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Abstract

The problem of position estimation of a moving target from a flying Micro Aerial
Vehicle (MAV) with an onboard monocular camera is tackled in this thesis. Multiple
approaches based on the Kalman Filter (KF) were implemented and compared to a
baseline method formulated as an optimization problem based on a geometric inter-
section of lines. The bearing-based uniform Pseudo Linear Kalman Filter (uPLKF)
and the Degenerate Kalman Filter (DKF) methods were implemented and com-
pared along with their extensions utilizing information about the size of the object
in the image to improve range estimation. The considered methods rely on the re-
sults of visual tracking of the target and the observer’s self-localization as input and
provide the position estimation of the target observed by the camera. The imple-
mented methods were tested and compared both in simulations and on real-world
data. The influence of uncertainty of the observer’s self-localization and the visual
tracking on the resulting 3D position estimation is analyzed and discussed. The
comparison showed better performance of KF-based methods with the size estima-
tion over bearing-only approaches and the baseline geometric intersection of lines
approach. Furthermore, the influence of the observer’s self-localization accuracy
and visual tracking accuracy on the estimation were evaluated.

Keywords Unmanned Aerial Vehicles, Kalman Filter, 3D Object Localization
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Abstrakt

V této práci je řešen problém odhadu polohy pohybuj́ıćıho se ćıle z dat
palubńı monokulárńı kamery umı́stěné na bezpilotńım letounu. Několik př́ıstup̊u,
založených na Kálmánově Filtru (KF), je implementováno a porovnáno s ref-
erenčńı metodou, která je formulována jako optimalizačńı úloha založená na ge-
ometrickém pr̊useč́ıku př́ımek. Konkrétně jsou testovány metody uniform Pseudo
Linear Kalman Filter (uPLKF) a Degenerate Kalman Filter (DKF), jejichž vstu-
pem jsou směrové vektory ćıle měřené palubńı kamerou, a také rozš́ı̌reńı těchto
metod využ́ıvaj́ıćı rozměr ćıle v obraze ke zpřesněńı odhadu vzdálenosti ćıle.
Srovnávané metody využ́ıvaj́ı výstup vizuálńıho sledováńı ćıle a sebelokalizaci po-
zorovatele a poskytuj́ı odhad polohy sledovaného ćıle. Implementované metody jsou
testovány v simulaćıch a na reálných datech se zaměřeńım na vyhodnoceńı vlivu
nepřesnost́ı vizuálńıho sledováńı a sebelokalizace pozorovatele na výsledný odhad
polohy. Metody založené na KF a využ́ıvaj́ıćı rozměr ćıle v obraze vykazuj́ı přesněǰśı
výsledky a vyšš́ı odolnost v̊uči nepřesnostem vstupńıch dat než př́ıstupy založené
pouze na směrových vektorech a výrazné zlepšeńı oproti referenčńı geometrické
metodě.

Kĺıčová slova Bezpilotńı letounu, Kalman̊uv Filtr, Lokalizace objekt̊u ve 3D
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Chapter 1

Introduction

Figure 1.1: Eagle.One MAV, image taken from [6].

MAVs, also referred to as drones, have emerged as unique and indispensable tools
across the world in various fields, including disaster management, water surface monitoring,
[4], firefighting [14], medicines and blood delivery [8], search and rescue [5], entertainment
[13], agriculture [10], scientific research [11] and many more. The simplicity and availability
of MAVs make them a suitable platform for research and testing different hypotheses. The
size varies from a few centimeters and a few grams (Intel Tello) to 40m and 6700 kg (Global

CTU in Prague Department of Cybernetics



2/43

Hawk).

While some MAVs are used to improve and even save lives, their widespread adoption
has also raised concerns regarding safety, security, and privacy. Unauthorized and malicious
MAVs, commonly referred to as rogue drones, have been implicated in incidents ranging
from airspace violations to espionage and terrorism.

For example, in 2018 in New Zealand, a MAV almost caused the crash of a Boeing 777
by flying within 5m of it1. In the same year, “two GPS-guided drones laden with explosives
were used in a failed attempt to assassinate Venezuelan President Maduro”2, which can be
classified as a terrorist attack. The MAVs were carrying explosives, and they could cause
people harm or even death. United Nations published an 80-page “practice guide”3 about
“Protecting vulnerable targets from terrorist attacks involving unmanned aircraft systems”.

To protect private property, critical government infrastructure, etc., various intercept-
ing devices were developed. There are anti-drone guns that launch strong, narrow, directed
electromagnetic pulses towards the MAV line, jamming and spoofing devices, and differ-
ent military electronic warfare systems. There are also big drones-interceptors, for example,
the USA Air Force Research Laboratory (AFRL) interceptor drone4 and the Czech startup
Eagle.One5. Using the set of onboard sensors, the Eagle.One detects the target, finds the
target’s position, flies towards it, and catches it with a net. The Eagle.One interceptor has an
onboard Light Detection and Ranging (LiDAR) sensor from which it estimates the position
and velocity of a desired target, but when the target is out of the Field of View (FOV) of
LiDAR, it loses the track. The problem can be solved by adding more LiDARs (which are
costly), stereo cameras, which often have a limited range of view, or monocular cameras,
which are relatively cheap but require intelligent algorithms to estimate the depth from the
monocular camera and find the distance to the target.

Formations and swarms of drones are other fields where the localization of a moving
object from a flying MAV is important. In [16], the visual relative localization for swarms is
proposed. Authors use the Convolutional Neural Network (CNN) to estimate the distance
between the observer and multiple targets in an image taken by the onboard camera. Usually
CNNs are more computationally demanding than the standard approaches, for example, KF-
based, so the KF-based approach probably can be used for relative localization in swarms.

The aim of this thesis is to implement and compare the position estimation algorithms.
The input provided to those methods is the output of the target’s visual tracking from the
camera onboard the MAV called observer and the output of the observer’s self-localization.
The geometric intersection of lines in 3D was chosen as a baseline solution. Thanks to the
recent advancements in the field of bearing-based localization, multiple KF-based methods
were implemented and tested in order to improve the results of the baseline method. All ap-
proaches are compared in different simulation scenarios and tested on real-world data. The
influence of the deviations in visual tracking and the observer’s self-localization imprecision

1BBC: https://www.bbc.com/news/world-asia-43551373.
2Crisis-response: https://www.crisis-response.com/Articles/682409/Use of drones.aspx.
3UN counter-terrorism: https://www.un.org/counterterrorism/sites/www.un.org.counterterrorism/

files/2118451e-vt-mod5-unmanned aircraft systems final-web.pdf.
4San.com: https://san.com/cc/afrl-drone-interceptor-is-both-offensive-and-defensive-weapon-of-the-week/
5Eagle.One: https://eagle.one/cs/
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is tested and evaluated. Because visual object tracking on a sequence of images is a widely re-
searched and mostly solved problem, the thesis mainly focused on the bearing-based target’s
state estimation, as this was identified as an area with a high potential for innovation.

1.1 Related works

Visual tracking

Visual tracking refers to the process of following an object on video frames or a set of
consecutive images. Visual tracking is a complicated problem due to object deformation, illu-
mination changes, camera motion, and occlusion. Some trackers, like Kanade-Lucas-Tomasi
(KLT) [27], are easy to understand and implement for simple tasks. The KLT is a feature
tracker, and it assumes the displacement of two consecutive frames is small and approxi-
mately constant within the neighborhood of the feature points. Then, the sum of the squared
differences of image intensities is minimized iteratively. The feature point is removed from
the further tracking if the algorithm does not converge.

Others, like FEAR Tracker [12] or STARK tracker [15], rely on machine learning ap-
proaches. They are more power- and computation-demanding but more efficient and robust.
Visual trackers usually provide only information in the image plane, without depth infor-
mation. That is where the 3D position estimation (or depth estimation) as a separately
formulated and solved problem is useful.

Some open-source libraries, like OpenCV6 provide the implementation of robust state-
of-the-art trackers that can be used out-of-the-box, for example, MOSSE Tracker [21], The
Median Flow tracker [22], TLD Tracker [20] and many more.

Depth estimate

An image taken by a monocular camera is usually a two-dimensional projection of a
three-dimensional scene onto the image plane. As a result of such projection, the information
about the depth of the observed objects is lost. However, this information can be useful,
and there are methods to get it. The task of retrieving depth information is often called
“depth estimation”, and it is a wide-researched topic. Most of the proposed approaches
require some prior knowledge about some elements of the scene. The vast majority of those
approaches using the monocular camera are based on CNNs using a single image, with no
sequence required. In [9], multiple methods of monocular depth estimation are compared,
and all of them are based on some Neural Networks. However, those approaches are very well
generalized to estimate the distance to any object in the image scene with some precision.
For the specific task when the prior knowledge is provided, like the region of interest in an
image, amount of important objects in an image scene and the dynamics of an object, better
approaches can be applied, for example, the KF-based, utilizing the prior knowledge about
the moving target and its dynamics and the dynamics.

Another similar problem would be the “structure from motion”. This is the task of
estimating a 3D scene from a set of monocular images. In [19], an overview of the problem is
presented. The main idea is to search for common features in the sequence of images, match

6OpenCV: https://opencv.org/
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them, estimate the camera shift, and reconstruct the 3D scene. However, prior knowledge
is still required to compute the scale of the scene. If the camera is mounted on a drone,
such information could be the odometry from an onboard Inertial Measurement Unit (IMU)
or Global Navigation Satellite System (GNSS) so the scene can be reconstructed. Another
disadvantage of this method is that it only applies to static objects and is not suitable for
moving objects, which is necessary for the task tackled in this thesis.

Bearing-based 3D position estimation

The state estimation of a flying target from a MAV is an important task for track-
ing, following, avoiding, or intercepting the target. The MAV equipped with a LiDAR can
estimate the distance and bearing to the target, which determines the relative position. Us-
ing additional intelligent algorithms, a target’s position, velocity, and acceleration can be
estimated for further interception, as described in [2].

If the LiDAR or other sources of distance measurement are not available, the position
of a target can still be estimated using bearings obtained e.g. from a monocular camera.
It involves determining the bearing from the camera to the target, usually represented as
angles to the reference direction in spherical coordinates or simply a vector. To track the
object using bearings, the dynamics of a target must be of a lesser order than observer [28].
In other words, if the acceleration of a target is to be estimated, the observer must have a
known non-linear jerk. For position estimation, non-zero velocity is enough for the system
to be observable.

The general idea and principles of bearing angles and their usage are described in
[24], where the bearing-angles Simultaneous Localization and Mapping for a ground vehicle
is tackled. By collecting and combining the bearing angles with the key objects from the
observer’s different poses, it is possible to retrieve the position of the observer using trian-
gulation, optimization, or other approaches. Typically, the KF is used to fuse the data from
different sensors or multiple observing points and improve the estimation.

The Pseudo Linear Kalman Filter (PLKF) is a non-linear KF which, instead of direct
linearisation using Jacobian for Taylor approximation as for Extended Kalman Filter (EKF),
reformulates the nonlinearities or employs the transformations to yield a linear-like structure.
A two-dimensional case of bearing-only target tracking is proposed in [13]. The authors
propose the “Unbiased Pseudo Linear Kalman Filter” and compare it to other PLKFs. Since
bearing angle measurements are not linear, the simple Linear Kalman Filter (LKF) can
not be used here. The EKF is also unsuitable, as shown in [25] because it uses the Taylor
approximation for linearisation, which is not stable for functions that are hard to derivate.
In contrast to LKF and EKF, the PLKF shows good results, so it is widely used in this task.

Multiple approaches to bearing-only 3D tracking are compared in [13]. All methods
described in the article are the modifications of the PLKF that use angles, not vectors, to
define the bearing to the target. In the end, all methods are compared in numerical simula-
tion. All methods showed similar performance and proved to be suitable for the bearing-only
position estimation.

In this thesis, the approach from [3] is adopted. In the original paper, not bearing
angles but bearing vectors are used to simplify computations. Also, the optimal trajectory

CTU in Prague Department of Cybernetics



1. INTRODUCTION 5/43

for the pursuing MAV to better estimate the position of the target is provided and proved.

1.2 Problem statement

A MAV called observer with an onboard PC running ROS, utilizing Real-Time Kine-
matic (RTK) sensor for self-localization is tasked with the position estimation of a target in
3D space observed using an equipped monocular camera. Visual tracking of a target is pro-
vided. The MAV relies on initial position and velocity data given, for instance, by a LiDAR
detection and estimation algorithm from [6]. The target is moving in a 3D space with linear
velocity and, when viewed from different perspectives, is assumed to be invariant in width.
The challenge lies in developing a robust system that can accurately estimate the target’s
movement in real time despite the limitations of monocular vision and the dynamic environ-
ment in which the UAV operates. This involves addressing issues such as ensuring continuous
and accurate target localization and maintaining stable tracking performance under varying
conditions and viewpoints from a moving camera.

1.3 Mathematical notation

The mathematical notation used in this thesis is defined in Table 1.1.

x,η vector or pseudo-vector
P a point
X,Ω matrix
In×m identity matrix of size n by m
0n×m matrix of zeros of size n by m
xn = x⊺ên nth vector element (row), x, e ∈ R3

X(a,b) matrix element, (row, column)

ẋ, ẍ 1st and 2nd time derivative of x
x[k] x at time instant k

A,B,x LTI system matrix, input matrix and input vector
SO(2) 2D special orthogonal group of rotations
SO(3) 3D special orthogonal group of rotations

Table 1.1: Mathematical notation, nomenclature, and notable symbols.

CTU in Prague Department of Cybernetics
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Chapter 2

Theoretical background

2.1 Kalman Filter

Correct Predict, Q
Inputs:

Measurements z[k],R

Outputs:
System state estimate x[k]

Uncertainty estimate P[k]

Initialisation:
Initial system state x[0]

Initial uncertainty P[0]

delay
k −→ k + ∆t

Figure 2.1: The scheme of a KF iteration. The initialization is done only once, at the very
beginning.

The general stochastic state-space Linear Time-Invariant (LTI) system model used for
the KF is described with two equations. The first one is a state transition equation, and the
second one is the measurement model:

x[k+1] = Ax[k] +Bu[k] +w[k],

z[k] = Hx[k] + e[k],

(2.1)

CTU in Prague Department of Cybernetics



2. THEORETICAL BACKGROUND 7/43

Figure 2.2: An example of a single KF iteration. The blue ellipse illustrates the initial estimate
x[k|k−1] with covariance P[k|k−1], the green ellipse the estimate after the correction x[k|k] with
covariance P[k|k] utilizing the current measurement, and the orange ellipse the predicted
estimate x[k+1|k] with covariance P[k+1|k].

where the deterministic part is

x[k] ∈ Rn is the state of the system at time instant k,

z[k] ∈ Rp is the observed output of the system at time instant k,

u[k] ∈ Rm is the input at time instant k,

A ∈ Rm×n is the state transition matrix,

B ∈ Rn×m is the control matrix,

H ∈ Rp×n is the measurement-state mapping,

and the stochastic part is

w[k] ∼ N (0,Q) is the process noise,

e[k] ∼ N (0,R) is the measurement noise,

which is assumed to follow a Gaussian random distribution with zero mean and covariance
matrices Q and R for any {k, n,m, p},∈ N.

CTU in Prague Department of Cybernetics
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(a) k = 0, initialisation. (b) k = 1, prediction and correc-
tion.

(c) k = 2, prediction and correc-
tion.

Figure 2.3: An illustration of bearing-based position estimation using KF-based approaches,
top view. The red cross is the estimated position of the target, the red ellipse is the covariance,
and the green cylinder is a bearing vector with radial uncertainty. The observer moves forward
with a constant velocity while the target is static. The initialization is shown in subfigure
2.3a. The result of the next prediction and correction steps after k = 1 producing a slightly
skewed covariance matrix is in subfigure 2.3b. The result after k = 2 timestamp is in subfigure
2.3c.

The general idea behind the KF is to estimate and predict the state x[k+1|k] of a noisy
system, and its uncertainty P[k+1|k], which is also called the state covariance, which can be
done even if the system itself is unknown. This filter is a powerful tool used in navigation
[23], tracking [18], [26], and control [7], [17], but overall, it can be applied to dynamic systems
with noise. The LKF is optimal and stable, but it can be used only with the LTI systems
under the assumption of the system and measurement noise being Gaussian. Unfortunately,
in the real world, systems are often non-linear, so other modifications of the KF like EKF or
the Unscented Kalman Filter (UKF) are used. They are not guaranteed to be optimal and
stable, but they are still chosen by many engineers in robotics (and other fields). One of the
biggest advantages of KF is its ability to process the data in real-time, while for filters like
median filter, mean filter, or moving average, a window of some size is needed, so the result
is always delayed. Another advantage is that despite the fact that KF results and estimates
for non-LTI systems are non-optimal, under good initialization and after tuning, they can
offer very good performance.

The KF is a two-step recursive filter that both estimates and, given the measurement,
predicts the future development of the system using the model. It operates with the above-
defined state-space model of a dynamic system. In the prediction step, the state of the model
with its uncertainty is propagated through the KF to the next time step. In the correction
step, the state with its uncertainty is corrected with respect to the incoming measurement
data. Figure 2.1 shows the general KF.

For the state-space model defined in (2.1), the correction of the KF is done in two steps.
First, calculate the Kalman gain K[k] is calculated given P[k|k−1] and the system model

K[k] = P[k|k−1]H
⊺(HP[k|k−1]H

⊺ +R)−1. (2.2)

CTU in Prague Department of Cybernetics
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Then, the state and covariance are updated given x[k|k−1], P[k|k−1], K[k], z[k] as

x[k|k] = x[k|k−1] +K[k](z[k] −Hx[k|k−1]),

P[k|k] = P[k|k−1] −K[k]HP[k|k−1].

(2.3)

The prediction is done as

x[k+1|k] = Ax[k|k] +Bu[k],

P[k+1|k] = AP[k|k]A
⊺ +Q.

(2.4)

In Figure 2.2, an example of a single iteration of a KF is displayed. The lower index in x[f |j]
means the best value for x at a time instant f using all data available up and including
time instant j, so the x[k|k] is an update of x at time instant k considering the additional
input received at time k, and x[k+1|k] is the update of the vector x for time instant k + 1
considering only the information available at time instant k.

Figure 2.3 illustrates the expected behavior of the KF for the bearing-based position
estimation, the initialization, and two update steps. A detailed explanation of how it can be
achieved in practice is in chapter 3.
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Chapter 3

Methods

Figure 3.1: An example relative position estimation in side view. The observer (interceptor)
measures the target bearing vector g and the subtended angle θ. Image taken from [1].

In this chapter, the MAV model is defined, and the approaches used in the thesis are
described. In section 3.2, the baseline approach formulated as the geometric intersection of
rays in 3D is introduced. One of the biggest disadvantages of this approach is that it is
very sensitive to noise and model mismatch. Another disadvantage is the lack of tunable
parameters to adjust the performance.

In section 3.3, approaches based on bearing-angle KF are described. Their advantages
include the possibility of tuning them using the measurement and state covariance matrices.
However, KF-based methods require prior knowledge about the dynamics of the tracked
object and a good initialization. The improved version of the KF-based methods is presented
in section 3.4, with the size of the tracked bounding box incorporated in the state to estimate
the real size of the object and improve the target localization quality.
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3.1 MAV model

The state vector x describing the position p =
[
x y z

]⊺
and velocity p =

[
ẋ ẏ ż

]⊺
of a moving object in 3D is defined as

x =



x
y
z
ẋ
ẏ
ż

 =

[
p
v

]
, x ∈ R6, p ∈ R3, v ∈ R3. (3.1)

For this thesis, dynamics of the MAV is modeled as a mass-point using the following math-
ematical formulation:

p[k+1] = p[k] + ∆tv[k] +
∆t

2

2

a[k],

v[k+1] = v[k] + ∆ta[k],

a[k] ∼ N (0,Qa),

(3.2)

where the unknown acceleration is modeled as a Gaussian random variable with zero mean
and covariance Qa. The state transition equation (2.1) is then simplified to

x[k+1] = Ax[k] +w[k], (3.3)

where w[k] = Ba[k], so the process noise is modelled as wk ∼ N (0,BQaB
⊺). Matrices A, B

and Q for this particular case are

A =

[
I3×3 ∆tI3×3

03×3 I3×3

]
, (3.4)

B =

[
∆t2

2 I3×3

∆tI3×3

]
, (3.5)

Q = αI3×3, (3.6)

where A ∈ R6×6 and B ∈ R6×3, and α is a nonzero tunable variable.

3.2 Geometric lines intersection in 3D

Static target

Any two lines in 3D space can either be parallel, coincident, skew, or intersecting. More
lines make the problem of finding their intersection more complicated, but the optimal point
minimizing the distance to each line can be found in terms of least squares if lines are not
parallel or coincident. Having a set of n ∈ N lines defined by points Oi =

[
Oi,x, Oi,y, Oi,z

]⊺
CTU in Prague Department of Cybernetics
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and Pi =
[
Pi,x, Pi,y, Pi,z

]⊺
,∈ R3, and any point Li =

[
Li,x, Li,y, Li,z

]
on a line in 3D is

defined as

Li = Oi + (Pi −Oi)λi, i ∈ [1; n] (3.7)

which is the same as

Li = Oi + diλi, (3.8)

where the di =
[
di,x, di,y, di,z

]⊺
= (Pi − Oi) is a direction vector, and λi ∈ R is a free

parameter. The equation (3.7) is in a vector form, so one line is a set of 3 equations with 4
unknowns, which can be written as

Lx −Ox − dxλ = 0

Ly −Oy − dyλ = 0

Lz −Oz − dzλ = 0

(3.9)

where Lx, Ly, Lz, λ are unknown. Starting from two lines (six equations and five unknowns),
the system of equations is already determined so the solution can be found. For n lines, there
are n+ 3 variables and 3n equations, and the optimisation problem is formulated as

L∗ = argmin ∥Fx− b∥2 , (3.10)

with elements

F =



1 0 0 −d1,x 0 · · · 0
0 1 0 −d1,y 0 · · · 0
0 0 1 −d1,z 0 · · · 0
...

...
...

...
...

. . .
...

1 0 0 0 · · · 0 −dn,x
0 1 0 0 · · · 0 −dn,y
0 0 1 0 · · · 0 −dn,z


, b =



O1,x

O1,y

O1,z
...

On,x

On,y

On,z


, x =



Lx

Ly

Lz

λ1
...
λn


(3.11)

where F ∈ R3n×(n+3),x ∈ Rn+3, b ∈ R3n, n ∈ [2,∞). The point L∗ = [L∗
x, L

∗
y, L

∗
z]
⊺ is the

closest point to all n lines.

Target moving with a constant velocity

A moving target’s velocity can be added to the model to improve estimation. The
equation (3.7) is modified as

Li + v∆ti = Oi + (Pi −Oi)λi, (3.12)

where v =
[
vx vy vz

]⊺
is the target’s velocity, and ∆ti is the time from the first sample,

∆t1 = 0. The objective is the same - to solve the optimization problem defined in the equation
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(3.10), but with elements

F =



1 0 0 ∆t1 0 0 −d1,x 0 · · · 0
0 1 0 0 ∆t1 0 −d1,y 0 · · · 0
0 0 1 0 0 ∆t1 −d1,z 0 · · · 0
...

...
...

...
...

...
...

...
. . .

...
1 0 0 ∆tn 0 0 0 · · · 0 −dn,x
0 1 0 0 ∆tn 0 0 · · · 0 −dn,y
0 0 1 0 0 ∆tn 0 · · · 0 −dn,z


, b =



O1,x

O1,y

O1,z
...

On,x

On,y

On,z


x =



Lx

Ly

Lz

vx
vy
vz
λ1
...
λn


, (3.13)

where F ∈ R3n×(n+6),x ∈ Rn+6, b ∈ R3n, and n ∈ [3,∞). Starting from three lines (nine
equations and nine unknowns), the system of equations is already determined so the solution
can be found. For n lines, n+ 6 variables and 3n equations are needed to solve the system.

Solution

Both problems defined in 3.2.1 and 3.2.2 are formulated as least-squares optimization
problems. The optimal solution can be computed as

x = F−1b, (3.14)

which is not possible if the matrix F is not invertible. This can be resolved by taking the
left pseudo-inverse of matrix F as

F† = (F⊺F)−1F⊺; (3.15)

where † stands for the pseudo-inverse. A more numerically stable way to compute the pseudo-
inverse is using the Singular Value Decomposition (SVD), which can also handle numerically
unstable and nearly rank-deficient matrices. It is formulated as

F = UΣV⊺; F† = UΣ−1V⊺, (3.16)

where U and W are orthogonal matrices and Σ is a diagonal matrix with singular values of
F on the diagonal. Regardless of the way in which the pseudo-inverse was found, the optimal
solution is computed as

x = F†b. (3.17)

3.3 Bearing-only position estimation using Kalman Filters

The bearing vector points from the observer to the target, as shown in Figure 3.1.
For the KF-based approaches considering the state vector x as described in section 3.1, the
bearing is not a linear measurement but can be utilized to estimate the state as described
further in section 3.3.1. Bearing measurement can be linearized and incorporated in EKF,
or as was described in the introduction chapter 1, transformed to a pseudo-linear form and
used in PLKF.

CTU in Prague Department of Cybernetics



14/43 3.3. BEARING-ONLY POSITION ESTIMATION USING KALMAN FILTERS

Uniform Pseudo Linear Kalman Filter

One of the uPLKF approaches used in this thesis is proposed in [3], which is a bearing-
only 3D position estimation algorithm based on a KF utilizing the bearing vector instead of
bearing angles to simplify the computations and make the algorithm more numerically stable
by avoiding trigonometrical functions. The estimated measured state x[k] of the system is not
the absolute position of the target but rather the relative position of a target with respect to
the observer. The matrices A and B from section 3.1 remain the same, but the state vector
is changed to

x[k] =

[
pT [k] − pI[k]

vT [k] − vI[k]

]
∈ R6, (3.18)

where {pT [k],vT [k]} ∈ R3 are the position and velocity of the target, and {pI[k],vI[k]} ∈ R3 are
position and velocity of the observer at time instant k. The measurement from equation (2.1)
is expressed with a direction vector d[k], which can be defined as a non-linear measurement
equation

d[k] = d∗
[k] + η[k], (3.19)

where d∗
[k] is the unit direction vector pointing from the observer to the target, and η[k] ∼

N (0, σ2
ηI3×3) is bearing vector measurement noise. The direction vector d∗ is defined as

d∗
[k] =

pT [k] − pI[k]

m[k]
, (3.20)

where m[k] = ∥pT [k]−pI[k]∥ is the distance between the observer and the target. To linearize
the measurements, the authors of [3] proposed to use the matrix Pd[k]

which represents
an orthogonal projection to a plane perpendicular to the measurement bearing vector and
defined as

Pd[k]
= I3×3 −

d[k]d
⊺
[k]

∥d[k]∥2
∈ R3×3, (3.21)

where I3×3 ∈ R3×3 is the identity matrix. For any vector g ∈ R3, the orthogonal projection
of g onto a plane perpendicular to d is Pdg. It also has properties P⊺

d = Pd, P
2
d = Pd and

null(Pd) = d. By multiplying equation (3.19) by Pd[k]
from the left, and substituting the d∗

from (3.20), the following form is obtained:

03×1 = Pd(pT [k] − pI[k]) +m[k]Pd[k]
η[k]. (3.22)

This is a pseudo-linear equation that can be used in the KF framework after minor modifi-
cation. The final measurement equation is then

z[k] = 03×1 =
[
Pd[k]

03×3

]
x+m[k]Pdη[k], (3.23)

the measurement-state mapping matrix from equation (2.1) is

H[k] =
[
Pd[k]

03×3

]
, (3.24)

and the measurement noise covariance matrix is obtained as

R[k] = V[k]RV
⊺
[k], (3.25)
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where the matrix Vk is
V[k] = m[k]Pd, (3.26)

following from equation (3.23). The measurement equation (3.23) depends on the real dis-
tance m[k] between the observer and the target, but it is not known, and it is exactly the
value to be estimated. The true m[k] can be replaced by a predicted one, as it was done in
[3] and proved to be a good estimate.

To express the approach described in this section consistent with the model defined
in section 3.1, the state vector should be x =

[
pT vT

]⊺
and not the relative position in

equation (3.18), as defined in original article [3]. To do so, the Pd[k]
pI[k] is moved on another

side of the equation (3.22), transforming the measurement z[k] from (3.23) to

z[k] = Pd[k]
pI[k] =

[
Pd[k]

03×3

]
x+m[k]Pdη[k]. (3.27)

As a result, the measurement-state matrix H[k] from (3.24), the measurement z[k] from
(3.27) and the measurement noise covariance matrix R[k] from (3.25) can directly be used
in the KF framework defined in section 2.1 by using the model from section 3.1.

Degenerate Kalman Filter

The DKF is a framework for integrating general linear subspace measurements of the
state-space using the LKF and can be utilized for the bearing-based estimation in a similar
manner as the uPLKF. It was proposed and derived by Matouš Vrba and Viktor Walter from
the Multi-Robot Systems group but has not yet been published. The DKF implementation
is available within the Multi Robot Systems (MRS) Unmanned Aerial Vehicle (UAV) system
[11], which was modified for the purposes of this thesis. In this section, the DKF is firstly
introduced and derived in a simplified 2D example and then extended to specific bearing-only
3D position estimation.

2D DKF example

The step-by-step derivation of DKF formulation for the 2D case follows. If the observer
is located at the origin of the coordinate frame and the target is in front of it in x direction
as shown in subfigure 3.2a, the measurement is expressed with offset and uncertainty only
as the

c =
[
1 0

] [xT
yT

]
+ e, (3.28)

where c is a measured distance to the target, the vector
[
xT yT

]⊺
is the real position of the

target, and e ∼ N (0, σ2
c ) is Gaussian measurement noise. For a generally positioned target

shown in subfigure 3.2a, the measurement can be expressed as

c =
[
1 0

]
R′

[
xT
yT

]
+ e, (3.29)

where R′ ∈ SO(2) is a rotation matrix aligning the target’s direction with the x axis. Finally,
if the observer is not at the origin, an offset

[
x0 y0

]⊺
as

c =
[
1 0

]
R′

[
xT
yT

]
+

[
x0
y0

]
+ e. (3.30)
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(a) illustration of the subspace measurement of a
single coordinate in 2D case. The red line shows
the measurement with missing knowledge in the
y axis, and uncertainty expressed as a Gaussian
probability distribution with x mean and σc de-
viation.

(b) Illustration of the subspace measurement of
generally positioned target, the line with known
inclination. The red line shows the same mea-
surement type as in subfigure 3.2b.

Figure 3.2: The illustration of a simplified 2D case for deriving the DKF. Images taken from
unpublished paper (written by Matouš Vrba and Viktor Walter) mentioned in section 3.3.2.

Bearing-only estimation using DKF

For the bearing-only position estimation, the measurement can be interpreted as a line
defined as a position of the observer pI[k] with the direction vector d[k] obtained from the
visual tracking. The specific measurement equation for the bearing-only position, extending
the 2D example from equation (3.30) is defined as

[
I3×3 03×3

] [pT [k]

vT [k]

]
= d[k]λ+ pI[k] + ϵ[k], (3.31)

where λ is a nonzero scalar and ϵ[k] ∼ N (0, σ2
ϵ I3×3) is a Gaussian noise. Let us define the

matrix M to be the mapping from a state vector x[k] to the measurement subspace. The
general form of the measurement equation for 3D case used in the DKF framework is

Mx[k] = W[k]λ+O+ ϵ[k], (3.32)

where matrix W[k] is a measured subspace and oI[k] is the offset. From equations (3.31) and
(3.32), the matrix W[k] for the state x defined above is a bearing vector d[k]. The mapping

matrix M between the state vector subspace x =
[
pT vT

]⊺
to the 3D subspace of the

position only, dropping the velocity, is specifically set to

M =
[
I3×3 03×3

]
∈ R3×6. (3.33)

However, such measurement from equation (3.32) can not be directly used in KF. Let the
matrix N[k] in general case be a null space of W, such that N⊺

[k]W[k] = 0. For the bearing-

only position estimation, matrix N[k] ∈ R3×2 is the null space of the bearing vector d[k]. By
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left multiplication of N⊺ the bearing vector is eliminated from the measurement formula,
and the resulting measurement equation is transformed to

N⊺
[k]Mx[k] = N⊺

[k]pI[k] +N⊺
[k]ϵ[k], (3.34)

which is in a canonical form used in the KF framework. The measurement noise ϵ[k] is a
Gaussian noise with zero mean, so a change of the sign will keep the correctness of the
equation. Finally, the measurement-state mapping matrix H[k] for the KF from equation
(2.1) is

H[k] = N⊺
[k]M ∈ R2×6, (3.35)

the measurement vector is
z[k] = N⊺

[k]pI[k] ∈ R2×1, (3.36)

and the measurement noise covariance matrix is computed as

R[k] = σ2
ϵN

⊺
[k]N[k] ∈ R3×3. (3.37)

The bearing vector measurement noise ϵ for DKF is not the same as η used for bear-
ing for uPLKF and defined in equation (3.19). The standard deviation ϵη for DKF can be
visualized as the radius of an uncertainty cylinder around the bearing vector.

3.4 Bearing-based estimation with subtended angle using KF

One of the main disadvantages of all approaches described above is the lack of in-
formation in the dimension orthogonal to the bearing vector. To gain this information, for
example, the observer can follow some special trajectory as described in [3]. By following
the circular trajectory in a plane orthogonal to the initial bearing vector, more information
about the size l shown in Figure 3.3 can be gained. Another way to receive that information
is to utilize knowledge about the subtended angle θ shown in Figure 3.3, which is already
available from most visual trackers, providing not a point but a bounding box.

Uniform Pseudo Linear Kalman Filter with subtended angle

A uPLKF variant using the subtended vector of the target is proposed in [1]. The
work is based on research from [16] and the uPLKF [3] explained in section 3.3.1. The idea
is to incorporate the subtended angle measurement in a KF framework to estimate the size
of the object under the assumption that the bounding box of the object’s 2D tracking is
similar from most viewpoints. In Figure 3.1, the subtended angle is shown as θ, and the
bearing vector as g. In Figure 3.3, the overall scene is shown with the same notation from
chapter 3. By adding the new value to the state, the state vector x defined in equation (3.1)
is transformed to

x =

pT

vT
l

 ∈ R7, (3.38)

where l is the object’s physical size in the real world, in the dimension orthogonal to the
bearing vector d. If the object’s size is only slightly different from different perspectives, it
can still be estimated, as proved in [1].
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X

Figure 3.3: An example schematic of relative position estimation with the subtended angle
in top view on the scene defined in Figure 3.1. The observer located at Oc measures the
bearing vector d with a subtended angle θ. Vectors l and r point to the left and right sides
of the target, respectively. Plane P: An example relative position estimation in side view.
The observer measures the target bearing vector in the camera projection plane, s is the
projected target size, and l shows the target’s physical size in the dimension orthogonal to
the bearing vector.

Usage of additional information in the dimension orthogonal to the bearing vector
can improve the distance estimation, and, as follows, the 3D tracking results in situations
where the system state described in previous sections causes the singularities and makes it
impossible to locate the target, for example in the case of a static target, the observer moves
at a constant speed in a straight line towards the target.

The subtended angle θ∗[k] is computed as

θ∗ =
l⊺r

∥l∥∥r∥
∈ R (3.39)

where l is the vector pointing to the middle of the left bounding box edge, and r is pointing
to the middle of the right side. The measured θ[k] computed as

θ[k] = θ∗[k] + ω, ω ∼ N (0, σ2
ω). (3.40)

The angle θ is considered to be relatively small because the object is observed from a big
distance. For small angles, the tangent is assumed to be equal to the angle itself,

tan θ ≈ θ, (3.41)

and the error from this estimation is shown in Figure 3.4. This error is computed as

ϵ =
|lideal − lapprox| · 100%

lideal
, (3.42)

with lideal = 2m tan( θ
∗

2 ) and lapprox = 2m tan( θ2). Each color represents the actual target
size in the dimension orthogonal to the bearing angle d. It is clear that starting from 2.5m

CTU in Prague Department of Cybernetics



3. METHODS 19/43

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0
Distance to the target, [m]

0

5

10

15

20

25

30

Pe
rc

en
ta

ge
 e

rro
r, 

[%
]

0.2m
0.4m
0.6m
0.8m
1m

Figure 3.4: Error of the target’s estimated size using the tangent approximation. The relation
of the tangent of an angle approximation with just the angle with respect to the distance to
the object of interest. Different colors show a different target size in the dimension orthogonal
to the bearing vector d.

distance, the estimation error is less than 3% for any object size, so the approximation can
be used without a significant impact on the measurement precision.

From Figure 3.3, the ideal subtended angle is computed as

θ∗[k] = 2arctan
1
2 l

m[k]
, (3.43)

which using the approximation, can be simplified to

θ∗[k] ≈
l

m[k]
, (3.44)

where m[k] = ∥pT [k]−pI[k]∥ is the absolute distance from the observer to the target. Combin-
ing equations (3.39), (3.40) and (3.44), the nonlinear measurement equation of the subtended
angle is

θ[k] =
l

m[k]
+ ω. (3.45)

To linearize, this equation can be combined with the bearing vector measurement. From
equations (3.19) and (3.20) follows that

m[k]d[k] = pT [k] − pI[k] +m[k]η, (3.46)
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and after multiplying equations (3.45) and (3.46) the result is

θ[k](pT [k] − pI[k] +m[k]η) = ld[k] + ωm[k]d[k], (3.47)

and the final pseudo-linear measurement equation for the subtended angle is

θ[k]pI[k] =
[
θ[k]I3×3 03×3 −d[k]

] pT [k]

vT [k]

l

+m[k](θ[k]η − ωd[k]). (3.48)

The resulting uPLKF matrices from 3.3.1 are modified to satisfy the extension of the mea-
surement x. The state transition matrix is

A =

I3×3 ∆tI3×3 03×1

03×3 I3×3 03×1

01×3 01×3 1

 ∈ R7×7, (3.49)

the matrix B remains the same as in 3.1, but the noise vector is changed as

w[k] ∼ N (0,

[
BQB⊺ 06×1

01×6 σ2
l

]
). (3.50)

with σl variance of the target size, letting the l slowly vary and not remain static. If the
target is either a cylinder, sphere, or any other figure with a constant size in the horizontal
or vertical dimension, σl should be zero. The measurement-state mapping is transformed to

H[k] =

[
Pd 03×3 03×1

θ[k]I3×3 03×3 −d[k]

]
∈ R6×7, (3.51)

and the measurement vector

z[k] =

[
Pd[k]

pI[k]

θ[k]pI[k]

]
∈ R6. (3.52)

The measurement noise vector can be written as

e[k] =

[
m[k]Pd[k]

η

m[k](θ[k]η − ωd[k])

]
∈ R6. (3.53)

To find the covariance matrix R of the vector e[k], let us introduce the matrix E equals

E[k] = m[k]

[
Pd[k]

03×1

θ[k]I3×3 −d[k]

]
∈ R6×4 (3.54)

making available to write the measurement noise as a linear transformation of Gaussian
noises

e[k] = E[k]

[
η
ω

]
∈ R6 (3.55)

with the covariance matrix

R[k] = E[k]

[
σ2
ηI3×3 03×1

01×3 σ2
w

]
E⊺

[k] ∈ R6×6. (3.56)

The value of m - the absolute distance from the observer to the target - can not be
found; instead, the estimated value from the KF loop is used, as was described previously.
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Degenerate Kalman Filter with subtended angle

For now, the DKF approach implemented in MRS library utilized only the knowledge
about the bearing vector with some uncertainty. After seeing that the subtended angle fusion
with the uPLKF improved the estimation results, the fusion of subtended angle measure-
ments with the DKF was developed and implemented. By combining the algorithms from
sections 3.3.2 and 3.4.1, the subtended angle measurements can be incorporated into the
DKF approach. However, the model described did not use the bearing vector directly before,
which is needed for the angle measurements. Adding this to the model will increase the
amount of noise sources and make the tuning process harder.

Combining the derived measurement equation for the subtended angle (3.48), the
measurement-state mapping H from the section 3.3.2 is transformed to

H[k] =

[
N⊺

[k]M 02×1

θ[k]M −d[k]

]
∈ R5×7, (3.57)

where the matrix M =
[
I3×3 03×3

]
is a mapping from a position and velocity to position

only and the matrix N is a null space of d such that N⊺d = 0. The measurement vector is
changed to

z[k] =

[
N[k]pI[k]

θ[k]pI[k]

]
∈ R5. (3.58)

The measurement noise vector is changed to

e[k] =

[
N⊺

[k]ϵ

m[k](θ[k]η − ωd[k])

]
∈ R5. (3.59)

Same as for the uPLKF with subtended angle, it can be written as

e[k] = E[k]

ϵ
η
ω

 ∈ R5, (3.60)

where

E[k] =

[
N⊺

[k] 02×3 02×1

03×3 m[k]θ[k]I3×3 −m[k]d[k]

]
∈ R5×7, (3.61)

so the measurement covariance matrix is

R = E[k]

σ2
eI3×3 03×3 03×1

03×3 σ2
ηI3×3 03×1

01×3 01×3 σ2
w

E⊺
[k] ∈ R5×5, (3.62)

where ση is the variance of bearing vector d measurement, the σϵ is the variance of the
DKF measurement (radius of an uncertainty cylinder in this case) and σω is the variance of
subtended angle.
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Chapter 4

Evaluation

In this chapter, the implementation and evaluation of concidered methods in both
simulation and the real world are described. All approaches were implemented as described
in section 4.1. The pipeline for testing the advantages and disadvantages of the implemented
methods is described in section 4.2. The 3D position localization precision with respect to
the visual tracking deviation and the observer’s self-localization deviation was evaluated on
different scenarios in simulation and described in section 4.5. The evaluation of the real-world
scenarios is presented in section 4.6.

4.1 Implementation

All methods described in section 3 were implemented in the C++ programming lan-
guage and the postprocessing scripts for data analysis and visualization in Python3. The
MRS UAV system [11] was used as a middleware for control and state estimation of the
drone. It is a set of libraries and programs to accelerate and simplify algorithms develop-
ment and hypothesis testing on drones in both simulations and in the real world, for indoor
and outdoor environments. It provides basic implementations of controllers, state estima-
tors, and trajectory generators, supporting different kinds of sensors, including monocular
cameras, stereo cameras, LiDARs, sonars, etc. The MRS system uses the Robot Operating
System (ROS)1 for communication and connecting all parts. ROS is an open-source ecosys-
tem containing dozens of already implemented drivers for the hardware, abstract algorithms,
and libraries for communicating onboard a robot and managing coordinate transformations.
The Eigen2 open-source library was used for all linear algebra manipulations with vectors
and matrices, the implementation of SVD and pseudo-inversions.

The baseline methods from section 3.2 were implemented from scratch, and the
uPLKF-based! (uPLKF-based!) methods from sections 3.3.1, 3.4.1 were implemented
according to [3] and [1], respectively. The initial implementation of the method described in
section 3.3.2 was taken from the MRS library. The method from section 3.4.2 was imple-
mented by improving the DKF and combining it with the implementation of uPLKF with
the subtended angle. All implemented approaches were tested in a realistic simulation using

1ROS: https://www.ros.org/
2Eigen library: http://eigen.tuxfamily.org
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Figure 4.1: The picture of a drone used for real-world data collection. It carries an onboard
LiDAR for detection and tracking, two tilted Intel Realsence D455 sensors pointing down for
tracking outside the FOV of a LiDAR, RTK sensor for precise localization, and Intel NUC
as an onboard computer.

the Gazebo simulator3. The best-performing approaches were also evaluated on the data
recorded from real-world flights. Figure 4.2 shows the observer and target models in the
environment of the Gazebo simulator.

In the real world for data recording, the drone shown in Figure 4.1 was used, carrying
all necessary sensors. The onboard computer was Intel NUC 10i7FNK with Intel Core i7
processor inside. Red Green Blue (RGB) images were taken by one of the Intel RealSense
D455 mounted on the drone. Two such sensors were mounted, tilted up and down to cover a
bigger region under the drone. The Ouster OS1-16 LiDAR was used for the initial detection
and tracking of the target that was used for the KF state initialization. The ground-truth
states of the observer and the target were recorded using the RTK localization system to

3Gazebo simulator: https://gazebosim.org/home
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Figure 4.2: Observer and target models in the environment of the Gazebo simulator. The
MAV at the top is the observer, and at the bottom one is the target.

receive precise positions, and the Pixhawk PX4 was used as a flight controller.

4.2 Architecture of the pipeline

Figure 4.3 shows the general testing pipeline. The observer’s state estimation was per-
formed by the MRS UAV system. Ground-truth odometry with the position of the observer
in the world frame was taken as ground-truth p∗

I . To evaluate the localization accuracy in
relation to the uncertainty of the pose of the MAV carrying the camera, Gaussian noise with
zero mean and parameterized variance was added to the ground truth measurement pI as

pI = p∗
I + epI , (4.1)

where

epI ∼ N (03×1, σ
2
posI3×3). (4.2)

The standard deviation of the observer’s position σpos is a parameter that is changed to
evaluate the quality of the state estimation with respect to the observer’s self-localization
precision.

To make the environment more controllable and evaluate the localization accuracy
in relation to the uncertainty of the visual tracking, Gaussian noise with zero mean and
parameterized variance was added to the measurement. The ground truth position of the
target p∗

T was projected onto the image plane providing the ground-truth image coordinates
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Bearing vector
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d[k]

[
xi
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]
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Target’s state
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[
pT
vT
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Figure 4.3: The pipeline architecture used in testing. The rectangles show the processing
nodes, and the corresponding results are in ellipses.

j∗i of the center of the target

l∗i =

[
x∗i
y∗i

]
. (4.3)

The measurement with the added noise is defined as

ji =

[
x∗i
y∗i

]
+ ei, (4.4)

ei ∼ N (02×1, σ
2
trI2×2), (4.5)

where σtr is the standard deviation of the visual tracking in x and y coordinates in pixels.
This is a parameter used to adjust the visual tracking precision and evaluate the localization
accuracy.

The bearing vector d is computed using both the state of the observer and the point
in the image at time instance k. The state of the observer and the bearing angle are then by
the implemented methods to estimate the position of the target in 3D. The expected result

of the pipeline is the estimated state of the target x =
[
p⊺
T [k] v⊺

T [k]

]⊺
.

Except for parameters σpos and σtr for testing the limits of proposed solutions, there
are also the process noise and the measurement noise covariance matrices Q and R that
have to be tuned for the KF to produce reasonable results. , The covariance matrices were
tuned in order to be the same for the four scenarios in the simulation described further and
produce reasonable results, ignoring any prior knowledge about each scenario. The same
covariance matrices were used to test the KF-based methods with increased observer’s self-
localization and visual tracking uncertainties. The bearing vector uncertainties for η, ϵ and
ω from equations (3.19), (3.32) and (3.40) were adjusted with respect to the visual tracking
noise increase.
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Figure 4.4: Visual tracking with bounding box visualization from the real-world experiment.

The Euclidean distance was used to compare the precision along the path. It is defined
as

err[k] = ∥pT [k] − p∗
T [k]∥, (4.6)

where pT [k] is the estimated value and p∗
T [k] is the ground-truth value at time instant k.

The Root Mean Square Error (RMSE) metric was used to evaluate the overall localization
precision along the path and compare methods with each other. It is defined as

RMSE =

√√√√∑N
k=1

(
pT [k] − p∗

T [k]

)2

N
, (4.7)

where N is the number of non-missing data points.

4.3 Visual tracking

The visual tracking system was implemented using the OpenCV4 implementation of
the Median Flow tracker [22] and the ROS. The tracker was initialized by projecting the
initialization for the KF, which is either a result of the LiDAR tracker or the ground-truth
position of the target in the world coordinate frame, onto the image plane of the observer’s
onboard camera. The actual size of the target in 3D is assumed to be known. The Median
Flow tracker is suitable for smooth and predictable movements. It is a feature tracker based
on the Lucas-Kanade method but robust to partial conclusions that estimates the translation
and scale. It tracks features within a given the bounding box using the Lucas-Kanade tracker.
The features are filtered based on the forward-backward error proposed by the authors. From
the remaining features, the displacement of the bounding box is estimated.

The sequence of images illustrating the process of visual tracking is shown in Figure 4.4.
Images correspond to every tenth frame in a video recorded by a camera mounted onboard
the observer in a real-world experiment. Visual tracking was not used to compare the 3D

4OpenCV: https://opencv.org/
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tracking algorithms because it is’s tracking error varies, which makes it hard to estimate the
influence of the tracking error on the state estimation precision.

4.4 Simulated scenarios

In every scenario tested in a simulation, the initial velocity estimate for the state
x was zero, to test the 3D tracking precision of every approach when there is no prior
knowledge about the initial target’s velocity. Otherwise, every KF-based method is showed
good results due to the constant velocity and heading of the target, making the comparison
too optimistic. In plots for comparing scenarios, only the KF-based approaches are shown
to clarify the comparison.

For the comparison in this section, the initial pose of the observer is assumed to be
known, pI = p∗

I , and the visual tracking is assumed to be exact, ji = j∗i . The same Q and
R covariance matrices were used to test the KF-based methods. To analyze the influence
of the noise in section 4.5, the bearing vector uncertainties for η, ϵ and ω from equations
(3.19), (3.32) and (3.40) were adjusted with respect to the visual tracking noise increase
when testing it’s influence on the state estimation.

The method described in section 3.2.1 is called “svd-static”, and the method from
section 3.2.2 is “svd-synamic”. The methods from sections 3.3.1 and 3.3.2 are “plkf ” and
“dkf ” respectively, and with the subtended angle named as “plkft” and “dkft” respectively.

Scenario 1

In the first scenario, the target was located on the position p∗
T =

[
3 0 4

]⊺
and the

observer was moving around the target on a circular trajectory in the xy plane with center
c =

[
0 0 6

]⊺
and radius 10m. The target was not in the center of the circle to avoid a

constant distance to the target and make the experiment more challenging. This trajectory
was chosen to show the consistency and stability of the proposed approaches and compare
the localization precision. The scheme of the experiment is in subfigure 4.5a.

Results

The results are shown in Figure 4.6. The “svd-dynamic” method always shows signif-
icantly worse results than the others methods. This can also be observed in Figure 4.10. It
can be caused by the imperfection of the model that does not consider noise and relies on
accurate time synchronization, as was described in section 3.2.2, or due to the sensitivity
of the SVD solution and small values in the optimization matrix, which is the case because

∆t change is very small. The KF-based approaches show much better results. In Figure 4.6,
the comparison of KF-based methods for this scenario is presented. All KF-based methods
showed localization precision of up to 50 cm.

Scenario 2

In the second scenario, the target and the observer were moving with a constant velocity
along the x axis, but the observer was slowly approaching the target. It is one of the possible
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(a) Scenario 1. The observer follows the circular
trajectory around the static target.
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(b) Scenario 2. The observer and the target are
moving parallel to each other, and the observer is
slowly approaching the target.
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(c) Scenario 3. The target follows the line trajec-
tory, and the observer flies using the pure pursuit
guidance strategy.
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(d) Scenario 4. The target follows the line trajec-
tory, and the observer follows the helix trajectory.

Figure 4.5: Scenarios used in the Gazebo simulation. The best-performed estimation was
visualized as a target’s estimated position.
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Figure 4.6: Results from scenario 1. The top plot shows the Euclidean distance between the
estimated position and ground truth in meters. The bottom plot shows the distance between
the observer and the target.

real-world situations for interception purposes. The observer started at a position p∗
I =[

0 0 6
]⊺

and was moving with velocity 1.5m s−1 towards the point
[
100 0 6

]⊺
. The

target started at point p∗
T =

[
33 0 4

]⊺
and was moving with velocity 1m s−1 towards

the point
[
100 0 4

]⊺
. This trajectory was chosen to show the possible limitations of the

presented approaches. The scheme of the experiment is in subfigure 4.5b.

Results

The results are shown in Figure 4.7. This scenario was much more challenging for the
bearing-only approaches because they had no information in the dimension orthogonal to
the bearing vector, and due to that, they struggled to estimate the distance correctly while
moving on a straight line behind the target. However, at the end of the recorded scenario,
the observer flew above the target, gaining more information on the dimensions not available
before, quickly improving the estimate. As expected, both methods with subtended angles
showed much better results from the beginning to the end, improving the estimate while
approaching the target.
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Figure 4.7: Results from scenario 2. The top plot shows the Euclidean distance between the
estimated position and ground truth in meters. The bottom plot shows the distance between
the observer and the target.

Scenario 3

The third scenario is an illustration of pure pursuit guidance. The observer’s velocity
vector v∗

I[k] was pointing towards the current position of the target at every time instance k
and was computed as

v∗
I[k] = g

p∗
T [k] − p∗

I[k]

∥p∗
T [k] − p∗

I[k]∥
, (4.8)

where g is a gain. It is a trivial missile guidance law, but it illustrates one of the possible
real applications for the observer. The target started at point p∗

T =
[
0 0 4

]⊺
and was

moving with velocity 3m s−1 towards the point
[
100 0 4

]⊺
. The observer started at point

p∗
I =

[
−40 70 16

]⊺
and was moving with velocity 4.5m s−1 towards the target following

the pure pursuit guidance law. The scheme of the experiment is in subfigure 4.5c.

Results

The results are shown in Figure 4.8. As expected, the methods fusing the subtended
angle outperformed the bearing-only approaches significantly, as in the previous scenario.

In a real-world application, if the initial estimate of the target is known e.g. from a
radar, the observer can rely on the estimates provided by the “dkft” and “plkft” methods to
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Figure 4.8: Results from scenario 3. The top plot shows the Euclidean distance between the
estimated position and ground truth in meters. The bottom plot shows the distance between
the observer and the target.

follow and catch the target by following the pure-pursuit guidance.

Even though the starting distance to the target in the second scenario is smaller than
in this one, the maximum and average errors along the whole path for this experiment are
smaller. The reason could be that the observer saw the target from more angles and gained
more information about it in different linear subspaces, which is essential for both bearing-
only approaches and those fused with the subtended angle.

Scenario 4

A helix shape of the observer’s trajectory was chosen for the following scenario, shown
in subfigure 4.5d as the observer’s ground truth trajectory. The helix is a 3D figure generally
defined with a set of equations

x(t) = t,

y(t) = cos(t),

z(t) = sin(t).

(4.9)

The helix trajectory of the observer is optimal for the bearing angle approaches to localize
the target, as shown in article [3].
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The target started at point p∗
T =

[
33 0 4

]⊺
, went up to reach height z = 12 and

proceeded with the motion along the x axis with a constant velocity of 1m s−1 towards the
point

[
100 0 12

]⊺
. The observer followed the helix trajectory with a constant velocity in

the target’s direction with velocity 1.5m s−1. The radius of a helix was 5m, and the center
of the circular part of the helix was at ch =

[
0 0 10

]
. The scheme of the experiment is in

subfigure 4.5d.
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Figure 4.9: Results from scenario 4. The top plot shows the Euclidean distance between the
estimated position and ground truth in meters. The bottom plot shows the distance between
the observer and the target.

The results are shown in Figure 4.9. Using the helix trajectory, the observer saw the
target from different angles and gained more information about it in a dimension orthogonal
to the initial bearing vector, even from longer distances. The DKF-based approaches show
better results here, probably since the visual tracking is almost perfect and the DKF relies
more on it than uPLKF due to the parameters tuned for all scenarios. However, there was no
significant domination of the approaches with subtended angle over bearing-only approaches.
It can be concluded that this trajectory is optimal for the KF-based approaches to estimate
the target’s position, even without the fusion of the subtended angle, which improved the
estimate in previous scenarios.
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4.5 Evaluation of estimation precision with respect to noise

Scenario 1.
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Figure 4.10: Scenario 1, the influence of self-localisation and tracking uncertainties on a 3D
tracking.

Scenario 2.
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Figure 4.11: Scenario 2, the influence of self-localisation and tracking uncertainties on a 3D
tracking.

The influence of visual tracking precision and the observer’s self-localization quality
is analyzed in this section. Gaussian noise with parameterized variance was added to the
measurements as described at the beginning of the section to evaluate every approach with
respect to noisy measurements and test the limits of the approaches. Even when visual
tracking and the observer’s state are given to the bearing vector estimator with a very
small uncertainty caused by simulation noise and rounding the floating points to receive
measurements in pixels for tracking, the results are imperfect, as shown in the previous
section.

To analyze the localization precision regarding the observer’s self-localization noise,
σpos was chosen from a set σpos ∈ {0.5m, 1m, 2m}. To analyze the localization precision with
respect to the visual tracking deviation, σtr was chosen from a set σtr ∈ {3 px, 6 px, 9 px}.
Each of the four scenarios described in the previous section was repeated with new param-
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Scenario 3.
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Figure 4.12: Scenario 3, the influence of self-localisation and tracking uncertainties on a 3D
tracking.

Scenario 4.
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Figure 4.13: Scenario 4, the influence of self-localisation and tracking uncertainties on a 3D
tracking.

eters. Results for scenarios 1, 2, 3, and 4 are shown in Figures 4.10, 4.11, 4.12, and 4.13,
correspondingly.

Scenario 1 Scenario 2 Scenario 3 Scenario 4
plkft dkft plkft dkft plkft dkft plkft dkft

σpos, [m] 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
σtr, [px] 6 6 6 6 6 6 6 6

RMSE, [m] 3.5 7.2 3.7 7.3 10.8 14.8 5.4 7.6

Table 4.1: Results of the best-performed methods with noise added to visual tracking and
observer’s self-localisation.

In every scenario, the baseline methods “svd-static” and “svd-dynamic” showed the
worst results even without noise added, so they were not profoundly analyzed and evaluated
only for zero additional noise. Except for the first scenario, where “svd-static” overper-
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formed the KF-based methods with the visual tracking deviation increased. The KF-based
approaches were tuned to estimate the dynamics of the target, and the oscillations in de-
tection were propagated through the model and led to more significant errors than the
“svd-static” method formulated to estimate only the position of the static object.

In the third and fourth scenarios, the estimated state was barely affected by the noise
caused by the observer’s self-localization and showed stability and good performance. In
contradiction, even a minor deviation of σtr = 3px for the visual tracking caused a significant
degradation of the estimate in every tested scenario for every approach. As expected, methods
utilizing the subtended angle outperformed the bearing-only approaches in the first three
scenarios.

Combined noise was also tested for the best-performing methods. In Table 4.1, the com-
parison of methods with the subtended angles is presented. The observer’s self-localisation
was set to 2m, and the tracking variance to 6 px. The obtained RMSE values are not much
bigger than the errors received with no deviation in localization precision. It supports the
claim that the estimation precision is more influenced by deviation in the visual tracking
than the observer’s self-localization.

4.6 Real-world evaluation

Method
Scenario

1 2 3

plkf 5.12 6.90 2.57
plkft 2.67 1.72 0.85
dkf 4.09 3.16 1.55
dkft 0.75 0.90 0.66

Table 4.2: RMSE comparison of the real world experiments. Values are in meters.

Setup for the real-world data collection is described in section 4.1. Data was recorded
during the MRS experimental campaign, and every KF approach was tested on data recorded
from two flights.

In the first flight, the target followed a periodic square-shape trajectory with a side
length of 10m, and the observer flew above the target for 140 s, and then both landed. In
the second experiment, the target followed the same trajectory, but the observer performed
an intercepting maneuver, after which the experiment ended. Only the up-tilted camera
recorded the target.

The KFs were initialized with the ground-truth odometry of the target only when the
target first appeared in the image. For the bearing-with-subtended-angle methods, the size
of the object was also initialized with the ground truth size of the target. To evaluate the
state estimation precision without the influence of visual tracking deviation, the projection
of the target’s real position onto the image plane of the camera with zero noise was used.

The trajectories of the observer and target, together with the estimated state, are
presented in Figure 4.14. The comparison table of all KF-based methods evaluated on real-
world data is in Table 4.2.
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(a) The first real-world experiment. Data from the
camera tilted up.
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(b) The first real-world experiment. Data from the
camera tilted down.
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(c) The second real-world experiment. Data from
the camera tilted up.

Figure 4.14: Trajectories during the real-world experiments. The estimated target position
is visualized for the best-performing method for each experiment.
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Figure 4.15: The results of the real-world experiment’s first flight, the camera tilted up. The
distance between the estimated and ground-truth position of the target is in the top plot.
The bottom plot shows the distance between the observer and the target.
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Figure 4.16: The results of the real-world experiment’s first flight, the camera tilted down.
The distance between the estimated and ground-truth position of the target is in the top
plot. The bottom plot shows the distance between the observer and the target.
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Figure 4.17: The results of the real-world experiment’s second flight, the camera tilted up.
The distance between the estimated and ground-truth position of the target is in the top
plot. The bottom plot shows the distance between the observer and the target.

One of the limits of the implemented methods was discovered after analyzing the flight
data. When the target and the observer follow the same trajectories with the same velocities,
the position estimation is significantly degraded when the target rapidly changes the trajec-
tory. Nevertheless, the subtended angle methods handled such situations and performed
much better than the bearing-only methods. The comparison of Euclidean distances along
the whole path are in Figures 4.15, 4.16 and 4.17. The plots are interrupted in places when
the target was outside the camera’s FOV.

The real-world experiments showed that the methods described in 3.4 can also be
used for rapidly changing velocities and demonstrated the considered methods in a practical,
real-world deployment.
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Chapter 5

Conclusion and future work

Bearing-based position estimation of a moving target from a flying MAV equipped
with a monocular camera, was investigated in this thesis. Multiple approaches based on
the geometric intersection of lines and the Kalman Filters bearing-based algorithms were
implemented and tested. The Pseudo Linear Kalman Filter and the Degenerate Kalman
Filter were improved by adding a subtended angle measurement and compared to the bearing-
only approaches. Multiple scenarios were analyzed in simulations, including pure pursuit
guidance, simulating the process of intercepting the target by a drone interceptor, which is
one of the intended applications. The subtended angle measurement fused with the bearing
provides the KF with more information about the target in the dimension orthogonal to the
bearing vector, improving the estimate and decreasing the covariance in the correspondent
subspace. Visual tracking was also tackled, and the Median Flow tracker was tested in a real-
world experiment, showing that it can be used as a source of measurement for the position
estimation methods described.

Localization accuracy in relation to the visual tracking precision and the observer’s
self-localization precision was tested by running the same approach on the prerecorded data
multiple times and adding the Gaussian noise with zero means and chosen deviation severally
to the tracking precision and observer’s self-localization. The experiments demonstrated the
severe influence of the visual tracking precision on the target localization in 3D in all tested
scenarios. Additional noise in the observer’s self-localization also causes the estimate to
deteriorate, but it is not even comparable to the one caused by tracking. To support and
verify this conclusion, an additional test with mixed noise was performed. As a result, the
estimated state along the path was not much worth it than when it was tested with the same
deviation only for the tracking, proving that the tracking noise is much more destructive for
the 3D localization using described KF methods.

Additionally, the trajectory proposed in [3] as optimal for the bearing-only position
estimation was tested. There was no visible impact from adding the subtended angle in this
scenario, and the tracking precision was barely influenced by the observer’s self-localization.
This supports the conclusion from [3] that the suggested trajectory is optimal for bearing-
only position estimation. However, it is still affected by the tracking precision noise. It again
highlights the importance of the visual tracking precision for the localization from bearing
measurements.
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The KF-based approaches were also evaluated on real-world data. Despite the target
moving with a rapidly changing velocity vector which is not modeled in the KF state-space
model, the KF-based methods with subtended angle estimated the position accurately. Al-
though the uPLKF with subtended angle showed better results in simulation, the DKF with
subtended angle outperformed it on real-world data, although not by a large margin.

In the future, the proposed pipeline can be extended to use multiple cameras covering
a larger area around the MAV so that when one camera loses the target from its FOV, an-
other camera will continue the tracking. Furthermore, the theoretical analysis of the target’s
trajectory on the estimation accuracy could be performed.
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[2] M. Pliska, M. Vrba, T. Báča, and M. Saska, Towards safe mid-air drone interception: Strategies
for tracking and capture, 2024. arXiv: 2405.13542 [cs.RO].

[3] J. Li, Z. Ning, S. He, C.-H. Lee, and S. Zhao, “Three-dimensional bearing-only target following
via observability-enhanced helical guidance,” IEEE Transactions on Robotics, vol. 39, no. 2,
1509–1526, Apr. 2023, issn: 1941-0468. doi: 10.1109/tro.2022.3218268. [Online]. Available:
http://dx.doi.org/10.1109/TRO.2022.3218268.
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