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Abstract

The development, application, and assessment of an adaptive thresholding algorithm
are the main subjects of this thesis. Based on the Ultraviolet Direction and Ranging
(UVDAR), a system for mutual-relative localization and communication between
multi-Unmanned Aerial Vehicle (UAV) systems. The main focus of the algorithm
design is to propose a solution to the limitations of the current system with different
distances and orientations due to the state-of-the-art detection method using static
thresholding. The adaptive algorithm uses Region of Interest (ROI)s built based
on information received from the tracking algorithm as feedback, performing local
processing of multiple signals by adjusting to the intensity of each. The system is
verified in simulation and real-world experiments, demonstrating the performance
improvement with the proposed method.

Keywords UVDAR, Unmanned Aerial Vehicles, Adaptive Thresholding Algorithm,
UV-LED detection, Regions of Interest, Communication Performance
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Abstrakt

Vývoj, aplikace a hodnoceńı adaptivńıho algoritmu prahováńı jsou hlavńımi tématy
této práce. Na základě systému UVDAR, systému pro vzájemnou relativńı lokalizaci
a komunikaci mezi systémy s v́ıce bezpilotńımi letadly. Hlavńım zaměřeńım návrhu
algoritmu je navrhnout řešeńı omezeńı současného systému s r̊uznými vzdálenostmi a
orientacemi v d̊usledku nejmoderněǰśı metody využ́ıvaj́ıćı statické prahováńı. Adap-
tivńı algoritmus použ́ıvá ROI sestavené na základě informaćı źıskaných od sle-
dovaćıho algoritmu jako zpětnou vazbu a provád́ı lokálńı zpracováńı v́ıce signál̊u
přizp̊usobeńım intenzity každého z nich. Systém je ověřen v simulačńıch a reálných
experimentech, které prokazuj́ı zlepšeńı výkonu pomoćı navržené metody.

Kĺıčová slova UVDAR, bezpilotńı letadla, algoritmus adaptivńıho prahováńı, de-
tekce UV-LED, oblasti zájmu, výkonnost komunikace
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1 Introduction
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In recent years, Optical Camera Communication (OCC) communication systems devel-
opment has emerged as an alternative to existing Radio Frequency (RF) communications,
as RF demand for communication services continues to grow [34], and satisfying it will be
increasingly challenging with the growth of smart devices. The utilization of the light spec-
trum by systems for smart device communication, localization, and navigation introduces an
underutilized spectrum to be used.

The adoption of UAVs for communication applications is expected to improve coverage
and spectral efficiency as compared to traditional ground-based stations [29]. In particular,
OCC use in mobile systems such as UAVs and robotic platforms presents a new opportunity
for solutions to existing robotic problems. The interaction and collaboration between robotic
systems demand a robust and accurate system for localization and communication between
its members, something that in real-world applications can become challenging. This is be-
cause, it is necessary to confront environments where effective communication is not available
or degraded due to environmental conditions, a lack of infrastructure, or interference that
complicates localization and navigation tasks.

Therefore, the dependence on traditional systems has motivated the search for alter-
natives to provide a solution to such scenarios, and interest in relative localization systems
has grown in recent years. OCC provides an alternative that complements the search for
systems independent of RF infrastructure and facilitates relative localization by integrating
Light Emitting Diode (LED)s into multi-robot systems used jointly for communication and
localization.

This motivation led to the development of the UVDAR system by the Multi-Robot-
Systems (MRS) group at the Department of Cybernetics from Czech Technical University
(CTU), using Ultra Violet (UV) LEDs to facilitate detection among multi-UAV systems to
achieve its localization, equipped with the ability to transmit information with the decoding
of optical signals transmitted from the UV LEDs. Both the OCC and the UVDAR system are
discussed in more detail in chapter 2.

1.1 Objective

This work aims to analyze the current UVDAR system, discussing the potential limita-
tions of the reception of optical signals. The objective is to optimize the reception to increase
decoding accuracy and communication range. Currently, the LED detection algorithm uses a
pre-defined intensity threshold, which presents a potential bottleneck due to the intensity vari-
ations of the LEDs given signal attenuation. Having receivers capturing a range of intensities,
in scenarios with combination of diverse UAVs positioned at various distances and orienta-
tions, together with optical properties that vary in reception angles and distances. Problems
this thesis aims to solve with an adaptive thresholding algorithm.
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1.2 Related work

To our knowledge, no published work would take a similar approach for the adaptive
detection of LEDs with UAV OCC. Recent work in the field has presented machine learning
approaches, specifically deep learning methods for the task of the LED detections equipped
in UAVs for communication [13]. The methods of SVM and Convolutional Neural Network
(CNN) for classification and decoding are employed to develop an intelligent optical receiver
[23].

However, early approaches in the area of Visible Light Communication (VLC) litera-
ture exist using the adaptive approach and evaluating performance with static thresholding
schemes. The authors in [22] demonstrate a significant difference in performance with adaptive
techniques about operating distance and Bit-Error-Rate (BER). The paper [33] uses adaptive
techniques, not only for thresholding in the detection but also in the demodulation of the pat-
terns received from the LED, achieving orders of magnitude improvement in BER compared
to static thresholding methods.

An adaptive thresholding system is proposed in [19], achieving improved BER under
varying illumination conditions, where the authors use a threshold calculated based on a
first-order differential equation, calculating the adaptive threshold between consecutive times.
However, the calculation depends on the previous threshold used, which would increase the
complexity of having multiple TXs. For our application, having a single prior threshold is
insufficient, as the UVDAR is intended for multi-robot operation, having various TXs with
different distances, orientations and intensity values. As a result, to maintain a previous
threshold value, it would be required to give each TX a distinct prior threshold, introducing
complexity requiring not only detection but also assignment problems.

Finally, different techniques have been presented in the area of detection and tracking,
such as optical flow for the detection of UAVs [32] or techniques for the identification of
moving objects, demonstrating the advantage of complementing detection with tracking for
UAV applications [42].

1.3 Contributions

This thesis presents an thresholding algorithm designed for operation in the UVDAR
system. The main objective is the implementation of adaptive thresholding algorithm to over-
come the limitations of attenuation and intensity variation in LEDs. Employing an ROI ap-
proach to improve accuracy by evaluating local signal conditions, The ROIs are constructed
based on the information provided by the tracking algorithm from the system and used as
feedback for the integration of the adaptive processing in the current architecture. Due to
the local processing of each point, it’s possible to process different signals simultaneously in
parallel, adapting to each individual light source. Essential for multi-robot operations that
have multiple receivers with various different distances and intensity values. The design of the
adaptive algorithm aims to fulfill this function achieving real-time operation, the algorithm
was evaluated in simulations and real-world experiments.
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2 Preliminaries
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2.1 Optical Camera Communications (OCC)

Among the several types of Optical Wireless Communication (OWC) technologies, we
have Optical Camera Communication (OCC) that distinguishes itself from traditional optical
communications, such as VLC systems, by the utilization of a camera as receiver instead of a
photo-diode [39].

The fundamental principle of OCC involves the modulation of light sources, commonly
LEDs, for transmitting encoded information. The information is then captured and decoded
by a camera. The procedure involves adjusting the intensity, color, or spatio-temporal pattern
of light, which is then captured by the camera and then processed with image processing
algorithms [45]. Modulation can range from basic On-Off Keying (OOK), which involves
turning a light source on and off, to more sophisticated methods that use color and spatial
modulation to enhance data transmission speeds [7]. One advantage of OCC is its capacity
to seamlessly operate as a Multiple-Input-Multiple-Output (MIMO) system, having multiple
LEDs in the camera image and decoding several bits in a single instance,despite coming from
different sources.

Figure 2.1: OCC architecture concept.

OCC has great potential for modern communication systems, mainly because of its
high Signal-to-Noise ratio (SNR) [35] and built-in security properties. Unlike other wireless
communication techniques that utilizes radio frequencies, this particular approach reduces
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the potential of interference with other devices and decreases security risks due to its line-of-
sight characteristic [6]. Because OCC relies on a direct Line of Sight (LoS) between Receiver
(RX) and TX; jamming, intercepting, or eavesdropping attacks become significantly more
complicated to achieve. Attackers in RF systems can disrupt the signal at a distance, but
in OCC, it would be necessary to be in the field of view to achieve the attack, making it
easier to detect and act to avoid such attacks. [25] In environments where conventional RF
communications may be impractical or prohibited, OCC systems present new opportunities
for the secure transmission of data, situations as in remote or rural areas with underdeveloped
or non-existent infrastructure with no internet or cellular coverage, or in facilities where RF
devices present a risk given interference with sensitive devices.

Performance Effects

Image Sensor Architecture

The performance of OCC is significantly dependent on the camera architecture and
characteristics. The attributes of the camera sensors, such as their shutter modes (global
and rolling), considerably impact the performance of OCC systems. The rolling shutter mode
causes difficulties due to its row-by-row collection of pixels, with pixel lines of the image
created at different times, which might result in motion blur [39]. However, it also allows
recording multiple states of the light source capturing more information [26]. In contrast, the
global shutter mode records all pixels in a single instance, reducing motion blur and improving
image clarity for objects in motion. However, the data rate is reduced by recording a single
state for each image.

Figure 2.2: (a) Image construction comparison (b) Rolling shutter effect.
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Data Rate

The image sensor designs we previously discussed primarily determine the data rate
performance of OCC systems. When using the rolling shutter mode, it is necessary to consider
factors such as image skew and camera resolution [39]. In addition, the LED’s frequency
response needs to be lower than the camera frame rate to avoid information loss, and if the
source is slower bits are duplicated. Even if the nominal bit duration and nominal sample
period of the camera are the same, there will still be discrepancies given the imperfections of
clock signals from TX and RX [4]. Alternatively, the global shutter mode relies on the camera
frame rate, decoding each bit for each source. Under the constraint that the bit duration needs
to be longer than the camera’s exposure time to prevent recording both the ON and OFF
states of the LED.

Perspective Distortion

Perspective distortion, the visual deformation of the image size or shape results in a
decrease in the light intensity received at the camera pixel, depending on the lens focus and
camera angle. An ideal situation occurs when the light from the transmitter targets directly
on the camera, therefore ensuring effective light absorption while minimizing energy loss. On
the contrary, perspective distortion results in pixel intensity that is both distorted and out of
focus due to obstructions caused by the aperture of the camera [36], affecting the performance
of the system [44], this effect termed as well as inter-pixel interference, degrading signal quality
and information capacity. [21]

2.2 State of the Art

Given that camera-equipped devices have grown increasingly popular, OCC is emerging
as a significant technology for OWC, enabling data transmission through the transmission of
visible light. Most recent advances have focused on increasing data transmission rates, robust-
ness under various lighting conditions, and expanding the scope of applications. Established
as a significant area of study given its accomplishments of high rates, advanced modulation
techniques, and integration with mobile technology [20],[27].

The development of scalable and efficient OCC systems has been made possible with the
integration of advances in image processing, sensor technology, and mobile devices demonstrat-
ing the viability of OCC for real-world situations. Modulation and coding schemes specifically
suited to the special properties of camera sensors are one of the significant developments in
OCC. Under Sampled Frequency Shift On-Off Keying (UFSOOK) and Undersampled Phase
Shift ON-OFF Keying (UPSOOK) together has been researched for reliable and effective
high-rate data transmission [30].

Technical Advancements and Applications

To enhance Vehicle-to-Vehicle (V2V)communication, the authors [46] created a system
utilizing LED transmitters and a camera receiver paired with a Communication Image Sensor
(OCI), focusing on achieving reliable and rapid data transfer in variable lighting conditions.
The significant improvements to the OCI are the Communication Pixel Array (CPx), which
lets light optical signals respond quickly, and the ”1-bit flag” Image Pixel Array (Px) method,
which tells the difference between high-intensity LEDs and backgrounds to accurately track
in real-time reducing the occurrence of incorrect detections improving signal reception.
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Figure 2.3: Basic operations of IS-OWC system Fig. 3 in [46].

Figure 2.4: LED detection using gray images Fig. 6 in [46].

Authors of [41] demonstrated an RGB LED-based OCC system operating over long
distances with high spectral efficiency. The data transmission rate of 150 bits per second
across a distance of 60 meters was achieved by using a single RGB LED together with a
DSLR camera integrated with an OCI for the LED detection, as shown in [46], demonstrating
the importance that accurate image processing methods to improve the system’s ability to
detect LED signals across various ranges, improving the potential of long-range, non-flickering
VLC communication system.

Relevant results on the performance of an RGB LED-based OCC system at different
distances are demonstrated in [43]. The study displayed how with increasing distance the LED
intensity is reduced. The decrease reaches a stable state beyond 60 meters as a result of the
combined effect of gamma correction and the inverse square law, which affects the intensity of
light. At the same time, the BER measurement stays constant at 150 bits per second across
a distance of 25 meters, with minimal BER. However, when the distance grows, especially up
to 60 meters, the BER experiences a significant increase
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Figure 2.5: (a) Relative sum of captured RGB values, (b) BER performance on increasing
distance Figure. 12 in [43].

In [40], IR-LED technology and OCC are used to improve indoor VLC. Uplink improve-
ments achieved by applying a multi-frame decoding algorithm. By adjusting the frequency of
the IR-LED and utilizing a two-dimensional Gaussian distribution fitting to analyze the light
pattern, this method provides lower bit error rates and less saturation, resulting in enhanced
data accuracy.

Additionally, the study findings demonstrate the intensity of IR-LEDs on images grows
linearly with a current of up to 30 mA before reaching a saturation point. Experiencing a
significant decrease when the distance between the camera increases from 0.5 to 1.5 m, expe-
riencing a slight decrease beyond 1.5 m, with the intensity of LED increasing proportionally
with longer exposure times on a logarithmic scale.

Figure 2.6: Intensity characteristics in conjunction with (a) supply current of LED and (b)
communication distance Figure .4 in [40].

Figure 2.7: The variation of intensity of IR-LED on different exposure times Figure.5 in [40].
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OCCs in UAVs and mobile platforms

OCC’s versatility has resulted in its use in a wide range of applications, including UAVs
and mobile platforms. The relevant systems that make use of OCC systems for localization
or communication are introduced in this section.

Authors in [24], [14], [12] have shown that UAVs, equipped with RGB-LEDs and high-
speed cameras, can achieve stable long-range communication for disaster recovery. This setup
uses a CNN for precise LED detection utilizing the You Only Look Once (YOLO)v3 algorithm
for quick ROI identification. The model was trained with a dataset of 2,000 images featuring
the UAV equipped with the RGB-LEDs, combined with signal processing techniques to mit-
igate RGB signal interference. The approach enabled reliable communication over distances
up to 300 meters, while reducing error rates. These results show the potential of OCC systems
to enhance UAV capabilities. However, the study also highlights the need for advancements
in image segmentation techniques to further improve this technology.

Figure 2.8: OCC system for disaster recovery. Figure. 1 in [14]

Authors from [2] attempted to improve UAV communications through a new approach
for large Field-of-View (FOV) OWC. With the goal of increasing UAV networks’ adaptability
and bandwidth, The approach utilized an experimental configuration with a UAV equipped
with an Light-Diffusing-Fiber Transmitter (LDF-Tx) and Long Short-Term Memory Neural
Network (LSTMNN) for precise rolling-shutter-pattern decoding during UAV movements.

In [10], authors investigate the possibilities of UV communication and its application
with the integration of OCC with UAVs to solve some of the most significant challenges of UAV
swarm communications, like interference, a lack of radio frequency spectrum, and connectivity
issues. Comparing visible light, mmWave, RF, and UV communication methods, mmWave’s
data rate was gigabits per second, with RF and visible light achieving megabits per second
and UV Non-Line of Sight (NLoS) at kilobits per second. In contrast to the distance that RF
can traverse several kilometers, the wavelengths of visible light, ultraviolet, and mmWave fall
within the range of hundreds of meters. This comparison attempts to demonstrate that UV is
a viable option for UAV swarm communication situations, even though having a lower data
rate, it can support both LoS and NLoS communications without the interference problems
of operating in the RF spectrum.
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2.3 The UVDAR System

The MRS Group at Department of Cybernetics of the CTU in Prague, developed the
UVDAR, a technology designed for mutual relative localization and communication among
multiple UAVs [38]. Using calibrated grayscale cameras sensitive to UV light, equipped with
wide-angle lenses and UV band-pass filters, the system uses UV LEDs mounted on the plat-
forms to achieve fast mutual localization. Enhanced further to transmit and receive data
from blinking sequences emitted by the UV LEDs; this function, known as UVDAR-COM,
combines the UVDAR as an OCC system [11].

Figure 2.9: Front view of UAV platform with UVDAR components.

System Overview

As described in [38], UV light was chosen as the main source due to the requirement
for a localization system that operates independently of illumination conditions. Since few
sources of ultraviolet radiation exist in the the environment, mainly released by natural light
sources like the sun, presents clear advantages for localization. In addition, the use of UV
light lowers computational demand, as together with optical filters that remove the non-UV
light and the background, makes the processing lighter in contrast of methods that operate in
the visible spectrum. The approach is inspired by findings like the ones demonstrated in Fig.
2.10, where UV light makes it possible to clearly identify markers that are otherwise difficult
to distinguish in the visible spectrum, even for modern CNN algorithms and the human eye.

CTU in Prague Department of Cybernetics



10/70 2.3. ULTRAVIOLET DIRECTION AND RANGING (UVDAR) SYSTEM

Figure 2.10: Comparison with CNN, in a long-range and challenging background, UVDAR
effectively identifies three UV markers as distinct brightness peaks Figure. 3 in [38].

The system has been used mainly in swarming applications; different authors in
[15],[16],[18] have developed different flocking techniques, but with a common factor: being
used for applications in environments with Global Navigation Satellite System (GNSS) denied
environments, emphasizing the system’s utility. Authors in [9] used the system for swarming
models with the purpose of target capturing, relying on the UVDAR for the measurement
and localization of its target and agents, allowing the interaction and decentralized behavior.
The latest applications include the UVDAR-COM system for communication-challenged en-
vironments [8] and explicit communication in search and rescue applications [3], proving its
viability against traditional systems such as GNSS and RF based communication.

System Model

The UVDAR-COM system, is supported by its UV light-based TX and RX components.
The TX utilizes UV LEDs to encode messages into binary frames for transmission of data.
Simultaneously, the RX utilizes UV-sensitive cameras for decoding these messages, allowing
accurate identification and tracking of UAVs.

Transmiter TX Unit

The optical transmitter architecture was designed to facilitate the optical communica-
tion, enhancing the system’s ability to accurately and efficiently identify UAVs.

Binary Sequence Construction:
For the efficient identification of multiple UAVs, the development of binary sequences
is an essential component of the system. Integrating the concepts of a dictionary (D),
Non-Return-to-Zero (NRZ) coding, and unique sequence specifications to design a binary
sequence with known properties to streamline its identification [4].

Applying NRZ coding to maximize the rate of bit transmission adapted for optical
signals.
Setting the minimum average power and maximum continuous light emission re-
quirements for the sequences for distinguishing between the designed binary se-
quences and environmental light sources.
Finally, encoding the signal through NRZ or Manchester to modulate with OOK
produces the continuous-time electrical signal.
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Figure 2.11: UVDAR Pipeline Overview.

Analog Frontend:

This component mainly represents the optical power that the UAV emits by converting
the binary electrical signal into an optical signal. Two LEDs at each end of a UAV arm
emit the same optical signal at a wavelength of 395 nm, which is in the UV spectrum.
The LEDs are positioned in orthogonal orientations to improve the range at which the
optical signal can be perceived [4].

Receiver RX Unit

The design has multiple components for properly handling the optical data transmitted
by the LEDs on other UAVs.

Camera

The UAV is equipped with a grayscale camera and an UV bandpass filter. With a
predetermined exposure time, capturing frames at every falling edge of the clock signal
and synchronized for the recording of the changing LED states, ensuring the accurate
identification of optical signals. [4]
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Figure 2.12: (a) mvBlueFOX camera (b) Fisheye lense (c) UV band pass filter.

Detector

Once the optical signals are captured, the image processing module has the main ob-
jective of identifying the bright spots emitted by the UV-LEDs in the captured im-
ages. In particular, the bright points are binarized by a using a an algorithm relying in
static thresholding, performing a non-maxima suppression, this procedure similar to the
Features from Accelerated Segment Test (FAST) with GPU acceleration to provide the
set of (x, y) coordinates of the potential detected LEDs as well as potential sun points
[5].

Blink Processor (Tracking)

The role of the blink processor module is to efficiently track and identify the blink-
ing light sequences from UV-LEDs, and ensure the correct association of the blink-
ing sequences with their respective UAVs. In particular, this is currently done by the
Anonymous Blinking Marker trackIng (AMI) algorithm [1], a new method with superior
performance in comparison with the previous 4D Hough Transform (4DHT) [37].

Tracking: Due to the intermittent presence and movement of these binary blinking
UV LEDs in the observer’s image, single-image computer vision approaches are
insufficient. AMI addresses this issue by tracking the movement of these binary
blinking markers over consecutive camera frames, utilizing a dynamic buffer to
manage the tracking process.

Correspondence Search: AMI employs a local search to address the association
problem of the corresponding UAVs and blinking markers, using a predefined ex-
pected search window derived from maximal expected movement. In case that the
local search is unsuccessful, an extended search is employed to predict the next ap-
pearance of the marker using the previous image locations, designed for scenarios
of complex movement like agile maneuvers.

Verification: Finally, a verification stage evaluates the sequences stored within
the dynamic buffer. Upon successful correlation with a predefined sequence in the
shared dictionary D, the algorithm confirms the UAV blinking sequence by provid-
ing the image coordinates (x, y) along with the matched ID, for further processing
by the pose calculator.
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Figure 2.13: Image captured (blue), polynomial regression (red line), and search area (red
rectangle) Fig. in [1].

It is important to note that the procedure may encounter difficulties such as LED
occlusions, abrupt movements of the bright spots within the camera frame, or patterns
that cause LEDs to turn off for extended periods of time [4].

Pose Calculator

This module select the most suitable fit from a set of randomized hypotheses regard-
ing the pose that is reprojected into the image for comparison [31], Following this,
the hypothesis is converted to a mean and covariance integrating bearing and distance
estimation through the use of a linear Kalman Filter (KF) for pose estimation, and
projection of relative pose using Unscented Transform (UT) [28].

Pose estimation: The linear KF improves reliability by handling instances where
targets are occluded or exited the sensor’s field of view, maintaining accurate pose
estimations from the relative measurements, including covariances that approxi-
mate the measurement noise or reliability.

Pose projection: The process projects these relative pose estimates into bounding
boxes around the target UAV camera image, using the UT-generating a projection
of the position estimates and covariance, into the camera frame forming either
rotated ellipses or rectangular areas.

Figure 2.14: Pose estimation and projection UT Fig.4 in [28].
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3 Problem Statement
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3.1 Static Thresholding in Detection

When the UVDAR system is in its initial detection phase, the camera images are pro-
cessed using a detection algorithm to identify potential UV LEDs, illustrated in Figure 3.1
image input with modified camera. For this purpose, it analyzes the pixels in the entire image
to evaluate them against a defined static threshold. If the pixel is above the threshold value,
examined with the circular segment test, and if identified as an LED, preserving only the
highest value.

b(x, y) =

{
1 if g(x, y) > T,

0 if g(x, y) ≤ T.
(3.1)

where the function b(x, y) indicates the binary response defined for each pixel in the
gray-scale image against the initialized threshold. This segmentation process reduces image
complexity, facilitating the identification of UV optical signals emitted.

Figure 3.1: The image description, captured by the modified camera, shows two UAVs at
varying distances, with ”white” blinking UV indicators (Figure 6. in [38].

In the State-of-the-art (SOTA) detection algorithm, the intensity of each pixel is eval-
uated with a static threshold, if greater than this threshold it is evaluated to determine its
potential as a marker point, if being brighter than its circular neighborhood, or as a sun point
where surrounding pixels are brighter from the point. After going through the surrounding
pixels, if a point still appears as a potential marker, the pixel with the highest intensity in the
interior region, among the candidate and nearby pixels, is recorded as the detected marker,
process illustrated in Figure. 3.2. Through this process, a single pixel known as a ”white
point” is created from several pixels representing the same bright spot, providing the spatial
coordinates (x, y) coordinates and indicating the active (’on’) state of a UV LED interpreted
as a binary ’1’.

This phase plays a crucial role in accurately tracking and decoding UV-LED signals
used for UAV communication and localization, which is indispensable for ensuring the efficient
operation of the UVDAR system.
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Figure 3.2: (a) Detail of a single UAV with 3 distinguishable isolated UV LED markers to be
detected (b) Detail of a single marker for the circular segment test (green) and interior peak
search (purple).

3.2 Current implementation limitations

Adapted for OCC, the UVDAR system may encounter difficulties as it was initially
designed for mutual relative localization. Fundamental principles describe the characteristics
of UV light and its reception, which presents significant aspects to address given its potential
impact on communication effectiveness, justifying the need to optimize the system for the
current task.

Intensity and Distance Challenges

According to the Inverse Square Law [43], the intensity of light observed from the UV
markers diminishes quadratically with increasing distance from the receiver:

intensity ∝ 1

distance2
(3.2)

Consequently, signal intensity decreases significantly over longer distances, as illustrated
in Figure 3.3, complicating the accurate decoding of transmitted data at increased distances.
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Figure 3.3: Scenario where static binarization leads to undetectable levels despite RX UV
LED visibility. TX signal strength decreases with distance, following the Inverse Square Law.

In conjunction with prior research conducted on UVDAR [38] regarding the relation-
ship between distance, bright spot size, and exposure impact. In Figure 3.4 the vertical lines
indicate the point of reduction to a single pixel. Highlighting the comments by the author on
the selection of exposure time, selecting short exposure times would increase the accuracy of
the system but would lead to operating at short distances, whereas choosing a long exposure
time would increase the operating distance at the expense of reducing the performance by
having less selectivity w.r.t. other light sources.

Figure 3.4: Bright spot size distance dependence. Fig.10 in [38].
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Angle of Incidence and Reception

Another source of difficulty is introduced by the system’s dependence on Lambertian
radiation characteristics for UV LEDs, as dictated by the Lambertian cosine law that the UV
LEDs are expected to follow [38]:

I(θ) = Imax cos θ (3.3)

The observed light intensity is directly proportional to the cosine of the angle between the
observer’s LoS and the direction in which the LED is pointing, Figure 3.5 displays an ideal
lambertian source and angle effect. As a result, the radiation intensity decreases to less than
half its maximum value when the viewing angle is more than sixty degrees. This reduction in
signal strength at non-perpendicular angles restricts the effective field of view within the UAVs
that can reliably receive signals, potentially imposing more demanding alignment between
transmitter and receiving units for optimal signal retrieval, example illustrated in Figure 3.6
.

Figure 3.5: Ideal lambertian Source Model and angle dependency.

Figure 3.6: (a) Angle of departure 0 degrees (b) Angle of departure of 60 degrees (Azimuth
Angle) (c) Angle of departure of 60 degrees (Angle of elevation).
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Understanding the signal attenuation within the UVDAR system necessitates consider-
ing the effects of the distance and the angular orientation. The combined effect of the Inverse
Square Law and the Lambertian cosine law allows us to understand their impact on signal
intensity:

I(d, θ) =
Imax cos θ

d2
(3.4)

By considering these principles, we can formulate more realistic operational scenarios
for the UVDAR system. Demonstrating the necessity of the system being capable of dealing
with the intrinsic effects of optical attenuation to enhance its reliability and efficiency.

Figure 3.7: Dual consideration of Inverse Square Law and Lambertian Cosine Law.

System Design and Communication Range

UVDAR’s initial design did not incorporate communication capabilities, meaning the
current architecture might not optimally support these tasks. For instance, variations in signal
strength that the static threshold for detection does not account for, affect the range of
communication. Additionally, problems could arise by using circular neighborhood separation
in the detection mechanism, leading to inaccuracies in situations where multiple LEDs are
nearby. Erroneously identifying a single marker, despite the fact that these LEDs do not
converge into a single entity, as shown in Figure 3.8. This situation in the camear appears in
scenarios of headings towards the RX with minimal separation between the LEDs, as shown
in Figure 3.9.

Figure 3.8: Grayscale image of UAV at 15m from RX

This identification error of close LEDs is more likely to occur in dense LED arrange-
ments in multi-robot operations, or long-distance scenarios with a pair of UAVs coming close
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Figure 3.9: (a) Top view of LoS between RX and TX, first a heading with maximal separation
between LEDs, second a scenario with heading with minimal separation. (b) Orthogonal view
of TX with respect to RX.

together, where the precision of individual marker detection is significant, having unique sig-
nals coming from various LEDs and UAVs.

Moreover, the system’s scalability and flexibility are limited in a complex operational
scenario of multiple UAVs with varying distances and orientations due to its inability to
adapt to the changing intensities of signals from different UAVs. These physical and system-
based limitations highlight the need for substantial enhancements in the system to support
robust and reliable optical communications expanding the system’s utility for various UAV
applications.

The results of the UVDAR-COM validation where donde by the authors in [11], shown
in 3.10, where the BER analysis of the system showed stable conditions up to 17 meters.
Additionally, BER would be degraded at close distances due to the possibility that the image
elements are too large for the circular neighborhood in the detector. As the circle simultane-
ously incorporates both, the algorithm is accountable for the merging of the nearby points.
Furthermore, the tracking for blinking extraction utilizes image positional data to determine
the temporal association of markers, which, if the points are that close, will connect the
adjacent points.

Figure 3.10: Dependency of BER on the mutual distance between UAVs, Fig.9 in [11].
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3.3 Analysis of the UVDAR datasets

Understanding the nature of pixel intensity at various distances was necessary to address
the current limitations. The data for the analysis was collected using video recordings made by
the team during previous experiments, the datasets correspond to experiments performed with
different distances and exposure configurations. The recordings used for the online execution
of the UVDAR, using the tracking algorithm to obtain the position in the image corresponding
to the UV-LED to extract grayscale value in the image.

Given camera frame drops present in the experiment recordings, to avoid mismatches
from the tracking and the image positions, Max pooling was employed to guarantee obtaining
the pixel with the highest intensity, ensuring the accuracy of the data to analyze.

Details of the experiments

The experiment datasets consist of 1 RX and 2 TX, with trajectories designed for the
UAVs to stay in position while maintaining relative distance. Setting the RX in a static
position with one camera pointing towards the TXs. One TX was kept approximately 3–4
meters w.r.t the RX in all experiments, and the other TX varied its distance throughout the
experiments at 5, 7, 10, 15, and 18 meters. For both TXs, the L12 sequences was used with
a normalized power of 0.5, meaning each sequence will have the same number of values of 0
and 1. These sequences are shown in Table 3.1

ID Sequences

1 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1

2 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1

3 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1

4 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1

5 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1

6 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1

7 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1

8 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1

9 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1

10 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1

11 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1

12 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1

Table 3.1: L12-P0.500000 Blinking Sequences [4].

The experiments were conducted in the desert of Abu Dhabi, and in particular, it was
a challenging scenario because the camera of the RX was pointing towards the sun. In the
figure, An image of the scene is illustrated in Figure 3.11, showing a large amount of light
present in the image. Sequences 7 and 5 were selected for the TX that increases its distance
from the RX and the TX that stays close to it throughout the experiments.This distinction is
valuable for conducting the analysis, obtaining directly from the tracking algorithm the TX
position of the image with its emitted sequence.
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Figure 3.11: UVDAR Vizualization: TX (Signal 5) in blue marker on right and TX (Signal 7)
in orange marker on left.

We obtain the Probability Mass Function (PMF) and Cumulative Distribution Function
(CDF) to visualize the data distribution since this information allows us to analyze it with
histograms. A range of low- and high-intensity ranges are present, as the tracking provides
the positions of both states of the LED.

Given distributions would also be dependent on the threshold used for the execution
online, the data was extracted by setting thresholds of 150, 100, and 50 to analyze its influence.

Figure 3.12: PMF and CDF from TX (Signal 5) at 5m and TX (Signal 7) at 10m.

In the PMF of the shortest distance at signal 5, we observe that most of the ON values
are in saturation, as seen in Figure 3.12. However, at signal 7, the peak of the saturation values
is smaller, with a higher variance between the values starting from 150. At short distances, the
distributions in proportion are similar, which is confirmed by the CDF, and with increasing
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Figure 3.13: PMF and CDF from TX (Signal 5) at 5m and TX (Signal 7) at 15m.

distance, the saturation values decline with the central tendency moving towards 150 at 15
meters, illustrated in Figure 3.13.

As previously indicated by the inverse square law, from the points received with the
LED State ON, its mean pixel intensity decreases with increasing distance. The trend with
increasing distance is presented in the following Figure 3.14.

Figure 3.14: General Mean Pixel Intensity with increasing distance.
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At a distance of 20 meters (Figure 3.15), the values of 150 and 100 are less frequent
compared to the threshold of 50, with most of the values being below 150 at the given distance.
At 23 meters (Figure 3.16), the threshold of 150 completely loses the signal, while the threshold
of 50 remains, remaining unaffected by the LED pixels’ low intensity.

Up to 20 meters, the detected points with a threshold of 50 is about five times more than
the 100 value, and 15 times more than the 150 value. However, at 23 meters, the performance
of the 50 and 100 thresholds is similar. Appendix A contains the statistical data categorized
by signal and distance.

Figure 3.15: PMF and CDF from TX (Signal 5) at 5m and TX (Signal 7) at 20m.
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Figure 3.16: PMF and CDF from TX (Signal 5) at 5m and TX (Signal 7) at 23m.

Figure 3.17: (Signal 7) Mean Pixel Intensity for LED State ON with increasing distance.

It is important to note that the obtained results align with previous findings from [11].
Whereas in Figure 3.10 we observed, the BER is stable up to 15m, what we also observed
in our trend is the point where the decrease begins, illustrated in Figure 3.18. It should be
mentioned that within the 10-15 meters range, the detection count is increasing, which may
be biased due to the extraction process or the duration of each experiment, as there are
variations between the movements at the beginning and end of each experiment. However, it
is consistent with figure 3.10, where the BER decreases until 10 m, with the same decline in
detections at 15 meters.
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Figure 3.18: (Signal 7) LED State ON occurrences with increasing distance.

We assume this is where the distance starts to affect the detection since the trend graph
of the average pixel (from Figure. 3.14 intensity values around 15 meters starts to get close
to 100, which in grayscale means a medium to light gray tone, as illustrated in the grayscale
scale palette, shown in Figure 3.19, with several intensity values.

Figure 3.19: Gray-scale pixel values palette.
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Therefore, one factor potentially affecting detections at long distances is that the image
of the LED appears darker (passing from white at short distances to shades of gray at longer
distances) which may make it more challenging to identify this point as it dissipates with gray
tones in the background, an example in Figure 3.20 where with LED in gray tones similar to
background.

In terms of results, we can confirm that a lower threshold achieves higher occurrences
for the signal decoding, representing a higher communication range. However, referring back
to the author [38], selecting a lower threshold would increase the operating distance while
affecting the system precision. Therefore, one of the goals we aim to achieve with the adaptive
threshold is to eliminate the constraint of finding the balance between accuracy and operating
distance, motivating us to find better strategies to adapt to lower intensity to improve the
system capacity.

Figure 3.20: Background dissipation.

CTU in Prague Department of Cybernetics



4. ADAPTIVE THRESHOLDING ALGORITHM 27/70

4 Adaptive Thresholding algorithm
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4.1 Motivation for Adaptive Approach

Although implementing static binarization in the UVDAR system is the fastest solution
it also limits its performance. Careful consideration needs to be given to its initialization, which
is crucial for ensuring proper operation and overall success. For instance, the background noise
can be reduced by selecting a high threshold, but compromising the ability to detect UAVs at
medium or long distances despite the visibility of the LEDs in the grayscale image, as shown
in Figure 3.3. On the other hand, by choosing a low threshold to increase the detection range
still will be inherently constrained for only values above this threshold.

Additionally, in scenarios with multiple UAVs, as illustrated in 4.1, we can have both
UAVs at long and short distances simultaneously, making it insufficient to use a single thresh-
old value, motivating for better strategies.

Figure 4.1: Multiple TX in camera image

An adaptive detection approach presents a solution by dynamically adjusting thresholds.
Our goal is to enhance the system’s robustness and adaptability, making it a more reliable
option for a range of UAV applications.
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4.2 Adaptive Thresholding Algorithm

In this thesis, an adaptive thresholding algorithm for the UVDAR system is proposed.
This algorithm uses feedback from the tracking algorithm to determine where UV LED mark-
ers are present. The objective of this mechanism is to concentrate the binarization on the
ROIs where our LEDs are expected to be.

Utilizing an adaptive approach to analyze the entire image would increase computational
demand and increase noise, as observed in 4.2, having a greater likelihood of segmenting bright
regions or objects present in the image. As a result, the proposed method avoids this challenge
by focusing on small ROIs.

(a) Grayscale input image (b) Global Adaptive thresholding

(c) ROI.

(d) Local Adaptive Thresholding

Figure 4.2: Comparison of global and local adaptive thresholding.

As previously mentioned, detecting multiple UAVs with different distances can affect
signal integrity by binarizing multiple UAVs simultaneously with a single threshold. With
various pixel intensities, we cannot guarantee proper decoding for each. Therefore, by assigning
an ROI for each UAV present in the image and separately processing them, we aim to improve
the detection of our UV LED signals, consequently optimizing its capabilities.
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4.3 Overview of the adaptive approach

The adaptive processing had been designed to be integrated into the system using the
current modules, building upon them to accomplish our task. Given the need for feedback to
begin with adaptive processing, the system operates under standard conditions to obtain this
information from the tracking module, starting by employing the SOTA detection method
using the static approach. This to initially identify the bright points in the image, and then
allowing the construction of ROIs for adaptive processing.

Input Image

SOTA Marker Detection

Blink Processor(Tracking)

Pose Calculator

Output

(a)

Input Image

Adaptive BinarizationSOTA

Blink Processor(Tracking)

Pose Calculator

Output

(b)

Figure 4.3: (a) Overview of the current UVDAR modules (b) Integration of the Adaptive
Binarization.

Pseudocode

(i) Start static binarization processing of the image.
(a) Get initial detected points.

(ii) If received feedback from tracking:
(a) Calculate the ROI around the provided points.
(b) Find overlapping ROIs and calculate MergedROIs.
(c) Get final ROIs to be processed.
(d) Apply adaptive thresholding to the final ROIs.
(e) Calculate the centroids of adaptive detected points.
(f) Merge with initial detected points, giving priority to adaptive points.
(g) Return the potential detected points.

(iii) If we stop receiving information from tracking, go back to step i.
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The static detection method was preserved as a baseline for the rest of the process due
to the complexity of initially processing the whole image adaptively and obtaining the points
of interest without over-segmenting the image and introducing noise as mentioned before.
Besides, the static detection method is optimized for GPU parallel processing, making it a
viable option as it does not add more computational load on the CPU.

In situations where the adaptive process fails to accurately identify the points of interest,
it additionally functions as a fallback, capitalizing on the strengths of both approaches; static
processing is a fast and efficient way to make the initial detection of points, while the adaptive
method ensures more accurate processing addressing the limitations of static processing.

The development of the adaptive algorithm involved the implementation of adaptive
thresholding methods as well as the design of several mechanisms to optimize the process
and to guarantee an improved segmentation result based on our needs. These mechanisms
include ROI evaluation processes to determine overlaps between each other as well as pre-and
post-processing of our ROI. The following section provides detailed descriptions of these and
additional techniques.

Adaptive Algorithm

Algorithm 1 Processing of image adaptively

1: Input: I, T, S ▷ Input image I, Set of tracking points T, Set of static points S
2: Output: D ▷ Set of detected points D
3: if T.size() == 0 ∨ T.size() ≥ MAX ROIS then
4: return False
5: end if
6: R ▷ Set of ROIs, R
7: for pi in T do ▷ Calculate bounding boxes
8: ri ← calculateROI(pi)
9: R.append(pi) ▷ Add bounding boxes to set R

10: end for
11: M ← mergeOverlappingROIs(R) ▷ Check overlapping R, Merged ROIs M
12: for mi in M do
13: D ← applyAdaptiveThreshold(mi) ▷ Apply adaptive threshold to ROI mi

14: end for
15: D ← mergePoints(D,S) ▷ Merge adaptive D with static S points
16: return True
17:
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4.4 ROI Adaptive Processing

ROI Merging

To minimize computational expense and streamline the process, we reduce unnecessary
computations in cases where multiple points come from the same UAV, or when UAVs are
close to each other. In these scenarios, overlapping ROIs may process the same image position
and the same points from the same UV LED, complicating the process both by increasing
computational load and making it difficult to distinguish between points from different ROIs.

Algorithm 2 Merge overlapping ROIs

1: Input: R ▷ Set of ROIs
2: Output: M ▷ Set of merged ROIs
3: M ▷ Initialize set for merged ROIs
4: m ▷ Initialize boolean set for merged ROIs
5: for ri in R do ▷ Current ROI ri
6: for rj R do ▷ Subsequent ROI rj
7: if isOverlapping(ri,rj) then
8: c ← collectCorners(ri,rj) ▷ Collect corners
9: ri ← boundingRect(c) ▷ Update current corners

10: m[j] = true ▷ Mark rj as merged
11: end if
12: end for
13: M.append(ri) ▷ Add ri to merged set
14: m[i] = true ▷ Mark ri as merged
15: end for

return M ▷ Return set M
16:

Figure 4.4: The ROIs, represented by dashed purple lines, are created according with each
tracking point obtained. A red dashed line indicates the relevant corners used for merged ROI
result.

Thus, when obtaining points from the feedback of the tracking module, ROIs are cal-
culated based on previously areas. Areas covered by the resulting ROIs are evaluated, and
if overlaps are found, they are replaced by a single ROI encompassing the involved areas,
optimizing subsequent computation, process illustrated in 4.4.
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Image Enhancement: Unsharp Masking

To facilitate the process of detecting the bright spots corresponding to a UV LED
within our ROI, and for enhancing the object to remain in the image after segmentation, a
sharpening process was implemented. This process identifies the high-frequency components of
our ROI to obtain an improved image, where more priority is given to our particular signal. It
is homologous to and inspired by classical signal processing techniques, specifically high-pass
filters, but adapted to image processing.

The process consists of a combination of Gaussian Blur and unsharp masking to high-
light the borders in the image [47]. The blurring technique is applied to the original ROI
using a Gaussian function to smooth out the image by removing the high-frequency com-
ponents. This smoothed image is then subtracted from the original image, resulting in our
unsharped mask representing the high-frequency components lost during the smoothing pro-
cess, as demonstrated in 4.5. Finally, this detailed mask is added to the original image using
a scaling factor. This factor controls the intensity of the sharpening effect, assigning higher
priority to sharpening and enhancing high-frequency components.

(a) Original ROI (b) Unsharp Mask (c) Enhanced Image

Figure 4.5: Image enhancement process

ROIenhanced = α · (ROIoriginal) + β · (ROIoriginal −ROIblurred) (4.1)

This process facilitates the identification process by attenuating the ROI background,
ideally preserving bright spots present in our ROI, offering us the flexibility to adjust the values
of α and β to facilitate the assignment of greater priority to high-frequency components.
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(a) Original ROI (b) Unsharp Mask (c) Enhanced Image

(d) Binarization result with Sharp-
ing

(e) Binarization result without
Sharping

Figure 4.6: Binarization results comparison

This process is important for scenarios where the pixel intensity distribution is close to
uniform or in scenarios with values comparable to our points of interest, complicating finding
an optimal separation threshold, as demonstrated in Figure 4.6 with an example of a unsuc-
cessful segmentation of our points of interest given low pixel intensity values at a far distance.
The goal is to improve the image at the pixel intensity distribution level, moving closer to the
ideal scenario of a bimodal distribution with distinct peaks and clear differentiation between
low and high-frequency values, streamlining the process of segmentation given the background
attenuation, as illustrated in Figure 4.7 having an enhanced ROI with the UV LEDs preserved
and minimized the influence of the background.

(a) Original ROI (b) Enhanced ROI

Figure 4.7: Example of high-frequency components preserved while enhancing.
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The following example is an extreme case corresponding to a sun point reflection to
demonstrate and visualize the effect of the enhancement process visually and at the his-
togram level. Observing in Figure 4.8, the original ROI histogram values corresponding with
a background of medium intensity values before the enhancement, the enhanced ROI his-
togram values demonstrate the significant reduction of these medium frequency components,
after enhancing, while the bright spot is maintained.

(a) Original ROI (b) Enhanced ROI

(c) Pixel Intensity Frequency comparison

Figure 4.8: Image and histogram before and after enhancement.
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Area Filtering

Subsequently, when applying the adaptive technique to the ROI and obtaining a binary
image, post-processing techniques are performed to guarantee the candidate points correspond
to UV LEDs. Due to the complexity of fully isolating bright spots from the image background
when contrasting backgrounds are present, these are usually retained in the image. Therefore,
to eliminate these easily distinguishable areas that do not correspond to a potential UV-LED,
we applied Connected Component Analysis (CCA) on the ROI to categorize the areas that
were segmented, retaining only the points that potentially belong to a UV LED in our ROI.

(a) Original ROI (b) Unfiltered Binary ROI (c) Filtered Binary ROI

Figure 4.9: Area filtering process

CTU in Prague Department of Cybernetics



36/70 4.4. ROI ADAPTIVE PROCESSING

ROI Processing Algorithm

Algorithm 3 ROI Processing

1: Input: R ▷ ROI
2: Output: D ▷ Set of detected points, D
3: E ← enhanceROI(R) ▷ Unsharp masking of R, Enhanced ROI, E
4: if ”Otsu” then
5: B← findOptimalThresholdOtsu(E) ▷ Obtain Binary ROI, B
6: else
7: B← findOptimalThresholdKL(E)
8: end if
9: C ← findContours(B) ▷ Find contours in B

10: if C.size() ≥ MAX CONTOURS then ▷ Return empty D
11: return D
12: end if
13: for ci in C do ▷ Area filtering
14: area ← contourArea(contour)
15: if area < MAX AREA then
16: m ← drawContours(ci) ▷ Add contour to mask, m
17: end if
18: end for
19: B ← B ∧ m ▷ Apply m to B
20: D ← detectPointsFromRoi(B) ▷ Detect points in B
21: if D.size() ≥ MAX DETECTED POINTS then
22: return D.clear() ▷ Skip noisy B
23: else
24: return D ▷ Return detected points from B
25: end if
26:
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4.5 Adaptive Threshold Methods

During the development of the project, different adaptive techniques were evaluated to
fulfill the segmentation function of our ROIs. In particular, two methods were implemented:
Otsu’s method [48], responsible for finding the threshold with the best separation between
foreground and background, and Kullback-Leibler (KL) Divergence minimization [49], which
obtains the threshold with the lowest information loss.

Otsu’s Method

Otsu’s method is a popular technique employed for adaptive image thresholding. The
goal is to separate the foreground (objects of interest) from the background using the gray
scale histogram of the image and finding an optimal threshold value that separates these two
regions with maximum between-class variance.

Algorithm Description

(i) Compute the Histogram :
Initially the histogram H(i) of pixel intensities in the grayscale image is calculated,
representing the frequency distribution of pixel intensities, further normalized P (i) to
represent a Probability Density Function (PDF) of intensity level.

(ii) Compute the CDF:
The cumulative sum (cumulative distribution function) C(i) of the normalized histogram
is calculated using the cumulative probabilities of each intensity value. Computed for
both the values below and above the threshold t:

ωb(t): Cumulative probability of pixels below threshold t (background).

ωb(t) =

t∑
i=0

P (i), (4.2)

ωf (t): Cumulative probability of pixels above threshold t (foreground).

ωf (t) = 1− ωb(t) (4.3)

(iii) Compute the Cumulative Mean:
The cumulative mean up to each intensity level is calculated given:

µb(t): Mean intensity of pixels below threshold t.

µb(t) =
t∑

i=0

i · P (i)

ωb(t)
, (4.4)

µf (t): Mean intensity of pixels above threshold t.

µf (t) =
255−1∑
i=t+1

i · P (i)

ωf (t)
(4.5)

(iv) Compute the Between-Class Variance:
For each intensity level, the between-class variance σ2(t) is calculated to measure the
separation between classes of pixels at that particular intensity level. Given by the
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product of the square difference between the mean grayscale intensity values and the
probabilities of the regions :

σ2(t) = ωb(t) · ωf (t) · [µb(t)− µf (t)]
2 (4.6)

(v) Determine the Optimal Threshold:
The threshold value that maximizes the between-class variance is chosen as the opti-
mal threshold, which indicates the optimal separation between the foreground and the
background.

Topt = argmax(σ2(t)) (4.7)

Algorithm 4 Otsu’s Method

1: Input: R ▷ ROI
2: Output: B ▷ Binary ROI, B
3: H(R) ▷ Compute Histogram H(R) of R
4: P (R) ▷ Normalize Histogram P (R)
5: C(R) ▷ Compute CDF C(R)
6: for T0 to 255 do
7: ωb(t), ωf (t) ▷ Compute region probabilities
8: µb(t), µf (t) ▷ Compute region mean values
9: σ2(t) ▷ Compute between-class variance

10: T ∗ ▷ Select T ∗ that maximizes between-class variance;
11: end for
12: B←applyThreshold(R, T ∗) ▷ Apply threshold T ∗ to R
13: return B ▷ Return Binary ROI

One of the advantages of the method its simplicity and speed in identifying the optimal
threshold without needing previous information of the image to be processed, so for our
application it is feasible to calculate the threshold in real-time.

It is worth mentioning that the method is designed to operate with grayscale images
since it has a bimodal distribution, which matches our application. However, in cases with
variable illumination, the segmentation of our object of interest can be challenging, potentially
losing our object given the fluctuating intensities and not having a clear peak corresponding to
our object.A situation similar to this is explained in Figure. 4.6, where we attempt to prevent
with the enhancement of our image. Furthermore, applying the method through the ROI
mechanism in a focused manner complements the effectiveness of Otsu’s method streamlining
the detection of the markers.
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Kullback-Leibler Divergence Minimization

KL is a common loss function used in reinforcement learning and machine learning,
measuring the difference between predicted and actual values. From a statistical perspective,
it measures the difference between two probability distributions. In our specific context, we
aim to utilize KL to determine the optimal threshold minimizing this criterion.

Given a set of random variables X = {x1, . . . , xn}, where x ∈ {0, 1, . . . , 255} in our
given problem defining the set of all pixel intensity values, and a pair of distributions, Pθ

represents the reference probability distribution, and Qϕ represents the estimate distribution
to be measured. The KL-divergence is formulated as follows:

DKL(Pθ∥Qϕ) =
∑
x∈X

Pθ(x) log

(
Pθ(x)

Qϕ(x)

)
(4.8)

KL has its origins in information theory and can be considered a slight modification of
entropy that includes not only Pθ but Qϕ our approximated distribution.

Entropy : H(X) = −
∑
x∈X

P (x) log(P (x)) (4.9)

Hence, KL divergence serves as a metric to measure the degree of information loss with
our estimate distribution. In our specific scenario, the essence lies in binarizing the image
while retaining its bright spots, resulting in distribution that closely resembles our initial ROI
distribution, which supports determining the threshold with minimal information loss and
potentially improving the relevance and accuracy of the segmentation.

Algorithm description

1. Compute the reference distribution:
Histogram H(i) of pixel intensities in the ROI is calculated, and then normalized P (i)
to represent the PDF of our reference distribution.

2. Compute the estimate distribution
The PDF is calculated for a potential threshold t value given the reference distribution
previously calculated, divided into two segments below and above t representing the
background and foreground Qb(t) and Qf (t), respectively. Resulting in the estimate
distribution for the potential t.

3. Compute the KL divergence for segments

For the pair of segments that represent the estimate distribution, compute the KL
divergence given the reference distribution to evaluate the overall divergence between
our original ROI reference distribution.

DKL background(P∥Qb(t)) =

n∑
i=0

P (i) log

(
P (i)

Qb(i)

)
(4.10)

DKL foreground(P∥Qf (t)) =
n∑

i=0

P (i) log

(
P (i)

Qf (i)

)
(4.11)

DKL total(t) = DKL background +DKL foreground (4.12)
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4. Determine the Optimal Threshold:
The threshold value that minimizes the KL Divergence is chosen as the optimal thresh-
old, which indicates the binarized distribution that most closely resembles our reference
ROI distribution.

T ∗ = argmminDKLtotal (4.13)

Algorithm 5 KL Divergence Minimization

1: Input: R ▷ ROI
2: Output: B ▷ Binary ROI, B
3: H(R) ▷ Compute Histogram H(R) of R
4: P (R) ▷ Normalize Histogram P (R)
5: for T0 to 255 do
6: Qb(T )), Qf (T )) ▷ Compute estimate distribution segments
7: DKL background, DKL foreground ▷ Compute the KL divergence for segments
8: DKL total(t) = DKL background +DKL foreground ▷ Get total KL divergence
9: T ∗ ▷Find T ∗ that minimize KL divergence

10: end for
11: B←applyThreshold(R, T ∗) ▷ Apply threshold T ∗ to R
12: return B ▷ Return Binary ROI

By minimizing DKL total(t), the goal is to find a threshold that makes the segmented
distributions as similar as possible to the respective ROI reference distribution, thereby mini-
mizing information loss and potentially improving the relevance and accuracy of the segmenta-
tion. Finding the threshold that minimizes loss of information for our communication problem
can be a valuable method, using our original signal to preserve the LED characteristics.

Compared to Otsu’s Method, it represents a suitable alternative because uneven light
conditions can lead to unsatisfactory results if we are seeking only the best separation. A good
comparison is demonstrated in Figure. 4.10 the results with the Otsu’s method with an area
corresponding to the background exhibit an incorrectly segmented background area, whereas
in KL method only the high-frequency components remain.

CTU in Prague Department of Cybernetics



4. ADAPTIVE THRESHOLDING ALGORITHM 41/70

(a) Original ROI (b) Unsharp Mask (c) Enhanced Image

(d) Binary ROI with Otsu’s
method

(e) Binary ROI with KL method

Figure 4.10: Comparison of adaptive thresholding methods.

Merging of detected points

One of the last steps before providing the position of the candidate points in the image
is evaluating the points obtained by the adaptive process and comparing them with those
initially obtained through static binarization. Although we retain the initial detections, we
have priority when our method provides results in their region. The main objective of this
process is to include in its result those points out of range of the ROI areas that are potentially
coming from UAVs not initially present in the LoS concerning the UAV RX. With this process,
in cases where a UAV enters the LoS later in the operation, it will be considered and delivered
to the next module of the system, being received in the feedback in a later stage for being
processed adaptively with its corresponding ROI.
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5 Performance Evaluation
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For validation of the proposed adaptive algorithm, simulation, and field experiments
were designed and executed for its evaluation. The motivation of the algorithm is to be
compatible with the current system and to achieve similar or better results with the current
static threshold implementation.

The design of the experiments takes into account the limitations, variations of pixel
intensity due to distance and orientation, presented in Chapter 3. Therefore, the objective
of the evaluation of the experiments is to compare the performance at different operating
distances and particular orientations to evaluate and compare the proposed method with the
static method to confirm the limitations presented.

The MRS system [17], which integrates UVDAR operation tools, was used to validate the
simulator in the Gazebo. A significant factor for evaluating the algorithm, in terms of vision,
the simulator is insufficient for the detailed validation of our adaptive methods because the
background in the image remains static with a simplified gray background, this is due to the
simulated image stream being simplified for performance reasons. Nevertheless, the optical
and lambertian radiation properties are included in the LEDs, functioning as a development
tool to validate compatibility with the system. The recordings from the desert experiments
were also helpful in testing the performance by having recordings of real-world experiments
for running the UVDAR locally to evaluate the segmentation results.

5.1 Simulation and testing

The simulator helped to design the experiments and to validate the findings before the
real-world experiments. We set up 1 RX and 1 TX to evaluate the performance with increasing
distance, being able to conduct various experiments and gathering results searching for insights
for evaluation in the real world.

(a) RX and TX at 5m.
(b) RX and TX at 15m.

Figure 5.1: Gazebo simulator experiments.
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Increasing distance evaluation

For this purpose, we collect data from the tracking output to evaluate the decoding of
the TX signals and to compare our adaptive approach with Otsu’s method and KL diver-
gence against the SOTA detection algorithm using the static threshold, testing it with dif-
ferent thresholds to independently assess the threshold impact on the communication range.
To evaluate the difference between the results with UAV in motion and stationary, we col-
lected data every 2 meters of the identified sequence from the output of the blink processor
module, obtaining data from stationary conditions, These results are presented in Figure 5.2
with the ”static” label. The data labeled ”dynamic” indicates the measurements included the
movements transitioning to each distance.

Figure 5.2: Simulation: Error rate comparison with respect to increasing distance for SOTA
and adaptive methods.

When comparing the methods, we observe that with the static method, the error rate
remains low until the distance of 11m, starts to rise at 12m with an error rate between 40
and 50%, whereas with our adaptive approach, we achieve minimal error rate until 14m and
it start to increase at a distance of 16m with an error rate of 20%.

This represents a considerable improvement and demonstrates the potential of the al-
gorithm. In terms of detection and vision, the simulator is not challenging for our problem
as it does not present a challenge for segmentation. However, an improvement in the simu-
lator presents the potential of the approach, with more accurate processing by performing
the segmentation in a localized way with the ROI mechanism, performing a more accurate
point separation and contours not fading in the background as in the real world, while the
SOTA algorithm that uses circular neighborhood separation can be merging close points that
complicates the decoding.

Although the background does not present a challenge for the segmentation, we were
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able to validate the threshold detection deficiencies. For high values, comparable results were
obtained, with the effect of a low threshold showing that it is more permissive to the back-
ground adding complexity to the LED detection represented by a higher error rate.

Challenging heading

The second validation performed was to change the relative orientation of the TX to
have a challenging orientation in terms of detection by having LEDs close to each other,
causing interference with increasing distance.

Obtaining better decoding results as the distance increases indicates the adaptive al-
gorithm has higher accuracy than the static implementation, illustrated in Figure 5.5. In
the static implementation, the accuracy may have been affected by the the neighborhood
separation, which would explain the difference in performance in the simulator.

Figure 5.3: Simulator comparison of Signal 1 and 2 presence through increasing distance

Figure 5.4: Simulator camera view of Signal ”1” and ”2” decoding with increasing distance
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Figure 5.5: Simulator camera view of Signal ”1” and ”2” decoding with increasing distance
for Otsu’s method and SOTA.

5.2 Real-world Application and Results

Maximal LED Separation (Exposure 1000us)

The objective of the firs experiment was to assess the effectiveness of communication and
detection. Therefore, using 1 RX and 1 TX emitting the signals with ID = {0, 1, 3}, initially
both with a relative distance of 5 meters, having one camera of the receiver pointing directly
to the TX. The TX increases its distance w.r.t RX for evaluating the operational distance
performance. The TX relative orientation was chosen to have the maximum separation of the
LEDs as explained in Figure. 5.9.

Figure 5.6: (a) Front view of the initial experiments setup at 5 meters. (b) Aerial View.

The MRS system [17] was used in the creation of the experiments, and both UAVs
were equipped with Real-Time Kinematic (RTK) receiver for corrections with GNSS system
to guarantee precise positioning. The sequences extracted from the the tracking module were
used for evaluation as a basis for a performance metric. The TX trajectory, starting 5 meters
w.r.t RX, increasing its distance by 5 meters every 30 seconds until reaching a relative distance
of 30 meters.

In this first set of experiments, we obtained a similar performance in terms of error rate
for the static and adaptive methods; as seen in previous results discussed in Chapter 3, having
an increase in the error rate at 15 meters . With significant improvement of 24% lower at 20
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meters and 7 % with the adaptive methods of Otsu’s method and KL Divergence, respectively
than the SOTA while increasing distance.

Figure 5.7: Error rate with respect to increasing distance for SOTA and adaptive methods.
(1000 us).

Significant to note that ambient noise from bright spots from sources other than LED
may bias the error rate. Therefore, the decoding of the signals selected for the TX LEDs
through increasing distance was evaluated.

Table 5.1: Overall presence per signal comparison (Exposure 1000us)

Signal Otsu Adaptive Method Standard Method KL Adaptive Method

0 0.583640 0.345191 0.494267
1 0.349622 0.387539 0.309517
3 0.346090 0.418324 0.389494

On average, the adaptive methods have a higher signal decoding than the static methods.
Otsu’s method has a higher decoding overrall of 58%, KL Divergence approximately 49%, and
34% with the SOTA method. The drops, illustrated in Figure. 5.8, observed at each interval
of distance represent the points where the TX was moving towards its next distance until the
signal is recovered while being stationary. Interestingly, signals 1 and 3 had a similar decoding
success.
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Figure 5.8: Signal presence rate comparison with respect to increasing distance for SOTA and
adaptive methods. (Exposure 1000us)

On further visual investigation of the image, we found that at the start of the experiment
the separation of the LEDs was not as ideal with LEDs close to other (seen in Figure. 5.9). This
because magnetometer estimation for the heading is not accurate, For an accurate heading
estimation a dual RTK setup would be necessary to calculate the heading based on the relative
position of the antennas equipped in the UAV. Nonetheless, the ”0” signal that did not suffer
any interference from the other LEDs served as a reference to demonstrate the performance
and to compare the methods.

However, it would not be fair to evaluate only the success of the communication since
it does not depend only on our algorithm for decoding the signals but also on the capacity of
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Figure 5.9: Signal ID vizualization from Otsu’s method experiment (1000us).

the tracking algorithm.

Figure 5.10: Overall number of detected with respect to increasing distance for SOTA and
adaptive methods. (1000 us).

Analyzing the detection performance, we found that the static method decreases the
number of detections around 17 meters, while the adaptive methods maintain obtaining the
three LEDs’ along the 30-meter trajectory; this could be a factor that explains the previously
observed limitation of 15m operating range, affected by the static threshold limit in the
SOTA algorithm. Otsu’s method achieves a stable detection of the LEDs from 20 meters,
which implies that the detection as such exhibits a significant improvement compared to the
SOTA method.

The reason why the LEDs are successfully detected but the tracking fails to correctly
decode them would necessitate further investigation. A possible reason is that the points pro-
vided are not in a suitable frequency than our expected signal, implying further optimization
is needed to accurately provide these small dots in the image over long distances.

It should be noted that KL method retrieved a higher number of points, which is under-
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standable given that it would be more likely to preserve background details, as it minimizes
the divergence with the original ROI, confirming that it is more likely to introduce noise.
However, the signal decoding performance was similar to Otsu’s method for a distance up to
20 meters, as seen in Figure 5.8.

Maximal LED Separation (Exposure 500us)

The second set of experiments consisted of repeating the same methodology as the first
experiment set, With the distinction that the exposure time was decreased to 500 us evaluate
if the performance improved, as the image would become darker. Compared to the SOTA
implementation using static threshold illustrated in Figure 5.11, Otsu’s method produced a
35% lower error rate at a distance of 15 meters.

Figure 5.11: (a) Error rate with respect to increasing distance for SOTA and adaptive methods.
(500 us).

Table 5.2: Overall Presence per signal comparison (Exposure 500us)

Signal Otsu Adaptive Method Standard Method KL Adaptive Method

0 0.480427 0.414743 0.415961
1 0.428155 0.380285 0.351910
3 0.501919 0.555994 0.489435
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Figure 5.12: Comparison of signal decoding rate with respect to increasing distance for SOTA
and adaptive methods. (Exposure 500us)

By reducing the exposure, we naturally increase the accuracy by achieving a lower error
rate with the Otsu method and even a slightly higher decoding with the SOTA method with
static thresholding. However, the operation range is reduced to around 5 meters for the SOTA,
as from 10 meters beyond, the decoding of signal begins to decrease.

This happens for the adaptive methods as well, reducing the operational distance in
comparison to the 1000 exposure results but still surpassing the SOTA method, as we can
observe the offsets in Figure. 5.12 , the decrease for the adaptive methods happens at a further
distance, with the best performance in Otsu’s method maintaining around 17 meters the signal
decoding above 80% for signals ”0” and ”3”, as seen in Figure 5.12. Signal ”3” interfering
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being above LED with Signal ”1”, making it difficult to decode the other. This explains the
decrease of succesfull decoding for Signal ”1”, having only one of the LEDs decoded correctly.

As a result of the observations that greater precision is achieved with reduced exposures,
performance optimization strategies emerge. Previously, the range of operation was the major
limitation for the static approach because of the smaller size and intensity of bright spots
detected with lower exposure. Now that we employ the adaptive thresholding, we can operate
with lower exposure time. This provides the opportunity to find a configuration that optimizes
the adaptive method while preserving the desired operating range.

As for the detected points, the decline in the number of the detected points at closer
distances for the SOTA method, as illustrated in Figure 5.13. However, the adaptive methods
number of detections continue over 30 meters, where a change in the stability of the points
was observed a few meters earlier for Otsu’s method. For KL Divergence method, compared
with the higher exposure, the number of defections was also lower. As before more than three
points where detected along the experiment, which could be from segmented points from
background, introduced as noise given the minimization is over fitting the original ROI.

Figure 5.13: Overall number of detected with respect to increasing distance for SOTA and
adaptive methods. (500 us).
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Challenging Heading

To assess the scenario described in Chapter 3, illustrated in Figure. 3.8 with LEDs close
to another in the image with certain headings w.r.t RX, the final set of experiments uses a
heading where this scenario happens to evaluate as the distance between the RX and TX
increases the effect in the decoding. The static method seems to have a lower error rate than
the adaptive methods at the first distance of 5m (Figure. 5.14 ). However, it is difficult to
effectively compare the methods given the lack of precision necessary for duplicating the same
heading. For instance, with Otsu’s method in the initial distance of 5m the LEDs ”1” and ”3”
interfere with each other, illustrated in Figure. 5.15.

Figure 5.14: (a) Heading experiment: Error rate with respect to increasing distance (1000 us).

(a) Signal ”0” and ”3” are present, missing Signal
”1”

(b) Pixel interference causing a failure in decoding

Figure 5.15: Otsu signal ID’s at 5m.

However, when analyzing the detected points over distance, there is a significant differ-
ence between the static and adaptive methods, as shown in Figure. 5.16. Initially, the static
method detects all 3 LEDs, with a low error rate. However, when transitioning to 10 meters,
the detection of the points decline, only detecting two points, confirming the disadvantage of
the SOTA method with neighborhood separation mentioned in Chapter 3, even though the
points does not converge they are detected as a single marker. Effect that does not occur for
the adaptive methods, detecting three points up to 15 meters. Further from 15 meters the
stability of the points detected decreases, which may explain the points being successfully
extracted less frequently.
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Figure 5.16: Heading experiment: Overall number of detected points with respect to increasing
distance (1000us).

However, in Figure. 5.16, at a distance of approximately 20 meters indicates where the
points converge, resulting in the detection of only two points. Although the decoding of the
signal was not successful, it demonstrates the potential and higher detection accuracy of the
adaptive methods compared with the SOTA using static thresholding. Further efforts would
be needed to solve the issue of pixel interference.

As shown in the Figure. 5.17, Signals ”1” and ”3” had a low decoding when keeping
this challenging orientation, demonstrating the importance of orientation.

5.3 Evaluation

The results obtained from the experiments effectively compared the SOTA method using
static threshold approach with the adaptive thresholding methods. In terms of distance, the
adaptive methods had a higher signal decoding rate. However, in the heading experiments the
SOTA method achieved lower error rates. An explanation could be the inability to replicate
the same heading conditions for the set of experiments, where would be needed to compare
them using the same dataset.

There is a chance that pixel interference will affect the adaptive centroid calculation
during the CCA process if points that are close to each other connect, which would reflect the
decoding error, additional investigation is required to validate this hypothesis, in addition to
implementing erosion techniques to prevent such occurrences.

In terms of detection, there is a significant difference, detecting the LED continuously
along the 30 meters, demonstrating the potential and opportunity of the proposed solution.
Comparing the adaptive methods applied, Otsu’s method outperformed KL Divergence min-
imization and the SOTA method in terms of decoding and detection. KL achieved a higher
decoding rate than the static method, but introduced more noise in the segmentation process.

Finally, the results demonstrate we can achieve lower error rates by reducing exposure
at the cost of decreasing the operating range, with the adaptive methods having a smaller
impact on the communication range compared to the static method.
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Figure 5.17: Heading experiment: Comparison of signal decoding rate with respect to increas-
ing distance for SOTA and adaptive methods (1000us).
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6 Conclusion

This thesis aimed to develop an adaptive thresholding algorithm to enable the detection
of UV-LEDs in the UVDAR System. The study investigated the constraints of the current
state-of-the-art approach, supported by analyzing data from previous experiments.

An ROI approach was proposed, performing local processing utilizing the tracking al-
gorithm as feedback. The ROI processing strategies ensure effective segmentation to provide
the location of the UV LEDs to the rest of the system.

The motivation for the ROI approach was inspired by multi-robot operation, allowing it
to adapt to process multiple UAVs locally independently to improve the decoding accuracy of
each signal present. The method was incorporated into the UVDAR system, and tested with
different experiments in the Gazebo simulator. Furthermore, several real-world experiments
were conducted.

All of the following tasks have been completed in accordance with the thesis requirement:

(i) The state-of-the-art from OCC was studied and current limitations for integration with
UAVs were discussed in Chapters 1 and 2.

(ii) The UVDAR system was studied and the limitations were discussed in Chapter 3.
(iii) The data from previous experiments was extracted and analyzed characterizing the

distributions of the pixel intensities of UV LEDs in Chapter 3.
(iv) The design of the adaptive algorithm is described in Chapter 4 and compared with the

static method in Chapter 5.
(v) The system was verified through the simulation environment, and real-world experiments

were conducted to evaluate the performance regarding error rate with increasing distance
compared with the static method in Chapter 5.

6.1 Future work

Based on the results presented, it will be necessary to investigate further scenarios of
pixel interference. Therefore, a dual-RTK setup will be necessary for accurately replicating
the orientations and comparing the performance.

As for the development of the algorithm, there is room for improvement since new
adaptive thresholding techniques can be developed and tested in the algorithm, being simple
to switch the adaptive technique in the ROI algorithm.

It will also be necessary to analyze in more detail the decoding at long distances because
it showed better detection of the LEDs but the signal was not successfully detected, so it may
be necessary to optimize the detection process for long distances.

Additionally, to perform further experiments for comparison with multiple UAVs to
evaluate the difference of having multiple TX with different distances, as this is one of the
motivations and strengths of the adaptive algorithm.

Finally, we primarily concentrated on assessing the performance of communication; how-
ever, it would be valuable to consider evaluating the performance of localization as well, given
that the small ROI approach enhances detection and could also have lower pose uncertainty.
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A Statistics results of desert experiments

Figure A.1: PMF and CDF from TX (Signal 5) at 5m and TX (Signal 7) at 12m

Table A.1: Statistical comparison between Signal 5 (5 meters) and Signal 7 (10 meters)

Statistic Signal 5 ON Signal 5 OFF Signal 7 ON Signal 7 OFF

Count 1,631,885.000 1,676,708.000 1,657,246.000 1,314,125.000
Mean 239.791 31.644 131.938 61.255
Std Dev 46.882 9.280 78.428 17.844
Min 50.000 22.000 50.000 22.000
25% 255.000 25.000 68.000 58.000
50% 255.000 32.000 74.000 67.000
75% 255.000 34.000 214.000 70.000
Max 255.000 100.000 255.000 100.000
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Table A.2: Statistical comparison between Signal 5 (5 meters) and Signal 7 (12 meters)

Statistic Signal 5 ON Signal 5 OFF Signal 7 ON Signal 7 OFF

Count 2,677,259.000 2,518,899.000 3,270,466.000 2,533,910.000
Mean 238.473 35.226 124.485 63.509
Std Dev 47.432 13.415 78.638 12.019
Min 50.000 22.000 50.000 25.000
25% 255.000 30.000 64.000 60.000
50% 255.000 32.000 71.000 64.000
75% 255.000 34.000 204.000 68.000
Max 255.000 100.000 255.000 100.000

Table A.3: Statistical comparison between Signal 5 (5 meters) and Signal 7 (15 meters)

Statistic Signal 5 ON Signal 5 OFF Signal 7 ON Signal 7 OFF

Count 2,553,502.000 2,517,564.000 3,502,441.000 2,740,004.000
Mean 247.721 31.394 117.180 67.051
Std Dev 29.294 5.432 64.212 14.327
Min 50.000 22.000 50.000 24.000
25% 255.000 29.000 68.000 64.000
50% 255.000 31.000 78.000 69.000
75% 255.000 33.000 165.000 73.000
Max 255.000 100.000 255.000 100.000

Table A.4: Statistical comparison between Signal 5 (5 meters) and Signal 7 (20 meters)

Statistic Signal 5 ON Signal 5 OFF Signal 7 ON Signal 7 OFF

Count 1,926,968.000 1,534,208.000 394,754.000 439,891.000
Mean 202.065 37.691 99.949 50.724
Std Dev 84.417 11.929 44.619 19.155
Min 50.000 23.000 50.000 22.000
25% 133.000 29.000 64.000 30.000
50% 255.000 31.000 76.000 58.000
75% 255.000 50.000 130.000 65.000
Max 255.000 100.000 255.000 100.000

Table A.5: Statistical comparison between Signal 5 (5 meters) and Signal 7 (23 meters)

Statistic Signal 5 ON Signal 5 OFF Signal 7 ON Signal 7 OFF

Count 7,426,407.000 4,267,125.000 56,982.000 155,917.000
Mean 162.555 52.546 84.249 42.280
Std Dev 93.643 14.570 13.213 21.540
Min 50.000 23.000 50.000 26.000
25% 63.000 35.000 75.000 30.000
50% 207.000 58.000 84.000 31.000
75% 255.000 64.000 94.000 40.000
Max 255.000 100.000 118.000 100.000

CTU in Prague Department of Cybernetics



62/70

Table A.6: Descriptive Statistics for th150 (10m)

Statistic Signal 5 ON Signal 5 OFF Signal 7 ON Signal 7 OFF

Count 504,266.000 512,974.000 500,376.000 392,448.000
Mean 249.937 31.226 131.183 61.874
Std Dev 26.567 7.328 81.271 15.135
Min 50.000 22.000 50.000 22.000
25% 255.000 26.000 67.000 62.000
50% 255.000 32.000 71.000 67.000
75% 255.000 34.000 227.000 70.000
Max 255.000 100.000 255.000 100.000

Table A.7: Descriptive Statistics for th100 (10m)

Statistic Signal 5 ON Signal 5 OFF Signal 7 ON Signal 7 OFF

Count 516,135.000 517,323.000 571,537.000 455,982.000
Mean 247.948 30.946 133.429 60.745
Std Dev 29.930 6.851 78.340 18.715
Min 50.000 22.000 50.000 22.000
25% 255.000 25.000 68.000 53.000
50% 255.000 32.000 84.000 66.000
75% 255.000 34.000 216.000 70.000
Max 255.000 100.000 255.000 100.000

Table A.8: Descriptive Statistics for th50 (10m)

Statistic Signal 5 ON Signal 5 OFF Signal 7 ON Signal 7 OFF

Count 611,484.000 646,411.000 585,333.000 465,695.000
Mean 224.538 32.534 131.128 61.233
Std Dev 64.450 11.911 75.978 19.025
Min 50.000 22.000 50.000 22.000
25% 255.000 25.000 68.000 55.000
50% 255.000 31.000 86.000 67.000
75% 255.000 34.000 204.000 70.000
Max 255.000 100.000 255.000 100.000

Table A.9: Descriptive Statistics for th150 (12m)

Statistic Signal 5 ON Signal 5 OFF Signal 7 ON Signal 7 OFF

Count 883,575.000 834,497.000 1,004,762.000 793,472.000
Mean 236.293 36.357 125.894 62.867
Std Dev 50.812 15.281 80.635 12.007
Min 50.000 22.000 50.000 25.000
25% 255.000 30.000 64.000 59.000
50% 255.000 32.000 70.000 64.000
75% 255.000 35.000 211.000 68.000
Max 255.000 100.000 255.000 100.000
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Table A.10: Descriptive Statistics for th100 (12m)

Statistic Signal 5 ON Signal 5 OFF Signal 7 ON Signal 7 OFF

Count 957,056.000 867,778.000 1,156,995.000 896,740.000
Mean 233.337 37.035 124.008 63.659
Std Dev 53.842 16.317 77.568 12.443
Min 50.000 23.000 50.000 25.000
25% 255.000 30.000 64.000 60.000
50% 255.000 33.000 71.000 65.000
75% 255.000 35.000 201.000 69.000
Max 255.000 100.000 255.000 100.000

Table A.11: Descriptive Statistics for th50 (12m)

Statistic Signal 5 ON Signal 5 OFF Signal 7 ON Signal 7 OFF

Count 836,628.000 816,624.000 1,108,709.000 843,698.000
Mean 246.651 32.148 123.705 63.952
Std Dev 32.473 4.391 77.893 11.537
Min 50.000 23.000 50.000 26.000
25% 255.000 30.000 64.000 60.000
50% 255.000 32.000 71.000 65.000
75% 255.000 34.000 202.000 69.000
Max 255.000 100.000 255.000 100.000

Table A.12: Descriptive Statistics for th150 (15m)

Statistic Signal 5 ON Signal 5 OFF Signal 7 ON Signal 7 OFF

Count 823,173.000 816,698.000 641,858.000 525,615.000
Mean 249.248 31.328 124.381 63.694
Std Dev 25.443 5.042 74.424 13.248
Min 50.000 22.000 50.000 27.000
25% 255.000 29.000 67.000 62.000
50% 255.000 31.000 73.000 67.000
75% 255.000 33.000 196.000 71.000
Max 255.000 100.000 255.000 100.000

Table A.13: Descriptive Statistics for th100 (15m)

Statistic Signal 5 ON Signal 5 OFF Signal 7 ON Signal 7 OFF

Count 841,872.000 814,615.000 1,350,087.000 1,047,451.000
Mean 248.835 31.462 116.257 67.577
Std Dev 26.240 5.044 62.731 14.565
Min 50.000 23.000 50.000 24.000
25% 255.000 29.000 69.000 64.000
50% 255.000 31.000 79.000 69.000
75% 255.000 34.000 163.000 74.000
Max 255.000 100.000 255.000 100.000
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Table A.14: Descriptive Statistics for th50 (15m)

Statistic Signal 5 ON Signal 5 OFF Signal 7 ON Signal 7 OFF

Count 888,457.000 886,251.000 1,510,496.000 1,166,938.000
Mean 245.250 31.392 114.946 68.092
Std Dev 34.708 6.084 60.514 14.357
Min 50.000 23.000 50.000 24.000
25% 255.000 28.000 69.000 65.000
50% 255.000 31.000 79.000 69.000
75% 255.000 34.000 159.000 75.000
Max 255.000 100.000 255.000 100.000

Table A.15: Descriptive Statistics for th150 (20m)

Statistic Signal 5 ON Signal 5 OFF Signal 7 ON Signal 7 OFF

Count 622,162.000 499,285.000 20,019.000 24,465.000
Mean 204.848 37.556 134.683 41.582
Std Dev 84.088 12.031 67.832 13.923
Min 50.000 23.000 51.000 23.000
25% 157.000 29.000 60.000 29.000
50% 255.000 31.000 163.000 35.000
75% 255.000 50.000 193.000 57.000
Max 255.000 100.000 255.000 89.000

Table A.16: Descriptive Statistics for th100 (20m)

Statistic Signal 5 ON Signal 5 OFF Signal 7 ON Signal 7 OFF

Count 647,895.000 512,139.000 62,960.000 81,881.000
Mean 202.596 37.747 123.785 42.301
Std Dev 84.207 12.010 55.868 16.107
Min 50.000 23.000 50.000 23.000
25% 139.000 29.000 64.000 29.000
50% 255.000 31.000 133.000 33.000
75% 255.000 50.000 174.000 60.000
Max 255.000 99.000 237.000 100.000

Table A.17: Descriptive Statistics for th50 (20m)

Statistic Signal 5 ON Signal 5 OFF Signal 7 ON Signal 7 OFF

Count 656,911.000 522,784.000 311,775.000 333,545.000
Mean 198.906 37.764 92.905 53.462
Std Dev 84.829 11.749 36.786 19.364
Min 50.000 23.000 50.000 22.000
25% 119.000 29.000 64.000 31.000
50% 255.000 31.000 72.000 62.000
75% 255.000 51.000 116.000 66.000
Max 255.000 100.000 237.000 100.000
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Table A.18: Descriptive Statistics for th150 (23m)

Statistic Signal 5 ON Signal 5 OFF Signal 7 ON Signal 7 OFF

Count 2,424,860.000 1,382,999.000 0.000 0.000
Mean 163.824 52.569 NaN NaN
Std Dev 94.562 14.450 NaN NaN
Min 50.000 24.000 NaN NaN
25% 63.000 36.000 NaN NaN
50% 234.000 58.000 NaN NaN
75% 255.000 64.000 NaN NaN
Max 255.000 100.000 NaN NaN

Table A.19: Descriptive Statistics for th100 (23m)

Statistic Signal 5 ON Signal 5 OFF Signal 7 ON Signal 7 OFF

Count 2,465,159.000 1,411,193.000 4.000 10.000
Mean 162.584 52.782 105.000 29.400
Std Dev 93.551 14.517 0.000 0.516
Min 50.000 23.000 105.000 29.000
25% 63.000 36.000 105.000 29.000
50% 206.000 59.000 105.000 29.000
75% 255.000 64.000 105.000 30.000
Max 255.000 100.000 105.000 30.000

Table A.20: Descriptive Statistics for th50 (23m)

Statistic Signal 5 ON Signal 5 OFF Signal 7 ON Signal 7 OFF

Count 2,536,388.000 1,472,933.000 56,978.000 155,907.000
Mean 161.315 52.297 84.248 42.281
Std Dev 92.829 14.727 13.212 21.541
Min 50.000 23.000 50.000 26.000
25% 63.000 35.000 75.000 30.000
50% 185.000 58.000 84.000 31.000
75% 255.000 64.000 94.000 40.000
Max 255.000 100.000 118.000 100.000

CTU in Prague Department of Cybernetics



66/70

B Statistics results of real world experiments

Table B.1: Adaptive Otsu Thresholding (1000 us)

Nearest Distance Total Entries Total Errors Error Rate

5 7,854 564 0.071811
10 6,288 542 0.086196
15 6,424 3,538 0.550747
20 6,348 4,645 0.731727
25 6,492 6,373 0.981670
30 8,657 8,650 0.999191

Table B.2: KL Adaptive Method (1000 us)

Nearest Distance Total Entries Total Errors Error Rate

5 7,842 754 0.096149
10 6,685 1,061 0.158714
15 9,135 5,945 0.650794
20 6,846 6,115 0.893222
25 6,378 6,367 0.998275
30 9,109 9,101 0.999122

Table B.3: Standard Static Thresholding (1000 us)

Nearest Distance Total Entries Total Errors Error Rate

5 7,332 579 0.078969
10 6,282 506 0.080548
15 6,325 3,537 0.559209
20 4,817 4,690 0.973635
25 4,266 4,236 0.992968
30 4,643 4,475 0.963816

Table B.4: Adaptive Otsu Thresholding (500 us)

Nearest Distance Total Entries Total Errors Error Rate

5 6,888 373 0.054152
10 6,261 274 0.043763
15 6,346 1,534 0.241727
20 6,483 5,575 0.859941
25 6,410 6,338 0.988768
30 6,881 6,797 0.987792
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Table B.5: KL Adaptive Method (500 us)

Nearest Distance Total Entries Total Errors Error Rate

5 9,596 2,098 0.218633
10 7,451 1,447 0.194202
15 8,109 4,945 0.609816
20 6,767 6,585 0.973105
25 6,204 6,110 0.984848
30 7,374 7,238 0.981557

Table B.6: Standard Static Thresholding (500 us)

Nearest Distance Total Entries Total Errors Error Rate

5 11,648 688 0.059066
10 6,288 263 0.041826
15 6,231 3,714 0.596052
20 4,203 3,826 0.910302
25 2,108 1,464 0.694497
30 2,968 2,944 0.991914

Table B.7: Special Scenario: Experiment at Night using Otsu Adaptive Method

Nearest Distance Total Entries Total Errors Error Rate

5 3,639 407 0.111844
10 8,725 988 0.113238
15 26,407 2,093 0.079259
20 5,250 309 0.058857
25 5,305 411 0.077474
30 38,511 35,394 0.919062

Table B.8: Otsu Method for the Heading Experiment

Nearest Distance Total Entries Total Errors Error Rate

5 16,914 10,882 0.643372
10 6,232 4,285 0.687580
15 6,193 4,251 0.686420
20 5,086 3,067 0.603028
25 4,339 2,440 0.562342
30 4,706 3,610 0.767106

Table B.9: KL Method for the Heading Experiment

Nearest Distance Total Entries Total Errors Error Rate

5 9,625 5,467 0.568000
10 6,240 4,286 0.686859
15 6,148 4,223 0.686890
20 5,201 3,397 0.653144
25 4,499 3,927 0.872861
30 4,837 4,725 0.976845
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Table B.10: Static Method for the Heading Experiment

Nearest Distance Total Entries Total Errors Error Rate

5 6,026 837 0.138898
10 4,194 2,259 0.538627
15 4,192 2,162 0.515744
20 4,197 2,369 0.564451
25 4,353 3,895 0.894785
30 3,304 3,156 0.955206
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C Source code for Adaptive Algorithm

Github Repository

https://github.com/MarlonRiv/uvdar core

https://github.com/MarlonRiv/uvdar core/blob/master/src/detector.cpp

https://github.com/MarlonRiv/uvdar core/blob/master/include/detect/uv led detect
adaptive.cpp

https://github.com/MarlonRiv/uvdar core/blob/master/include/detect/uv led detect
adaptive.h

CTU in Prague Department of Cybernetics

https://github.com/MarlonRiv/uvdar_core
https://github.com/MarlonRiv/uvdar_core/blob/master/src/detector.cpp
https://github.com/MarlonRiv/uvdar_core/blob/master/include/detect/uv_led_detect_adaptive.cpp
https://github.com/MarlonRiv/uvdar_core/blob/master/include/detect/uv_led_detect_adaptive.cpp
https://github.com/MarlonRiv/uvdar_core/blob/master/include/detect/uv_led_detect_adaptive.h
https://github.com/MarlonRiv/uvdar_core/blob/master/include/detect/uv_led_detect_adaptive.h
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D Used Software

In compliance with ethical principles and Methodical guideline No. 5/2023.

I declare that AI tools were not used for the generation of any of the texts in this thesis.

AI generative tools were only used for proofreading and evaluation of the written texts
for improvement and review of clarity.
During the development of the technical part, Github Copilot was only used for auto-
completion used for testing and ChatGPT for learning and as a source for consultation
on modern C++ coding practices for optimizing the proposed solution.

CTU in Prague Department of Cybernetics

https://www.cvut.cz/sites/default/files/content/d1dc93cd-5894-4521-b799-c7e715d3c59e/en/20240220-methodical-guideline-no-52023-rev2.pdf
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