
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of master’s thesis

Profiler for the R programming language

Bc. Karolina Hrnčiříková

doc. Ing. Filip Křikava, Ph.D.

Informatics

System Programming

Department of Theoretical Computer Science

until the end of summer semester 2024/2025

Instructions

The R language is slow. Because of this, R users tend to rewrite the performance-critical

parts in C/C++ or Fortran. However, identifying which parts should be replaced by native

code is not trivial. To prevent wasting time optimizing the wrong part of the codebase,

developers use profilers to guide them to performance-critical and/or memory-sensitive

code. Unfortunately, the existing R profilers are limited, providing just a snapshot of the

call stack.

Analyze the current state of the Rprof and its implementation in the R virtual machine.

Explore ways to implement a new profiler that would allow one to tease apart the time

spent running in the R interpreter and executing native code. Explore ways to connect

these measurements to the code lines. Prototype such a profiler, ideally with minimal

changes to the R virtual machine.

Electronically approved by doc. Ing. Jan Janoušek, Ph.D. on 23 January 2024 in Prague.

Master’s thesis

Profiler for the R programming language

Bc. Karolina Hrnčiř́ıková

Department of Theoretical Computer Science

Supervisor: doc. Ing. Filip Křikava, Ph.D.

May 9, 2024

Acknowledgements

I would like to express my gratitude and thanks to my supervisor Filip Křikava
for his valuable insights and guidance.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipulated
by the Act No. 121/2000 Coll., the Copyright Act, as amended, in particular
that the Czech Technical University in Prague has the right to conclude a
license agreement on the utilization of this thesis as a school work under the
provisions of Article 60 (1) of the Act.

In Prague on May 9, 2024

Czech Technical University in Prague

Faculty of Information Technology

© 2024 Karolina Hrnčǐŕıková. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of In-
formation Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis
Hrnčǐŕıková, Karolina. Profiler for the R programming language. Master’s the-
sis. Czech Technical University in Prague, Faculty of Information Technology,
2024.

Abstrakt

Jazyk R vyniká v pr̊uzkumu a analýze dat, ale často čeĺı výzvám v oblasti
efektivity. R je dynamicky typováno, má automatický sběr paměti a co je
nejd̊uležitěǰśı, jedna z jeho hlavńıch implementaćı, GNU R, interpretuje AST v
kombinaci s kompilaćı just-in-time do bajtkódu. Všechny tyto faktory přisṕıvaj́ı
k tomu, že R je poměrně pomalý jazyk.

Pro zlepšeńı výkonu jsou uživatelé nuceni přepisovat kód citlivý na výkon v C,
C++ nebo ve Fortranu prostřednictv́ım baĺıčk̊u. Zjistit, které segmenty kódu
jsou pomalé, protože jsou prováděny v interpretu R, však neńı snadné, protože
současné metody profilováńı nerozlǐsuj́ı mezi prováděńım kódu nativně a v R.

V této práci navrhujeme profiler, který dokáže rozlǐsit R a nativńı vykonáváńı
kódu. Inspirováni Scalene, profilerem pro Python, implementujeme do GNU
R 4.3.3 prototyp našeho profileru. Profiler hodnot́ıme ve srovnáńı s Rprof,
nejpouž́ıvaněǰśım R profilerem.

Kĺıčová slova profilováńı, R, GNU R, vzorkováńı, interpret, SEXP, Scalene,
Rprof

vii

Abstract

The R language excels in data exploration and analysis but often faces chal-
lenges regarding execution speed and efficiency. R is dynamically typed, has
automatic memory collection, and, most importantly, one of its main implemen-
tations, GNU R, interprets AST in combination with just-in-time compilation
into bytecode. All these factors contribute to R being a comparatively slow
language.

To improve performance, users are forced to rewrite performance-sensitive code
in C, C++, or Fortran through packages. However, finding out which code
segments are slow because they are executed in the R interpreter is not easy
because the current profiling methods do not distinguish between native and
R execution.

In this thesis, we propose a profiler that can distinguish between R and native
execution. Inspired by Scalene, a profiler for Python, we implement a proof-
of-concept profiler into GNU R 4.3.3. We evaluate the profiler in comparison
to Rprof, the most used R profiler.

Keywords profiling, R, GNU R, sampling, interpreter, SEXP, Scalene, Rprof

viii

Contents

1 Introduction 1
1.1 Aim of the Thesis . 2
1.2 Structure of the Thesis . 2

2 Preliminaries 3
2.1 The R Language . 3
2.2 Profiling R Code . 4
2.3 Scalene . 5

2.3.1 CPU Profiling . 6
2.3.2 Conclusion . 8

2.4 Conclusion . 8

3 Representation of R Code 9
3.1 SEXP . 9
3.2 Call Stack in R . 13

3.2.1 Built-in Functions . 13

4 Implementation 15
4.1 Signal Handling . 15
4.2 Design of the Profiler . 17
4.3 Initialization of the Profiler . 18

4.3.1 Profiler State . 18
4.3.2 Determining Lines of Code 19

4.4 Taking Samples . 22
4.4.1 Walking the Call Stack 22

4.5 Conclusion . 25

5 Assesment 27
5.1 Accuracy . 27

5.1.1 Comparing Accuracy . 30
5.2 Performance . 31
5.3 Conclusion . 32

6 Conclusions 33
6.1 Future Work . 33

ix

Bibliography 35

A Acronyms 39

B Implememntation of Waiting Functions 41

C Programs for Evaluating Accuracy 43

D Contents of Attachments 47

x

List of Figures

2.1 Using Rprof . 5
2.2 Rprof output . 5
2.3 Demo of Scalene . 6
2.4 Attributting time in Scalene . 8

3.1 An example of R code . 9
3.2 High-level representation of 3.1 . 10
3.3 The definition of SEXPREC . 10
3.4 Definition of symsxp struct . 10
3.5 High-level SEXP representation of 3.1 12
3.6 Concrete example of SEXP representation of 3.1 12

4.1 Setting up a signal handler . 16
4.2 Signal handler . 17
4.3 Setting ITIMER VIRTUAL . 17
4.4 Hashmap entry . 19
4.5 Updating hashmap entry . 19
4.6 Assigning lines of code to LANGSXP 21
4.7 Function call spanning over multiple lines 22
4.8 Handling samples . 23
4.9 Obtaining the current time . 23
4.10 Obtaining the current time . 24
4.11 Profiling function in R . 25

5.1 Code calling C and R functions . 28
5.2 Profiling output for code in 5.1 . 29

B.1 Waiting function in R . 41
B.2 Waiting function in C . 42

C.1 Code p01 . 43
C.2 Code p02 . 44
C.3 Code p03 . 45
C.4 Code p04 . 45
C.5 Code p05 . 46

xi

Chapter 1
Introduction

The R programming language, known for its robust capabilities in statisti-
cal computing and plotting, is widely adopted across various domains of data
analysis in both academia and industry. R excels in data exploration and
statistical modelling but often faces challenges regarding execution speed and
efficiency. R is dynamically typed, it has automatic memory collection, and
most importantly, one of its main implementations, GNU R [1], interprets AST
in combination with bytecode. All these factors contribute to the fact that R
is a comparatively slow language.

R allows for extending its capabilities via packages. While these can be written
in R for performance-sensitive code, many of these packages are written in
higher-performance languages like C and C++. These packages expand R’s
functionality while attempting to mitigate performance slowdown by leveraging
faster execution at the native code level. Suppose we can identify which code is
executed by R’s interpreter and which parts run natively. Then, programmers
could use this knowledge to rewrite areas that execute R with code that uses
native libraries to enhance performance.

In the realm of profiling, a tool like Scalene [2] for Python offers insights by dis-
tinguishing between Python execution time and native execution time within
Python programs. Scalene serves as an example of how profiling can aid in
optimizing performance, particularly in a language that shares similar charac-
teristics to R, such as being high-level, interpreted, and extensible by C code.

1

1. Introduction

1.1 Aim of the Thesis

Inspired by the capabilities of Scalene, this thesis proposes the development of
a similar profiling tool for the R language. This profiler aims to differentiate
between time spent executing R code and time spent within native execution.
The primary objective of this tool is to provide R programmers with a deeper
understanding of where their R programs spend time, thereby identifying inef-
ficient code, some of which can be rewritten in C/C++.

This profiler is a proof of concept. It has been developed for R version 4.3.3
under Linux.

1.2 Structure of the Thesis

The rest of the thesis is organized as follows. The second chapter introduces
the R language and its mostly used profiler. Then, it overviews Scalene, a point
of reference for our profiler. The third chapter describes R internals that are
necessary to understand our implementation of a profiler. The fourth chapter
shows in detail how the new profiler is implemented. It covers adding signal
handling, assigning lines of code and more. The fifth chapter presents the
assesment of our profiler. We analyze its outputs on their own and in contrast
to Rprof. The last chapter summarizes the most important results of the thesis
and offers further improvements.

2

Chapter 2
Preliminaries

In this chapter, we review some of the key concepts used in the thesis. First, we
briefly describe the R language, its main features and how it is used. Then, we
will review the current methods for profiling R code. Lastly, we will overview
Scalene, a Python profiler that can distinguish between Python execution and
native execution because it serves as an inspiration for our R profiler.

2.1 The R Language

R is a programming language designed with statistical computing and data vi-
sualization in mind. It originated as a GNU project based on the S language [3].

R is known for its robust ecosystem of extension packages, allowing users to per-
form a wide range of statistical techniques, from simple calculations to complex
predictive modelling. Furthermore, the language is highly extensible, support-
ing seamless integration with other programming languages like C and C++,
which enhances its performance and capabilities. That is especially useful since
the GNU R implementation of R either interprets over an abstract syntax tree
(AST) or bytecode1, which means that executing R code is slow in comparison
to compiled languages [1].

The language features dynamic typing and automatic memory management
(garbage collection (GC)), simplifying coding by freeing the user from man-
ual memory handling. As a functional programming language, R supports
functions as first-class objects. Moreover, R employs lazy evaluation, meaning
expressions are not computed until their values are actually needed. This can
lead to efficiency improvements.

1GNU R has got just-in-time compilation from AST into bytecode. By default, a code
is compiled into bytecode after 3 runs.

3

2. Preliminaries

R has many different modes of usage. It can be used interactively in REPL
environments and consoles, as scripts, as notebooks (for example, Jupyter note-
books [4]), or integrated with markdown and many more. It does not make
much sense to profile the interactive use of R. Our profiler will focus on longer-
running R code, especially without further user input.

2.2 Profiling R Code

Currently, there are not many ways to identify performance issues of R code.
One way is to manually use the system.time() function [5]. This has the
drawback that we might track only parts we believe might be expensive, and not
analyze the program as a whole. And then there is Rprof, the most commonly
used sampling profiler for R, which is built into R itself. Apart from profiling
the CPU, it can also profile memory and the usage of GC. It aims to profile at
a function level.

Rprof is a sampling profiler, i.e., it operates by periodically stopping the
program execution and inspecting its call stack. Rprof developers chose the
ITIMER_PROF alarm which generates SIGPROF signal [6]. ITIMER_PROF decre-
ments the timer when the application is both in user space or kernel space [6].
The Rprof’s timer is set by default to 20 ms and, on Linux systems, can not
be set below 10 ms. Sending signals at an even faster rate is unrealistic due to
the OS overhead and the pace at which the profilers can capture samples. The
signal handler triggered at the reception of SIGPROF signal directly takes and
processes a sample. It walks the stack frame, noting each function. If other
options, such as memory profiling, are enabled, then it processes that as well.

Let us look at how we can work with Rprof. In Figure 2.1, we can see an
example of code that computes factorials. On line 1, we start the profiling by
calling the Rprof function [7]. It takes as an argument a file into which the
output is written. Then, there is the code that we want to profile. Finally, to
end profiling, the Rprof function is called yet again, this time with argument
NULL [7]. There is a function summaryRprof [8] to inspect the data, to which
we feed the output file.

For instance, if we run the code 2.1, the output might contain something like
what we can see in Figure 2.2. Rprof measures for each function two types of
data: how much time we spent in the function itself, denoted by self, and how
much time we spent in the function, including nested calls to other functions,
denoted by total. So, if we look at the row with lapply, we can see that we
spend little time executing the function itself, specifically 0.8 s, which is 3.37%
of the whole execution time. However, if we include the time we spent in the
anonymous function, defined in lines 11 to 13, and the facto function, then
we spent the whole execution time, 23.76 s, in the lapply function.

Although this information provides insight into where the execution spent the
most time, we do not know much about the nature of the execution. For
example, we do not know whether some code is executed in native or in R. This
could help us identify R segments viable for being rewritten using packages.

4

2.3. Scalene

1 Rprof (" outputfile .txt ")
2
3 facto <- function (n) {
4 if (n == 0) {
5 return (1)
6 } else {
7 return (n * facto (n - 1))
8 }
9 }

10
11 lapply (1:1000000 , function (i) {
12 facto (30)
13 })
14
15 Rprof (NULL)
16
17 summary <- summaryRprof (" outputfile .txt ")
18 print (summary)

Figure 2.1: This snippet demonstrates how we can use the Rprof profiler. First,
we need to start the profiler on line 1. Then, we stop it at line 15. The output
file itself does not contain analyzed data, just some metadata and then the
contents of the call stack taken at each sample. Therefore, we further analyze
it using the summaryRprof function.

self.time self.pct total.time total.pct
"facto" 22.48 94.61 22.50 94.70
"lapply" 0.80 3.37 23.76 100.00
"FUN" 0.46 1.94 22.96 96.63

Figure 2.2: This is part of an output we got when running 2.1. The output
sorts the functions in two ways, based on the self data and then based on
the total data. This snippet is based on self. In general, we can have more
functions in the total ordering because they transitively acquire time from the
nested calls while having self.time equal to zero.

2.3 Scalene

Our profiler for the R language draws inspiration from Scalene, a profiler for
Python, made by Berger et al. [2]. It offers comprehensive profiling capabilities
spanning CPU, GPU, and memory usage analysis. Unsurprisingly, it became
very popular and has got over 11,000 stars on GitHub [2] 2. In Figure 2.3, we
can see a little demo of Scalene’s profiling output. Our objective is to adapt
its principles to align with the specific requirements of our profiler for the R
language.

Python’s performance is notably impeded by its dynamic typing system and the
overhead of GC. CPython, the predominant stack-based bytecode interpreter
for Python implemented in C, commonly introduces a performance penalty
ranging from one to two orders of magnitude when compared to native code

2Moreover, the paper introducing Scalene [9] won the OSDI 2023 Best Paper Award [10]

5

2. Preliminaries

Figure 2.3: This figure shows an example of a profiling output for the code
that can be seen in the lower right part of the picture [11]. In text, the high-
level overview is that dark colours correspond to Python execution and lighter
colours correspond to native execution. The first column represents CPU pro-
filing. Then, there are multiple columns analyzing memory consumption; dark
green shows that the memory was allocated within Python, and light green
that it was allocated from native code. Scalene measures both peak and av-
erage memory consumption. Additionally, it introduces a new metric called
copy volume, which notifies us of copying across the Python-native execution
boundary. In our example, the copy volume spikes on line 5, which can be
reduced by removing the outer np.array() call on the same line.

execution. In response to these challenges, programmers seek ways to identify
segments of code executed within the Python interpreter and replace them with
native code alternatives. However, existing profiling tools fail to adequately
differentiate and report between code executed natively and within the Python
interpreter. Thus, the emergence of Scalene addressed this critical gap, offering
a new solution to the profiling challenge.

2.3.1 CPU Profiling

Scalene employs sampling to profile CPU usage. Sampling profilers operate by
periodically stopping program execution and capturing the currently execut-
ing function, known as a sample. The underlying principle suggests that given
enough samples, the time spent on a particular function correlates proportion-
ally with the number of samples collected for that function [12].

To implement sampling, i.e. interrupt program execution and capture samples,
we typically employ signals. In Python, signals are exclusively handled in
the interpreter within the main thread. Scalene leverages this behaviour to
differentiate between Python execution and native execution. By periodically
sending signals, Scalene’s signal handler detects the timing of signal reception.
Immediate signal reception indicates time spent within the Python interpreter,
while a delay suggests execution outside the interpreter [9].

6

2.3. Scalene

To be more specific, Scalene maintains two counters for each profiled line: one
for native execution and another for Python execution. Scalene dispatched
signals at regular intervals, by default, every 10 ms (q) 3. Upon receiving a
signal, it records the current virtual time. When handling the following signal,
it calculates the elapsed virtual time (T) since the previous signal handling. For
Python execution, Scalene increments the counter by q. For native execution,
it increments the counter by T − q. Diagram 2.4 illustrates the differentiation
between Python execution and native execution.

This dual incrementation compensates for the lack of precise knowledge regard-
ing the exact moment of transition from Python execution to native code. The
profiler employs ITIMER_VIRTUAL, which is a timer mechanism that tracks CPU
time consumed by the process under scrutiny [6, 9]. This prevents interference
from other concurrently running processes.

Because signals are exclusively handled in the main thread, Scalene employs a
different algorithm for profiling the CPU usage of children’s threads. The key
idea lies in monkey patching blocking functions so that they time out and set a
flag informing whether the given thread is waiting/asleep or not. Then, when
a signal is received, the profiler checks the bytecode instructions of the child
threads. Suppose a child thread is not asleep and it is waiting on an instruction
that corresponds to a call to a native function. Then, Scalene attributes the
time to native execution and otherwise to Python execution. However, since
the R language lacks support for multithreading, we will not delve into the
specifics of this algorithm [9].

So, the high-level overview is that we input a piece of code we want to profile.
Then, we receive output that attributes to each line the percentage of the
execution time spent on it. Each line has information for both Python and
native execution. For our R profiler, we want the same output. Given a piece
of code, we want the output to show the percentages of time spent in R and
native execution for each line.

However, our starting point is a little different than that of Scalene. Python
already supports user-defined signal handling, but we have to add that to R.
Therefore, we need to understand the architecture or R’s interpreter, so that
we know where how to add our signal handling. Moreover, there is a library,
Frame Objects [14], to assess which line of Python code is currently executing.
There is no such library in R. Therefore, we have to add it ourselves. For
that, we need to understand R’s internal representation and how the call stack
works.

3The 10 ms period was chosen because it strikes a balance between good performance and
accuracy (and it is a common choice for sampling profilers). Further information like the rate
at which the Python interpreter executes instructions, how often is the Global Interpreter
Lock released, or at what maximum pace Scalene is able to handle signals were not needed
to be taken into account [13].

7

2. Preliminaries

Figure 2: An example profile from SCALENE’s web UI, sorted in descending order by GPU utilization. The top graphs provide a summary
for the entire program, with more detailed data reported for each active line (and, not shown, for each function). CPU time is in blue, with
different shades reflecting time taken in Python code, native code, or system/GPU time (§2). Average and peak memory consumption is in
green, with different shades distinguishing memory consumed by Python objects vs. native ones (§3); the memory timeline depicts memory
consumption over time (§5). Copy volume is in yellow (§3.5), as well as GPU utilization and GPU memory consumption (§4). Hovering over
bars provides detailed statistics in hovertips.

pure Python execu.on

Python + na.ve execu.on

q q q ...

q
T

Python: na.ve:q T-q
Figure 3: Overview of SCALENE’s inference of Python vs. native
execution. Sampling profilers depend on regular timer interrupts,
but Python defers all signals when running native code, leading
to the appearance of no time spent executing that code. SCALENE

leverages this apparent limitation to accurately attribute time spent
executing Python and native code (§2.1) in the main thread; it uses a
different algorithm for code running in threads (§2.2).

thread [31]. Also like those languages, Python defers signal
delivery until the virtual machine (i.e., the interpreter loop)
regains control, and only checks for pending signals after
specific opcodes such as jumps.

The result is that, during the entire time that Python spends
executing external library calls, no timer signals are delivered.
The effect can be that the profiler will reflect no time spent
executing native code, no matter how long it actually took. In
addition, because only main threads are interrupted, sampling
profilers can fail to account for any time spent in child threads.

2.1 Accurate Python-Native Code Profiling

SCALENE’s CPU profiler turns these limitations of Python
signals to its advantage, inferring whether a line spent its time
executing Python or native code (e.g., C). It leverages the
following insight: any delay in signal delivery corresponds
to time spent executing outside the interpreter. That is, if
SCALENE’s signal handler received the signal immediately
(that is, in the requested timing interval), then all that time
must have been spent in the interpreter. If it was delayed, it
must be due to running code outside the interpreter, which is
the only cause of delays (at least, in virtual time).

Figure 3 depicts how SCALENE handles signals and at-
tributes time to either Python or native code. SCALENE
tracks time between interrupts recording the current vir-
tual time whenever it receives a CPU timer interrupt (using
time.process_time()). When it receives the next interrupt,
it computes T , the elapsed virtual time, and compares it to the
timing interval q (for quantum).

SCALENE uses these values to attribute time spent to
Python or native code. Whenever SCALENE receives a signal,
SCALENE walks the Python stack until it reaches code being
profiled (that is, outside of libraries or the Python interpreter
itself), and attributes time to the identified line of code. SCA-
LENE maintains two counters for every line of code being
profiled: one for Python, and one for native code. Each time
a line is interrupted by a signal, SCALENE increments the
Python counter by q, the timing interval, and it increments
the native counter by T −q, the delay.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 53

Figure 2.4: The diagram shows how Scalene differentiates between Python
execution and native execution. The image is taken from [9].

2.3.2 Conclusion
To conclude, Scalene leverages the fact that in Python signals are only ever
handled in the Python interpreter. The profiler periodically sends signals and
finds the currently executing line. If there is a delay between sending a signal
and handling it in the evaluation loop, then we know that time must have been
spent in native execution. If there is no delay, then Python is being executed.

2.4 Conclusion

In summary, we briefly introduced the R language. Then, we looked at ways
to identify performance bottlenecks in R and illustrated how Rprof, its most
used profiler, works.

Currently, there is no easy way to determine which parts of the program run
in R and which in native execution. Therefore, we analysed how Scalene, a
profiler that is able to distinguish between Python and C execution, implements
CPU profiling. The key idea lies in assigning delay in obtaining signal to native
execution. Based on this observation, we want to implement our own R profiler
that would be able to differentiate between R and native execution.

8

Chapter 3
Representation of R Code

In this chapter, we document some essential aspects of the GNU R internal
representation necessary for the implementation of our profiler. Namely, we
cover S-expressions (SEXPs) and the structure of R’s call stack. Understanding
it is necessary so that the profiler can asses which line of code is being executed
and, therefore, attribute the execution times correctly.

3.1 SEXP

When profiling, we must work with the internal representation of R code so
that we know how to assess what code is currently being executed. Therefore,
in this section, we delve into how R code is internally stored and represented
at C-level. However, there is a focus on concepts we will need later on in this
thesis. For more comprehensive overview see [15], [16], and [17].

Let us consider an example depicted in Figure 3.1. As mentioned earlier,
R is primarily a functional language. Therefore, basically, everything is a
function call. For instance, the {} syntax that typically denotes a block is also
a function call, and its arguments are the lines of the block, in our example, it is
2 + foo(3) + x. The line is naturally also an expression which constitutes a
function call, where + is the function’s name, and its arguments are 2 + foo(3)
and x, and so forth. The overall structure can be seen in Figure 3.2.

1 # ‘{‘(‘+‘(‘+‘(2, foo (3)), x))
2 {
3 2 + foo (3) + x
4 }

Figure 3.1: This code snippet is a brief example of R code. It is used multiple
times in this section to illustrate the internal representation of R. On the first
line, we can see a comment, which shows how the calls stack up.

9

3. Representation of R Code

"{"
\------- "+"

|------- "+"
| |------- "2"
| \------- "foo"
| \----- "3"
\------ "x"

Figure 3.2: This diagram represents the high-level overview of the structure of
the code from Figure 3.1.

In the R language, all expressions are represented by SEXPs. Furthermore, all
values are expressed as SEXPs and are understood by the runtime. Some of
those are language objects such as function calls. These SEXPs are organized
into nested lists and create a tree-like structure. The R interpreter traverses
the SEXP representation of the code and executes the corresponding code
segments.

1 typedef struct SEXPREC {
2 // SEXPREC_HEADER
3 struct sxpinfo_struct sxpinfo ;
4 struct SEXPREC * attrib ;
5 struct SEXPREC * gengc_next_node ;
6 struct SEXPREC * gengc_prev_node ;
7 // PAYLOAD
8 union {
9 struct primsxp_struct primsxp ;

10 struct symsxp_struct symsxp ;
11 struct listsxp_struct listsxp ;
12 struct envsxp_struct envsxp ;
13 struct closxp_struct closxp ;
14 struct promsxp_struct promsxp ;
15 } u;
16 } SEXPREC ;

Figure 3.3: This code shows the definition of SEXPREC structure analogously
to how it is defined in Defn.h in GNU R [1]. The structure contains a header
and payload. In the actual implementation, the first four member variables are
enclosed in the SEXPREC HEADER macro.

1 struct symsxp_struct {
2 struct SEXPREC * pname ;
3 struct SEXPREC * value ;
4 struct SEXPREC * internal ;
5 };

Figure 3.4: This block of code shows the definition of symsxp struct as it is
written in Defn.h in GNU R [1]. Apart from primsxp struct all the other
structures in the union type in SEXPREC also contain three fields of the type
struct SEXPREC *.

10

3.1. SEXP

At the C-level, SEXPs are pointers to a SEXPREC structure. The contents of
this structure are detailed in 3.3. The first four members are part of a header,
and the variable u represents data. gengc_next_node and gengc_prev_node
aid in GC by pointing to another SEXP in the same GC generation. Then,
all objects in R can have attributes. Those can be either defined internally
(such as srcref attribute), or we can add them as R programmers. They are
represented by the attrib member variable. Lastly, the sxpinfo field contains
multiple data. Most important for us is the kind of SEXP it represents, called
the SEXPTYPE. Let us go over the relevant SEXPTYPEs in more detail:

• NILSXP represents a null value.

• SYMSXP represents symbols. The SEXPREC representing SYMSXP contains
symsxp_struct structure as its payload, whose definition can be seen
in 3.4. For us, it is significant that symsxp_struct contains a member
variable called pname. The pname field is a pointer to a CHARSXP, where
the printable name of the symbol is stored.

• LISTSXP is used to represent lists. The SEXPREC representing LISTSXP
has listsxp_struct as its payload [15]. The listsxp_struct structure
has three member variables: carval, tagval, and cdrval. The first two
fields make up the value of the current SEXP node, cdrval points to
the next item in the list, or if it is at the end, it is set to NILSXP. So,
the SEXP is not the whole list. Instead, it is only one item on the list.
Therefore, it might be better to think of LISTSXP as a cons cell [15].
There are macros such as CAR, CDR, CADR, and CDDR to simplify walking
the list.

• CLOSXP represents closures. The SEXPREC representing CLOSXP contains
closxp_struct as its payload. The closxp_struct structure has three
member variables: formals, body, and env. If a closure has parameters,
they are accessible via the formals field. The parameters are represented
using LISTSXP. The body variable represents the body of the closure.
Finally, the env field represents the enclosing environment of the closure.
This is useful, for example, because R has lexical scoping.

• LANGSXP, language expression, represents a function call. The SEXPREC
representing LANGSXP contains listsxp_struct structure as its data [15]
(the same structure as for LISTSXP). The carval member variable rep-
resents the function that is called. For instance, it can be a SYMSXP
when using the function’s name directly (such as foo()), or it can be
a LANGSXP when determining which function to call within a package
(such as package::foo()). The cdrval field represents the arguments
of the function call in the form of a LISTSXP. The tagval field embodies
a named argument [16].

• REALSXP represents numeric vectors. Values of components of the vector
correspond to the double data type in C [16].

11

3. Representation of R Code

LANGSXP
|-------SYMSXP "{"
\-------LANGSXP

|------SYMSXP "+"
|------LANGSXP
| |-------SYMSXP "+"
| |-------REALSXP 2
| \-------LANGSXP
| |-----SYMSXP "foo"
| \-----REALSXP 3
\------SYMSXP "x"

Figure 3.5: This diagram shows the code snippet from 3.1 translated into the
SEXP structure.

@c63cb388a418 06 LANGSXP g0c0 [REF(1)]
@c63cb33fe6c0 01 SYMSXP g0c0 [MARK,REF(3786),LCK,gp=0x5000]

"{" (has value)
@c63cb388a450 06 LANGSXP g0c0 [REF(1)]

@c63cb34098e8 01 SYMSXP g0c0 [MARK,REF(81),LCK,gp=0x5000]
"+" (has value)

@c63cb388a488 06 LANGSXP g0c0 [REF(1)]
@c63cb34098e8 01 SYMSXP g0c0 [MARK,REF(81),LCK,gp=0x5000]

"+" (has value)
@c63cb59db778 14 REALSXP g0c1 [REF(2)] (len=1, tl=0) 2
@c63cb388a4f8 06 LANGSXP g0c0 [REF(1)]

@c63cb39808f0 01 SYMSXP g0c0 [MARK,REF(52)] "foo"
@c63cb59db740 14 REALSXP g0c1 [REF(2)] (len=1, tl=0) 3

@c63cb3464f30 01 SYMSXP g0c0 [MARK,REF(11534)] "x"

Figure 3.6: This figure shows an example of an output to the
.Internal(inspect(quote({2 + foo(3) + x}))) command in R without
the attributes.

Now that we have gone over some of the SEXPs, we can look at how our
example from 3.1 will look in its SEXP form in diagram 3.5. We can observe
that all function calls are indeed represented by LANGSXP. In R, there is not a
special SEXP for a single numeric value. Therefore, the numeric values in the
example are represented by a vector of size equal to one by REALSXP.

SEXPs are mostly invisible to an R programmer. Nevertheless, there are func-
tions that enable us to see the internal SEXP representation of a given R code.
For instance, running .Internal(inspect(quote({2 + foo(3) + x}))) in R
provides insight into the internal structure and outputs something akin to 3.6.

12

3.2. Call Stack in R

3.2 Call Stack in R

At the C-level, R’s stack frame is represented by the RCNTXT structure, which
plays a critical role in the language’s function call management. Each time a
function is invoked, an RCNTXT structure is instantiated, effectively capturing
the state of the function call. This context is then pushed onto the front of
the call stack, ensuring that it becomes the active context. Upon function
exit, this context is removed, popped, from the stack and subsequently deleted,
maintaining the stack’s integrity.

The RCNTXT structure is composed of several variables, which collectively man-
age and record the details of the function execution environment. Most notable
among them are:

• RCNTXT *nextcontext: This pointer links the current context to the
previous one on the stack, thus chaining together all active contexts.
This linkage is crucial for the proper unwinding of the stack upon function
exits.

• int callflag: This field holds the type of the context. It is the result
of bitwise or over some predefined values. For the purpose of this thesis,
we only need to know of CTXT_TOPLEVEL.

• SEXP promargs: This variable holds a pointer to a list of promises. In R,
function arguments are mostly treated as promises, meaning that we defer
the computation of function arguments until their values are required.
This mechanism is essential for implementing lazy evaluation, allowing
R to delay the computation of argument values until they are explicitly
accessed within the function body.

• SEXP callfun: This holds a reference to a SEXP that represents the
function that is being executed.

• SEXP call: This points to the SEXP representing the function call itself.
This includes the function and its arguments, allowing the execution en-
vironment to access both the function to be called and the specifics of
how it was called.

• SEXP cloenv: This is a reference to the environment in which the func-
tion is enclosed. In R, every function is associated with an environment
that serves as the context for evaluating its variables, enabling lexical
scoping.

3.2.1 Built-in Functions
Almost every language has built-in functions. Built-in functions typically offer
basic functionality. They are pre-defined and provided by the language itself
rather than either user-defined or imported from a library. Built-in functions
in GNU R are implemented in C, and they are treated differently from user-
defined functions. Built-ins bypass the creation of an RCNTXT structure, and
instead, they are executed within the current execution context.

13

3. Representation of R Code

This is, of course, more efficient. For executing a built-in function, there is
PRIMFUN macro, to which we supply a SEXP with the function, and it finds
the corresponding C code meant to be executed. To be more specific, there
is an array of FUNTAB structures. FUNTAB contains things like the string rep-
resentation of the name, the arity of the function and most importantly, the
associated C function.

14

Chapter 4
Implementation

In this chapter, we describe our implementation of the proof-of-concept R pro-
filer. Inspired by Berger’s Scalene, we aim to use our profiler to distinguish
between R and native execution. We hope that with this knowledge, the output
of our profiler can lead programmers to replace some inefficient R execution
with optimized native execution.

The starting point for writing a profiler is slightly different for Python com-
pared to R. Python already supports user-defined signal handling, but R does
not. Therefore, we include a section on how we added it to the interpreter. Fur-
thermore, in Python, there is a library to asses which line of code is currently
executing. We must implement that for R ourselves.

Because this is a proof-of-concept and to support everything would be out
of the scope of this thesis, we have taken a few shortcuts. We implement the
profiler directly into GNU R version 4.3.3, we support AST interpretation only,
and we aim at functions rather than profiling whole files.

We go step-by-step through our modifications. We made changes to three
files: src/main/eval.c, src/main/main.c, and src/include/Defn.h. For
simplicity, we will refer to them only by their name without the full path.

4.1 Signal Handling

Our goal for this R profiler is to distinguish between R execution and native
execution. Inspired by Scalene, we aim to achieve this through sampling, typ-
ically facilitated by signals. However, since the R language lacks support for
custom signal handling, we need to integrate our own signal handler into GNU
R [1]. In this section, we provide a comprehensive description of the integra-
tion. The implementation of signal handling is platform-specific for Unix-like
systems.

Signals serve as a communication mechanism in software systems by enabling
notification of a process of an asynchronous event. Signals can be sent by the
operating system, by another process, or by the process itself. Upon obtaining

15

4. Implementation

the signal on Unix systems, the kernel interrupts the ongoing process and
transfers control to the designated signal handler function. The signal handler
can be either default or user-defined. Either way, it is executed in the context of
the interrupted process [18]. After the signal handler terminates, the previous
context is restored, and the process continues.

Signals occur asynchronously, meaning that the signal handler can be invoked
at any point during the process’s execution [19]. Because signals require min-
imal overhead and enable us to stop the program at any point, they are con-
sidered the state-of-the-art solution to sampling profilers.

In our implementation, we aim to measure the CPU time of a given process. To
this end, we utilize the SIGVTALRM signal in conjunction with ITIMER_VIRTUAL,
which triggers this signal. We need to set our signal handler once at the
beginning of the execution. Therefore, we logged the handler within the
setup_Rmainloop function, as illustrated in 4.1.

1 struct sigaction sa;
2 sa. sa_handler = shandler ;
3 sa. sa_flags = SA_RESTART ;
4 sigemptyset (& sa. sa_mask);
5
6 if (sigaction (SIGVTALRM , &sa , NULL) == -1) {
7 perror (" sigaction ");
8 }

Figure 4.1: The code shows how we logged our signal handler. This was added
into the setup Rmainloop function in the main.c file. This initialization hap-
pens conditionally only when our profiling is enabled.

The sigaction structure’s sa_flags member variable modifies the behaviour
of a signal. Using the SA_RESTART flag, we ensure that certain system calls (like
write or open) interrupted by the signal handler can restart once the handler
completes, allowing the process to continue the system call seamlessly [20].
The sa_mask member specifies which signals can be delivered while the signal
handler is being executed, and the sigemptyset sets the variable so that all
signals can be delivered.

Once a signal is received, our signal handler sets variable R_GotSignal, as can
be seen in 4.2, serving as a notification to indicate the occurrence of the signal.
We added the definition of the R_GotSignal variable into the Defn.h file. The
configuration of the timer can be seen in 4.3. We always set the alarm for a
single subsequent alarm that is set off in SIGNAL_INTERVAL, which corresponds
to 10 ms.

In summary, we added a signal handler for SIGVTALRM, which is logged at the
beginning of execution within the start-up of R. Then we added a function
which sets the ITIMER_VIRTUAL to send a signal in SIGNAL_INTERVAL which is
set to 10 ms.

16

4.2. Design of the Profiler

1 void shandler (int signum) {
2 R_GotSignal = 1;
3 }

Figure 4.2: The code snippet shows our signal handler. Signal handlers should
execute as fast as possible, ideally not using many objects created out of their
scope. Therefore, our signal handler simply sets the R GotSignal variable to
indicate an occurrence of a signal.

1 void reset_timer (void) {
2 struct itimerval timer = {
3 . it_value = { . tv_sec = 0, . tv_usec = SIGNAL_INTERVAL },
4 . it_interval = { . tv_sec = 0, . tv_usec = 0 }
5 };
6 if (setitimer (ITIMER_VIRTUAL , &timer , NULL) == -1) {
7 perror (" reseting timer ");
8 }
9 }

Figure 4.3: This piece of code shows how we set when the next signal should
be triggered. We use the ITIMER VIRTUAL timer, which works as follows. The
following signal is set off in time configured by it value. The period of how
often the consequent signals are sent is determined by it interval. By setting
it interval to zero, we set the timer to only one subsequent signal [6]. We
added this function into the eval.c file since that is the only place where we
need to access it.

4.2 Design of the Profiler

To do a sampling profiler was a relatively easy choice. The alternative would be
instrumentation, and although there are benefits to both approaches, the main
benefits of sampling profilers are that they have comparatively low performance
overhead and they are not as prone to Heisenbug because they do not change
the course of execution [21].

Therefore, we decided to write a sampling profiler, where we implement the
trick that is used in Scalene to differentiate between R and native execution.
Specifically, we attribute the delay in handling signals to native execution.
The building ground for such a profiler is different for Python and R. Python
already supports user-defined signals, while we needed to implement it into the
R interpreter as is described in 4.1. Furthermore, there is a library to help us
determine which line of Python code is executing, called Frame Objects [14].
There is no such library for R, so in Section 4.3.2, we describe in detail how
we solved that. Briefly said we attribute time to LANGSXPs rather than lines
when we take a sample. Regardless, we must find the appropriate line of code
for each LANGSXP for the sake of having a readable output.

Moreover, in contrast with the Python profiler, we focus on profiling functions
rather than files at this moment. This is a shortcut for the sake of simplicity,
in future, this feature can be added. The code we want to profile must be in

17

4. Implementation

..my_profile.. function that is called at some point. If we insert a function’s
name into the arguments to the ..my_profile.. call, then we will profile that
function as well.

Furthermore, this proof-of-concept profiler works so far only on the AST inter-
preter. The employed technique should work for bytecode interpretation in the
same way. Therefore, we must disable just-in-time compilation into bytecode.
That can be either done via environment variable R_ENABLE_JIT set to zero
or in code with compiler::enableJIT(0). To run our profiler we added a
R_SCALENE environment variable. The user should set it to the name of the
desired output file.

4.3 Initialization of the Profiler

When we run our profiler, there are a few things that must be done apart from
the initialization of R.

Firstly, we extract from the environment variable R_SCALENE the name of the
file, where we should store the profiling result. Sampling profilers, such as ours,
periodically stop program execution to take samples. That is typically done
using signals. Therefore, we log our signal handler for the SIGVTALRM and use
the ITIMER_VIRTUAL which generates these signals.

Next, we need to set up the internal structures for the profiler. To obtain
which function is currently executed, we need to use the info from the call
stack. Because attributing lines to functions will merge together calls from
different call sites, we decided to attribute time directly to the call sites which
are represented by LANGSXPs. So, we need a container where we can access the
R and native counters by indexing by LANGSXPs.

4.3.1 Profiler State

The container we used to represent the profiler state is a hashmap uthash
[22]. It is a header-only implementation of a hashmap for C structures. The
map_entry_struct structure, which can be seen in Figure 4.4, contains three
values: key, value, and hash handle, which is used by uthash methods. In
our case, the key is a SEXP, in other words, a pointer to SEXPREC structure.
The value is a structure which consists of three values: R counter, native
counter, and line number. Initially, R and native counters are equal to zero.
Line number refers to which piece of R code is represented by the LANGSXP.
Naturally, the line number does not change after initialization.

To work with the hashmap, we use macros defined in the uthash.h file. Some of
the macros have multiple versions depending on the type of the key. Since our
key is a pointer, we must use the pointer-specific macros. The R_LANGSXPMap
variable is our entry point to the whole hashmap. We do not work with it
directly, but instead only through the hashmap macros. For instance, in Fig-
ure 4.5, we can see the code for updating an entry in the hashmap, which
demonstrates how the hashmap macros can be used.

18

4.3. Initialization of the Profiler

1 # include " uthash .h"
2 typedef struct {
3 unsigned int r_counter ;
4 unsigned int c_counter ;
5 unsigned int line_number ;
6 } counter_struct ;
7
8 typedef struct {
9 SEXP key;

10 counter_struct value ;
11 UT_hash_handle hh;
12 } map_entry_struct ;
13
14 map_entry_struct * R_LANGSXPMap = NULL;

Figure 4.4: This snippet shows the definition of our hashmap entry. Our key
is a SEXP, i.e. a pointer to SEXPREC structure. Our value field contains the
R and the native execution counter, and the line of code which corresponds to
the SEXP key.

1 void update_map_entry (SEXP key , counter_struct value) {
2 map_entry_struct *s;
3 HASH_FIND_PTR (R_LANGSXPMap , key , s);
4 if (s == NULL) {
5 s = (map_entry_struct *) malloc (sizeof *s);
6 s->key = key;
7 HASH_ADD_PTR (R_LANGSXPMap , key , s);
8 }
9 s-> value = value ;

10 }

Figure 4.5: This code snippet shows how we can update a value in our hashmap.
If the value of the key argument is already present in our hashmap, then we
only update its value to the value given as an argument. Otherwise, we make
a new entry into our map with the key and value given by the arguments.

Now, it remains to initialize the hashmap with all the LANGSXPs we need to
track. There is a switch over SEXPTYPEs in the eval function in the eval.c
file. In the LANGSXP case of the switch, we check whether the name of the
currently called function is ..my_profile... If it is and profiling is enabled,
then we walk the AST of the ..my_profile.., and we add each LANGSXP that
we encounter into our hashmap.

4.3.2 Determining Lines of Code

Walking a function’s AST in order to obtain all its LANGSXP is fairly simple.
However, this task gets slightly more complicated because we need to pair each
LANGSXP with its corresponding line of R code.

To determine line numbers for each LANGSXP, we need to work with srcref.
The srcref object is part of a source reference system for R code that helps
us to keep track of code location that corresponds to given SEXP nodes. We

19

4. Implementation

store the srcref as an attribute of an object. The srcref defines a span of
characters of code in a srcfile, which represents the file name [1].

Because R does not keep track of srcref in every mode of use (for instance, in
interactive mode, it does not make much sense), we run the profiled file with
source("filename", keep.source = TRUE). The source function is used to
execute scripts, and the keep.source = TRUE parameter ensures we track the
srcrefs in the file.

The srcref object typically contains an INTSXP with 8 values, such as first
line, last line, first column, and last column. We will only use the first value in
the thesis, i.e. the number that denotes the first line.

Thus, there is a way to obtain the lines of code from the SEXP representation.
However, it is not as if each SEXP node has a corresponding srcref. Functions
do have the srcref attribute. Nevertheless, their srcref encompasses the
whole function, and there is no way to extract more granular data. Luckily, we
can use the { function call (in R code, it simply looks like a block of code).

The { function call takes as arguments the expressions within the block as was
shown in Section 3.1. For each of its arguments, it contains a srcref. These
srcrefs contain the span of the characters of the individual expressions. So
when we walk the function’s AST to obtain all its LANGSXPs, we must pair each
argument of the { function call with its srcref.

In Figure 4.6, we can see how we attribute lines of code within the profiler.
This code is part of a function make_map_from_AST that we added. It takes
two arguments: a SEXP and a line of code. If the current SEXP is not of the
LANGSXP type then we simply skip. Otherwise, we check whether the current
LANGSXP’s CAR value points to a SYMSXP that represents a { function call. If
it does, then we further check that the LANGSXP contains R_SrcrefSymbol
attribute (in other words, a srcref).

If we follow this branch of code, then, finally, we can extract the srcrefs. The
Rf_getAttrib function on line 2 in Figure 4.6 takes two SEXP arguments.
The first argument is the element whose attributes we inspect (e at that point
represent the { call); the second is the attribute we need (R_SrcrefSymbol
represents srcref). For each argument of the { call and the call itself, there
is a srcref. Because we need to attribute a line number to all of them, we
store the srcrefs in the srcrefs variable. Firstly, we inspect the srcref that
belongs to the { call because we want to add it to the hashmap. We access
the srcref at index 0 because it belongs to the call itself. We use for that the
VECTOR_ELT function, which takes a vector-like SEXP and an index into the
vector and returns the element found at the index. As was said before, srcref
typically has an INTSXP vector with 8 values. We extract the value at index 0,
since it denotes the first line of the expression (for simplicity for each LANGSXP
we only store where it begins). Then, we add the LANGSXP for the { call into
the hashmap.

20

4.3. Initialization of the Profiler

For the arguments (lines of the block), we do it analogously, except we do
not add it into the hashmap (that is done by the recursive call on line 19 in
Figure 4.6). First, we extract the appropriate srcref, from which we obtain
the first line of code that the SEXP corresponds to. Then, we recursively call
the function on the arguments and the newfound line number.

For function calls other than {, we do not inspect their srcref. Instead
we simply assign the line number that was passed as the argument to the
make_map_from_AST function. Again, we recursively call the function with the
same line number on all its arguments.

1 // extract all srcrefs
2 SEXP srcrefs = Rf_getAttrib (e, R_SrcrefSymbol);
3 // extract srcref for the "{" call
4 SEXP numbers = VECTOR_ELT (srcref , 0);
5 // extract the line number at which the "{" call starts
6 int line_number = INTEGER (numbers)[0];
7
8 counter_struct value = {. r_counter = 0,
9 . c_counter = 0,

10 . line_number = line_number };
11 update_map_entry (e, value);
12
13 // walk the arguments of the "{" call and assign them their lines
14 e = CDR(e);
15 int i = 1;
16 while (e != R_NilValue) {
17 SEXP numbers = VECTOR_ELT (srcref , i);
18 int line_number = INTEGER (numbers)[0];
19 ++i;
20 make_map_from_AST (CAR(e), line_number);
21 e = CDR(e);
22 }

Figure 4.6: This code segment is part of a function whose signature is void
make map from AST (SEXP e, int line).

However, this algorithm has a drawback. If there is a function call with function
calls as arguments and they span over multiple lines, then we assign the wrong
line number to the argument function call. Figure 4.7 shows an example of
such a case. We assign each of the argument function calls the line number
where the outermost function call begins. To fix this, we would need to work
with the parse table generated by the R interpreter.

In summary, we call the make_map_from_AST function on the body of the
..my_profile.. function and all functions that were passed as arguments
to it. So, at the end of the initialization, we have a hashmap with LANGSXPs to
which we want to attribute CPU time, with counters set to zero and the line
numbers of code where the function calls started in the original R source code.

There are a few last things we need to do after we create the hashmap with
LANGSXP keys. First, we log a function to print and then delete the hashmap
to run at the end of the execution. We use the atexit function [23] for that.

21

4. Implementation

1 foo (bar (3) ,
2 " argument ",
3 c(1 ,5 ,8))

Figure 4.7: In this code segment we can see a function call which spans over
multiple lines. The current implementation will not correctly assign line num-
bers to function calls that are arguments. To the foo function call we correctly
assign line number 1. And then we assign it recursively to both bar and c
function calls. For bar, it is coincidentally correct; for c, it is not, we would
expect line number 3.

It takes one argument, a function pointer, and at the end of a successful exit,
it runs the function.

Then, we set the R_SubtractTime variable to the current time. How and why
we do that will be covered in the next section. Finally, we start the SIGVTALRM
alarm for the first time and let the rest of the ..my_profile.. execute.

4.4 Taking Samples

In the eval function in the eval.c file we check whether the R_GotSignal
is set. If it is, we proceed to take a sample, which we can see in Figure 4.8.
We place the check at the end of the eval function. That is different from
Scalene, which places it at the beginning of its eval function. This difference
is due to the different granularity at which the eval function works. Python
interpreter works with bytecode. R has got both AST and bytecode versions
of the function, but so far, we only added profiling to the AST version. There,
the signal handling needs to be at the end of the eval function because if it
was at the beginning, we would attribute the execution time of the previous
LANGSXP to the next LANGSXP.

First, we use the GET_CURRENT_TIME_MS macro to store the current time in
milliseconds. The macro from line 3 in 4.8 can be seen in 4.9. Then we call
the get_current_entry function which walks the call stack and tries to find
a LANGSXP that is in our hashmap (the same hashmap as from Section 4.3.1).

4.4.1 Walking the Call Stack
To walk the R’s call stack we use the get_current_entry. We wrote it based
on the R_GetTracebackOnly function in errors.c file. We walk the stack until
we reach the top-level context. At each level, we check whether the c->call
SEXP is present in our hashmap. If it is, we exit the function and return a
pointer to a map_entry_struct with the c->call as its key. Otherwise, the
function returns NULL.

22

4.4. Taking Samples

1 if (R_GotSignal == 1) {
2 // log the current time
3 long long new_signal_time ;
4 GET_CURRENT_TIME_MS (new_signal_time);
5 // try to find a map entry using the call stack
6 map_entry_struct *s = get_current_entry ();
7
8 // if we have not found an entry
9 // we try the currently evaluated SEXP

10 if (s == NULL) {
11 s = find_map_entry (e);
12 }
13 if (s != NULL) {
14 // the signal interval
15 long long q = SIGNAL_INTERVAL / MICRO_IN_MS ;
16 // the elapsed time
17 long long T = new_signal_time - R_SubtractTime ;
18 // attribute the times
19 s-> value . r_counter += q;
20 s-> value . c_counter += T - q;
21 R_TotalSignalTime += T;
22 }
23 R_GotSignal = 0;
24
25 // post - process signal
26 }

Figure 4.8: This code is placed at the end of the eval function. It checks
whether a signal was received in the meantime, and if it was, then it proceeds
to take a sample. First, it stores the current time. Then it walks the stack
to find a LANGSXP to which it could attribute time. Finally, it calculates the
additions to both counters. After this snippet there is some post-processing to
restart the timer etc.

1 # define GET_CURRENT_TIME_MS (value) \
2 do { \
3 struct timeval tv; \
4 gettimeofday (&tv , NULL); \
5 (value) = (((long long)tv. tv_sec) * MS_IN_S) \
6 (value) += (tv. tv_usec / MICRO_IN_MS); \
7 } while (0)

Figure 4.9: This macro stores the current time in milliseconds in the value
parameter. We use the platform-dependant gettimeofday function defined in
sys/time.h. The time is the number of milliseconds since the beginning of
Epoch. For the sake of best programming practises we encapsulate the code in
do-while construct [24].

23

4. Implementation

1 map_entry_struct * get_current_entry () {
2 RCNTXT *c;
3
4 for (c = R_GlobalContext ;
5 c != NULL && c-> callflag != CTXT_TOPLEVEL ;
6 c = c-> nextcontext){
7 map_entry_struct *s = find_map_entry (c->call);
8 if (s != NULL){
9 return s;

10 }
11 }
12 return NULL;
13 }

Figure 4.10: This function is defined in the eval.c file. It is based on the
R GetTracebackOnly function. At each stack frame, we check whether the
function call that created it is in our hashmap.

If we do not find an entry in our hashmap when we walk the call stack, then
we check whether the currently evaluated SEXP is in the hashmap, as can be
seen on lines 6 and 7 in 4.8, where e is the current SEXP. That can happen
when we just executed a LANGSXP. Therefore the call context is not on the stack
anymore because it was completed. Luckily the e variable stores it in that case.

Finally, once we find an appropriate entry in the hashmap, we can attribute
time to the counters as illustrated on lines 10 to 13 in 4.8. To the R counter,
we add the period (q) at which we send signals, in our case, 10 ms. For
native execution, we calculate the elapsed time (T) since we set the alarm by
the reset_timer function and subtract from it the interval period. In other
words, we add T − q to the native execution counter. Finally, we update the
total profiling time R_TotalSignalTime. We store it so that we can give the
percentages of time spent at each function call.

However, as we mentioned earlier, built-in functions do not create their own
context. Let us demonstrate the problem on code 4.11 (the code is not profile-
able, it runs too quickly). So, let us assume that we handle a signal at the
7 * 42. But when we walk the call stack, we will only see the ..my_profile..’s
context. Therefore, we do not know where to attribute the time. Fortunately,
Rprof had to solve the exact same problem. It introduced a flag R_Profiling
that, if it is set, built-in functions do create their own contexts too. So at the
initialization stage of our profiler, we set the variable.

24

4.5. Conclusion

1 result <- 0
2 .. my_profile .. <- function (...) {
3 result <- 7 * 42
4 }
5
6 .. my_profile ..()

Figure 4.11: This code snippet is an example to demonstrate the trickiness of
profiling built-ins. This code is not intended for profiling; it would execute too
quickly anyway.

After we processed a sample, we set up the next alarm. So firstly, we set the
R_GotSignal flag to zero. Then we set the R_SubtractTime to the current
time. This way we do not account for the time we spent handling the sam-
ple. And finally, we run the reset_timer function, which will trigger a signal
in 10 ms.

4.5 Conclusion

To sum it up our profiler employs sampling. We implement the sampling
mechanism using signals. Due to the lack of built-in support for signal handling
in R, we implemented our own. When the environment variable R_SCALENE is
set, we register our signal handler for SIGVTALRM during the initialization stage
in setup_Rmainloop. This signal handler simply sets a flag to indicate that a
signal was received.

During execution, when we encounter a function call on the ..my_profile..
function, we walk the AST of the function and of all functions that were passed
as an argument to it. We add all nodes of type LANGSXP (which represent a
function call) that we encounter to a hashmap. Then we set the first signal
alarm. After this initialization we proceed normally, except for that at the end
of the eval function, we check if the signal notification flag was set. If it was,
we walk the stack until we find a LANGSXP that is key in our hashmap and add
to the corresponding R counter the timing interval and to the native counter
the difference between the elapsed time and the interval. Then, we restart the
ITIMER_VIRTUAL timer and let the execution continue.

Finally, at the end of execution, we store the profiling results in a file. This file
documents the absolute time spent in each function and the relative percentage
of the consumed time.

25

Chapter 5
Assesment

In this chapter, we assess the proof-of-concept profiler implemented in this
thesis. To answer whether the chosen approach could be useful, we need to
look at the accuracy of the profiler by determining whether we get meaningful
results. Furthermore, we must inspect the performance overhead to see whether
the profiler could be used on real-world code.

We will inspect the outputs of the profiler on a program where we know ap-
proximately how it should behave. Next, we will compare the outputs of Rprof
with those of RScalene and compare their performance.

All the measurements were taken on MacBook Pro 2021 with Apple M1 Pro
chips and 32GB RAM on LIMA [25], a Linux container, with default configu-
ration 4. For clarity, we will call our profiler RScalene in this chapter.

5.1 Accuracy

Let us inspect the accuracy of the implemented profiler by studying its be-
haviour on one program in a little more depth. To this end, we needed to
design a program where we could relatively accurately approximate where the
execution spent time. The program can be seen at 5.1. It calls two main
functions in a loop. The code loops because sampling profilers need the code
to run for some time to obtain reasonable outputs. One of the functions is
written in R and the second in C in our custom package (their implementation
can be seen in Appendix B). Both functions simply loop until a certain time
has elapsed. The implementations actively loop instead of calling the sleep
function because its implementation can work with signals and interfere with
our profiling. The profiling output of RScalene to this code can be seen at 5.2.

4OS: Ubuntu, CPU: 4 cores, Memory: 4 GiB, Disk: 100 GiB.

27

5. Assesment

1 .. my_profile .. <- function (...) {
2 lapply (1:100 , function (i) {
3 waitR (1000)
4 waitC (1000)
5
6 waitR (100)
7 waitC (100)
8
9 waitR (10)

10 waitC (10)
11
12 waitR (1)
13 waitC (1)
14 })
15 }

Figure 5.1: This is an example of code we used to better understand RSca-
lene’s behaviour. The waitR function takes as an argument the number of
milliseconds it should wait in the function call. It does not use any library
calls. Similarly, the waitC function takes the number of milliseconds for which
it should be executing. Both functions are implemented without sleep function,
as that might interfere with our signals. There are four blocks of two consec-
utive lines. Each pair always calls the functions with the same time period
argument.

When we add up the percentages of time spent in both functions separately,
we can see that the profiler attributes around 48.5% to waitR and 51.5% to
waitC of the entire execution time. We know that both of the functions should
take around the same time because we call both of them with the same time
period arguments.

In total, each loop should take around 2.222 s to execute (1+1+0.1+· · ·+0.001).
One second is about 45% in 2.222 s. If we add up the percentages for the first
call of waitR and waitC, then we get 44.3% and 45.8%, respectively, values we
could expect. Analogously, for the second call with 0.1 s argument, we expect
4.5% execution time for both calls. We got 4.2% for waitR and 4.8% for waitC.

Our accuracy falters on measurements for lines 8 and 9. In the 100 iterations,
99 times, we received the signal during waitC skipping the waitR call and
attributing almost all the time to the C function. The remaining lines, 11 and
12, are systematically not detected because their span of execution is so short,
and they run just after a signal is received. However, the percentage of the
execution time of these four lines is so low that it does not tell us much about
systematic errors in the profiler, and further evaluation and analysis of more
shortly running functions would have to be done.

28

5.1. Accuracy

line, name, "r ms", "c ms", r%, c%
1, lapply, 0, 0, 0.000, 0.000
1, :, 0, 0, 0.000, 0.000
1, function, 0, 0, 0.000, 0.000
1, {, 0, 0, 0.000, 0.000
2, waitR, 61890, 35943, 28.027, 16.277
3, waitC, 1000, 100112, 0.453, 45.335
3, ::, 0, 0, 0.000, 0.000
5, waitR, 6000, 3275, 2.717, 1.483
6, waitC, 1000, 9599, 0.453, 4.347
6, ::, 0, 0, 0.000, 0.000
8, waitR, 10, 15, 0.005, 0.007
9, waitC, 990, 992, 0.448, 0.449
9, ::, 0, 0, 0.000, 0.000
11, waitR, 0, 0, 0.000, 0.000
12, waitC, 0, 0, 0.000, 0.000
12, ::, 0, 0, 0.000, 0.000

Figure 5.2: This figure shows an example output obtained by using RScalene
on the code from Figure 5.1. The first column shows the line of code at which
the function call starts. The second column contains the name of the function
called. The third has the R counter values in ms. The fourth shows the time
spent in native execution in ms. The fifth has the percentage of time spent in
the function call in R compared to the entire execution time, and the sixth is
analogous but for native execution.

Unsurprisingly, most of the time spent in the waitC function is in native ex-
ecution. Perhaps unexpectedly, the profile output claims some time is spent
in R. That is because we always add to both R and native counters to make
up for the fact that we do not know when exactly the execution boundary was
crossed. The R counter will always contain numbers rounded to 10 because we
always add to it the interval period (10 ms).

The execution time proportions for waitR are more interesting. We can see
more than a third of the time was spent in C. However, we wrote waitR so
that it does not use any packages written in C. So the question is, how come
there is all that time spent in native? The answer lies in built-in functions.
They are implemented in C for better performance. So, the native counter
corresponds, in this case, to the time spent in built-ins rather than libraries.

The key outcome of this analysis is that currently, we cannot differentiate
between built-ins and library functions. This is a shortcoming for the potential
users of the profiler because it will be harder to identify which code segments
are running R code and can potentially be replaced by native functions. For
the profiler output to be more useful to R programmers, we would need to add
a third counter to distinguish between built-ins and libraries.

29

5. Assesment

Name RS R % RS C % RS T % Rprof T% Rprof S%
p01 waitR 30.81 18.32 49.13 50.03 1.84

waitC 1.50 49.37 50.87 49.97 49.97
p02 doit2 62.31 37.61 99.92 100.00 84.67

stuff 0.04 0.02 0.06 100.00 0.00
p03 mean 51.57 31.35 82.92 84.21 14.05

boot 2.73 14.16 16.89 100.00 0.37
p04 lapply 2.28 86.92 89.20 100.00 0.00

rnorm 4.4 6.39 10.79 10.73 10.73
matrix 0 0 0 11.53 0.79

p05 foo 31.18 19.07 50.25 50.11 0.10
bar 31.01 18.74 49.75 49.89 0.00

Table 5.1: This table shows the most time-consuming function calls in five
programs according to the profilers. The second column shows a function name.
The next three columns show the percentage of time spent in R execution, in
native execution, and the total according to RScalene. The next two columns
show the total time spent in a function including nested function, then the
time spent in a function without nested calls according to Rprof.

5.1.1 Comparing Accuracy
In this section, we compare the outputs of RScalene and Rprof using a few
examples. For this prototype of RScalene, we only implemented profiling for
AST interpretation. Therefore, we run the code for both profilers with just-in-
time compilation disabled so that the two results are comparable.

When comparing the outputs of the two profilers, we must keep a few things in
mind. Rprof always profiles all function calls by inspecting the call stack. In
contrast, RScalene only attributes time to the first function call that is logged
for profiling. So, there are functions that might be on Rprofs output but can
never be in RScalene’s. Moreover, RScalene profiles lines, so different call sites
of the same function are distinguished. That is not the case in Rprof.

The programs are simple for easier analysis. Here, we report only function calls
that had above 1% of the execution time and are visible in the code.

Let us inspect Table 5.1. Mostly, the percentages of time spent in each func-
tion according to Rprof and RScalene align. All the programs are listed in
Appendix C.

• p01: This program is similar to the code in Figure 5.1. The total per-
centages of the time spent in the functions are very similar according to
both of the profilers. Furthermore, we can see that waitR calls further
functions by the difference in Rprof’s total and self percentage. RScalene
notifies us that a significant amount of waitR execution is in R.

• p02: There is a big difference between the profilers for stuff function.
That is because RScalene does not walk up the call stack further once

30

5.2. Performance

it finds the innermost function call it can track. Since doit2 function
is called from within stuff, we do not find the stuff function call.
However, some postprocessing on the RScalene’s output could easily track
these transitive relations.

• p03: The results are similar to p02. The boot function call takes as an
argument a function which contains the mean call. Therefore, RScalene
finds mean on the call stack and does not walk it further. All the other
functions that were called as a part of boot get attributed its counters in
RScalene.

• p04: The outcome is yet again similar to p02 since rnorm, matrix, and
lapply call each other. R supports lazy evaluation. Therefore, that is
the case even for rnorm, which is not a part of matrix body but still gets
called from within it.

• p05: The program calls two similar functions. We can see that both of
the profilers attribute them to about the same time percentage.

To summarize, the results of RScalene seem accurate when compared with
Rprof. Of course, we have to interpret them a bit differently.

5.2 Performance

To assess the performance of RScalene we compare it with Rprof, the existing
R profiler. We used five programs. Some of them were runnable codes from R
packages, and some were benchmarks (if a program was too short, we looped
it)5. Then, we ran the programs in three ways: once with our profiler, once
with Rprof, and without any profiling. All of the runs had disabled just-in-time
compilation because RScalene does not support profiling bytecode. Both of the
profilers had the interval period between signals set to 10 ms. The results can
be seen in Table 5.2.

Unprofiled [s] RScalene [s] Rprof [s] RScalene % Rprof %
p01 180.66 182.51 190.16 1.02 5.26
p02 44.88 45.95 47.02 2.38 4.78
p03 169.33 171.26 179.22 1.14 5.84
p04 21.06 21.76 22.32 3.32 5.98
p05 36.79 37.55 38.96 2.07 5.90

Table 5.2: This table summarizes how long each of the programs ran. The
second, third, and fourth columns show how long the program executed when
profiled with RScalene, profiled with Rprof, and unprofiled, respectively. Then
there is the relative slow-down compared to unprofiled execution calculated as
profiled − unprofiled

unprofiled × 100.

5The actual programs can be seen in the implementation in measurements/performance
folder.

31

5. Assesment

It is unsurprising that profiled executions take more time. Apart from the
overhead of taking samples, both of the profilers cause contexts to be made for
built-in functions, which is not done in normal R execution.

As we can see, RScalene has a lower percentage overhead than Rprof. This is
probably due to the fact that Rprof operates on storing the whole call stack at
each sample. Although it employs buffering, the I/O operations to store call
stacks are still relatively expensive. The current implementation of RScalene is
unoptimized as it is a proof-of-concept. Therefore, the performance overhead
can be further lowered.

5.3 Conclusion

In conclusion, during the analysis of the profiler stand-alone or in comparison
to Rprof, significant inconsistencies in RScalenes outputs were not found. Of
course, we would need to further investigate how exactly this would work for
more programs. However, we found out that built-ins can sum up to report a
significant amount of C execution. Since built-ins are an integral part of R, it
is misleading for them to be in the same batch as library calls. This distinction
seems an important addition to the implementation.

32

Chapter 6
Conclusions

In this chapter, we turn to the aims of this thesis formulated in Chapter 1 and
examine their fulfilment. We also present suggestions for future work to extend
and improve this work.

First, we overviewed Rprof, a sampling profiler for R, in Chapter 2. Then, we
examined Scalene, a profiler for Python that can distinguish between Python
and native execution and serves as an inspiration for our profiler. Finally, in
Chapter 4, we implemented the profiler, including determining which line of
code is currently executed.

The objective was to create a proof-of-concept profiler that distinguishes be-
tween R execution and native execution. We implemented a sampling profiler
inspired by Scalene, a profiler for Python. This was fulfilled in Chapter 4,
where we showed the implementation of such a profiler written into GNU R
4.3.3.

In Chapter 5, we analysed the behaviour of our profiler on a program where
we knew how it should behave. Then, we compared it to Rprof, the de facto
standard for profiling R code.

6.1 Future Work

Furthermore, there are many areas in which we can extend the current imple-
mentation of the profiler:

• Adding support for profiling bytecode would make this tool usable in
practice. Disabling just-in-time compilation for the purpose of profiling
significantly affects the course of execution and the profiling output can,
therefore, be misleading.

• Extensively researching the accuracy of the profiler on real-world code.

• Distinguishing between execution of built-in functions and libraries writ-
ten in C/C++. This would make it even easier for R programmers to

33

6. Conclusions

identify which code segments can be written using native libraries.

• Support profiling files, rather than functions, for simpler use.

• Analyzing whether randomizing when the signals are sent improves ac-
curacy. A paper by Mytkowicz et al. [12] proposes that this should make
the profilers more robust and ”actionable”.

• Then there are further smaller changes for easier use: add graphical out-
put, add support for Windows, etc.

34

Bibliography

[1] R Core Team. The R Project for Statistical Computing. R Foundation for
Statistical Computing, Vienna, Austria, 2023, r Language Implementa-
tion, Version 4.3.3. Available from: https://www.R-project.org/

[2] Berger, E. D.; Stern, S.; et al. Scalene: a high-performance, high-
precision CPU, GPU, and memory profiler for Python with AI-powered
optimization proposals. Available from: https://github.com/plasma-
umass/scalene

[3] What is R? https://www.r-project.org/about.html, accessed: 2024-5-5.
Available from: https://www.r-project.org/about.html

[4] Project Jupyter. https://jupyter.org/, accessed: 2024-5-5. Available
from: https://jupyter.org/

[5] R Core Team. system.time: Measure Execution Time of R Ex-
pressions. R Documentation, 2019, accessed: 2024-05-07. Available
from: https://www.rdocumentation.org/packages/base/versions/
3.6.2/topics/system.time

[6] Unix. getitimer(2) - Linux manual page. https://man7.org/linux/
man-pages/man2/setitimer.2.html, accessed: 2024-4-14. Available from:
https://man7.org/linux/man-pages/man2/setitimer.2.html

[7] Rprof: Enable Profiling of R’s Execution. https://rdrr.io/r/utils/
Rprof.html, accessed: 2024-5-4. Available from: https://rdrr.io/r/
utils/Rprof.html

[8] R: Summarise Output of R Sampling Profiler. https://stat.ethz.ch/R-
manual/R-devel/library/utils/html/summaryRprof.html, accessed:
2024-5-4. Available from: https://stat.ethz.ch/R-manual/R-devel/
library/utils/html/summaryRprof.html

[9] Berger, E. D.; Stern, S.; et al. Triangulating Python Performance Issues
with {SCALENE}. In 17th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 23), 2023, ISBN 9781939133342, pp.
51–64. Available from: https://www.usenix.org/system/files/osdi23-
berger.pdf

35

https://www.R-project.org/
https://github.com/plasma-umass/scalene
https://github.com/plasma-umass/scalene
https://www.r-project.org/about.html
https://www.r-project.org/about.html
https://jupyter.org/
https://jupyter.org/
https://www.rdocumentation.org/packages/base/versions/3.6.2/topics/system.time
https://www.rdocumentation.org/packages/base/versions/3.6.2/topics/system.time
https://man7.org/linux/man-pages/man2/setitimer.2.html
https://man7.org/linux/man-pages/man2/setitimer.2.html
https://man7.org/linux/man-pages/man2/setitimer.2.html
https://rdrr.io/r/utils/Rprof.html
https://rdrr.io/r/utils/Rprof.html
https://rdrr.io/r/utils/Rprof.html
https://rdrr.io/r/utils/Rprof.html
https://stat.ethz.ch/R-manual/R-devel/library/utils/html/summaryRprof.html
https://stat.ethz.ch/R-manual/R-devel/library/utils/html/summaryRprof.html
https://stat.ethz.ch/R-manual/R-devel/library/utils/html/summaryRprof.html
https://stat.ethz.ch/R-manual/R-devel/library/utils/html/summaryRprof.html
https://www.usenix.org/system/files/osdi23-berger.pdf
https://www.usenix.org/system/files/osdi23-berger.pdf

Bibliography

[10] Manning College of Information and Computer Sciences. Team
Led by Emery Berger Wins OSDI 2023 Best Paper Award.
https://www.cics.umass.edu/news/team-led-emery-berger-wins-
osdi-2023-best-paper-award, 29 Aug. 2023, accessed: 2024-4-30.
Available from: https://www.cics.umass.edu/news/team-led-emery-
berger-wins-osdi-2023-best-paper-award

[11] Strange Loop Conference. “Python Performance Matters” by Emery
Berger (Strange Loop 2022). 6 Oct. 2022. Available from: https://
www.youtube.com/watch?v=vVUnCXKuNOg

[12] Mytkowicz, T.; Diwan, A.; et al. Evaluating the accuracy of Java profilers.
In Proceedings of the 31st ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’10, New York, NY, USA: As-
sociation for Computing Machinery, 5 June 2010, ISBN 9781450300193,
pp. 187–197, doi:10.1145/1806596.1806618. Available from: https://
doi.org/10.1145/1806596.1806618

[13] Berger, E. scalene, Discussion #801. https://github.com/plasma-
umass/scalene/discussions/801, accessed: 2024-5-4. Available from:
https://github.com/plasma-umass/scalene/discussions/801

[14] Frame Objects. https://docs.python.org/3/c-api/frame.html, ac-
cessed: 2024-5-4. Available from: https://docs.python.org/3/c-api/
frame.html

[15] Siek, K. Everything You Always Wanted to Know About SEXPs But
Were Afraid to Ask. https://gitlab.com/kondziu/everything-you-
always-wanted-to-know-about-SEXPs/-/blob/master/2017-03-12-
everything-you-always-wanted-to-know-about-sexp-but-were-
afraid-to-ask.md, 12 Mar. 2017, accessed: 2024-4-15. Available from:
https://gitlab.com/kondziu/everything-you-always-wanted-to-
know-about-SEXPs/-/blob/master/2017-03-12-everything-you-
always-wanted-to-know-about-sexp-but-were-afraid-to-ask.md

[16] R Core Team. R Internals. https://cran.r-project.org/doc/manuals/
r-release/R-ints.html, accessed: 2024-4-15. Available from: https://
cran.r-project.org/doc/manuals/r-release/R-ints.html

[17] Wickham, H. r-internals: Documentation for R’s internal C API. Available
from: https://github.com/hadley/r-internals

[18] Northern Illinois University. LINUX Signals. https://
faculty.cs.niu.edu/˜hutchins/csci480/signals.htm, accessed:
2024-3-13. Available from: https://faculty.cs.niu.edu/˜hutchins/
csci480/signals.htm

[19] Ingargiola, G. Unix Signals. https://cis.temple.edu/˜ingargio/
cis307/readings/signals.html, accessed: 2024-5-3. Available from:
https://cis.temple.edu/˜ingargio/cis307/readings/signals.html

[20] Flags for sigaction. https://www.gnu.org/software/libc/manual/html_
node/Flags-for-Sigaction.html, accessed: 2024-3-20. Available from:

36

https://www.cics.umass.edu/news/team-led-emery-berger-wins-osdi-2023-best-paper-award
https://www.cics.umass.edu/news/team-led-emery-berger-wins-osdi-2023-best-paper-award
https://www.cics.umass.edu/news/team-led-emery-berger-wins-osdi-2023-best-paper-award
https://www.cics.umass.edu/news/team-led-emery-berger-wins-osdi-2023-best-paper-award
https://www.youtube.com/watch?v=vVUnCXKuNOg
https://www.youtube.com/watch?v=vVUnCXKuNOg
https://doi.org/10.1145/1806596.1806618
https://doi.org/10.1145/1806596.1806618
https://github.com/plasma-umass/scalene/discussions/801
https://github.com/plasma-umass/scalene/discussions/801
https://github.com/plasma-umass/scalene/discussions/801
https://docs.python.org/3/c-api/frame.html
https://docs.python.org/3/c-api/frame.html
https://docs.python.org/3/c-api/frame.html
https://gitlab.com/kondziu/everything-you-always-wanted-to-know-about-SEXPs/-/blob/master/2017-03-12-everything-you-always-wanted-to-know-about-sexp-but-were-afraid-to-ask.md
https://gitlab.com/kondziu/everything-you-always-wanted-to-know-about-SEXPs/-/blob/master/2017-03-12-everything-you-always-wanted-to-know-about-sexp-but-were-afraid-to-ask.md
https://gitlab.com/kondziu/everything-you-always-wanted-to-know-about-SEXPs/-/blob/master/2017-03-12-everything-you-always-wanted-to-know-about-sexp-but-were-afraid-to-ask.md
https://gitlab.com/kondziu/everything-you-always-wanted-to-know-about-SEXPs/-/blob/master/2017-03-12-everything-you-always-wanted-to-know-about-sexp-but-were-afraid-to-ask.md
https://gitlab.com/kondziu/everything-you-always-wanted-to-know-about-SEXPs/-/blob/master/2017-03-12-everything-you-always-wanted-to-know-about-sexp-but-were-afraid-to-ask.md
https://gitlab.com/kondziu/everything-you-always-wanted-to-know-about-SEXPs/-/blob/master/2017-03-12-everything-you-always-wanted-to-know-about-sexp-but-were-afraid-to-ask.md
https://gitlab.com/kondziu/everything-you-always-wanted-to-know-about-SEXPs/-/blob/master/2017-03-12-everything-you-always-wanted-to-know-about-sexp-but-were-afraid-to-ask.md
https://cran.r-project.org/doc/manuals/r-release/R-ints.html
https://cran.r-project.org/doc/manuals/r-release/R-ints.html
https://cran.r-project.org/doc/manuals/r-release/R-ints.html
https://cran.r-project.org/doc/manuals/r-release/R-ints.html
https://github.com/hadley/r-internals
https://faculty.cs.niu.edu/~hutchins/csci480/signals.htm
https://faculty.cs.niu.edu/~hutchins/csci480/signals.htm
https://faculty.cs.niu.edu/~hutchins/csci480/signals.htm
https://faculty.cs.niu.edu/~hutchins/csci480/signals.htm
https://cis.temple.edu/~ingargio/cis307/readings/signals.html
https://cis.temple.edu/~ingargio/cis307/readings/signals.html
https://cis.temple.edu/~ingargio/cis307/readings/signals.html
https://www.gnu.org/software/libc/manual/html_node/Flags-for-Sigaction.html
https://www.gnu.org/software/libc/manual/html_node/Flags-for-Sigaction.html

Bibliography

https://www.gnu.org/software/libc/manual/html_node/Flags-for-
Sigaction.html

[21] Sampling Profiler - DelphiTools. https://www.delphitools.info/
samplingprofiler/, 25 Feb. 2009, accessed: 2024-5-4. Available from:
https://www.delphitools.info/samplingprofiler/

[22] Hanson, T. D. uthash: C macros for hash tables and more. Accessed:
2024-2-18. Available from: https://github.com/troydhanson/uthash

[23] C++ Documentation. atexit. https://en.cppreference.com/w/
c/program/atexit, accessed: 2024-5-2. Available from: https:
//en.cppreference.com/w/c/program/atexit

[24] gettimeofday(2) - Linux manual page. https://man7.org/linux/man-
pages/man2/gettimeofday.2.html, accessed: 2024-5-3. Available from:
https://man7.org/linux/man-pages/man2/gettimeofday.2.html

[25] Suda, A.; contributors. Lima: Linux-on-Mac. https://github.com/lima-
vm/lima, 2023, software available from Lima GitHub repository. Available
from: https://github.com/lima-vm/lima

[26] PRL@PRG. argtracer. Available from: https://github.com/PRL-PRG/
argtracer

[27] Wickham, H. R’s C interface, Advanced R. http://adv-r.had.co.nz/
C-interface.html, accessed: 2024-5-4. Available from: http://adv-
r.had.co.nz/C-interface.html

37

https://www.gnu.org/software/libc/manual/html_node/Flags-for-Sigaction.html
https://www.gnu.org/software/libc/manual/html_node/Flags-for-Sigaction.html
https://www.delphitools.info/samplingprofiler/
https://www.delphitools.info/samplingprofiler/
https://www.delphitools.info/samplingprofiler/
https://github.com/troydhanson/uthash
https://en.cppreference.com/w/c/program/atexit
https://en.cppreference.com/w/c/program/atexit
https://en.cppreference.com/w/c/program/atexit
https://en.cppreference.com/w/c/program/atexit
https://man7.org/linux/man-pages/man2/gettimeofday.2.html
https://man7.org/linux/man-pages/man2/gettimeofday.2.html
https://man7.org/linux/man-pages/man2/gettimeofday.2.html
https://github.com/lima-vm/lima
https://github.com/lima-vm/lima
https://github.com/lima-vm/lima
https://github.com/PRL-PRG/argtracer
https://github.com/PRL-PRG/argtracer
http://adv-r.had.co.nz/C-interface.html
http://adv-r.had.co.nz/C-interface.html
http://adv-r.had.co.nz/C-interface.html
http://adv-r.had.co.nz/C-interface.html

Appendix A
Acronyms

AST Abstract Syntax Tree

GC Garbage Collection

SEXP S-Expression

39

Appendix B
Implememntation of Waiting

Functions

In Chapter 5, we mentioned functions that wait for a certain amount of time
without using sleep functions. Here can be seen their implementation.

1 waitR <- function (interval) {
2 start _time <- Sys.time ()
3 elapsed _time <- 0
4 while (elapsed _time < interval) {
5 result <- sum (1:100000000)
6 end_time <- Sys.time ()
7 elapsed _time <- end_time - start _time
8 }
9 }

Figure B.1: This function is written in R that takes as an argument the number
of seconds it should loop for.

41

B. Implememntation of Waiting Functions

1 SEXP waitC (SEXP num) {
2 struct timeval tv;
3 gettimeofday (&tv ,NULL);
4 long long start = (((long long)tv. tv_sec) * 1000) + (tv.

tv_usec / 1000) ;
5 int should_end = 0;
6 long long now;
7
8 double interval = Rf_asReal (num);
9

10 while (! should_end) {
11 gettimeofday (&tv ,NULL);
12 now = (((long long)tv. tv_sec) * 1000) + (tv. tv_usec /

1000) ;
13 if (start + interval <= now){
14 should_end = 1;
15 }
16 }
17 printf ("baf\n");
18
19 return R_NilValue ;
20 }

Figure B.2: This function is written in C into an R package. It takes as an
argument the number of milliseconds it should loop for. The implementation
of the package is based on [26, 27].

42

Appendix C
Programs for Evaluating Accuracy

In Section 5.1.1, we compare profiling outputs for five different programs. The
programs are listed here.

1 foo <- function (interval) {
2 start_time <- Sys.time ()
3 elapsed_time <- 0
4 while (elapsed_time < interval) {
5 result <- sum (1:100000000)
6 end_time <- Sys.time ()
7 elapsed_time <- end_time - start_time
8 }
9 }

10
11 .. my_profile .. <- function (...) {
12 lapply (1:50 , function (i) {
13 foo (1)
14 argtracer :: trace_code (1000)
15 foo (0.5)
16 argtracer :: trace_code (500)
17 foo (0.1)
18 argtracer :: trace_code (100)
19 foo (0.05)
20 argtracer :: trace_code (50)
21 foo (0.01)
22 argtracer :: trace_code (10)
23 foo (0.005)
24 argtracer :: trace_code (5)
25 foo (0.001)
26 argtracer :: trace_code (1)
27 })
28 }
29
30 .. my_profile ..()

Figure C.1: Code p01.

43

C. Programs for Evaluating Accuracy

1 # testme .py from scalene
2 .. my_profile .. <- function (...) {
3 doit1 <- function (x) {
4 y <- 1
5 x <- (0:100000) [99999]
6 y1 <- (0:200000) [199999]
7 z1 <- (0:200000) [299999]
8 z <- x * y * y1 * z1
9 return (z)

10 }
11
12 doit2 <- function (x) {
13 i <- 0
14 z <- 0.1
15 while (i < 100000) {
16 z <- z * z
17 z <- x * x
18 z <- z * z
19 z <- z * z
20 i <- i + 1
21 }
22 return (z)
23 }
24
25 doit3 <- function (x) {
26 z <- x + 1
27 z <- x + 1
28 z <- x + 1
29 z <- x + z
30 z <- x + z
31 return (z)
32 }
33
34 stuff <- function () {
35 x <- 1.01
36 for (i in 1:20) {
37 cat(i, "\n")
38 for (j in 1:20) {
39 x <- doit1 (x)
40 x <- doit2 (x)
41 x <- doit3 (x)
42 x <- 1.01
43 }
44 }
45 return (x)
46 }
47 print (" TESTME \n")
48 stuff ()
49 }
50 .. my_profile ..()

Figure C.2: Code p02.

44

1 foo <- function () {
2 lapply (1:25 , function (i) {
3 # Load the boot library
4 library (boot)
5
6 # Generating some random data
7 data <- rnorm (1000)
8
9 # Defining a simple statistic function

10 statistic <- function (data , indices) {
11 mean(data[indices])
12 }
13
14 # Timing the bootstrapping process
15 start_time <- Sys.time ()
16 results <- boot(data , statistic , R =10000)
17 end_time <- Sys.time ()
18 })
19 }
20 .. my_profile .. <- function (...) {
21 foo ()
22 }
23
24 .. my_profile ..(foo)

Figure C.3: Code p03.

1 foo <- function () {
2 lapply (1:30 , function (i) {
3 # Generating two large matrices
4 matrix1 <- matrix (rnorm (1000*1000) , nrow =1000)
5 matrix2 <- matrix (rnorm (1000*1000) , nrow =1000)
6
7 # Timing the matrix multiplication
8 start_time <- Sys.time ()
9 result <- matrix1 %*% matrix2

10 end_time <- Sys.time ()
11 })
12 }
13
14
15 .. my_profile .. <- function (...) {
16 foo ()
17 }
18
19 .. my_profile ..(foo)

Figure C.4: Code p04.

45

C. Programs for Evaluating Accuracy

1 foo <- function () {
2 for (i in 1:20000) {
3 result <- sum(rnorm (1:i))
4 }
5 }
6
7 bar <- function () {
8 lapply (1:20000 , function (i) {
9 result <- sum(rnorm (1:i))

10 })
11 }
12
13 .. my_profile .. <- function (...) {
14 lapply (1:5 , function (i) {
15 foo ()
16 bar ()
17 })
18 }
19
20 .. my_profile ..()

Figure C.5: Code p05.

46

Appendix D
Contents of Attachments

The project is also available at https://github.com/sandbubbles/dp_code.
README.md.......................the file with media contents description
r R version 4.3.3. source code with our additions
measurements

performance................scripts and data to compare performance
r vs r..................scripts and data to compare profiling outputs

tests.....................................some programs for evaluation

47

https://github.com/sandbubbles/dp_code

	Introduction
	Aim of the Thesis
	Structure of the Thesis

	Preliminaries
	The R Language
	Profiling R Code
	Scalene
	CPU Profiling
	Conclusion

	Conclusion

	Representation of R Code
	SEXP
	Call Stack in R
	Built-in Functions

	Implementation
	Signal Handling
	Design of the Profiler
	Initialization of the Profiler
	Profiler State
	Determining Lines of Code

	Taking Samples
	Walking the Call Stack

	Conclusion

	Assesment
	Accuracy
	Comparing Accuracy

	Performance
	Conclusion

	Conclusions
	Future Work

	Bibliography
	Acronyms
	Implememntation of Waiting Functions
	Programs for Evaluating Accuracy
	Contents of Attachments

