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Abstract
This thesis deals with analyzing the scope
of variables using the graph theory. More
concretely, it is a part of the theory for
graph coloring and the construction of
graphs for coloring. Then, it describes
the theory behind building a control flow
graph and how to build an interference
graph from the control flow graph to use
as visualization for variable scope. Fi-
nally, it describes the development and
use of the resulting app, which shows, as
an output, these two graphs to visualize
the variable scope.

Keywords: graphs, graph coloring,
variable analysis

Supervisor: RNDr. Ingrid Nagyová,
Ph.D.

Abstrakt
Tato práce se zabývá analýzou rozsahu
proměnných s využitím teorie grafů. Kon-
krétně je popsána teorie k barvení grafů
a konstrukce grafu na barvení. Poté popi-
suje teorii za konstrukcí grafu toku řízení
a grafu interference proměnných. Závěrem
je popis vývoje a použití aplikace, která
má jako výstup tyto dva grafy, za účelem
popisu rozsahu proměnných.. . .

Klíčová slova: grafy, barvení grafu,
analýza proměnných

Překlad názvu: Analýza rozsahu
proměnných s využitím teorie grafů
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Chapter 1
Introduction

The scope of a variable refers to the area of the source code where the variable
may be used, modified, or declared. Managing this variable scope is important
for code maintainability, as an excessive variable scope may lead to issues
such as limited reusability of variable names, variable shadowing (where
an inner scope variable hides an outer scope variable with the same name),
and the potential for overlooked declared variables, which can introduce
difficult-to-detect bugs.

Graph coloring is now used in register allocation to determine necessary
variable storage and enable the reuse of a register for storage. For this
purpose an interference graph is colored, where each node in the graph
represents a variable and an edge represents a shared lifetime of the two
connected variables. The aim of this thesis is to develop an application to
visualize the variable scope through the before-mentioned interference graph
and its coloring. Providing the users with this graph may help with easier
identification of variables, which may need scope optimization.

The thesis begins with a theory for graph and graph coloring, as well as
some greedy algorithms for graph coloring. Following this, we will describe
variable scope in more detail, highlighting some issues caused by bad scope
management. We will then explain the theory behind constructing an inter-
ference graph to determine the minimal needed scope of a variable. After
which we will provide examples of other possible solutions for optimizing the
variable scope. Finally, we will describe the implementation of the applica-
tion that will provide the user with the information for the variable scope
optimization, and we will test our application on a dataset of homework from
the subject PRP to determine the information our application can provide
and the limitations of our application.
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Chapter 2
Graphs and graph coloring

This chapter serves as a reminder for definitions related to graphs and graph
coloring, which will be used in the following chapters.

2.1 Graph

Definition 2.1. A graph is an ordered triple (V(G),E(G),ε(G)), where V(G)
is an non-empty finite set of vertices, E(G) is a finite set of edges and ε(G) is
an incidence mapping which assigns to an edge e ϵ E(G) a pair of vertices
(x,y). A graph is considered complete when every pair of distinct vertices has
an incidence mapping to an edge. [1, 2]

Definition 2.2. A graph G’ is a subgraph of graph G if it can be created by
leaving out some (or none) vertices or edges of graph G while still maintaining
the properties of a graph. [1]

Definition 2.3. Two vertices are adjacent or neighbors if an edge connects
them. [2]

Definition 2.4. The degree of a vertex v is the number of edges incident with
the vertex v. [1]

Definition 2.5. A plane or planar graph is a type of graph that can be drawn
in the plane without its edges intersecting. Such a drawing is called planar
embedding. [2]

Definition 2.6. A bipartite graph is a graph whose vertices can be partitioned
into two distinct sets (X, Y) so that each edge has one end in X and the other
in Y.

Definition 2.7. A complete bipartite graph is one where every pair x ϵ X and
y ϵ Y has an edge.
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........................................ 2.2. Graph coloring

2.2 Graph coloring

Definition 2.8. A coloring of a graph G is an assignment of values to vertices
from a set C (so-called colors) so that no two neighboring vertices share a
color. Graph G is considered k-colored if a coloring using k colors exists.

Definition 2.9. The chromatic number of a graph G is the smallest number
of elements needed to color a graph and is denoted χ(G).

2.2.1 Graph coloring algorithms

This section will introduce a group of greedy algorithms that achieve graph
coloring in a relatively short runtime.

Greedy algorithm

This algorithm selects an uncolored vertex and assigns it the smallest possible
color, depending on its neighbors. The number of colors used depends on the
order of vertices to color. [9]

Algorithm 1 Greedy algorithm
color ← array(V.size(), 0)
for v ∈ V do

NeighborColors← []
for neighbor ∈ v.neighbors do

if Color[neighbor] ̸= 0 then
NeighborColors.add(color[neighbor])

end if
end for
colorV ← 0
while color[v] = 0 do

colorV ← colorV + 1
if colorV not in NeighborColors then

color[v]← colorV
end if

end while
end for

Saturation Largest First / Dsatur algorithm

The saturation largest first algorithm selects the vertex with highest degree
of saturation to color first. This degree is defined as the number of neighbors
that were already colored in previous iterations. In case of a tie between
vertices, it will choose the one with the most neighbors.[8]

3



........................................ 2.2. Graph coloring

Algorithm 2 Dsatur algorithm
color ← array(V.size(), 0)
satur ← array(V.size(), )
Q← {}
for v ∈ V do

Q.add(v, satur[v], v.degree)
end for
while Q not empty do

v ← Q.pop()
if Color[v] ̸= 0 then

NeighborColors← []
for neighbor ∈ v.neighbors do

if Color[neighbor] ̸= 0 then
NeighborColors.add(color[neighbor])

end if
end for

end if
colorV ← 0
while color[v] = 0 do

colorV ← colorV + 1
if colorV not in NeighborColors then

color[v]← colorV
end if

end while
for neighbor ∈ .̌neighbors do

if neighbor not in Color and colorV not in satur[neighbor] then
satur[neighbor].add(colorV)

end if
end for

end while

Recursive largest first algorithm

The recursive largest first algorithm selects a vertex with the highest degree,
then it selects another vertex that shares the largest number of neighbors
with the first one and is not its neighbor. Then, it selects another with the
largest number of neighbors with both and is not a neighbor of either. This
repeats itself until there are no vertices that are not neighbors of the selected
vertices. This creates a list of vertices that share the same color and then
repeats the above step on a subgraph without the vertices from the list.[9]

4



........................................ 2.2. Graph coloring

Algorithm 3 Recursive largest first algorithm
color ← array(V.size(), 0)
V ′ ← V
currentColor = 0
while V ′ not empty do

currentColor = currentColor + 1
v ← vertex with largest degree in V’
Neighbors← v.neighbors
color[v]← currentColor
V ′.remove(v)
while exists a vertex that is not in Neighbors and is in V’ do

v ← vertex with most neighbors in Neighbors
Neighbors.add(v.neighbors)
color[v]← currentColor
V ′.remove(v)

end while
end while

The following graph describes the performance of these algorithms on
random graphs with vertex count N, where the probability of an edge between
vertices is 0.5.

Figure 2.1: Performance of coloring algorithms on random graphsA.1
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Chapter 3
Variable Scope

Variable scope is the block of code of the program where the variable is
accessible, starting from the point when the variable is declared. It defines the
visibility of a variable, determining where the variable can be modified. The
visibility is bounded by the before-mentioned block of code and is important
for the interaction between variables and reusing identifiers, meaning the
same identifiers can denote a different variable at different points of code.
There are four types of scope: function, block, function prototype, and file.
[13]

3.1 Scope types

3.1.1 Function scope

Function scope is the only scope where the declaration of a variable is not
important, and this variable can be accessed anywhere in the function and is
only applied for labels and used in conjunction with goto statements. Labels
are syntactically an identifier ended with ":" followed by a statement.[13]

For all other scopes, the placement of the declaration of the variable
determines its scope.[13]

3.1.2 Block scope

A variable declared inside a block or as part of the list of parameters of a
function definition has a block scope, and its scope ends with the end of the
associated block.[13]

3.1.3 Function prototype scope

Function prototype scope applies to the declaration of functions, which are
not definitions, applies to the list of parameters of the function, and ends
with the end of the function declarator.[13]

6



......................................... 3.1. Scope types

3.1.4 File scope

File scope applies to variables declared outside of blocks or function parame-
ters, and its scope with the end of the file. These variables are also known as
global variables.
[13]

3.1.5 Shadowing of variables

If two variables share the same identifier there can be overlap of scopes, then
one scope (the inner scope) will be a strict subset of the other (the outer
scope). If so, the variable with the inner scope will hide the outer scope
variable from its declaration to the end of the block. That means inside the
inner scope, only the variable with the inner scope is accessible.[13]

3.1.6 Keywords affecting scope

Static and extern are two keywords that can affect the scope of a global
variable or a function. These are used for sharing variables or functions
between files, where the keyword extern marks a variable that is accessed
from another file, and the static keyword limits the global variable or a
function to its file only. Static keyword also denotes variables to be stored
even past its scope, so, for example, the state of the variable is stored between
function calls. [13]

#include <s td i o . h>

int x = 5 ; // F i l e scope v a r i a b l e

int main ( ) {
p r i n t f ( "%d\n" , x ) ; // p r i n t s 5 from f i l e scope v a r i a b l e

int x = 2 ; // Block scope v a r i a b l e shadows f i l e scope v a r i a b l e
p r i n t f ( "%d\n" , x ) ; // p r i n t s 2 from b l o c k scope v a r i a b l e

i f ( x > 1) {
int x = 10 ; // Inner b l o c k scope v a r i a b l e
p r i n t f ( "%d\n" , x ) ; // p r i n t s 10 from inner b l o c k scope v a r i a b l e

}
p r i n t f ( "%d\n" , x ) ; // p r i n t s 2 from b l o c k scope v a r i a b l e
return 0 ;

}

Figure 3.1: Example of shadowing
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................................. 3.2. Scope and storage of variables

3.2 Scope and storage of variables

The scope also affects the storage of objects when the object is guaranteed to
exist and remembers its last stored value; there are three types of storage:
static, automatic, and allocated. [13]

3.2.1 Static storage

Static memory storage is an object stored for the entire lifetime of a program
and is either denoted with the static keyword, or the object is accessible
globally.[13]

3.2.2 Automatic storage

Automatic storage is associated with the execution of a block and starts from
the entry of a block until its end. This storage is used when the object is not
static or global. A new object instance is initialized if the block is accessed
recursively and not replaced.[13]

3.2.3 Allocated storage

Allocated storage is a manual memory allocation by calling calloc, malloc
or realloc functions. If the allocation succeeds, the pointer returned from
these functions is then used to access this memory and is assignable to any
data type pointer. This allocation is stored in memory until it is manually
deallocated. This means that even if the pointers to the allocation are lost
or inaccessible, the memory is still occupied. That means the scope of a
variable pointer can be smaller than its memory lifetime as it requires manual
deallocation by the code.[13]
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Chapter 4
Determining variable scope using graph
theory

To analyze the variable scope, we need to know the order of execution of in-
structions in the program and possible branches or jumps inside the program.
We will use control flow graphs to describe this order and use it to determine
the scope of variables in a program, after which we will use these scopes to
construct an interference graph to determine the efficiency of the placement
of a variable.

Definition 4.1. A control flow graph is a directed graph in which nodes
represent basic blocks, and edges represent control flow paths between these
blocks. [11]

Definition 4.2. A basic block is a linear sequence of program statements
without a possibility of branching or stopping, with one leading statement
as an entry point and its singular exit point as its last statement, either the
exit of a program or the statement before the following leading statement.
A block within a program can have multiple blocks that come before it.
Another block or various blocks can follow it through directed edges unless
it is a program-terminating block, which never has a successor. Addition-
ally, a program entry block may have a predecessor outside its program.[10, 11]

Definition 4.3. An interference graph of variables is a graph where each node
is a variable, and an edge represents a situation where both nodes need to be
stored simultaneously.[11, 12]

Constructing a control flow graph

We must split the code into the basic blocks defined above to construct a
control flow graph. First, we determine the set of leading statements. A
leading statement can be defined as the entry point of a program, a statement
that is an unconditional or conditional jump in a program, or a statement
that immediately follows a statement that is an unconditional or conditional

9



........................... 4. Determining variable scope using graph theory

jump. Using this set, we construct the basic blocks, where each leader has
a block consisting of the leader and all following statements up to but not
including the next leader or end of the program. However, we might find it
more convenient to use each statement as its own leader instead, meaning
each statement would be its own block for future use during the construction
of scope because it will provide a more precise scope of usage.[10, 11]

Now, we build edges between these blocks. An edge connects two blocks if
the last statement of the first block unconditionally or conditionally jumps
to the first statement of the second block or the second block immediately
follows the first block, and the first block does not end with an unconditional
jump statement. With this graph, we can now build an interference graph of
variables. Finally, we add an entry node at the start and an exit node at the
end. [10, 11]

Building an interference graph

To build an interference graph, according to the source code, we must deter-
mine an area where the variable is necessary in memory. For this purpose,
we will use the built control flow graph. We define two sets, IN and OUT, for
each block. IN represents any variables coming from the preceding blocks,
and OUT represents any variables going to the successors. We define two
additional sets, USE and DEF, for each block except the exit node, where
the program just terminates and does nothing else. USE is a set of variables
that reference a variable initialized elsewhere and came from the preceding
block. DEF is a set of variables initialized or defined in the block and before
their use in the block. We calculate the USE and DEF sets for each block.
As a consequence of our definitions, the USE set of a block must be part
of its IN set, and any variables of the DEF set are not part of the IN set.
Therefore, the equations for calculating the IN and OUT sets for each block
are as follows:

IN[b] = USE[b] ∪ (OUT [b]−DEF [b])

OUT[b] = ⋃
s ∈ Successors of b IN [s] To prevent an undefined result from

reading the IN set of the exit node, We define it as an empty set. Now that
we have these sets, it is very simple, if a variable is in an OUT set of a block
Bi and there is a path that leads to a USE set of another block Bj, which
includes this variable, and it is not reassigned in a DEF set on that path,
then it is alive in the block Bi[11, 12] The figures 4.1 show the source with
the resulting CFG in 4.2 and the resulting interference graph in the 4.3.

From the interference graph in figure 4.3, we can see that the variables p
and isPrime intersect with one another, however, if we look at the control
flow graph or the source code, the early declaration of isPrime causes the
intersection because it is actually needed at the earliest before the initialization
of the for loop, as the previous if-else branching shows, that it doesn’t need
the variable isPrime. Still, it must deliver it to the for loop.

10



........................... 4. Determining variable scope using graph theory

#include <s td i o . h>
#include <s t d l i b . h>

int main ( )
{

int n ;
int i sPr ime = 0 ;
int p = 4 ;
p r i n t f ( " Enter ␣a␣ p o s i t i v e ␣ i n t e g e r : ␣ " ) ;
s can f ( "%d" , &n) ;
i f (n < 0) {

p r i n t f ( " Error ␣ nonpos i t i v e ␣number␣ inputted . ␣
Example␣ o f ␣a␣ p o s i t i v e ␣number : ␣%d" , p) ;

return 100 ;
} else i f (n <= 1) {

p r i n t f ( "%d␣ i s ␣a␣prime␣number . " , n ) ;
} else {

for ( int i = 2 ; i <= n / 2 ; i++) {
i f (n % i == 0) {

isPr ime = 1 ;
break ;

}
}
i f ( i sPr ime == 1) {

p r i n t f ( "%d␣ i s ␣a␣prime␣number . " , n ) ;
} else {

p r i n t f ( "%d␣ i s ␣not␣a␣prime␣number . " , n ) ;
}

}

return 0 ;
}

Figure 4.1: C source code
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........................... 4. Determining variable scope using graph theory

Figure 4.2: Control flow graph of the code
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Figure 4.3: Interference graph of the code
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Chapter 5
Related uses dealing with variable scope or
similar problems

Our program’s primary goal is to use graph coloring to determine the scope
of variables. This is accomplished by analyzing the edges leading to and from
a node in the interference graph. If the resulting interference graph employs
a significant number of colors, it may suggest a scenario where multiple
variables are in use and might hint at underlying coding style issues. Graph
coloring serves diverse purposes in the context of variables.

An instance of graph coloring’s application for variables is found in register
allocation. This process seeks to optimize registers for variables, thereby im-
proving the performance of source code. In this context, two variables cannot
share the same register if they might be used by the code simultaneously.
This determination is made using the interference graph and its coloring,
where each color corresponds to a register, and variables are linked if they
can be utilized simultaneously [7].

A similar problem is solved by static code analysis, which is a technique
that involves examining code without executing it. This analysis provides sug-
gestions for improvement and identifies syntax problems, including violations
of coding standards, programming errors, forgotten symbols, or undefined
variables.[10] It’s worth noting that while static code analysis addresses a
broader range of issues, it may not necessarily share a solution with the
specific problem our program addresses.
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Chapter 6
Application

6.1 Base Idea

The user will upload a C source file, and the application will output two
interactive graphs, a control flow graph (CFG) and an interference graph,
where the CFG will represent the uploaded source code.

6.2 Selected technologies

We selected Python to implement the application as it provides plotting and
parsing libraries, which we use to construct our control flow and interference
graphs. We selected a tree-sitter library for parsing to convert the file into
an abstract syntax tree. An abstract syntax tree (AST) is a hierarchical
structure representing the source code [12], which makes it easier to analyze
the control flow graph, as we don’t have to implement a direct grammar
parser for C language. The selection of the tree-sitter library was primarily
based on the ability to have queries for the nodes of the AST, which made
parsing expressions for variable references unnecessary. The tree-sitter library
also provides a playground to test the queries against a source code, which
makes it easy to test if our written query captures the needed nodes for our
functions. To show the results of our parsing, we selected the panel library, a
web framework designed primarily to deliver data apps. One of its advantages
is the ability to develop seamlessly, as it provides an option to reload the app
during development if there are changes in the code. Another advantage is
exporting the data as HTML without running the server, making it possible
to run a console command without needing the server to run the web. Also,
there is no forced library for plotting data, even though some have better
integration into this library. For this reason, we selected Bokeh to plot our
data inside the Panel app, as Panel is built on top of Bokeh library, has
extensive documentation, and was the least problematic when working with
directed graphs.

To handle the graph data structures and algorithms, including the creation
and manipulation of control flow and interference graphs, we chose NetworkX.
NetworkX is a popular Python library that supports complex graph opera-
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......................................... 6.3. Architecture

tions and comes with a wide range of built-in algorithms for graph analysis,
including those for graph coloring. As Bokeh offers a function that integrates
NetworkX graphs into itself, provided the underlying data of the graph is
serializable, it ensures we can visualize our graphs effectively within the Panel
app.

6.3 Architecture

Figure 6.1: Panel/Bokeh server architecture[14]

As Panel is built on top of the Bokeh server, the following figure depicts
the browser’s interaction with the Panel server. The app code is our Python
code, which builds the plots and sends the document to the browser. The
decision to create a web app was made to offer our application without the
need to install anything. However, another reason why Panel and Bokeh were
selected was that they provide a pretty simple way to share the resulting
plots, as they can be exported as HTML code, provided the callbacks for
interaction between the plots are clientside, which means for our purposes,
that they are written in Javascript and not Python.
.

The creation of the Bokeh document is as follows:

(i) User uploads a C source file, and it’s converted by Bokeh into a base64
encoded string, which is sent as a JSON message back to our application
backend.

(ii) Upon receiving the message, our application converts it back to a string,
which is then worked on by our app, which includes parsing the string
into a CFG and conducting a live-variable analysis on the CFG to create
and color the interference graph. When this is finished, the server sends
it back as a Bokeh document.

16



........................................ 6.4. Implementation

(iii) User either sees no change or Bokeh displays his source file’s result-
ing CFG and interference graph. The application also allows users to
download their graphs as HTML files.

6.4 Implementation

The following part of the chapter describes the steps of providing the final
output for the user.

6.4.1 Initial steps

The application or console command accepts input from a c source file. The
tree-sitter library then parses this file into an AST. This AST is then used to
build a CFG.

6.4.2 Construction of a control flow graph from an abstract
syntax tree

The theory behind constructing a control flow graph is written in chapter 4.
It uses program statements, as mentioned in the above section, but we are
not working directly with the program but with its abstract syntax tree, as
was mentioned in 6.2. That way, the code is already parsed, making it easier
to determine the type of statement a node in the syntax tree represents. This
also makes creating the first construction of basic blocks of the control flow
graph quite simple. As mentioned in the 6.4.3, a single statement can also
represent a basic block, so we identify the nodes that represent a statement,
and there is no need to visit the statement children for further processing.
Finally, we take these basic blocks and connect them to represent the flow
of the program. The straightforward part is connecting the statements in
sequence one after the other. In the AST, these are represented as siblings in
the tree, with the first one being the first statement and the last sibling being
the previous statement. However, we must also consider the flow-altering
statements, which alter a sequence by having a jump to another node, which
is not necessarily a direct sibling.

Building basic blocks in the application

For the basic blocks, we need to parse the AST. For this, our application
implements visitors[15] on the AST, allowing us to extend our operations
without modifying the existing ones. So, to build our basic block, we call the
function in 6.2 and let the program determine which function to call based
on the statement type. When it creates a new CFG basic block from an AST
node, we store the AST node inside the block to have information.
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........................................ 6.4. Implementation

def v i s i t ( s e l f , node : Node ) :
return getattr ( s e l f , " v i s i t_ " + node . type , s e l f .

v i s i t_d e f a u l t ) ( node=node )

Figure 6.2: Base visitor function

(a) : A control graph of hello world.

#include <s td i o . h>
int main (void )
{

p r i n t f ( " He l lo ␣World ! " ) ;
return 0 ;

}

(b) : Hello world program

Flow-altering statements

The flow-altering statements will divert the current path, which was forming
between the siblings of the syntax tree. To provide a proper control flow
graph, we must determine where these diversions lead. Thanks to the abstract
syntax tree, we can determine the type of the flow-altering statement; the
common ones include for, while, do-while, if-else, switch-case, and goto. And
knowing the type, we can model it in our control flow graph.
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Working with the flow altering statements

While constructing basic blocks in the CFG, we must consider the jumps
caused by the flow-altering statements and function calls. Loops, if-else,
and switches have the jump parsing implemented into themselves, as the
statement where they go to is either right after it, which we can represent as
an empty potential statement, or, in case of if-else or switch, the following
case/condition. We also considered the code situation right after the break.
Suppose the source code has a direct successor after the break statement. In
that case, we mark the edge to this successor as DEAD CODE instead of
removing it entirely from the CFG to provide the user with the information
about the unnecessary code. We need to wait until all basic blocks are
constructed for goto and function calls because we don’t know if the goto
label or the called function is already in the program. We can work with the
goto and function calls when the whole AST is parsed. For that purpose, the
application stores all the CFG nodes during parsing, representing the start of
a function and a labeled statement. It also stores all the goto locations and
function calls.

Example depictions of flow altering statements

The following section shows some drawings of the flow-altering statements.
Although the previous sections describe the basic blocks of the graph as a
single graph, they are merged if possible to reduce visual clutter. Figure

Figure 6.4: Drawing of if-else condition in control flow graph

6.4 shows the if-else structure in a control flow graph; a design decision
was made to separate the condition from the previous code to make the
condition visually distinct from the regular statements. The same decision
was applied to the other flow-altering statements to visually inform the user
that a branching or a jump is occurring in the program. Figure 6.5 depicts
loops; it can be seen that the continue causes the loop to go to the iteration
of the loop, while the break ends the loop goes to the statement, where the
condition also goes to when it is evaluated as false. A similar construction
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(a) : Drawing of a for loop

(b) : Drawing of a for loop with break and continue statements

Figure 6.5: Drawing of for loops

is applied for a while and do-while structures. The difference would be the
continue statement directing the flow to the condition instead of the iterating
statement.

Final steps

As was mentioned before, during the construction of the CFG, the flow-
altering statements sometimes use an empty node in the CFG to represent the
target of flow alteration. Now that we have finished the construction of CFG,
we can remove them and connect with the proper target. Our application
collects and removes these empty nodes while keeping information about the
edges, primarily describing true/false values for conditional statements.

Then it must connect the goto statements and function calls, as these can
be connected after we are sure their targets are present, and more often than
not, these targets are not direct successors to have an empty statement in
the CFG, like in cases of loops and conditional if-else statements. For future
purposes, it is helpful for our application to know which CFG nodes share
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the same scope. For that purpose, we use the handy ability to write a query
on the AST from the tree-sitter library to get a list of scopes.

def scope ( node ) :
query = C_LANGUAGE. query ( " " " [

( for_statement )
( i f_s ta tement )
( whi le_statement )
( f u n c t i o n _ d e f i n i t i o n )
( compound_statement )
( s t r u c t _ s p e c i f i e r )
( do_statement )
( t r a n s l a t i o n _ u n i t )

] @scope " " " )
captures = sorted ( query . captures ( node ) , key=lambda

n : (n [ 0 ] . end_point [ 0 ] − n [ 0 ] . s ta r t_po int [ 0 ] ) )
return captures

Figure 6.6: Query function to build a scope list

As seen in the 6.6, the structure of this query is a list of nodes in the
AST that we want to match and a label for them. The query then returns a
pair of nodes and the label. These nodes then carry information about their
start and end, which is also their scope in the program. At first glance, it
may seem necessary to only use a query for compound statements, which are
statements wrapped in brackets and translation unit, which is the entire C
source, including if, while, for, and function definitions in the query is also
needed.

Firstly, a variable can be referenced as part of a condition. In the case of a
function definition declared as a part of a parameter list, when we capture
only the compound statement, it would either be ignored or have a scope of
the parent statement of these four. Secondly, which is more important, it is
unnecessary to have a compound statement as a child of a for, if, or while
statement when the child would be a one-liner. This would have meant that
ignoring these four would cause the child statement to have as a scope not
only itself but also the scope of the parent statement of the four, which could
be excessive and make our program inaccurate. These are why we must have
if, while, for, and function definitions in our query list.

We can see a sorting of the list in the 6.6, which is sorted from the smallest
to largest, as an inner scope will always be at most equal, never larger than
the outer scope, as the outer scope always includes the inner scope. We want
to have as precise a scope as possible for each CFG node. Using this list,
we take each node in the CFG, which also holds the information about their
start, and find the smallest scope where the node in the CFG can fit.
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6.4.3 Control flow graph to intersection graph

Having finally finished constructing the CFG, we move on to the intersection
graph, which is a graph that takes variables as nodes and edges between
mean a shared lifetime, where both variables must exist at the same time.
First, we need to find all declared variables. Once again, we use a query in
figure 6.7 to find all types of declarations. We get the variable’s name by
capturing the identifiers in this query. We walk through each node in the
CFG, take the stored AST node, and use this query to see if something was
captured. If yes, we store the information about declaring a variable with
the found identifier in the CFG node and keep a list of declared variables
and the CFG node in which they were declared. For this purpose, we have
created a class Variable in our application, which contains information about
its textual representation, references, and definitions. We also set its scope as
a scope of the CFG node, which holds the declaration. This scope we found
before as the last step of the CFG construction. We now use the second
query in the 6.7, which captures redefinitions, to update our variable and our
CFG nodes about new definitions. Next, to get all references, we query the

query = C_LANGUAGE. query ( " " "
( i n i t _ d e c l a r a t o r

d e c l a r a t o r : ( i d e n t i f i e r ) @loca l . var )
( array_dec lara tor

d e c l a r a t o r : ( i d e n t i f i e r ) @loca l . var )
( d e c l a r a t i o n

d e c l a r a t o r : ( i d e n t i f i e r ) @loca l . var )
( parameter_dec larat ion
d e c l a r a t o r : ( i d e n t i f i e r ) @loca l . d e f i n i t i o n .

parameter )
( po in t e r_dec l a ra to r
d e c l a r a t o r : ( i d e n t i f i e r ) @loca l . var )
" " " )

ass ignment = C_LANGUAGE. query ( " " "
( ass ignment_express ion

l e f t : ( i d e n t i f i e r ) @reass igned . var )
( ass ignment_express ion

l e f t : ( po in ter_expres s ion )
@pointer . var )

" " " )

Figure 6.7: Queries to find declarations and definitions

AST this time for all identifiers, provided we filter out the identifiers we used
before in the declaration and the identifiers for function calls and function
definitions/declarations. We update our variables with class Variables to hold
the information by storing the CFG node holding the reference. We also
update the CFG node holding the reference about which variable it refers to.
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Now, we can also calculate the actual needed theoretical scope, which follows
a similar step as finding a scope of just one CFG node, as this time, we find
a scope that fits all the reference nodes, not just one CFG node.

Following our theory of building an interference graph as described in the
chapter , we have just built the DEF and USE sets, which are represented by
the definition and reference lists in their CFG nodes, respectively. But we
now need the IN and OUT sets in the CFG to finally build the interference
graph. Figure 6.8 is the function that describes the creation of the IN and
OUT sets; it goes through all nodes and updates each in and out set until
convergence is reached. Excluding exit nodes is intentional, as described in
the section 6.4.3, they are not supposed to be any variables during exit.

def get_in_out ( graph ) :
for node in graph . nodes :

node . i n s . update ( node . r e f )

change = True
while change :

change = False
for node in graph . nodes :

i f node . node_type == ’ Exit ’ :
continue

in_old = set ( node . i n s )
out_old = set ( node . out )

node . out . c l e a r ( )
for s u c c e s s o r in graph . s u c c e s s o r s ( node ) :

node . out . update ( su c c e s s o r . i n s )

node . i n s . c l e a r ( )
node . i n s . update ( node . out . d i f f e r e n c e ( node .

d e f s ) )
node . i n s . update ( node . r e f )

i f in_old != node . i n s or out_old != node .
out :
change = True

Figure 6.8: Function building the in and out graph.

Building the intersection graph

We can create the intersection graph as we have looped the CFG and have
our IN, OUT, USE, and DEF sets. However before that, we decided to merge
nodes in the CFG, which can be described as representing linear parts of code
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without the flow-altering statements. If these parts share the same scope
and are in sequence, we will consider them one big CFG node. We take each
declared variable and loop through the CFG, and if the CFG has the variable
in the OUT or IN set, we create a connection of the variable with all the
other variables in the OUT and IN sets. The use of USE and DEF sets is
unnecessary as both are already included in the IN and OUT sets, as seen in
the figure 6.8, where during construction, the IN set includes all elements of
the USE set, as these are references and the OUT set is part of DEF and IN
respectively. We ignore the part where a variable is just in the def set, which
means it will not be used anywhere and is unimportant for all intents and
purposes.

Coloring the intersection graph

To color our intersection, we chose the DSATUR algorithm, as it was a middle
ground between best coloring and performance, as can be seen in the figure
2.1, even though during testing, there were not that many variables.

6.4.4 Final Result

Having finished the graphs, we will deliver the output as a bokeh document.
Figure 6.9 depicts the resulting output the user will see. The nodes also have
text which describes what they are. However, they are hidden as they can
get quite large, and more often, they are readable only if we zoom in on the
interested part. The left graph represents the CFG of the program, and the
right one represents the intersection graph. The clean separation of functions
and no use of global variables can be seen almost immediately, as there are,
according to our legend and looking at the nodes colored by the function
color, four functions in the program. There are four separate components in
the intersection graph. Of course, just seeing these two graphs is not enough
information. Clicking the node in the CFG graph will highlight all nodes in
the intersection graph that appear in this node. When clicking on the variable
node in the intersection graph, all nodes that refer to or declare the variable
will be highlighted. Each variable node on hover also provides information
about the theoretical needed scope and the actual scope of the variable.

6.5 Use cases for user

The user can use this output to find excessive scope usage. These graphs can
show how the variable is used and where the variable is used through the
combination of interaction between graphs and hover information. As hover
information on the CFG node provides the source code lines and the lines
themselves, hovering over a variable provides the calculated minimal needed
scope and actual scope from declaration to the end of the CFG node scope,
where the variable was declared. So, the basic use case for the user is to hover
over all the variables in the graph of variables, and if there is a possible issue,
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Figure 6.9: Resulting application

click on it and see what nodes are highlighted to see what disconnect there is
between referenced scope and declared scope. Further details about errors
are provided in the next chapter.

6.6 Testing

The testing of the application focused on creating flow-altering statements,
with unit tests written on for, while, switch,if-else, and function calls. The
tests were written by first manually drawing the expected output and then
calculating the number of nodes and edges, with the tests comparing these
results.

25



Chapter 7
Analysis of the results

7.1 Testing on Data

The application was run on a dataset of the first nine homework from the PRP
subject, with each homework having at least 48 working submissions. There
was one empty submission for the eighth homework. In total, there were 494
files upon which we tested the output of our application, with all of them
combined having 14041 variables, during which we found that our algorithm
for building the control flow graph and the intersection graph worked for
most of them in quite a reasonable time, with the longest time being about 5
seconds. However, a bottleneck was created with a single submission, whose
control flow graph was interpreted as having 927 nodes, and laying it out in
our application with dot layout, which we use, as it is intended for laying out
directed graphs, proved to take at least 20 minutes, when it was drawn with
a layout for huge graphs it took 5 minutes to complete and display the result.

7.2 Found uses for our application

Thanks to this, we can detect errors related to early variable declaration,
which leads to excessive scope and unused variables. These errors are depicted
through the hover information on the variable and highlighted nodes in the
CFG; both must be used to infer why the scope is excessive.

When dealing with unused variables, we also found that they are not
separate in the code, as we initially considered when building it from ref-
erences and definitions. However, what proved to be more effective was to
consider only all variables exiting and entering a node. This approach makes
unused declarations/definitions dead, which, during the construction of the
interference graph, causes them to be ignored since they won’t leave their
node.

While this makes visualizing unused variables quite simple, as they are
practically separate single components, it is also important to note that
separate components can form a function scope. Therefore, a component
consisting of a single variable does not immediately indicate that it is an
unused variable. It could also be a function that uses just one variable. Thus,
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it is necessary to hover over the variable and click it to see where it is declared
and how it is used, which would give the user the reason why it stands alone.

Figure 7.1: Unused variable x in the code

The other error of early variable declaration is much more difficult to depict.
When a variable is clicked, it highlights all the nodes where it is referred to,
declared, or defined. However, seeing a scope in the control flow graph (CFG)
is hard. It could be seen as starting from a node that initiates a scope (such
as a condition, function, or loop). However, when there are jumps between
nodes, it can be difficult to track back to the start of a scope.

Therefore, we provide the information of the theoretical scope as numbered
lines, and the user can open their own source code, which might prove easier
than attempting to figure out why our application considers it an early
declaration by trying to trace it through the CFG. For example, Figure 7.2
shows an early declared variable and its path through the program. While
the path in the provided example figure is quite clear, it might be easier for
the user to just look directly at their source code. If properly formatted, a
search feature can help see why the variable was considered to be declared
early.
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Figure 7.2: A variable that is early declared.

7.3 False positives

We also found during the analysis of early variable declarations that our
application has quite severe limitations. As we consider references only during
calculation, the application determines variables used only in conditional
statements and in the children of these statements as having scope only in
the conditional statement. However, in C99, there is no default support for
declaring variables inside a condition, so they must be declared outside of
it. Therefore, it is necessary to consider if the calculated theoretical scope is
achievable.

There was an attempt to fix this by not considering if and while statements
as their own scope. However, as mentioned in the previous chapter, this
would result in excessive scope capture for one-line if and while statements,
as a compound statement scope capture will not consider these. This creates
an accuracy tradeoff: achieving accurate scope for one-line if and while
statements leads to inaccurate scopes for variables used only in the condition
and the children of the condition in the CFG. Consequently, users should
consider our output more like advice rather than a definitive rule that can
be applied universally, and look for themselves if the theoretical scope is
applicable in their situation.

Another limitation is that our application does not consider operations.
For example, if we have an update expression in the form x += 2 inside a
loop and use the result only within the loop, our application will consider
this x as needed solely within the loop. This is only possible if the user
employs a static keyword variable. Users must be aware of these limitations
and interpret the application’s output accordingly.

Figure 7.3 shows this by showing the path of the variable it goes through.
You might notice the similarity between this figure and figure 7.2, where both
are declared just outside of the loop. Still, upon further inspection of this
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Figure 7.3: A variable that is part of a condition

figure, we find that this early declaration is necessary as it is the variable
used in the condition. As mentioned before, we cannot declare a variable
inside a condition in C99.

7.4 Applying the results of our analysis

In total, We found 1931 variable scope differences in 14041 variables during our
attempts to find errors by analyzing a minimal scope of references, implying
an error rate of approximately 13.7%. However, a lot of them were false
positives due to the before-mentioned inability in c to declare variables directly
in a condition, so we settled on automatic detection of the variable scope by
finding a difference between the reference and the definition reaching it and
the actual scope, which means we calculate the needed scope as the minimal
scope which holds the references and the written definitions they use, and in
the end, we found only 434 mistakes, with the errors being unused variables
or redefinitions used in an inner scope with the declaration somewhere in the
outer scope.

As a result, we can confidently say that about 3.1% of variables have had
an erroneous scope in the source code. The information of different scopes is
available as hover information on the variable node and, as such, is visible
just by hovering over a variable node. The rest of the errors are left up to
the interpretation of the user and can be figured out by reading the manual
at C.3
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Chapter 8
Conclusion

The aim of the application was to provide the user with information about
excessive variable scope through the graph coloring and the interference
graph.

During development, it showed that showing just this graph is not enough
to provide the information of excessive variable scope. Therefore, we used the
control flow graph, which was already built for building an interference graph,
to show the information about the usage of variables and their travel through
the scope. Thanks to this, we provide enough context for the user, but as
looking through the control flow graph might be tedious, we also provide the
theoretical needed scope and actual scope as hover information, so the user
can just look directly into the source code.

So even though the goal was to show the variable scope through just
variable coloring, variable coloring ended up in our application more as a
showing, that variables are not needed at the same time if they share a color,
and to determine if a scope is excessive, we used the interactions between
interference graph and CFG, as in if a clicked node in CFG refers to declares
to a variable, highlight it in the interference graph, and a clicked variable,
highlights its paths from definition to its usage.

During our analysis, we found the limitations of our program, in particu-
lar when dealing with conditions and variables in them and also updating
expressions inside loops. This sometimes leaves the resulting output of the
application up to the correct interpretation of the user.

Despite this, we believe our application can, more often than not, show
how to have a correct scope and why it is incorrect through the depiction of
the path of the variable and the information about the scope.

8.1 Possible future development

During development, there was an attempt to implement pointer tracking,
which would make it easier to find allocation and deallocation of the pointer.
The attempt failed as it required further processing of functions, and working
with all the options of passing pointers through the code. It also does not
exactly apply to our main aim, as forgotten pointers would not be trackable
in the interference graph thus the idea was to have a third graph, where by
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clicking on a node in the CFG, we would show a pointer graph, which would
be built from a dictionary of pointers reachable in the selected CFG node and
this dictionary would flow, however, this also has the limitation of not having
enough information to determine if the pointer needs to be freed, does the
area it points at still exist in scope particularly if it points a local variable
in a function and is returned. It proved to be quite a difficult task when we
must also consider all the possible operations through which the pointer can
get a value and whether the value is an allocation or not.

So the current best solution in our program is to take the path of a pointer
and look at its ends, which would be highlighted nodes in the CFG without a
highlighted successor, and see if there are free statements there if the variable
was allocated.

Another possible future development is working with projects, as right now
it works with just a single source file. While this is enough for most use cases,
especially as the intent is to use it for PRP homework, it might prove nice to
visualize the interaction between two files and have as an option, for example,
a separate file for utility functions that might be reused multiple times across
different projects.
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Appendix A
Tables

Algorithm N Average Colors Time
Greedy 10 3.38 0.00001
Greedy 50 12.1 0.0001
Greedy 100 20.36 0.0006
Greedy 200 34.7 0.0014
Greedy 500 71.72 0.0114
Greedy 750 99.68 0.0114
Greedy 1000 125.6 0.0537
Dsatur 10 3.1 0.00009
Dsatur 50 10.82 0.0021
Dsatur 100 19.06 0.0078
Dsatur 200 32.64 0.0317
Dsatur 500 68.66 0.2301
Dsatur 750 95.68 0.2301
Dsatur 1000 121.58 0.9465
RLF 10 3.22 0.00004
RLF 50 10.48 0.0012
RLF 100 17.7 0.0094
RLF 200 30.4 0.0571
RLF 500 64.08 0.7101
RLF 750 89.08 2.1847
RLF 1000 114.1 5.3713

Figure A.1: Table of measured performances of algorithms on random graphs
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Appendix B
Used software

Following the Methodological guideline 05/20231, the following was used
during development..Microsoft Bing copilot as a search engine.2. ChatGPT as text feedback and rephrasing suggestions of sentences.3.Grammarly as grammar correction and text feedback.4

1https://intranet.fel.cvut.cz/cz/rozvoj/MP-pouzivani-ui.pdf
2https://www.bing.com/chat
3https://chatgpt.com/?oai-dm=1
4https://www.grammarly.com/
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Appendix C
How to use the App

C.1 Installation

. Download the app, which is part of the attached files.. Install Python 3.121 or newer. Inside the app package is a file requirements.txt containing a list of
required libraries that have to be installed as part of development; install
using your package manager, for example, using pip:
pip install -r /path/to/requirements.txt. Install the python library pygraphviz2 separately, as it depends on
graphviz;.To run the app, if you have successfully installed pygraphviz, run in
console panel serve app.py.Otherwise, run in console panel serve app_noviz.py
, which is the same, only the laying out algorithm is much simpler, so
the result might not be as nice..The resulting app runs on http://localhost:5006/. If the static output is enough, run in console python console.py {your/source/file.c}
with optional argument --export {path/to/file.html}. Again, if you
do not have pygraphviz, use con_noviz.py instead.

C.2 Application

C.2.1 Initial screen

Figure C.1 shows the application’s initial screen. It is an empty main part of
the screen with a sidebar that offers an option to upload a c file.

1https://www.python.org/downloads/release/python-3120/
2https://pygraphviz.github.io/
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Figure C.1: Initial screen

C.2.2 Uploaded File

Figure C.2 shows the result of uploading a c file. First, a new option in
the sidebar downloads the main screen as a static HTML file that can be
sent and maintains interactivity. On the main screen are two graphs; on the
left, the graph depicts a control flow graph of the uploaded source file and a
legend next to it describing the color of those nodes. On the right, we have
the graph of variables, where a connection between two nodes means that
there is a path in the control flow graph, which the two variables share at
least a part of. Often, they form a cluster representing either a completely
isolated scope or a function. It is more likely a function. Of course, global
variables will connect these clusters when the global variables are used in
both of them. There are also instances of singular nodes, which could mean
unused variables, as they will have no scope and no interaction with the
other variables, a function that takes a single variable as an argument, or a
function with no arguments that has a variable it uses for itself. There are
three buttons on the bottom: the first one shows or hides the code directly in
the control flow graph, the second shows or hides the names of the variables
in the graph of variables, and the last button toggles showing the paths for
all references from the nearest definition in the control flow graph, or show
its references and definitions.

C.2.3 Toolbar

Each graph has a toolbar on the right of it. There are 6 tools:. Pan tool allows moving the graph..Wheel zoom allows zooming in the graph by scrolling..Tap tool is for selecting and deselecting nodes.
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Figure C.2: Result of uploading a c file

. Save allows the user to download the plot as an image.. Reset rescales back the graph and moves the graph to the center.. Hover makes the user see the hover information when the mouse is placed
on a node.

C.2.4 Hover information

Both graphs have hover information on their nodes. The hover information
of a variable node (as shown in the figure C.3) shows the theoretical scope
needed by finding the scope, which encompasses all paths the variable needs
to reach its references from a definition. The actual scope shows the scope
of the declared variable, from its declaration to the end of the scope, where
it is declared. The rest is self-explanatory. The variable name is its name,
the type, its type, and the variable declared at the line means that line is the
first time the variable shows up in the source code. Figure C.4 shows the
information about the source code itself. It describes what type of node it
is, as can also be seen from the legend and its color, and it shows the line
directly in the source code where it is placed.

C.2.5 Interactions

Figure C.5 shows the result of a click on a node in the control flow graph; this
shows the variables in the variable graph that are referenced or defined in this
node. This can be useful to find which variable is used in that node, which
may help if there is a problem with variable shadowing. Figure C.6 is after
clicking on a variable node in the variables graph. This figure only shows
the references and highlights them. While figure C.7, shows the entire path
the variable has to take to reach its references from its definitions. These
definitions can be recognized in the control flow graph as a node with no
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Figure C.3: Variable hover information

predecessors. The use of the path can be as tracing back in the source code
to see what value was probably used in the reference. It is also possible
to try finding if a pointer is freed by tracing the last references and see if
they are calls to a free function, with the last references being ones with no
highlighted successor. The change between showing the entire path and just
its references and definitions is triggered by clicking the third button, with
the text describing the future result, not what is currently displayed, as can
be seen in the changes of the button label from C.6 to C.7.

C.3 How to use the output

Given this output, there are two options for what to do. You can hover/display
the names of the variables to find which one interests you, and it will highlight
the path this variable takes in the control flow graph if you click, which could
be seen as where in the source code this variable is. You can often recognize an
excessive scope by having one highlighted node far from the others, especially
with no direct connection to them. Also, you can see if a variable is unused;
if a single node is highlighted, look at it; if the variable is just there declared,
you probably do not need it in your code, or you forgot to use it if you
assigned some value to it and probably recalculated that value somewhere
else and used it there. Or you click the nodes of the control flow graph to
see which variables are used in that node, for which one major use case is
probably variable shadowing, as you can see directly which variable is used
by hovering over that variable and see where it is declared.

A good option is finding the start node in the CFG and then going from
there by finding a function that interests you or just clicking through all the
variables and seeing if something catches your eye. Another is to go through
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Figure C.4: Hover on a node of the control flow graph

the smallest variable clusters first in the Graph of variables, especially if you
think that either the variable is supposed to interact with more than they
are connected to or if they are singular. You are not certain of the reason.
You can then select it and the CFG will display for you, where and how is
the variable running through your code,
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Figure C.5: Click on a node in the control flow graph

Figure C.6: Click on a node in the graph of variables, with references only
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Figure C.7: Click on the same node in the graph of variables with the entire path

42



Appendix D
Shortcuts

DSatur = Saturation largest first algorithm
RLF = Recursive largest first algorithm
CFG = Control flow graph
AST = Abstract syntax tree
PRP = Procedural programming for OI (subject at CTU FEE)
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