:

keys:
type: array
items:
type: string

Key:
type: object
properties:

key_ID:
type: string

key:
type: string

Error:
type: object
properties:

message:
type: string
description: Error message

details:
type: array
items:
type: object

description: >-
Array to supply additional detailed error information
specified as
name/value pairs.
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