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Abstract

Speech is the main way people communi-
cate with each other, and we cannot even
imagine our lives without it. Since a cen-
tury ago, there have been lots of works
dedicated to speech technologies. Auto-
matic Speech Recognition (ASR), is one
of the important bridges between human-
machine interactions. Working with this
technology is always considered impor-
tant.

In the last decades, ASR has seen
enormous improvements, making signif-
icant improvements in several key areas.
Thanks to these improvements, ASR has
become not only a part of our daily lives
but also an important system in diverse
areas such as military communications,
air traffic control, public safety networks,
and emergency response systems. Despite
these improvements, ASR still lacks re-
alistic situations and shows performance
drops in some aspects. There is evidence
that these systems show different perfor-
mances between genders, and some lan-
guages are less favorable for ASR com-
pared to others.

In this thesis, we focus on increasing
the success rate of speech radio channel
content recognition. We aim to design
and characterize procedures that achieve
the best results. Our research can be di-
vided into main areas: first, we provide an
overview of state-of-the-art methods on
the topic; then, we present our approach
and simulated method that we intend to
use; finally, we present and compare re-
sults for discussion. In conclusion, this
research provides a comprehensive under-
standing of speech, digital signal process-
ing, and Automatic Speech Recognition
(ASR) systems, offering valuable insights
into the optimization of these systems.

Keywords: Speech, Automatic Speech
Recognition, Digital Signal Processing,
Word Error Rate, WER, Audio and
speech processing, Speech-to-text.
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Abstrakt

Mluveni je hlavni zptsob, jak lidé komu-
nikuji mezi sebou, bez kterého si témér
neumime predstavit své zivoty. Jiz vice jak
stoleti je vénovano mnoho pozornosti tech-
nologiim pro zdznam a zpracovani hlasu.
Automatické rozpoznavani reci (ASR) je
jednim z dulezitych prvku interakce c¢lo-
véka a stroje. Vyzkum v této oblasti tech-
nologie je v soucasné dobé velmi aktualni.

V poslednich desetiletich ASR zazna-
menalo velké zlepseni, které prineslo vy-
znamné pokroky v nékolika klicovych ob-
lastech. Diky témto vylepSenim se ASR
stal nejen soucésti nasich kazdodennich
zivotu, ale také dulezitym systémem v
mnoha oblastech, jako jsou vojenské komu-
nikace, fizeni leteckého provozu, verejné
bezpecénostni sité a systémy pro nouzovou
reakci. Presto je ASR stéle nedokonalé v
realistickych situacich, kdy vykazuje po-
kles vykonu v nékterych aspektech. Je pro-
kazano, ze tyto systémy vykazuji rizné
vykonnosti mezi pohlavimi a také nékteré
jazyky jsou méné priznivé pro ASR ve
srovnani s jinymi.

V této praci se zaméifujeme na zvyseni
uspésnosti rozpoznavani obsahu radiového
kanalu. Cilem je navrhnout a charakterizo-
vat postupy, které dosahuji nejlepsich vy-
sledki. Nas vyzkum lze rozdélit do téchto
hlavnich oblasti: nejprve poskytujeme pre-
hled nejnovéjsich metod v dané oblasti;
poté predstavujeme néas pristup a simulo-
vanou metodu, kterou planujeme pouzit;
nakonec predstavujeme a porovnaviame
vysledky k diskusi. Celkové tato prace
poskytuje uceleny prehled hlasovych cisli-
cové zpracovanych signalu a systému au-
tomatického rozpoznavani rec¢i (ASR), a
nabizi cenné poznatky pro optimalizaci
téchto systému.

Klicova slova: Speech, Automatic
Speech Recognition, Digital Signal
Processing, Word Error Rate, WER,
Audio and speech processing,
Speech-to-text.
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Chapter 1

Introduction

. 1.1 General overview

Speech has always been the main way of human communication. We cannot
imagine our daily lives without speaking to each other; it is the most natural
interaction between humans. In different kinds of real-life situations, it’s the
fastest way for us to communicate. In today’s rapidly improved technology
and Al, there are several works in which machines are replacing us, humans.
Because of these changes, human interaction is not limited to just other
humans, but also they are interacting with machines. Day by day, it is
becoming more common to see human-machine interaction in different areas
of life. Even though technology improved, making several key improvements,
there are still lots of real-life scenarios where the performance of systems
drops. In order, to make this human-machine interaction more smooth and
accurate, research continues to find ways and improve this communication as
much as possible.

When it comes to Automatic Speech Recognition (ASR) systems, there are
two different purposes. Firstly, they are the backbone of the speech-to-text
(STT) systems. These systems are usually used for transcribing related works.
This means it used longer parts of human speech in texts in systems. For
impaired people, it can be used as an automatic subtitle generation systems
e.g. real-time situations. Secondly, these systems help us to control electronic
devices which means we can enable electronic devices by our speech in the
voice-control domain. These systems are the text-to-speech (TTS) systems.
These systems transform the written text into sound which means they are
allowing computers to “speak”. Both systems are usually integrated together
as basic modules of higher-level dialogue systems.

The accuracy ASR system plays a crucial role in successful speech tran-
scription or human-machine interaction. Over the years, the structure of
ASR systems has changed and improved to more stabilized versions. These
versions are most suitable to model individuals as parts of human speech
have been found and incorporated into the working whole. The speech signal
parametrization is one of the standardized aspects of the overall ASR system
flow. Nowadays, most of the parametrizations that are used, are aiming to
minimize the differences between speakers and their speaking styles to create
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more general ASR acoustic models. It is believed that, like this, whole ASR
acoustic models can be very general. It will help to make speech recognition
process more robust. However, we can still find various transcription errors
in ASR systems in real life. The reason behind those ASR errors depends
on the insufficient amount of exact or similar examples in training data to
speaker-specific or non-standard realizations of training data. It also shows
untypical prosodic properties like intonation, loudness, and speech rate of
speech, compared to typical training data, increase the chance of words being
misrecognized. This explains the effort to disregard those prosodic properties
(mainly fundamental frequency which contributes to perceived pitch) during
the signal parametrization. Nevertheless, it can still be claimed that prosody
information is a useful cue for ASR systems. For enhancing its output with
punctuation marks or decreasing its word error rates (WER) and increasing
its accuracy.

B 1.2 Thesis objectives and organization

The goal of this thesis lies in contributing to a deeper understanding of the
role ASR technology plays and creating an experiment and simulations for
testing speech recordings. The thesis is organized as follows:

® Chapter 2 is dedicated to speech and its formation. Through the
subchapters, we aimed to present information about speech and speech
signals.

® Chapter 3 is dedicated to Digital Signal Processing and its technology.
Through the subchapters, we aimed to present information on Digital
Signal Processing and how it has a huge impact on our daily lives.

® Chapter 4 is dedicated to Automatic Speech recognition(ASR). Through
the subchapters, we introduce the main application areas of ASR systems,
describe their basic architecture, and then error rate analysis of current
ASR systems.

® Chapter 5 is dedicated to Software tools that are used in this research.
Through the following subchapters, we presented information about these
tools and their distinct roles and capabilities.

® Chapter 6 is dedicated to the Simulated experiments in this research.
Through the following subchapters, we presented our approach, our data,
our test setup, and the ethical considerations for our experiments.

® Chapter 7 is dedicated to the Practical experiments and their results in
this research. Through the following subchapters, we presented how to
implement ASR in different environments, and the results after experi-
ments and discussion about key findings. Chapters end with suggestions
about future research directions in ASR.
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® Chapter 8 is Conclusion. In the last chapter, we will conclude our
research with findings and suggestions for future works.






Chapter 2
Speech

Speech is vocal communication that humans use to express language. When
discussing languages, it’s remember that each language uses words that are
phonetic combinations of vowel and consonant sounds. First humans used
to communicate with more basic sounds, kind of similar to the way that
animals communicate with each other. However, unlike animals, over the
years and through evolution, human speech developed more and become the
main communication way for humans. Today, humans perform many different
speech acts apart from basic sounds example, informing, answering, directing,
and in among other speaking. Through the following subchapters, we will try
to present information about speech and speech signals.

B 2.1 Formation of speech signal

The production of speech signals is a complex physical process. The sound,
we hear is created by lungs, glottis (with vocal cords), and articulation tract
(mouth and nose cavity). In speaking, the speaker produces a speech signal in
the form of pressure waves that travel from the speaker’s head to the listener’s
ears. The creation of speech continues as after the speaker breathes in, causing
the muscles in the chest to tighten. Then air is pushed from the lungs against
upward gravity into the larynx. The vocal cords are inside the larynx and
this air passes through it. If they are vibrating, it is possible to get some
periodic natural sound, otherwise, they pass by as noise-characterized sound
without any fundamental frequency. This signal is nonstationary changing
characteristics as the muscles of the vocal tract contract and relax. For each
sound, there is a positioning for each of the vocal tract articulators: vocal
cords, tongue, lips, teeth, velum, and jaw. Sounds are typically divided
into two broad classes: vowels, which allow unrestricted airflow in the vocal
tract; and consonants, which restrict airflow at some point and have a weaker
intensity than vowels.

The human speech production system is illustrated in the following picture.
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Vocal tract Lungs and trachea

Nasal cavity u’v\“ (Hard) palate

Nostrils

Alveole ridges

Soft palate
(velum)

Vocal folds Tongue
inspiration (left) and fonation (right)

-

Trachea

Epiglottis

Figure 2.1: Schematic view of human speech production mechanism. [T]

The creation of speech process can be seen as a filtering operation where
vocal and nasal tracts, the main cavities of the creation of speech act as
acoustic filters. The organs are characterizing the filter and it’s loaded at the
main output which is radiation impedance because of lips. They are used to
change the properties of the filter system and loading over time. The source
that excites the filter may be either periodic, resulting in voiced speech, or
noisy and aperiodic, resulting in unvoicing speech.

Speech Production model is illustrated in the following picture.

Nose
output
Masal
cavity
Velum

cavity cavity
Vocal /

cords Mouth
output

Trachea

Muscle

farra

Figure 2.2: Block diagram of human speech production system. [I]

We can assume that the model that the signal produced at the glottal
level acts as the source and is linearly filtered by the vocal tract. The sound
produced is then emitted into the surrounding air through radiation loading,

6



2.2. Physiology of hearing

typically from the lips. Additionally, the model assumes that the source and
filter are independent of each other.[I]

| ) Physiology of hearing

The human hearing mechanism of ears is based on their location and the
form of signal inside it (which can be acoustic, vibration, or electric) can be
divided into 3 main parts: the outer ear, middle ear, and inner ear.

The anatomy of the human ear is illustrated in the following picture.

ossicles

Semicircular
Stapes Canals
Nerve

e \ o |
NS E—
‘ =
Cochlear
-*ﬁ - Nerve
]
l Cochlea
Ear Canal

Tympanic
Cavity
Jsénn‘;%?g:_lce uﬁﬁ:ﬁ?& Eustachian Tube

Incus

Vestibular

Concha

Auricle

outer middle inner

Figure 2.3: The anatomy of the human ear.[2]

Sound initially enters the outer ear, then goes through the middle ear
before reaching the inner ear, where it is converted into neural signals that
are sent to the brain to create perception. The pinna, the only visible part
of the outer ear, primarily influences the positional aspects of hearing for
frequencies higher than 500 Hz. Continuing from the outer ear, the tube-
shaped ear canal (meatus) maintains a resonating mode, typically around
3 kHz, which is crucial for the intelligibility of speech signals due to its
resonance peak of approximately 15 dB. The eardrum (tympanum) separates
the outer ear from the middle ear, housing the three ear bones—hammer
(malleus), anvil (incus), and stirrup (stapes)—which serve as the center of
an effective acoustic conversion system, adapting impedance between the air
and fluid environments of the inner and outer ear. Also in the middle ear,
there are mechanisms to protect hearing from high-intensity sounds when
necessary. The border between the middle and inner ear is marked by oval
and round windows. The main organ in the inner ear is the spiral-shaped
cochlea, with its tube divided into two floors by the divider containing the

7
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sense organ of Corti. This organ contains hair cells that transmit information
to the brain via approximately 30,000 threads of the auditory nerve, using
low-voltage electric impulses. Different frequencies stimulate different parts
of the hair cells, enabling the brain to perceive the specific frequency content
of the stimulus.[2] [3]

oval window
(behind stirrup)

middle ear bones:

stirrup
auditory nerve
anvil

hammer

aud'itory

canal eardrum window cochlea

Figure 2.4: The ear scheme.|[3]

B 23 Properties of speech signal

Speech signals interplay of various properties that reflect both the complexity
of human communication and the physiological processes in speech production.
While numerous speech sounds can be produced, the shape of the vocal tract
and its excitation pattern change relatively slowly over time. As a result,
speech can be considered quasi-stationary over short periods (typically around
20-25 milliseconds).

Voiced segments of the speech signal can be defined physiologically as
complex tones, which are periodic non-sinusoidal signals composed of multiple
frequency components. [10]

Speech signals exhibit noise and variability, stemming from factors such as
background noise, speaker characteristics, and environmental conditions. This
noise and variability are essential for achieving accurate speech-processing
results.

The properties of speech signals are diverse and dynamic which reflects
both speech production and human communication. These properties are
essential for developing effective speech-processing technologies and gaining
insights into the nature of spoken language. These fundamental properties
have a significant role in the digital processing of speech signals, particularly
in terms of the typical frame size and the applicability of the Fourier transform
and other signal transforms. [10]
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. 2.4 Common speech signal descriptors

Typically, signals offer three basic types of descriptors. Pitch information
describes the fundamental frequency, particularly in voiced parts of speech.
Intensity describes the overall strength of the signal. Spectral descriptors
aim to capture the signal’s frequency content by highlighting key events in
the spectrum, compressing the full information. These descriptors, or their
specific subtypes, are commonly used as prosodic features.

Bl 2.4.1 Fundamental frequency

Fundamental frequency (f0) estimation, which is also known as pitch detection,
is a very popular research topic for many years, even still today. The basic
problem is to extract the fundamental frequency (f0) from a sound signal,
which is usually the lowest frequency component, or partial, which relates
well to most of the other partials. In a periodic waveform, most partials are
harmonically related, meaning that the frequency of most of the partials is
related to the frequency of the lowest partial by a small whole-number ratio.
The frequency of this lowest partial is fO of the waveform. The (f0) measure
is Hertz [Hz] (number of periods within one second [s71]).[I1]

Fechner-Weber’s law outlined that frequency measured in Hertz doesn’t
directly correlate with human perception of pitch. According to this law,
our perception’s velocity is proportional to the logarithm of the stimulus.
In simpler terms, when the stimulus increases geometrically, our perception
rises arithmetically. Therefore, converting from absolute frequency units to
relative musical units is essential in tasks aiming to imitate or evaluate human
perception accurately.

ST = 121og, (fZ) ST (2.1)
fi

Equation 2.1 establishes a conversion from frequency difference in Hertz
to semitone difference (musical scale) using a logarithm based on frequency
ratios. This conversion shifts from absolute to relative measurement, requiring
a reference point, f1, for relativity. To ensure consistency, it’s beneficial to
relate the musical units to a common frequency unit, such as 1 Hz or 100
Hz. Equation 2.2 defines the conversion into semitones related to 100 Hz

(ST 11008 2))-

STrer100H> = 1210g2 <1f020> [ST] (22)

The unit semitone [st, ST] corresponds to the musical unit in Western
music, where an octave (the interval between musically "same" notes) is
divided into 12 semitones. For more precise measurement, one can use the
semitone cent unit, where one semitone consists of 100 cents.

9



2. Speech

Several studies have shown that human hearing exhibits a logarithmic
nature up to a frequency of around 800 Hz, after which it becomes "non-
linear" compared to the logarithm. This discovery led to the suggestion of
several alternative scales, such as the mel, bark, and erb scales, which provide
even better approximations of fundamental frequency perception.

Two essential descriptors of fundamental frequency period stability, typically
assessed during sustained vowel sounds, are jitter and shimmer. Jitter reflects
frequency stability by measuring the equality of period durations. It is
calculated as the average absolute difference between consecutive periods,
divided by the average period duration. Shimmer, conversely, quantifies the
amplitude stability of f0 (fundamental frequency) periods. It is computed as
the average absolute difference between the amplitudes of consecutive periods,
divided by the average amplitude.

These measures have empirically established thresholds and are primarily
employed in speech pathology research. Additionally, the harmonics-to-noise
ratio (HNR), which characterizes voice hoarseness, is often utilized. HNR
values vary depending on the vowel identity, with excessively low values
typically indicating the presence of hoarseness in the voice.[12]

B 2.4.2 Sound intensity and loudness

Fechner-Weber’s law influenced the perception of sound intensity and pitch
as well. The intensity of a sound wave refers to the amount of sound energy
passing through a unit area per second. Loudness, on the other hand, measures
the ear’s response to sound, with amplitude determining how loud a sound is
perceived. The intensity of a sound is directly related to its amplitude, which
affects how loud it sounds to the ear. Decibels (dB) are used to measure
intensity. The intensity, or amount of energy, in sound waves, determines
the perceived loudness of the sound. As decibel levels increase, sound waves
become more intense, resulting in louder noises.

Both objective measures and subjective quantities exist to describe sound
intensity, reflecting both its physical properties and human perception.

Two commonly used objective measures for sound level exist. The first is
derived from the definition of sound intensity, representing the true physical
meaning as emitted power into a unit area (expressed in W/m?). The second
measure is based on sound pressure, which arises from slight atmospheric
air pressure modulations. This principle involves the capturing of signals
through the deviation of a microphone diaphragm and is directly related to
the captured voltage and audio signal amplitude.

Both measures utilize a 10-based logarithm of the ratio as the core trans-
formation from the original unit into the ’level’ measure.

Sound intensity level (SIL) is defined as:

L; = 10log (;{)) dB] (2.3)

Sound pressure level (SPL) is defined as:

10



2.4. Common speech signal descriptors

L, = 20log (3) [dB] (2.4)
bo

It can be assumed that SPL and SIL levels correspond to each other.[13]

The strength inherent in the use of decibel units may not be immediately
apparent, as it replaces the usual linear difference in basic units with ratios
of the original unit, introducing a new kind of arithmetic and understanding.

The subjective perception of loudness is heavily influenced by sound fre-
quency, as sounds of the same intensity can evoke different perceptions of
loudness at various frequencies. To address this, numerous experiments have
been conducted to derive curves of equivalent perceived loudness, known as
Fletcher-Munson curves[4], by comparing the intensities and frequencies of
tested sine waves with those at 1kHz. The perceived loudness level in phons
[Ph] at 1kHz directly corresponds to the objective sound pressure level (SPL).

Loudness levelphons

<
120 &\:\h:““ 120 ":
NN LA
100 NNDR TS| 1] 11100 W T WLt
% \\\ N""---...,___‘.‘.‘- -9;-:‘\\ H]/ T
¢ o NOREE s T
g \\\\'t‘ NI 1 70 ] e
L NS e N
3 NN Tt L] so 1111 f
& 40 b\ \:‘E\_‘ L 40 __‘\‘4..__.-* 1/’
NN T 0 |1
20 \\:\ 20“\ UL
[~ h\-...f d

0 priogE R R — N =/
20 50 Iltlao I 300 1kHz 3kHz 10

Frequency - Hz

Figure 2.5: Fletcher-Munson’s curves of equivalent perceived loudness. [4]

However, it’s important to note that these curves are valid for sine signals
only. In reality, perceived loudness is affected by various factors beyond
sound pressure and frequency, including bandwidth, spectral composition,
information content, time structure, and the duration of sound signal exposure.

However, none of the previously presented level measurements accurately
reflect the sense of perceived loudness. This discrepancy led to the creation
of a new measure called loudness, which is anchored to a loudness level of 40
phons. The following equation defines loudness N in [sone| units as derived
from loudness level L [Ph]:

L—40

N = 2(1_0)[sone] (2.5)
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2. Speech

The advantage of using the loudness measure lies in the fact that it adheres
to the naturally expected principle of additivity of stimuli and perception,
unlike dB and Ph measures. Specifically, an increase of the loudness level by
10 phons results in the perceived loudness in sones being doubled, while a
decrease of 10 phons leads to a halving of the loudness value.

There is little doubt about the advantages of representing pitch in musical
units like semitones or cents in tasks oriented towards human perception
because differences in these measurements closely align with our perception
of the examined acoustic quality. However, when it comes to the relationship
between sound intensity and perceived loudness, it cannot be definitively
claimed that perceived loudness, defined in sone units, is the primary choice
as an energetic feature difference descriptor of a signal in machine learning
tasks, even if they can be obtained objectively.

B 2.4.3 Spectral characteristics

The most effective parameterizations for machine audio signal processing
often involve leveraging the information contained within the signal spectrum.
This spectrum is typically obtained using Fourier transform, with digital
signal processing commonly utilizing its faster implementation known as Fast
Fourier Transform (FFT). The result of both methods consists of two parts:
the magnitude spectrum and the phase spectrum, each expressed as a single
complex number.

In speech processing, it is primarily the magnitude spectrum that is utilized,
providing information about the specific frequencies present in the signal.

Because the magnitude spectrum contains comprehensive information about
the signal, there is a tendency to compress the entire spectrum image into a
low-dimensional space, especially during Automatic Speech Recognition (ASR)
signal parameterization in the front end. Additionally, the full magnitude
spectrum often contains overly detailed information, making some smoothing
techniques via its parameterizations necessary.

In the field of ASR, two widely used speech signal parameterizations are
Perceptual Linear Prediction (PLP) and Mel-Frequency Cepstral Coefficients
(MFCC). We are going to talk about it on 4.2,

. 2.5 Phonetic Differences Between Male and
Female Speech

When we hear a male or female voice, the first noticeable distinction is often
the pitch. It’s widely acknowledged that, on average, male voices have a lower
pitch. However, this is just one of the many differences observed between male
and female speech. These differences, termed phonetic differences, encompass
various aspects related to the production and perception of sound.
Researchers have categorized these differences into two main types: bio-
physical inevitabilities and learned behaviors, commonly known as nature
and nurture. While biological variances such as the dimensions of the mouth,
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throat, and vocal folds contribute to the sounds produced, individuals also
adopt speech patterns associated with their gender identity. This becomes
especially evident when comparing the speech of preadolescent boys and girls
who have similar anatomical features before puberty.

Beyond pitch, differences in phonation and articulation play significant
roles in distinguishing male and female speech.[14]

Let’s look at them more closely:

Phonation and Pitch: The fundamental frequency (F0) of the voice,
determined by the vibration of the vocal folds, is closely tied to the
perceived pitch. Male vocal folds, typically longer and thicker, vibrate at
a slower rate, resulting in a lower pitch, with an average FO of 100-120
Hz in languages like German and English. Meanwhile, female vocal folds,
shorter and lighter, vibrate at about twice the frequency, around 200-220
Hz.[14]

Articulation Vowel: Apart from differences in voice pitch, variations
in the size and shape of the vocal tract also influence voice quality. The
average female vocal tract length is about 14-14.5 cm, while the male
vocal tract is 17-18 cm on average, primarily due to the larynx lowering
during male puberty. These differences affect sound production, as the
vocal tract modifies the tone created at the glottis. Vowel qualities, such
as [i], [e], or [o], vary depending on vocal tract configurations and the
strengthened frequency components.|[14]

Articulatory Speed: Individual measurements of vowels in speech
reveal that the articulators are constantly in motion. Differences in
average articulatory dimensions between males and females can affect
the overall size of the acoustic vowel space, potentially leading to a larger
female acoustic vowel space.[14]

Interaction of Pitch and Articulation: During speech, airflow from
the lungs generates sound at the vocal folds or above the glottis, which
is then modified by the pharynx, tongue, velum, and lips. Vowel quality
is determined by tongue position and lip configuration, which influence
the harmonics in the sound signal. For example, a high front tongue
position with spread lips produces [i], while a high back tongue position
with rounded lips produces [u].[14]

Voice Quality: Beyond the pitch, male and female voices often exhibit
differences in quality. Female voices may be perceived as smoother or
more melodic, while male voices may sound rougher or more resonant.
These differences can result from variations in vocal fold thickness,
tension, and vocal tract resonance.[14]

Intonation Patterns: Research shows that males and females may use
different intonation patterns, particularly in terms of rising and falling
pitch contours. Females may use more varied intonation patterns, with
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greater pitch variation within sentences, while males may use flatter or
more monotone intonation.[14]

B Speech Rate: On average, females tend to speak at a slightly faster
rate than males. This difference in speech rate can influence overall
communication dynamics, with faster speech potentially conveying en-
thusiasm or urgency, while slower speech may indicate thoughtfulness or
deliberation. [14]

® Use of Fillers and Discourse Markers: There may be differences in
the use of fillers (such as "um" and "uh") and discourse markers (such
as "like" and "you know") between male and female speech. Research
shows that females may use more fillers and discourse markers, possibly
reflecting differences in conversational style or socialization.[14]

® Pronunciation and Accent: While pronunciation and accent can vary
widely based on individual factors such as regional background and social
identity, there may be subtle differences in the way males and females
pronounce certain sounds or words. These differences can be influenced
by factors such as social norms, education, and exposure to different
speech communities. [14]
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Chapter 3
Digital Signal Processing (DSP)

Digital Signal Processing has a huge impact on our daily lives. There are
an endless list of devices that are influenced by the theory of Digital Signal
Processing. In the modern era, we cannot describe our lives without this tech-
nology. Through the following subchapters, we will try to present information
about Digital Signal Processing and principles.

B 3.1 Introduction of Digital Signal Processing(DSP)

We live in the age of technology where Digital Signal Processing and its
technology have a huge role in this technology age and have a huge impact on
our daily modern life. Because most of the devices that we are using in this
technology era are built on Digital Signal Processing theory. Digital Signal
Processors are successful implementations of this theory.

Currently, these devices are a huge part of our lives, a number of these
devices are endless, and new devices are constantly expanding. Talking
about Digital Signal Processing devices, without these devices, our daily life
wouldn’t be the same, we would lose access to digital/ Internet audio and
digital /Internet video, as well as tools like CDs, DVDs, MP3 players, digital
cameras, digital telephones, digital satellite and TV, and both wired and
wireless network.

Thinking about losing voice recognition systems, speech synthesis systems,
and image/video editing systems in today’s era would make everything more
challenging for humans. It’s clear that without Digital Signal Processing,
it would be harder for both humans and scientists to perform in different
areas.[15] [5]

The concept of Digital Signal Processing is illustrated in the following
picture.

Analog Band-limited Digital Processed Output Analog
input signal signal digital signal signal output
) Analog » ’ DS Reconstruction -

filter ADC processor » DAC filter

Figure 3.1: A digital processing scheme.[5]
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3. Digital Signal Processing (DSP)

In the diagram analog filter, an analog-to-digital conversion(ADC) unit, a
digital signal(DS) processor, a digital-to-analog conversion (DAC) unit, and
a reconstruction (anti-image) filter are illustrated.

B 3.2 Digital Signal Processing Basic Theory

The symbol of digital signal processing (DSP) technology lies in the digital
signal processor (DSP). DSP is a field that utilizes computers or specialized
digital processing equipment to process signals using numerical methods. It
encompasses tasks such as data acquisition, signal transformation, analysis,
synthesis, filtering, evaluation, and identification, all aimed at extracting
information from signals.

Compared to traditional analog processing methods, digital processing offers
unmatched advantages. Digital signal processing systems can handle both
digital and analog signals. However, analog signals must first be converted
into digital signals before they can be processed by a digital signal processing
system.

The concept of typical digital signal processing flow is illustrated in the
following picture.

Analog-to-Digital
Conversion

Initial Signal Signal Conversion LPF

Digital Signal
Processing

Digital-to-Analog-

Useful Signal Signal Conversion LPF y
= = Conversion

Figure 3.2: Digital Signal Processing Flow.[6]

The theory of digital signal processing involves several key aspects:

® Pre-processing of analog signals: This includes filtering out unwanted
frequency components and noise in input analog signals to prevent
spectral aliasing distortion after sampling.

# Time domain sampling and recovery of analog signals: This
covers analog-to-digital conversion technology, sampling theorem, and
quantization error analysis.

B Analysis of time-domain discrete signals and systems: This covers
the representation and manipulation of signals, various transformations,
and description and analysis of time-domain and frequency domains of
time-domain discrete signals and systems.

® Fast algorithms in digital signal processing: This includes tech-
niques such as fast Fourier transform and fast convolution.
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3.3. Digital Signal Processing systems

® Design and implementation of analog filters and digital filters.

8 Multi-sampling-rate signal processing technology: This involves
the basic principle of sampling rate conversion systems and their efficient
implementation methods.

A quasi-signal processing system can only perform conventional simple pro-
cessing on signals, while digital signal processing utilizes numerical operations
to implement signal processing, allowing for more complex operations to be
performed using computers. Therefore, digital signal processing applications
have a wider range of possibilities. [6]

B 33 Digital Signal Processing systems

A Digital Signal Processing(DSP) system encompasses devices or setups
that perform digital signal processing operations. This can involve software,
such as algorithms running on a computer, or hardware, such as circuits or
specialized chips. In many cases, it’s a combination of both.

Digital Signal Processing(DSP) systems find applications across various
fields:

® Audio and speech processing: Used to enhance sound quality, perform
speech recognition, and create digital synthesizers.

8 Image and video processing: Includes tasks such as image enhance-
ment, restoration, recognition, and digital video broadcasting.

® Radar and sonar: Utilized for remote sensing and extracting useful
information from signals in radar and sonar systems.

® Telecommunications: A Digital Signal Processing(DSP) is employed
for data compression and decompression, error detection and correction,
and modulation and demodulation in telecommunications systems.

8 Biomedical engineering: Used in medical image processing, as well as
for signal processing in electrocardiograms (ECG) and electroencephalo-
grams (EEG).

® Seismology: A Digital Signal Processing(DSP) is utilized in devices for
processing data from seismic instruments to interpret the status of the
Earth’s interior.

Apart from these, Digital Signal Processing(DSP) plays a significant role in
improving the quality of audio recordings, creating new sounds, and correcting
problems with audio signals.

Digital Signal Processing(DSP) is used in audio applications:
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Noise reduction: Digital Signal Processing(DSP) techniques like noise
gating, spectral subtraction, and adaptive filtering are used to reduce
unwanted noise from audio signals. A noise gate, for instance, removes
all audio below a certain threshold.

Equalization: Digital Signal Processing(DSP) is utilized to adjust
the frequency response of an audio signal, improving sound quality or
creating specific sound effects.

Compression: Digital Signal Processing(DSP) techniques are applied
to reduce an audio file’s size for easier storage and transmission or to
improve sound quality by reducing the dynamic range.

Reverb: Digital Signal Processing(DSP) is used to create the effect of
an audio signal being played in a large, reflective space, enhancing its
spatial characteristics.

Pitch correction: Digital Signal Processing(DSP) algorithms are em-
ployed to correct the pitch of an audio signal, fix out-of-tune vocals, or
create specific sound effects.

3.4 Advantages and Disadvantages of digital signal
processing technology

Digital signal processing (DSP) offers numerous advantages over analog signal
processing, which are summarized as follows:

Good flexibility: Digital signals are well-suited for computer processing
and can be implemented using programmable devices. Adjusting param-
eters in a digital signal processing system is straightforward through
programming, allowing for various processing functions to be realized.

Stable and reliable: Digital systems are inherently stable and reliable,
with no impedance matching issues. When designed correctly, digital
systems can maintain stable operation regardless of changes in usage
conditions. Additionally, because digital systems are interconnected
through data, there are no impedance-matching problems common in
analog circuits.

High processing accuracy: Unlike analog circuits, digital systems
operate in a binary state, making them less susceptible to internal
noise and environmental interference. This results in higher processing
accuracy.

Ease of encryption and decryption: As information security becomes
increasingly important, complex encryption and decryption algorithms
are necessary. Digital processing is essential for implementing these
algorithms effectively.
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® Facilitates large-scale integration and miniaturization: Digital
circuits have lower requirements for parameter consistency compared to
analog circuits. This makes it easier to achieve large-scale integration
and mass production, as the basic units and modules of a digital system
exhibit high consistency.

8 Ease of automation and multifunctionality: Digital systems can
easily perform various operations based on different states, allowing a
single system to implement multiple functions.[6]

Although digital signal processing technology is increasingly applied in
reality, there are still areas that need improvement:

® Speed: Speed is a common issue in digital signal processing, persisting
since its inception. Factors such as equipment, environment, and tech-
nology contribute to this problem, but efforts are being made to address
it to facilitate communication.

8 Quality: Information quality issues, such as poor signal transmission
and unclear picture quality, continue to exist. Digital signal processing
technology requires further improvement to address these issues. So-
lutions such as multi-core processing are being employed to enhance
quality.

8 Anti-interference: While the anti-interference capability of digital
signal processing technology has significantly improved, challenges re-
main, particularly in dealing with analog signals from RF antennas.
Enhancements in all aspects of information transmission are needed
to ensure signal quality and effectiveness, providing more convenient
communication services.[6]
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Chapter 4

Automatic Speech Recognition

Humans always had the desire to automate even small tasks, since a century
ago they worked ways for this but it wasn’t until recent years. Speech is
the main pillar of the way people communicate with each other. Speech
technology is transforming our lives and becoming one of the primary means.
Through our daily life for daily use which humans interact with devices.
Automatic speech recognition (ASR) is an important technology to enable
and improves the human—human and human-machine interactions. Automatic
speech recognition (ASR) is one of the important bridges between this human-
machine interaction. This has been studied for five decades because it is
always seen as an important bridge for communication. However, even though
it was seen as important, it never became significant due to limitations. This
was mostly because the technology at that time was quite insufficient for
real usage conditions. But in recent years, these problems progressed after
improvements have been made in several key areas. In this chapter, we
introduce the main application areas of ASR systems, describe their basic
architecture, and then error rate analysis of current ASR systems.[16]

. 4.1 Introduction of ASR

Automatic Speech Recognition, also known as Speech Recognition, is a
technology that processes and turns human speech into text. Thanks to this
advanced technology, it is not only just an application for speech-to-text, but
it also provides usage from voice-enabled assistants and transcription services
to accessibility features for those with disabilities. With help from these
systems, daily life became easier not only in the different work areas but also
gives help to disabled people who help their daily lives to go smoothly.

If we look deeper into the core of ASR, we will understand that it involves
the conversion of audio signals into linguistic units using algorithms and
models that capture the complexity of language, accents, and various speech
patterns. Today, modern ASR systems take advantage of machine learning.
These systems are particularly keen on deep learning techniques, to improve
accuracy and adapt to the spoken language.

Over the years, ASR technology has grown enormously, with the help
of deep learning techniques. Now it is not only simply machines that can
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understand continuous natural conversation. The way we interact with
technology changed with this evolution.

With these rapid revolutions, the long-term goal of research in this area
changed too. Now it extended its usage beyond simple speech-to-text appli-
cations and focused on DHH (users who are deaf or hard of hearing). The
goal of it is to provide real-time captioning services for meetings and other
daily life usage. The main objective for this goal is to make ASR systems
bridge the communication gap between DHH individuals and their opponents.
With the help of these systems, the ultimate goal is to create an environment
where everyone can participate.

Even though there are a lot of improvements, there is still one challenging
aspect of developing and evaluating ASR systems which is designing metrics
that accurately measure their performance. Because these metrics should not
only consider the number of recognition errors, but they also need to the find
location of these errors within the transcription. Researchers are still working
in this area, considering these factors. They can obtain a more comprehensive
understanding of how ASR systems align with human perception and opinion
in various application settings. To achieve this, extensive data sets and testing
are crucial. Furthermore, it is essential to use diversity in the training and
testing data for ASR systems. This includes factors such as the number
of talkers, languages, and sources of impairment, as they can significantly
impact the performance and generalizability of ASR systems.

B 4.1.1 Speech Signal

As mentioned before the main purpose of speech is communication. During
speech process, both in human and engineered communication systems, the
information transmitted is encoded in the form of a continuously varying
(analog) waveform that can be transmitted, recorded, manipulated, and
ultimately decoded by a human listener. The speech signal that we call in
the case of speech, the fundamental analog form of the message is an acoustic
waveform.

Speech signals can be converted to an electrical waveform by a microphone,
further manipulated by both analog and digital signal processing, and then
converted back to acoustic form by a loudspeaker, a telephone handset, or
headphones, per wish. This form of speech processing is the basis for Bell’s
telephone invention. In today’s modern era, several devices for recording,
transmitting, and manipulating speech and audio signals are using this form as
well. Even though his invention was done without knowing the fundamentals
of information theory, today these ideas have great importance in the design
of modern communications systems.

The first step in digital speech processing is to convert the acoustic waveform
to a sequence of numbers. The System called A-to-D converters operates
by sampling at a very high rate which is applying a digital lowpass filter
with a cutoff set to preserve a prescribed bandwidth and then reducing the
sampling rate to the desired sampling rate, which can be as low as twice
the cutoff frequency of the sharp-cutoff digital filter. This discrete-time
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representation is the starting point for most applications. From this point,
other representations are obtained by digital processing.[7]
The Speech Chain is illustrated in the following picture.

Speech Producti
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Figure 4.1: The Speech Chain: from message to the speech signal to
understanding. [7]

B 4.1.2 Speech Coding

Most widespread applications of digital speech processing technology are
perhaps seen in the areas of digital transmission and storage of speech signals.
Since the goal is to compress the digital waveform representation of speech into
a lower bit-rate representation, the centrality of the digital representation is
obvious. The process is referred to as “speech coding” or “speech compression”
commonly. [7]

The speech coding block diagram is illustrated in the following picture.
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Channel or
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signal D-to-A saples Synthesis/ dara
. S -
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Figure 4.2: Speech coding block diagram — encoder and decoder.[7]

The illustrated figure shows a block diagram of a generic speech encod-
ing/decoding (or compression) system. The lower path in the figure shows the
decoder associated with the speech coder. The D-to-A decoder is often called
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a synthesizer. The reason is, that it must reconstitute the speech waveform
from data that may bear no direct relationship to the waveform.[7]

B 4.1.3 Text-to-Speech Synthesis

Scientists have studied the speech production process for many years intending
to build a system that can start with text and produce speech automatically.[7]

The Text-to-speech synthesis system block diagram is illustrated in the
following picture.

fext Linguisti Synthesis D-to-A speech
Rules Algorithm Converter

Figure 4.3: Text-to-speech synthesis system block diagram.[7]

Looking at the illustrated picture, a text-to-speech synthesizer is a digital
simulation of the entire upper part of the speech chain diagram. The input
to the system is ordinary text such as an email message or an article from
a newspaper or magazine. Linguistic Rules are the first block in the text-
to-speech synthesis system. The job of Linguistic Rules is to convert the
printed text input into a set of sounds that the machine must synthesize. The
conversion from text to sounds involves a set of linguistic rules that must
determine the appropriate set of sounds so that the resulting synthetic speech
will express the words and intent of the text message in what passes for a
natural voice that can be decoded accurately by human speech perception.
Perhaps the system should include things like emphasis, pauses, and rates of
speaking.

This is more complex than just simply look the words in a pronouncing
dictionary. Because the linguistic rules must determine how to pronounce
acronyms, ambiguous words like read, bass, and object, abbreviations like St.
(street or Saint), Dr. (Doctor or drive), and proper names, specialized terms,
etc. Once it can the properly determined pronunciation of the text, the role
of the synthesis algorithm is to create the appropriate sound sequence to
represent the text message in the form of speech. In principle, the synthesis
algorithm must simulate the action of the vocal tract system in creating the
sounds of speech. There are many procedures for assembling speech sounds
and compiling them into a proper sentence The most promising one today is
called “unit selection and concatenation.” In this method, the computer stores
multiple versions of each of the basic units of speech (phones, half phones,
syllables, etc.), and then decides which sequence of speech units sounds best
for the particular text message that is being produced. The basic digital
representation is not generally the sampled speech wave.

Text-to-speech synthesis systems are an important component of modern
human-machine communications systems. They are doing things like reading
email messages over a telephone, providing voice output from GPS systems
in automobiles, providing the voices for talking agents for completion of
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transactions over the internet, handling call center help desks and customer
care applications, serving as the voice for providing information from handheld
devices such as foreign language phrasebooks, dictionaries, crossword puzzle
helpers, and as the voice of announcement machines that provide information
such as stock quotes, airline schedules, updates on arrivals and departures
of flights, etc. Another important application is in reading machines for the
blind or hearing machines for people who have hearing problem.[7]

. 4.2 Feature Extraction

The simplicity of human speech belies the complexity of the task, which could
explain why speech is highly sensitive to diseases associated with the nervous
system.

Several successful attempts have been made to develop systems capable
of analyzing, classifying, and recognizing speech signals. Both hardware
and software designed for these tasks have found applications in various
fields, including healthcare, government sectors, and agriculture. Speaker
recognition refers to the ability of software or hardware to receive speech
signals, which can identify the speaker present in the speech signal, and then
recognize the speaker. Speaker recognition mimics the process undertaken by
the human brain. It begins with speech as input to the speaker recognition
system. Overall, the speaker recognition process consists of three main steps:
acoustic processing, feature extraction, and classification/recognition.

Before extracting the essential attributes in the speech and identification,
the speech signal must undergo noise removal. Feature extraction aims to
represent a speech signal with a predetermined number of components, as
dealing with all the information in the acoustic signal is impractical, and
some of it is irrelevant to the identification task.

Feature extraction involves transforming the speech waveform into a para-
metric representation at a lower data rate for subsequent processing and
analysis, commonly known as front-end signal processing. This process aims
to convert the processed speech signal into a concise yet meaningful repre-
sentation that is more discriminative and reliable than the original signal.
The quality of subsequent features, such as pattern matching and speaker
modeling, is notably influenced by the quality of the front-end.

Thus, the quality of the features directly impacts the accuracy of classifi-
cation. In current automatic speaker recognition (ASR) systems, the focus
of feature extraction is to find a representation that remains reliable across
various conditions of the same speech signal, even with changes in environ-
mental conditions or speakers, while preserving the informative aspects of the
speech signal. Feature extraction methods typically yield a multidimensional
feature vector for each speech signal. Various parametric representations are
available for this process, including perceptual linear prediction (PLP), linear
prediction coding (LPC), and mel-frequency cepstrum coefficients (MFCC),
with MFCC being the most widely used.

Feature extraction is crucial in speaker recognition as speech features
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play a vital role in distinguishing one speaker from another. Moreover,
feature extraction reduces the dimensionality of the speech signal without
compromising its informational content.

Before feature extraction, several preprocessing steps are typically per-
formed. The first step is pre-emphasis, achieved by passing the signal through
a first-order finite impulse response (FIR) filter. This is followed by frame
blocking, which partitions the speech signal into frames, eliminating acoustic
discontinuities at the beginning and end of the speech signal.

Next, the framed speech signal is windowed using a suitable window, such
as a bandpass filter, to minimize discontinuities at the start and end of each
frame. The two common types of windows used are Hamming and Rectangular
windows. Windowing increases the sharpness of harmonics, reduces spectral
distortion caused by overlap, and tapers the beginning and end of the frame
to eliminate discontinuities. [§]

B 4.2.1 Mel frequency cepstral coefficients (MFCC)

Mel frequency cepstral coefficients (MFCC) were initially proposed for iden-
tifying monosyllabic words in continuously spoken sentences rather than
for speaker identification. The computation of MFCC aims to mimic the
functioning of the human hearing system, assuming that the human ear as a
speech recognizer is reliable.

MFCC features are derived from the recognition of the discrepancy in the
human ear’s critical bandwidths, with frequency filters spaced linearly at low
frequencies and logarithmically at high frequencies, retaining the phonetically
vital properties of the speech signal. Speech signals typically contain tones of
varying frequencies, each with an actual frequency f (in Hz), while subjective
pitch is computed on the Mel scale. The Mel-frequency scale exhibits linear
frequency spacing below 1000 Hz and logarithmic spacing above 1000 Hz. A 1
kHz tone at 40 dB above the perceptual audible threshold is defined as 1000
mels and used as a reference point.

MFCC computation involves signal decomposition using a filter bank. It
gives a discrete cosine transform (DCT) of the real logarithm of the short-term
energy displayed on the Mel frequency scale. MFCC finds applications in
various fields such as identifying airline reservations, recognizing numbers
spoken into a telephone, and voice recognition systems for security purposes.
Modifications to the basic MFCC algorithm have been proposed for improved
robustness, such as raising the log-mel amplitudes to an appropriate power
such as around two or three before applying the DCT and reducing the impact
of the low-energy parts.[8]

® Algorithm description, strength, and weaknesses

MFCC (Mel Frequency Cepstral Coefficients) are cepstral coefficients de-
rived on a non-linear frequency scale centered on human auditory perception.
To compute MFCC, the speech signal is first windowed to split it into
frames. Since high-frequency formants typically have reduced amplitudes
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compared to low-frequency formants, emphasis is placed on high frequencies
to achieve similar amplitudes for all formants.

After windowing, the Fast Fourier Transform (FFT) is applied to each
frame to obtain its power spectrum. Subsequently, filter bank processing is
carried out on the power spectrum using a mel-scale.

The Discrete Cosine Transform (DCT) is then applied to the log-domain
power spectrum to calculate the MFCC coefficients.

The formula used to calculate the mel frequency for any given frequency f
is:

mel(f) = 2595 - log;, (1 + 7?;0) (4.1)

where mel(f) is the frequency (mels) and f is the frequency (Hz).
The MFCCs are calculated using this equation :

C, = élog(S’k) cos {n <k‘ - ;) ﬂ (4.2)

where k is the number of mel cepstrum coefficients, [Sk] is the output of
filterbank, and [C),] is the final mfcc coefficients.

The block diagram of the MFCC processor is illustrated in the following
picture.

Pre-emphasis,
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Transform
(FFT)

Continuous Mel-Scale
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MFCC Transform (DCT) Log |-

Figure 4.4: Block diagram of MFCC processor.[g]

This section outlines the procedures and steps involved in obtaining the
necessary coefficients. MFCC is particularly effective in representing the
low-frequency region compared to the high-frequency region. Consequently, it
can accurately compute formants within the low-frequency range, describing
the resonances of the vocal tract. It’s widely acknowledged as a front-end
process for typical Speaker Identification applications due to its reduced
susceptibility to noise interference, minimal session-to-session variation, and
ease of implementation. Moreover, it serves as an excellent representation
of stable and consistent source characteristics such as music and speech.
Additionally, it can capture information from sampled signals with frequencies
up to 5 kHz, encompassing the majority of energy in sounds generated by
humans.

Cepstral coefficients have been found to be accurate in certain pattern
recognition problems related to human voice, and they are extensively used in
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speaker identification and speech recognition. However, other formats may be
above 1 kHz and may not be efficiently captured by the large filter spacing in
the high-frequency range. MFCC features may not be entirely accurate in the
presence of background noise and may not be well-suited for generalization. [8]

B 4.2.2 Linear prediction coefficients (LPC)

Linear prediction coefficients (LPC) mimic the behavior of the human vocal
tract and provide robust speech features. LPC evaluates the speech signal
by approximating its formants, removing their effects from the signal, and
estimating the concentration and frequency of the residue left behind. Each
sample of the signal is then represented as a direct combination of previous
samples. LPC needs to approximate these coefficients prior to coefficients of
the difference equation characterizing the formants. It has gained recognition
as a powerful speech analysis method and is often used for formant estimation.

Formant frequencies are the frequencies where resonant peaks occur. LPC
predicts the positions of formants in a speech signal by calculating the linear
predictive coefficients over a sliding window and identifying the peaks in
the spectrum of the resulting linear prediction filter. LPC is beneficial for
encoding high-quality speech at low bit rates.

Additional features that can be derived from LPC include linear prediction
cepstral coefficients (LPCC), log area ratio (LAR), reflection coefficients (RC),
line spectral frequencies (LSF), and Arcus Sine Coefficients (ARCSIN). LPC
is commonly used for speech reconstruction and finds applications in various
fields such as musical and electrical firms for creating mobile robots, telephone
companies, and tonal analysis of string instruments like violins.[§]

B Algorithm description, strength, and weaknesses

The linear prediction method is utilized to derive filter coefficients that
simulate the characteristics of the vocal tract by minimizing the mean square
error between the input speech and the estimated speech. It analyzes the
speech signal by predicting each sample as a linear combination of preceding
samples within a specific period. The linear predictive model of speech
generation can be expressed as:

p
S(n) = Z ags(n — k) (4.3)
k=1

where s is the predicted sample, s is the speech sample, and p is the
predictor coefficients.
The prediction error is given as:

e(n) = s(n) — s(n) (4.4)

The block diagram of a summary of the procedure for obtaining the LPCr
is illustrated in the following picture.
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Figure 4.5: Block diagram of LPC processor.[§]

After windowing the signal, each frame is autocorrelated, with the highest
autocorrelation value determining the order of the linear prediction analysis.
Then, LPC analysis is performed, converting each frame of autocorrelations
into a set of LPC parameters, which consists of the LPC coefficients.

Linear predictive analysis efficiently extracts vocal tract information from
speech signals. It is renowned for its computational speed and accuracy,
providing excellent representation for stable and consistent source behaviors.
Additionally, LPC is commonly utilized in speaker recognition systems to
extract vocal tract properties, offering very accurate estimates of speech
parameters and demonstrating comparative computational efficiency.

However, traditional linear prediction techniques may suffer from aliased
autocorrelation coefficients and high sensitivity to quantization noise, making
them less suitable for generalization[§].

B 4.2.3 Linear prediction cepstral coefficients (LPCC)

Linear prediction cepstral coefficients (LPCC) are derived from the spectral
envelope calculated by linear predictive coding (LPC). They represent the
Fourier transform of the logarithmic magnitude spectrum of LPC. Cepstral
analysis is widely used in speech processing due to its ability to accurately
represent speech waveforms and characteristics using a compact set of features.

Rosenberg and Sambur observed that adjacent predictor coefficients in
LPC are highly correlated. Therefore, representations with less correlated
features, such as LPCC, are more efficient. The relationship between LPC
and LPCC was initially derived by Atal in 1974. In theory, it is relatively
straightforward to convert LPC to LPCC, particularly in the case of minimum
phase signals.[§]

® Algorithm description, strength, and weaknesses

In speech processing, LPCC, like LPC, is calculated from sample points of
a speech waveform. The horizontal axis represents time, while the vertical
axis represents amplitude.

The Block diagram of LPCC processor is illustrated in the following picture.
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Figure 4.6: Block diagram of LPCC processor. [8]

LPCC can be calculated using:

m—1 k
Crm = am + Z [—lekam—k (4.5)

=1 "
where [a,,] is the linear prediction coefficient, [Cy,] is the cepstral coefficient.
LPCC exhibits lower susceptibility to noise and generally yields lower error
rates compared to LPC features. However, as the order of cepstral coefficients
increases, there is a significant increase in variance. LPCC estimates are also
known for their high sensitivity to quantization noise. Additionally, cepstral
analysis of high-pitched speech signals often results in limited source-filter
separability in the quefrency domain. Lower-order cepstral coefficients are
sensitive to spectral slope, whereas higher-order coefficients are more sensitive

to noise. [8]

B 4.2.4 Line spectral frequencies (LSF)

Each line of the Line Spectral Pairs (LSP) corresponds to a line spectral
frequency (LSF), which characterizes the resonance patterns in the inter-
connected tube model of the human vocal tract. This model incorporates
the nasal cavity and mouth shape, forming the basis for the physiological
significance of linear prediction representation. The two resonance situations
defined by LSF correspond to the vocal tract either being fully open or
fully closed at the glottis. These situations result in two groups of resonant
frequencies, determined by the number of interconnected tubes. The odd
and even line spectra represent the resonances of each situation, woven into a
singularly rising group of LSF.

The LSF representation, proposed by Itakura, serves as an alternative to
linear prediction parametric representation. In the field of speech coding, it
has been found that LSF representation offers improved quantization features
compared to other linear prediction parametric representations (such as LAR
and RC). LSF representation can reduce bit-rate by 25-30% for transmitting
linear prediction information without compromising the quality of synthesized
speech. Besides quantization, the LSF representation of the predictor is
also suitable for interpolation. The diagonal sensitivity matrix linking LSF-
domain squared quantization error to the perceptually relevant log spectrum
theoretically inspires this capability.[§]
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® Algorithm description, strength, and weaknesses

The block diagram of the LSF processor is illustrated in the following picture.
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Figure 4.7: Block diagram of LSF processor.[§]

LPF
Root Finder

LSF finds its primary application in speech compression, although its utility
extends to speaker recognition and speech recognition. Additionally, LSF has
been explored in other domains, such as musical instrument recognition and
coding, animal noise identification, recognizing individual instruments, and
financial market analysis. The key advantages of LSF lie in their ability to
localize spectral sensitivities, characterize bandwidths and resonance locations,
and emphasize spectral peak locations. In many cases, the LSF representation
offers a nearly minimal dataset for subsequent classification tasks.

Due to its ability to represent spectral shape information at a lower data
rate compared to raw input samples, LSF can lead to complexity reduction
when processing and analyzing methods are carefully applied in the LSP
domain, compared to techniques operating on raw input data. LSF plays
a crucial role in transmitting vocal tract information from speech coder to
decoder, owing to its excellent quantization properties. The generation of LSP
parameters can be achieved through various methods, ranging from standard
root-solving techniques to more sophisticated methods, often performed in
the cosine domain.[§]

B 4.2.5 Discrete wavelet transform (dwt)

The theory of Wavelet Transform (WT) revolves around signal analysis
using varying scales in both the time and frequency domains. Introduced
by Jean Morlet with the support of theoretical physicist Alex Grossmann,
wavelet transform enables the identification of high-frequency events with
enhanced temporal resolution. A wavelet is a waveform of limited duration
that averages to zero, and many wavelets exhibit orthogonality, making them
ideal for compact signal representation.

WT is a powerful signal processing technique capable of efficiently rep-
resenting real-life non-stationary signals. It can extract information from
transient signals simultaneously in both time and frequency domains.

The Continuous Wavelet Transform (CWT) decomposes a continuous-time
function into wavelets. However, it suffers from information redundancy, and
computing all possible scales and translations of CWT requires significant
computational effort, limiting its practical use.
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In contrast, the Discrete Wavelet Transform (DWT) extends the flexibility
of the decomposition process. Introduced as a highly flexible and efficient
method for sub-band breakdown of signals, in earlier applications, linear
discretization was used for the discretization of CWT. But Daubechies and
others developed an orthogonal DWT tailored for analyzing a finite set of
observations over a set of scales.[§]

® Algorithm description, strength, and weaknesses

Wavelet transform breaks down a signal into fundamental functions known
as wavelets. These wavelets originate from a single prototype wavelet, often
called the mother wavelet, through dilations and shifts. One of the key
features of the WT is its use of a variable window to scan the frequency
spectrum, thereby enhancing the temporal resolution of the analysis.

The Block diagram of DWT is illustrated in the following picture.

4{ Lowpass Filter >

Speech

signal DWT parameter

_4 Highpass Filter |_,

Figure 4.8: Block diagram of DWT.[§]

The input signal undergoes filtering by a low-pass filter and a high-pass
filter to extract the approximate components and the detail components,
respectively. This process is illustrated in Figure. At each stage of decompo-
sition, the approximate signal is further decomposed using the same low-pass
and high-pass filters to obtain the approximate and detailed components for
the next stage. This decomposition method is known as dyadic decomposition.

The parameters of the Discrete Wavelet Transform (DWT) encapsulate
information about different frequency scales, thereby enriching the speech
information within each frequency band. An advantage of the DWT is its
ability to partition the variance of the input elements on a scale-by-scale
basis, leading to scale-dependent wavelet variance. This variance concept is
akin to the frequency-dependent Fourier power spectrum. Although classic
discrete decomposition schemes, particularly those that are dyadic, may not
fully meet all requirements for direct use in parameterization, the DW'T does
provide a sufficient number of frequency bands for effective speech analysis.
However, because input signals are of finite length, wavelet coefficients may
exhibit large variations at the boundaries due to discontinuities. [§]

B 4.2.6 Perceptual linear prediction (PLP)

The Perceptual Linear Prediction (PLP) technique integrates critical bands,
intensity-to-loudness compression, and equal loudness pre-emphasis to extract
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relevant information from speech. Based on the nonlinear bark scale and
was originally designed for use in speech recognition tasks to remove speaker-
dependent features. PLP provides a representation that resembles a smoothed
short-term spectrum, equalized and compressed to mimic human hearing,
which is making it to similar MFCC.

In the PLP technique, several key features of human hearing are emulated,
and the resulting auditory-like spectrum of speech is approximated by an
autoregressive all-pole model. PLP achieves reduced resolution at high
frequencies, typical of auditory filter bank-based approaches while producing
orthogonal outputs similar to cepstral analysis. It employs linear predictions
for spectral smoothing, hence the name "perceptual linear prediction". PLP
combines both spectral analysis and linear prediction analysis.

® Algorithm description, strength, and weaknesses

To compute the PLP features, the speech signal undergoes several steps.
First, it is windowed using a Hamming window, and then the Fast Fourier
Transform (FFT) is applied to compute the square of the magnitude, yielding
power spectral estimates.

Next, a trapezoidal filter is used at 1-bark intervals to integrate the overlap-
ping critical band filter responses in the power spectrum. This compression
effectively narrows the higher frequencies into a band.

Following this, symmetric frequency domain convolution on the bark-
warped frequency scale allows low frequencies to mask the high frequencies,
smoothing the spectrum simultaneously. The spectrum is then pre-emphasized
to mimic the uneven sensitivity of human hearing across different frequencies.

Subsequently, spectral amplitude compression reduces the amplitude vari-
ation of the spectral resonances. An Inverse Discrete Fourier Transform
(IDCT) is performed to obtain the autocorrelation coefficients.

Finally, spectral smoothing is carried out by solving the autoregressive equa-
tions, and the autoregressive coefficients are converted to cepstral variables.[§]

The Block diagram of PLP processor is illustrated in the following picture.

Bark-Scale Equal-loudness
filter bank pre-emphasis

Inverse Discrete
Fourier Transform
(IDFT)

Fast Fourier
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signal
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Figure 4.9: Block diagram of PLP processor.[§]

Intensity-
loudness power

Figure illustrates the PLP processor, detailing the steps involved in obtain-
ing the PLP coefficients. PLP demonstrates low sensitivity to spectral tilt,
which aligns with studies suggesting its relative insensitivity to phonetic judg-
ments of spectral tilt. However, PLP analysis depends on the overall spectral
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balance, particularly the formant amplitudes, which can be influenced by
factors such as recording equipment, communication channels, and additive
noise. Additionally, the time-frequency resolution and efficient sampling of
the short-term representation are addressed in an ad-hoc manner. [8]

B 23 Error rate analysis of current ASR systems

Despite the history of research and development in ASR systems, they still
produce a worthy number of errors, which can vary depending on factors such
as task complexity and environmental conditions.

It is common practice to assess ASR performance using the word error
rate (WER). Calculation is done by counting the number of words that need
to be substituted (S), deleted (D), and inserted (I) to transition from a
ground-truth transcription to the output of an ASR system. This count is
then divided by the total number of words in the ground-truth transcription
(N). It can expressed as:

S+I+D
N

WER treats each discrepancy between the ground-truth transcription and
the ASR output equally.

Nevertheless, not all Automatic Speech Recognition (ASR) errors are
equal. Earlier research on Automatic Speech Recognition (ASR) errors has
revealed that Word Error Rate (WER) doesn’t consistently align with human
judgment or performance in downstream tasks like information retrieval,
natural language understanding, or named entity recognition.

The example is illustrated in the following picture.

I love you llove you
1 substitution, 1 substitution,
0 deletions, 0 deletions,
0 insertions 0 insertions
I loathe you I luv you
S+D+I 14040 S+D+I 1+0+4+0
WER = + D+ i +0+ WER = + 0D+ i + U+
N ) N 3

Figure 4.10: WER calculations for the “I love you" example.[9]

where S, D, I represent the number of substitutions, deletions, and insertions
to go from the ground-truth transcription to the output of an ASR. N
represents the total number of words in the ground-truth transcription.

For example, let’s consider the sentence "I love you." If one ASR system
outputs "I loathe you," and another predicts "I love you," both cases result in
a WER of 0.33. However, the severity of the errors differs significantly. While
"luv" is a minor deviation from the ground truth "love," "loathe" completely
changes the meaning of the sentence.[9]
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Chapter 5

Software tools

This chapter is dedicated to software tools that are used in this research.
These engines are chosen for their unique strengths and play a pivotal role in
integrating complex algorithms and functionalities. Through the following
subchapters, we will try to present information about the tools and their
distinct roles and capabilities.

B 51 Background noise-cleaning tools

Background cleaning tools play a vital role in ensuring the reliability and
effectiveness of ASR systems in real-world settings. These tools are crucial for
ASR systems because they improve accuracy by reducing background noise
and enhancing the Signal-to-Noise Ratio (SNR). These tools enable ASR
systems to perform well in noisy environments, ensuring accurate transcription
and a better user experience. Additionally, they help mitigate errors caused by
background noise, resulting in clearer speech input and improved recognition
performance.

Now, let’s check the background noise-cleaning tools used in this research.

B 5.1.1 Descript

Descript offers tools to record, edit, transcribe, collaborate, and share videos
and podcasts, it gives an entirely new approach to editing audio. Descript
works simply, it’s a vastly different way of doing things compared to tradition-
ally complex audio tools. First, with artificial intelligence, it automatically
transcribes all your uploaded audio, then you edit your recordings by simply
highlighting and deleting or moving any words or passages in a text editor.

Initially, Descript focused on audio content. The platform’s core capability
was providing a document-style interface for professionally enhancing and
editing audio recordings by interacting with auto-generated transcripts.|[17]
These are the main features of Descript used in this research:

® Overdub (text-to-speech): Descript can create a voice model of the
user and add synthetic voice to content (text-to-speech) by editing the
transcript. It has professional voice blending and multiple voices for
different contexts.
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® Studio quality sound: Descript supports professional audio quality
without requiring expensive hardware. It has noise removal, speech
enhancement, acoustic echo cancellation, and sound effects.
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Figure 5.1: Descript.

We can say that, Descript makes it much faster and easier to use professional
audio tools. It hides complexity from the user, but it also lets you go deep
when needed.[17]

Bl 5.1.2 iZotope RX 10

iZotope RX is an award-winning audio restoration plug-in suite designed
to repair noisy or damaged audio, remove background noise, and more.
Specifically, iZotope RX 10 is the industry’s most intuitive and intelligent
audio repair suite for restoring, cleaning up, and improving recordings in
post-production, music, and content creation.

From analyzing audio capture and production issues to providing processing
solutions, RX 10 empowers to achieve upgrades from poor audio files that
were once unfixable and deliver reliably clear sound quality. [18§]

These are the main features of iZotope RX 10 that were used in this
research:

B Repair Assistant: Repair Assistant Plug-ins are time-saving tools in
editing. The Repair Assistant plug-in uses machine learning to find
and fix audio issues quickly without leaving your DAW. The Assistant
automatically recognizes specific problems and intelligently proposes a
repair chain that you can modify to your liking with easy-to-use dials.
This plug-in was built from the ground up.[18)]

® De-hum: With Dynamic Adaptive Mode in De-hum, you can save time
removing unwanted hum. You can get rid of hums and buzzes on the fly,
without having to spend time learning the noise profile of your audio.
Eliminating electromagnetic interference or other complex noise that
changes pitch can be done automatically without sacrificing quality.[I§]
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De-noise: Denoisers are reducing and eliminating steady-state back-
ground noise. They can be based on FFT with thousands of bands, or a
simple crossover with just a few bands, and are sometimes designed for
a specific use case, such as vocals.[I§]

De-click: Declickers are minimizing and eliminating disruptive clicks
and pops in audio recordings. These can be caused by anything from
dust and scratches on an old record, a CD skipping on playback, or even
mouth clicks and lip smacks from a voiceover.[18]

Spectral Recovery: Spectral Recovery is a tool for bringing life back to
thin-sounding audio to match the rest of your productions. It improves
upon the quality of re-synthesized upper frequencies and can add missing
lower frequencies, too.[18]

Figure 5.2: iZotope RX 10
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Figure 5.3: iZotope RX 10
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Figure 5.4: iZotope RX 10

B 5.1.3 Audacity

Audacity is the world’s most popular free software for recording and editing
audio. Audacity is a free and open-source digital audio editor and recording
application software, available for Windows, macOS, Linux, and other Unix-
like operating systems.

Now we will see how to reduce noise on audacity. Noise reduction allows
you to remove or reduce background noise from your recordings. First, we
need to open an audio file on Audacity. We will be using our example file for
demonstration. We will start by selecting a section of the audio containing
only the noise that we want to reduce or remove. Try the beginning or the
end of your recording or look for a good pause somewhere in track. To get
a good analysis of the noise, we should select enough of the audio. Now
we go into the effect menu and scroll down to noise reduction. Then click
on get noise profile. This will close the dialog box and create a sample of
noise. Audacity uses that sample to analyze and extract the noise from your

signal.[19]

mmmmmmmmmmmmmmmmm

Csnsp electon [0 00m 00100058
Fi o] [ [00h00mO0's S Esemrersen

Selecton [ o0oss | P |

Figure 5.5: Audacity

Now we need to select your entire timeline by double-clicking on the audio
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track. Then go back into the effect menu and select noise reduction again.

There are three adjustable settings that you can use to fine-tune noise
reduction. Each of these controls affects how the noise is reduced. Raising
them too high will remove more noise but at the expense of some of the
audio quality. Setting them too low will keep more of the desired audio signal
but it also retains some of the noise. So we adjust these to the level that is
satisfactory to us.

[Molalaala/e] @- ‘ & [ B[ e Se e e s (] | o[y o oo daciea 5 4]

n « o]
& SN BN sk wjm| 0| aseseun
10 15

nnnnnnnnn

Tempo  Time Signature

oo
o« Bl [ooh0omoo's: S emairee

selcton [GOROOmMO0I00087 | |~}

Figure 5.6: Audacity

8 The first control is noise reduction amount. This setting reduces the
identified noise in decibels. We adjust it to a point where we feel enough
noise has been removed. We can click on the preview button to hear the
results of our settings as we alter them.

® The sensitivity setting controls how much of the audio is considered noise.
Setting the sensitivity too low can result in higher frequency distortions
in the audio. Therefore set this to the lowest level that achieves a
satisfactory amount of noise removal without introducing distortions.

® The final control is frequency smoothing. This control helps smooth out
possible distortions that occur due to increasing the frequency range of
the noise being reduced. A higher setting will make your audio signal
less clear so keep it low or even off.

The default settings work well for basic noise removal. Another way to
hear the effect of your setting is to listen to only the parts of the signal being
removed. We can do this by selecting the residue option in the noise setting.
Select this option and press preview. This is useful for finding the optimum
settings that do not damage the audio. If you can hear recognizable bits of
desired sound in the residue, you have likely set noise reduction or sensitivity

too high.[19]

B 5.1.4 Audacity x RX 10

After we purchased and installed iZotope RX 10, powerful audio repair tools
became available as plugins in Audacity. If we open Audacity, we will notice
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that there are plugins that we can use and we can find these plugins listed in
the Effects tab. There’s an option here to see all the plugins they have. You
can use and then there’s an option to even add or remove plugins according
to your preference. For now, we decided to use only RX 10 plug-ins.[19]
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Figure 5.7: Audacity x RX 10
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Figure 5.8: Audacity x RX 10

B 52 Speech-to-Text tools

Speech-to-text tools convert spoken language into written text, offering
convenience and efficiency in various applications. These tools utilize advanced
algorithms and machine-learning techniques to accurately transcribe audio
content. They support multiple languages and dialects.

Now, let’s check the Speech-to-Text tools used in this research.

B 5.2.1 Whisper

Whisper is a general-purpose automatic speech recognition (ASR) system. It
is trained on a large dataset of diverse audio and is also a multitasking model
that can perform multilingual speech recognition, speech translation, and
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language identification. A system trained on 680,000 hours of data collected
from the web. The use of such a large and diverse dataset leads to improved
robustness to accents, background noise, and technical language. Moreover, it
enables transcription in multiple languages, as well as translation from those
languages into English.[20]

The Whisper architecture is a simple end-to-end approach, implemented as
an encoder-decoder Transformer. Input audio is split into 30-second chunks,
converted into a log-Mel spectrogram, and then passed into an encoder. A
decoder is trained to predict the corresponding text caption, intermixed with
special tokens that direct the single model to perform tasks such as language
identification, phrase-level timestamps, multilingual speech transcription, and
to-English speech translation. Whisper’s audio dataset is non-English, and
it is alternately given the task of transcribing in the original language or
translating to English. This approach is particularly effective at learning
speech-to-text translation and outperforms the supervised SOTA on CoVoST?2
to English translation zero-shot.[20)]

The installation process of Whisper Al is a quite seamless process, deployed
seamlessly across both local and cloud platforms. The installation process is
streamlined, facilitating scalability and adaptability to the evolving demands
of data analysis endeavors.

® Local platform

To get Whisper Al working on your computer, we need to install five
different items. First, we need to install Python. Python is the programming
language that Whisper AT uses. There are a few different versions. Whisper
AT works from version 3.7 all the way up to 3.10. It currently does not work
on 3.11. You can choose your operating system. I’'m running a Windows
machine, so I have the Windows version.

Next, we need to install PyTorch. PyTorch is a machine-learning library.
We need to install the current stable version. You need to choose your
operating systems, then package type, and select PIP since we are using
Python, for the language, we’ll use Python. And we can choose the computing
platform. Since we don’t have a high-powered GPU, we selected CPU but
this doesn’t go as quickly as a dedicated graphics card. On command prompt,
we need to press right mouse button, and that will paste the command that
we copied for installing PyTorch.

Now, we need to download a package manager called Chocolatey. On
PowerShell, we need to select run as administrator. This now opens up
PowerShell and we need to press right mouse button, and that will paste the
command that we copied for installing Chocolatey.

Now we need to use the Chocolatey package manager to install FFMPEG,
and we’re going to use FFMPEG to to read the different audio files, so
whether it’s a WAV file or whether it’s an MP3. On PowerShell, we can
install the package manager.

Finally, now in command prompt in administrator mode, install the final
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item, Whisper Al. To install it, type in pip install, and next, type in OpenAl-
Whisper, This will install Whisper Al

Figure 5.9: Whisper Al(local)

® Cloud platform

You can install Whisper directly on your computer. But you do need a
somewhat capable computer. So instead, we can use something called Google
Colaboratory. This allows you to run code directly in your web browser. So it
doesn’t matter what type of PC you have. To use Google Colaboratory, head
to Google Drive. You'll need a Google account. On Google Drive, in the top
left-hand corner, let’s click on the New button. And at the very bottom, let’s
click on More, and then go down to Connect More Apps. At the top of this
dialog, let’s click into the search field, and here, type in Google Colaboratory
and then search. We see the result for Collaboratory and there, we install it.
With this Google Colaboratory was connected to Google Drive.

After this, now go back to the top left-hand corner. If we click on the
New button again. Then go down to More. Here, you should now see an
option for Google Colaboratory. If we click on this one, this drops us into
the Google Collaboratory space. First, in the top left-hand corner, we can
give our file a name. Next, let’s click on the menu titled Runtime, and right
here, there’s the option for Change Runtime Type. Let’s click on that, and
that opens up this dialog where we can choose the hardware accelerator. We
selected GPU(or graphics card), and it turns out that that graphics cards run
these models extremely well. After saving this, we need to install Whisper Al.
You simply need to copy and paste code from the GitHub source. Then we
will install something called ffmpeg. This allows us to work with audio and
video files. This is not installing anything on your computer, this is installing
it all to the Google Colaboratory. After finishing the installation, over the
left-hand side, let’s click on this Folder icon. And you can now drag in an
audio file or a video file that you would like to transcribe.
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Figure 5.10: Whisper AI(cloud)
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B 522 Vosk

Vosk is an offline open-source speech recognition toolkit. It enables speech
recognition for 20+ languages and dialects (English, Indian English, German,
French, Spanish, Portuguese, Chinese, Russian, Turkish, Vietnamese, Italian,
Dutch, Catalan, Arabic, Greek, Farsi, Filipino, Ukrainian, Kazakh, Swedish,
Japanese, Esperanto, Hindi, Czech, Polish).

Vosk models are small (50 Mb) but provide continuous large vocabulary
transcription, zero-latency response with streaming API, reconfigurable vo-
cabulary, and speaker identification.[15]

To install the environment, you’ll need a couple of dependencies. The main
one is pyaudio, which is installed first. Then you need to install the model
that you want to use. We installed English and Czech models. For all these
models, we contained them in the same folder. Next, we create a new file for
this. We have installed test examples for real-time transcribing and audio
files. Note that for audio files, it accepts WAV files. [21]

LniCol1 Spaces2 UTE8 CRF (3 Pyion 3011645 @ Golin

Figure 5.11: Vosk
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Chapter 6

Simulated experiments

This chapter is dedicated to the simulation of experiments in this research.
Through the following subchapters, we will try to present our approach, our
data, and our test setup. We will talk about considering the ethical and
privacy considerations for our experiments.

B 6.1 Methodolgy

Our audio analysis strategy employs two critical functions: background noise
cleaning and Speech-to-Text conversion. With the help of an intuitive inter-
face and advanced algorithms, we will not only adeptly eliminate unwanted
background noise but also facilitate precise and efficient conversion of spoken
words into text. We will compare our raw data with trained data. The reason
behind this analysis is, we want to see how different tools can work together.
It makes sense to push the idea that Data cleaning and preprocessing are
imperative to guarantee the dataset’s quality and reliability. But how this
improved quality help Speech-to-Text tools? Does it make it better or worse?
One of our tools for background noise removal; Descript works as both: back-
ground noise cleaning and Speech-to-Text conversion. It gives us inspiration
that, both of these tools can work together. During our analysis, we will try
this dual functionality to clarity and accuracy of our audio data, and analyze
outcomes.
Our approach’s flow is illustrated in the following picture.

Selection of Selection of Pre-processing Evaluation
o " ASR tools
audios audio tools of data process
Figure 6.1: Our approach

Our approach to identifying the optimal Automatic Speech Recognition
(ASR) application tailored is a five-step methodology devised for this research.
First, we selected audio files and data for this experiment. After choosing
this data, we looked for tools for repairing or cleaning these audio data sets.
After we pre-processed these data, we used these audio files on Speech-to-
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Text tools. In order to finish our experiment and compare these results
from various software applications, with used WER score serving as a key
metric. The methodology unfolds sequentially, ensuring a systematic approach
to the selection and utilization of ASR tools for the targeted objective of
speech-based term extraction.

The outlined methodology provides a transparent and structured process
for identifying the most precise ASR application, aligning seamlessly with
the specific demands.

B 6.2 Presentation of experimental data

In this section, we will give the intricate process of collecting and preparing
data that was generously provided by my supervisor. Data used for my
experiments are collected from the air and other different communication
traffic. For this experiment, we tried to take steps to acquire, clean, and
organize these data.

We had specific criteria applied to include relevant elements or timeframes
to ensure the dataset’s pertinence. These considerations contributed to
shaping a dataset to the specific demands of our research. The dataset’s
characteristics include its format, variables, and associated metadata.

For this experiment, we used 5 different male and female voices. To
understand how ASR tools react to other sentences, we used short and long
audio files, audio files with both words and numbers or just numbers, which
allowed us to test the capabilities of the ASR systems.

We decided to use the Czech language for our experiments since most of
the ASR tools are English language-based, and we wanted to measure how
it works with other languages. With this choice, we aimed to see potential
challenges and improvements in ASR when dealing with other languages
apart from English.

Despite, the number of audio samples used in this experiment being rela-
tively small, it served our purpose since we wanted to understand the core
of ASR and identify any potential improvements after testing. However, we
acknowledge that testing on larger databases is essential for a comprehensive
understanding of ASR, and it remains one of our future research objectives.
Below is the speech database used in our experiments:

For male speech:

Male audio Sentences ‘Wordcount
Male voice 1 | 13,3, Elisky Krasnohorské a je to na jméno Valérie. | 3 numbers and 8 words
Male voice 2 Mésto tisic, mésto tisic, mésto tisic. 6 words

Male voice 3 Linka 3, 10, 24, jicle ze zastavky Okrulicka. 3 numbers and 5 words
Male voice 4 58-59 2 numbers

Male voice 5 57-89 2 numbers

Table 6.1: Male speech database

The table illustrates 5 different male voices we used, 5 male speakers speak
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5 unique and different speaking styles, across different environments. The
sentences on these audio files contain short and long words, sentences with
numbers, or just numbers. The audio samples were carefully chosen to test
the ASR system’s performance.

For female speech:

Female audio Sentences ‘Wordcount
Female voice 1 15, 58, 1, Simona, Cyril. 3 numbers and 2 words
Female 2 Mizes mi pfijet na Zitnou, ale od IP Pavlova? 9 words
Female 3 Osm deset, osm Sestnéct 4 words
Female 4 Takze cas ovéreni 8.48 2 numbers and 3 words
Female 5 6,7,5 7,7, 4 6 numbers

Table 6.2: Female speech database

The table illustrates 5 different female voices we used, 5 female speakers
speak 5 unique and different speaking styles, across different environments.
The sentences on these audio files contain short and long words, sentences
with numbers, or just numbers. The audio samples were carefully chosen to
test the ASR system’s performance.

As we know our experimental data, we can discuss data preprocessing
now. Cleaning and preprocessing of data are essential steps to guarantee the
dataset’s quality and reliability. We took measures to address issues such as
missing values, outliers, and inconsistencies, establishing a robust foundation
for subsequent analysis. Additionally, standardization and transformation
procedures were applied to enhance comparability and align the data with
our research objectives.

B 6.3 Test setup

Our test setup follows up after data preprocessing. As the next steps, we are
following up on ASR software tools. The basic principle is finding the best
possible optimal match between these tools.

Using the simple table, we will match audio tools with ASR tools.

Here is the table of audio tools:

Audio tools
Descript
iZotope RX 10
Audacity
Audacity x RX 10

Table 6.3: Audio tools

These are the tools that are used for improving data quilty. With this
improved quality, these data are going to test ASR tools.

Next are ASR tools, with another table, we are going to check them one
more time before matching:
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6. Simulated experiments

Now, that we introduced our tools here is our test setup for this experiment.
As can seen, we have four audio tools and four ASR tools which means that
for every ASR tool we will use audio tools one by one. After completing our

ASR tools
Descript
Whisper Al (local)
Whisper Al(cloud)
Vosk

Table 6.4: ASR tools

evaluation, we will compare results and analyze outcomes.

In the next tables, we will illustrate our experiment setup:

First Set:

Second Set:

Third Set:

Fourth Set:

First Experiment Setup
Descript x Descript
Descript x iZotope RX 10
Descript x Audacity
Descript x Audacity x RX 10

Table 6.5: First Experiment Setup

Second Experiment Setup

Whisper AT (local) x Descript

Whisper Al (local) x iZotope RX 10

Whisper Al (local) x Audacity

Whisper Al (local) x Audacity x RX 10

Table 6.6: Second Experiment Setup

Third Experiment Setup

Whisper Al (cloud) x Descript

Whisper Al (cloud) x iZotope RX 10

Whisper Al (cloud) x Audacity

Whisper Al (cloud) x Audacity x RX 10

Table 6.7: Third Experiment Setup
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Fourth Experiment Setup
Vosk x Descript
Vosk x iZotope RX 10
Vosk x Audacity
Vosk x Audacity x RX 10

Table 6.8: Fourth Experiment Setup

After these software modules undergo testing for speech recognition, we will
conclude the test with the comparison of outcomes. For this evaluation, we
will use the word error rate (WER). In speech recognition, the word error rate
(WER) is a widely adopted parameter and evaluation standard. The speech
recognition program must automatically perform substitutions, deletions, or
insertions of specific words to ensure coherence between the recognized word
sequence and the standard word sequence.

The Word Error Rate (WER) meticulously assesses these discrepancies by
comparing the reference transcript with the expected output word by word.
WER considers three types of errors:

® Insertion: Additional words in the output that are not present in the
transcript.

® Deletion: Absence of words in the output that exist in the transcript.

8 Substitutions: Incorrectly translated words in the output that replace
terms in the transcript.

WER is calculated by dividing the total number of inserted, replaced, and
deleted words by the percentage of the number of words in the standard word

sequence, as outlined below.
The Word Error Rate (WER) is given by:

I+D
WER — SJFTJF « 100%

In the context of the formula, where S represents the replacement word, I
stands for the inserted word, D indicates the deleted word, and N is the total
number of words, discrepancies can arise during the conversion of spoken
words into text by voice recognition software.

Automatic Speech Recognition (ASR) with a lower WER generally demon-
strates greater accuracy in speech identification and a higher WER often
indicates lower accuracy in Automatic Speech Recognition (ASR).

. 6.4 Calculation of ASR results

The Word Error Rate (WER) stands as a key metric, between a reference
transcription and the output of the system for our experiment. To simplify
this evaluation process, we used the Jiwer library which is a powerful and
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user-friendly tool for WER calculations. JIWER is a simple and fast Python
package to evaluate an automatic speech recognition system. After installing
the jiwer library with a straightforward command, calculating WER with
jiwer is quite easy.

from jiwer import wer

reference = "hello world"
hypothesis = "hello duck"

error = wer (reference, hypothesis)
print ("Word Error Rate:", error)

Figure 6.2: Code to calculate Word Error Rate (WER)

B 6.5 Ethical Considerations guidelines for ASR
implementation

Speech data privacy revolves around safeguarding the personal information
that can be derived from speech recordings, while ethics pertains to the moral
principles guiding the collection, storage, and usage of this data. In ASR, one
of the biggest ethical concerns is whether the audio input of users is collected
and stored beyond its analysis. Also, users feel concerned about how much
of their speech and conversations are recorded and collected. Ethical issues
come up with the collection of users and its use.[22]

Ethical considerations are more than a procedural necessity; they are
the ethical runway during our research. As we use the intricacies of air
data, our commitment to responsibility remains unwavering, the privacy
and security of aviation data are non-negotiable. During our measurements,
we are implemented to shield sensitive information from prying eyes and
unauthorized access. Our methodologies are thoughtfully adapted to respect
cultural nuances within the aviation community, ensuring an inclusive research
approach that values diverse perspectives. Upholding the highest standards of
integrity and participant respect, our study takes off with the ethical runway
firmly beneath us.

50



Chapter 7

Practical experiment

This chapter is dedicated to the experiments and their results in this research.
Through the following subchapters, we presented how to implement ASR
in different environments, and the results after experiments and discussion
about key findings. Chapters end with suggestions about future research
directions in ASR.

B 7.1 Guidelines for implementing ASR in
environments

This section provides insights into the way we implemented Automatic Speech
Recognition (ASR) on Descript, Whisper AI (local and cloud), and Vosk.

8 Speech-to-text on Descript

Our first tool is Descript. To begin this, we simply need to create an
account on Descript, then open a new project and choose what type of project
it is. In our case, we chose an audio project because of our data. After adding
your audio file to your workspace, the languages for transcribing appear on
the screen.

Figure 7.1: Descript.
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7. Practical experiment

01_m_tetra_car

Figure 7.2: Descript.

The way Descript works, makes things look so easy, giving a relaxed working
environment with good accuracy.

® Speech-to-text on Whisper AI(local)

The next tool is Whisper Al(local). To begin with, first, you need to
navigate to the folder that has all of your audio files. In File Explorer, click
into the address field and then type cmd and then press enter. This opens
up the command prompt, and now we’re in the same directory that all of our
files are in. To run Whisper, simply type in whisper, and then type in the file
name and hit enter. By default, this will use the small model. But you can
change model types. We can see that it automatically detects the language
used in the field, and successfully identifies it. To minimize the command
prompt, you can specify the language.

ages\uhisper\transcribe.py:115: UserWarning: FP16 is not supported on CPU; using FP32 ins

scribe.py:115: UserWarning: FP16 is not supported on CPU; using FP32 ins

Figure 7.3: Whisper Al(local).

® Speech-to-text on Whisper AI(cloud)

Our next tool is Whisper Al(cloud). To begin with, we need to navigate
our Google Drive, and then open Google Colaboratory. After opening our file,
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we’ll insert some code. First, you need to type in whisper which is called the
Whisper Al. Then type in the name of the file that you want to transcribe.
You can also specify the model and language.

!whisper "Ol_m_tetra_car.wav" --model medium
'whisper "Ol_m_tetra_car.wav" --model medium --language Czech

Figure 7.4: Whisper Al (cloud) code

You need to remember that, once you leave Google Colaboratory, your
runtime will end, and it’ll automatically remove all of your files. So, before
leaving, you need to download your files.

® Speech-to-text on Vosk

The last tool is Vosk. This simple code used which is provided on GitHub
page can be modified for usage. There are simple examples of code on the
GitHub page, you can choose any of the languages for your preference. To
use it, we downloaded and placed the model in the same folder as my project.
Then, we load the WAV file with the audio that we want to transcribe.
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#include <vosk_api.h>
#include <stdio.h>

int main() {
FILE *wavin;
char buf [3200];
int nread, final;

VoskModel *model = vosk_model new("model");
VoskRecognizer *recognizer = vosk_recognizer_new(model, 16000.0);

wavin = fopen("test.wav", "rb");
fseek(wavin, 44, SEEK_SET);
while (!feof (wavin)) {
nread = fread(buf, 1, sizeof(buf), wavin);
final = vosk_recognizer_accept_waveform(recognizer, buf, nread);
if (final) {
printf ("%s\n", vosk_recognizer_result(recognizer));
} else {
printf ("%s\n", vosk_recognizer_partial_result(recognizer));

}

printf ("%s\n", vosk_recognizer_final_ result(recognizer));

vosk_recognizer_free(recognizer);
vosk_model_free(model) ;
fclose(wavin) ;

return O;

Figure 7.5: Vosk code

B 72 Experimental Results

This section presents our results after experiments. For experiments, we
had four pairs of setups and in the following subsections, we will discuss the
results from these experiments:

B 7.2.1 First Experiment

In our first experimental setup, we used Descript as a Speech-to-text tool,
along with 40 audio sets which are preprocessed by four different audio signal
processing tools. Descript has both audio features and speech-to-text itself,
so we wanted to see how it performs with other audio tools. The other audio
signal processing tools used on this set-up were iZotope RX 10, Audacity, and
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7.2. Experimental Results

Audacity x RX 10. Each tool preprocessed 10 sets from the total set of 40.

First Experiment Setup

Descript x Descript

Descript x iZotope RX 10

Descript x Audacity

Descript x Audacity x RX 10

Table 7.1: First Experiment Setup

First, we started with Descript itself, followed by iZotope RX 10, Audacity,
and Audacity x RX10. We played audio files one by one and after getting
the transcription we calculated the WER score. Since we already know the
correct translations, calculating WER results was straightforward.

Here are the results after the experiment:

Users Descript iZotope RX 10 | Audacity | Audacity x RX 10
Male 1 0 (0.0%) 0.357 (35.7%) 0 (0.0%) 0 (0.0%)
Male 2 0 (0.0%) 1 (100.0%) 0 (0.0%) 0 (0.0%)
Female 1 0 (0.0%) 1 (100.0%) 0 (0.0%) 0 (0.0%)
Female 2 0 (0.0%) 0.182 (18.2%) 0 (0.0%) 0 (0.0%)
Female 3 0 (0.0%) 0.4 (40.0%) 0 (0.0%) 0 (0.0%)
Female 4 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
Female 5 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
Male 3 0.2 (20.0%) 0 (0.0%) 0.2 (20.0%) 0.2 (20.0%)
Male 4 0 (0.0%) 0.714 (71.4%) 0 (0.0%) 0 (0.0%)
Male 5 | 0.667 (66.7%) 0 (0.0%) 1 (100.0%) 0.571 (57.1%)
Table 7.2: WER results for the first experiment
1.2
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Figure 7.6: Comparision chart of Descript.
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After calculating the WER score, we can analyze the scores. With different
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setups, we got different scores. From WER scores, Descript itself gives an
average of 0.0867 as the overall WER score with the male WER score at 0.1734
and the female WER score at 0. When we used audio that was preprocessed
on iZotope RX 10, we got 0.3653 as the average overall WER score with the
male WER score at 0.4142 and the female WER score at 0.3164. When we
used audio from Audacity, we got 0.12 as the average overall WER score
with the male WER score at 0.24 and the female WER score at 0. Finally,
when we used Audacity x Rx 10, which produced the lowest, we got 0.0771
as the average overall WER score with the male WER score at 0.1542 and
the female WER score at 0.

Users Descript | iZotope RX 10 | Audacity | Audacity x RX 10
Overall WER | 0.0867 0.3653 0.12 0.0771
Male WER 0.1734 0.4142 0.24 0.1542
Female WER 0 0.3164 0 0

Table 7.3: WER results for the first experiment

0 0.2 0.4 0.6 0.8 1 1.2

W Descript W iZotope RX10 mAudacity ®Audacityx RX10

Figure 7.7: Comparision WER scores of Descript.

B 7.2.2 Second Experiment

In our second experimental setup, we used Whisper Al (local) as a Speech-to-
text tool, along with 40 audio sets which are preprocessed by four different
audio signal processing tools. The audio signal processing tools used in this
set-up were Descript, iZotope RX 10, Audacity, and Audacity x RX 10. Each
tool preprocessed 10 sets from the total set of 40.
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Second Experiment Setup
Whisper Al (local) x Descript
Whisper Al (local) x iZotope RX 10
Whisper AT (local) x Audacity
Whisper AT (local) x Audacity x RX 10

Table 7.4: Second Experiment Setup

Before starting experiments with preprocessed data, we first experimented
with a raw dataset to see how it performed. This helped us compare its
performance with both raw and preprocessed data and see if any improvements
were made.

First, let’s see how Whisper Al(local) reacts to raw data:

Users Raw data
Male 1 0.308 (30.8% )
Male 2 0.667 (66.7%)
Female 1 0 (0.0%)
Female 2 0.273 (27.3%)
Female 3 0.6 (60.0%)
Female 4 0 (0.0%)
Female 5 0 (0.0%)

Male 3 0.8 (80.0%)
Male 4 0.857 (85.7%)
Male 5 1.667 (166.7%)

Table 7.5: WER of Whisper Al(local) x raw data

For the experiment, we started with Descript, followed by iZotope RX 10,
Audacity, and Audacity x RX10. We played audio files one by one and after
getting the transcription we calculated the WER score. Since we already
know the correct translations, calculating WER results was straightforward.

Here are the results after the experiment:

Users Descript iZotope RX 10 Audacity Audacity x RX 10
Male 1 0.714 (71.4%) 1.071 (107.1%) 0.644 (64.3%) 0.286 (28.6%)
Male 2 0.5 (50.0%) 0.75 (75.0%) 0.25 (25.0%) 0.667 (66.7%)
Female 1 2 (200.0%) 2.4 (240.0%) 0 (0.0%) 0 (0.0%)
Female 2 | 0.364 (36.4%) 0.455 (45.5%) 0.273 (27.3%) 0.273 (27.3%)
Female 3 1 (100.0%) 0.6 (60.0%) 1.2 (120.0%) 0.6 (60.0%)
Female 4 | 1.571 (157.1%) 0 (0.0%) 0.143 (14.3%) 0 (0.0%)
Female 5 0 (0.0%) 0.7 (70.0%) 0.625 (62.5%) 0 (0.0%)
Male 3 1 (100.0%) 0.9 (90.0%) 0.8 (80.0%) 0.8 (80.0%)
Male 4 0.714 (71.4%) 0.857 (85.7%) 0.857 (85.7%) 1.429 (142.9%)
Male 5 1 (100.0%) 1 (100.0%) 1.143 (114.3%) 1.667 (166.7%)

Table 7.6: WER results for the second experiment
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Figure 7.8: Comparision chart of Whisper(local).

After calculating the WER score, we can analyze the scores. With different
setups, we got different scores. With raw data, we are getting 0.5172 as the
average WER score with the male WER score at 0.8598 and the female WER
score at 0.1746. From WER scores, Descript gives an average of 0.8863 as
the overall WER score with the male WER score at 0.7856 and the female
WER score at 0.987. When we used audio that was preprocessed on iZotope
RX 10, we got 0.8733 as the average overall WER score with the male WER
score at 0.9156 and the female WER score at 0.831. When we used audio
from Audacity, we got 0.5935 as the average overall WER score with the male
WER score at 0.7388 and the female WER score at 0.4482. Finally, when we
used Audacity x Rx 10, we got 0.5722 the average overall WER score with
the male WER score at 0.9698 and the female WER score at 0.1746.

Users Raw data | Descript | iZotope RX 10 | Audacity | Audacity x RX 10
Overall WER 0.5172 0.8863 0.8733 0.5935 0.5722
Male WER 0.8598 0.7856 0.9156 0.7388 0.9698
Female WER 0.1746 0.987 0.831 0.4482 0.1746

Table 7.7: WER results for the second experiment
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Figure 7.9: Comparision WER scores of Whisper(local).

B 7.2.3 Third Experiment

In our third experimental setup, we used Whisper Al (cloud) as a Speech-to-
text tool, along with 40 audio sets which are preprocessed by four different
audio signal processing tools. The audio signal processing tools used in this
set-up were Descript, iZotope RX 10, Audacity, and Audacity x RX 10. Each
tool preprocessed 10 sets from the total set of 40.

Third Experiment Setup
Whisper AI (cloud) x Descript
Whisper Al (cloud) x iZotope RX 10
Whisper Al (cloud) x Audacity
Whisper AT (cloud) x Audacity x RX 10

Table 7.8: Third Experiment Setup

Before starting experiments with preprocessed data, we first experimented
with a raw dataset to see how it performed. This helped us compare its
performance with both raw and preprocessed data and see if any improvements
were made.

First, let’s see how Whisper AI (cloud) reacts to raw data:
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Users Raw data
Male 1 0.143 (14.3%)
Male 2 0 (0.0%)
Female 1 0 (0.0%)
Female 2 0.182 (18.2%)
Female 3 0.2 (20.0%)
Female 4 0 (0.0%)
Female 5 0 (0.0%)
Male 3 0.1 (10.0%)
Male 4 0.429 (42.9%)
Male 5 1 (100.0%)

Table 7.9: WER of Whisper Al(cloud) x raw data

For the experiment, we started with Descript, followed by iZotope RX 10,
Audacity, and Audacity x RX10. We played audio files one by one and after
getting the transcription we calculated the WER score. Since we already
know the correct translations, calculating WER results was straightforward.

Here are the results after the experiment:

Users Descript iZotope RX 10 Audacity Audacity x RX 10
Male 1 0.571 (57.1%) 0.429 (42.9%) 0.071 (7.1%) 0.071 (7.1%)
Male 2 0.5 (50.0%) 1 (100.0%) 0 (0.0%) 0 (0.0%)
Female 1 | 1.8 (180.0%) 2.8 (280.0%) 0 (0.0%) 0 (0.0%)
Female 2 | 0.091 (9.1%) 0.364 (36.4%) 0.091 (9.1%) 0.182 (18.2%)
Female 3 | 1.2 (120.0%) 0 (0.0%) 0.2 (20.0%) 0 (0.0%)
Female 4 | 1.429 (142.9%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
Female 5 | 0.125 (12.5%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
Male 3 0.9 (90.0%) 0.333 (33.3%) 0.333 (33.3%) 0.111 (11.1%)
Male 4 0 (0.0%) 1.286 (128.6%) | 0.571 (57.1%) 1 (100.0%)
Male 5 | 1.571 (157.1%) 0.857 (85.7%) 0.571 (57.1%) 0.714 (71.4%)

Table 7.10: WER results for the third experiment
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Figure 7.10: Comparision chart of Whisper(cloud).

After calculating the WER score, we can analyze the scores. With different
setups, we got different scores. With raw data, we are getting 0.2054 as the
average WER score with the male WER score at 0.3344 and the female WER
score at 0.0764. From WER scores, Descript gives an average of 0.8187 as the
overall WER score with the male WER score at 0.7084 and the female WER
score at 0.929. When we used audio that was preprocessed on iZotope RX
10, we got 1.297181 as the average overall WER score with the male WER
score at 0.781 and the female WER score at 0.6328. When we used audio
from Audacity, we got 0.1837 as the average overall WER score with the male
WER score at 0.571 and the female WER score at 0.0582. Finally, when we
used Audacity x Rx 10, we got 0.2078 the average overall WER score with
the male WER score at 0.3792 and the female WER score at 0.0364.

Users Raw data | Descript | iZotope RX 10 | Audacity | Audacity x RX 10
Overall WER 0.2054 0.8187 1.2971 0.1837 0.2078
Male WER 0.3344 0.7084 0.781 0.571 0.3792
Female WER 0.0764 0.929 0.6328 0.0582 0.0364

Table 7.11: WER results for the third experiment
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Figure 7.11: Comparision WER scores of Whisper(cloud).

B 7.2.4 Fourth Experiment

Finally, in our last, fourth experimental setup, we used Vosk as a Speech-to-
text tool, along with 40 audio sets which are preprocessed by four different
audio signal processing tools. The audio signal processing tools used in this
set-up were Descript, iZotope RX 10, Audacity, and Audacity x RX 10. Each
tool preprocessed 10 sets from the total set of 40.

Fourth Experiment Setup
Vosk x Descript
Vosk x iZotope RX 10
Vosk x Audacity
Vosk x Audacity x RX 10

Table 7.12: Fourth Experiment Setup

Before starting experiments with preprocessed data, we first experimented
with a raw dataset to see how it performed. This helped us compare its
performance with both raw and preprocessed data and see if any improvements
were made.

First, let’s see how Vosk reacts to raw data:
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Users Raw data
Male 1 0.4 (40.0%)
Male 2 0.767 (76.7%)
Female 1 0.091 (9.1%)
Female 2 0.363 (36.3%)
Female 3 0.8 (80.0%)
Female 4 0.091 (9.1%)
Female 5 0.091 (9.1%)
Male 3 0.75 (75.0%)
Malc 4 0.857 (85.7%)
Male 5 1.867 (186.7%)

Table 7.13: WER of Vosk x raw data

For the experiment, we started with Descript, followed by iZotope RX 10,
Audacity, and Audacity x RX10. We played audio files one by one and after
getting the transcription we calculated the WER score. Since we already
know the correct translations, calculating WER results was straightforward.

Here are the results after the experiment:

Users Descript iZotope RX 10 Audacity Audacity x RX 10
Male 1 0.7 (70.0%) 1 (100.0%) 0.9 (90.0%) 0.386 (38.6%)
Male 2 0.6 (60.0%) 0.65 (65.0%) 0.65 (65.0%) 0.677 (67.7%)
Female 1 1 (100.0%) 1.4 (140.0%) 0.091 (9.1%) 0.091 (9.1%)
Female 2 | 0.664 (66.4%) 0.45 (45.0%) 0.45 (45.0%) 0.35 (35.0%)
Female 3 | 1 (100.0%) 0.9 (90.0%) 1.2 (120.0%) 0.9 (90.0%)

Female 4 | 1.6 (160.0%) 0.714 (71.4%) 0.143 (14.3%) 0.091 (9.1%)
Female 5 | 0.182 (18.2%) 0.65 (65.0%) 0.6 (60.0%) 0.091 (9.1%)
Male 3 1 (100.0%) 0.9 (90.0%) 0.8 (80.0%) 0.8 (80.0%)

Male 4 | 0.617 (61.7%) 1 (100.0%) 0.657 (65.7%) 1.72 (172.0%)
Male 5 1.5 (150.0%) 1.5 (150.0%) 1.547 (154.1% 1 (100.0%)

Table 7.14: WER results for the fourth experiment
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Figure 7.12: Comparision chart of Vosk.

After calculating the WER score, we can analyze the scores. With different
setups, we got different scores. With raw data, we are getting 0.7715 as the
average WER score with the male WER score at 0.9282 and the female WER
score at 0.6148. From WER scores, Descript gives an average of 0.8863 as
the overall WER score with the male WER score at 0.8834 and the female
WER score at 0.8892. When we used audio that was preprocessed on iZotope
RX 10, we got 0.9164 as the average overall WER score with the male WER
score at 1.01 and the female WER score at 0.8228. When we used audio
from Audacity, we got 0.7038 as the average overall WER score with the male
WER score at 0.9108 and the female WER score at 0.4968. Finally, when we
used Audacity x Rx 10, we got 0.6106 as the average overall WER score with
the male WER score at 0.9166 and the female WER score at 0.3046.

Users Raw data | Descript | iZotope RX 10 | Audacity | Audacity x RX 10
Overall WER 0.7715 0.8863 0.9164 0.7038 0.6106
Male WER 0.9282 0.8834 1.01 0.9108 0.9166
Female WER 0.6148 0.8892 0.8228 0.4968 0.3046

Table 7.15: WER results for the fourth experiment
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Figure 7.13: Comparision WER scores of Vosk.

B3 Analysis of ASR system performance and key
findings

After using different Automatic Speech Recognition (ASR) systems, and
finishing our experiments, we will discuss the performance of these systems.

8 Performance of the ASR tools

Starting with Descript, even if it’s more known for its audio editing features,
as speech-to-text tool it justified its work. If we check overall WER results,
it’s nearly the perfect tool for speech-to-text. WER scores follow as, with
Descript itself giving an average of 0.0867 as the overall WER score with
the male WER score at 0.1734 and the female WER score at 0, with iZotope
RX 10, we got 0.3653 as the average overall WER score with the male WER
score at 0.4142 and the female WER score at 0.3164, with Audacity, we got
0.12 as the average overall WER score with the male WER score at 0.24 and
the female WER score at 0, and with Audacity x Rx 10, we got 0.0771 as
the average overall WER score with the male WER score at 0.1542 and the
female WER score at 0. It worked with other audio tools fairly enough except
slightly worse with iZotope RX 10. Despite this, the tool works amazingly
with both male and female audio.

For our next speech-to-text tool, we chose Whisper AI, both in local
and cloud environments. Starting with the local environment, was fairly
good as well. But it didn’t make any huge difference between raw data
and preprocessed data. Numbers were quite similar between raw data and
preprocessed data. WER scores follow as, with raw data, we are getting
0.5172 as the average WER score with the male WER score at 0.8598 and
the female WER score at 0.1746, with Descript giving an average of 0.8863
as the overall WER score with the male WER score at 0.7856 and the female
WER score at 0.987, with iZotope RX 10, we got 0.8733 as the average
overall WER score with the male WER score at 0.9156 and the female WER

65



7. Practical experiment

score at 0.831, with Audacity, we got 0.5935 as the average overall WER
score with the male WER score at 0.7388 and the female WER score at 0.4482
and with Audacity x Rx 10, we got 0.5722 the average overall WER score
with the male WER score at 0.9698 and the female WER score at 0.1746.
One issue that we had with the local environment is, its automatic language
detection, it detected the wrong language. With English audio files there
wasn’t any problem but since we used Czech audio files, it started to detect
the wrong language. It showed Polish or Albanian language as the detected
language if we don’t specify the language on command. Overall speaking, the
way it was quick and had decent accuracy was quite good.

On the other hand, using it in a cloud environment was much more seamless.
Specially, if you do not want to install anything on your local computer. It
has fairly good translation time as well, the only issue could be that you need
to download your files after transcription since it deletes them automatically
after you end your runtime. WER scores follow as, with raw data, we are
getting 0.2054 as the average WER score with the male WER score at 0.3344
and the female WER score at 0.0764, with Descript giving an average of
0.8187 as the overall WER score with the male WER score at 0.7084 and the
female WER score at 0.929, with iZotope RX 10, we got 1.297181 as the
average overall WER score with the male WER, score at 0.781 and the female
WER score at 0.6328, with Audacity, we got 0.1837 as the average overall
WER score with the male WER score at 0.571 and the female WER score
at 0.0582 and with Audacity x Rx 10, we got 0.2078 the average overall
WER score with the male WER score at 0.3792 and the female WER score
at 0.0364. Looking at WER results, interestingly, it seems like on the cloud
platform, it works better with raw data compared to preprocessed data. But
overall speaking, in both environments, the tool worked better with female
than male audio.

Finally, the last tool, we had Vosk. Overall, speaking, it didn’t any huge
difference in WER scores between raw data and preprocessed data. However,
the problem with this tool is that it took more time than other speech-to-text
tools. Another issue is, that in the middle of transcription, it will give the
wrong words, if sentences get longer, it gives more different words. WER
scores follow as, with raw data, we are getting 0.7715 as the average WER
score with the male WER score at 0.9282 and the female WER score at
0.6148, with Descript giving an average of 0.8863 as the overall WER score
with the male WER score at 0.8834 and the female WER score at 0.8892, with
iZotope RX 10, we got 0.9164 as the average overall WER score with the
male WER score at 1.01 and the female WER score at 0.8228, with Audacity,
we got 0.7038 as the average overall WER, score with the male WER score at
0.9108 and the female WER score at 0.4968 and with Audacity x Rx 10,
we got 0.6106 as the average overall WER score with the male WER score
at 0.9166 and the female WER score at 0.3046. Overall speaking, the tool
worked better with female than male audio.

® Fairness in WER

For the calculation of our ASR performance results, we used the word
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error rate (WER). Calculation is done by counting the number of words
that need to be substituted (S), deleted (D), and inserted (I) to transition
from a ground-truth transcription to the output of an ASR system. This
count is then divided by the total number of words in the ground-truth
transcription (N). It’s a known fact that WER treats each discrepancy
between the ground-truth transcription and the ASR output equally.

However, after experimental results, it was clear that not all Automatic
Speech Recognition (ASR) errors are equal. Word Error Rate (WER)
results don’t consistently align with human judgment or performance
in downstream tasks like information retrieval, natural language under-
standing, or named entity recognition.

We can see a reference to this talk on 4.3 where we discussed the sentence
'T love you." If one ASR system outputs "I loathe you," and another
predicts "I love you," both cases result in a WER of 0.33. However, the
severity of the errors differs significantly. While "luv" is a minor deviation
from the ground truth "love," "loathe" completely changes the meaning
of the sentence.

Same with other words that can be understandable for humans but could
be considered as errors on Automatic Speech Recognition (ASR) tools
and algorithms.

Despite these challenges, overall, all of these tools did their job pretty
well, even without preprocessed data they can give good accuracy speech-
to-text transcription. After experiments, it is clear to us that Automatic
Speech Recognition (ASR) has bias regarding gender. It looks like it works
better with female audio. However, we need to consider factors such as speech,
speaker, channel, and environmental conditions. Meanwhile, Word Error Rate
(WER) results do not always align with human judgment or performance.

Even though the number of audio samples used in this experiment was rela-
tively small, it didn’t affect our purpose and served us to understand the core
of ASR and identify any potential improvements after testing. However, we
acknowledge that testing on larger databases is essential for a comprehensive
understanding of ASR, and it remains one of our future research objectives.

. 7.4 Future Research Directions in ASR

Over the years, the field of ASR proceeded from its early stages and quickly
grew the number of practical applications and commercial markets. Despite
its achievements, ASR remains far from being a solved problem. As in the
past, we expected further research and development, there’s still much room
for further improvement.

Moore’s Law, which predicts the doubling of computational power every
12 to 18 months, has played a significant role in ASR, development. This has
allowed researchers to run increasingly complex algorithms quickly, leading
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to significant progress. Access to common speech corpora for training and
evaluation has also been crucial in enhancing ASR systems’ capabilities.

However, speech is highly variable and influenced by many factors such as
speech, speaker, channel, and environmental conditions. ASR systems often
struggle when faced with signals that differ from their training data, even
slightly. A key area of research focuses on improving the robustness of ASR
systems against such variability and shifts in acoustic environments, noise
sources, speaker characteristics, and language characteristics. [23]

Future research can aim to develop systems that can adapt to diverse
conditions, such as different speaking styles, accents, emotional states, and
language variations. New techniques and architectures are being explored to
automatically adjust to changing conditions in real-time, enabling accurate
transcription in various environments, from formal presentations to casual
conversations.

It became clear that not all Automatic Speech Recognition (ASR) errors
are equal and Word Error Rate (WER) results don’t consistently align with
human judgment. In order to have fairness in ASR results, future research
can aim to develop metrics that align with human judgment and performance
in downstream tasks. Considering information like retrieval, natural language
understanding, or named entity recognition.

Addressing this challenge requires collaboration across disciplines such as
natural language processing, information retrieval, and cognitive science. The
ultimate goal will be to make ASR systems more reliable and useful in a wide
range of applications, facilitating communication and interaction in diverse
settings. [23]

68



Chapter 8

Conclusion

The purpose of this thesis assignment, which involved investigating Automatic
Speech Recognition (ASR) through experiments, has been effectively achieved,
with all stated goals met.

Over the years speech technologies improved significantly, especially Au-
tomatic Speech Recognition (ASR). Automatic Speech Recognition (ASR)
is a vital bridge in human-machine interactions. It involves several areas
from military communications to emergency response systems. Even though
there are significant improvements, Automatic Speech Recognition (ASR) still
faces challenges. The performance of the system can depend on environment,
gender, and language.

In this thesis, we aimed to enhance the success rate of speech radio channel
content recognition. By reviewing state-of-the-art methods, presenting our
approach, and comparing results, we contribute to a deeper understanding of
speech, digital signal processing, and Automatic Speech Recognition (ASR)
systems. Our research underscores the importance of optimizing these systems
for practical applications.

For our experiments, we had four different setups. For each setup, we
focused on one Automatic Speech Recognition (ASR) system and 40 audio sets,
preprocessed by four different audio signal processing tools. The Automatic
Speech Recognition (ASR) systems we used were Descript, Whisper AI (in
both local and cloud environments), and Vosk. The audio signal processing
tools we used were Descript, iZotope RX 10, Audacity, and Audacity x RX
10. For audio, we used 10 sets from 5 different male and female speakers.
Each tool preprocessed 10 sets from the total set of 40.

If we look closely, Descript demonstrates near-perfect accuracy. The WER
scores follow as: Descript itself gave an average of 0.0867, iZotope RX 10
gave 0.3653, Audacity gave 0.12 and Audacity x Rx 10 gave 0.0771.

For gender WER scores, Descript itself gave an average male WER, of
0.1734 and female WER of 0, iZotope RX 10 gave an average male WER
of 0.4142 and female WER of 0.3164, Audacity gave an average male WER
of 0.24 and female WER of 0, and Audacity x RX 10 gave an average male
WER of 0.1542 and female WER of 0. Comparing male and female WER
scores, Descript works better with female voices compared to male.

For our next speech-to-text tool, we chose Whisper AI, both in local
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and cloud environments. Whisper Al offers pretty good local and cloud
integration but it struggles with language detection. For Whisper AT in local
environments, the WER scores follow as: raw data gave an average WER
of 0.5172, Descript gave 0.8863, iZotope RX 10 gave 0.8733, Audacity gave
0.5935 and Audacity x Rx 10 gave 0.5722.

For gender WER scores, raw data gave an average male WER of 0.8598
and female WER of 0.1746, Descript gave an average male WER of 0.7856
and female WER of 0.987, iZotope RX 10 gave an average male WER of
0.9156 and female WER of 0.831, Audacity gave an average male WER, of
0.7388 and female WER of 0.4482, and Audacity x RX 10 gave an average
male WER of 0.9698 and female WER of 0.1746. Whisper Al works better
with female voices compared to males.

For Whisper Al in cloud environment, the WER scores follow as: raw data
gave an average WER of 0.2054, Descript gave 0.8187, iZotope RX 10 gave
1.2971, Audacity gave 0.1837, and Audacity x RX 10 gave 0.2078.

For gender WER scores, raw data gave an average male WER of 0.3344
and female WER of 0.0764, Descript gave an average male WER, of 0.7084
and female WER of 0.929, iZotope RX 10 gave an average male WER. of
0.781 and female WER of 0.6328, Audacity gave an average male WER, of
0.571 and female WER of 0.0582, and Audacity x RX 10 gave an average
male WER of 0.3792 and female WER of 0.0364. Again, Whisper Al works
better with female voices compared to male.

Finally, the last tool, Vosk, while accurate, has slower processing times and
occasional errors. The Vosk WER scores follow as: raw data gave an average
WER of 0.7715, Descript gave 0.8863, iZotope RX 10 gave 0.9164, Audacity
gave 0.7038, and Audacity x RX 10 gave 0.6106.

For gender WER scores, raw data gave an average male WER of 0.9282
and female WER of 0.6148, Descript gave an average male WER, of 0.8834
and female WER of 0.8892, iZotope RX 10 gave an average male WER of
1.01 and female WER of 0.8228, Audacity gave an average male WER of
0.9108 and female WER of 0.4968, and Audacity x RX 10 gave an average
male WER of 0.9166 and female WER of 0.3046. Vosk also works better with

female voices compared to male ones.

The performance of these different Automatic Speech Recognition (ASR)
systems reveals their strengths and weaknesses. Our goal was to see improve-
ments after the preprocessing of data and compare raw data with preprocessed
data. Audio and speech processing are used to enhance sound quality, per-
form speech recognition, and create digital synthesizers. After preprocessing,
Automatic Speech Recognition (ASR) systems are expected to give better
overall results. However, we found that in some aspects, they work well with
raw data and sometimes perform slightly worse with preprocessed data. For
example, Whisper Al in the local environment gives better WER scores with
raw data, which is 0.5172, and slightly worse with preprocessed data. In
the Whisper Al cloud environment, there wasn’t a huge difference between
raw data and data preprocessed with Audacity and Audacity x RX 10, but
WER scores were worse with Descript and iZotope RX. Similarly, for Vosk,
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there wasn’t a huge difference between raw data and data reprocessed with
Audacity and Audacity x RX 10, but slightly worse WER, scores with Descript
and iZotope RX 10. Descript achieved near-perfect accuracy but had slightly
worse WER scores with iZotope RX. In addition, if we compare male and
female WER scores, we can see that on every setup, ASR has a bias on female
voices and performing better with them.

Even with these challenges, all tools provide reliable speech-to-text tran-
scription. However, it’s important to note that, the speaker has a role in
the performance of these systems too, such as speaking style, emotional
state, or environment, which can affect results. Additionally, while WER is
commonly used for calculation, it may not always align with human judgment
or performance. Our experiment used a relatively small number of audio
samples, but it served our purpose of understanding ASR and identifying
potential improvements, and how the performance of the system can depend
on environment, gender, and language. However, we acknowledge that testing
on larger databases is essential for a comprehensive understanding of ASR,
and it remains one of our future research objectives.

With these findings, ongoing research is needed to further improve ASR
systems. Despite the acceleration in ASR development due to Moore’s
Law, challenges remain due to the influence of factors like environment and
speaker characteristics on speech. Future efforts should focus on improving
system robustness, adapting to diverse conditions, and enabling real-time
adjustments for accurate transcription across different contexts. For fairness
of ASR systems proper metrics considering relevant information should be
developed to align ASR systems with human judgment and performance in
downstream tasks.

Addressing these challenges requires collaboration and innovative ap-
proaches. To make Automatic Speech Recognition (ASR) systems more
reliable and adaptable, we can turn these systems into more effective commu-
nication and interaction in various settings.
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Appendix A

Abbreviations list

ASR Automatic Speech Recognition

STT Speech-to-text

TTS Text-to-speech

WER Word Error Rate

HNR harmonics-to-noise ratio

SIL Sound intensity level

SPL Sound pressure level

FFT Fast Fourier Transform

PLP Perceptual Linear Prediction

MFCC Mel-Frequency Cepstral Coefficients
LP Linear Predictive

DSP Digital Signal Processing

ADC Analog-to-digital

DS Digital Signal

DAC Digital-to-analog

ECG Electrocardiograms

EEG Electroencephalograms

DHH Users who are deaf or hard of hearing
FIR Finite Impulse Response filter

DCT Discrete Cosine Transform

LPC Linear Prediction Coding

LPCC Linear prediction cepstral coefficients
LAR Log Area Ratio
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A. Abbreviations list

RC Reflection Coefficients

LSF Line Spectral Frequencies
ARCSIN Arcus Sine Coefficients
LSF Line Spectral Frequencies

WT Wavelet Transform

CWT Continuous Wavelet Transform
DWT Discrete Wavelet Transform

IDCT Inverse Discrete Fourier Transform
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