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Abstract

This thesis aims to explore machine learning techniques and options to process time signals with
focus on ECG. The thesis explores impact of modifications of Fourier tranform on performace
of machine learning models and will compare the accuracy of models in frequency domain with
individual modifications to models working in time domain.

Individual steps:
1) Review machine learning models for time signal classification (partial and whole) and

techniques for preprocessing time signals. 2) Describe and explore suitable dataset. For ex-
ample CODE-15 for ECG Classification. 3) Review Fourier transform, it’s modifications and
propose your modifications. 4) Create a baseline model and experiment with modified models
and document the impact of modifications on accuracy of the model. 5) Compare the results
with techniques directly using the time domain data.

Literature: Carlos Mateo, Juan Antonio Talavera. Short-time Fourier transform with the
window size fixed in the frequency domain. Digital Signal Processing. Volume 77. 2018. ISSN
1051-2004. https://doi.org/10.1016/j.dsp.2017.11.003. Ribeiro, Antônio H., et al. ”Automatic
diagnosis of the 12-lead ECG using a deep neural network.” Nature communications 11.1 (2020):
1760.

Keywords ECG, FFT, CNN, DNN, Preprocessing

Abstrakt

Tato práce si klade za ćıl prozkoumat techniky strojového učeńı a možnosti zpracováńı časových
signál̊u se zaměřeńım na EKG. Práce zkoumá vliv modifikaćı Fourierovy transformace na výkonnost
model̊u strojového učeńı a porovná přesnost model̊u ve frekvenčńı oblasti s jednotlivými modi-
fikacemi model̊u pracuj́ıćıch v časové oblasti.

Jednotlivé kroky:
1) Přezkoumat modely strojového učeńı pro klasifikaci časových signál̊u (částečné a celé) a

techniky pro předzpracováńı časových signál̊u. 2) Popsat a prozkoumat vhodný soubor dat.
Např́ıklad CODE-15 pro klasifikaci EKG. 3) Proj́ıt si Fourierovu transformaci, jej́ı úpravy a
navrhnout své úpravy. 4) Vytvořit základńı model a experimentovat s upravenými modely a
zdokumentovat dopad úprav na přesnost modelu. 5) Porovnovat výsledky s technikami př́ımo
pomoćı dat v časové oblasti.

Kĺıčová slova ECG, FFT, CNN, DNN, Předzpracováńı
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Introduction

Here and there we are faced with data. And one of complex types of data is time series. It is a
track of a certain variable over time. It may be the temperature outside, exchange rate, musical
composition or GPS trajectory - there is a lot of information that can be stored in this form.
And from this information, like from any other, we want to gain knowledge. There are plenty of
ways to process time series. One may want to classify data, predict its future, and even generate
some new data if we’re talking about music.

This thesis will be limited to considering such specific time series as Electrocardiogram (ECG).
Cardiovascular diseases are the leading cause of death worldwide [1]. And ECG is the major tool
for their diagnoses. In Chapter 1 I will introduce you to what an ECG is in general terms. Then
I will overview other methods for studying ECG in Chapter 2. For the purpose of this work was
used the part of large dataset CODE, which will be described in more details in Chapter 3. The
thesis will focus on combinations of signal transformations and classifiers of different architecture,
which will be described in Chapter 4, including a new method whose authorship I attribute to
myself. In the Chapter 5 there will be described implementation of all experiments. Finally,
Chapter 6 will contain the comparison of different transformations and classifiers efficiency.

1



Chapter 1

Introduction in ECG

In this chapter I want to bring you up to date on what an ECG is.
Electrocardiogram is a result of electrocardiography - a technique for recording and studying

electric fields generated during the work of the heart. Using electrodes on the limbs and chest,
information is collected about changes in the potential difference between different points of the
human body.

Table 1.1 ECG leads and its positions

Group Leads Position Heart view

1 6-Limb 3-Bipolar/
Standard

Lead-I Left arm & right arm Left side

Lead-II Left leg & right arm Inferior left view

Lead-III Left leg & left arm Inferior right view

3-Unipolar/
Augmented

aVR Right arm (+), Left arm (-), Left leg (-) Upper right side

aVL Left arm (+), Right arm (-), Left leg (-) Upper left side

aVF Left leg (+), Right arm (-), Left arm (-) Inferior wall of heart

2 6-Chest V1 2-Septum wall 2-Oriented to right
ventricle

V2

V3 2-Anterior wall 2-Face inter ventricular
septum

V4

V5 2-Lateral wall 2-Face left ventricle
anterolaterally

V6

Figure 1.1 Placement of elec-
trodes on the body for a 12-lead
ECG [2]

Spatial information about the electrical activity of heart can
be captured by standard 12 conventional leads (equally divided
into limb- and pre-cordial/chest-leads) placed in three orthog-
onal directions (i.e., right to left, superior to inferior, and ante-
rior to posterior) on human skin/body. Limb- and chest-leads
help in recording the potential difference across the frontal-
and horizontal-plane, respectively [2]. The six limb leads are
equally divided into bipolar/standard (such as: lead-I, lead-II,
and lead-III) leads and uni-polar/augmented (aVR, aVL, and
aVF) leads. The six uni-polar pre-cordial/chest leads are V1,
V2, V3, V4, V5, and V6. The detail description, position, and
purpose of the 12-leads are represented precisely in Table 1.1.

2



3

This provides the relation of ECG with orientation of heart.
This is a rather indirect method of obtaining information about the work of the heart, but

the ECG carries enough information to determine various disorders even by eye.

Figure 1.2 ECG morphology: different seg-
ments of ECG signal for normal person [3]

Activity of heart and its condition can be known
from the morphology (peaks and duration of var-
ious peaks) of ECG signal [4]. The main com-
ponents are P-wave, QRS complex, T-wave, and
the duration between them. P-wave occurs due
to the sequential activation (i.e., depolarization)
of the right and left atria. QRS complex is ap-
peared by right and left ventricular depolarization
(i.e., ventricles are activated simultaneously). T-
wave arises by ventricular re-polarization, whereas
U-wave is occurred after depolarization in the ven-
tricles. Interval between different wave carries di-
agnostic information about the heart diseases. PR
interval produced by time delay from onset of atrial
depolarization (P-wave) to onset of ventricular de-
polarization (QRS complex). QRS period depends

on ventricular muscle depolarization, whereas QT interval rely on the duration of ventricular
depolarization and re-polarization. The RR- and PP-interval depend on ventricular-cycle and
atrial-cycle duration (or rate), respectively.

Table 1.2 Specification of morphological features in normal ECG.

Waveform Duration
(seconds)

Amplitude
(mV) Remarks

P-wave 0.08–0.12 0.25 Depolarization of LA & RA

Q-wave 0.03 0.2–0.4 Initial ventricular depolar-
ization

R-wave - 1.60 Depolarization of the ventri-
cles

S-wave - 1.8–3.0 Final ventricular depolariza-
tion

T-wave 0.1–0.25 0.1–0.5 Ventricular repolarization

W-wave - 0.1–0.33 Purkinje fibers repolariza-
tion

PR
interval 0.12–0.20 120 Atrial & ventricular depolar-

ization
QR
duration 0.06–0.12 2.5–3.0 Depolarization of ventricles

Q
interval 0.35–0.44 - Reflect ventricular repolar-

ization
R
interval 0.6–1.2 - Measures heart rate variabil-

ity
PP
interval 0.60–1.04 - Interval between two P-

waves
ST
segment 0.08 0.1–0.2 Early re-polarization

The morphological specifi-
cation of an ECG signal of a
normal person and the dura-
tion of different waveform are
shown in Fig. 1.2 and Table 1.2
summarizes the duration, am-
plitude and the cause of vari-
ous waveform in normal ECG
signal.

Although the ECG is obvi-
ously a time series, due to the
nature of the signal, its pre-
diction or generation makes no
practical sense. On the con-
trary, classifying signals - or
rather patients - is an impor-
tant task that saves thousands
of lives every day. That is why
many studies have been con-
ducted on the topic of various
methods for automatic classifi-
cation of the electrocardiogram
for the purpose of diagnosis.



Chapter 2

Overview of methods for ECG
analysis

2.1 Classification methods
In this chapter I will introduce you some works related with ECG processing and diagnosing.

There are many ways to process the ECG signal. To overview them I have read the article
”Analysis of various techniques for ECG signal in healthcare, past, present, and
future” [5]. All approaches they divide into three categories:

conventional/traditional

machine learning (ML)

deep learning (DL)

Traditional methods involve extraction and analysis of various ECG features. It may be heart
rate, distances between different peaks, entropy, means and variances of any value, correlation
coefficients between them. Time, frequency and wavelet based approaches also refers here.

Machine learning methods use hidden Markov model (HMM), support vector machine (SVM),
principal component analysis (PCA), linear discriminant analysis (LDA), independent compo-
nent analysis (ICA) , k-nearest neighbor classifier (KNN), vector quantization, random forest
(RF) and other similar techniques.

To Deep learning methods refer Convolutional neural networks (CNN), Long short-term mem-
ory (LSTM), Generative adversarial networks (GAN), Deep auto-encoders (DAE), Transformers
and Residual neural networks (Res-Net).

A separate category of methods can be considered getting rid of misleading signals and
noises. They don’t solve the task themselves, but significantly improve the result. Mainly, ECG
signals are affected by two forms of noise (high and low frequency). Baseline wander (BW) is
coming under low frequency noise. Whereas, power-line interference (PLI), muscle artifact (MA),
Gaussian noise, and electromagnetic interference (EMI) etc., lie in high frequency group.

I have also read few articles about interesting methods.
First of all, of course, it was the article ”Automatic diagnosis of the 12-lead ECG using

a deep neural network” [6], that was for me first source of inspiration, the dataset explored
and used in the thesis and state-of-the-art Residual Convolution Neural Network architecture. I
will describe them in the relevant sections of the work.

4



Classification methods 5

I have also found the article ”A Wide
and Deep Transformer Neural Net-
work for 12-Lead ECG Classification”
[7], where they used ensemble of Trans-
former and Dense Network on ECG features
to diagnose 27 diseases as part of 2020 Phy-
sioNet/CinC challenge (Fig. 2.1).

Figure 2.1 Wise and Deep Transformer NN

Figure 2.2 Gated Transformer Networks

Another interesting article about transformer usage
was ”Gated Transformer Networks for Multi-
variate Time Series Classification” [8]. They
used there ensemble of two Transformers, first of
which processed data along the channels, while the
second one processed data of certain moments of time
(Fig. 2.2).

The ensemble of CNN and LSTM have used
authors of the article ”Automated De-
tection of Abnormalities in ECG sig-
nals using Deep Neural Network” [9].
They used as data for NN different fea-
tures from peaks - intervals between P and
R peaks, widths of them and other similar
properties. (Fig. 2.3)

Figure 2.3 Deep NN for Abnormalities detection

Figure 2.4 STFT-FD of first ECG channel
for 15 minute time slot

In the article ”Analysis of atrial and ventric-
ular premature contractions using the Short
Time Fourier Transform with the window size
fixed in the frequency domain” [10] authors use
their own Fourier Transform variation Short-Time
Fourier Transform with a Window Size Fixed
in the Frequency Domain (STFT-FD) to diag-
nose arrhythmia (Fig. 2.4). Their idea is to use for
each frequency the count of data, that contains some
certain count of cycles. So, different frequencies use
different samples count in summation in the Fourier
transform formula.
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2.2 Anomaly detection
The purpose of the anomaly detection is the same - to identify problems in the patient. However,
unlike the previous type of tasks, here it is necessary to process a much longer signal and
determine the presence of anomalous areas.

In [11] authors divide the task into rhythm and heartbeat classifications. Rhythm classifica-
tion determines the type of the rhythm anomalies such as Normal Sinus Rhythm (NSR), Atrial
Fibrillation (AF), Ventricular Flutter (VF), and so on. The ECG segments for rhythm classifica-
tion are usually contained in several heartbeats, which could be normal or abnormal. Heartbeat
classification takes an ECG signal that only includes one heartbeat as the input and outputs
the heartbeat type such as normal heartbeat, Left/Right bundle branch block beats, premature
beats, etc.

In addition to the methods from the previous chapter, signal processing tools such as au-
toregressive integrated moving average (ARIMA), cumulative sum statistics (CUSUM), expo-
nentially weighted moving average (EWMA) are also used. But modern DNN models as LSTM
and Transformers show better efficiency. There also exist methods of comparing the signal with
the predicted one. For this purpose, certain generative models and metrics for assessing discrep-
ancies in signals are used. For example in ”Unsupervised Transformer-Based Anomaly
Detection in ECG Signals” [12] they use Transformer to predict ECG next cardiac cycle in
real time and calculate its difference with real signal. (Fig. 2.5)

Figure 2.5 Architecture of anomaly detection model



Chapter 3

Overview of dataset CODE-15

In this chapter I introduce you to the CODE dataset, that I have used in this work for experi-
ments.

As a basis for this thesis I took the work [6]. I will call it ”CODE article” in this and next
chapters. In the article they created their own dataset CODE consisting of 2,322,513 ECG
records from 1,676,384 different patients of 811 counties in the state of Minas Gerais/Brazil from
the Telehealth Network of Minas Gerais (TNMG). This dataset they have used for training and
validation. To evaluate the models, they used a special data set that they call in files for the
article Gold standard. I will use this name for this dataset in the thesis.

Figure 3.1 ECG example
from dataset

Article authors have used different approaches for labeling
these two datasets. For CODE dataset they used 3 source of la-
bels: i) the Uni-G statements and Minnesota codes obtained by
the Uni-G automatic analysis (automatic diagnosis); ; ii) au-
tomatic measurements provided by the Uni-G software; and,
iii) the text labels extracted from the expert text reports of
diagnosis using the semi-supervised text processing methodol-
ogy Lazy Associative Classifier (LAC) [13] (medical diagnosis).
They combined these 3 sources to compensate errors of auto-
matic classification, of the practicing expert cardiologists and
the labeling methodology. For Gold standard test dataset la-
beling they collected the opinions of several experts who specif-
ically looked at these ECGs and filled out their findings in an
easy-to-process form - Yes/No marks for each disease, rather
than a text conclusion. Therefore, it is assumed that the la-
beling accuracy for this dataset is even higher than for CODE.

As a source they used the short-duration, standard, 12-
lead ECG. That signal contains 12 channels of data. All ECG
recordings were re-sampled by authors to a 400 Hz sampling
rate. The ECG recordings, which have between 7 and 10 sec-
onds, are zero-padded resulting in a signal with 4096 samples
for each lead. So, all instances had shape (4096, 12).

Unfortunately dataset CODE is not available for free use
and what was more important it is huge. These are the rea-
sons I have used public dataset CODE-15, which is random
selection of 15% of patients from CODE. It contains 345,779
instances, and after removing several instances due to failed
Fourier transform I got 345,777 instances. I have divided them

7
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to Train, Val and Test datasets by randomly dividing patients into groups in a 70/20/10 ratio.
Then I balanced dataset Train by dropping part of healthy instances, so their percent in ”Train
balanced” dataset became 50% (Table 3.1).

Table 3.1 (Dataset summary) Patient abnormalities prevalence, n (%)

Abnormality Train
(n = 242,015)

Train balanced
(n = 52,934)

Val
(n = 69,181)

Test
(n = 34,581)

Gold standard
(n = 827)

1dAVb 3,958 (1.6%) 3,958 (7.5%) 1,180 (1.7%) 578 (1.7%) 28 (3.4%)

RBBB 6,760 (2.8%) 6,760 (12.8%) 1,932 (2.8%) 980 (2.8%) 34 (4.1%)

LBBB 4,246 (1.8%) 4,246 (8.0%) 1,190 (1.7%) 590 (1.7%) 30 (3.6%)

SB 3,960 (1.6%) 3,960 (7.5%) 1,116 (1.6%) 529 (1.5%) 16 (1.9%)

AF 5,316 (2.2%) 5,316 (10.0%) 1,520 (2.2%) 748 (2.2%) 13 (1.6%)

ST 4,884 (2.0%) 4,884 (9.2%) 1,403 (2.0%) 746 (2.2%) 37 (4.5%)

Healthy 215,548 (89.1%) 26,467 (50.0%) 61,650 (89.1%) 30,804 (89.1%) 681 (82.4%)

Authors of CODE article trained a DNN to detect: 1st degree AV block (1dAVb), right
bundle branch block (RBBB), left bundle branch block (LBBB), sinus bradycardia (SB), atrial
fibrillation (AF) and sinus tachycardia (ST) (Fig. 3.2). My research concerns the same diagnoses.

3.1 Files of dataset
Dataset CODE-15 may be downloaded from WEB page [14] as 18 .hdf5 files with ECG data
and one .csv file with labels and patient ID. Total data size in this format is near 47 Gb. The
connection between the data and the label was carried out using column exam id, which was not
very convenient.

I have processed these files before use. I deleted few instances, which I couldn’t process
with Fourier transformation. Then I have split all patients to train-val-test groups in a ratio of
70-20-10 and have written their ECG instances to different .hdf5 files - 18 files in every of 3
different directory ”train”, ”val” and ”test”. After that I used this division in all experiments.

I also have created different files for labels, for I could just ZIP them with data without
linking with exam id.

In subsection 5.1.1 I describe, how I work with these files.
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Figure 3.2 (Abnormalities examples)
A list of all the abnormalities the model classifies. Here is 3 representative leads only (DII, V1 and V6).



Chapter 4

Overview of transformations and
classifiers in this article

In this chapter I describe few data preprocessing methods and few different classifiers I have used
inn this work. I will pay special attention to the transformation that I came up with myself.

4.1 My own FFT transformation (FFTwDW)
This is the transformation variation I have not found information in other articles about. So I
think I can call this idea my own.

First of all, what was the inspiration for this idea. It was the fact, that for human cardiologists
the scale of ECG graph is not very important. Sure, for some features there are windows of
acceptable values in millimeters, but other features (like the form of ECG for healthy patient)
they know as template, independent on RR-interval. So I have thought about way of signal
”normalization” to get rid of the influence of the heart rate on the ECG shape.

The way to implement this I have found in Fourier Transform.
Since ECG in our task is periodic function, defined on limited interval, it is more convenient

for us to process it with Fourier series then with Fourier transform. Let’s look at Fourier series
formulas:

f(x) =
∞∑

n=−∞
cne

i2π n
P x (4.1)

cn = 1
P

∫ P
2

− P
2

f(x)e−i2π n
P xdx (4.2)

where P - length of interval, where our function f(x) is known.
Let’s say we have another function f∗(x) = f(x · 1.02). For ECG it may be the ECG of same

patient, when he has a little faster heart rate. Its Fourier series will look like:

f∗(x) = f(x · 1.02) =
∞∑

n=−∞
c∗
ne
i2π n

P x (4.3)

But it also may be written as

f∗(x) = f(x · 1.02) =
∞∑

n=−∞
cne

i2π n
P x·1.02 =

∞∑
n=−∞

cne
i2π n

P/1.02
x (4.4)

10
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So, you can see, that we can move from 4.1 to 4.4 with preservation of coefficients by just changing
interval size P.

cn = 1
P

∫ P
2

− P
2

f(x)e−i2π n
P xdx (4.5)

With y = x/1.02

cn = 1
P

∫ P/1.02
2

− P/1.02
2

f(y · 1.02)e−i2π n
P y·1.021.02 · dy = 1

P ∗

∫ P ∗
2

− P ∗
2

f∗(y)e−i2π n
P ∗ ydy (4.6)

where P ∗ = P/1.02.
So, if we know the difference between f and f∗, we can transform them to the same Fourier

components through choice of correct interval P. This transformation with calculated interval I
have called Fourier Transform with Dynamic Window.

Now we should remember, that we should use discrete transform. It will look like

Xk =
N∗−1∑
n=0

xn · e−i2π k
N∗ n (4.7)

, where N∗ depends on heart rate.
The number of components in the Fourier expansion will also vary depending on N∗. This

is not suitable for further signal processing, so I took only first 500 Fourier components. On the
Fig. 4.1 I’m demonstrating, that 500 first Fourier coefficients are enough to re-composite signal
in quality sufficient for diagnosis by eyes.

(a) Here is the initial signal - first channel of some random ECG

(b) Here is restored same signal - after rFFT I reset to 0 all components except the first 500
and then make inverse rFFT

Figure 4.1 Estimation of the significance of the first 500 components of the frequency domain

To the eye, the reconstructed signal hardly differs from the original one. It can be assumed
that the first 500 components in frequency domain carry almost all the information necessary
for diagnosis.

So I have limited myself to these 500 components. Here is the code I used for this transfor-
mation:
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1 def fn_I_Fourie(instance, a, b, first_N, fs):
2 # calculate heart_rate
3 heart_rate = get_heart_rate(instance)
4 # calculate necessary N∗

5 new_N = math.ceil(2000 * 120 / heart_rate)
6 # calculate phase of some peak
7 tick_of_peak = np.argmax(np.sum(np.abs(instance), axis = 1))
8 tick_between_peaks = fs / (heart_rate / 60)
9 tick_phase = (tick_of_peak - N/2 + tick_between_peaks/2)%tick_between_peaks

10 - tick_between_peaks/2
11

12 # calculate actual signal start and end
13 if new_N/2 <= N/2+tick_phase:
14 A = 0
15 C = math.floor(N/2-new_N/2+tick_phase)
16 else:
17 A = math.floor(new_N/2-N/2-tick_phase)
18 C = 0
19

20 if new_N/2 <= N/2-tick_phase:
21 B = new_N
22 D = math.floor(N/2+new_N/2-tick_phase)
23 else:
24 B = math.floor(new_N/2+N/2-tick_phase)
25 D = N
26

27 if B-A < D-C:
28 D = C + B - A
29 if B-A > D-C:
30 B = A + D - C
31

32 # Change signal size
33 new_inst[A:B, :] = inst[C:D, :]
34 # rFFT
35 y_new = scipy.fft.rfft(new_inst, n=new_N, axis=0)
36

37 # Get first 500 components
38 return magnitude_new[:first_N]

I made here one more improvement - I have moved peak of ECG to the middle of new signal
window. This should affected the phase of the signal so that the resulting Fourier coefficients
for different signals were even more similar, but in the end I did not notice a significant effect
of phase on classification quality. In final version of transformation I use only magnitudes of
coefficients.

As a function f(x) i took here ECG of heart rate 120 and on interval 2000 frames. All
instances in CODE dataset have 4000 frames, but often they have only 70% of interval filled, so
I chose such parameters, that on heart rate near 80 I use about 3000 of frames.

To illustrate the result of my transformations, I will present several signals restored after the
operations described above using an inverse Fourier transformation (Fig. 4.2).

On the left there is channel 0 from initial signal with window, that I use for Fourier transform.
On the right you can see result of inverse Fourier transform after FFTwDW. I accented two
central cardiac cycles - their comparability was the main goal.
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Figure 4.2 Examples of effect of Fourier Transform with Dynamic Window.

4.2 Transformations for comparison
In this section I will describe methods of data transformation I have used to prepare data for
classification. Most of then are known, and I use some standard packages for them, but one is
my own idea.
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4.2.1 Time domain
This is the initial dataset. In the CODE article [6] there was no information about any noise
removal or normalization. So I did not do it neither in this dataset. The only thing I have done
was deleting several signals for which the Fourier transform did not work (they had a horizontal
line in one or more channels - apparently, some sensor had moved away from the skin). So all
datasets I have used had the same instances set.

4.2.2 Fast Fourier Transform for real values (rFFT)
The formula for FT is

f(x) =
∫ ∞

−∞
F (k)e2πikxdk (4.8)

where
F (k) =

∫ ∞

−∞
f(x)e−2πikxdx (4.9)

are exactly the components from frequency domain.
As is known, eix = cos(x) + i sin(x) (Euler’s formula). So dealing with real values functions

it makes sense to get only real part of function:

F c(k) =
∫ ∞

−∞
cos(2πkx)f(x)dx (4.10)

This transform is often called as Fourier Cosine Transform.
If we try to apply these formulas in practice, we are faced with the fact that instead of a

continuous signal we have a sequence of values at different points in time. This forces us to make
certain important changes to the formulas:

We have to replace the integral with the sum.

Now we can calculate only as many components in the frequency domain as we have signal
values.

xn = 1
N

N−1∑
k=0

Xk · ei2π k
N n (4.11)

Xk =
N−1∑
n=0

xn · e−i2π k
N n (4.12)

where n ⊂ {0, . . . , N − 1}. This type of transformation is called Discrete Fourier transform
(DFT).

This algorithm has a complexity O(n2), which we always want to improve. And it is possible.
There are few algorithms of DFT with complexity O(n log(n)), so they are called Fast Fourier
Transform (FFT).

In my exploration I uses function from package scipy: scipy.fft.rfft. I use it on the whole
signal length, which differs from the classical use of Fourier transform on small pieces of a signal
to study the dynamics of signal changes over time. I don’t try to study the dynamics, I want to
collect the most accurate information about the signal spectrum.

1 def fn_Fourie(instance, first_N):
2 # Number of sample points
3 N = instance.shape[0]
4 y_new = scipy.fft.rfft(instance, n=N, axis=0)
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5 # Get magnitude
6 magnitude_new = np.abs(y_new)
7

8 if magnitude_new.shape[0] < first_N:
9 magnitude_new_new = np.zeros((500, magnitude_new.shape[1]))

10 magnitude_new_new[:magnitude_new.shape[0], :] = magnitude_new
11 return magnitude_new_new
12 return magnitude_new[:first_N]

You can see here, that I limit transformation result by first first N components. It makes more
sense in FFTwDW transformation, so I decided to copy the approach for better comparison.

4.2.3 Modified discrete cosine transform (MDCT)
Two next transformations I decided to add for comparison with other popular variants. Modified
discrete cosine transform (MDCT) [15] is the popular transformation, used in most modern
audio coding standards, including MP3, Dolby Digital (AC-3), Vorbis (Ogg), Windows Media
Audio (WMA), ATRAC, Cook, Advanced Audio Coding (AAC), High-Definition Coding (HDC),
LDAC, Dolby AC-4, and MPEG-H 3D Audio.

Classically FFT is applied after dividing the signal into equal consecutive non-overlapping
intervals. MDCT applies FCT 4.10 to consecutive overlapping intervals, when two adjacent
intervals intersect by half the length. It makes the MDCT especially attractive for signal com-
pression applications, since it helps to avoid artifacts stemming from the block boundaries.

I have used the package mdct in default modification. I have not used all components from
this transformation again, because I saw, that there is no visible information in components
higher then 128 and I wanted to save space on hard disk.

1 import mdct
2 def mdct_reshaped(x):
3 # MDCT
4 MDCT = np.nan_to_num(mdct.mdst(x), 0)
5 # Reshape from 3-D to 2-D, which is necessary for all my classifiers
6 MDCT = MDCT[:128, :, :].reshape(128, -1)
7 # normalization
8 mx = np.max(np.abs(MDCT))
9 if mx != 0:

10 MDCT = MDCT / mx
11 return MDCT

4.2.4 Wavelet transform (WT)
A wavelet is a wave-like oscillation with an amplitude that begins at zero, increases or decreases,
and then returns to zero one or more times. On Fig. 4.3 you can see some examples of wavelets
sufficient for Wavelet transform.

For Wavelet transform (WT) we create a subspace with coordinates a and b, where a is
a scale, and b is a shift:

ψa,b(t) = 1√
a
ψ

( t− b

a

)
(4.13)

where ψ is a base wavelet function.
In the next step we calculate correlation between every of this function with the function x(t)

we want to transform:

WTψ{x}(a, b) = ⟨x, ψa,b⟩ =
∫
R
x(t)ψa,b(t)dt (4.14)
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(a) Mexican hat Wavelet (b) Morlet Wavelet

Figure 4.3 Examples of different Wavelet functions

Since wavelet is very locally defined function, wavelet coefficients reflect the behavior of
function x(t) in some area near point with shift b. Axis b plays here the role of a time axis.
While the axis a defines wavelet scale. And since the scale changes the frequencies on wavelets
Fourier transform, so the axis a is related to the frequency spectrum of the function x(t). That
is the reason, why Wavelet transform is considered forms of time-frequency representation of
continuous-time signals 4.4 (source - [16]).

Figure 4.4 Nice
Wavelet demonstration from Tip-sample interactions on graphite studied using the wavelet transform

Not every function with limited definition area is suitable for WT.

1. The wavelet must have finite energy:

E =
∫ ∞

−∞
|ψ(t)|2dt < ∞

2. The wavelet must have a mean equal to zero

3. For complex wavelets the Fourier transform must be both real and must decrease for negative
frequencies
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4. Localization: The wavelet must be continuous, integrable, have a compact domain, and be
localized in both time (space) and frequency

There are a significant number of different suitable functions. In my experiment I used
Coiflets ”coif17” fro package PyWavelets (look at Fig. 4.5)

Figure 4.5 Wavelet ”coif17”

My code I have used as preprocessing for WT dataset in final experiment:

1 import pywt
2 def wavelet_transformation(x):
3 DWT = []
4 # WT transform for every channel
5 for i in range(x.shape[-1]):
6 DWT.append(np.vstack(pywt.dwt(x[:, i], 'coif17')))
7 # stack them to get 2-D tensor
8 DWT = np.vstack(DWT)
9 # normalization

10 mx = np.max(np.abs(DWT))
11 if mx != 0:
12 DWT = DWT / mx
13 return DWT.T

4.2.5 Short-Time Fourier Transform with the Window Size
Fixed in the Frequency Domain (STFT-FD)

I have tried to apply this interesting transform from [10], but its calculation took two minutes
per instance. Having near 300,000 instances, it was not possible to process them all. So I refused
to include this transformation in the experiments. But in Appendix A.3 there are results of this
transform. It probably would by as useful as Wavelet transform.

4.3 Classifiers
In this section there will be description of classifiers. One of them is from CODE article [6], which
is fine-tuned for CODE dataset. The second one is my convolution neural network I have fine-
tuned by using simulated annealing on dataset with FFTwDW preprocessing. And the others
are different models representing various other neural network architectures and classifiers.
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4.3.1 CODE ResNet
As I have mentioned before, this is the deep neural network from original article with CODE
dataset [6]. The network consists of a convolutional layer (Conv) followed by 4 residual blocks
with two convolutional layers per block. The output of the last block is fed into a fully connected
layer (Dense) with a sigmoid activation function, σ, which was used because the classes are not
mutually exclusive (i.e. two or more classes may occur in the same exam). The output of each
convolutional layer is rescaled using batch normalization, (BN), and fed into a rectified linear
activation unit (ReLU). Dropout is applied after the nonlinearity. (Fig. 4.6)

Figure 4.6 Architecture of residual DNN from the CODE article [6]

They made fine-tuning of the model in the following hyperparameter space: residual neural
networks with 2, 4, 8, 16 residual blocks, kernel size 8, 16, 32, batch size 16, 32, 64, initial learning
rate 0.01, 0.001, 0.0001, optimization algorithms SGD, ADAM, activation functions ReLU, ELU,
dropout rate 0, 0.5, 0.8, number of epochs without improvement in plateus between 5 and 10,
that would result in a reduction in the learning rate between 0.1 and 0.5.

The final parameters are: the convolutional layers have filter length 16, starting with 4096
samples and 64 filters for the first layer and residual block and increasing the number of filters by
64 every second residual block and subsampling by a factor of 4 every residual block. Max Pooling
and convolutional layers with filter length 1 (1x1 Conv) are included in the skip connections to
make the dimensions match those from the signals in the main branch.

4.3.2 4-layers CNN
From the beginning I had hope to create much simplier neural network then one from Section
4.3.1, to compensate for the complexity of the neural network with a high-quality preprocessing
algorithm and obtain comparable results.

I have tried few 1-layer neural networks like Dense, Convolutional and LocallyConnected1D
layers, and they were too weak. So I have stopped at 4-layers Convolution Neural Network.
After every Convolutional layer I have MaxPooling1D (Fig. 4.7).

Figure 4.7 The structure of 4-layer CNN I fine-tuned

I have fine-tuned this NN using Simulated Annealing [17]. As objective function I have
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used F1 score on Validation dataset, and for training I have used one by one files with data of
CODE-15 dataset. More details you can read in Section 5.4.

The best one solution had vector of hyperparameters (1,0,9,0,2,3,5,1,1,0,9,0,3,2,7,1). Which
gives us model on Fig. 4.8:

Figure 4.8 The structure of 4-layer CNN after fine-tuninig

4.3.3 Transformer
Initially Transformers are language models [18]. To apply them for ECG we need other embedding
approach. Fortunately, this task was already solved in Visual Transformers (ViT) [19], and I
took code for TensorFlow 2 from this article [20] without any change.

Figure 4.9 ViT model overview.

In ViT we split an image into fixed-size patches, linearly embed each of them, add position
embeddings, and feed the resulting sequence of vectors to a standard Transformer encoder.
In order to perform classification, we use the standard approach of adding an extra learnable
“classification token” to the sequence. The illustration of the Transformer encoder was inspired
by [18]. (Fig. 4.9)

Code of Transformer classifier is in attachment.

4.3.4 LSTM, LSTM+CNN
I have tried few simple variants of NN with LSTM layer, and came to the conclusion that LSTM
works satisfactorily only in combination with the layer Bidirectional (Fig. 4.10).

Also there is interesting parameter in Tensorflow implementation of LSTM layer - return sequences.
return sequences = False means, that after LSTM we get only output of the last LSTM cell.
On the contrary, return sequences = True let us work with outputs of whole LSTM layer. To
deal with it I have added CNN layer after LSTM.

I couldn’t decide, what solution will show better result, so implemented both of them. Its
code is not too big, so I write it right here:

Code listing 4.1 Code for simple LSTM model
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Figure 4.10 Scheme of bidirectional approach

1 def get_LSTM_model(input_shape, n_classes):
2 input = tf.keras.Input(shape=input_shape, name='CNN_input_X')
3 LSTM = tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(12*6, dropout=0.2))(input)
4 output = tf.keras.layers.Dense(n_classes, activation='sigmoid')(LSTM)
5

6 model = tf.keras.models.Model(inputs=input
7 , outputs=output)
8 return model

Code listing 4.2 Code for LSTM model with Convoltuion layer

1 def get_LSTM_CNN_model(input_shape, n_classes):
2 input = tf.keras.Input(shape=input_shape, name='CNN_input_X')
3 biLSTM = tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(12*6, dropout=0.2, return_sequences=True))(input)
4 CNN = tf.keras.layers.Conv1D(6, 3)(biLSTM)
5 Flat = tf.keras.layers.Flatten()(CNN)
6 output = tf.keras.layers.Dense(n_classes, activation='sigmoid')(Flat)
7

8 model = tf.keras.models.Model(inputs=input
9 , outputs=output)

10 return model

I understand that there was room for fine-tuning, but Simulated Annealing takes an extremely
long time even on more lightweight architectures. I decided to limit myself to one more or less
working option, so you can assume that the parameters were chosen randomly.

4.3.5 Multi-layer Perceptrone (MLP)
Here I used MLPClassifier from package scikit-learn.

NN with 4 hidden Dense layers with 50, 40, 30, 20 neurons respectively. All other parameters
are default. I took it as example of simpliest classification methods.

4.3.6 Random forest
For the same reasons I have added to final experiment RandomForestClassifier classifier from
package scikit-learn.

I have chosen this one, because it took many times less time to train then AdaBoostClassi-
fier, DecisionTreeClassifier or GaussianProcessClassifier, which I initially wanted to try
too. But these methods took hours for every try, so I gave up on them.

I have taken these parameters values for this classifier: max depth=15, n estimators=50,
max features=1.
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4.3.7 Other classifiers from scikit-learn
I wanted to try other classifiers from scikit-learn, like AdaBoost, Decision Tree, Gaussian
Process and RBF SVM, but each of them took more then 8 hours to process one run, and I
needed to calculate dozens of them, so I excluded them from experiments.

4.3.8 RNN, RNN+CNN
I wanted also to explore efficiency of RNN architecture, but had to decide not to include them
into experiments. It took too long to train and what is worse my models did not converge at all.
In Appendix A.3.1 you can take a look at code of my RNN-models, but in the experiments it
is absent.



Chapter 5

Methodology of experiments

In this chapter I describe technical issues I have met and solved and the implementation of
experiments.

5.1 General tools

5.1.1 Work with datasets
The modern convenient format for storing data is .hdf5. This is the initial format of dataset
CODE-15. Package h5py allows download data from .hdf5 file into numpy array, what is
appropriate for any classifier on TensorFlow or from scikit-learn.

But if data are in few files, you need some tool, that can merge data to one array. For
this I have implemented function read and random undersampling dataset. It can process
one file with some number or all files in folder and combine them into one array. It can apply
random under-sampling with changeable ratio. It allows to add pre-processing both for data and
for labels. And it can return tf.data.Dataset object or two numpy arrays with data and labels
separately.

However, in the end it turned out that the entire dataset did not fit into RAM. So I have
developed another tool - class hdf5 file dataset based on tf.keras.utils.Sequence. It works only
with TensorFlow, but allows use data for training or evaluation reading them right from hard
disk. Like previous one tool it can read data from one or few files or from all available matching
files in folder. It allows to set batch size, shuffling, under-sampling, pre-processing for data
and labels, or choose only instances, limited to maximum disease count (I needed it for one of
experiments).

The idea of this dataset is to build sort of map with information, in which file you should
look for data with certain IDs. Files .hdf5 allow to read data from any row or row range you
want like it is numpy array. And additionally we create array with all IDs, matching conditions
we need. Since it is very fast to process only files with labels, arrays of IDs for under-sampling
or other labels-dependent filters is fast and cheap. It is a very flexible approach.

All these tools you can see in the application, file load dataset.py.

5.1.2 Models evaluation - datasets
For last experiments I have prepared callback, that calculate and save to file estimation of model
in 4 ways:

Test dataset ”Random test” from random 10% of patients

22
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- With a common threshold that optimizes F1 score for all diseases together
- With a special threshold for each disease that optimizes F1 score for this particular disease

Test dataset ”Gold standard” from the CODE article [6]

- With a common threshold that optimizes F1 score for all diseases together
- With a special threshold for each disease that optimizes F1 score for this particular disease

In the end I decided, that the best tool to compare different models will be combination
”Random test”+”common threshold”, but I have all 4 variants of estimation.

5.1.3 Models evaluation - statistics and scores
In all experiments I collect to statistic files following information:

Metrics

⊕ Count of rows with True positive result, TP
⊕ Count of rows with True negative result, TN
⊕ Count of rows with False positive result, FP
⊕ Count of rows with False negative result, FN
⊕ Train duration

Dimensions

≑ Task name (depends on experiment)
≑ Date-time of training start (defines different runs)
≑ Disease number (I called it Task ID, because nature of labels was not important for me)
≑ . . . any other useful features

The feature of these metrics (TP, TN, FP, FN) is that they can be aggregated across
different runs and even across different experiment configurations without greatly deformation
the meaning. The same cannot be said about indicators whose formulas contain division -
Precision, Recall and F1 in particular.

F1 ̸= 1
N

∑
F1

At least choice of this formula for averaged F1 is not robust to extreme metric values on small
instances. From my experience I prefer to use initial formula for F1 with aggregated components:

F1 =
∑
TP∑

TP + 0.5 ∗ (
∑
FP +

∑
FN)

F1 score aggregated for group of experiments in this way will be closer to most part of experi-
ments and will suppress some falling out events. In addition, experiments with a large amount
of information (like total instances/patients count) will influence such a metric more - and this
is good, because the influence of the law of large numbers on them is stronger.
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5.2 Experiments implementation

5.2.1 Research on the relationship between disease and
channels

I did this research before I fine-tuned my 4-layer CNN and before I implemented convenient
datasets. So I created some 4-layer dense NN with the simplest structure:

1 input_F_X = tf.keras.Input(shape=(500,12,), name='CNN_input_F_X')
2 Get_elem = Lambda(lambda x: x[:, :, channel])(input_F_X)
3 # Flat = Flatten(name='Flat')(input_F_X)
4 D_1 = Dense(120, activation = 'linear')(Get_elem)
5 D_2 = Dense(90 , activation = 'linear')(D_1)
6 D_3 = Dense(60 , activation = 'linear')(D_2)
7 D_4 = Dense(30 , activation = 'linear')(D_3)
8 outputs = Dense(6, activation='sigmoid')(D_4)
9 model = tf.keras.models.Model(inputs=input_F_X

10 , outputs=outputs)

As dataset for the experiment I took only file 0 with under-sampling with all instances with
disease and 10% of healthy instances. Table 3.1 you can see, that it make ratio healthy/sick close
to 1/1. As pre-processing I used FFTwDW (section 4.1), since this is the innovation I tried to
research. Validation dataset I also took from file 0 (Let me remind you that I divided all files to
train-val-test parts).

During the experiment I have compared F1 score on Validation dataset after training on
every ECG channel separately, on all channels (label ”All”) and on 9 channels without 3 the
worst (label ”Few”).

Results of this experiment you can see in section 6.1.

5.2.2 Research of the usefulness of phase, real and imagi-
nary parts

For this experiment I have written generator of 4-layer CNN from hyper-parameters vector. I
used for this purpose hyper-parameters space 5.1, same as for simulated annealing. I randomly
generated 10 different CNN, and I used for every experiment one random file with data of dataset
CODE-15.

Every experiment I have repeated (in the same configuration CNN and file of dataset) 3
times, so F1 score is already averaged.

Results of this experiment you can see in section 6.1.1.

5.2.3 Training on patients with up to one disease and check
of under-sampling

For this experiment I have used 2 configurations:

• CODE ResNet 4.3.1 + Time domain 4.2.1

• 4l CNN 4.3.2 + FFTwDW 4.1

For both of them I trained classifier on 4 variation of dataset:

- Without Under-sampling (False), all patients (All)
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- Without Under-sampling (False), only patients with 1 disease and healthy (1)

- With Under-sampling (True), all patients (All)

- With Under-sampling (True), only patients with 1 disease and healthy (1)

Under-sampling here is random the under-sampling with the ratio healthy-sick as 1:1.
Statistics collected is estimation on test datasets.
Results of this experiment you can see in section 6.1.2.

5.2.4 Main experiment: collection of statistics on transfor-
mations and classifiers

Idea of this experiment was to aggregate statistics about efficiency of different classifiers with
different pre-processing techniques.

As train dataset I have used under-sampled train dataset train US ratio 1 (data distri-
bution look in Table 3.1), because there was problem with disk space on server, where I made
calculations, and full train dataset does not fit to RAM of my PC.

As validation dataset I used full ”val” dataset (20% of CODE-15). For model estimation I
have collected all 4 variants from section 5.1.2.

I have used 5 options of pre-processing:

◦ Time domain - Initial data without any transformation. Section 4.2.1.

◦ rFFT - Fast Fourier Transformation for real values. Section 4.2.2.

◦ FFTwDW - Fourier Transform with Dynamic Window. Section 4.1.

◦ MDCT - Modified Discrete Cosine Transform. Section 4.2.3.

◦ WT - Wavelet transform. Section 4.2.4.

I used 7 different classifiers:

• CODE ResNet - It is the residual NN from the CODE article [6]. Section 4.3.1.

• 4L CNN - It is 4-layer CNN, that I have fine-tuned on dataset with FFTwDW pre-processing.
Section 4.3.2.

• Transformer - It is some example of Visual Transformer from Internet. Section 4.3.3.

• LSTM - There is the simplest LSTM NN with minimum layers. Section 4.3.4, code 4.1.

• LSTM+CNN - Here is LSTM NN in combination with CNN layer. Section 4.3.4, code 4.2.

• MLP - Standard Multi Layer Perceptrone classifier from scikit-learn package. Section 4.3.5.

• Random Forest - Random Forest classifier from scikit-learn package. Section 4.3.6.

When executing this experiment, I encountered the following difficulties.
First, classifiers from scikit-learn do not work with GPUs and with my dataset, that reads

data from hard disk. These classifiers need numpy array to work with. While other classifiers
do both these things. For this reason I created two different programs - one for my PC, which
processed classifiers MLP and Random Forest, and second one for the computing server
gpu0102-prod.in.fit.cvut.cz, where I have processed all other classifiers.

Second problem was, that there are two GPUs on that computing server, but TensorFlow
by default use only one of them. I failed to set up the usage of both GPUs as a cluster, but I
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succeed to run the program on certain GPU. So I divided my task pool to two parts by diseases
(1, 2, 3 in first part, 0, 4, 5 in the second one). Them I ran simultaneously on different GPUs.

I tried to use the package concurrent.futures for parallel executions, but it did not use power
of server effectively and did not speed up processing, so I prefer not to add this complication.

Final programs for computing server are rather straightforward. In nested loops by domains
(pre-processing methods), classifiers and diseases I ran the sequence ”prepare all datasets”→”fit
model”→”evaluate model on test datasets ”→”calculate TP/TN/FP/FN scores”→”write to
statistics file” 3 times (for greater statistical reliability). There was complication with MDCT
and WT domains - I have implemented them initially as preprocessing over Time domain data
to calculate them right during training. It worked, but was very slow. So I have prepared these
datasets for train and validation purposes as separate files for certain step of experiment only
(there was problem with space on computing server).

On my PC I had also problems with computing resources. All train, test and Gold standard
datasets could not fit to its RAM at the same time. Fortunately, I did not need validation dataset,
cause classifiers MLP and Random forest don’t use validation. So the sequence here was ”pre-
pare train dataset”→”fit model”→”delete train dataset”→”prepare test datasets”→”evaluate
model on test datasets ”→”calculate TP/TN/FP/FN scores”→”write to statistics file”→”delete
test datasets”. Which, of course, increased the running time of the program.

In all versions of the program I implemented a control of already processed combinations,
since I had to restart the programs regularly, and the whole experiment lasted about a month.

Results of this experiment you can see in section 6.1.3.

5.3 Problem with dataset Gold standard
The CODE article [6] also provided residual model, that contains more then 40 layers (12 of
which are Convolutional). I call this model CODE ResNet. It will be described in more detail
in the chapter 4.

Table 5.1 F1 score for some classifier.

TestType 1dAVb
0

RBBB
1

LBBB
2

SB
3

AF
4

ST
5

Gold standard 0.79 0.93 0.99 0.84 0.04 0.10

Test (random) 0.56 0.79 0.77 0.62 0.71 0.79

In the process of studying various
models and data transformations, I
noticed a stable unpleasant trend.
In Table 5.1 we see a typical picture
of the model’s performance results
on these two datasets. Regardless of
the chosen classifier and ECG signal
transformation, we see this behav-
ior: evaluation on Test dataset shows more or less close results for all diseases, but on Gold
standard we see terrible accuracy on diseases AF (4) and ST (5). We can see here, that two
datasets have different distribution.

Table 5.2 F1 score for the same model

Type 1dAVb
0

RBBB
1

LBBB
2

SB
3

AF
4

ST
5

Test
(random)

My 0.564 0.793 0.769 0.620 0.714 0.794

Article 0.61 0.84 0.83 0.67 0.81 0.76

Gold
standard

My 0.790 0.925 0.994 0.841 0.044 0.101

Article 0.897 0.944 1.000 0.882 0.870 0.960
Gold
standard
training

GS only 0.831 0.900 0.925 0.798 0.832 0.950

With Train 0.721 0.897 0.958 0.863 0.222 0.433

Authors of the CODE
article [6] had also noticed
this. Here in the Table 5.2
are their results for split
90%-5%-5% under differ-
ent rules ( ordered: ran-
domly; by date; stratified
by patients). And we can
see, that here they had lit-
tle better results, then I
have, but the distribution
of which diagnoses are eas-
ier and which are more dif-
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ficult to learn is the same. I show here in the table metric F1 for the same model on Time domain
from my experiments. I think, that the reason of lower quality on random Test dataset is less
data for training, but distribution looks same.

On the contrary, F1 score for Gold standard looks different. The only explanation that came
to my mind is that there are no patients in the dataset CODE-15, that carry critical information
to classify these 50 instances with AF and ST in Gold standard. To check this I have tried to
train model on Gold standard dataset - I know, that there is over-fitting, but at least it shows,
that the model is suitable for this task if the data is of high quality. In the rows ”Gold standard
training” there are my tries to train the same model on pure ”Gold standard” dataset and on
combination of ”Gold standard” and Train datasets. Addition of extra 50 instances with these
diseases significantly improved the results (in Train dataset there is 10,000 instances with these
two diseases total).

5.4 Simulated annealing
Simulated annealing (SA) is a metaheuristic optimization technique based on the annealing
process used in metallurgy, where a metal is heated to a high temperature quickly and then
gradually cooled. At high temperatures, the atoms move fast, and when the temperature is
reduced, their kinetic energy decreases as well. At the end of the annealing process, the atoms
fall into a more ordered state, and the material is more ductile and easier to work with.

Similarly, in SA, a search process starts with a high-energy state (an initial solution) and
gradually lowers the temperature (a control parameter) until it reaches a state of minimum
energy (the optimal solution).

I have not found module in Python for SA in discrete space of hyper-parameters, so I have
written my own code. It will be in Attachments.

Again, the structure of base CNN is on Fig. 5.1.

Figure 5.1 The structure of 4-layer CNN I fine-tuned

As hyper-parameter space I used the following set of properties:

Code listing 5.1 Hyper-parameters space for 4-layer CNN generating

1 { 'kernel_0' : (1, 2, 4, 6), # kernel
2 'max_pooling_0': (1, 4, 8, 12, 16), # max_pooling
3 'units_0': (2, 4, 8, 12, 16, 20, 30, 50, 80, 160), # units/filters
4 'activation_0': ('swish', 'linear'), # activation
5 'kernel_1' : (1, 2, 4, 6), # kernel
6 'max_pooling_1': (1, 4, 8, 12, 16), # max_pooling
7 'units_1': (2, 4, 8, 12, 16, 20, 30, 50, 80, 160), # units/filters
8 'activation_1': ('swish', 'linear'), # activation
9 'kernel_2' : (1, 2, 4, 6), # kernel

10 'max_pooling_2': (1, 4, 8, 12, 16), # max_pooling
11 'units_2': (2, 4, 8, 12, 16, 20, 30, 50, 80, 160), # units/filters
12 'activation_2': ('swish', 'linear'), # activation
13 'kernel_3' : (1, 2, 4, 6), # kernel
14 'max_pooling_3': (1, 4, 8, 12, 16), # max_pooling
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15 'units_3': (2, 4, 8, 12, 16, 20, 30, 50, 80, 160), # units/filters
16 'activation_3': ('swish', 'linear') # activation
17 }

As objective function I have used F1 score on Validation dataset, and for training I have used
random files with data of CODE-15 dataset.

I have ran the SA about 20 times, and even so it lasted for about 2 weeks, since every step
of iterative annealing process is fitting of NN and most of them needed few hundred of steps to
finish.

(a) The best solution found (b) Example 1

(c) Example 2 (d) Example 3

Figure 5.2 Few examples of Simulated Annealing process

Table 5.3 F1 score range

F1 score range

Best 0,456 ± 0,023

Random 0,355 ± 0,075

To demonstrate that it made sense, I will show you
comparison of 2 set of train-evaluate cycles - one on
the best found model and the other - on randomly gen-
erated in hyper-parameter space 5.1. In Table 5.3 you
can see comparison of F1 score ranges for the-best-after-
annealing model and set of random models.

Obviously SA allowed me to find the better CNN
configuration then most of other random configurations,
although this is not necessarily the best network globally.



Chapter 6

Experimental results

This chapter contains the results of all experiments I describe in this work.

6.1 Research on the relationship between disease and chan-
nels

Implementation of this experiment was described in section 5.2.1.
First result I got was the importance of different channels for total F1 score.

Channel All Few 0 3 11 10 1

F1 score 0.617 0.616 0.536 0.528 0.499 0.488 0.486

Channel 6 9 7 8 5 4 2

F1 score 0.470 0.448 0.447 0.442 0.401 0.394 0.376

Figure 6.1 F1 score depending on channel

We can see here, that channels 2, 4 and 5 give less information about diseases, then others.
Moreover, if we exclude them from training process, the effect of result seems not significant
(it is the column ”Few”). But for greater confidence let’s take a look at the same table for all
diseases:

From Fig. 6.3 we can see, that there are some difference in usefullness of channels for different
diseases. But what I have found more important, Fig. 6.2 shows, that effect of 3 worst channels

Figure 6.2 F1 score depending on channel, all diseases

29
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(a) Disease 0 1dAVb (b) Disease 1 RBBB (c) Disease 2 LBBB

(d) Disease 3 SB (e) Disease 4 AF (f) Disease 5 ST

Figure 6.3 Effect of different channels for each disease separately

may be more significant for some diseases (look at ”Few” and ”All” for disease 0 1dAVb). So I
decided not to ignore any of the channels.

6.1.1 Research of the usefulness of phase, real and imagi-
nary parts

Implementation of this experiment was described in section 5.2.2.
I have compared F1 score for validation dataset after training of different datasets - Fourier

Transform (section 4.2.2) and FT with Dynamic window (section 4.1) in tree variations each:

Only magnitude

Magnitude + Phase

Magnitude + Real part + Imaginary part

Results are in Table 6.1. Columns Phase consist data with phase of Fourier Transform
added to magnitude. Columns Complex consist data with Fourier Transform without additional
transformations added to magnitude.

We can see, that addition of phase allowed to better results in more than half of cases. But
average F1 score change is negative for FFTwDW and close to 0 for rFFT. For Complex colunm
both indicators are even worse.

Moreover, this will require 2 and 3 times more disk space, respectively. So I decided to use
only magnitude of Fourier transform coefficients.

6.1.2 Training on patients with up to one disease and check
of under-sampling

Implementation of this experiment was described in section 5.2.3.
Idea of this experiment was to check, if patients with few diseases make the the training more

difficult. Let’s take a look at the table with experiment results Table 6.2.
First, we can see, that balancing under-sampling is not always useful for these NN. Moreover,

for CODE ResNet there are better results without under-sampling. For 4l CNN there is no
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Dataset Experiment Variation (F1 score) Comparison Difference

No Magnitude +Phase +Complex Phase Complex Phase Complex

FFTwDW 0 0.352 0.441 0.4 1 (better) 1 (better) 0.09 0.049

1 0.375 0.284 0.314 0 (worse) 0 (worse) −0.09 −0.06

2 0.367 0.455 0.354 1 (better) 0 (worse) 0.088 −0.013

3 0.365 0.315 0.254 0 (worse) 0 (worse) −0.05 −0.112

4 0.27 0.311 0.271 1 (better) 1 (better) 0.041 0.002

5 0.33 0.35 0.458 1 (better) 1 (better) 0.02 0.128

6 0.389 0.324 0.204 0 (worse) 0 (worse) −0.065 −0.185

7 0.331 0.381 0.331 1 (better) 0 (worse) 0.05 −0.001

8 0.419 0.398 0.426 0 (worse) 1 (better) −0.021 0.007

9 0.434 0.196 0.26 0 (worse) 0 (worse) −0.238 −0.174

10 0.399 0.43 0.298 1 (better) 0 (worse) 0.031 −0.1

11 0.455 0.35 0.355 0 (worse) 0 (worse) −0.104 −0.1

12 0.329 0.366 0.396 1 (better) 1 (better) 0.037 0.067

13 0.154 0.169 0.051 1 (better) 0 (worse) 0.015 −0.103

rFFT 0 0.057 0.057 0.054 1 (better) 0 (worse) 0.001 −0.003

1 0.052 0.053 0.053 1 (better) 1 (better) 0.001 0.001

2 0.048 0.108 0.049 1 (better) 1 (better) 0.06 0.001

3 0.093 0.096 0.086 1 (better) 0 (worse) 0.004 −0.007

4 0.054 0.111 0.054 1 (better) 0 (worse) 0.057 0

5 0.111 0.063 0.06 0 (worse) 0 (worse) −0.049 −0.051

6 0.035 0.097 0.112 1 (better) 1 (better) 0.063 0.077

7 0.07 0.051 0.051 0 (worse) 0 (worse) −0.019 −0.019

8 0.055 0.055 0.051 1 (better) 0 (worse) 0.001 −0.003

9 0.051 0.054 0.052 1 (better) 1 (better) 0.002 0.001

10 0.111 0.091 0.088 0 (worse) 0 (worse) −0.02 −0.023

11 0.049 0.045 0.049 0 (worse) 1 (better) −0.003 0

12 0.064 0.05 0.049 0 (worse) 0 (worse) −0.013 −0.015

13 0.108 0.037 0.036 0 (worse) 0 (worse) −0.071 −0.071

FFTwDW Average 0.57 0.36 −0.014 −0.043

rFFT Average 0.57 0.36 0.001 −0.008
Table 6.1 Effect of addition phase and complex parts to dataset.

Configuration Max disease
count limitation Under-sampling 1dAVb

0
RBBB

1
LBBB

2
SB
3

AF
4

ST
5

CODE ResNet
+ Time domain

All True 0,538 0,795 0,756 0,600 0,713 0,783

False 0,561 0,800 0,775 0,630 0,721 0,779

Max 1
disease

True 0,500 0,786 0,727 0,594 0,696 0,748

False 0,519 0,793 0,758 0,621 0,721 0,781

4l CNN
+ FFTwDW

All True 0,215 0,705 0,714 0,357 0,634 0,538

False 0,248 0,701 0,711 0,388 0,622 0,577

Max 1
disease

True 0,249 0,690 0,700 0,365 0,636 0,525

False 0,236 0,710 0,697 0,364 0,627 0,543
Table 6.2 Maximum disease count and under-sampling research results
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significant difference between them. So I decided to use under-sampling if I will need to save
disk space.

Second, if we estimate effect of limitation to patients with maximum 1 disease we can see,
that for 4l CNN effect is not defined, and for CODE ResNet it seems, that full dataset is
little more useful. So I decided not to complicate the logic of other experiments and in them I
left patients with any count of diseases.

6.1.3 Main experiment: collection of statistics on transfor-
mations and classifiers

Implementation of this experiment was described in section 5.2.4.
Here was a huge experiment, so there is plenty of results and their combinations.

6.1.3.1 General quality estimations

Figure 6.4 All classifiers - global estimation

Here of Fig. 6.4 we can see, that our classifiers
have a wide range of quality. Don’t be con-
fused by such a big difference between the test
datasets. I have mentioned it and offered my
explanation for this in 5.3. I will explore clas-
sifiers in more details, but now I want to define
two groups among them - the group of strong
classifiers and the group of outsiders. We will
see further, that different domains show dif-
ferent quality distribution in these groups.

Strong: CODE ResNet, 4l CNN, MLP

Weak: LSTM+CNN, LSTM, Trans-
former

I will show below, that Random forest is just too weak, and fails almost always.

(a) Strong group (b) Weak group

Figure 6.5 Estimation of domains on the strong and weak classifier groups

On the Fig. 6.5 you can see, that in case of strong classifiers preprocessings FFTwDW, WT
and raw Time domain show almost equal and high efficiency. Every one of classifiers will show
little different situation, but these 3 preprocessing methods show better results for more complex
and large models.

On the contrary, for weak models preprocessing FFTwDW shows the best results. We will
see below, that here also exists difference for particular classifiers, but WT and Time domain
are too difficult domains for such simple models, and FFTwDW helps them a lot.
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6.1.3.2 Look at Random forest

1dAVb
0

RBBB
1

LBBB
2

SB
3

AF
4

ST
5

Random test 0,000 0,000 0,040 0,200 0,390 0,000

Gold standard 0,000 0,000 0,000 0,261 0,000 0,000

Figure 6.6 Results of Random forest, F1 score. Histogram for all domains, table only for FFTwDW

Random forest classifier from scikit-learn package was very fast in training, but almost useless.
You can see here, that the only one preprocessing technique, that allowed Random forest to take
some practical info from ECG, was FFTwDW. Even there the efficiency is low. On the Fig. 6.6
you can see both histogram of F1 score for all domains and table with F1 score for all disease
only for FFTwDW.

Such a low results are the reason, why I excluded this classifier from experiment that explores
diseases difficulties.

6.1.3.3 Diseases difficulties

Figure 6.7 All diseases
estimation on classifier group ”Strong”, F1 score

Here is F1 score separated by disease. I took
here only ”Strong” classifiers, because disease
groups I want to define are more obvious here.
But on the other classifiers except Random
forest the situation is more or less similar.

We have two diseases, which are processed
good both in Gold standard and Random
test datasets. It is diseases 1 and 2 (RBBB
and LBBB). And in Gold standard we see
better score.

Next group is diseases 0 and 3 (1dAVb
and SB) - we have the worst results for them
on Random test, and Gold standard shows
significantly worse score, then previous group.

And the last one group is diseases 4 and 5 (AF and ST). On Gold standard it looks like
classifiers doesn’t work at all, but on Random test we see rather good results.

We can see here, that for first 4 diseases dataset Gold standard shows better results, then
Random test. This correlates with the observations of authors of CODE article [6]. While on
last 2 disease Gold standard looks very bad. I have researched this in section 5.3.

We will see this behavior almost on every particular classifier.

6.1.3.4 Preprocessing methods efficiency by classifier
Here I will finally describe the results of the experiment in minimal acceptable detail to make
it easier to understand. Full files with statistics will be in attachment and on GitHub. I prefer
to use here histograms, but all numeric values are available in PowerBI file Models analysis. In
Appendix A.1 you can take a look at my report page appearance. And in Appendix A.2 there is
report page ”Matrix”, where it is possible to check confusion matrix for any configuration, to
check, where F1 score came from.
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(a) Diseases RBBB and LBBB (b) Diseases 1dAVb and SB (c) Diseases AF and ST

Figure 6.8 Estimation of domains for disease groups for classifier CODE ResNet

For CODE ResNet we can see, that Time domain gives the best results (Fig. 6.8).
Nothing surprising, it was fine-tuned for this domain. But we can see, that Wavelets (WT) also
works good. And for some diseases MDCT and FFTwDW work fine.

(a) Diseases RBBB and LBBB (b) Diseases 1dAVb and SB (c) Diseases AF and ST

Figure 6.9 Estimation of domains for disease groups for classifier 4-layer CNN

My 4-layer CNN took more surprises (Fig. 6.9). Although FFTwDW also is functional
here, better results we see on WT preprocessing, and even Time domain without preprocessing
at all. Well, probably I could spend more time for fine-tuning, but even so it is more effective
then most other random NN with similar architecture (see section 5.4).

(a) Diseases RBBB and LBBB (b) Diseases 1dAVb and SB (c) Diseases AF and ST

Figure 6.10 Estimation of domains for disease groups for classifier MLP

For MLP usefulness of FFTwDW is undoubted (Fig. 6.10). Only for disease 3 SB we see
strangely high efficiency of MDCT algorithm on test dataset Gold standard, for which I don’t
see any prerequisites. So probably it is luck in finding some successful combination of factors.
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(a) Diseases RBBB and LBBB (b) Diseases 1dAVb and SB (c) Diseases AF and ST

Figure 6.11 Estimation of domains for disease groups for classifier LSTM

(a) Diseases RBBB and LBBB (b) Diseases 1dAVb and SB (c) Diseases AF and ST

Figure 6.12 Estimation of domains for disease groups for classifier LSTM+CNN

Models LSTM and LSTM+CNN took the main surprise in whole this experiment (Fig.
6.11 and 6.12). Although FFTwDW shows significant improvement compared with Time do-
main, the preprocessing method MDCT shows even better results. However, this still falls
short of the best results of CODE ResNet and 4l CNN, but I have not done any fine-tuning
of LSTM, so probably this combination has high potential.

(a) Diseases RBBB and LBBB (b) Diseases 1dAVb and SB (c) Diseases AF and ST

Figure 6.13 Estimation of domains for disease groups for classifier Transformer

FFTwDW turned out to be the best preprocessing methon for classifier Transformer (Fig.
6.13). Although compared to the best models, the results are not impressive at all, but it is clear
that the FFTwDW is most suitable for this architecture.



Chapter 7

Conclusion

This thesis touched upon an important and quite developed area of signal research. In the process
of working on it I have read few classic and modern articles about ECG signals processing and
classification, and about different Neural networks architectures as Transformers or Retentive
neural networks, which I did not find a way to use in this work.

I have studied one fresh and quite high quality dataset CODE and discovered some internal
patterns in it. Here in the thesis I have showed different levels of difficulty for diseases, presented
in the dataset. I also have described the problem with test dataset Gold Standard used in the
CODE article [6] and tried to find its reasons.

I have studied different methods of signal transformation, like Fourier Transform, Wavelet
transform, Modified Cosine Transform, which were included into this work, but also I have
studied and explored Short-Time Fourier Transform with the Window Size Fixed in
the Frequency Domain (STFT-FD [10]), which was too slow for usage (see App. A.3). In
the process of studying, an idea of Fast Fourier Transformation with Dynamic window
(FFTwDW) came to my mind, and I had not found it anywhere else. So I have explored it and
compared with other methods, and have found areas, where it has an advantage over others.

I have implemented and explored few different NN architectures, including Transformers,
LSTM, CNN, Residual NN. Additionally I have explored RNN, but it was excluded from
experiment due to extremely slow speed of training and lack of satisfactory results on those
configurations where I managed to try it. Due to the same reasons few more classifiers from
Scikit-learn package, like AdaBoost, Decision Tree, Gaussian Process and RBF SVM,
were not presented here. I chose only two the fastest classifiers from this packege - MLP and
Random forest.

Finally I have collected structured statistics about different architectures and preprocessing
methods and made the convenient tool to explore this data. This required my extensive reporting
development experience from job, and in the process I also have built ROC curves and Recall-
Precision graphs in PowerBI, which was not useful in the end.

There are enough things I had not time to complete. It may be useful to check FFTwDW
preprocessing method on other popular ECG datasets like PTB or IKEM. I am sure that by
spending more effort on fine-tuning the models, I could get results comparable to the state-of-
the-art CODE ResNet. Probably, other combinations like LSTM+MDCT has much more
higher potential then we have seen here.
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Appendix

A.1 Report page ”Tables”
Here is the first page of the report I prepared to analyze data of main experiment (Fig. A.1). I
can choose here any set on classifiers, domains, diseases, test datasets and even certain run.

Figure A.1 PowerBI, list Tables

A.2 Report page ”Matrix”
Here is the second page of the report I prepared to analyze data of main experiment. It was
convenient to understand, why I have certain F1 score for some combination of tools. It also
helped me to understand, if some model better process positive or negative cases, for example.
Below I will add few examples of looking of the certain numbers.
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Figure A.2 PowerBI, list Matrix

A.2.1 Examples of Confusion matrix
Strange peak of MDCT for MLP classifier on Fig. 6.10. We can see here, that this combination
could not cope with disease 1dAVb at all. But on SB it perfectly diagnosed every sickened
instance, and had quite few false positives.

(a) Diseases 1dAVb and SB (b) Distributiom between diseases

(c) Disease AF confusion matrix (d) Disease ST confusion matrix

Figure A.3
Estimation of domains for disease group 1dAVb and SB for classifier MLP and test Gold standard

Random forest showed some efficiency with FFTwDW preprocessing. Let’s take a look,
how good it really was (Fig. A.4). Well, in the best case, AF, it could diagnose hald of sick
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instances. Not so good. But with other preprocessing methods it couldn’t diagnose nothing at
all. Knowing how Random forest works, I would guess that FFTwDW succeeded to find some
really important frequency combination for this disease.

(a) Domain distribution (b) Diseases distribution

(c) Disease 2 LBBB (d) Disease 3 SB (e) Disease 4 AF

Figure A.4 Results of Random forest,
F1 score. All domains, All diseases for FFTwDW only, and confusion matrices for diseases 2, 3, 4.

A.3 Short-Time Fourier Transform with the Window Size
Fixed in the Frequency Domain (STFT-FD) exam-
ples

As I have mentioned in 2, the idea of this transform is to use for each frequency the count of
data, that contains some certain count of cycles. So, different frequencies use different samples
count in summation in the Fourier transform formula.

Here is Fig. A.5 is the result of STFT-FD on one channel of ECG. It is calculated from top to
the bottom, using count of frames for window in integral from 2 to ⟨Count of frames⟩

⟨Count of cycles⟩ . Each such
window is used for Fourier coefficient calculation for one certain frequency with corresponding
period. These windows are overlapping here, and we have different count of them for different
frequencies. You can see here the straight version of picture and one with exponential Y-axis.
This one is more similar to what they show in their article, and there is more useful information
for comparing different instances by eye.

And finally here is the concatenated result for all 12 channels, which I’d use for experiments.
Unfortunately, as I mentioned, it takes too long - about 2 minutes for each of 300,000 instances.
It would take more then year for me only to process the whole dataset. So I did not use this
transformation.

A.3.1 RNN, RNN+CNN
Same as with LSTM, I used RNN in combination with the layer Bidirectional (Fig. ??).

And Tensorflow implementation of RNN layer also has parameter return sequences. return sequences =
False means, that after RNN we get only output of the last RNN cell. On the contrary,
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(a) STFT-FD on one channel with straight Y-axis (b) STFT-FD on one channel with exponential Y-
axis

(c) STFT-FD on 12 channels

Figure A.5 Results of STFT-FD

Figure A.6 Scheme of bidirectional approach

return sequences = True let us work with outputs of whole RNN layer. To deal with it I
have added CNN layer after RNN.

I couldn’t decide, what solution will show better result, so implemented both of them. Its
code is not too big, so I write it right here:

Code listing A.1 Code for simple RNN model
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1 def get_RNN_model(input_shape, n_classes):
2 input = tf.keras.Input(shape=input_shape, name='CNN_input_X')
3 RNN = tf.keras.layers.Bidirectional(tf.keras.layers.RNN(MinimalRNNCell(12*6)))(input)
4 output = tf.keras.layers.Dense(n_classes, activation='sigmoid')(RNN)
5

6 model = tf.keras.models.Model(inputs=input
7 , outputs=output)
8 return model

Code listing A.2 Code for RNN model with Convoltuion layer

1 def get_RNN_CNN_model(input_shape, n_classes):
2 input = tf.keras.Input(shape=input_shape, name='CNN_input_X')
3 biRNN = tf.keras.layers.Bidirectional(tf.keras.layers.RNN(MinimalRNNCell(12*6), return_sequences=True))(input)
4 CNN = tf.keras.layers.Conv1D(6, 3)(biRNN)
5 Flat = tf.keras.layers.Flatten()(CNN)
6 output = tf.keras.layers.Dense(n_classes, activation='sigmoid')(Flat)
7

8 model = tf.keras.models.Model(inputs=input
9 , outputs=output)

10 return model

Unfortunately RNN took more then 6 hours to train and in those few configuration I tried
them they both didn’t converge. So I excluded it from experiments.
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experiments.......................................directory with scripts for experiments
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exp2 phase| complex.ipynb.......................................experiment 2 6.1.1
exp3 patients one disease and US 4lCNN.py...........experiment 3 on 4l CNN 6.1.2
exp3 patients one disease and US CODE.py.....experiment 3 on CODE RenNet 6.1.2
exp main scikit learn.ipynb............main experiment, Scikit-learn classifiers 6.1.3
exp main tensorflow.py.................main experiment, TensorFlow classifiers 6.1.3

packages.......................................directory with scripts for technical issues
load dataset.py ................................................. work with datasets
anneal simulation.py .......................... Simulated Annealing implementation
callback save files.py....................................callbacks implementation
model Article CODE.py .............................................. code of ResNet
CNN creation.py.......................code of generator CNN from hyper-parameters
RNN LSTM Transformer.py............implementation of RNN, LSTM and Transformer

src..............................................................code of thesis in LATEX
FITthesis-LaTeX-master.zip ............................... source code of the thesis

result.........................................thesis text and PowerBI report with data
thesis.pdf................................................thesis text in PDF format
Models analysis.pbix.................report for main experiment statistics, PowerBI
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