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Abstract 
Kaitai Struct (KS) is a tool for working with binary formats. It introduces a declarative do-
main-specific language Kaitai Struct YAML (.ksy) for describing the structure of arbitrary 
binary formats. Based on any specification, KS can automatically generate a ready-to-use 
parsing module in one of 11 programming languages. Until now, KS only allowed to parse 
data from binary files to an object tree. However, in many cases, the opposite direction (se-
rialization) is also needed, i.e., to modify the data in binary files or to create new ones. This 
can be used to convert files between formats, to transfer data between computers using a 
transport protocol, or for fuzzing, useful for detecting bugs in parsers. This work adds seri-
alization support for Java to the KS project. This involves extending the compiler, adding 
support for serialization in the runtime library, and building an automated testing infra-
structure for serialization. The result is a serialization module that works for almost all KSY 
format specifications in the official format gallery, of which there are over 180. To ensure 
that the implementation works in identified edge cases, 59 unit tests were added. 
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Abstrakt 
Kaitai Stručt (KS) je nástroj pro práči s binárními formáty. Zavádí deklarativní doménově 
specifický jazyk Kaitai Struct YAML (.ksy) pro popis struktury libovolných binárních for-
mátů. Na základě jakékoliv spečifikače dokáže KS automatičky vygenerovat hotový modul 
pro parsování v jednom z 11 programovačíčh jazyků. Dosud KS umožňoval pouze parsovat 
data z binárníčh souborů do stromu objektů. V mnoha případečh je však potřeba i opačný 
směr (serializače), tj. úprava dat v binárním souboru nebo vytvoření nového. To lze použít 
k převodu souborů mezi formáty, k přenosu dat mezi počítači pomočí transportního proto-
kolu nebo k fuzzingu, čož je užitečné pro detekči čhyb v parserečh. Tato práče přidává do 
projektu KS podporu serializače pro Javu. To zahrnuje rozšíření kompilátoru, přidání pod-
pory serializace do běhové knihovny a vybudování automatizované testovací infrastruktury 
pro serializači. Výsledkem je serializační modul, který funguje pro téměř všečhny formátové 
spečifikače KSY v ofičiální galerii formátů, kterýčh je víče než 180. Aby bylo zajištěno, že 
implementače funguje v identifikovanýčh okrajovýčh případečh, bylo přidáno 59 unit testů. 
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1 Introduction 
Binary files are used to store and transfer data due to their simplicity and efficiency. 
Unlike text files, which are made up entirely of human-readable characters, binary 
files are general sequences of bits in one of two states, usually represented as 0 and 
1. The analysis of digital data is at the core of many scientific disciplines such as re-
verse and forensic software engineering, cybersecurity, networking, and communica-
tion. To extract the required information from a file or data stream, a parser is used 
to parse (dissect) a sequence of bytes based on the structure of the binary data format. 
The output of the parser is information in a form that can be further manipulated. 

Serialization is the opposite process – it converts data structures or objects into a bi-
nary format that can be stored or transmitted. It can be used for a variety of purposes. 
Serialized binary data can be sent over a network or between different systems, al-
lowing interoperability; they can be used to store the state of an object and restore it 
later, allowing data persistence across different sessions or applications; they can be 
used to pass data between different processes or machines, facilitating communica-
tion in distributed systems. 

Over the years, many tools have been developed to efficiently parse binary files and 
serialize data structures to them. The most used tools for working with binary formats 
include binary editors, binary analysis libraries, disassemblers and decompilers, 
packet sniffers and protocol analyzers, and custom analysis scripts. 

Kaitai Struct (KS) is a free and open-source software project developed on GitHub. It 
is a tool for working with binary formats. Kaitai Struct introduces a declarative do-
main-specific language for describing the structure of arbitrary binary formats. A 
unique feature of Kaitai Struct is its programming language agnosticity. Format spec-
ification in Kaitai Struct is independent of the choice of programming language, so 
each specification can be automatically compiled into the 11 supported target lan-
guages. A compiler that does this can easily be extended to other target languages. 

Since its launch in 2016, Kaitai Struct has become a respected tool for parsing binary 
formats. There are more than 650 projects on GitHub that use Kaitai Struct. It has 
found applications in reverse engineering/malware/security research, maintaining 
compatibility with legacy formats, digital preservation efforts, working with media 
files and transport protocols, satellite communications, scientific and university re-
search (e.g., astrophysical and geophysical data processing), game development, un-
packing and parsing files contained in firmware, etc. 

1.1 Motivation 

The current state of Kaitai Struct only allows you to extract data from binary files cre-
ated by other programs (parsing). However, in many cases, the opposite direction is 
also needed, i.e., to modify the data in binary files or to create new ones (serialization). 
This has been by far the most requested feature in Kaitai Struct for a long time, and it 
is still missing. This prevents many users from using Kaitai Struct to its full potential. 



2 Introduction 

Serialization is a logical extension to Kaitai Struct that immediately allows to use writ-
ten format specifications not only for parsing, but also for serialization. The specifica-
tions that have been created are a result of many thousands of hours of work by over 
80 contributors, and adding support for serialization will be a fraction of the time in 
comparison, while greatly expanding the use of all these specifications. As with pars-
ing, the uses would be very diverse. In particular, the combination of parsing and se-
rialization opens up a lot of room for additional uses and will attract many new users. 
Demands are mainly in the following areas: 

• transport protocols (e.g. an easy way to communicate and exchange data between 
different programming languages in the same obscure protocol) 

• converting files between different formats (e.g. multimedia) 

• scientific purposes – e.g. a number of obscure formats are used in scientific meas-
urements, often specific to a given manufacturer. The programs used to analyze 
the measured data are not familiar with these formats, so it is necessary to convert 
the original format to some other format that the program can work with (i.e., 
parse the obscure format first and then serialize it to a known format) 

• easy fuzzing of hand-written parsers that parse a particular binary format – this 
is useful for revealing security vulnerabilities (example: a PNG file with all the 
checksums matching, but bogus content) 

• repair, recovery and error correction of corrupted data on media (hard drives) or 
during network transmission 

• video game modding (by editing obscure game formats) 

I got involved in the development of Kaitai Struct in 2019. In November that year, I 
was invited to join the Kaitai development team. In May 2020, I accepted an offer from 
the founder Mikhail Yakshin to become the project administrator. 

My main activity is development – I have created 2227 commits (as of 19.4.2024). I 
also review code and merge pull requests, submit ideas and visions in the form of is-
sues, comment on issues and pull requests (2343 comments as of 19.4.2024), answer 
questions on Gitter, work on documentation, maintain the project and release new 
versions of the project. 

1.2 Financial support 

For my project "Serialization for Java and Python" in 2022 I received a grant1 from the 
Dutch foundation NLnet, which provides financial support for open-source projects. 

 

 
1 https://nlnet.nl/project/Kaitai-Serialization 

https://nlnet.nl/project/Kaitai-Serialization
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The project includes adding serialization support for Java and Python to the KS com-
piler and runtime libraries and writing online documentation. Everything is pub-
lished in the Kaitai Struct project's GitHub repositories2. 

I successfully completed the project in the spring of 2023. This eased my way to re-
ceive another grant from the NLnet Foundation from the NGI Zero Entrust3 fund in 
the summer of 2023. 

1.3 Goal 

The goal of this thesis is to add serialization support to the open-source tool Kaitai 
Struct, which includes design, implementation in Java and testing. Unlike the grant 
project, I will only discuss Java in the implementation section. I have chosen this nar-
rowing down for better clarity of the work. The principles and conceptual design of 
serialization are the same for all languages, the implementation must consider the 
syntactic and behavioral differences and conventions of each target language, but it is 
more about the details. 

1.4 Outline 

Chapter 2 deals with the structure and typical features of binary formats. 

Chapter 3 discusses the types and principles of serialization. 

Chapter 4 gives an overview of related tools and projects. 

Chapter 5 introduces Kaitai Struct, its characteristic features and its components. 

Chapter 6 introduces the requirements on serialization support, analyzes KSY fea-
tures and designs the API and serialization process in Kaitai Struct. 

Chapter 7 describes the implementation of serialization in the Java runtime library 
and KS compiler. 

Chapter 8 discusses test areas, methods, and evaluation. 

  

 

 
2 https://github.com/kaitai-io 
3 NGI0 Entrust is made possible with financial support from the European Commission's Next 
Generation Internet programme. 

https://github.com/kaitai-io
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2 Binary format fundamentals 
This chapter covers the basic design principles of binary formats. It describes com-
mon building blocks that can be found in almost all binary formats. The structures of 
specific binary formats vary, so you should refer to the relevant specifications to work 
with that format. 

2.1 Basic concepts 

Any computer file is a sequence of bytes with a certain length (also known as the file 
size). A byte is usually the smallest unit that a computer can address directly. It is a 
sequence of 8 bits. A bit is a binary digit, either 0 or 1. Therefore, the possible values 
of a byte are all bit patterns from 0000 0000 to 1111 1111. Bytes are often displayed 
in hex notation, whičh is done by enčoding every 4 bits to a hexadečimal digit 0, …, 9, 
A, … F. This maps eačh byte to a two-digit hexadecimal number between 00 and FF. 
Software called hex editor or hex viewer can display the raw contents of any file in a 
hex dump, which is a listing of bytes formatted as 2-digit hex numbers. 

A binary format is a set of rules that specify mapping between individual bytes and 
data attributes, which represent the meaningful information that the format is de-
signed to store. The data attributes can have various data types, for example integer, 
enumeration, floating-point number, text string, and more. They are often grouped 
into objects (structures) and lists and form a structured data tree (also called object 
tree later in this text). 

The process of converting a data tree to a byte sequence is called serialization, the 
conversion of a byte sequence to a data tree is called parsing (or deserialization). 
Since a byte sequence is how file contents are stored on a computer medium, parsing 
is often associated with reading and serialization is associated with writing. 

2.2 Operating system calls 

One of the tasks of the operating system is to provide an abstraction for working with 
files. It typically provides the following functions (possibly with minor variations): 

• read(num_bytes: uint): byte[num_bytes] | "EOF error" 

• tell(): uint 

• seek(offset: uint): void 

• write(data: byte[]): void 

All these methods access the current byte position (offset) associated with the open 
file. This offset is common to both read and write operations. The tell() method re-
turns this position. Usually, it is set to 0 when the file is opened, which points to the 
first byte of the file. 



6 Binary format fundamentals 

The read() method extracts the given number of bytes from the file starting at the 
current offset. If the file is long enough to satisfy this request, the bytes are returned 
and the current offset is incremented by the number of bytes read. Otherwise, an EOF 
(end of file) error is returned. 

The write() method overwrites the file contents starting at the current offset with 
the given bytes and increments the offset by the number of bytes written. The file 
length is extended if necessary. 

The seek() method repositions the current file offset to the given value. If the re-
quested position is beyond the EOF, the file size will not change. Only when write() 
is called at this point, the gap between the last EOF position and the file offset is (at 
least conceptually) filled with null bytes '\0', the bytes are written and the file size is 
updated [9]. 

2.3 Structure of binary formats 

In most cases, binary formats are designed to be parsed sequentially from the begin-
ning of the file (i.e., starting from the first byte). This can be done simply by succes-
sively calling read() with (possibly) different lengths depending on the size of the 
fields. In this case, the binary layout of format fields is simple – the first field starts at 
byte 0, and each subsequent field starts right after the end of the previous one (for 
example, if both the first and the second field are 4 bytes long, then the first occupies 
bytes 0-3 and the second 4-7). 

However, the seek() method gives us one additional capability. We can jump to an 
arbitrary offset in the file and continue reading/writing there. The position where to 
seek is usually stored in the file directly as an integer that gives an offset relative to 
the beginning of file or some other known point. The advantage of this random access 
is that it is possible to retrieve specific information without having to read the entire 
file [10]. 

2.4 Data types 

2.4.1 Characters 

Since only binary patterns can be stored in digital files, graphical characters must be 
encoded into binary form before they can be written. This is governed by a character 
encoding, which defines the set of supported characters and the way to represent 
them in a binary form. 

The most universally accepted standard is ASCII. It assigns meaning to each of the 
lower 128 values of a byte (i.e., from 00 to 7F in hex, or from 0 to 127 in decimal). This 
includes 95 printable characters: digits 0 to 9, uppercase letters A to Z, lowercase let-
ters a to z, and punctuation symbols [1]. The rest are control characters. 
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ASCII is originally a 7-bit encoding. Therefore, it only defines meaning of the bit pat-
terns of a byte with the most significant bit clear (i.e., in the format 0xxx xxxx). It does 
not use the upper 128 patterns of a byte, i.e., 1xxx xxxx. This allowed many 8-bit ex-
tensions of ASCII to be created, which leave the character-mapping of the lower 128 
values of a byte intact (thus keeping backward compatibility with ASCII) and only de-
fine special meaning for the upper half of the byte range. 

Nowadays, the dominant character encoding in most areas is UTF-8. It is backward 
compatible with ASCII. Unlike ASCII, which only supports a limited set of English al-
phanumeric characters and some special symbols, UTF-8 can encode any Unicode 
character (and Unicode covers most major writing systems in use today [2]). It is a 
variable-length encoding (it encodes code points in one to four bytes). The first byte 
of a sequence encoding a code point determines how many continuation bytes are 
part of the sequence [3]. 

Regardless of the character encoding used, the binary representation of a string is 
generally a concatenation of binary representations of individual characters. 

2.4.2 Numbers 

Integers in binary formats usually have a fixed length and therefore a fixed range. 
Typical sizes are 8, 16, 32 or 64 bits (which means 1, 2, 4 or 8 bytes). They can be 
unsigned or signed. Unsigned integer types can only represent non-negative numbers, 
whereas signed types also support negative. The most common method of represent-
ing signed integers is two’s čomplement. 

Fractional numbers are almost always represented in the 32-bit (single-precision, 4 
bytes in size) or 64-bit (double-precision, 8 bytes in size) floating-point format ac-
cording to the IEEE 754 standard. Some binary formats also use fixed-point arithme-
tic, which means the number is stored as an integer (signed or unsigned) that is to be 
multiplied by a fixed scaling factor [4]. 

2.4.3 Options to delimit length of a field or array 

In binary formats, there are often fields with variable length. For example, a character 
string or an array of records. There are several common ways to delimit a variable-
length field. 

One way is to prefix the field with an unsigned integer that specifies the byte size of a 
field or the number of elements of an array that follows, see Figure 1. This has the 
advantage that there is no limitation on the value of the repeated unit (there is no 
special value that ends the repetition). 
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byte value 

(hex) 
0b 48 65 6c 6c 6f 20 77 6f 72 6c 64 

byte meaning 11 H e l l o ␣ w o r l d 

field purpose 
message 

length 
message 

Figure 1: A variable-length field "message" prefixed by a length field 

Another way is to use a terminator (see Figure 2). In the set of all possible values of 
the unit we are repeating (a byte, a multi-byte integer, or a structure), we reserve 
some subset to indicate that it is the last unit. 

It is often used with text strings. It comes from the C language, where the standard 
representation of a string is just a pointer to the first character (char *), and the end 
of the string is found by sequentially scanning for the null character '\0'. 

byte value 

(hex) 
48 65 6c 6c 6f 20 77 6f 72 6c 64 00 

byte meaning H e l l o ␣ w o r l d \0 

field purpose message 
message 

terminator 

Figure 2: A variable-length field "message" delimited by a terminator byte 

Another example of a terminator-delimited field is a variable-length quantity (VLQ). 
It is a universal code that uses an arbitrary number of bytes to represent an arbitrarily 
large integer [5]. 

In the case of VLQ, the repeated unit is called a VLQ octet. It uses the most significant 
bit (MSb) to indicate whether another VLQ octet follows. The remaining 7 bits store a 
part of the integer value. 

If the MSb is 0, then this is the last VLQ octet of the integer. If it is 1, then another VLQ 
octet follows [5]. An example is shown in Figure 3. 
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byte value 

(hex) 
81 80 00 

byte value 

(bin) 
1 000 0001 1 000 0000 0 000 0000 

field 

purpose + 

value 

is 

followed 

by more 

VLQ 

octets 

(1: yes) 

bits 20..14 

of the 

resulting 

integer 

is 

followed 

by more 

VLQ 

octets 

(1: yes) 

bits 13..7 

of the 

resulting 

integer 

is 

followed 

by more 

VLQ 

octets 

(0: no) 

bits 6..0 

of the 

resulting 

integer 

Figure 3: Value 16 384 represented in VLQ format 

The above example represents the value 16 384. We can check this by concatenating 
the integer bits from individual VLQ octets: this gives us 000 0001 | 000 0000 | 
000 0000. The only bit set to 1 is at position 14, which has the weight 2**14 = 16384. 

Another possibility to delimit a variable-length field is to reserve the rest of the 
stream for it. The stream may be either the entire file we are parsing or its substream. 
A substream is a portion of a larger stream which delimits the area for parsing certain 
structures. Usually, the length of a substream is specified by an integer field. The 
structures we are parsing inside the substream are confined in that substream; read-
ing past the end of the substream is an error, even if the original stream continues 
after that point. 

If the rest of the stream is reserved for a variable-length field, its size is the remaining 
number of bytes in the stream. If the rest of the stream is reserved for an array of 
records, we should repeatedly read records until there are no bytes left in the stream. 
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3 Serialization principles 
This chapter defines the concept of serialization, the types of serialization, and the 
principles on which they are based. 

Serialization is the process of translating data structures into a format that can be 
transmitted or stored. Deserialization is the process of reconstructing data structures 
from a serialized data representation [6]. 

 

Figure 4: Parsing and serialization 

The data structures to be serialized are usually the at-runtime representations of data 
in a software program, for example in the form of C-type structs or object states in 
object-oriented programming (OOP). Data structures (or objects) are in this context 
defined as instances of a data type, denoting that they are filled with concrete values 
[7]. 

Serialization can be classified based on many characteristics. 

One distinguishing characteristic may be whether the serialized data is represented 
in text or binary form. 

We can also classify serialization based on the range of intended consumers of the 
format, i.e., whether it is sufficient that the application writing the format can read it, 
or whether the serialized data must be readable by other existing applications. 

Another important aspect is whether the serialized string can be deserialized without 
prior knowledge of its structure. If so, the serialization specification is schema-less; 
otherwise, the format is schema-driven [8]. 

serialization 
(writing) 

parsing 
(reading) 
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3.1 Text vs. binary serialization 

A serialization format is textual if its serialized form is a sequence of characters in a 
text encoding such as ASCII or UTF-8. The advantage is that there are a lot of computer 
tools available for manipulating text files, which makes textual formats perceived as 
human friendly [8]. They are easy to edit manually in a plain text editor. 

In contrast, binary formats are not human-readable, but they are more efficient. They 
tend to use less memory, because they usually store numeric values in more compact 
formats (such as signed/unsigned integers or IEEE 754 floating-point numbers), ra-
ther than as text characters [10]. 

In addition, binary formats also offer advantages in terms of speed of access. While 
the basic unit of information is very straightforward in a plain text file (one byte 
equals one character), finding the actual data values is often much harder. For exam-
ple, to find the third data value on the tenth row of a CSV file, the reader software must 
keep reading bytes until nine end-of-line characters have been found and then two 
delimiter characters have been found. This means that, with text files, it is usually 
necessary to read the entire file to find any particular value [10]. 

Binary formats can have some sort of map structure with offsets (pointers) of con-
tained entries. The advantage of having such a map is that any entry within the file 
can be found by seeking directly at the recorded offset, without having to read the 
entire file [10]. 

3.1.1 Text serialization formats 

Among the most common text-based serialization formats are the following [12]: 

• CSV (Comma-Separated Values) – CSV is well suited to storing large amounts of 
tabulated data in a human-readable format [11]. It is a flat format – it does not 
support storing objects or structured data. There is no native support for other 
data types than strings – if the application needs to store other data types, such as 
integers/datetimes, it must handle the conversion from and to string itself. 

• XML (Extensible Markup Language) – a markup language for storing and trans-
mitting arbitrary structured data. It is well standardized, with plenty of tooling 
available to generate XML and validate it with schemas. One disadvantage of XML 
is its verbosity. The element name must be repeated in the end tag, which in-
creases the overall size of XML data [11]. 

• JSON (JavaScript Object Notation) – JSON is a ubiquitous human-readable data se-
rialization format that is supported by almost every programming language [11]. 
The core type is an object, which is an unordered collection of key-value pairs 
(where the key must be a string unique within the object, and the value can be any 
supported data type). Another important data type is an array, an ordered collec-
tion of arbitrary values. Unlike CSV or XML, where all values are strings, JSON de-
fines a small set of basic data types such as number or boolean. 
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3.1.2 Binary serialization formats 

Some examples of binary serialization formats are the following: 

• BSON (Binary JSON) – A binary format for serialization of JSON-like documents. It 
deals with key-value pairs like JSON. Includes data types like datetime, byte array 
and others that are not part of the JSON spec [13]. Primary use is storage, not net-
work communication [12]. 

• MessagePack – An efficient binary serialization format. It lets you exchange data 
among multiple languages like JSON [14]. Supports static typing. Better JSON com-
patibility than BSON. Primary use is network communication, not storage [12]. 

• Protobuf (Protocol Buffers) – A binary message format used to serialize struc-
tured data created by Google. Working with Protobuf involves defining the struc-
ture of data in a .proto file, from which generated code can be used to serialize and 
deserialize data with the specified structure. 

3.2 Application-specific vs. single-domain 
interchange formats 

When developing an application, there is often a requirement to serialize data to make 
it possible to store the application state/output on disk or transport the data over a 
network or to another application. Before deciding on what serialization format 
should be used, it is important to recognize whether in our use case the serialized 
output needs to be readable by applications we have no control over or not. 

If not, all we need is an application-specific serialization format that we can choose 
arbitrarily. Arguably the simplest option is to use the native serialization approach 
offered by the programming language we are using – for example, the pickle module 
in Python or the “Serializable” interfače in Java. The disadvantage is that the serialized 
object serialized using the native method in one language is not compatible with other 
languages. If this is a problem, we can use data interchange formats. A data inter-
change (also called exchange) format is domain-independent and can be used for data 
from any discipline [15]. Data interchange text formats include JSON and XML, for 
more efficiency we can choose from data interchange binary formats such as BSON, 
MessagePack, Protocol Buffers, Apache Avro. 

An example when an application-specific format is suitable is when we have an appli-
cation where the user works on some project (for example, editing a video or design-
ing a printed circuit board) and we want to offer the user the ability to save the project 
to a file so that they can return to it later. 

However, for the application to be useful, we often also want to offer export formats 
that are readable by other applications. For instance, when the user has finished ed-
iting a video, they would want to export it to a well-known video format so that they 
can show the video to people that do not have the editing software. 
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From the perspective of an application developer, it means that the format we are 
serializing into can no longer be arbitrary – it is in our interest to serialize to a format 
that is widely supported by the ecosystem of existing applications. 

These well-known formats supported by a variety of applications are called single-
domain data interchange formats. Single-domain means that such a format is only de-
signed for one partičular disčipline. The term “data interčhange” refers to the idea of 
allowing data to be shared between different computer programs [15]. 

See Figure 5 for a comparison between application-specific and single-domain inter-
change formats. 

The concept of a single-domain data interchange format goes well together with the 
idea of open formats. An open format is defined by an openly published specification 
usually maintained by a standards organization. It can be used and implemented by 
anyone [16]. 

 

Figure 5: Application-specific vs. single-domain interchange formats 

3.3 Schema-less vs. schema-driven serialization 
formats 

A schema is a formal definition of a data structure. For example, a schema may de-
scribe a data structure as a sequence of two big-endian IEEE 754 single-precision 
floating-point numbers. 

Schema-less serialization embeds the information provided by a schema into the re-
sulting bit-strings to produce bit-strings that can be deserialized without additional 
information. This includes the names of the individual fields and their data types. In 
comparison to schema-driven serialization, schema-less serialization is perceived as 
easier to use because consumers can deserialize any bit-string produced by the im-
plementation and not only those that consumers know about in advance [8]. 
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In contrast, schema-driven serialization omits the structural information from the se-
rialized output, making it more compact. To deserialize a string that has been serial-
ized using schema-driven serialization, an external schema is required. Binary for-
mats often use schema-driven serialization because it optimizes size and processing 
time. 

An associative array (also known as a map) with two numeric properties, latitude 
and longitude, serialized with fictitious schema-less and schema-driven representa-
tions is shown in Figure 6. The schema-less representation (top) is self-descriptive 
and each property is self-delimited. In contrast, schema-driven representations (bot-
tom) omit most self-descriptive information except for the length of the associative 
array as an integer prefix. A reader cannot understand how the schema-driven repre-
sentation translates to the original data structure without a schema definition [8]. 

 

Figure 6: Schema-less and schema-driven data representation [8] 

Both JSON and XML are schema-less formats. This is typical for text formats for data 
interchange in general. JSON implicitly includes the information about property 
names and data types, for example: 

{ 

  "latitude": 48.858093, 

  "longitude": 2.294694 

} 

We can infer several information about the shape of data just by looking at the serial-
ized output. The overall type of the JSON data is “obječt” (an unordered čollečtion of 
key-value pairs with unique string keys), which has properties latitude and longi-
tude, both of type “number“. 

Binary data interchange formats can be schema-driven or schema-less. Schema-
driven are for example ASN.1, Apačhe Avro, Mičrosoft Bond, Cap’n Proto, FlatBuffers, 
Protocol Buffers, and Apache Thrift. Schema-less binary serialization formats include 
BSON, CBOR, FlexBuffers, MessagePack, Smile, and UBJSON. 

  



16 Serialization principles 

 



Related work 17 

4 Related work 
This chapter gives an overview of related tools, which deal with a similar problem as 
Kaitai Struct. Like Kaitai Struct, these tools are suitable when we need to serialize to 
a given arbitrary schema-driven binary format. We want to serialize data objects in 
memory populated with user-specified data to a specific binary format, which can be 
imported by other applications. 

There are many tools that can only parse binary data (for example Spicy, Binary-par-
ser in JavaScript, FlexT, EverParse), a small subset is capable of both parsing and se-
rialization. I am not aware of any general-purpose tools that can only serialize. There 
are some tools focused on serialization for specific use, particularly for fuzzing – for 
example FormatFuzzer. This tool takes a binary template that describes the format of 
a binary input, for instance, a template for GIF. It generates an executable that pro-
duces test GIF data – also known as GIF fuzzer. 

4.1 Construct 

Construct is a Python library for parsing and serializing binary data. 

Instead of writing imperative code to parse or serialize a piece of data, you declara-
tively define a data structure that describes your data. The structure is defined in Py-
thon code by combining building blocks defined by Construct, which are capable of 
serialization/deserialization [18]. As this data structure is not imperative code, you 
can use it in one direction to parse data into Python objects, and in the other direction, 
to build objects into binary data [19]. 

The library provides both simple, atomic constructs (such as integers of various 
sizes), as well as composite ones which allow you to form hierarchical and sequential 
structures of increasing complexity. Construct features bit and byte granularity, easy 
debugging and testing, an easy-to-extend subclass system, and lots of primitive con-
structs to make your work easier [19]. 

The most fundamental construct that can be serialized or deserialized is called a 
“field”. There are many kinds of fields, eačh working with a different type of data (nu-
meric, boolean, strings, etc.). Fields can be combined into more complex constructs – 
Structs and Sequences. A Struct is a collection of ordered and usually named fields 
parsed/built in that same order. When parsed, values are returned in a dictionary 
with keys according to the field names. A Sequence is like a Struct, but it returns the 
parsed values in a list rather than a dictionary [20]. 

Construct has been used to parse [19]: 

• Networking formats like Ethernet, IP, ICMP, IGMP, TCP, UDP, DNS, DHCP 

• Binary file formats like Bitmaps, PNG, GIF, EMF, WMF 

• Executable binaries formats like ELF32, PE32 



18 Related work 

• Filesystem layouts like Ext2, Fat16, MBR 

4.2 BinData 

BinData is a Ruby library for reading and writing binary data. 

The programmer specifies what the format of the binary data is, and BinData works 
out how to read and write data in this format. It is an easier (and more readable) al-
ternative to Ruby's #pack and #unpack methods. Like Construct, it promises to replace 
imperative code that the programmer would have to write separately for parsing and 
serialization. It is enough to describe the binary data structure in a declarative way 
(still in Ruby code by combining BinData’s fačilities, like with the Constručt library in 
Python), based on which BinData can parse and serialize the data of the given format. 

The following example is from the BinData documentation [21]. It shows an impera-
tive way to parse a binary structure using built-in Ruby methods like #read and 
#unpack. It is not very readable, and it is just code to parse the data: code to serialize 
the structure would have to be written separately, using the corresponding #write 
and #pack methods. This creates a lot of repetition, and the programmer is responsi-
ble for ensuring that the structure being parsed and serialized is the same. 

io = File.open(...) 

len = io.read(2).unpack("v")[0] 

name = io.read(len) 

width, height = io.read(8).unpack("VV") 

puts "Rectangle #{name} is #{width} x #{height}" 

 

In comparison, this is how the same structure can be parsed using BinData: 

class Rectangle < BinData::Record 

  endian :little 

  uint16 :len 

  string :name, read_length: :len 

  uint32 :width 

  uint32 :height 

end 

 

io = File.open(...) 

r = Rectangle.read(io) 

puts "Rectangle #{r.name} is #{r.width} x #{r.height}" 

 

It is a bit longer, but more readable. We define a class Rectangle as a subclass of Bin-
Data::Record, which implements the #read and #write methods. 
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It supports all the common datatypes that are found in structured binary data. Sup-
port for dependent and variable length fields is built in [21]. 

4.3 Apache Daffodil 

The Data Format Description Language (DFDL) is a language for describing both text 
and binary formats. DFDL builds on top of W3C XML Schema 1.0 and extends it with 
DFDL properties, which are defined as foreign attributes that are bound to the 
http://www.ogf.org/dfdl/dfdl-1.0/ namespace. Although XML Schemas are tradi-
tionally only used to validate XML documents, the DFDL specification augments XML 
Schema to include serialization details so that it can accurately describe the contents 
of bit-strings [22]. 

The following snippet is an excerpt from the DFDL schema of the “shapefile” format 
[24]. Shapefile is a binary format for geographic information system (GIS) software 
[23]. 

You can see that the logical model for the data is described by XML Schema elements 
from the http://www.w3.org/2001/XMLSchema namespace, aliased as xs in the docu-
ment. This defines that the Point type is a sequence of properties X and Y, both of 
which are floating-point numbers. Attributes from the dfdl namespace are used to 
specify that the length of both properties is 8 bytes and the byte order is little endian. 

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" 

xmlns:dfdl="http://www.ogf.org/dfdl/dfdl-1.0/" ...> 

  ... 

  <xs:element name="Point"> 

    <xs:complexType> 

      <xs:sequence> 

        <xs:element name="X" type="xs:double" dfdl:length="8" 

            dfdl:lengthKind="explicit" dfdl:lengthUnits="bytes" 

            dfdl:byteOrder="littleEndian" /> 

        <xs:element name="Y" type="xs:double" dfdl:length="8" 

            dfdl:lengthKind="explicit" dfdl:lengthUnits="bytes" 

            dfdl:byteOrder="littleEndian" /> 

      </xs:sequence> 

    </xs:complexType> 

  </xs:element> 

 

Apache Daffodil is an open-source DFDL processor having both parser and unparser 
[25]. 

The main tasks that Daffodil can perform are parsing, unparsing, and generating a C 
parser/unparser (plus a few more). Parsing is the task of converting raw data into an 
abstract model called infoset, while unparsing is the reverse task of converting an in-
foset into the original format [26]. 
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4.4 Comparison with Kaitai Struct 

Construct and BinData use a different implementation approach than Kaitai Struct. 
They are both implemented as language-specific libraries: Construct is a Python li-
brary, BinData is a Ruby library. Their users use the provided interface directly from 
Python or Ruby code when creating a parser or serializer. 

In contrast, Kaitai Struct works on the principle of generating source code from a lan-
guage-agnostic YAML-based specification of the binary format structure. This design 
allows the use of a single specification from many programming languages, both to 
parse and serialize the described format. 

Apache Daffodil supports both text and binary formats, whereas Kaitai Struct focuses 
only on binary formats. Like Kaitai Struct, it also uses a language-agnostic format to 
describe the binary format structure: an XML-based DFDL schema. However, Apache 
Daffodil is mainly a Java library. Users can interact with it via command-line interface 
or Java API. It is not primarily based on code generation like Kaitai Struct, but it can 
generate C code to parse or unparse data. 

  



Kaitai Struct 21 

5 Kaitai Struct 
This chapter presents the Kaitai Struct project and its components. The compiler gen-
erates parsers, which depend on the runtime library specific to the programming lan-
guage. There are several visualization tools (Web IDE, ksv) which serve as user inter-
faces to Kaitai Struct. They make Kaitai Struct useful even to non-programmers, be-
cause they allow anyone to deeply inspect the internal data objects stored in binary 
files. The ksdump tool serves a similar purpose but provides the output in a machine-
readable form. 

5.1 Overview 

Kaitai Struct is a universal parser generator for binary formats. It is free and open-
source software developed on GitHub since 2016. 

The main idea is to describe a particular format with the Kaitai Struct YAML (KSY) 
language. KSY is a declarative language used to describe various binary data struc-
tures, including binary file formats, network protocols, and more. The KSY format 
specification can then be compiled by a compiler into source code in one of the sup-
ported programming languages. These modules will contain the generated parser 
code that can read the described data structure from the file/stream and provide ac-
cess to it in an understandable API. Another useful feature is the generation of dia-
grams in GraphViz format (see Figure 8). 

5.2 Kaitai workflow 

If you want to use Kaitai Struct from an application to parse data in a specific binary 
format, you need to perform 2 steps. 

The first step is compilation. Take the Kaitai Struct specification, or format descrip-
tion, and compile it using the kaitai-struct-compiler. As output, you get the source 
code of the parser. 

The main step is parsing. Give the binary file to the generated parser as input and you 
will get the parsed data as output. The Kaitai Struct parser works with the runtime 
library that you need to include in our application. See Figure 7 for an overview of 
both steps. 
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Figure 7: Two steps of Kaitai workflow for using a Python parser 

5.3 Compiler 

The core of the project is the Kaitai Struct compiler (KSC). It transpiles the format 
specifications in KSY into source code of the selected programming language. It is 
written in Scala. It currently supports 11 target programming languages: C++, C#, Go, 
Java, JavaScript, Lua, Nim, Perl, PHP, Python and Ruby. 

5.4 Runtime libraries 

Another part of the project is runtime libraries that make it easier to work with the 
byte stream. The code we receive from the compiler must be accompanied by a lan-
guage-specific runtime library, which allows the generated code to be more concise 
and readable. All runtime libraries have the same set of elementary functions (called 
methods), which the compiler then refers to in the code – e.g. read_u8le reads an 8-
byte unsigned integer from the byte stream, read_bytes_full reads a byte array up 
to the end of the stream, the eof function can be used to query whether the current 
byte position is at the end of the stream (thus getting a true/false value), etc. 

5.5 KSY language 

KSY is a declarative domain-specific language based on the generic YAML markup lan-
guage. “Declarative” means that it only describes what a given binary structure looks 
like internally. This is different from the imperative (procedural) paradigm that is 
common to programming languages, where we describe a step-by-step process of 
what to do when parsing or serializing. Because the KSY language is built on top of 
YAML, it is easy to write your own tools to read KSY specifications. 
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The fact that the Kaitai Struct language is declarative makes it possible to automati-
cally visualize any described format in a GraphViz diagram (see Figure 8). 

  

Figure 8: GraphViz diagram of the .ico format generated from KSY specification 

5.5.1 Features of the language 

The KSY language provides a set of features that cover various cases that occur in real-
world binary formats. Since KSY is based on YAML, each feature is accessible via a 
specific YAML key (for example seq, instances, …), after which a value of a certain 
type is expected. 

• Sequential parsing (seq) 

• Out-of-order parsing (instances with pos) 

• Derived attributes (instances with value) – calculated from previously parsed 
attribute values 

• Conditional parsing (if) 

• Arithmetic and logical expressions – in size, repeat-expr, if, … properties 

o if: foo.bar == "T4" (attribute is parsed only if equality holds) 
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o repeat-expr: (full_len - 4) / 6 

• Repetitions 

o to the end of the byte stream (repeat: eos) 

o a number of times known in advance (repeat-expr: num_items) 

o until the condition is valid (repeat-until: _ == -1) 

5.5.2 Data types 

You can use the type key in sequential fields (seq) and positional instances (in-
stances with pos). An overview of possible values of the type key follows. 

• Built-in data types 

o integers – u1, s2, u8, ... 

o floating point numbers (floats) – f4, f8  

o unaligned bit numbers and bitfields – b1 (1 bit), b2, ..., b64 

o text strings – str 

o byte arrays – default type 

o enumeration types (defined in enums) – enum: ... in combination with an 
integer type 

• User-defined types – composed of built-in types and other user-defined types 

Let us walk through an example of a KSY specification adapted from the 
game/ftl_dat.ksy file in the format gallery [28]. 

meta: 

  id: ftl_dat 

  endian: le 

seq: 

  - id: num_files 

    type: u4 

  - id: files 

    type: file 

    repeat: expr 

    repeat-expr: num_files 

 

A .ksy specification starts with the meta section. The id key specifies the format iden-
tifier, which will be used as a basis for the name of the root class in the generated 
parser. The endian key sets the little-endian byte order as default. 

The seq section is a sequence of attributes. The attribute name is in the id key. The 
type u4 refers to an unsigned 4-byte integer. Note that Kaitai Struct uses byte widths 
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for numeric types with whole byte sizes, not bit widths like some other languages, 
which would call this type uint32 (or similar). 

The type file is a user-defined type, which will be defined in the next snippet. A field 
can also be repeated, so in this case the files attribute will be a list of elements of 
type file. The number of repetitions depends on the value of num_files that has been 
already parsed. 

# ... 

types: 

  file: 

    seq: 

      - id: ofs_data 

        type: u4 

    instances: 

      data: 

        pos: ofs_data 

        type: file_data 

        if: ofs_data != 0 

 

The above snippet shows the definition of the user-defined type file. User-defined 
type definitions belong to the types section. 

We can see the already explained seq section with the ofs_data field. The instances 
section is another place where we can define fields. In this case, we have defined an 
attribute called data that starts at the byte offset determined by the value of ofs_data. 

An attribute with an if key will be parsed/serialized only if the condition is true. The 
if key is one of many keys where you can use a powerful expression language in-
cluded with Kaitai Struct. 

types: 

  # ... 

  file_data: 

    seq: 

      - id: len_file 

        type: u4 

      - id: len_filename 

        type: u4 

      - id: filename 

        size: len_filename 

        type: str 

        encoding: UTF-8 

      - id: body 

        size: len_file 
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The last part of the KSY example shows a use of the built-in string type (type: str 
used in the filename field). Using the str type requires specifying an explicit encod-
ing. Another built-in type is a byte array, which is the implicit type for fields with 
known size that do not specify any type explicitly (such as body in this example). 

5.6 Format gallery 

The KSY language is used to describe different formats. The finished KSY format 
specifications can be found in the format gallery. As of 7 January 2024, it contains 185 
format specifications. However, this number is by no means final, the format gallery 
has the most contributors and the fastest development. It includes, for example: 

• image formats – BMP, EXIF, ICO, JPEG, PNG, DICOM (medical images), ... 

• multimedia formats – AVI, MOV, WAV, OGG, MIDI, STL, ... 

• archive formats – ZIP, RAR, gzip, LZH, phar, ... 

• network protocols – DNS, ICMP, IPv4/IPv6, WebSocket, TLS, UDP, ... 

• file systems – ISO9660 (CDs), FAT12, APM (disk partitioning table), VMWare 
virtual disk snapshots (.vmdk) and VirtualBox (.vdi), ... 

• databases – .dbf (dBase), SQLite (.db, .sqlite), GNU gettext .mo (localization), ... 

• executables – ELF (Unix systems), Java bytecode (.class), DOS MZ .exe, Microsoft 
PE (Portable Executable) .exe, Python bytecode (.pyc), ... 

5.7 Web IDE 

Kaitai Web IDE is a very useful tool for visualizing, developing, and debugging KSY 
format specifications. It is used to quickly preview the binary file and obtain the nec-
essary information. Its user interface is shown in Figure 9. 

The entire Web IDE runs in the browser, so no additional software needs to be in-
stalled. Any binary file can be loaded into it, which the Web IDE then parses based on 
the KSY specification. The result is structured data extracted from the input file, which 
is displayed in the object tree pane. The data inspector pane shows the parsed values 
starting from the current position in the byte stream, regardless of the KSY specifica-
tion currently loaded. For most positions in the file, the values will not make sense. 
Another useful feature is to generate a parser in the selected output language. 
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Figure 9: Kaitai Web IDE (with loaded PNG sample file + png.ksy) 

5.8 Kaitai Struct visualizer (ksv) 

The project includes the Kaitai Struct visualizer (ksv), an interactive console visuali-
zation tool (see Figure 10). It is an alternative to the Web IDE – it shows an object tree 
and a hex dump of the input file like the Web IDE. 

 

Figure 10: Kaitai Struct visualizer 

It is written in Ruby, so it requires a Ruby installation. It is available in the RubyGems 
package repository, so it can be installed simply as gem install kaitai-struct-
visualizer after installing Ruby. At runtime, it needs the Kaitai Struct compiler avail-
able on system PATH. 



28 Kaitai Struct 

Once we have everything installed, we can run the visualizer from the command line 
as ksv <binary-file> <ksy-file>. The first argument is a binary file that we want 
to parse and the second argument is the .ksy specification that dictates the structure 
to be parsed. 

You can navigate the object tree using the arrow keys (Up, Down, Left, Right) and the 
Home, End, Page Up, Page Down keys. You can exit the visualizer by pressing Q. 

5.9 ksdump 

The Kaitai Struct visualizer project includes two executables – ksv and ksdump. ksv is 
the interactive console visualizer discussed in the previous section. ksdump is a non-
interactive command-line tool for dumping the same structured data that ksv displays 
to standard output. This is useful for automation. The usage is very similar to ksv: 
ksdump <binary-file> <ksy-file>. You can choose from YAML (default), JSON and 
XML output formats. 

The following snippet shows the ksdump’s output in JSON format, showing the same 
data as the ksv screenshot (see Figure 10). 

{ 
  "magic": "89 50 4E 47 0D 0A 1A 0A", 
  "ihdr_len": 13, 
  "ihdr_type": "49 48 44 52", 
  "ihdr": { 
    "width": 300, 
    "height": 300, 
    "bit_depth": 8, 
    "color_type": "color_type_truecolor", 
    "compression_method": 0, 
    "filter_method": 0, 
    "interlace_method": 0 
  }, 
  "ihdr_crc": "F6 1F 19 22", 
  "chunks": [ 
    { 
      "len": 919, 
      "type": "IDAT", 
      "body": "78 9C ED D9 3  8A C3 4   4 44 C   E E3 F   F…", 
      "crc": "21 CB 54 D1" 
    }, 
    { 
      "len": 0, 
      "type": "IEND", 
      "body": "", 
      "crc": "AE 42 60 82" 
    } 
  ] 
} 
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5.10 Automated testing system 

Since Kaitai Struct must ensure that every feature is working in 11 programming lan-
guages, on different platforms, and on different compilers (especially in C++), it is nec-
essary to periodically check that newly introduced changes to the compiler code or 
runtime libraries do not break the generated code in any of the target language/plat-
form combinations (hereafter referred to as targets). This is very impractical to do 
manually precisely because of the number of targets that need to be checked. 

Therefore, the project has an automated testing system (this is part of the so-called CI 
infrastructure) that is triggered whenever a new commit to the umbrella repository 
is pushed. It includes 233 test KSY specifications. See Figure 11 for an overview of the 
testing process. A complete parsing test consists of 3 parts: the KSY specification, a 
binary file and expected parsed values. Each KSY specification is compiled into 
parsers in all supported programming languages using the latest development ver-
sion of the compiler. A binary file associated with the test is then processed by the 
parser and the parsing output is compared to the expected results. These are de-
scribed in a simple Kaitai Struct Test (KST) language, whose specifications are used 
by the KST translator to generate unit tests with test assertions that verify that the 
equality of the expected and actual values of a variable holds. If all test assertions for 
a given test pass, the test is marked as „passed” for that target, otherwise it is marked 
as “failed”. 



30 Kaitai Struct 

 

Figure 11: The process of testing parsers generated from KSY specifications 
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These results are then displayed in CI dashboard, which is shown in Figure 12. 

 

Figure 12: Kaitai Struct CI dashboard 

In Figure 12 you can see a small part of our CI dashboard. The target languages are 
listed in the columns and the individual tests in the rows. The cells of the table show 
the test status in each language – “passed” or “failed”. 

Let us look at an example of an actual test called ExprIntDiv. It tests whether the in-
teger division operation in the KSY expression language has the expected behavior, 
which is floor division (rounding the mathematical result of the division towards neg-
ative infinity, like the // operator in Python): the result of -5 / 4 should be -2, pro-
vided that -5 and 4 are integers. 

The test KSY specification (expr_int_div.ksy) looks like this: 
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# Tests division operation, both positive and negative 

# See https://github.com/kaitai-io/kaitai_struct/issues/746 

#  => the KS division operation `a / b` should do `floor(a / b)` 

meta: 

  id: expr_int_div 

  endian: le 

seq: 

  - id: int_u 

    type: u4 

  - id: int_s 

    type: s4 

instances: 

  div_pos_const: 

    value: 9837 / 13 

  div_neg_const: 

    value: -9837 / 13 

  div_pos_seq: 

    value: int_u / 13 

  div_neg_seq: 

    value: int_s / 13 

 

Once we have the KSY specification, we can generate a parser using Kaitai Struct com-
piler and use it to parse arbitrary binary data, which will yield some results. However, 
for a test to be effective, we need to select one binary input and write a corresponding 
KST spec with the test assertions for expected values that match the desired behavior. 
The contents of the expr_int_div.kst file follow: 
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id: expr_int_div 

data: fixed_struct.bin 

asserts: 

  - actual: int_u 

    expected: 1262698832 

  - actual: int_s 

    expected: -52947 

  - actual: div_pos_const 

    expected: 756 

  - actual: div_neg_const 

    expected: -757 

  - actual: div_pos_seq 

    expected: 97130679 

  - actual: div_neg_seq 

    expected: -4073 

 

It specifies that the fixed_struct.bin file will be used as parser input. A list of asserts 
follows, each with actual and expected keys. Both are KSY language expressions. 

This spec is consumed by KST translator (part of the kaitai_struct_tests repository), 
which generates unit test modules. For example, this is the generated Python test 
module for ExprIntDiv: 

 

# Autogenerated from KST: please remove this line if doing any 

edits by hand! 

 

import unittest 

 

from expr_int_div import ExprIntDiv 

 

class TestExprIntDiv(unittest.TestCase): 

    def test_expr_int_div(self): 

        with ExprIntDiv.from_file('src/fixed_struct.bin') as r: 

 

            self.assertEqual(r.int_u, 1262698832) 

            self.assertEqual(r.int_s, -52947) 

            self.assertEqual(r.div_pos_const, 756) 

            self.assertEqual(r.div_neg_const, -757) 

            self.assertEqual(r.div_pos_seq, 97130679) 

            self.assertEqual(r.div_neg_seq, -4073) 
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Test modules are responsible for calling the format class (generated by the compiler 
from the .ksy specification) on a specific binary file and then running a few assertions 
to check that the parsing works correctly. 
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6 Analysis and design of 
serialization 

This chapter introduces the requirements on serialization support, analyzes KSY fea-
tures and designs the API and serialization process in Kaitai Struct. This design will 
be used in all languages, but this thesis only discusses the implementation for Java. 

6.1 Requirements 

A basic requirement is to support two main use cases of serialization: editing an ex-
isting file and creating a new file from scratch. Editing means that the same objects 
holding the data parsed from a stream can be mutated and then serialized back to the 
same stream or to another stream – there is no need to recreate the objects. However, 
constructing new objects by setting each field should also be possible. 

An essential requirement is that serialization implementation must be consistent with 
parsing (this comes from the fact that serialization is the inverse operation to pars-
ing). This means that if we serialize an object tree and parse the serialized stream, we 
should get the original object tree again. The opposite is impossible in the general case 
(we should not expect to always get the original byte stream if we parse it to an object 
tree and serialize it), because parsing is not guaranteed to preserve information about 
every single byte contained in the input byte stream. 

Consistency cannot be achieved if the object tree itself is inconsistent with the defini-
tion of the given format. That is, if such an object tree could never be a result of suc-
cessful parsing, because it violates some property that all successfully parsed trees 
have. This makes it obvious that if we serialize this tree and parse the serialized out-
put, we will not get that object tree back, regardless of whether serialization works or 
not. A user can create inconsistent objects by mistake, whose serialization will lead to 
corrupted files. To prevent this, one of the goals of Kaitai serialization is to provide a 
set of checks that detect when some consistency property is not satisfied. 

An important goal is to allow reusing the existing KSY specifications without having 
to change them. One of the advantages of Kaitai Struct is that hundreds of formats 
have already been described in KSY specifications, so this goal enables the widest pos-
sible use of both the serialization support and, by extension, the specifications them-
selves. 

Related to the previous goal, serialization should support all features, constructs and 
their combinations that are part of the KS language. If serialization did not work with 
some combination of constructs, users would have to adapt the specifications to work 
around the unsupported features so that the specification can be used for serializa-
tion. This would raise the barrier to being able to use existing specifications for seri-
alization, making it less useful. 

The primary requirement is generality: to cover all conceivable format specifications. 
A secondary goal is to work as autonomously as possible and minimize the need for 
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the user to interact with the serialization process, such as providing additional infor-
mation or triggering sub-actions. These requirements are sometimes contradictory. 

6.2 API of generated modules 

Let us start by looking at what the current interface of generated modules looks like 
and how it needs to be changed to accommodate serialization. 

6.2.1 Current state 

Currently, one KSY specification is translated to one Java module with a single top-
level class. The name of this class depends on the value of /meta/id in the specifica-
tion – for example, if the /meta/id is hello_world, the class will be called HelloWorld. 
Its constructor has the following signature: 

• public HelloWorld(KaitaiStream _io, KaitaiStruct _parent = null, Hel-
loWorld _root = this) 

The constructor has a required _io parameter of type KaitaiStream. This is a class 
defined in the Kaitai Struct runtime library for Java – it provides an abstraction over 
an I/O byte stream. Generated format classes always read from KaitaiStream objects. 

Parameters _parent and _root are optional (they have default values). They allow 
navigation in the object tree: _parent refers to the parent node in the tree (it is null 
in the root node), _root refers to the root object of the tree. They can be used in user-
specified expressions in KSY specifications. 

The HelloWorld class has the following methods: 

• private void _read() 

The _read() method is responsible for parsing the seq structure. It is private because 
the user does not need to call it – it is called automatically in the constructor. This 
mode is called autoRead and it is enabled by default. We can disable it by passing --
no-auto-read to the compiler, which makes _read() public and it will no longer be 
called in the constructor. 

We can see that Kaitai Struct uses an underscore prefix _ for methods and properties 
with special meaning that are added automatically (like _read, _parent and _root). 
This is to distinguish them from user properties that share the same namespace, be-
cause they are also translated into methods of the format class (but a user property 
specified in a KSY specification cannot start with an underscore, which avoids poten-
tial name collisions). 

Then there are getters for each property accessible in the KSY specification. This in-
cludes user properties (seq fields, instances and parameters) and automatic proper-
ties: _io, _parent and _root. Despite Java convention, the getters do not use the get 
prefix. 

• public {TYPE} {userProperty}() 
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• public KaitaiStream _io() 

• public KaitaiStruct _parent() 

• public HelloWorld _root() 

For seq fields and parameters, the getter has a trivial implementation, for example: 

• public int one() { return one; } 

For parse and value instances, the getter parses/evaluates the instance and caches 
the value on the first call. Subsequent calls just return the cached value. 

6.2.2 Changes for serialization 

By default, serialization support will be disabled and read-only classes will continue 
to be generated as before. A new compiler command-line option --read-write will 
be added, which enables read-write mode. This adds the methods needed for seriali-
zation to the generated classes [29]. 

First, read-write mode disables the autoRead mode. The reason is that whereas in 
read-only mode the only action you can do is parsing, in read-write mode, it is no 
longer clear to Kaitai Struct why you are creating a particular object. The purpose may 
be just to create an empty object to be filled with data and later written, in which case 
you do not want to read from any stream. For this reason, _read() is never called 
automatically from class constructors in read-write mode – you need to call it explic-
itly if you want to read from a stream [29]. 

Setters for _parent, _root and user properties will be added. They use the set prefix: 
set_parent(), set_root() and set{UserProperty}(). 

Furthermore, read-write mode adds the following methods:  

• public void _write(KaitaiStream io = this._io) 

• public void _check() 

The _write() method serializes the object and child objects to the specified stream. 
If no stream is specified as an argument, the existing stream given in the constructor 
is used. The _check() method performs consistency checks; it should be called by the 
user before _write() to ensure the values satisfy the consistency properties (if they 
did not, the output would be corrupted). If some consistency check fails, a Consis-
tencyError is thrown. 

Since _read() will not be called in the constructor in read-write mode, _io is no longer 
required to be specified to the constructor. It can be provided as an argument to the 
_write() method. Therefore, the possibility to create the format class with no argu-
ments is added:   

• public HelloWorld(KaitaiStream _io = null, KaitaiStruct _parent = 
null, HelloWorld _root = this) 
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6.3 General serialization procedure 

Let us start with a simple example to see what the serialization API looks like. First, 
we compile the following .ksy specification in read-write mode: 

meta: 

  id: hello_world 

  endian: le 

seq: 

  - id: foo 

    type: s4 

    repeat: expr 

    repeat-expr: 2 

 

This will generate a HelloWorld.java source file with class HelloWorld. We want to set 
foo to [-4, 65536] and write the structure to bytes. This is how we do it in Java code 
[29]: 

1           KS 
  j    

HelloWorld hw = new HelloWorld(); 

2  S       
  j    fi     

hw.setFoo(new ArrayList<>(Arrays.asList(-4, 65536))); 

3                
        KS 
  j    

hw._check(); 

4                
      -  v   
  j    

byte[] output = new byte[8]; 
try (KaitaiStream io = new ByteBufferKaitaiStream(output)) { 
    hw._write(io); 
} 
// output: [fc ff ff ff 00 00 01 00] 

Note that there are essentially 4 phases of serialization in Kaitai Struct [29]: 

1. Initialize an object instance of a KS-generated class (which reflects a user-de-
fined type in the source .ksy specification). 

2. Set the object properties (seq fields or positional instances in the .ksy) accord-
ing to the data you want to serialize. 

3. Call the _check() method of the KS object after setting its properties once it 
is ready for serialization. 

4. Call the _write() method on the top-level object and pass the KaitaiStream 
object you want to write to. 

First, we create an empty instance of the top-level class HelloWorld and bind it to the 
hw variable. As you can see in the original .ksy spec, it has only one field called foo, 
which is a list of two s4 (signed 4-byte) integers. We assign such list with the values 
we wanted to write to the foo field using the setFoo setter in Java. After that, we be-
lieve that the hw object is ready to be written, so we call hw._check(). When it passes 
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(that is, it doesn’t throw any exčeptions, see section 6.4), we move on to the actual 
writing [29]. 

We prepare a byte array for the output, create a ByteBufferKaitaiStream as a wrap-
per around this byte array and then call the _write() method on the top-level hw ob-
ject, which serializes it into the provided stream. After the try-with-resources state-
ment, output holds the final byte data that we can, for example, write to a file or trans-
fer over the network [29]. 

6.4 Consistency checks: the _check() method 

Let us focus on what the _check() method does. We know that foo is expected to be 
a list of exactly 2 integers (because of repeat-expr: 2 in the source .ksy). Every pars-
ing of the hello_world type tries to read 2 integers, and in any successfully parsed 
HelloWorld object, foo will be always 2 elements long. See the generated _read() 
method for reference: 

public void _read() { 

    this.foo = new ArrayList<Integer>(); 

    for (int i = 0; i < 2; i++) { 

        this.foo.add(this._io.readS4le()); 

    } 

} 

 

However, the setFoo() setter allows us to set any integer list – even if its length is 0, 
1 or greater than 2. 

public void setFoo(ArrayList<Integer> _v) { foo = _v; } 

 

Nevertheless, if we set foo to a list of length other than 2 and write the hw object to 
bytes, we will not be able to get the same state of the HelloWorld object by parsing 
these bytes: either the parsing fails with an EOF exception if the stream was shorter 
than 8 bytes, or we get garbage values in foo (if the written foo had less than 2 ele-
ments, but the stream is long enough) because we interpret some bytes outside foo 
as if they were foo values, or we may read 2 correct values, but the object we serial-
ized had actually more. In such cases, it is inevitable that not only the parsed foo 
would not match the foo we wrote, but also the offsets of all the fields after foo would 
be shifted, so their values would also be incorrect [29]. 

This is because by setting foo to anything other than a 2-integer list and serializing it, 
we violate the property of consistency – the data is not consistent with the constraints 
directly following from how the format is specified in the source .ksy file. Kaitai Struct 
knows these constraints, and generates assertions for them in the _check() method 
whenever possible. If _check() detects a consistency issue, it throws a Consis-
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tencyError, telling you to fix the problem and try again. This protects you from pro-
ceeding to the writing phase with inconsistent values, which would inevitably result 
into corrupted data that cannot be faithfully decoded back to the original values [29]. 

6.5 Implemented consistency checks 

Consistency checks are necessary for various reasons. This section provides an over-
view of the constraints that users must uphold when populating the KS objects with 
data so that the resulting objects are consistent. If any of these constraints are vio-
lated, the corresponding _check() method will throw a ConsistencyError. 

Essentially all methods of delimiting the size of a field require some kind of con-
sistency check. For example, if a field uses the size key that provides an upper bound 
on the length of the field’s byte contents, under no circumstances can we fit byte con-
tents longer than size into it. 

Repetitions are in principle analogous to size delimiting keys, so their consistency 
checks are unsurprisingly similar (notice the similarity of repeat: expr to size, re-
peat: eos to size-eos: true, and repeat: until to terminator with inc-

lude: true). 

Finally, values of parameters must match the values with which a parent object would 
create a child object when parsing. 

• Size delimiting keys [30] 

o size, no terminator, no pad-right – byte array length must be equal to 
size 

o size in combination with terminator or pad-right – byte array length 
must be less than or equal to size 

o terminator, include: false (default), optionally with size and/or pad-
right – byte array must not contain the terminator byte 

o terminator, include: true, no size 

▪ eos-error: true (default) – the only terminator byte must be at the 
end of the byte array 

▪ eos-error: false – the terminator may be at the end of the byte ar-
ray, but nowhere else; if it is not present, we must be at EOF after 
writing the field 

o size and terminator, include: true, no pad-right or pad-right == ter-
minator 

▪ if byte array is shorter than size – the only terminator byte must be 
at the end of the byte array 

▪ if byte array length is exactly size – the terminator byte may (or 
may not) be at the end of the byte array, but nowhere else 
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o size and pad-right, no terminator – the last byte (if any) must be differ-
ent from pad-right 

o size, terminator, include: false (default) and pad-right != termina-
tor 

▪ if byte array length is exactly size – the last byte (if any) must be dif-
ferent from pad-right 

o size, terminator, include: true and pad-right != terminator 

▪ if byte array does not contain terminator – the last byte (if any) must 
be different from pad-right 

▪ if byte array contains terminator, then it must be only at the end of 
the byte array 

o size-eos: true – same checks as for size + we must be at EOF after writ-
ing the field 

• Repetitions [30] 

o repeat: expr 

▪ the length of the list must be equal to repeat-expr 

o repeat: eos 

▪ we must not be at EOF before any element 

▪ we must be at EOF after all elements 

o repeat: until 

▪ the list must not be empty (must contain at least one element, because 
there is always the element for which repeat-until is true) 

▪ the repeat-until expression must evaluate to true only for the last 
element and no other 

• Parameter values of user-defined types’ child objects [30] 

o _root: child._root must refer to the identical object as _root in the current 
object 

o _parent (assuming no parent overriding takes place – 
https://doc.kaitai.io/user_guide.html#_enforcing_parent_type) – 
child._parent must refer to the identical object as this, i.e., the current 
object 

o user-defined parameters (params) except I/O stream parameters – each pa-
rameter must match the value to which the expression written in the .ksy 
specification for the argument value evaluates 

▪ for primitive types and arrays – compare by equality 

▪ for objects of user-defined type – compare by identity 

https://doc.kaitai.io/user_guide.html#_enforcing_parent_type
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6.6 Analysis of KSY features 

KSY specifications use certain fundamental constructs – built-in data types with many 
configuration options, user-defined types, sequences, parse and value instances, pa-
rameters, expressions. It is one thing to implement serialization for these core fea-
tures individually. But they often occur in various combinations, which must be con-
sidered when designing the implementation of individual features, which presents a 
great challenge and often increases the complexity of the design. 

6.6.1 User-defined types 

Real-world .ksy specifications often define custom types in the types section. For ex-
ample: 

meta: 

  id: user_types 

  endian: le 

seq: 

  - id: one 

    type: chunk 

types: 

  chunk: 

    seq: 

      - id: len_body 

        type: u4 

      - id: body 

        size: len_body 

 

A typical way to serialize such format would be as follows [29]: 
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UserTypes ut = new UserTypes(); 

 

UserTypes.Chunk one = new UserTypes.Chunk(null, ut, ut._root()); 

one.setLenBody(2); 

one.setBody(new byte[] { 'h', 'i' }); 

one._check(); 

 

ut.setOne(one); 

ut._check(); 

 

byte[] output = new byte[6]; 

try (KaitaiStream io = new ByteBufferKaitaiStream(output)) { 

    ut._write(io); 

} 

// output: [02 00 00 00 68 69] 

 

First, we instantiate the root class UserTypes as usual. Then we need the instance of 
the user-defined chunk type, translated as UserTypes.Chunk in Java. We use the usual 
way to create an instance of a class, but this time using all 3 arguments of the con-
structor: 

 

public Chunk(KaitaiStream _io, UserTypes _parent, UserTypes _root) 

{ 

    // ... 

} 

 

The reason is that we must provide values for the _parent and _root parameters. 
These built-in references should be valid in all KS types so that it is possible to rely on 
them in expressions inside the .ksy spec when needed. When you instantiate inner 
objects (any object instances of user-defined types other than the root object) manu-
ally, you have to set these properties correctly [29]. 

See Figure 13 for an overview of what the _parent and _root references should look 
like in an object tree. The _root property of all objects should refer to the root object, 
including _root of the root object itself. The _parent property refers to the parent 
node in the tree. The root object has no parent node, so its _parent should be set to 
null. 
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Figure 13: _parent and _root references in a Kaitai Struct object tree 

If you do not set the correct values to both _parent and _root, it is a consistency issue 
that will be reported in _check of the parent object (ut in this case): 

 

UserTypes ut = new UserTypes(); 

 

UserTypes.Chunk one = new UserTypes.Chunk(null, ut); // WRONG: we 

did not pass "ut._root()" to "_root"! 

one.setLenBody(2); 

one.setBody(new byte[] { 'h', 'i' }); 

one._check(); 

 

ut.setOne(one); 

ut._check(); // io.kaitai.struct.ConsistencyError: Check failed: 

one, expected: org.example.UserTypes@539645a2, actual: null 

 

The error message is a bit inconcrete at the moment, because it only says there is a 
problem with the field one but does not specify what exactly it is. This will be im-
proved in the future, but for now, check out the line where the ConsistencyError was 
thrown for more details: 
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io.kaitai.struct.ConsistencyError: Check failed: one, expected: 

org.example.UserTypes@539645a2, actual: null 

    at org.example.UserTypes._check (UserTypes.java:48) 

    ... 

 

public class UserTypes extends KaitaiStruct.ReadWrite { 

    // ... 

    public void _check() { 

        if (!Objects.equals(one()._root(), _root())) 

            throw new ConsistencyError("one", one()._root(), 

_root()); 

        // ... 

    } 

 

By looking into the generated code, we figure out that the _root parameter of field 
one had a wrong value. It should have been equal to ut._root, but it was null. 

After we create an instance of the UserTypes.Chunk subtype, we set its properties, 
and then we call _check. This is important: _check always works only for the one ob-
ject on which you call it, it does not recursively descend into substructures (unlike 
_read and _write which do that, so you call them just on the top-level object). So it is 
not enough to call _check just on the top-level object – you have do it for every KS 
object on which you use setters [29]. 

6.6.2 Fixed contents and validated fields 

After creating a new KS object, you must also set fields with contents or valid on 
them, even if there is only one valid value they can have. Kaitai Struct does not set 
them automatically at the moment. For example, the following magic field: 

meta: 

  id: elf 

  # ... 

seq: 

  - id: magic 

    contents: [0x7f, "ELF"] 

 

needs to be set as follows: 
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Elf e = new Elf(); 

 

e.setMagic(new byte[] { 0x7f, 'E', 'L', 'F' }); 

// ... 

e._check(); 

 

The _check method validates such fields, so you get notified if the values are not valid. 

6.6.3 Value instances 

They do not have setters. If you need to make value instances change, you must set 
their inputs (fields they depend on). For example [29]: 

meta: 

  id: value_instances 

seq: 

  - id: len_data_raw 

    type: u1 

  - id: data 

    size: len_data 

instances: 

  len_data: 

    value: len_data_raw - 3 

 

 

ValueInstances r = new ValueInstances(); 

 

r.setData(new byte[] { 1, 2, 3, 4, 5 }); 

r.setLenDataRaw(8); 

System.out.println(r.lenData()); // => 5 

 

We set a 5-byte array to data, so for the object to be consistent, we need len_data to 
be 5. Since it is defined as len_data_raw - 3, we set len_data_raw to 8, which makes 
len_data to be 8 − 3 = 5. 

What happens if you want to change the length of data in this existing object? Value 
instances in KS are cached, so even if you change len_data_raw, len_data will keep 
returning the old, cached value (5): 



Analysis and design of serialization 47 

// ... 

System.out.println(r.lenData()); // => 5 

 

r.setData(new byte[] { 1, 2, 3 }); 

r.setLenDataRaw(6); 

System.out.println(r.lenData()); // => 5 (!) 

 

To fix this, you need to call a special method _invalidate{Inst} associated with the 
value instance after changing len_data_raw: 

// ... 

System.out.println(r.lenData()); // => 5 

 

r.setData(new byte[] { 1, 2, 3 }); 

r.setLenDataRaw(6); 

r._invalidateLenData(); 

System.out.println(r.lenData()); // => 3 

 

The _invalidate{Inst} method invalidates the cached value of the instance so that 
it is recalculated on the next access. 

6.6.4 Lengths and offsets 

Current serialization support relies on fixed-length streams, meaning that once a 
stream is created, it is not possible to resize it later. Therefore, the user will often need 
to calculate sizes “manually” in their application along with setting the object proper-
ties. 

6.6.5 Parse instances 

Parse (or positional) instances offer a way to parse structures at an arbitrary offset 
configurable using the pos key. They are lazily evaluated, meaning that they are only 
parsed on the first access. Once they are evaluated, they cache their value and further 
accesses just return this value. 

They have setters and their own _check{Inst} method which you should call. Addi-
tionally, you can also use a special boolean set{Inst}_ToWrite setter, allowing you 
to disable writing of a specific instance (as r.set{Inst}_ToWrite(false) in Java) in 
a particular KS object. This may be useful for C-style union members (several over-
lapping fields with different types, but only one applies in any object), lookaheads or 
other positional instances you do not want to write [29]. 
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Parse instances and substreams 

By default, the instance is placed in the stream associated with the current user type 
object that the instance is defined in. The stream can be changed using the io key, 
which can refer to any stream in the object tree. 

This is very powerful, but it makes the entire serialization process more complex. 
Parse instances and its features essentially require the Kaitai serialization to be a 3-
pass process; without them, it could have likely been a 1-pass. See Figure 14 for an 
overview of the 3 passes. 

 

Figure 14: 3 passes of serialization 

6.6.6 Parameters 

Parameters can be passed to the constructor when instantiating the KS type and you 
can later change them via setters. Again, KS does not set almost anything automati-
cally, so you are usually in charge of setting all parameters, even though you need to 
set the parameters to same values that the parent type would pass to them. The 
_check method of the parent type contains checks whether this holds. 

Stream parameters 

The only parameters you normally do not set are parameters of base type io (a 
KaitaiStream-compatible I/O stream). These are declared as type: io or type: io[]. 
They are set automatically by the generated serialization code in child objects (objects 
with a parent object). However, if your root object has a stream parameter, you have 
to set it yourself, because Kaitai Struct has no way of knowing what to pass there (the 
invocation of the root object is obviously not in the .ksy spec) [29]. 

Streams passed as parameters to the top-level object also require special attention. 
When you call r._write() on the root object r, substreams of the r's stream will be 
collapsed to it. However, this will not happen for the unconnected streams added ex-
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ternally via parameters, because they are not in the normal hierarchy of streams un-
der the root stream (and the _write method that you call knows directly only about 
the root stream, so it can only flatten its substreams) [29]. 

So for every external stream, you have to manually call extIo.writeBackChildStre-
ams() after invoking r._write() on the root object. 

6.6.7 Bit-sized integers 

Unlike the existing parser implementation of bit types which relied on explicit alig-
nToByte() calls (and this resulted in many problems, because in many cases the com-
piler failed in where to insert them and where not), all byte-aligned operations in the 
Java runtime library with serialization support now perform the byte alignment au-
tomatically, and the explicit alignToByte() calls should not be needed anymore [29]. 
See section 7.1 for more details. 

When you write a structure with X-bit type: bX fields, only full bytes are written once 
they are known. This means that if your format ends at an unaligned bit position, the 
bits of the final partial byte remain in the internal "bit buffer", but they will not be 
written to the underlying stream until you do some operation which aligns the posi-
tion to a byte boundary (e.g. writeBytes(0),      …), or explicit writeAlignTo-
Byte()). However, if you do not have anything else to write and do not need to work 
with that stream anymore, it is recommended to close() the stream, which automat-
ically writes the remaining bits (if any) before closing the stream [29]. 

This is why you should use the try-with-resources statement to create and manage 
the stream, as you saw in previous examples: 

try (KaitaiStream io = new ByteBufferKaitaiStream(output)) { 

    hw._write(io); 

} 

 

It calls close() automatically at the end of the try-with-resources block, so you do not 
have to think about it. 

6.6.8 Fields delimited using “size”, “terminator” and “pad-
right” keys 

Kaitai Struct has several keys to specify how the length of variable-length types 
should be determined. Variable-length types are byte arrays, text strings and user-
defined types in substreams. In contrast, fixed-length types are primitive built-in nu-
meric types (integers in sizes 1, 2, 4 and 8 bytes and floating-point numbers in sizes 
4 and 8 bytes). The keys discussed here (like size or terminator) can be used only 
for variable-length types, not for fixed-length types. 
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The size key is the simplest. It works in situations where we know the length of a 
field before we start parsing it. This might be because the size is constant (for exam-
ple, UUIDs/GUIDs are always 16 bytes long), or the size has already been specified 
earlier in the format using an integer field (see Figure 15). 

 

Figure 15: Integer field “len_message” specifying the size of a variable-length field “message” 

We use terminator for a field whose length we do not know beforehand – we just 
know where it starts. The length is determined by scanning the bytes until a special 
byte is reached, which is where the field ends. This is mainly used for null-terminated 
strings originating from the C language. The byte used as a terminator can be config-
ured with the terminator key – see Figure 16. 

 

Figure 16: Variable-length field delimited by a terminator byte 

The terminator key can be used standalone, but also in combination with size. In 
that case, size bytes are always reserved for the field contents – the next field in the 
seq structure follows at the offset of this field plus size. But the actual contents can 
be shorter if the terminator byte appears within the reserved space. This is most use-
ful in formats with a null-terminated string for which a constant size space is reserved, 
such as 256 bytes. 

The pad-right key can be used only for fields with a known reserved size using the 
size key. It specifies that the field byte contents can be shorter than the reserved 
space; if they are, the rest of the space is padded with a certain byte configured by the 
value of pad-right. 

Finally, pad-right can be used with terminator (resulting in the combination size + 
terminator + pad-right). pad-right usually has no effect on parsing, because the 
terminator comes before the padding and field contents end once the terminator is 
encountered (see Figure 17). However, it comes into play if the terminator byte is 
not present in the reserved space. Without pad-right, field contents would span the 
entire reserved space in that case, but with pad-right, they may still be shorter if the 
reserved space contains pad-right bytes at the end. 
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Figure 17: Anatomy of the reserved space of a field using “size”, “terminator” and “pad-right” (assuming 
“include: false”, i.e., the default setting) 

Consistency checks 

The nature of each method of delimiting a field naturally implies properties that val-
ues in a successfully parsed tree always satisfy. These properties are exactly the con-
straints that the data must uphold to be consistent, which is checked by generated 
consistency checks. 

Firstly, if a field only uses size, the byte length of its contents must match the size 
exactly, otherwise the data is inconsistent. If a field has size with terminator and/or 
pad-right, the byte length must be less than or equal to size. 

Kaitai Struct allows you to specify whether the terminator should be included in the 
field contents or not using the include key. include: false is the default value, which 
omits the terminator from the field contents. include: true causes the terminator to 
be included in the field contents. 

The include key does not affect parsing (the following fields will be parsed the same 
regardless of the include setting). It only controls what the possible field values are 
in the object tree, but this is important for consistency checks. include: false means 
that the terminator byte must not occur in the byte contents of a field at all. In con-
trast, include: true means that the only occurrence of the terminator byte must be 
at the very end of the byte contents, except for special cases, in which it is allowed to 
be omitted from the contents. These special cases are such that the field length has 
reached its upper bound and there is no space left for the terminator. One such case 
is when the field has size specified and the byte length of the field contents is equal 
to this size. Another case is if the field does not use size, but its contents extend to 
the end of stream so that the terminator does not fit. By default, this scenario is 
treated as an error (normally the terminator is required), but this error can be disa-
bled by specifying eos-error: false – then this case is allowed. 

Finally, the byte contents of a field using pad-right but not using terminator must 
have the last byte (if any) different from pad-right. If the field uses terminator as 
well, then it is important to distinguish whether pad-right is active or not. pad-right 
is active if it is different from terminator. If pad-right is equal to terminator, then it 
is inactive, meaning it has effect only on the serialized bytes, not parsing or value con-
sistency – the consistency checks are the same as without pad-right. If pad-right is 
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active, the last field byte (if any) must be different from pad-right if the terminator 
byte is not present. 

6.6.9 Consistency checks that cannot be done in _check() 

Sometimes a consistency check cannot be performed in _check() because the user 
expressions from the .ksy specification that the check needs to use or the nature of 
the check itself do not allow it. A typical example is when the expression makes use of 
the built-in _io variable, which refers to the current I/O stream, for example [29]: 

seq: 

  - id: rest 

    size: _io.size - _io.pos 

 

Since rest is a byte array with the size expression denoting its length, it is necessary 
to check whether the length of this byte array (that might have been changed by the 
user via a setter) and the value of the size expression _io.size - _io.pos match. 
But this expression uses _io, so it cannot be performed in _check(): _check() is 
meant to check pure data consistency and _io may not be available at this point [29]. 
We can assume the presence of an I/O stream only in _write(). 

So this consistency check will be moved to _write() just before the rest field would 
be written [29]. This ensures that the expression is evaluated in the same context as 
it would be in _read() when parsing, which means we should get the same result as 
parsing does. 
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7 Serialization implementation for 
Java 

This chapter discusses the implementation of serialization support in the Java 
runtime library and the compiler. The implementation follows the design described 
in chapter 6. 

7.1 Runtime library 

The most important class of the Kaitai Struct runtime library for Java is KaitaiStream. 
It represents any I/O stream that the generated format modules can operate with. In 
Java, KaitaiStream is an abstract class. There are two implementations: ByteBuff-
erKaitaiStream and RandomAccessFileKaitaiStream. As their names suggest, they 
are based on built-in Java classes for working with binary streams, ByteBuffer and 
RandomAccessFile. 

So far, both KaitaiStream implementations have only provided reading functionality, 
even though both ByteBuffer and RandomAccessFile support writing as well. So, it 
was necessary to extend KaitaiStream with writing functionality. 

This is straightforward for primitive byte-oriented integer and float types (like u1, s2 
or f8) – for read methods such as readU1(), readS2le() or readF8be(), write*() 
counterparts are added. The counterpart to readBytes(), readBytesFull() and 
readBytesTerm() is writeBytes(). There is also writeBytesLimit() used to write 
bytes of fields with size in combination with terminator and/or pad-right. 

For bit-sized integers (bX for some bit width X), it is a bit more complicated. A long-
standing issue also relevant in parsing4 is the alignment of unaligned bit position to a 
byte boundary if a byte-oriented operation occurs. Consider the following snippet of 
a .ksy specification (the stream position at the beginning of seq is 0): 

seq: 

  - id: foo 

    type: b5 

  - id: bar 

    type: u1 

  - id: baz 

    type: b6 

 

 

 
4 https://github.com/kaitai-io/kaitai_struct/issues/1070 

https://github.com/kaitai-io/kaitai_struct/issues/1070
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An alignment operation must be performed between foo and bar: foo leaves 3 bits of 
byte 0 unparsed, but bar must begin at a byte boundary. 

The existing approach (still used in Kaitai Struct 0.10, i.e., before serialization) is to 
insert a call to alignToByte() in the generated code, i.e., resolve the alignment at com-
pile time. This has proven to be error-prone and incredibly challenging to get right, 
because the code responsible for deciding whether an alignment is necessary would 
have to understand and consider all kinds of control flow statements that the Kaitai 
Struct language supports, such as if, repeat, type/cases, user-defined types, etc. 

The new approach is to resolve the alignment at runtime, i.e., in the runtime library. 
This is much easier and more reliable because the runtime library knows what exact 
methods are being called and can react upon that, without having to statically analyze 
the code that calls them. 

If an alignment is missing where it should be during parsing, the internal bit buffer 
remains in an old state inconsistent with the updated stream position. In the above 
example, alignment between foo and bar should discard the 3 unused bits from byte 
0 (after foo has been parsed) in the bit buffer. If it does not happen, it is not a problem 
for bar, because the type of bar is u1, which is a byte-oriented type, so it does not use 
the bit buffer. Therefore, it will be parsed entirely from byte 1 as expected. However, 
baz will be incorrectly parsed – it will use 3 bits left in the buffer and only 3 bits from 
byte 2, when all 6 bits should come from byte 2. So, missing alignment during parsing 
only negatively manifests once (if at all) a bit-oriented type comes in the stream af-
terwards. 

The consequence of missing alignment during serialization is more serious. Since the 
underlying streams used by the KaitaiStream class are byte-oriented, there is no way 
to write individual bits or partial bytes – only whole bytes can be written. This means 
that writing the 5-bit field foo in the above example does not write anything to the 
underlying byte stream – it only puts these 5 bits into the bit buffer and waits for 
further operations to determine what the remaining 3 bits of byte 0 should be so that 
byte 0 can be written. One such operation is bit-byte alignment – if foo is followed by 
the alignment operation as it should be, the 3 bits are determined to be 0 and byte 0 
is written. If this alignment is missing, bar is written to byte 0 instead – in other words, 
all byte-oriented fields after foo are serialized one byte too early and bit-oriented 
fields 3 bits too early (at least until bit-byte alignment, if it occurs later in the format), 
so the serialized output is largely corrupted. Therefore, solving the alignment prob-
lem reliably was even more important for serialization than for parsing. 

See Figure 18 for an overview of the KaitaiStream class method groups after adding 
writing support. 
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Figure 18: Groups of methods of class KaitaiStream in the Java runtime library 

7.2 Compiler 

The Kaitai Struct project works on the principle of code generation. Given a KSY spec-
ification, Kaitai Struct compiler (KSC) produces source code in the selected language 
that allows working with binary data in the specified format. 

KSC is written in Scala. It can generate parsers in 11 programming languages. Most of 
its code is independent of the target language. This includes tasks as loading the input 
KSY specification (technically a YAML file with a certain schema) and pre-compilation 
(type inference, type checking, resolving names etc.). The final step is the actual com-
pilation, which traverses the KSY object tree and renders source code in the requested 
target language. This translation is typically handled by a pair of classes, specific for 
each target language – for example, JavaCompiler and JavaTranslator in Java. Java-
Compiler is responsible for the overall structure of the generated code. JavaTransla-
tor translates expressions in Kaitai Struct expression language into Java code. Its 
main method is translate(), which receives an AST of the expression and returns a 
string with the translated expression in Java syntax. 

For the generated modules to support serialization in addition to parsing, additional 
code had to be added to the compiler. This includes new traits: EveryWriteIsExpres-
sion, GenericChecks and FetchInstances. These traits are independent of the target 
language. They are implemented by language-specific compilation classes such as 
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JavaCompiler. Implementors of these traits are required to implement certain meth-
ods that add small snippets of code to the generated source code. For example, since 
JavaCompiler wants to implement the EveryWriteIsExpression trait, it has to define 
the attrPrimitiveWrite() method, which EveryWriteIsExpression calls. Namely 
attrPrimitiveWrite() generates almost write*() calls in the generated code. It re-
ceives an AST of the expression representing the value to be written, and the data type 
of the field to write. It inserts a single line of code into the generated output – the 
statement that calls the appropriate write*() method on the KaitaiStream object, 
passing the received value to be written as an argument. 
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8 Testing 
This chapter deals with testing approaches, which were used to verify that the serial-
ization works correctly, i.e., whether it provides the expected results on different in-
puts. Testing contributes to the reliability and overall quality of the software. It re-
veals possible regressions in code changes. 

Testing was also carried out during development and significantly facilitated devel-
opment. 

8.1 Testing areas 

Serialization support in Kaitai Struct consists of two main areas that need testing. One 
area is to ensure that the writing of consistent data is consistent, i.e., the serialized 
string will be read back to the same values. 

Another area is to ensure that inconsistent data is detected and reported via con-
sistency checks. These checks should be ideally both sound and complete. Sound 
means consistent data should not be flagged by any check; complete means all possi-
ble inconsistencies in data are found. 

8.2 Testing write functionality 

The basic requirement for a testing method of serialization support is to use as many 
existing tests as possible that have been developed for testing of parsing. Another goal 
was to reduce the need to manually write special test code for each test and to mod-
ify/adapt these tests. 

8.2.1 Method 1: compare serialized output to reference 
binary files 

One method of testing considered was to use assertions in the KST specification to 
populate the object tree. The serialized output would be compared to the binary file 
used for parsing. The advantage is that this method does not rely on parsing function-
ality (so this test works regardless of whether parsing is broken) – it relies on human-
supplied reference values. Another advantage is that a direct match of the serialized 
bytes to the binary is tested. It cannot happen that serialization produces wrong bi-
nary output, which the Kaitai Struct parser mistakenly parses to the expected result 
– incorrect parsing cannot suppress an error in serialization because parsing is not 
used. 

However, in practice, there are two problems with this approach. One problem is that 
the assertions in KST specifications of existing parsing tests are often incomplete. 
They cover only a small subset of all values in the object tree. They were not designed 
to exhaustively describe all values of the object tree so that it can be reconstructed 
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from the assertions. They were designed only to check that certain few fields under 
test were parsed correctly. So, they would have to be extended to be complete, which 
is laborious. 

Another problem is the comparison of the serialized output with the reference binary 
file. In general, the object tree of a format does not necessarily capture full infor-
mation about every byte of a byte stream. Instead, it only determines a set of byte 
ranges, eventually bit ranges. This means that if the serialized output is not equal to 
the full reference binary file, it is not necessarily a serialization failure. It is necessary 
to know what byte/bit ranges the object tree captures, and compare only those. These 
ranges would either have to be entered manually in the KST specification, or inferred 
from parsing (but that introduces a certain dependency on parsing, so the mentioned 
advantages are reduced to some extent). 

Due to these problems, a different approach is used – a write-read roundtrip. 

8.2.2 Method 2: write-read roundtrip 

The parsing functionality can solve the problem of checking that the serialized output 
is correct. Instead of directly comparing the serialized output to the expected bit-
string, we can parse it to see if we get the object tree that has been serialized. This 
method is called roundtrip and it is one of the common patterns of property-based 
testing. It relies on a fundamental requirement for serialization: consistency. If we se-
rialize a consistent object tree, we must be able to fully reconstruct it by deserializa-
tion (parsing) based on just the serialized string and the format specification, other-
wise serialization is not very useful. So, for an arbitrary consistent object tree, we can 
test whether serialization can correctly write it by performing a serialization-parsing 
(or write-read) roundtrip. 

As already hinted when discussing method 1, the opposite roundtrip (parsing-serial-
ization) does not work so easily, because parsing can be a lossy process. So, a correctly 
serialized string generally matches the original binary input only to a certain extent, 
which makes evaluating the success/failure of serialization more challenging. 

We only need a consistent object tree to get the write-read roundtrip started. The 
easiest way to obtain it is to parse the binary file associated with the existing parsing 
test, so this is the approach currently used. But it is not the only option – we could 
also use an object tree that is randomly generated (the problem is that if you generate 
an object tree completely randomly, most likely it will not be consistent; it takes some 
effort to develop a generator of consistent object trees). 

Note that if the parsing fails (ends prematurely due to an error), roundtrip testing 
cannot be used, because we do not have a full object tree needed for serialization.  

The concrete procedure consists of four phases (see Figure 19). First, the input binary 
file is parsed according to the format specification – this gives us an object tree with 
the extracted values. In the second phase, this tree is serialized into a new binary 
stream. This stream is parsed into a new object tree in the third phase. The fourth 
phase is the comparison of the data used for serialization with the data after the 
roundtrip, which is the re-parsed data from the serialized bytes. If serialization works 
correctly, these two object trees must be the same. 
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The roundtrip method seems to be a good choice for 99% of cases. For a few specific 
cases, I used the above-described method 1, i.e., direct comparison of serialized out-
put to expected binary output. In these cases, we want to verify properties of the se-
rialized stream that have no effect on parsing in Kaitai Struct implementation, such as 
whether a field with size and terminator is padded correctly (i.e., with the correct 
byte) after the terminator. Such a field should be padded with zero bytes after the 
terminator by default unless pad-right is specified – then the space after the termi-
nator should be filled with pad-right byte. 

 

Figure 19: 4 phases of write-read roundtrip 

In Java, roundtrip testing is implemented as shown in Figure 20. All test classes for 
individual test formats extend the CommonSpec class. It has two abstract methods that 
adapt generic roundtrip code to a specific test format: getStructClass() and 
getSrcFilename(). The getStructClass() method returns the Class object of the 
generated format class, which can be used to create instances of the class and trigger 
parsing and serialization. The getSrcFilename() method returns the name of the bi-
nary file associated with the parsing test. 
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Figure 20: Hierarchy of Java test classes showing the implementation of write-read roundtrip 

8.3 Testing consistency checks 

In addition to verifying write functionality, it is necessary to verify the functionality 
of consistency checks. The roundtrip test explained in the previous section only deals 
with consistent data, it does not attempt to test whether inconsistent data are re-
vealed by consistency checks. The implementation of the roundtrip only looks out for 
any unsound checks by running all the checks for the object trees it works with, which 
are expected not to report any errors, so any reported inconsistency is a false positive. 
But it cannot detect incomplete checks, i.e., when some data inconsistency is not re-
ported. For that, a different set of tests is needed. 

Currently, consistency checks are tested on manually specified examples which are 
expected to pass or fail the check. For example, see the TestBytesPadTerm test class: 
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public class TestBytesPadTerm extends CommonSpec { 

    // ... 

 

    @Test(expectedExceptions = ConsistencyError.class, 

expectedExceptionsMessageRegExp = "Check failed: str_pad,.*") 

    public void testCheckLongerStrPad() throws Exception { 

        BytesPadTerm r = new BytesPadTerm(); 

        r.setStrPad("123456789012345678901".getBytes()); 

        r._check(); 

    } 

 

    @Test 

    public void testCheckGoodLastByteStrPad() throws Exception { 

        BytesPadTerm r = new BytesPadTerm(); 

        r.setStrPad(("@@@@@"+"@@@@@"+"@@@@@"+"@@@@?").getBytes()); 

        r.setStrTerm("12345678901234567890".getBytes()); 

        r.setStrTermAndPad("12345678901234567890".getBytes()); 

        r.setStrTermInclude("12345678901234567890".getBytes()); 

        r._check(); 

    } 

 

    @Test(expectedExceptions = ConsistencyError.class, 

expectedExceptionsMessageRegExp = "Check failed: str_pad,.*") 

    public void testCheckBadLastByteStrPad() throws Exception { 

        BytesPadTerm r = new BytesPadTerm(); 

        r.setStrPad("123456789012345678@".getBytes()); 

        r._check(); 

    } 

 

8.4 Evaluation 

59 test format specifications were added to the test suite (there were 233, now there 
are 292 on the “serialization” branch of kaitai_struct_tests), because during the imple-
mentation of serialization I came across cases that were not yet covered by the exist-
ing tests. Most of the serialization testing is done using a read-write roundtrip. How-
ever, it does not test whether inconsistent data that the user might supply is detected, 
so special test cases for that were added. 

I then compiled in read-write mode all the specifications from the format gallery into 
Java. This also helped me uncover a few generation errors, which I fixed. Additionally, 
I tested the formats for which I had sample files using the roundtrip mentioned ear-
lier. 
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9 Conclusion 
The addition of serialization to Kaitai Struct was a significant extension to the project 
that has long been of great interest. Various ideas, analyses, and even implementation 
efforts have emerged since 2017. The biggest challenge was to create a design that 
would reflect the large number of possible combinations of KSY language features 
that appear or could appear in format specifications. This was accomplished. Imple-
mented serialization favors general applicability so that every conceivable format 
specification is covered. In some cases, this approach requires user interaction with 
the serialization process in the form of providing additional information or triggering 
sub-actions. The requirement to be able to use all KSY format specifications written 
so far without having to change them was fully met. An important part of the project 
was to design effective test methods early in development, add 59 new tests, and fi-
nally thoroughly test the implementation in a variety of ways. Serialization now 
works for nearly all KS format specifications in the official KS format gallery, of which 
there are 185 at the time of writing. Links to sourče čode and author’s čommits čan 
be found in Appendix A. 

The serialization code in the KS compiler and runtime library for Java was developed 
knowing that it will be a template for adding serialization to other programming lan-
guages. The result is clean and understandable code. Explanatory comments were 
added where needed. Also, the documentation on the kaitai.io website is detailed, 
with installation and usage instructions and explanations of how to handle various 
cases occurring in the format specifications. 

9.1 Effects on Kaitai ecosystem 

After the completion of Java serialization, which is the subject of this work, I also 
added the serialization module for Python. 

Furthermore, a working prototype of the C# serialization, modeled after the Java se-
rialization discussed in this thesis, was created by a Canadian developer for the 
Filestar software by a Swedish company (filestar.com). Filestar is one of the best tools 
for manipulating data files of diverse formats, it can convert, merge, split, transform, 
compress them. Serialization in Kaitai Struct for C# has been used there to convert 
graphic files to the proprietary formats of CorelDRAW (.cdr), Adobe Photoshop (.psd) 
and other applications. 

One of the contributors is now working on serialization in Go, and there is interest in 
adding serialization to other languages. 

Overall, adding serialization has had a great effect on the whole ecosystem. It has 
greatly expanded the usefulness of Kaitai Struct and has aroused the active interest of 
many users.
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Appendix A: Source code 
All code is hosted in public repositories on GitHub in the kaitai-io organization. 

• Kaitai Struct compiler with serialization support: https://github.com/kaitai-
io/kaitai_struct_compiler/tree/4066d1e2d71238b2f37bd6a75e20b1271b7
ae14d 

• Kaitai Struct runtime library for Java with serialization support: 
https://github.com/kaitai-
io/kaitai_struct_java_runtime/tree/ebace6b4adbb38d3990089dfd8ee680ed
86490de 

• Kaitai Struct tests: https://github.com/kaitai-
io/kaitai_struct_tests/tree/629484b021cf5835e9bfee40bc621f0108120b7c 

• Serialization Guide in Kaitai Struct documentation: 
https://github.com/kaitai-
io/kaitai_struct_doc/blob/3ff727ff924bd661dcf1514b6650338852d92993/
serialization.adoc 

Author’s čommits (GitHub profile: https://github.com/generalmimon) at revisions 
with serialization support: 

• Kaitai Struct compiler: https://github.com/kaitai-
io/kaitai_struct_compiler/commits/4066d1e2d71238b2f37bd6a75e20b127
1b7ae14d/?author=generalmimon 

• Kaitai Struct runtime library for Java: https://github.com/kaitai-
io/kaitai_struct_java_runtime/commits/ebace6b4adbb38d3990089dfd8ee6
80ed86490de/?author=generalmimon 

• Kaitai Struct tests: https://github.com/kaitai-
io/kaitai_struct_tests/commits/629484b021cf5835e9bfee40bc621f010812
0b7c/?author=generalmimon 

• Serialization Guide in Kaitai Struct documentation: 
https://github.com/kaitai-
io/kaitai_struct_doc/commits/3ff727ff924bd661dcf1514b6650338852d929
93/serialization.adoc?author=generalmimon 
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