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Instructions

Market risk is often defined as a risk of losses caused by market movements. Anomalies 

in market data (trade-related data such as price, bid/ask quotes, yield curves, and market 

volume for financial instruments and assets) often signalize the risk. A robust market 

data management process is a cornerstone of market risk management. Bianchetti & 

Scaringi (1), in their presentation at a QuantMinds International conference, showed the 

results of their research, in which they benchmarked various anomaly detection 

methods, such as Isolated Forests, autoencoders, and LSTM networks. The goal of this 

thesis is to conduct further research on the detection of anomalies in market data and to 

propose solutions suitable for use in bank systems for evaluating market risk.

Partial goals:

• Briefly discuss state-of-the-art methods for anomaly detection.

• Discuss the complexity of evaluating model performance in the absence of training/

validation labels.

• Familiarize the reader with research in (1) and try to reproduce the results on chosen 

data to see if the results still apply to these.

          - If the results do not correspond, try to find a reason for this.

• Experiment with different hyperparameters to adjust the models to used data if 

needed.

• Compare the results from LSTM, autoencoders, and Isolated Forests on different asset 

classes. 

• Observe if different models should model different asset classes.

• Find other models to benchmark the performance of the presented algorithms.
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Abstract

This thesis studies anomaly detection in market data using advanced machine
learning techniques. It evaluates the effectiveness of Long Short-Term Memory
(LSTM) networks, Autoencoders, and Isolation Forests across various financial
datasets, including equities, foreign exchange rates, and commodities.

The study conducts a comparative analysis of these models under different
data transformations like linear detrending, differentiation, and relative change
to determine their impact on anomaly detection. The research aims to extend
the results of Bianchetti and Scaringi by introducing additional models, namely
SVM and Hurst exponent, and comparing the performance across different
asset classes.

Keywords Anomaly Detection, Market Data, Machine Learning, Unsuper-
vised Learning, Neural Networks

Abstrakt

Tato diplomová práce se zabývá detekćı anomálíı v obchodńıch datech za
použit́ı pokročilých technik strojového učeńı. Hodnot́ı efektivitu śıt́ı dlouhé
krátkodobé paměti (LSTM), Autoenkodér̊u a Izolation Forests např́ıč r̊uznými
finančńımi datasety, včetně akcíı, směnných kurz̊u a komodit.

Studie provád́ı srovnávaćı analýzu těchto model̊u pod r̊uznými transforma-
cemi dat, jako je lineárńı odstraněńı trendu, diferenciace a výpočet relativńıch
změn, aby určila jejich vliv na detekci anomálíı. Výzkum si klade za ćıl rozš́ı̌rit
výsledky Bianchettiho a Scaringiho použit́ım daľśıch model̊u, jmenovitě SVM
a Hurstova exponentu a porovnáńım výkonnosti např́ıč r̊uznými tř́ıdami aktiv.

Kĺıčová slova Detekce anomálíı, Tržńı data, Strojové učeńı, Učeńı bez
učitele, Neuronové śıtě
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Introduction

The financial markets are an intricate web of transactions influenced by many
factors, from economic indicators to global events. In this environment, anoma-
lies in market data are not only statistical outliers but signals that may indi-
cate deeper systemic risks or rare, severe events. These anomalies can manifest
as sudden spikes in trading volumes, unusual price fluctuations, or irregular
shifts and can lead to significant financial disturbances. They often serve as
precursors to larger economic disruptions, such as market crashes.

This thesis, inspired by the research of Bianchetti and Scaringi [1] where
the authors highlighted the effectiveness of machine learning models, namely
Isolation Forests, Autoencoders, and LSTM networks, in identifying market
anomalies, aims to delve deeper into the realm of anomaly detection within
financial markets. By exploring various machine learning techniques, this work
seeks to extend the current understanding and application of anomaly detec-
tion methods.

Goals of this thesis

This thesis aims to implement the algorithms mentioned by the foundational
research of Bianchetti and Scaringi and benchmark them along with other
unsupervised learning algorithms. The author will then examine how trans-
formations of the datasets influence the performance of the anomaly detection
algorithms. In the end, according to his findings, the author will compare the
selected algorithms and propose solutions for their usage on real-world data.

1



Chapter 1

Anomaly detection
methodology

Anomaly detection is a problem tackled across various fields of industry and
science, including medicine[2], cybersecurity[3], big data processing[4], Internet
of Things[5]. This chapter will delve into the various approaches to address this
problem. First, in 1.1, we will go through various tools to solve this problem.
Subsequently, we will concentrate on the specific methods that will be utilized
in this thesis, which are outlined in 1.3.

1.1 State of Art

To understand the various methods used for anomaly detection, we must first
define what an anomaly is. One of the most referenced definitions is the
one from D.M. Hawkins, which states that an anomaly is ”an observation
which deviates so much from other observations as to arouse suspicions that
it was generated by a different mechanism” [6]. Another well-known definition
states that ”An outlier is an observation that appears to deviate markedly from
other members of the sample in which it occurs.” [7] These and many more
give us an idea of what we are searching for - samples that diverge from the
others. The first definition also gives us a reason to search for these anomalies.
They can often help us uncover underlying processes or outside influences that
interfere with the process we are observing. There are many ways to tackle
this problem. The basic solution to this problem is using deep learning, such
as LSTM or Autoencoder [8] or just simple RNNs [9]. Wang et al. suggest
an improvement in the form of the usage of Frequency-enhanced Conditional
Variational Autoencoder.[10] Other tool from the neural network realm is the

2



Previous research 3

Convolutional NN that can also be used for anomaly detection.[11] Munir et al.
also proposed an alternative approach to the anomaly detection by fusing the
statistical and machine learning approaches in their FusaAD technique.[12]
Another approach could be by using the Extreme Studentized Deviate Test
with seasonality components. [13] Other approach is to use One-Class SVM
introduced in [14]. Another popular tool is the Isolation Forest. [15][16]

This thesis will make use of several of these tools, which will be in detail
explained further.

1.2 Previous research

This thesis is based on the research of Bianchetti et al. from [1]. To summa-
rize their research, In their research,the authors conducted a study focused on
detecting anomalies in market data using machine learning models. The moti-
vation behind this research is to understand how anomalies are able to impact
market risk measures which rely on the distribution of profits and losses across
various market scenarios. The authors note that real trading portfolios include
a vast number of financial instruments across different asset classes.

As for hte experiments, the authors chose several unsupervised machine
learning models: Isolation Forest, Autoencoder, and LSTM networks. These
models are applied to various types of market data across different asset classes
and dimensions. The dataset used in their study consists of historical series of
interest rate yield curves with different trenors.

In terms of results and performance, the research finds that LSTM is very
appealing thanks to its ability to consider both the entire market data structure
and historical information. The study also compares different retraining strate-
gies for their models, including static, sliding window, periodic, and triggered
retraining, to determine the most effective approach in real-time applications.

The authors also tried to inject artificial anomalies into the data. This
approach helps them evaluate the performance without having the labeled data
prior. They observe that the Autoencoder model shows superior performance
in identifying these injected anomalies compared to other models.

In this thesis, author re-implemented the used solution for freely accessible
data described in Chapter 3, along with the experiments for artificial anomalies
(although instead of injecting them, the author of this thesis creates whole new
artificial time series and injected the anomalies into it).
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1.3 Methods used in this thesis

This section will cover the various methods employed in this thesis. In Section
1.3.1, we will talk about two types of neural networks used. Then, in 1.3.2,
we will study Isolation Forests, a widely-used technique for identifying outliers
within a dataset. Section 1.3.3 will be dedicated to KNN, commonly used to
separate the data. 1.3.4 features an unordinary way of tackling the anomaly
detection problem, the usage of Hurst Exponential.

1.3.1 Neural Networks
Neural networks are machine learning models inspired by an organic brain.
The network consists of nodes layered in one or multiple layers. Each node,
usually called a neuron, connects to others through links representing synapses
in a biological brain. These connections are weighted, and during the learning
process, the weights are adjusted to improve the network’s ability to make
predictions or classifications based on input data. This adjustment is facili-
tated through a process known as backpropagation, where the network learns
from errors by propagating them backward through the layers and adjusting
the weights accordingly. Sample visualization of the neural network with three
layers is in Figure 1.3.1.

Input
Layer

Hidden
Layer

Output
Layer

Figure 1.3.1 Sample neural network with three layers.

RNN is a particular case of a neural network used to imitate human brain
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behavior better. The problem with traditional neural networks is that the in-
put is processed only one way during classification or regression. However, the
human brain always works with some previous knowledge. In neural networks,
this is handled in RNNs by using their internal state (or hidden layers) to pro-
cess sequences of inputs, allowing them to utilize information from prior inputs
in their computations. This approach simulates the way the human brain re-
calls previous knowledge to inform future decisions, useful in tasks such as
time series prediction[17], natural language processing[18], and speech recog-
nition[19]. However, this ability to preserve information across time steps also
introduces challenges like the difficulty in learning long-range dependencies
within input sequences due to issues such as vanishing or exploding gradients.

Input layer

Output
layer

Hidden
layer(s)

Figure 1.3.2 Visualization of a recurrent neural network.

A vanishing gradient problem occurs when the gradients of a network’s
weights become exponentially smaller as they propagate back through the lay-
ers during training. This problem effectively prevents the model from search-
ing for a better model setup. This problem is solved by LSTM, which will be
discussed in Section 1.3.1.1.

In the following two sections, we will introduce the LSTM and Autoen-
coder. These two NNs were selected by previous research as most suitable for
solved tasks.

1.3.1.1 LSTM

The LSTM stands for Long short-term memory, a specialized type of RNN,
specifically designed to process time series, that was originally introduced in



Methods used in this thesis 6

[20]. As stated in the previous section, the LSTM helps us overcome the
vanishing gradient problem and is superior to traditional RNNs in terms of
processing long time series with backward connections. At the writing of this
thesis, LSTM is considered a state-of-the-art method for time series processing,
although there are proposals to use Multi Recurrent Neural Networks instead
[21].

Ct-1

ht-1

Xt

ht

Ct

ht
add add add add

σσ σtanh

tanh

addmult

mult

mult

bias

Forget gate Input gate Output gate

Figure 1.3.3 Visualization of an LSTM memory cell.

The overall design of LSTM helps it not only avoid vanishing gradients but
also selectively remember patterns over long time intervals, making it ideal for
applications like time series analysis. The main foundation of the design is a
so-called memory cell. The LSTM memory cell consists of three parts - input
gate, forget gate, and output gate. For the purposes of this thesis, we will use
the definitions from the original authors in [20]. We will denote the functions
representing these gates as it,ft, and ot, respectively.

The inputs for the LSTM memory cell are the following:

xt - feature input vector to the LSTM

ht−1 - hidden state vector, the output of the previous cell,

ct−1 - cell state vector, also the output of the previous cell.

b - bias
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Before ht−1 and xt enter the LSTM memory cell, they are multiplied by
weight vectors Wt and Ut respectively. The functions for the respective gates
are then:

ft = (σ(xtWf + ht−1Uf + b)) (1.1)

it = (σ(xtWi + ht−1Ui + b) × tanh(xtWi + ht−1Ui + b)) (1.2)

ot = (σ(xtWo + ht−1Uo + b) × tanh(xtWo + ht−1Uo + b)) (1.3)

The outputs are then defined as:

ct = (ct−1ft + it) (1.4)

ht = (tanh ct × ot) (1.5)

ht and ct are then sent to the next cell as an input, with ht also being the
output of the current cell. This design helps us not only to avoid vanishing
gradients but also to selectively remember patterns over long time intervals.
This makes it great for anomaly detection on large time series. We can teach
the LSTM on the data and then try to reconstruct it. If done correctly, LSTM
should be able to more or less reconstruct the input series, with the exception
of outliers, which we will then be able to detect.

1.3.1.2 Autoencoders

An autoencoder is defined as a type of algorithm with the primary purpose
of learning an ”informative” representation of the data that can be used for
different applications by learning to reconstruct a set of input observations
well enough.[22] They were first introduced in [23] as a neural network for
reconstructing the input. [24]

Sample architecture of an Autoencoder can be found in Figure 1.3.4. By
compressing the data in lower-dimensional space during encoding and then
reconstructing it in the encoding part, they can learn efficient representations
of data. We can then use a reconstruction error as an indicator of anomalous
behavior. Since normal data have low reconstruction errors, anomalies will be
significantly higher. The reconstruction error is computed as:

RE = ||x − x̂||, (1.6)

x being the input data and x̂ being the reconstruction.
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Encoding Encoded
Data Decoding

Input Output

Figure 1.3.4 Visualization of an Autoencoder network.

1.3.2 Isolation Forests
Isolation Forests, first introduced in 2008 in [15], is an unsupervised learning
model made specifically for anomaly detection. It operates with the premise
that the anomaly points differ from each other and are not numerous. There-
fore, they can be easily isolated from others.

The algorithm works by randomly splitting the data - in each step, we
select a feature randomly and then choose a random split value within the
minimum and maximum values of that feature. This leads to the creation of
binary trees, known as Isolation Trees (iTrees).

Each iTree in the forest is built by recursively partitioning the data. At
every step, the algorithm picks a feature and a split point randomly, contin-
uing this process until the tree reaches a maximum height, which is set as
hyperparameter, or until all the data points at a node are identical or only one
point remains. The path length from the root of the tree to a node indicates
the number of splits required to isolate a sample.

An Isolation Forest consists of multiple iTrees, with the number of trees
being also a hyperparameter. For each iTree, the algorithm uses a random
sample of the dataset, which allows the algorithm to be both efficient and
effective in detecting anomalies.

The isolation of a point is measured by the path length from the root to the
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leaf. This path length is then averaged over all iTrees to determine an anomaly
score for each data point. Anomalies are characterized by shorter path lengths,
as they are isolated quicker than normal points. After this, points with shorter
average path lengths are identified as anomalies, typically indicated by scores
close to 1, while normal points have longer path lengths, resulting in scores
closer to 0.5 or lower. It is commonly used in fraud detection. For the purpose
of this thesis we will use scikit-learn library implementation. [25]

1.3.3 SVM
One-Class SVM is an unsupervised learning algorithm that is trained only on
the normal data. It learns the boundaries of these points and is therefore able
to classify any points that lie outside the learned region as anomalies. This
approach is particularly useful in situations where you have a lot of normal
data but very few anomalous examples. The idea behind is to fit the smallest
possible sphere (in feature space) around the data. Then the model will learn
what is ”normal” and what is an outlier. One-Class SVM was first introduced
by Schölkopf at al. in [14], from where the following definitions have been
taken. The objective of One-Class SVM is to fit the data and separate it from
the origin in the feature space, maximizing the distance from this hyperplane
to the origin. The problem can be formulated as:

min
w,ξ,ρ

1
2∥w∥2 + 1

νn

n∑
i=1

ξi − ρ

subject to

(w · ϕ(xi)) ≥ ρ − ξi, ξi ≥ 0, i = 1, . . . , n

where ϕ(xi) maps the input data xi and where where: w is the weight
vector in the feature space, ρ is the offset of the hyperplane from the origin,
ϕ(xi) maps xi into a higher (possibly infinite) dimensional space, ξi are slack
variables allowing some points to be on the wrong side of the hyperplane,
ν ∈ (0, 1] is a parameter that controls the trade-off between maximizing the
distance of the hyperplane from the origin and minimizing the number of
margin errors (points for which (w · ϕ(xi)) < ρ).

A common kernel is the Radial Basis Function (RBF):

K(xi, xj) = exp(−γ∥xi − xj∥2)

where γ is a parameter that defines the influence of a single training ex-
ample.
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After training, the decision function is:

f(x) = sgn
(

n∑
i=1

αiK(x, xi) − ρ

)
As in the case Isolated Forest, we will use the scikit-learn library imple-

mentation of this algorithm. [25]

1.3.4 Hurst Exponential
The Hurst exponent, named after British hydrologist Harold Edwin Hurst, is
a statistical tool for determining the long-term memory of time series data.
Therefore, it can help us quantify the long-range dependence and persistence
of the underlying processes behind the time series.[26] It has usage in mul-
tiple fields besides finance [27], such as medicine [28] and meteorology [29].
The Hurst Exponential can be calculated in multiple ways, such as using de-
trended fluctuation analysis [30] or ranged scale analysis introduced in cite-
Hurst1951LongTermSC. In this thesis, we will use the second method and will
define it below. For our time series x, we can define the mean-adjusted series
as :

Xt = xt − x̄, fort = 1, 2..., n,

where x̄ is the sample mean of the time series and where n is the length of the
time series.

Then we calculate the cumulative sum of the mean-adjusted data:

Yt =
t∑

i=1
Xi,

for t = 1, 2, . . . , n.
After that, we can compute the range R(n) of the cumulative deviations

as
R(n) = max

1≤t≤n
Yt − min

1≤t≤n
Yt.

After that, we can the standard deviation S(n) of the original time series:

S(n) =

√√√√ 1
n

n∑
i=1

(xi − x̄)2.

The rescaled range is then given as the ratio of the range R(n) to the
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standard deviation S(n):

R(n)
S(n) = max1≤t≤n

∑t
i=1(xi − x̄) − min1≤t≤n

∑t
i=1(xi − x̄)√

1
n

∑n
i=1(xi − x̄)2

Than the Hurst exponent in:

E[R(n)
S(n) ] = CnH , n → ∞,

where C is a constant and H is the required Hurst exponent.
We will try to use the Hurst Exponent as suggested in [27] to help us

detect anomalous market behaviour. The implementation will be taken from
https://github.com/Mottl/hurst/blob/master/hurst/ init .py. [31]



Chapter 2

Unsupervised learning
evaluation

Unsupervised learning is a machine learning paradigm where algorithms learn
patterns from unlabeled data without explicit instruction. This gives us the
possibility to teach our models on unlabeled data, or data for which we do not
know what the features determine them. As powerful tools as they are, the
fact that we do not have labels also means that we have no reference point to
determine if the model is performing well in terms of generating the correct
output since traditional measures do not apply here due to the lack of labels.
Therefore, we have to employ alternative methods to estimate the performance
and compare the models. Aside from the problems mentioned with validation,
we also often have a hard time interpreting the results, as they are not as clear
as those for supervised learning. Another challenge we are facing when using
unsupervised methods is the susceptibility to noise in data - the models search
for patterns to adapt, and if they find some patterns in noise, they can adapt
to it instead of the patterns in the features. In the following sections, we will
go through the current state of art methods, as well as methods used in this
thesis.

2.1 State of Art methods for unsupervised learning
evaluation

One of the most common methods for unsupervised learning is clustering -
separating data into clusters based on their learned features. If we want to
evaluate the performance of a clustering algorithm, we may look at how well
it separates into classes. For this purpose, we may use Silouhette analysis, a

12
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metric used to evaluate the quality of data separation. It measures the separa-
tion between classes and the cohesion within class clusters.[32] This algorithm
can also be used on big data databases, making it feasible for evaluating the
outputs of a large number of models.[33] Another method for separation eval-
uation is the Daves-Bouldin index, which measures the average ’similarity’
between clusters - the ratio of within-cluster scatter to between-cluster sepa-
ration.[34] This algorithm is usually used to evaluate the quality of clustering
algorithms when no labels are available. The third algorithm for cluster separa-
tion quality assessment is the Calinski-Harabasz Index. This algorithm scores
clusters by the ratio of the sum of between-clusters dispersion to within-cluster
dispersion. The advantage of this algorithm is that it can also show us the den-
sity of clusters. [35] For other methods like principal analysis componetns[36]
or autoencoders[37] that use dimensionality reduction to increase the inter-
pretability of the data, the quality of the dimensionality reduction can often
be evaluated based on the reconstruction error. This method is also used for
anomaly detection. [38] In the case of having mixed unlabeled samples with
labeled ones, we can use pseudo-labeling by designating certain data points as
anomalies based on the model’s internal criteria (e.g., deviation from a norm
or threshold).[39] These pseudo-labels can then be used to calculate metrics
like precision and recall. It also allows us to use the ROC curve to measure
the ability of the model to distinguish between anomalous and non-anomalous
samples. [40]

2.2 Methods used in this thesis

In the following section, we will briefly go through all methods for evaluation
of the unsupervised algorithms that were used for experiments.

2.2.1 Visual
Visually checking the results may seem like a tedious task, but in reality, we
just want to confirm that the model reacts to events we know were anomalous
via expert knowledge. Such events are historical crises, war conflicts, natural
disasters, and regime changes. Functional models should be able to identify
these events since they are usually responsible for visible market shifts. In
the experimental part, we will describe the graphs and talk briefly about the
points where the anomaly should have been detected, but was not. This is not
a quantitative measure, but rather a subjective evaluation metric that is used
to determine to which data is the algorithm best match.
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2.2.2 Separation
We can also look at the quality of separating anomalous and non-anomalous
data. For this, we will use a so-called Silouhette score, which measures how
similar an object is to its own cluster compared to other clusters. A high
silhouette score indicates that the clusters are well separated and that the
data within a cluster is similar.[32] Silouhette score for ith point is defined as:

s(i) = b(i) − a(i)
max(a(i), b(i)) , (2.1)

where a(i) is the mean intra-cluster distance for the ith point and b(i) is the
mean nearest-cluster distance for the ith point.

2.2.3 Reconstruction eror
Reconstruction error[38] in unsupervised learning helps us to quantify the dif-
ference between original input data and its reconstruction after processing
through our models. This metric measures how well the model can replicate
the input data. This way, we can get a direct measure of how much infor-
mation is lost in the model’s process, which is crucial for tasks like feature
extraction and data compression. This helps us to compare their effectiveness
in preserving data integrity and detail. We will mention the reconstruction
error as the part of visual check, rather than quantifying it as a number.

2.2.4 Coresponding with other models
Another measurement we can do is to look at how the anomaly methods iden-
tify and correspond with each other. This can give us insight into how effective
the methods were in identifying anomalies that other models confirm. It can
also tell us how different models could work together. This is equivalent to
confusion metrics, but since we do not know the labels beforehand, we will use
other algorithms to provide us with labels.

2.2.5 Artificial anomalies
This method helps us to convert the unsupervised task to a supervised one
by giving us the possibility to evaluate algorithms on known data. The ap-
proach that will be used in this thesis is generating artificial random noise
with pre-determined anomalies. We will create a random walk with trend and
seasonality and then insert anomalies and random shifts into it so it resembles
the financial data.



Chapter 3

Data used

This chapter deals with data used during the experiments. For the financial
data, we wanted to cover different financial products due to their different prop-
erties. All of the data used were obtained from https://finance.yahoo.com/.

3.1 Equities

Equity rates (stock prices) are prices at which we can buy and sell stocks of
individual companies. They are sensitive to a myriad of factors - corporate
earnings, market sentiment, etc. These rates are highly sensitive to factors
like corporate earnings and market sentiment, exhibiting significant volatility
compared to interest rates. This volatility impacts investment portfolios and
company valuations. The associated risks can be diminished using financial
instruments, for example:

Equity (stock) option - contract granting the buyer the right (but not
obligation) to buy/sell a stock for a pre-determined price,

ETFs (Exchange Traded Funds) - investment funds holding multiple assets
(usually equities, but can also contain commodities) that can be traded like
stocks and aim to mirror the performance of a specific index or industry
sector. They are usually balanced, so they hold their value.

These instruments have their downsides; for example, options come with
extra fees that are usually paid to the counterparty. These fees can be adjusted
by observing the market, especially when we detect some anomalous behavior.
Another reason to analyze them is to adjust one’s trading strategies, as well
as balance the ETFs mentioned above.

15



FX Rates 16

For the purpose of anomaly detection research, I have chosen two equity
products. First is the Standard and Poor’s 500 index, commonly denoted as
just S&P500 or SP500, which is a well-known stock market index that measures
the performance of 500 large US stock exchange-listed companies. I have
chosen this product since it reflects the overall health and performance of the
US economy, featuring multiple industry sectors. The second product is Apple
Inc. (AAPL) stocks, which are interesting due to the fact, that Apple is known
for its robust financial health and innovation. Apple’s market capitalization
has a notable impact on S&P500, so it can be interesting to compare these
two products in terms of anomalies. From a mathematical point of view, the
difference between the relative growth of AAPL and S&P500 can be a good
benchmark for various models.
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Figure 3.1.1 Apple stock prices for last 20 years.
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Figure 3.1.2 S&P500 prices for last 20 years.

3.2 FX Rates

FX Rates (foreign exchange rates) are simply rates for which we can exchange
one currency for another. They are susceptible to many factors, for example,
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political events, central bank policies, economic indicators, or changes in ex-
pectations for future interest rates. Unlike equities in Section 3.1, where we
took into account the performance of individual companies, in this case, we
are looking at the ”performance” of whole countries. While not as volatile as
equities, fluctuation for these is still very high. They are carefully monitored
by businesses worldwide due to their impact on the perceived prices of goods,
especially in today’s global markets [41]. Similarly to the equities, the risk in
this market can be mitigated through various instruments, such as:

FX forward - contract for money exchange for a pre-determined rate on a
future date,

FX option - similarly to equity options, we agree to a pre-determined rate,
at which we are entitled, but not obligated to buy the currency,

FX swap - contract involving two counterparties who agree to exchange
specific amounts of one currency for another at an agreed rate on one
date and then reverse the exchange at a different rate later. This enables
effective currency exposure management and liquidity transitions between
currencies.

These instruments again come with a price that can be adjusted by observ-
ing the market behavior. Identifying anomalies in FX rates can also provide
insights into market behaviors that diverge from what the market hypothe-
sis typically predicts. These deviations, particularly noticeable when reacting
to news events, can highlight potential market inefficiencies. Such insights
are crucial for developing effective trading strategies that capitalize on these
anomalies since there exist trading strategies that generate abnormal profits
by exploiting the detected anomalies.[42]

We have chosen these two Euro FX rate curves for the experiments - one
for the Japanese yen and the other for the US dollar. This selection is based on
several factors. First, we have significant differences in their absolute values.
Typically, the EUR to USD rate hovers around 1, while the EUR to JPY rate
exceeds 100. Furthermore, we have to take into account the impact of the
Asian market on the EUR/JPY curve, which can lead to anomalous indicators
due to sudden market shifts. Additionally, there are notable differences in the
fiscal and monetary policies of the US, Eurozone, and Japan. The first two
tend to stimulate the market more through lower interest rates, while Japan
has a long-term deflationary environment.[43][44] The graphs for these two
curves can be found in Figures 3.2.2 and 3.2.1.
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Figure 3.2.1 FX rate for EUR/USD for last 20 years.
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Figure 3.2.2 FX rate for EUR/JPY for last 20 years.

3.3 Commodities

Commodities represent real-world assets, such as gold, oil, platinum, etc. They
are usually the most volatile financial products (aside from penny stocks and
cryptocurrencies).

For the purposes of this thesis, I chose two commodities: oil (Figure 3.3.1)
and gold (Figure 3.3.2). From the graphs, we can see that gold is much less
volatile than oil and maintains steady growth. Oil, on the other hand, fluctu-
ates often, reflecting anomalies in the market caused by conflicts in the Middle
East and Eastern Europe.
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Figure 3.3.1 Oil prices for last 20 years.
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Chapter 4

Experiments

This chapter is dedicated to the experiments in which the author will attempt
to verify the results of the original research and then evaluate the methods
used. Section 4.1 describes the transformation of the datasets we use to see
how they improve/damage the detection. In Sections 4.2, 4.3, 4.4, 4.5 and 4.6,
we will go through the graphs that show anomaly detection using algorithms
described in Chapter 1 on datasets described in Chapter 3. For the time
series, we will choose the last 20 years of monthly observation of the closing
price (the price of the product when the market was closed). After that, in
Section 4.7, the author will describe the attempt to reproduce the results of
sequential retraining. Sections 4.8, 4.9 and 4.10 will be dedicated to evaluating
the algorithms and their performance.

4.1 Data adjutments

We will describe the behavior of the algorithms on the data itself, and then
we will modify the datasets in the following ways:

Linear detrend For some algorithms, the presence of the trend can be harm-
ful. Therefore, we should try to get rid of it to improve the performance of
these algorithms. We take time series y and calculate detrended series ŷ as:

ŷ = y − (β0 + β1t), (4.1)

Where β0 and β1 are the intercept and slope, respectively, of the linear regres-
sion line fitted to the time series, and t is the index of the series.

20
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Differentiation By differentiating the time series, we will see the difference
between the observations. This could help better capture sudden shifts in the
data that signalize the anomalies. The members of the differentiated time
series ∆y are defined as:

∆yi = yi+1 − yi, (4.2)

where yi, i = 1, 2...n − 1 are members of the original time series y.

Relative change In the case of the data like Apple stocks in Figure 3.1.1,
we can see that the values are rising significantly. Therefore, if there were some
slight anomaly in the beginning, we would not register it as an anomaly, even
though relatively at that time, it was anomalous. That can also happen the
other way, where if we had large values at some point, the changes in small
data would not be registered. For this reason, we will use the time series of
relative changes p, defined as:

pi = yi+1 − yi

yi
× 100% (4.3)

The anomalies will be projected onto the original time series for all data ad-
justments, while the reconstruction or isolation/outlier score will be projected
on the adjusted time series.

4.2 Autoencoder anomaly detection

4.2.1 Normal data
Figures 4.2.1, 4.2.2, 4.2.3, 4.2.4, 4.2.5, 4.2.6 describe the behaviour of Au-
toencoder without editing the data. We can see that it mostly highlights the
greatest and lowest values. The best example is Figure 4.2.1, which depicts
Apple stocks, which have significantly risen in the last five years. We can see
that the only anomalies highlighted are sudden shifts in the period from 2020
to 2024.

If we look at the reconstruction, the reconstruction in these years was
rather bad, and thus, the false anomaly detections. FX Rates in Figures 4.2.2
and 4.2.3 also confirm this. However, the reconstruction is not so bad. This
suggests that Autoencoder will work better with values that oscillate around
one value, such as already mentioned FX rates and some sorts of commodities,
such as oil, as shown in Figure 4.2.5, where the behavior is similar. S&P500
in 4.2.6 shows similar properties to Apple stocks, confirming that the trend is
harmful for detection.
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Figure 4.2.1 Apple stock price anomalies and reconstruction for Autoencoder.
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Figure 4.2.2 EUR/JPY FX rate anomalies and reconstruction for Autoencoder.
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Figure 4.2.3 EUR/USD FX rate anomalies and reconstruction for Autoencoder.

An interesting case is gold in Figure 4.2.4, where the trend is not that steep,
and the reconstruction is rather good, except for the end and beginning, which
causes these places to be identified as anomalies.

Overall using Autoencoder on normal data did not bring us the best results,
Apple stocks, S&P500 and gold prices ignored the 2008 market crash as well as
some other crashes. We could see that the reconstruction was not perfect by
far, and the only place where we got more or less satisfying results was the oil
curve in 4.2.5. Here, the anomalies corresponded to major financial crises, like
the one in 2008, 2015, 2018, and 2020, as well as the jump after the Russian
invasion in 2022, where the prices went rapidly upwards. [45]

4.2.2 Detrended data
When using data where the trend was removed, the results improved in some
cases. While looking at the Apple stock in Figure 4.2.7 and S&P500 in Figure
4.2.14, we can see that the data between 2020-2024 are fitted more correctly,
although still missing a part. Compared to the previous section’s Figure 4.2.1,
we have correctly identified the anomalies in the Q4 of 2019. For the FX
rates and oil prices, there was an insignificant improvement in 2008, where
one more anomaly point is highlighted at the part of the graph depicting the
market crash. Gold prices (Figure 4.2.10), on the other hand, show significant
improvement, with the beginning and the end of the time series predicted
correctly, the anomalies are more distributed around the graph, although we
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Figure 4.2.4 Gold price anomalies and reconstruction for Autoencoder.
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Figure 4.2.5 Oil price anomalies and reconstruction for Autoencoder.
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Figure 4.2.6 S&P500 index price anomalies and reconstruction for Autoencoder.

can see that the points are more concentrated around the most significant
values and leave out some parts where anomalous behavior would be expected
(for example 2008).

We can see that the improvement was negligible on this data, whereas the
original time series worked well. For Apple stocks and S&P500 it worked better
than before, but the results were still not satisfying. On gold, on the other
hand, the Autoencoder worked very well and showed significant improvement.

4.2.3 Differenced data
The differenced data should provide us with better highlighting of the anoma-
lous behavior by helping the Autoencoder to focus on the residuals or noise.
Since the anomalies are defined by sudden changes rather than absolute val-
ues, the differenced data provide a good option for Autoencoder to identify
the genuinely anomalous points. Since the Autoencoder does not rely on long-
term dependencies, unlike the LSTM, the differentiation should not damage
the learning process.

For the stocks, we can see that the anomaly detection for Apple stocks
in Figure 4.2.13 is similar to Figure 4.2.1. The explanation for this behavior
can be found in the reconstruction graph, which also shows the differenced
series - we can notice that the absolute difference gets bigger in the 2020s, and
therefore, the anomalies are only highlighted as sudden shifts in this time area.
While the reconstruction is much better, the detection suffers from the same
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Figure 4.2.7 Apple stock price anomalies and reconstruction for Autoencoder with
detrended data.
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Figure 4.2.8 EUR/JPY FX rate anomalies and reconstruction for Autoencoder
with detrended data.
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Figure 4.2.9 EUR/USD FX rate anomalies and reconstruction for Autoencoder
with detrended data.
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Figure 4.2.10 Gold price anomalies and reconstruction for Autoencoder with de-
trended data.
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Figure 4.2.11 Oil price anomalies and reconstruction for Autoencoder with de-
trended data.
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Figure 4.2.12 S&P500 index price anomalies and reconstruction for Autoencoder
with detrended data.
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Figure 4.2.13 Apple stock price anomalies and reconstruction for Autoencoder
with differenced data.

problems as with the original time series. The S&P500 has similar behavior;
Figures 4.2.6 and 4.2.14 show similar findings, although we discovered some
other anomalies that were not after the year 2020, the detection has not im-
proved. The FX rates (Figures 4.2.15 and 4.2.16) show similar behavior, but
since they do not suffer with such significant trend that would project onto
the differentiated series, the Autoencoder detection indeed has improved. The
comparison between Figures 4.2.15 and 4.2.2, as well as the Figures 4.2.16 and
4.2.3 shows that the anomaly detections are now not concentrated around sin-
gle points (the 2007 and 2012 forEUR/JPY, 2022 for theEUR/USD), but are
more distributed and better highlight signifficant shifts throughout the time se-
ries. For the commodities (Figures 4.2.17 and 4.2.18), the redistribution along
the curve is also much more significant. We can see, especially on oil prices in
Figures 4.2.18 and 4.2.5, that the points are not concentrated along the highest
points, but rather on the most significant shifts. Gold, when comparing the
figures 4.2.17 and 4.2.4 is also better reconstructed.

The Autoencoder results on the different series show similar behavior as
for the original series. This is due to the trend that is best visible in Figures
4.2.13 and 4.2.14, where the trend is continuous and significant. This tells us
that, overall, the Autoencoder works better on detrended data and that the
differentiation itself does not help much.
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Figure 4.2.14 S&P500 index price anomalies and reconstruction for Autoencoder
with differenced data.
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Figure 4.2.15 EUR/JPY FX rate anomalies and reconstruction for Autoencoder
with differenced data.
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Figure 4.2.16 EUR/USD FX rate anomalies and reconstruction for Autoencoder
with differenced data.
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Figure 4.2.17 Gold price anomalies and reconstruction for Autoencoder with dif-
ferenced data.
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Figure 4.2.18 Oil price anomalies and reconstruction for Autoencoder with differ-
enced data.

4.2.4 Data with relative change
The relative changes should give us better results since we eliminate the trends
and seasonality.

As for the stock markets, we can see improvement; Figure 4.2.19 shows a
better distribution of the anomalous dates, concentrated around the biggest
market crashes (2008, 2016, and 2020). We may notice that contrary to the
other graphs, the part after 2020 is much more sparsely labeled - this is because
these changes are relatively small compared to the shifts during market crashes.
S&P500 shows similar behavior; We can see that the distribution is similar for
Figures 4.2.20 and 4.2.19.

The FX rates and commodities graphs (Figures 4.2.21, 4.2.22, 4.2.23 and
4.2.24) show similar improvement. We can see that the Autoencoder labels
the anomalies more believably since the differences are now relative instead of
absolute.

4.2.5 Conclusion
The Autoencoder performed very well on the data. Although not perfect, the
reconstruction was great in the cases of differenced and relative change data.
The usage of unadjusted or detrended data is not discouraged. However, the
algorithm performs best on data without trends, with both reconstruction
and subsequent anomaly detection being faithful to reality. The Autoencoder
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Figure 4.2.19 Apple stock price anomalies and reconstruction for Autoencoder
with relative change time series.
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Figure 4.2.20 S&P500 index price anomalies and reconstruction for Autoencoder
with relative change time series.
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Figure 4.2.21 EUR/JPY FX rate anomalies and reconstruction for Autoencoder
with relative change time series.
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Figure 4.2.22 EUR/USD FX rate anomalies and reconstruction for Autoencoder
with relative change time series.
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Figure 4.2.23 Gold price anomalies and reconstruction for Autoencoder with rel-
ative change time series.
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Figure 4.2.24 Oil price anomalies and reconstruction for Autoencoder with relative
change time series.
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models all of the asset classes very well, and the results correspond to the
findings of the original research.

4.3 LSTM anomaly detection

4.3.1 Normal Data
For stocks, the LSTM model shows a good ability to reconstruct the patterns
of the Apple stock price. In Figure 4.3.1, the LSTM’s anomaly detection shows
the advantages of its memory capability, in contrast with the Autoencoder’s
approach in Figure 4.2.1, which misses some subtle shifts seen by LSTM. The
LSTM captures the main market dynamics, notably around significant dips
and peaks that the Autoencoder often misses. However, we can see that the
detections are still limited to the later dates. For the S&P500 index, shown
in Figure 4.3.2, the LSTM model identifies anomalies with higher sensitivity
compared to the Autoencoder model in Figure 4.2.6. The LSTM’s use of past
information helps it react to sudden changes better, unlike the Autoencoder
which is limited by its immediate reconstruction ability. It also shows better
results than for Apple’s stocks. For FX rates, the LSTM demonstrates much
better adaptation than the Autoencoder. The EUR-JPY rate anomalies and
reconstruction in Figure 4.3.3 show that the LSTM captures anomalous points
that the Autoencoder in Figure 4.2.2 misses. The LSTM’s sequential nature
makes it more suitable for predicting the flow of the FX rates, which leads to
more accurate anomaly detection.

Similarly, the EUR-USD rate, depicted in Figure 4.3.4, benefits from LSTM’s
temporal understanding. The model highlights anomalies during significant
shifts in the market, offering a better overview compared to the more static
Autoencoder results in Figure 4.2.3. For commodities, the LSTM also per-
forms well. For gold prices, shown in Figure 4.3.5, the LSTM model can
detect anomalies in less volatile periods, and generally makes better detection
than Autoencoder, which puts all anomalies in the initial and final part of the
time series.

In the case of oil prices, in Figure 4.3.6, the LSTM again proves superior.
The model reacts to the changes in the market, whereas the Autoencoder in
Figure 4.2.5only looks at the highest peaks, missing details that the LSTM’s
memory cells pick up on.
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Figure 4.3.1 Apple stock price anomalies and reconstruction for LSTM.
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Figure 4.3.2 S&P500 index price anomalies and reconstruction for LSTM.
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Figure 4.3.3 EUR/JPY FX rate anomalies and reconstruction for LSTM.
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Figure 4.3.4 EUR/USD FX rate anomalies and reconstruction for LSTM.
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Figure 4.3.5 Gold price anomalies and reconstruction for LSTM.
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Figure 4.3.6 Oil price anomalies and reconstruction for LSTM.
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Figure 4.3.7 Apple stock price anomalies and reconstruction for LSTM with de-
trended data.

4.3.2 Detrended data
For detrended data, the LSTM model shows behavior similar to the one shown
on the normal data. In the Apple stock price analysis using detrended data
in Figure 4.3.7, the LSTM captures anomalies more consistently compared to
the Autoencoder in Figure 4.2.7. However, it completely misses out on the
first part of the graph. We can basically say that the absence of a trend does
not damage or help the model. Figures 4.3.8, 4.3.9, 4.3.10, 4.3.12 and 4.3.11
confirm this. We can see that the reconstruction error is much smaller for the
detrended data; however, the detection remains the same.

4.3.3 Differenced data
For the differenced data, we can see that the reconstruction does not go well;
the fluctuations of the original series are much more significant than the re-
constructed. However, the anomaly detection does not differ much from the
original ones as we can see in Figures Figures 4.3.13, 4.3.14, 4.3.15, 4.3.16,
4.3.18 and 4.3.17. There are not many changes for the differenced data when
compared to normal data in a Figures 4.3.1, 4.3.2, 4.3.3, 4.3.4, 4.3.6 and 4.3.5
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Figure 4.3.8 S&P500 index price anomalies and reconstruction for LSTM with
detrended data.
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Figure 4.3.9 EUR/JPY FX rate anomalies and reconstruction for LSTM with
detrended data.
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Figure 4.3.10 EUR/USD FX rate anomalies and reconstruction for LSTM with
detrended data.
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Figure 4.3.11 Gold price anomalies and reconstruction for LSTM with detrended
data.
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Figure 4.3.12 Oil price anomalies and reconstruction for LSTM with detrended
data.
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Figure 4.3.13 Apple stock price anomalies and reconstruction for LSTM with
differenced data.
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Figure 4.3.14 S&P500 index price anomalies and reconstruction for LSTM with
differenced data.
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Figure 4.3.15 EUR/JPY FX rate anomalies and reconstruction for LSTM with
differenced data.
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Figure 4.3.16 EUR/USD FX rate anomalies and reconstruction for LSTM with
differenced data.
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Figure 4.3.17 Gold price anomalies and reconstruction for LSTM with differenced
data.
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Figure 4.3.18 Oil price anomalies and reconstruction for LSTM with differenced
data.

4.3.4 Data with relative change
For the relative change, we can see that the reconstruction is the same as it was
for differenced data. However, we can see that the detections have changed.

The stocks (Figures 4.3.19 and 4.3.20) show many more places highlighted,
where instead of concentrating around the biggest values, the points are now
concentrated around the years where significant market shifts have happened.

The FX rates (Figures 4.3.21 and 4.3.22) do not show siginifficant improve-
ment compared to the other methods.

For commodities, we can see minor improvement. The detection is good,
especially the oil prices seem to be modeled better than in the case of Autoen-
coder in Figures 4.2.5, 4.2.11, 4.2.18 and 4.2.24, with lesser price adjustments
market as anomalies and the anomalous points concentrating around more
signifficant market shifts, however, this is also true for gold prices.

4.3.5 Conclusion
In conclusion, we can say that while not being particularly good at modeling
stock markets, the LSTM showed good detection capabilities in commodities
and FX rates. We saw that the reconstruction of the differenced data was
not great. This may be because differencing transforms the data into a series
of changes, which can be harder for the LSTM to model due to the loss of
absolute scale and trend information. LSTMs often rely on the continuity
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Figure 4.3.19 Apple stock price anomalies and reconstruction for LSTM with
relative change time series.

2004 2008 2012 2016 2020 2024
Dates

1000

2000

3000

4000

5000

Va
lu

es

LSTM Relative Change - SP500
Normal
Anomaly

2004 2008 2012 2016 2020 2024
Dates

0.2

0.1

0.0

0.1

0.2

Va
lu

es

LSTM Reconstruction Relative Change - SP500
Reconstructed
Original

Figure 4.3.20 S&P500 index price anomalies and reconstruction for LSTM with
relative change time series.
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Figure 4.3.21 EUR/JPY FX rate anomalies and reconstruction for LSTM with
relative change time series.
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Figure 4.3.22 EUR/USD FX rate anomalies and reconstruction for LSTM with
relative change time series.
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Figure 4.3.23 Gold price anomalies and reconstruction for LSTM with relative
change time series.
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Figure 4.3.24 Oil price anomalies and reconstruction for LSTM with relative
change time series.
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and persistence of data to learn effective representations. When the data is
differenced, the resulting values represent changes rather than actual levels,
which can disrupt the LSTM’s ability to learn the long-term dependencies
effectively.

4.4 Hurst Exponent anomaly detection

4.4.1 Normal Data
Since there is no reconstruction for the Hurst exponent, we will just describe
the quality of the detection. The stock market detection in Figures 4.4.1 and
4.4.2 is different from what we have seen in Figures 4.2.1 and 4.3.1 describing
Apple stock modeling with Autoencoder and LSTM respectively, or Figures
4.2.6 and 4.3.2 describing the same for S&P500. We can see that the pre-
dicted anomalies are clustered in clusters throughout the time series and not
concentrated on the last four years. However, the algorithm seems to be focus-
ing on macroscopic market efficiency trends rather than looking for anomalies.
For the FX rates (Figures 4.4.3 and 4.4.10), we can again see a focus on less
important trends in the data, while missing out significant market shifts.

4.4.2 Detrended Data
For detrended data, the anomaly detections were very similar to the non-
adjusted dataset. This can be explained by the fact that the Hurst Exponent
primarily measures the long-term memory of a time series, which is not sig-
nificantly altered by simply removing a linear trend. The persistence charac-
teristics that Hurst identifies — whether a series tends to revert to its mean
(anti-persistent behavior) or continue in its current direction (persistent be-
havior) — are largely invariant under linear transformations like detrending.
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Figure 4.4.1 Apple stock price anomalies Hurst Exponent.
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Figure 4.4.2 S&P500 index price anomalies Hurst Exponent.
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Figure 4.4.3 EUR/JPY FX rate anomalies Hurst Exponent.
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Figure 4.4.4 EUR/USD FX rate anomalies Hurst Exponent.
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Figure 4.4.5 Gold price anomalies Hurst Exponent.
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Figure 4.4.6 Oil price anomalies Hurst Exponent.
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Figure 4.4.7 Apple stock price anomalies Hurst Exponent with differenced data.

4.4.3 Differenced Data
Contrary to the detrended data, the differenced dataset shows slight differences
in modeling the anomalies.

For the Apple stocks depicted in Figure 4.4.7, we can see that the anomalies
are less concentrated around the year 2008, and the model highlights other
years as anomalies as well. For the S&P500, the improvement is similar, as
shown in Figure 4.4.8. Still, the perceived anomalies are clustered together
in both cases, even though all of the major market capitalization shifts are
covered.

For the FX rates, we can see similar behavior as to the one in Figures
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Figure 4.4.8 S&P500 index price anomalies Hurst Exponent with differenced data.
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Figure 4.4.9 EUR/JPY FX rate anomalies Hurst Exponent with differenced data.
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Figure 4.4.10 EUR/USD FX rate anomalies Hurst Exponent with differenced
data.

4.4.3 and 4.4.4. For the EUR/JPY FX rate in Figure 4.4.9, there is a slight
deterioration in the anomaly detection quality - we can see that the algorithm
starts concentrating on small shifts before the year 2020 and leaves out the
big sudden changes. For the EUR/USD graph in Figure 4.4.10, the anomaly
points are concentrated around the year 2008, and the other important shifts
are ignored.

As for the commodities, the results were ambiguous. The oil price curve
in Figure 4.4.12 shows interesting behavior with all the points concentrated
around the beginning, completely ignoring almost all other big shifts, and the
points outside of the beginning labeled as anomalies are usually just minor
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Figure 4.4.11 Gold price anomalies Hurst Exponent with differenced data.
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Figure 4.4.12 Oil price anomalies Hurst Exponent with differenced data.
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Figure 4.4.13 Apple stock price anomalies Hurst Exponent with relative change
time series.

price adjustments, rather than indicators of a significant market shift. The
gold price curve in Figure 4.4.11, on the other hand, turns out to be the other
way around - the anomaly labels that were concentrated at the beginning in
Figure 4.4.5 are now distributed in some other places. For this graph, the
Hurst exponent worked very well.

4.4.4 Data with relative change
For the relative change time series, we can see that the Apple stocks in Figure
4.4.13 seem like a crossover between the Hurst exponent used on normal data
in Figure 4.4.1 and differenced data in Figure 4.4.7. It does not resemble the
other two algorithms when used with this time series. This can be due to the
Hurst Exponent adapting to long-time correlations, which is shown in the first
part of the graph, and then being unable to react accordingly during stronger
shifts at the end of the time series. For the S&P500 depicted in Figure 4.4.14,
the number of highlighted points is lower - this means that more samples here
seem to be stable. However, again, the samples labeled as anomalies are small
price adjustments rather than real market shifts.

For the FX rates in Figures 4.4.16 and 4.4.15, we can see that for both
graphs, the number of anomalies is different than for differenced data (see
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Figure 4.4.14 S&P500 index price anomalies Hurst Exponent with relative change
time series.
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Figure 4.4.15 EUR/JPY FX rate anomalies Hurst Exponent with relative change
time series.
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Figure 4.4.16 EUR/USD FX rate anomalies Hurst Exponent with relative change
time series.
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Figure 4.4.17 Gold price anomalies Hurst Exponent with relative change time
series.
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Figure 4.4.18 Oil price anomalies Hurst Exponent with relative change time series.

Figures 4.4.10 and 4.4.9). Interestingly, for the EUR/USD, there are more
anomaly labels that are placed in the correct places - around the years 2008-
2011, as well as 2015. For the second one, on the contrary, we can see that the
number of labels is smaller, although the ones that persisted are in the same
spots as in the differenced series. Overall, the improvement is only visible in
the EUR/USD graph.

As for commodities, we can see from Figure 4.4.18 that the number of labels
is still low, the same case as it was for differenced data in Figure 4.4.12. This
again suggests that the algorithm couldn’t adapt to the time series and thus
found little to no anomalies. The gold curve in Figure 4.4.17 also shows much
fewer anomalies than in the previous two cases (Figures 4.4.5 and 4.4.11).

4.4.5 Conclusion
As we can see, the Hurst Exponent did not perform particularly well in mod-
eling anomalies for stock market data, particularly for the Apple stock price
and the S&P 500 index. The detected anomalies were usually microscopic
shifts, and the large anomalies were left unnoticed. Although there were mi-
nor improvements in anomaly detection with differenced data for Apple stock
and S&P 500, overall, the Hurst Exponent did not adapt well to any dataset.
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There was inconsistency in performance across different types of data, although
the performance was not good. This suggests that this method is more sen-
sitive to long-term, persistent behaviors in the data rather than short-term,
sharp anomalies and, therefore, not a good fit for the purposes of our research.

4.5 Isolation Forests anomaly detection

4.5.1 Normal Data
For the Apple stocks in Figure 4.5.1, we can see that the output is somewhat
similar to the output of the LSTM in Figure 4.3.1. Where only the samples
after the year 2020 are highlighted as anomalies. If we look at the S&P500 in
Figure 4.5.2, we can see that the algorithm works better than the previous ones
(see Figures 4.2.6, 4.3.2 and 4.4.2) by also highlighting the year 2008 besides
the anomalies after the year 2020, however, it still misses lots of anomalies,
particularly anomalous samples in 2012, 2016 and 2018.

For the FX rates depicted in Figures 4.5.3 and 4.5.4, the algorithm shows
similar behavior as for the same series processed by Autoencoder (see Figures
4.2.2 and 4.2.3). We can see that it searches for anomalies mainly in the peaks
and dips in the graph and does not notice anomalies in 2005 for the/USD
curve and 2016 for the/JPY curve. As for commodities, we can see from
Figures 4.5.5 and 4.5.6 that the for the oil curve algorithm repeats the same
pattern as for the FX rate, however for the gold prices, it does a better job by
labeling correctly non-extreme data, like the 2016 drop.

4.5.2 Detrended Data
As we have seen in the previous section, the algorithm suffers from the presence
of a trend like all of the other algorithms. In this section, we will have a look
at how the detrending helps the algorithm to correctly identify outliers.

As for the Apple stocks (see Figure 4.5.7), we can see that detrending
the data indeed had positive effects on the anomaly detection, which is also
confirmed by the isolation score graph. We can see that the algorithm does
not highlight just the most significant values but also the values around the
years 2008 and 2013, where, in the original graph, we can see slight shifts that,
at the time, were considered significant, especially for a company with such
robust and stable market capitalization as Apple.

For S&P500 (Figure 4.5.8), the Isolation Forest does a good job identifying
nearly all bigger shifts and market crashes. We can see on the isolation graph
that the detrending here was better than in the case of the Apple stock graph
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Figure 4.5.1 Apple stock price anomalies and separation score for Isolation Forest.
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Figure 4.5.2 S&P500 index price anomalies and separation score for Isolation
Forest.
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Figure 4.5.3 EUR/JPY FX rate anomalies and separation score for Isolation For-
est.
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Figure 4.5.4 EUR/USD FX rate anomalies and separation score for Isolation
Forest.
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Figure 4.5.5 Gold price anomalies and separation score for Isolation Forest.
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Figure 4.5.6 Oil price anomalies and separation score for Isolation Forest.
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Figure 4.5.7 Apple stock price anomalies and separation score for Isolation Forest
with detrended data.

and has allowed the algorithm to showcase its power in anomaly detection
better.

In the case of FX rates, the detrending brings us an interesting observation
- for the EUR/JPY curve (Figure 4.5.9), the anomaly detection is practically
identical to the unadjusted data (see Figure 4.5.3). When compared to the
EUR/USD graph (Figure 4.5.10) where the anomaly detection result is quite
different from the one for the original data (see Figure 4.5.4), we can deduce,
that the trend for the EUR/JPY curve is negligible for the Isolation Forest
algorithm.

Interestingly enough, the oil prices anomaly detection in Figure 4.5.12
ended up similarly to the ones for EUR/JPY. When compared to the detection
on normal curve in Figure 4.5.6 we can see that the isolation graphs are almost
identical and so are the anomaly detections. For the gold in Figure 4.5.11, the
detection is still not good, as all of the anomaly points are accumulated around
the year 2012, completely ignoring any other market shifts.

4.5.3 Differenced Data
After differencing the data, the Apple stocks anomaly detection in Figure
4.5.13 looks very similar to the one of the differenced Autoencoder from Figure
4.2.13. The isolation graph shows a possible explanation - the initial samples
have clear outliers, which are unfortunately overshadowed by the samples from
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Figure 4.5.8 S&P500 index price anomalies and separation score for Isolation
Forest with detrended data.
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Figure 4.5.9 EUR/JPY FX rate anomalies and separation score for Isolation For-
est with detrended data.
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Figure 4.5.10 EUR/USD FX rate anomalies and separation score for Isolation
Forest with detrended data.
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Figure 4.5.11 Gold price anomalies and separation score for Isolation Forest with
detrended data.
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Figure 4.5.12 Oil price anomalies and separation score for Isolation Forest with
detrended data.

after 2020, where the absolute difference is several times higher. As for the
S&P500 (Figure 4.5.14), we can see that its behavior is similar to the Apple
stocks in this case. This suggests that the relative change would be a much
better adjustment for this dataset.

The EUR/JPY FX rate, as mentioned earlier, has little to no trend that
the Isolation Forest has to deal with. Therefore, for the differenced series,
it performs well, as shown in Figure 4.5.15, where we can see that the algo-
rithm determines most significant market shifts, although leaving out the 2020
market crash (even though here we can suspect that the crash did not have a
signifficant impact on this rate, since it has not been registered by any of the
algorithms, except for Hurst Exponent in Figure 4.4.3). As for the EUR/USD
FX rate, the algorithm works very well, with almost all of the major market
shifts highlighted, as shown in 4.5.16.

Commodities, when differenced, show again very similar results for the
Isolation Forests as for the Autoencoder as observed in Figures 4.5.18 and
4.5.17 when compared to Figures 4.2.18 and 4.2.17.

4.5.4 Data with relative change
The Apple stock anomaly detection in this case (Figure 4.5.19) also resembles
the results of the Autoencoder on a similar dataset (see Figure 4.2.19), however
unlike Autoencoder, it also picks up the anomalies during the year 2022, where
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Figure 4.5.13 Apple stock price anomalies and separation score for Isolation Forest
with differenced data.
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Figure 4.5.14 S&P500 index price anomalies and separation score for Isolation
Forest with differenced data.



Isolation Forests anomaly detection 66

2004 2008 2012 2016 2020 2024
Dates

100

110

120

130

140

150

160

170

Va
lu

es

IF Differenced - EUR-JPY FX rate
Normal
Anomaly

2004 2008 2012 2016 2020 2024
Dates

25

20

15

10

5

0

5

10

Iso
la

tio
n 

Sc
or

e

IF isloation Differenced - EUR-JPY FX rate
Normal

0.3

0.2

0.1

0.0

Iso
la

tio
n 

Sc
or

e

Figure 4.5.15 EUR/JPY FX rate anomalies and separation score for Isolation
Forest with differenced data.
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Figure 4.5.16 EUR/USD FX rate anomalies and separation score for Isolation
Forest with differenced data.
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Figure 4.5.17 Gold price anomalies and separation score for Isolation Forest with
differenced data.
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Figure 4.5.18 Oil price anomalies and separation score for Isolation Forest with
differenced data.
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Figure 4.5.19 Apple stock price anomalies and separation score for Isolation Forest
with relative change time series.

there was a recession due to the Covid-19 pandemics related inflation. In this
case, the Isolation Forest performs remarkably well and highlights the most
significant market capitalization shifts related to Apple stocks for the last two
decades. Also, for the S&P500, the Isolation Forests give us solid results as
seen in Figure 4.5.20, pointing out most of the relevant shifts, with the only
bigger one left out was 2018, also called the ”worst year for S&P500 after the
2009 crisis”. However, looking at the isolation score graph, we can see that the
shift is marked as significant, and if we lowered a threshold, it would be one
of the first samples to be marked as an anomaly.

As for the FX rates, looking at Figures 4.5.15 and 4.5.16, they are again
very similar to Figures 4.5.15 and 4.5.16. For the EUR/JPY curve, the in-
crease after 2012 is highlighted more, but some bigger peaks are not labeled
as anomalies when we compare it to the Isolation Forest on a differenced se-
ries. For the EUR/USD, the dip in 2016 and peak in 2018 are missing when
compared to the differenced series again.

For commodities, we can see from Figures 4.5.24 and 4.5.23 that the isola-
tion score graphs are composed differently, with the relative changes focusing
less on the year 2012 for the gold prices and the emphasis is put on the 2020
market crash for the oil prices. Overall, the detections are slightly worse for
the commodities when we compare the performance to the differenced series.
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Figure 4.5.20 S&P500 index price anomalies and separation score for Isolation
Forest with relative change time series.
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Figure 4.5.21 EUR/JPY FX rate anomalies and separation score for Isolation
Forest with relative change time series.
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Figure 4.5.22 EUR/USD FX rate anomalies and separation score for Isolation
Forest with relative change time series.
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Figure 4.5.23 Gold price anomalies and separation score for Isolation Forest with
relative change time series.
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Figure 4.5.24 Oil price anomalies and separation score for Isolation Forest with
relative change time series.

4.5.5 Conclusion
The Isolation Forests performed remarkably well, especially on the differenced
data. The algorithms did highlight the most important shifts and are pretty
suitable for all of the product classes. Although the detections were not great
with normal data, the differencing makes a great difference for the Isolation
Forest algorithm.

4.6 SVM anomaly detection

4.6.1 Normal Data
On the stocks, the SVM shows similar behavior as the Isolation Forest or
Autoencoder, as we can see in Figures 4.6.1 and 4.6.2. The only anomalies
being detected in the lowest and most upper parts of the graph. As for the
FX rates (Figures 4.6.3 and 4.6.4), the detection again is comparable with
the Autoencoder. We can see that the seasonality in these time series and
the trends in the equity time series both have significant influences on the
detection. The gold prices (Figure 4.6.5) suffer from the exact same behavior
as equities or FX rates. In the oil prices graph (Figure 4.6.6), the issue is still
visible; however, due to the absence of trends, the algorithm is able to capture
more anomalies than in previous classes.
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Figure 4.6.1 Apple stock price anomalies and Isolation Score for SVM.
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Figure 4.6.2 S&P500 index price anomalies and Isolation Score for SVM.
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Figure 4.6.3 EUR/JPY FX rate anomalies and Isolation Score for SVM.
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Figure 4.6.4 EUR/USD FX rate anomalies and Isolation Score for SVM.
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Figure 4.6.5 Gold price anomalies and Isolation Score for SVM.
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Figure 4.6.6 Oil price anomalies and Isolation Score for SVM.
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Figure 4.6.7 Apple stock price anomalies and Isolation Score for SVM with de-
trended data.

4.6.2 Detrended Data
Getting rid of the trend did not particularly help the detection of the Apple
stocks (Figure 4.6.7); it just removed the anomaly labels from the beginning
and moved them toward the years after 2020. On the S&P500, however, the
detection has improved, with the points mainly concentrating on significant
market shifts.

As for the FX rates, the EUR/JPY curve did not change much, since
the trend is not present here, as we can see in Figure 4.6.9. Neither did the
EUR/USD FX rates in Figure 4.6.4.

For the oil prices, again, the algorithm did not react differently; the detec-
tions in Figures 4.6.12 and 4.6.6 are basically the same. Where the detrending
had some effect are the gold prices in Figure 4.6.11. Here, we can see that
contrary to the original data in Figure 4.6.5, the detections are now mostly
announced in the middle part of the graph. The detection still is not perfect,
but it has shown some improvement.

4.6.3 Differenced Data
For the differenced series of Apple stocks (Figure 4.6.13) the result looks ex-
actly the same as it does for Autoencoder (Figure 4.2.13), LSTM (Figure
4.3.13) and Isolation Forest (Figure 4.5.13). This may be because differencing
the Apple stocks brings the focus on the last years, where the absolute differ-
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Figure 4.6.8 S&P500 index price anomalies and Isolation Score for SVM with
detrended data.
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Figure 4.6.9 EUR/JPY FX rate anomalies and Isolation Score for SVM with
detrended data.
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Figure 4.6.10 EUR/USD FX rate anomalies and Isolation Score for SVM with
detrended data.
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Figure 4.6.11 Gold price anomalies and Isolation Score for SVM with detrended
data.
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Figure 4.6.12 Oil price anomalies and Isolation Score for SVM with detrended
data.

ences are much higher than years ago due to the enormous growth of Apple
Inc. As for the S&P500 (Figure 4.6.14), the situation is similar; the growth of
S&P500 was not as striking as in the case of Apple, but still, the capitalization
is almost 500% of where it was in the year 2004. For the EUR/JPY FX rate,
the results are almost the same as the ones from the Isolation Forests (see
Figures 4.6.15 and 4.5.15). The same case is the EUR/USD curve (see Figures
4.6.16 and 4.5.16). However, that is not necessarily wrong since, in both cases,
the detection is pretty solid and highlights almost all significant shifts. The
commodities are also similar in this regard (see Figures 4.6.17 and 4.6.18 when
compared to Figures 4.5.17 and 4.5.18). For the different series, the Isolation
Forests and SVM work very similarly and give comparable detections.

4.6.4 Data with relative change
As for the relative change time series, the prediction on the Apple stocks is
very good, as we can see in Figure 4.6.19. The prediction closely reminds the
Isolation Forest one (see Figure 4.5.19), however here we can see more events
covered. The same case is the S&P500, where the SVM performs in similar
way to the Isolation Forest (see Figures 4.6.20 and 4.5.20).

For both FX rates, the JPY/EUR curve in Figure 4.6.21 has similar anoma-
lies to the one we have seen in the case of differenced series (see Figure 4.6.15),
however, we can see that the algorithm now picks up more anomalous points,
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Figure 4.6.13 Apple stock price anomalies and Isolation Score for SVM with
differenced data.
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Figure 4.6.14 S&P500 index price anomalies and Isolation Score for SVM with
differenced data.
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Figure 4.6.15 EUR/JPY FX rate anomalies and Isolation Score for SVM with
differenced data.
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Figure 4.6.16 EUR/USD FX rate anomalies and Isolation Score for SVM with
differenced data.
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Figure 4.6.17 Gold price anomalies and Isolation Score for SVM with differenced
data.
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Figure 4.6.18 Oil price anomalies and Isolation Score for SVM with differenced
data.
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Figure 4.6.19 Apple stock price anomalies and Isolation Score for SVM with
relative change time series.

for example there is new detection on the peak between the years 2016 and
2017. The USD/EUR anomaly detection in Figure 4.6.22 looks also similar to
the diffrenced series (see Figure 4.6.16).

The detection on gold prices in Figure 4.6.23 shows certain improvement
against the differenced data (see Figure 4.6.17). We can see that now newly we
have highlighted the peaks that were preceeding the market crash in 2008, as
well as detections in the period before 2008, with less detections after the 2020.
For oil in Figure 4.6.24, the situation is parallel; if we look at Figure 4.6.18, we
can see, that for relative changes the detections are more concentrated around
2016, with dominant shift being the 2020.

4.6.5 Conclusion
In conclusion we can see that the SVM performs very well, and its detections
are resembling those of Autoencoder and Isolation Forest in many cases. It
handles very well the stock anomaly detection and does not do bad in the other
cases. The best way to use this algorithm is with the relative change data, as
the isolation of the outlier becomes more apparent to the alogrithm.
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Figure 4.6.20 S&P500 index price anomalies and Isolation Score for SVM with
relative change time series.
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Figure 4.6.21 EUR/JPY FX rate anomalies and Isolation Score for SVM with
relative change time series.



SVM anomaly detection 84

2004 2008 2012 2016 2020 2024
Dates

1.0

1.1

1.2

1.3

1.4

1.5

1.6

Va
lu

es

SVM Relative Change - EUR-USD FX rate
Normal
Anomaly

2004 2008 2012 2016 2020 2024
Dates

0.10

0.05

0.00

0.05

0.10

Iso
la

tio
n 

Sc
or

e

Relative Change SVM Outlier Score - EUR-USD FX rate
Normal

8

6

4

2

0

Iso
la

tio
n 

Sc
or

e

Figure 4.6.22 EUR/USD FX rate anomalies and Isolation Score for SVM with
relative change time series.
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Figure 4.6.23 Gold price anomalies and Isolation Score for SVM with relative
change time series.
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Figure 4.6.24 Oil price anomalies and Isolation Score for SVM with relative change
time series.

4.7 Retraining algorithms

In [1], the authors used sequential retraining with several strategies. They
worked with the already mentioned interest rate yield curves, which had five
tenors and 50 pillars. However, these data were not available to the author
of this thesis. Instead, the retraining was tried on S&P500, on normal and
differenced data. The retraining method was sliding windows with various
sizes; in this thesis, we will use a graph with a window size of 30.

From Figures 4.7.1 and 4.7.2, we can see that the results do not correspond
to what the authors of the original research experienced. The reconstruction
and fitting are not very good, and this can mainly be attributed to a small
number of samples because the authors of the original thesis had more detailed
data available. We could see that the reconstruction is not good, even for the
differenced data, and the detection is mediocre at best. Therefore, for further
research, we will continue with only single-time trained models since this is
more computationally feasible and the results are similar.



Retraining algorithms 86

2004 2008 2012 2016 2020 2024
Dates

1000

2000

3000

4000

5000

Va
lu

es

Autoencoder sequential
Normal
Anomaly

2008 2010 2012 2014 2016 2018 2020 2022 2024
Dates

1000

2000

3000

4000

5000

Va
lu

es

Autoencoder Sequential Reconstruction
Reconstructed
Original

Figure 4.7.1 Retraining on Autoencoder.
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Figure 4.7.2 Retraining on Autoencoder with differenced data.



Artifficial anomalies 87

4.8 Artifficial anomalies

In previous sections, we have seen the algorithms perform on various financial
products and described their performance. However, this observation was only
done with expert knowledge of the underlying processes and was more focused
on determining which algorithm works best on which data. In this section,
we will create an artificial time series that contains handmade anomalies. The
base time series S(t) is generated as:

S(t) = (base trend slope × t) + sin
( 2πt

period length

)
+ ϵt (4.4)

where t is the time step and ϵt ∼ N (0, noise level).
The point anomalies are then brought in by modifying the series at

random points:

S(ti) = S(ti) ± anomaly magnitude × (1 + rand()). (4.5)

for i in the set of point anomaly indices, where rand() creates a random number
between 0 and 1.

The structural breaks are then made as:

S(t) = S(t) + ∆ for all t ≥ tj , (4.6)

where tj is the time index starting from which the structural break applies,
and ∆ (the magnitude of change) is defined as:

∆ = struct break magnitude × (1 + rand()) × (±1). (4.7)

Here, (±1) randomly decides the direction of the change (up or down).
The number of data points was set to 500, the anomaly and structural

break magnitudes were set to 3, the base trend slope initiated as 0.05, and the
period length was set to 30 to simulate monthly seasonality. The number of
both the generated anomalies and the structural breaks was set to 2% each.
The sensitivity of the algorithm was set to mark the top 5% anomalous points.

In Figure 4.8.1, we can see the resulting graph with the anomalies high-
lighted.

When we just ran the algorithm with data as they were (see Figure 4.8.2),
we noticed that most of the algorithms detected only one or two anomalies,
except for the Autoencoder, where the success rate was higher than 50%.

For the detrended data (see Figure 4.8.3), the algorithms did not generally
perform well. This may be because the detrending contributed to the disrup-
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Figure 4.8.1 graph depicting the generated series with highlighted anomaly labels.
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Figure 4.8.2 Confusion matrix of the algorithms performing on the unedited data
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Figure 4.8.3 Confusion matrix of the algorithms performing on the detrended data

tion of the patterns and damaged the ability of the algorithms to find outliers.
A possible cause for the disruption could be that the trend was very weak in
the first place.

On the differenced data (see Figure 4.8.4), the SVM and Isolation Forest
showed excellent performance, with the Autoencoder performing slightly worse
than in the first case (Figure 4.8.2).

For the relative change in Figure 4.8.5, the detection has again worsened,
except in the case of Autoencoder, which adapted very well.

When comparing these cases, what’s surprising is that the LSTM and Hurst
Exponential performed so badly. This, however, may be explained by the
fact that the time series may contain some hidden patterns brought in during
generating that influenced the capabilities of this algorithm to correctly predict
the data. The most robust of these is certainly Autoencoder, which was capable
of adapting to most of the data. The best-performing algorithms were Isolation
Forest and SVM on differentiated data. This corresponds with the results
of the previous section, where these two algorithms performed very well on
differentiated data. The robustness of the Autoencoder also corresponds with
the results of [1], even though we used different approaches to testing the
artificial anomalies.
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Figure 4.8.4 Confusion matrix of the algorithms performing on the differenced
data
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Figure 4.8.5 Confusion matrix of the algorithms performing on the data with
relative change.
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4.9 Anomaly detection overlap

Another important aspect we have to keep in mind when comparing the algo-
rithms is the overlap in anomaly detections - which of the identified anomalies
were also identified by other algorithms? Considering the overlap in anomaly
detections among different algorithms helps us evaluate their consistency and
reliability in various scenarios. This overlapping data can also provide indica-
tors about how sure we can be that something is an anomaly when detected
with the said algorithm.

The experiment has been done for all asset classes and works with the
anomaly detections that have been discussed in the previous sections of this
chapter (Sections 4.2, 4.3, 4.4, 4.5 and 4.6). Due to the similarity of the
heatmaps inside the asset class, we will show just one heatmap for each asset
class - Apple stocks for equities, EUR/USD FX rate for FX rates, and oil
prices for commodities.

First are the stocks anomaly detection overlap heatmaps in Figure 4.9.1.
The Apple heatmap demonstrates the similarity between the outputs of the
algorithms run on differenced data, particularly the Isolation Forest, the SVM,
and the Autoencoder. We can see particularly great accord between SVM and
Isolated Forest detections. Also, what we can see is that the influence of the
detrending in LSTM and Autoencoder is not as significant as it is for other
methods. As for the Hurst exponent, unfortunately, the overlap is small with
other methods, corresponding with its weak performance on these data.

For the EUR/USD/EUR FX rate in Figure 4.9.2, the resistance to the
trend of the LSTM is more significant. We still have a strong overlap between
Isolation Forest and SVM, as well as between the Autoencoder and the SVM.
Hurst exponent now has better overlap with other methods, particularly with
the isolation forest. Also, when we remove the trend, we can see that it brings
Isolation Forests and Autoencoder together, which corresponds with the fact
that their results were similar in these data.

Oil prices in Figure 4.9.3 continue to show good overlap between the SVM
and Autoencoder, as well as the SVM and Isolation Forests. Interestingly,
removing the trend did not affect almost any method, except for the Autoen-
coder, which confirms that the trend in this data is very weak. When we
differentiate the data, we can see that the SVM and Isolation Forest overlap
almost all samples.

In conclusion, we can confidently say that Autoencoder, SVM, and Isolation
Forest show great overlap and signify that these methods give similar results
on similar data. As for LSTM, we have confirmed its resistance to the trends.
However, the results of this algorithm do not correspond very closely to the
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Figure 4.9.1 Overlap heatmap for Apple stock price anomaly detection.
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Figure 4.9.2 Overlap heatmap for EUR/USD FX rate anomaly detection.
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Figure 4.9.3 Overlap heatmap for oil price anomaly detection.
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results of the other three. As for the Hurst Exponent, we have additional
indices that tell us that it is not suitable for this task.

4.10 Silouhette scores

Apple EUR-JPY EUR-USD gold oil SP500
AE 0.76 0.41 0.31 0.4 0.3 0.64

AE - Detrend 0.39 0.43 0.32 0.34 0.33 0.46
AE - Differenced 0.68 0.44 0.42 0.42 0.43 0.52

AE - Relative 0.21 0.42 0.38 0.44 0.37 0.43
LSTM 0.56 0.17 0.1 0.16 0.14 0.27

LSTM - Detrend 0.22 0.17 0.04 0.09 0.14 0.14
LSTM - Differenced 0.52 0.23 0.12 0.12 0.03 0.33

LSTM - Relative 0.12 0.15 0.11 0.1 0.05 0.15
IF 0.55 0.4 0.44 0.36 0.38 0.4

IF - Detrend 0.32 0.45 0.43 0.49 0.37 0.27
IF - Differenced 0.67 0.51 0.54 0.49 0.49 0.59

IF - Relative 0.5 0.53 0.49 0.44 0.53 0.52
SVM 0.4 0.48 0.38 0.4 0.38 0.36

SVM - Detrend 0.35 0.48 0.43 0.43 0.37 0.31
SVM - Differenced 0.67 0.51 0.54 0.5 0.49 0.59

SVM - Relative 0.5 0.53 0.5 0.45 0.54 0.51
HURST -0.14 -0.01 -0.01 0.21 0.18 -0.09

HURST - Detrend -0.03 -0.01 0.17 0.22 0.16 0.12
HURST - Differenced 0.03 -0.17 0.21 -0.07 0.02 0.12

HURST - Relative -0.06 -0.22 0.13 -0.08 -0.03 0.03
Table 4.1 Silhouette scores.

When comparing the silhouette scores in Table 4.1 that determine the
level of separation, we can see that for Apple stocks, the best separation was
achieved by the usage of Autoencoder, Isolation Forest, and LSTM for normal
data, however for differenced data, while the Autoencoder, Isolation Forest
still gave best results, the SVM was better than LSTM. For the S&P500, this
is the same, even though the separation overall was not as great as for the
Apple stocks. For the FX rates, the best choice was the SVM and Isolation
Forest on differenced data, which is similar to the results observed in previous
sections. The commodities were modeled better by the SVM, with differenced
datasets, or the data with relative changes.



Chapter 5

Conclusion

The analysis done on anomaly detection algorithms in the previous chapter,
where we applied them to various financial datasets, shows distinct perfor-
mance characteristics for the Autoencoder, LSTM, and other models like Iso-
lation Forest, SVM, and the Hurst Exponent. These results can give us insight
into choosing the correct algorithm for our data.

The Autoencoder demonstrated high sensitivity to extreme values in datasets
like Apple stocks and the S&P500, which mainly highlighted the most signif-
icant and lowest values. This characteristic makes the Autoencoder suitable
for datasets with significant oscillations or where the primary interest is cap-
turing the most significant anomalies. However, a strong trend can reduce its
effectiveness, as seen with Apple’s stocks and S&P500. In contrast, the Au-
toencoder’s performance improved for data with a more stable mean or less
pronounced trend, like FX rates and oil prices. As shown in the experiments,
differencing the data before applying the Autoencoder generally enhances its
ability to detect anomalies by reducing the distraction of a long-term trend.

The LSTM model, with its ability to leverage past information, was more
sensitive to changes over time, making it highly suitable for financial time series
where past patterns can inform future anomalies. Unlike the Autoencoder,
LSTM was able to identify anomalies throughout the entire dataset, not just
the extreme values or the latest trends, especially on the detrended data. This
was particularly evident in detecting anomalies in stock price and FX rates,
where LSTM captured market dynamics around significant dips and peaks.

For Autoencoder and LSTM, applying transformations like differencing
and using relative change data sometimes helped highlight anomalies more
evenly across the time series. These transformations made the algorithms less
sensitive to absolute changes and more to relative changes, which is better in
financial data analysis.
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The Isolation Forest tended to identify anomalies in areas with sparse data
or where data points were isolated from the central cluster. This characteristic
makes it particularly useful for identifying outliers in a more scattered context,
which can be beneficial in detecting unusual market conditions. However, its
performance varied across different assets and adjustments, indicating that its
effectiveness might depend on the specific structure and distribution of the
data.

The findings regarding the LSTMs correspond to the findings of the previ-
ous research, where the LSTM was labeled as a preferred algorithm. However,
this thesis also focused on adjusted data, where we found out that other algo-
rithms sometimes outperformed the LSTM.

The two methods not described in the original research were the Hurst
Exponent and the Support Vector Machine.

The Hurst Exponent, which measures the long-term memory of a time
series, showed limited capabilities. It focused on macroscopic trends rather
than the anomalies we tried to identify in this research. This suggests that
while the Hurst Exponent can help identify longer market trends, it could be
more effective for identifying specific anomalous events.

The Support Vector Machine (SVM) performs very well on detrended and
differenced data, effectively highlighting anomalies by focusing on deviations
and significant changes. The SVM did exceptionally well on the FX rates and
oil prices datasets.

Unfortunately, the retraining strategies could not be replicated because the
data used for it in the original research was not available. With the available
data, the tested algorithm could not reconstruct the data well enough.

As for the artificial anomalies, the Isolated Forest and SVM outperformed
other algorithms when talking about differenced data. For the unadjusted
data, the Autoencoder was the most efficient algorithm. The author of this
thesis used a different approach than the authors of the original research;
however, the conclusion - that the Autoencoder is the best model for this task
is proper, although the original research did not mention differentiating the
data, in which case other mentioned algorithms were better.

Heatmaps and silhouette scores provided additional insights into the clus-
tering and distribution of anomalies. Heatmaps were very useful in visualizing
the places where models were more consistent in the identified anomalies, high-
lighting the overlaps across the entire dataset. Silhouette scores, on the other
hand, helped us to see the quality of the separation of identified anomalies,
giving a quantitative measure to the visual measure from heatmaps.

From the findings, the author of this thesis formulated the following rec-
ommendations for the usage of this algorithm in real-life scenarios:
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For data with significant trends or where the interest is in capturing the
most pronounced anomalies, detrending and using the Autoencoder can be
effective.

For time series where past information predicts future anomalies, the LSTM
model is recommended due to its ability to utilize sequential data.

In cases where anomalies are not linked to the magnitude of changes but
to their isolation from the other points, the Isolation Forest, or the SVM,
is the best choice.

The Isolation Forest and SVM are both very useful in predicting stocks
like Apple or S&P500, particularly with relative change data.

Overall, no algorithm outperformed all others on the data, and the choice
of the algorithm shows to be linked to which data - asset class in this case - we
are currently processing. It is recommended that multiple algorithms be used
at once to utilize their unique abilities to the fullest.
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