
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of master’s thesis

Virtual testing for Industrial IO modules

Bc. Erich Winkler

Ing. David Holas

Informatics

Managerial Informatics

Department of Software Engineering

until the end of summer semester 2024/2025

Instructions

The goal of this thesis is to develop a virtual testing framework that allows cross-

compiling of the module’s firmware on Windows to test the functionality of its

algorithms.

1. Get familiar with the process of testing Industrial IO modules throughout the

development process

2. Identify the testing process inefficiencies in resource management

3. Propose a virtual testing framework which lowers necessary resources and

improve the quality of testing

4. Implement the solution and demonstrate its functionality.

5. Evaluate the solution from a project management perspective

Electronically approved by Ing. David Buchtela, Ph.D. on 28 November 2023 in Prague.

Master’s thesis

Virtual testing for Industrial IO modules

Bc. Erich Winkler

Department of Software Engineering
Supervisor: Ing. David Holas

April 17, 2024

Acknowledgements

The path to this thesis was as long and challenging as the thesis itself. I would
like to express my deepest gratitude to several people who have supported me
throughout this journey and who have in one way or another contributed to
the successful completion of this thesis and my studies.

I am indebted to my supervisor, Ing. David Holas, for his guidance, sup-
port and valuable feedback throughout the entire process. His expertise and
knowledge had a significant positive impact on the quality of this thesis and
my personal growth. The experience of working with him has been a valuable
lesson that I will carry with me throughout my career and life.

I would also like to thank my family for their continuous support and en-
couragement. Namely, my father, Ing. Erich Winkler, who has always been a
role model for me and sacrificed many of his own dreams to ensure that I am
provided with the best possible education and opportunities. My mother, Ing.
Lucie Winklerová, who has always been able to provide me with the neces-
sary support and encouragement when I needed it the most. And my brother,
Jáchym Winkler, who was always there to understand me and cheer me up
when no one else could.

Finally, I would like to thank all of my friends and everyone who contributed
to this thesis and my studies in any way. I am grateful for the opportunities
that have been given to me and the experiences that I have gained. Especially,
the opportunity to study abroad in the United States, which has been a life-
changing experience that has shaped me into a person I am today.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In
accordance with Article 46 (6) of the Act, I hereby grant a nonexclusive autho-
rization (license) to utilize this thesis, including any and all computer programs
incorporated therein or attached thereto and all corresponding documentation
(hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work in any way
(including for-profit purposes) that does not detract from its value. This au-
thorization is not limited in terms of time, location and quantity. However, all
persons that makes use of the above license shall be obliged to grant a license
at least in the same scope as defined above with respect to each and every
work that is created (wholly or in part) based on the Work, by modifying the
Work, by combining the Work with another work, by including the Work in
a collection of works or by adapting the Work (including translation), and at
the same time make available the source code of such work at least in a way
and scope that are comparable to the way and scope in which the source code
of the Work is made available.

In Prague on April 17, 2024

Czech Technical University in Prague
Faculty of Information Technology
© 2024 Erich Winkler. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis
Winkler, Erich. Virtual testing for Industrial IO modules. Master’s thesis.
Czech Technical University in Prague, Faculty of Information Technology, 2024.
Also available from: ⟨https://github.com/winkleri-23/Virtual-Testing-
Framework⟩.

https://github.com/winkleri-23/Virtual-Testing-Framework
https://github.com/winkleri-23/Virtual-Testing-Framework

Abstrakt

Tato práce navrhuje Virtuální testovací framework, který si klade za cíl zlepšit
efektivitu procesu testování a dostupnost testování během vývoje průmyslo-
vých I/O modulů, což vede ke snížení nákladů potřebných pro testování vy-
víjených modulů. Tato práce podrobně analyzuje současný proces testování
v jedné z předních firem v oboru a identifikuje oblasti, ve kterých lze dosáhnout
zlepšení. Navržené řešení se zabývá nejvýznamnějšími možnostmi vylepšení ve
vývojovém procesu, a to tím, že poskytuje prostředí pro testování, které zvyšuje
frekvenci, dostupnost a přesnost testování. Práce rovněž zahrnuje demonstraci
funkcionality virtuálního testovacího frameworku a vyhodnocuje jeho vliv na
vývoj a dodání projektu se zvýšeným důrazem na perspektivu projektového
managementu.

Klíčová slova Vývojový proces, Průmyslové IO moduly, Projektové řízení,
Správa zdrojů testování, Automatizace testů, Testovací framework, Virtuální
testování, Virtualizace

vii

Abstract

This thesis proposes a Virtual Testing Framework that aims to improve the effi-
ciency of the testing process and accessibility of testing during the development
process of industrial I/O modules, which leads to reducing the necessary re-
sources and time required for testing the developed modules. This work closely
analyzes the current testing process in one of the leading companies in the field
and identifies areas for improvement. The proposed solution addresses the most
significant inefficiencies in the development process by providing a testing en-
vironment that increases the frequency, accessibility and precision of testing.
The thesis also includes a demonstration of the Virtual Testing Framework
functionality and an evaluation of the impact on the project delivery process
with a special focus on a project management perspective.

Keywords Development process, Industrial IO modules, Project delivery,
Resource management of testing, Test automation, Testing framework, Virtual
testing, Virtualization

viii

Contents

Introduction 1

1 Goal of the thesis 3

2 State-of-the-Art 5
2.1 I/O modules . 5

2.1.1 Functionality of I/O modules 5
2.1.2 Types of I/O modules 6

2.2 Project delivery process . 7
2.2.1 Project management life cycle 8

2.2.1.1 Project Initiation 8
2.2.1.2 Project Planning 10
2.2.1.3 Project Execution 11
2.2.1.4 Project monitoring and controlling 11
2.2.1.5 Project Closure 12

2.3 Fundamental testing techniques 12
2.3.1 Black box testing . 13
2.3.2 Types of Black Box testing 14

2.3.2.1 Functional Testing 14
2.3.2.2 Non-Functional Testing 15
2.3.2.3 Regression Testing 16
2.3.2.4 Integration Testing 18

2.3.3 Advantages and drawbacks of Black Box testing 20
2.3.4 White box testing . 21
2.3.5 White Box Testing Techniques 21

2.3.5.1 Statement Coverage technique 22
2.3.5.2 Branch Coverage technique 22
2.3.5.3 Path Coverage technique 22

2.3.6 White Box Testing Strategies 23
2.3.6.1 Unit Testing 23
2.3.6.2 Static Code Analysis 26

2.3.7 Advantages and Limitations of Whitebox testing 27
2.3.8 Gray box testing . 28

2.4 I/O module development . 30

ix

2.4.1 Project delivery . 31
2.4.2 Implementation process 32
2.4.3 Testing of I/O modules 33

2.5 Methods of virtualization . 36
2.5.1 Levels of Virtualization 37

2.6 Convenient level of virtualization for this thesis 40

3 Analysis and Design 41
3.1 Analysis of the current testing process 41

3.1.1 Testing time frames and delays 41
3.1.2 Quality of testing . 45
3.1.3 Inefficiencies of the testing process 46

3.2 Requirements engineering for the VT framework 48
3.2.1 Developer’s requirements 48
3.2.2 Tester’s requirements . 49
3.2.3 Management’s requirements 50
3.2.4 Outcome of the requirements engineering process 51

3.3 Virtual testing framework . 52
3.3.1 Architecture . 52
3.3.2 Virtual testing library 54
3.3.3 Server application . 57
3.3.4 Testing client . 58
3.3.5 Communication & Interfaces 59

3.4 VT Framework’s Impact from a Project Management Perspective 60
3.4.1 Project planning impact and risk reduction 60
3.4.2 Unified testing strategy 62
3.4.3 Financial impact . 63
3.4.4 Analysis summary . 69

4 Implementation 71
4.1 Virtual testing library . 71

4.1.1 Emulator . 72
4.1.2 DLL interface . 75
4.1.3 LLC communication layer 75
4.1.4 Sample module . 76

4.2 Server application . 78
4.3 Testing client . 79
4.4 Logger . 81

5 Demonstration of the VT Framework usage 83
5.1 Prerequisites & Installation . 83
5.2 Test case preparation . 83
5.3 Module parametrization . 85
5.4 Diagnostics testing . 85
5.5 Logging & Reporting . 88

6 Evaluation of the Virtual Testing Framework 91
6.1 Requirements fulfillment . 91
6.2 Resource Management . 94
6.3 Evaluation summary . 95

x

6.4 Suggestions for future improvements 96

Conclusion 99

Bibliography 101

A Acronyms 105

B User Manual 107
B.1 Prerequisites . 107
B.2 Project preparation . 107
B.3 Running the Virtual Testing system 107

C Attachments Contents 109

xi

List of Figures

2.1 Project initiation activities . 10
2.2 Representation of Black Box Testing 14
2.3 Top Down Integration approach . 19
2.4 Big bang Integration testing approach 20
2.5 Statement Coverage formula [13] 22
2.6 Branch Coverage formula [13] . 22
2.7 Test phases of the I/O module development 34
2.8 Internal release - Test workflow . 35
2.9 Levels of virtualization [24] . 37

3.1 Process of fixing bugs discovered during testing phases 44
3.2 Scope of testing . 48
3.3 Architecture of the VT framework 53
3.4 Architecture of the Virtual testing library(DLL) 57
3.5 Architecture of the testing client 59
3.6 Low-level command . 60
3.7 Budget distribution . 64
3.8 Automated testing in CI/CD pipeline - Feedback loop 70

4.1 Directory structure - VT library 72
4.2 Representation of an event in the event calendar 73
4.3 Implementation of the execute function 74
4.4 Communication layers . 79
4.5 Example of the logger usage . 82

5.1 Example of the test case for the sample module 85
5.2 Simplified example of the test case for the sample module 86
5.3 The flow of the Test_WB Test case 87
5.4 Command line argument for setting the logging level 88
5.5 Logging macro for the sample module 88
5.6 Logging output of the VT library and the server application 89
5.7 Logging macro for the sample module 89
5.8 Output of the logging macro for the sample module 89

6.1 Time needed to implement one test case 93

xiii

List of Tables

2.1 Regression testing techniques - comparison [10] 18

3.1 Time frames for testing phases . 42
3.2 Potential ROI for integration testing - discovered bugs 66
3.3 Potential ROI for system testing - discovered bugs 68

xv

Introduction

Developing any software or hardware product is a complex process that requires
a lot of effort and resources. The development of I/O modules is no exception in
this regard, as they often control critical systems and control heavy machinery.
For this reason, many standards and regulations must be followed during the
development and testing to ensure the safety and reliability of the final product.

Over the years, as the complexity of the requirements and the products
themselves have increased, it has become costly and time-consuming to ensure
that the products meet all of them. Therefore, all companies are looking for
ways to reduce the cost of testing while maintaining or even improving the
quality of the products.

It is clear that the traditional testing methods are not sufficiently scalable
and efficient. They often require a lot of manual work and are not easily
adaptable. The technology has advanced significantly in recent years, and
therefore, it is possible to automate the testing process to a large extent by
creating a way to test the behavior of the I/O modules without the need for
physical hardware and with minimal human effort.

However, the solution to the costly testing on the physical hardware does
not lie in replacing the physical testing entirely but rather in complementing
it with other methods. The current testing methods are still necessary and
required by the certification authorities that allow the products to be sold on
the market. However, by reducing the number of issues found late in the testing
process on the physical hardware, the cost of fixing them is also reduced.

The objective of this thesis is to create and put into practice a Virtual
Testing Framework that can effectively address the issues described above.
This framework would significantly enhance the quality of testing for one of
the largest corporate companies in the European Union, where I am employed.
Unfortunately, the company’s name cannot be disclosed in this thesis due to
internal policies, and will therefore be referred to as “The Company”.

The Virtual Testing Framework is designed to be a flexible and scalable
solution that improves the accessibility of testing, allows the creation of a wide
range of test scenarios, and provides a way to automatically test the behavior
of the modules after each change in the code. The requirements for this project
are based on the needs of the company that have been identified by a thorough
analysis of the current project delivery process.

With all stated above, the Virtual Testing Framework is expected to be

1

Introduction

a valuable tool for developers and testers in the Company. It will help them
to deliver high-quality products faster and more efficiently. In addition, it
provides a way to improve the predictability of the development process which
is a crucial aspect for the project managers and stakeholders in the Company.

2

Chapter 1
Goal of the thesis

This thesis aims to create a Virtual Testing Framework that can effectively
increase the efficiency of the project delivery process of I/O modules in the
Company. In order to achieve this goal, the following steps need to be followed.

Firstly, get familiar with the current testing throughout the development
process in the Company. This includes understanding the testing requirements,
current methods, and the overall workflow of the testing process in the Com-
pany.

Secondly, analyze the current testing process and identify the areas where
the testing can be improved. This step of identifying the bottlenecks is crucial
for deriving the requirements for the Virtual Testing Framework.

Thirdly, based on the requirements identified in the previous step, propose
a solution that addresses the identified inefficiencies and therefore lowers the
required resources for testing while improving its quality.

Lastly, implement the proposed solution, demonstrate its capabilities, and
evaluate its impact from the project management perspective. That includes
the time saved on testing, the quality of the testing, and the overall improve-
ment in the project delivery process.

3

Chapter 2
State-of-the-Art

This chapter describes the term I/O module and its development process as well
as the project management lifecycle. It primarily focuses on the current testing
processes and points out the importance of all testing phases. Furthermore, it
introduces the reader to the current methods of virtualization that can be used
for testing purposes and determines which could be beneficial for this thesis.

2.1 I/O modules

This section provides an overview of the I/O modules. It introduces the reader
to the concept of I/O modules, their types, and their typical functions in an
industrial automation system. This knowledge is essential for understanding
the whole concept of the Virtual Testing Framework, which is the main topic
of this thesis.

Introduction to I/O modules
The I/O modules, otherwise known as Input/Output modules, are devices that
manage communication between PLC (Programmable Logic Controllers) and
network, including data exchange, power load management, and machine con-
trol functions.

That allows the system integrators to interconnect various devices, pro-
viding enhanced control over the industrial network. The I/O modules have
become an essential part of industrial automation systems, especially in in-
stances where there exists large machinery, devices, or any systems that are
unable to communicate with a desired industrial protocol on their own. Ex-
amples of such devices include sensors, actuators, and monitors. Besides that,
I/O modules typically work as accessory devices such as PLCs. [1]

2.1.1 Functionality of I/O modules
The I/O modules have a variety of functions that are essential within the
industrial environment. They enable to incorporate all manufacturing devices
into a single network, enabling greater control of the system as well as increased
visibility.

5

2. State-of-the-Art

[1] The core functions of I/O modules that make them valuable in industrial
automation systems are:

• Error Detection: I/O modules can detect errors, typically using parity
bit methods.

• Processor Communication:

– Command Decoding: Receives and decodes commands from the
processor.

– Data Exchange: Transfers data between peripherals, processors,
and main memory.

– Status Reporting: Communicates peripheral status to the pro-
cessor.

– Address Decoding: Organizes peripherals by managing unique
addresses.

– Data Buffering: Manages data transfer speed between processor
and peripherals, compensating for latency.

• Device Communication: Facilitates communication between
connected peripheral devices.

• Control and Timing: Manages data transactions between internal sys-
tem and peripherals.

2.1.2 Types of I/O modules
I/O modules can be categorized into several types, depending on their func-
tionality and the type of data they handle. The most common types of I/O
modules are [2]:

• Digital modules: These modules handle digital data, such as on/off
signals, and are used to control devices like motors, lights, and switches.

• Analog modules: Analog modules handle continuous data, such as
temperature, pressure, and flow rate, and are used to control devices
that require variable input signals.

• Communication processors: These modules manage communication
between devices on a network.

• Fail-safe I/O modules: Fail-safe I/O modules are designed to ensure
that critical systems continue to operate in the event of a failure, such as
a power outage or network disruption.

Commonly, each module offers its digital and analog variants to provide
a wide range of options for system integrators. To understand the differences
between these modules, it is essential to understand the difference between
the digital and analog signals. The analog signal is a continuous signal that
varies over time and can take any value within a specified range. In contrast,
the digital signal is a discrete signal that can take only two values, typically
represented as 0 and 1. Even though the majority of modern devices are digital,

6

2.2. Project delivery process

analog signals are still used in many industrial applications. In addition to that,
the analog signal is easily convertable to a digital signal which allows to ensure
compatibility between different devices.

2.2 Project delivery process

Even though the VT Framework influences mainly the development itself, it
is essential to understand the fundamentals of project management to recog-
nize the benefits of the framework for project planning. For this reason, this
section introduces the reader to project management and describes all the es-
sential phases of the project management life cycle. Following the introduction
to project management theory, the focus will shift to the specific details of
the project delivery process of the I/O module projects and the I/O module
development in the Company.

To understand what the project delivery process is, we need to first define
the term project itself. We need to clarify what are the important aspects of
this term and what it means from the project management point of view.

The term project is defined as follows: “A project is a unique endeavor
to produce a set of deliverables within a clearly specified time, cost and qual-
ity constraints.” [3] According to this definition, a project is defined by the
following aspects: [3]

• Unique: A project is unique and does not involve repetitive processes.
That makes it different from standard business operational activities as
they often consist of identical processes.

• Timescale: Every project should have a clearly defined beginning and
end date for its delivery.

• Budget: Projects are given a budget to create deliverables that meet
customer needs.

• Resources: A specific amount of labor, equipment and materials is al-
located to the project at its beginning.

• Risk: Projects involve a level of uncertainty and consequently carry
business risk.

• Beneficial change: The purpose of any project is to achieve a beneficial
business change.

Now that we have defined the term project let us explore what project man-
agement is all about. This term can be defined in various ways, and we will take
a look at a couple of the best examples. Asana, Inc., a company that created
one of the most significant work management platforms, defines this term as
follows: In the context of this thesis, we define the term as follows: “IT project
management is the process of managing, planning, and developing information
technology projects. IT projects exist within a variety of industries, including
software development, information security, information systems, communica-
tions, hardware, network, databases, and mobile apps.” [4] This definition gives
us a good overview of what we should imagine under project management in
practice. However, the usage of this definition is limited, and it does not allow

7

2. State-of-the-Art

us to focus on project management theory. For this reason, another definition
of this term comes to light.

Jason Westland, in his book, defines project management in the following
way: “Project Management is the skills, tools and management processes re-
quired to undertake a project successfully.” According to this simple definition,
project management incorporates: [3]

• A set of skills: Expertise, specific skills, and practical experience are
essential for mitigating project risks and increasing the chances of its
successful completion.

• A suite of tools: To enhance the probability of success, project man-
agers use various types of tools such as planning software, modeling soft-
ware, audit checklists and review forms.

• A series of processes: To effectively oversee and regulate project pa-
rameters such as time, cost, quality, and scope, various processes and
techniques must be employed. Examples include time management, cost
management, quality management, change management, risk manage-
ment and issue management.

Given these definitions, we can shift the focus of this section to the project
life cycle.

2.2.1 Project management life cycle
There are many different types of projects, however, they all share a common
characteristic. They all follow the same cycle known as the project management
life cycle. It consists of five phases otherwise called process groups, which are
universal to all projects. However, the specific phases within a project are
unique to each project, shaping its unique life cycle. [5]
The five phases of project management life cycle are:

1. Project Initiation

2. Project Planning

3. Project Execution

4. Project Monitoring and Controlling

5. Project Closing

2.2.1.1 Project Initiation

In this phase, the first step involves identifying a business problem or oppor-
tunity. Once identified, a solution is defined, and a project is established.
A project team is then appointed to develop and deliver the solution to the
customer. In order to achieve that, multiple activities displayed in Figure 2.1
need to be undertaken during this phase in the correct order.

8

2.2. Project delivery process

Develop a business case
This activity starts with identifying a business problem or opportunity. In
other words, an entity in the firm addresses an opportunity and comes up with
the idea of starting a project. Then, a comprehensive business case needs to be
created to define the problem or opportunity clearly and in detail and identify
a preferred solution for implementation. [3]

[3] The business case typically includes the following attributes:

• A thorough explanation of the problem or opportunity.

• A list of the various available solutions.

• An analysis of the business benefits, costs, risks, and issues.

• A description of the favored solution.

• A plan outlining the implementation process.

Undertaking a feasibility study
Once the business case is developed, a follow-up activity takes place. It is
mandatory to finish the business prior to initiating this phase. A well-executed
feasibility study guides a project by providing decision-makers with a com-
prehensive understanding of potential advantages, drawbacks, obstacles, and
limitations that may impact its outcome. The primary purpose of a feasibil-
ity study is to assess whether the project is not only technically, financially,
legally, and market-wise viable but also beneficial. The findings of your project
feasibility study are typically compiled in a feasibility report. [6]

Establish the terms of reference
Once the business case and feasibility study have been approved, a new project
is formed and another activity can be initiated. The goal of this phase is to
create a terms of reference (ToR). This crucial document outlines the vision,
objectives, scope, and deliverables of the new project. In other words, should
clearly define the anticipated outcomes and deadlines for the project sponsor,
as well as outline the expectations for key stakeholders and task force members
regarding the deliverables and the approach to project execution. [3]

Appoint the project team
The objectives of the projects are now clearly defined. Therefore, it is clear
what sets of skills are going to be necessary to deliver the project. Although
a project manager may be appointed at any stage during the life of the project,
it is a good practice to do it prior to recruiting the project team. The project
manager usually creates a detailed job description for each role in the project
team and recruits people into each role based on their relevant skills. [3]

Set up a project office
The project office serves as the physical space where the team is situated.
While a central project office is common, the option of establishing a virtual
project office exists, allowing project team members to be geographically dis-
persed across the globe.

9

2. State-of-the-Art

Figure 2.1: Project initiation activities [3]

2.2.1.2 Project Planning

By now, the project costs and benefits have been documented, outlined its
objectives and scope, and the team has been appointed. At this point, it is
time to undertake detailed planning to ensure that the activities performed
during the execution phase of the project are properly sequenced, resourced,
executed, and controlled. Since the primary subject of this thesis does not have
a direct impact on the project planning process, we will not go into exhaustive
details about each activity in this project phase.

[3] Following activities need to be performed during the planning
phase:

• Create a project plan: A Work Breakdown Structure (WBS) is identi-
fied - a hierarchical set of phases, activities and tasks to be performed to
complete the project. Once the WBS is agreed upon, the detailed project
plan is formed and used as the key tool by the project manager to assess
the progress of the project.

• Create a resource plan: Allocation of the required types and quantities
of resources, specifying human roles and skill sets, detailing equipment
specifications, and listing material requirements, with scheduled reviews
by the project manager at each project stage.

• Create a financial plan: The financial plan, crucial for project man-
agement, establishes the budget by identifying the total cost of labor,
equipment, and materials for each project phase.

• Create a quality plan: A quality plan ensures meeting customer ex-
pectations by defining project quality, setting clear deliverable targets,
outlining a plan for assurance, and identifying techniques used to control
the actual quality level of each deliverable.

• Create a risk plan: The risk plan is a document that identifies and
describes all foreseeable project risks. Besides that, it also identifies the
actions required to prevent each risk from occurring. A clear risk plan is
crucial for any project as it is necessary to be aware of all the crucial risks
and know how to mitigate them prior to entering the execution phase.

10

2.2. Project delivery process

• Create an acceptance plan: An acceptance plan is formulated to en-
sure successful project delivery, specifying completion criteria for each
deliverable and establishing a schedule for acceptance reviews. This en-
ables the customer to assess and formally approve deliverables, ensuring
they meet or exceed initial requirements.

• Create a communication plan: Before the execution phase, a commu-
nications plan is developed to outline how stakeholders will be informed
about the project’s progress. It specifies the types, methods, and fre-
quency of information distribution, along with assigning responsibilities
within the project team for communication tasks.

• Create a procurement plan: The procurement plan offers a compre-
hensive overview of the products (goods and services) to be obtained from
external suppliers. It includes the justification for acquiring each product
externally as opposed to from within the business, and the schedule for
product delivery.

• Contact the suppliers: Appointing external suppliers is a flexible as-
pect of the project timeline; however, the standard procedure involves
their appointment after formalizing project plans but before the exe-
cution phase. At this point, a formal tender process is undertaken to
identify a short list of capable suppliers and select a preferred supplier to
initiate contractual discussions with.

2.2.1.3 Project Execution

Once the Project plan is created, the most important phase of all takes place.
The execution phase is typically the longest phase of the project and determines
whether your project will succeed or not.

In this phase, the deliverables of the project are created by executing the
project plan. The activities undertaken to fulfill project requirements will vary
depending on the project type. Tasks or activities can follow a waterfall ap-
proach, where each activity is completed in order until the final deliverable is
achieved, or an iterative approach, where the product is developed and tested
in smaller segments of work called iterations. Regardless of the method the
project manager chooses, it is crucial to carefully monitor and control pro-
cesses to ensure the quality of the final deliverable. [3]

2.2.1.4 Project monitoring and controlling

In project management theory, the monitoring and controlling phase is often
considered part of the execution phase. The reason is that this phase measures
the project’s performance, tracks progress, and, therefore, occurs simultane-
ously with execution. The main goal is to continuously verify alignment with
the project management plan, focusing mainly on financial aspects and time-
lines.

It is the responsibility of the project manager to make necessary adjust-
ments related to resource allocation and ensure that everything stays on track,
meeting the customer’s requirements.

11

2. State-of-the-Art

[3] To achieve this goal, the following management processes need to
be undertaken:

• Cost Management: Process of identifying, approving, and paying
project costs. Expense forms are completed for labor, equipment, and
materials.

• Quality Management: Ensures final deliverables conform to customer
requirements. Quality is assured and controlled through quality assur-
ance and quality control techniques.

• Change Management: Process of formally requesting, evaluating, and
approving changes to project scope, deliverables, timescales, or resources.
The project manager manages change by understanding business and sys-
tem drivers, identifying costs and benefits, and formulating a structured
plan.

• Risk Management: Process of formally identifying, quantifying, and
managing risks to the project.

• Issue Management: Method of formally managing issues affecting the
project’s ability to produce required deliverables. Issue forms are com-
pleted and logged in an issue register. The project manager evaluates
each issue and takes action to resolve it.

• Acceptance Management: Process of gaining customer acceptance for
project deliverables produced by the project.

2.2.1.5 Project Closure

The last phase of the PLM (Project Management Lifecycle) consists of two
equally important activities: Project closure and Project Completion.
The project closure includes delivering the final deliverables to the satisfaction
of the stakeholders, transferring project documentation, terminating supplier
contracts, releasing project recourses and informing all stakeholders and inter-
ested parties of the project’s closure.

Once the project closure is done, it is time to perform project completion.
This final step includes an independent assessment of the project’s success
based on performance against defined objectives conformed to the manage-
ment process outlined in the planning phase. Results of the review, as well
as a list of key achievements and lessons learned, are typically documented
within a post-implementation review and they are required to be approved by
the customer. [3]

2.3 Fundamental testing techniques

In the realm of software development, testing plays a crucial role in ensur-
ing the reliability and quality of the products. There are three fundamental
approaches to software testing, namely Black box testing, Whitebox testing
and their combination called Graybox testing. This chapter aims to provide
a comprehensive understanding of these testing techniques, the scope of the

12

2.3. Fundamental testing techniques

testing they cover, and the main differences between them. This section cov-
ers the fundamentals of the testing techniques without specific details about
I/O module development. It introduces the reader general overview for an
easier understanding of the specific details of the usage of the Virtual Testing
Framework that will be described later in this thesis.

2.3.1 Black box testing
This software testing technique focuses on evaluating the functionality of a soft-
ware application without the knowledge of its internal code structure. In other
words, the tested program or system is treated as a “Black box”, and the fo-
cus lies on examining the available input for an application and the expected
outputs corresponding to each input value.

Testers create tests based on software requirements and specifications, typ-
ically operating with no insights into the internal workings of the software
under examination. Hence, this testing method is often referred to as behavior
testing. In other words, the testers do not need to know anything about the
internal code implementation of the tested item. The main goal of this testing
is to compare the observable behavior from the “outside” and compare it with
the expected behavior for both, valid and invalid inputs, described in software
specifications. [7]

[7] Black box testing techniques:

• Equivalence partitioning: This testing technique involves a system-
atic division of all input values into partitions. Both, valid and invalid
partitions are included and test cases are designed and created for each
partition to reveal potential errors.

• Boundary Value Analysis: This method focuses on boundary values
or nearby boundary values of input data. Test cases are typically designed
for valid and invalid inputs to ensure the tested item can maintain the
expected behavior for all possible inputs.

• Decision Table Based Testing: This technique proves effective in
handling a substantial volume of inputs and their corresponding outputs.
The decision table has a completeness property, which means it contains
all possible values of condition variables.

• Error Guessing: As the name of this technique suggests, it involves
making assumptions and educated guesses about potential defects. The
success of this approach heavily relies on the experience and proficiency
of the testers.

13

2. State-of-the-Art

Figure 2.2: Representation of Black Box Testing [7]

2.3.2 Types of Black Box testing
Various factors such as testing objectives, techniques employed, and the desired
level of detail contribute to the categorization of black box testing into differ-
ent types. Functional testing, non-functional testing, regression testing, and
integration testing are among the common classifications within this testing
methodology.

2.3.2.1 Functional Testing

Functional testing is a crucial aspect of black box testing, focusing on validat-
ing whether the software application aligns with the functional requirements
outlined in the design documents. It employs a variety of testing techniques
and methodologies to guarantee that the system’s functionality works correctly.
Common types of functional testing are smoke testing, sanity testing, integra-
tion testing, system testing, and regression testing. [8]

Smoke testing is typically performed in the early stages of the software
development life cycle. This testing aims to ensure that the system’s critical
functions work as expected. The focus lies on the major features of the tested
software with minimal test cases. This testing is typically followed by Sanity
testing, which ensures that the tested system is stable and ready for further
testing.

Integration testing assesses the interactions and interoperability among
modules and components within the tested system. The goal is to confirm the
proper operation of the integrated system, ensuring that individual components
collaborate seamlessly. Since it is essential for the development of the I/O
module and will be explored in the following chapters in a convenient context.

System testing evaluates the entire system to determine its compliance
with specified requirements. This comprehensive evaluation involves testing
the system from end to end, verifying that all components and functionalities
work together according to expectations. Similar to integration testing, this
type of essential for I/O module development and therefore will be explored in
the following chapters.

Regression testing ensures that any new changes do not negatively im-
pact the existing functionality of the system. The process includes retesting
functionalities that were previously tested, along with the newly implemented
changes. That is because any new code may bring in new logic that conflicts

14

2.3. Fundamental testing techniques

with already existing code, which usually leads to bugs and unexpected behav-
ior. [8]

2.3.2.2 Non-Functional Testing

Nonfunctional testing is just as crucial as functional testing for ensuring the
overall quality and performance of an application. While functional testing
concentrates on testing the specific functionalities of the product, nonfunc-
tional testing assesses performance and usability parameters. In other words,
this type of testing verifies nonfunctional aspects of the product, such as perfor-
mance, stability, and usability, rather than testing whether the product does
what it is supposed to do. [8]
[9] Types of Non-Functional testing:

• Performance Testing assesses responsiveness and stability under spe-
cific workloads, providing insights into scalability, reliability, and re-
source usage.

• Load Testing ensures that a system can effectively function under spe-
cific loads, whether it involves large data quantities or a large number of
users.

• Stress Testing assesses the reliability of the product under unexpected
or rare workloads, pushing the system beyond normal operational limits
to determine its robustness. The primary goal is to ensure the prod-
uct remains stable and does not crash, even in conditions of insufficient
computational resources.

• Stability Testing assesses if the product can consistently function
within acceptable time frames.

• Usability Testing ensures that the system’s intended users can perform
tasks efficiently, effectively and satisfactorily.

• Compatibility Testing ensures that the tested product is compatible
with various elements such as web browsers, hardware platforms, oper-
ating systems or any other components required in product specification
documents.

• Endurance Testing involves testing the product with a significant load
extended over a long period of time. This testing is particularly impor-
tant for I/O module development as the memory limitations may lead to
algorithms relying on counters that can gradually exceed over time.

• Security Testing is performed to ensure the product aligns with the
security requirements. Six basic security concepts are usually covered by
this type of testing - confidentiality, integrity, authentication, availability,
authorization and nonrepudiation.

In conclusion, nonfunctional testing is essential for ensuring the product’s
overall quality, performance, compatibility, and user experience. It ensures that
the product is convenient for the intended usage by the customer. It is worth

15

2. State-of-the-Art

mentioning, that the nonfunctional requirements might differ product from to
product and the test framework needs to be adapted to these requirements.

2.3.2.3 Regression Testing

Regression testing is a very specialized branch of software testing that focuses
on validating that all the functionality remains after recent modifications were
made. It typically includes performing previously conducted test cases to verify
the continued functionality of existing features. By testing newly implemented
code changes, it is ensured that no unforeseen impacts on current functionality
occur. It is a good practice to debug the code and potential issues prior to
performing the regression testing process. The testing is performed on a subset
of relevant test cases from the existing test suite, that includes both updated
and revised code.

There are several techniques for regression testing, each distinguished by the
method used to test cases for your test suite. Each of the following test selection
techniques has been studied for real-world usage and each is convenient in
different situations. [10]

Retest All
A popular and probably most intuitive regression testing technique includes

re-running all the test cases from the existing test suite. This retest-all tech-
nique aims to validate the entire tested product however it can be prohibitively
expensive in terms of both time and financial resources. Besides that, it is
highly impractical for individuals to perform all the tests manually due to the
vast amount of testing required. Consequently, it is a common strategy to
automatize as many tests as possible so they can be easily performed without
any human interaction. That allows for a significant increase in the number
of test cases that can be performed in a given amount of time and therefore
increases the testing frequency. [10]

Regression Test Selection
Even though the automatization of the test cases allows us to run more

test cases in the same time period, it can still be costly and time-consuming.
For this reason, an alternative selection technique was proposed. Instead of
retesting the complete test suite, only a subset of the tests is performed. That
allows testers to skip costly test cases that are unlikely to discover any error.
The existing test suite is typically categorized into three groups: reusable test
cases, retestable test cases, and outdated test cases.

The regression test selection technique can also introduce additional test
cases, thereby enhancing the testing of the program, particularly in areas not
covered by existing test cases. There are three commonly known types of test
selection techniques: [10]

• Coverage techniques: These techniques involve considering the entire
test coverage criterion. They select the most appropriate test cases and
exclusively perform testing on software components that have undergone
alternations or updates.

• Minimization techniques: These approaches are similar to the previ-
ously mentioned coverage technique. However, they perform testing by

16

2.3. Fundamental testing techniques

specifically choosing a limited number of test cases that are sufficiently
relevant for the intended purpose.

• Safe techniques: These techniques do not prioritize the inclusion of all
software requirements. Instead, it focuses on incorporating all possible
software test cases that are expected to generate different results with
a small change in the original version of the program.

Test Case Minimization
This technique focuses on reducing the number of test cases required for

the testing process while still maintaining the capacity to detect faults and
bugs. That is achieved by identifying and deleting redundant test cases based
on specific test adequacy criteria. These approaches create a representative set
from the original test suite, ensuring it fulfills all defined requirements with
the minimum number of test cases. Removing redundancy from the test suite
decreases overall testing effort and therefore lowers the cost of the regression
testing. [10]

Test Case Prioritization
This regression testing technique prioritizes test cases, enhancing the effi-

ciency of defect identification within the test suite and subsequently improving
dependability. For this approach, existing test cases are typically categorized
based on various factors, including coverage-based criteria, financial cost, pre-
vious experience, and customer requirements. [10]

To sum it all up, let us take a look at the comparison of various regression
testing approaches summarized in the following table 2.1

17

2. State-of-the-Art

Test Strategy Regression Test Approach

Selection Minimization Prioritization

Method

Identify the
test cases that
are relevant
to a particular
set of recent
changes.

Remove test
cases that are
redundant and
unnecessary.

Sort the test
cases based on
specific criteria
so that the
more effective
cases concerning
those criteria
are executed
first.

Benefits

Test cases that
recognize mod-
ifications are
more inclined to
be chosen.

It has been ob-
served to be ef-
fective in reduc-
ing the number
of test cases.

Newly gener-
ated test cases
are consistently
reviewed in
the test case
permutation.

Limitations

There is a high
possibility that
the new test
cases could
be overlooked
because of
temporary se-
lections that are
modification-
aware.

Test cases lack
awareness of
modifications.

The chosen test
suite is both
extensive and
time consuming.

Table 2.1: Regression testing techniques - comparison [10]

2.3.2.4 Integration Testing

Integration testing is a crucial part of the software development process, focus-
ing on the interactions and interoperability among modules and components
within the tested system. It can be considered both, White box and Black
box testing, as it involves testing the internal structure of the system as well
as the external behavior. The goal is to examine that the individual compo-
nents collaborate together as expected when they are combined to form a part
of a larger system. It is crucial to thoroughly test the individual components
prior to the integration testing, as it is essential for all the components to be
stable and reliable. The testing process of the individual components is typ-
ically performed using the White box testing technique called Unit testing,
which will be described later in this thesis. [11]

18

2.3. Fundamental testing techniques

[11] Integration testing is typically performed in 4 different ways:

• Top-Down Integration: This method begins with the testing of higher-
level units first, followed by the testing of lower-level units. This approach
is typically used when the lower-level modules are not available. The
missing unit is given to a ‘stub’, which temporarily replaces the missing
module by providing the desired interfacing data flow.

• Bottom-Up Integration: This method begins with the testing of
lower level units first. Once all the units at the lower level are tested,
the testing continues to the higher level units. In case the higher level
modules are not available, they are replaced by a ‘driver’ similar to the
‘stub’ in the top-down approach. [12]

• Big Bang Integration: This method is quite different from the previous
two. Instead of integrating the system module by module, all the units
are integrated simultaneously and tested as a whole.

• Sandwich Integration: This method is a combination of previously
mentioned top-down and bottom-up approaches. It uses both ‘stubs’ and
‘drivers’ to replace the missing modules as the testing starts somewhere
in the middle of the module hierarchy.

Figure 2.3: Top Down Integration approach [11]

19

2. State-of-the-Art

Figure 2.4: Big bang Integration testing approach [11]

To sum it all up, the goal of the integration testing is to expose faults in
the interaction between integrated units. It usually follows the unit testing
process which will be discussed in the following chapters. It is important to
understand that integration testing includes both, Black Box and White Box
testing, as sometimes it is necessary to test the internal structure of the system
as well as the external behavior.

2.3.3 Advantages and drawbacks of Black Box testing
Properly designed and executed black-box testing brings numerous benefits
that we will cover in this section. However, it is essential to use them in
suitable situations and be aware of their limitations.

Black box testing allows us to perform testing according to the customer’s
requirements. Therefore, it gives the developers and the customer clear in-
formation if the developed product behaves as expected. This is closely tied
to another advantage, which is very minimal requirements on the tester’s im-
plementation knowledge. Tests are typically carried out by a third party and
specialized testers who do not need to possess in-depth knowledge of the im-
plementation itself. This allows companies to have specialized developers and
testers, leading to better efficiency. The following list summarizes the most
significant advantages of this testing technique. [7]

[7] Advantages of Black box testing:

1. Based on customer’s requirements: Testing is conducted based on
the requirements outlined from the customer’s perspective.

2. Independent Evaluation: Testing is usually performed by a third
party (independent tester team) to avoid developer bias.

20

2.3. Fundamental testing techniques

3. Implementation knowledge is not required: Testers do not need
to possess any implementation knowledge about the tested product to
perform Black box testing.

4. Scalability: Testing proves efficient when applied to larger systems, and
test cases can be designed as soon as specifications are finalized.

All of these benefits make this technique a crucial step in the software devel-
opment lifecycle. However, it is important to consider some limitations. As
mentioned earlier in this chapter, the process of designing and creating new
test cases heavily depends on well-defined requirements. If the requirements
are poorly described, it becomes challenging to create and execute tests accu-
rately. Even with clear requirements, creating test cases that cover all possible
scenarios is extremely time-consuming. Additionally, despite having a prop-
erly designed set of test cases, it may not uncover all defects in the system, as
there is no way to test the functionality of the internal workings of the tested
item. [7]

2.3.4 White box testing
White Box Testing is a software testing method that focuses on the internal
logic, code structure, and control flow of the tested item. As all the alternative
names such as clear box testing, open box testing, and transparent box testing
suggest, the main idea is to test the software with a good understanding of
its internal structure and with the ability to see what is happening inside the
application.

This testing method typically examines all paths of the source code. That
requires strong programming skills and an understanding of the application’s
architecture. The test cases are derived from an analysis of the system’s in-
ternal structure, focusing on aspects like code coverage, branch coverage, path
coverage, and condition coverage. Key characteristics of White Box Testing
include: [13]

1. The tester possesses a complete understanding of the software’s internal
operations.

2. It allows for effective testing of data domains and internal boundaries.

3. It is particularly suitable for Algorithm testing.

4. It is primarily conducted by testers and developers.

5. It offers a high level of granularity.

2.3.5 White Box Testing Techniques
White Box Testing offers a variety of techniques that ensure that as many
as possible paths and conditions within the software are tested. This section
introduces the most common of those techniques and explains their main prin-
ciples.

21

2. State-of-the-Art

2.3.5.1 Statement Coverage technique

Statement coverage testing technique plays a crucial role in ensuring the ac-
curacy and precision of software testing. To understand this method, it is
important to explain the term ‘Statemen coverage’ first, which is a metric used
to measure the number of executed statements in the source code. The formula
for the statement coverage is shown in the following equation:

Statement Coverage = Number of executed statements
Total number of statements × 100 (2.1)

Figure 2.5: Statement Coverage formula [13]

The main goal of this technique is to execute all the executable statements
in the source code at least once. Even though it is a robust method, it may not
encompass all potential bugs and issues. Particularly those that are related
to specific conditions or decision outcomes. That is why it is important to
combine this technique with other testing methods such as branch coverage
and path coverage. [13]

2.3.5.2 Branch Coverage technique

The branch coverage testing method is also commonly known as decision cov-
erage or edge coverage. As the name suggests, the main goal of this technique
is to test all the possible branches in the source code. That means every branch
needs to take the true and false paths at least once. The main advantage of
this approach is that it can detect any potential issues related to the decision-
making process in the source code. The formula is similar to the statement
coverage formula as you can see in the following equation:

Branch Coverage = Number of executed branches
Total number of branches × 100 (2.2)

Figure 2.6: Branch Coverage formula [13]

2.3.5.3 Path Coverage technique

As the name suggests, the tests are designed to ensure that every possible
path is executed at least once. The aim is to test each unique executable
path as thoroughly as possible to maximize the coverage of each test case.
This method allows both test cases and their outcomes to be mathematically
analyzed, leading to a precise measurement. For instance, if a method has
N decisions, it could potentially have 2N paths. However, it is often impractical
to perform the whole path coverage testing, and it is necessary to identify useful
subsets of paths to be tested. The following strategies have been developed for
this purpose: [13]

• Basis Path Testing ensures that each statement in the program is
executed at least once. Creating and executing tests for all possible paths

22

2.3. Fundamental testing techniques

results in 100% statement and branch coverage. This strategy has the
biggest potential for the highest number of bugs and errors.

• Data Flow Testing explores the flow of data and tries to detect any
improper use of data in the program. To achieve that, it is necessary
to create the control flow graph first which represents data dependencies
and control dependencies between a number of operations.

• Loop Testing focuses on the validity of loop constructs. 4 types of loops
can be identified: simple loops, nested loops, concatenated loops, and
unstructured loops. Each of these categories requires a different testing
approach.

2.3.6 White Box Testing Strategies
White Box Testing shares multiple strategies with Black Box testing such as
integration and regression testing. The main ideas of these strategies described
here 2.3.2.4 and 2.3.2.3 stays the same, only the area of focus is different. The
White Box testing is focused on the internal structures of the tested item while
Black Box testing is focused on the external behavior. However, there are some
strategies that are unique to White Box testing such as Unit Testing and Static
Analysis, which are described in the following sections.

2.3.6.1 Unit Testing

Unit testing is the process of testing the smallest testable parts of an applica-
tion, called units. The main idea is to isolate each part of the application and
determine if it behaves as expected. This White Box testing method is the first
level of software testing, which takes place before other testing methods such
as the integration. Typically, it is performed by the developers as they have
the best knowledge about the code and internal structures of the application.
However, a common practice is to automate the unit tests and run them after
each build. To ensure the effectiveness of these tests, various strategies were
developed over the years such as: [14]

• Logic checks: They verify the correctness of the logic in the code. They
ensure that the code behaves as expected and follows the right path
through code given a correct, expected input.

• Boundary checks: They are focused on the boundaries of input do-
mains and output results. It explores how the application behaves for
valid, invalid, and edge-case inputs.

• Error handling checks: These tests are designed to verify the behavior
of the application when an error occurs. Typically, the tested unit does
not crash the whole application and provides a meaningful error message.

• Object-oriented checks: Designed to verify the behavior of the object-
oriented code. It ensures that the objects are properly created, updated,
and deleted by the running code.

23

2. State-of-the-Art

Examples of the UT
Since the main topic of this thesis is strongly related to Unit Testing, it is
important to provide at least a few simple examples to illustrate the main
principles of this testing method. The following examples are written in Python
and use the pytest library, which is a popular testing framework for Python.
The idea is to test the basic functionality of the individual functions. Keep in
mind that the tested units can be not only functions but also classes, methods,
or even a whole module. However, the common practice is to keep the units as
small as possible to ensure the effectiveness of the tests.

• Example 1:
def add(a, b):

return a + b

The unit test for this function could look like this:

def test_add():
assert add(5, 5) == 10
assert add(0, 0) == 0
assert add(-5, -3) == -8

• Example 2:
def divide(a, b):

if b == 0:
raise ValueError(``Cannot divide by zero'')

return a / b

The unit test for this function could look like this:

def test_divide():
assert divide(10, 5) == 2
assert divide(0, 23) == 0
with pytest.raises(ValueError):

divide(5, 0)

Benefits of UT
In software development, Unit testing is considered the first line of defense to
catch the problems. Properly written unit tests offer numerous benefits such
as [15]:

• Early bug detection: UT enables developers to discover the bugs early
in the development process before the newly developed code is integrated
with other parts of the application. That saves a significant amount of
time and resources by preventing the bugs from propagating to the whole
tested application.

24

2.3. Fundamental testing techniques

• Improved code quality: Unit testing forces the developers to write
clean, reliable, and maintainable code by enabling them to identify and
fix bugs and design flaws early in the development process.

• Facilitates refactoring: UT enables developers to refactor the code
with confidence. Since the unit test implementation is independent of the
code, the test case can stay the same and verify the external behavior of
the tested unit even if the internal structure of the code changes.

• Documentation: Unit tests often serve as a form of documentation.
They clearly show the expected behavior of each tested unit and provide
a clear example of how to use the unit. That can be particularly useful
for the new developers who are not familiar with the codebase.

• Continuous integration: UT is a crucial part of the continuous in-
tegration process as it allows developers to run the tests automatically
after each build. The CI process will be described in more detail later in
this thesis.

In summary, Unit tests allow developers to catch defects early in the process,
therefore reducing costs, improving code quality and making refactoring of the
code easier. Besides that, they play a crucial role in the continuous integration
process.

Limitations of UT
Despite the undeniable benefits of this type of testing, it is often
time-consuming and requires a significant amount of resources. The usage
of UT needs to be carefully considered and applied only when the benefits out-
weigh the costs. Prior to using UT for your project, it is important to consider
the following limitations [14]:

• Time-consuming: The implementation of new Unit tests typically takes
a significant amount of the developer’s time.

• Not suitable for all types of projects: Unit testing is problematic
when testing a certain type of project. An example of such a project is
a UI/UX application, where the behavior of the application is difficult to
test in isolation.

• Unconvenient for legacy codebase: Writing Unit tests for existing
legacy code can prove to be difficult or even close to impossible, depending
on the quality of the code.

• Cannot guarantee the functional correctness: Even if the unit tests
are written correctly, they cannot guarantee the functional correctness of
the whole application with its business requirements. They only verify
the behavior of the tested unit in isolation, not in the context of the whole
application. [16]

In conclusion, unit testing is a great way to discover bugs early in the
development process, especially today when the CI/CD process is widely used;
the idea of automated tests, including unit tests, has become a popular practice.

25

2. State-of-the-Art

However, it is important to consider their limitations and use them accordingly.
Developers should be aware that the usage of unit testing does not guarantee
the functional correctness of the whole application and that it is not suitable
for all types of projects. It is necessary to combine this method with other
testing methods such as integration testing, system testing, and acceptance
testing.

2.3.6.2 Static Code Analysis

Static code analysis is a debugging method that allows the developers to exam-
ine the code without executing the program. This approach aims to compre-
hend the code structure and verify its adherence to industry standards. This
white box method is usually performed by automated tools that scan the entire
codebase for potential vulnerabilities and defects. The developers should be
aware that static code analysis is rather a debugging method than an actual
testing method as the code is not executed. However, it is a commonly used
quality assurance technique that can be used to identify potential issues in the
codebase. [17]

Types of Static Code Analysis
To ensure the effectiveness of the static code analysis, several methods were
developed such as [18]:

• Failure/Fault Analysis: Focuses on incorrect component behavior and
faults invalid components in the codebase. The transformation descrip-
tion of input-output helps pinpoint errors. The model design specification
is verified to identify issues in particular scenarios.

• Data Analysis: Focuses on the data flow and data usage in the code-
base. It identifies potential issues with data handling and helps the de-
velopers to properly implement operations that handle the data.

• Control Analysis: Focuses on reviewing the control flows in the calling
structure and state transition (e.g., functions, subroutines, methods, or
processes). It includes analyzing the sequential order of control transfers
and creating a graph of the model with junctions and conditional branches
represented by nodes.

• Interface Analysis: Focuses on the program’s UI and integrated se-
curity measures. The goal of this analysis is to ensure a seamless user
experience by preventing user errors during software navigation.

Benefits of Static Code Analysis
Static code analysis offers numerous benefits such as early bug detection, im-
proved code quality, and code consistency. All of these benefits are achieved
by predefined rules and standards that are used to verify the codebase. Besides
that it also plays a crucial role in enhancing the security of the code and pre-
vent potential vulnerabilities such as SQL injection, cross-site scripting, and
buffer overflow from being exploited. [17]

26

2.3. Fundamental testing techniques

Limitations of Static Code Analysis
Despite the undeniable benefits of this debugging method, it also comes with
some drawbacks. The most significant limitations are [17]:

• False Positives: This method often generates a significant number of
false positives errors due to the complexity of the codebase and poorly
defined rules.

• Time Consuming: The process of preparation of the Static Code Anal-
ysis can be often time-consuming due to the need to define the rules and
standards along with the configuration of the automated tools.

• Cannot guarantee the functional correctness: Even if the static
code analysis is performed correctly, it cannot guarantee the functional
correctness of the tested functions.

In conclusion, static code analysis is a great way to ensure the good quality
of the code and enforce the industry standards along with coding best prac-
tices and other rules that are defined by the customer or any other authority.
Similarly to the UT, the benefit of the early bug detection is one of the main
reasons why this method is widely used as a part of the CI/CD process.

However, it is important to keep in mind that this method not only cannot
replace the other testing methods but does not even execute the code. There-
fore, it cannot guarantee any functional correctness of the tested functions.
Besides that, the configuration of the automated tools and the definition of the
rules can be often time-consuming and it is important to consider if the effort
is worth the benefits for the specific project.

2.3.7 Advantages and Limitations of Whitebox testing
The advantages of White Box testing can be easily recognized in the description
of the individual techniques and strategies. Especially in the section 2.3.6.1.
However, this section provides a summary of the most significant advantages
and limitations. This summary helps the reader to understand the analysis
performed in the following chapters.

Advantages
The most significant advantages of White Box testing are [19]:

• Early bug detection: Detecting the bugs early in the development
process saves a significant amount of time and resources.

• Full Code Pathway Coverage: Full access to the source code allows
testing all the possible paths and conditions in the codebase. Including
error handling, resource dependencies and additional code logic.

• Improved code quality: All the White Box testing techniques are
designed to ensure better code quality including removing dead code,
improving the code structure, and enforcing standards.

27

2. State-of-the-Art

• Improved security: The complete control over the source code allows
the developers to test all the potential vulnerabilities and security issues,
that are often impossible to test with other testing methods. (e.g., buffer
overflow)

Drawbacks
The usage of White Box testing has become a popular practice in software
development. However, the project managers and developers need to be aware
of its limitations and use it accordingly. The most significant drawbacks that
should be taken into consideration are [19]:

• Time-consuming: This testing technique is often time-consuming for
the developers and requires a significant amount of resources. The project
manager should carefully consider if it is possible to design the white box
tests for the specific project in the given time frame.

• Difficult to scale: The test design and implementation require a strong
understanding of the source code, its architecture, internal structure, and
target systems.

• Difficult to maintain: Since specialized tools and frameworks are of-
ten used for this testing method, it might be difficult and expensive to
maintain the test suite in the long term.

• Not suitable for all types of projects: The automated White Box
testing is not suitable for projects with a frequently changing codebase
as the tests need to be updated along with the reworked code.

Conclusion
In conclusion, White Box testing is a great way to ensure the quality of the
code, detect the bugs early in the development process, and enforce coding
standards. That allows the developers to create a reliable and reusable code
that is easy to maintain. That is crucial for long-term success as it reduces the
costs and time needed for future development.

However, some drawbacks need to be considered by the project managers
and developers. The most significant is the time-consuming nature of this
testing method. The design and implementation of the white box tests require
a deep understanding of the source code, its architecture, and target systems
along with specialized tools and frameworks. Besides that, it needs to be
carefully considered if the type of the project is suitable for this testing method.
If the codebase is frequently changing, the maintenance of the test suite can
easily become expensive and time-consuming as the tests need to be updated
along with the reworked code.

Despite that, for the majority of the projects, the benefits outweigh the
costs and the usage of White Box testing has become a popular practice in
software development including the CI/CD process.

2.3.8 Gray box testing
As the name indicates, gray box testing combines black box and white box
testing techniques. This method increases the testing coverage by allowing the

28

2.3. Fundamental testing techniques

testers to focus on all layers of the tested system. The following section focuses
on the details of the two previously mentioned testing methods combined and
the advantages and drawbacks of this approach.

In gray box testing, the tester must possess partial knowledge of the internal
structure and algorithms of the tested system. This knowledge is essential for
designing test cases similar to white box testing. However, once the test case
is designed, it is performed in the exposed interfaces as in black box testing.

This allows the tester to stimulate the system from the outside, while also
being able to verify the internal state of the system. This method is particularly
useful for complex systems, where the internal state of the system is not easily
accessible. [20]

Gray box techniques
In Gray Box testing, a tester must have a solid grasp of internal data struc-
tures and algorithms to design effective test cases. Several techniques can be
employed to implement thorough test cases, such as [21]:

• Matrix Testing: Examines business and technical risks defined by de-
velopers in software programs by analyzing variables with inherent tech-
nical and business risks.

• Pattern Testing: Analyzes previous defects to determine the causes
of failure and proactively designs test cases based on the defect analysis
template.

• Orthogonal Array Testing: A black box testing technique that in-
volves test data with numerous permutations and combinations, preferred
for maximum coverage with few test cases and large test data.

• Regression Testing: Verifies that software changes or new function-
alities do not impact existing system functioning, ensuring that fixing
defects does not affect other software functionalities.

• State Transition Testing: Applied to systems with various states, test
cases are designed to ensure the correct handling of state transitions.

• Testing Decision Tables: Uses decision tables to organize and con-
dense complex business rules, generating test cases covering multiple in-
put conditions and expected results.

• Testing APIs: Gray box testing, focusing on testing system interfaces
(APIs), ensures acceptance of various input formats and proper opera-
tion.

• Data Flow Testing: Analyzes the flow of data through the system, cre-
ating test cases to examine data pathways and identify potential problems
with data handling and processing.

Advantages and drawbacks
Gray box testing combines the advantages of both black box and white box
testing. It allows the tester to focus on the internal structure of the system,
while also being able to verify the system’s behavior from the outside. This

29

2. State-of-the-Art

approach is particularly useful for complex systems, where the internal state
of the system is typically not easily accessible to the tester. Besides that, gray
box testing brings the following advantages [21][22]:

• Non-intrusive: The tested system is not altered or modified during the
testing process.

• Unbiased Testing: Avoids the bias of the developers, as the testers are
not involved in the development process.

• Testing from the user’s perspective: Gray box testing allows the
testers to focus on the user’s perspective, while also checking the internal
behavior of the tested system.

• Intelligent test authoring: Testers can design test cases based on the
internal structure of the system.

Despite the undeniable advantages of gray box testing, it also has various
drawbacks and limitations that a designer of a testing strategy should be aware
of. The most significant drawbacks are [21][22]:

• Less comprehensive: Due to limited access to the internal structure
and code, testers may not be able to identify critical vulnerabilities.

• Defect Identification: It is difficult to associate defects with their root
causes in distributed systems.

• Inconvenient for algorithm testing Testing algorithms is challenging
due to the unavailability of complete access to the underlying logic.

• Test cases difficult to design: Designing test cases is a complex and
time-consuming task due to the need for a practical understanding of the
internal structure of the system.

In conclusion, gray box testing is an effective method for testing complex
systems from the user’s perspective, while also being able to verify the internal
state of the tested system. However, it is crucial to be aware that this method
can’t replace the other testing methods, and should be used in combination
with other testing techniques.

2.4 I/O module development

This section focuses on the I/O module development process in the Company.
It introduces the reader to details of how the I/O modules are developed and
tested. Besides that, this section serves as a background for an analysis per-
formed and described later in this thesis. Particular focus will be given to the
implementation and testing as these are closely connected to the topic of this
thesis. All the information in this section was verified by the supervisor of this
thesis and the Company’s documentation.

30

2.4. I/O module development

2.4.1 Project delivery
The development of I/O modules is divided into several phases and in concept
follows the PLM process described in the section 2.2. However, there are some
unique aspects as the development of I/O modules is complex and requires
a combination of hardware and software development which also brings special
requirements for project planning.

Project initiation phase
The project initiation phase in The Company is usually called the “Kick-off”
phase. This phase is similar to the standard project initiation phase described
earlier in this thesis. Therefore, it will be described only briefly.

The main goal of this phase is to define the project scope, objectives, and
deliverables. That includes a process called “requirements engineering” which
is a process of defining and documenting the requirements. The main product
of this process is a document called “Requirements Specification”. Once the
requirements are defined, and the target values are set, the requirements spec-
ification is followed by a “Feature Specification” documentation which consists
of a detailed description of the required features and their behavior. This doc-
ument serves as a reference for the developers and testers during the execution
phase.

In summary, the main goal of this phase in the Company is to define the HW
and SW requirements for the product and appoint responsible people for the
project who then appoint the project team. Besides that, a series of documents
are created that serve as a reference for all parties interested in the project -
developers, testers, project managers, and other stakeholders.

Project planning phase
The project planning phase in the Company is no different from the standard
described earlier in this thesis. During this phase, the project manager appoints
the project team and creates a project plan. Along with that, it is mandatory
to adjust the plan to the specific requirements that come with the HW design
and development. Along with that, appropriate equipment and tools need to
be ordered in advance as it often takes months to get the required HW. The
project plan also includes soft and hard deadlines for the testing phases as some
of the testing requires to be performed by external entities, which often takes
a lot of time and needs to be planned.

In summary, the project manager creates a project plan that in concept
follows the standard project planning described in the section 2.2.1.2. The
project plan needs to be adjusted to the specific requirements of the I/O module
development, such as:

• Long delivery times for required HW

• External testing entities

• Frequent cooperation of HW and SW developers

Execution phase
The execution phase starts once the project plan is approved and the project
team is appointed. This phase could be divided into three parts:

31

2. State-of-the-Art

• Preparation phase: As many projects in the Company consist of im-
proving already existing products, the preparation phase necessary for
HW and SW developers to get familiar with the product and its require-
ments. This phase usually takes a few weeks and takes place while the
required HW is being delivered.

• Implementation phase: The development is divided into two-week
sprints, which are followed by a retrospective meeting and a planning
meeting as mentioned above. The details of the implementation process
are described later in the section 2.4.2.

• Testing & Verification phase: Even though the testing is performed
during the whole development process, there is a specific phase that fol-
lows the implementation phase where the module is tested on different
levels. During this phase, the developers are reassigned to other projects,
however, if a bug is found during the testing, they need to be reassigned
back to the original project which is typically costly and time-consuming.

The development is closely monitored and controlled by the project manager
who is responsible that the developers follow the project plan and meet the
deadlines set in the project plan. This corresponds to the standard Project
Monitoring and Controlling phase of the PLM process.

Project Closure
This phase is similar to the standard project closure phase described in the
section 2.2.1.5. Besides the standard activities, it typically includes steps nec-
essary for obtaining the required certification for the new product to be intro-
duced to the market. That means creating a detailed documentation and user
manual for the product, that serves as a reference for the independent certifica-
tion authorities. Detailed documentation is necessary for future development
as it serves as it is a reference for the developers and testers who might work
on the same product in the future.

Even though no development is performed during this phase, it is crucial for
the long-term success of the product. Any missing documentation or unresolved
technical debt can cause problems in future development and lead to costly
delays.

In summary, besides the standard activities, the project manager is respon-
sible for creating a comprehensive documentation and user manual that allows
the Company’s customers to improve their products in the future and obtain
the required certifications to introduce the product to the market.

2.4.2 Implementation process
This section describes the development process of the I/O modules in the Com-
pany, which takes place during the execution phase of the project. It introduces
the reader to the workflow that developers follow during the development as
well as the verification processes that are designed to ensure the quality of the
code and the comprehensive fulfillment of all specified requirements.

The Company uses an agile feature-driven development methodology with
a Scrum framework. In summary, the development is divided into two two-week
sprints, which are followed by a retrospective meeting where the team evaluates

32

2.4. I/O module development

the sprint and plans the next one. Besides that, the team has a bi-weekly stand-
up meeting where the team discusses the progress and the problems they are
facing.

The I/O module development is unique as it usually requires specialized
hardware that is often developed in parallel with the software. And even if the
hardware is already developed, it is often unavailable. This is quite challenging
for the developers, testers and project managers as it requires a lot of planning
and coordination. To find an optimal balance between the costly testing on
the real hardware and the need for frequent testing to ensure the quality of the
code, the Company implements the following measures:

• Automated testing in CI/CD pipeline: The code is tested in the
CI/CD pipeline after each significant change is made. (White box testing)

• Integration testing: Integration testing is performed on the real HW
after each internal release (Gray box testing)

• Regression testing: Regression testing is performed after each internal
release to ensure that the new features do not break the existing ones.

• Code reviews: After a significant change is made, the code needs to be
reviewed by at least one developer from your team and one developer from
another team to ensure that all the teams follow similar code standards
and guidelines.

It is a common practice in the Company to create comprehensive White
Box tests in the CI/CD pipeline as it allows to catch the majority of bugs
before the costly and time-consuming integration testing on the real HW takes
place.

2.4.3 Testing of I/O modules
This subsection introduces the reader to the testing of the I/O modules in the
Company and serves as a background for the analysis performed later in this
thesis. This section does not aim to explain the technical details of the testing
process, but rather to provide a high-level overview and introduce the reader
to the terminology.

The test workflow in the Company is shown in the figure 2.8. As can be
seen, several levels of testing are performed once the release is ready. Each
level corresponds to a different level of development as shown in the figure 2.7.
The testing is performed in the following order:

• Automated testing Typically created by the developers who are re-
sponsible for the release. It includes Unit tests, Static code analysis, and
other white box testing techniques.

• Integration test: Performed by a test specialist/testers on the real
HW. The testers have a comprehensive knowledge of the HW design of
the module, however, they do not possess the knowledge of the firmware
implementation.

33

2. State-of-the-Art

• System test: Performed by independent test specialists. The goal is to
perform a Black box testing that verifies that the module fulfills all the
specified requirements. The System Test always ends with a regression
test to ensure that the new features do not break the existing ones.

• Acceptance test: Typically performed by the customer or the end-
user. The aim is to verify that the module fulfills all the functional and
non-functional requirements.

Figure 2.7: Test phases of the I/O module development

To sum it up, the development process includes a series of tests that are
performed on different levels. Each level of testing is performed by a different
entity and has a different focus. As we go further from the implementation, the
test shifts from white box testing to Black box testing as each testing entity
knows less and less about the implementation details. It is important to note
for future analysis that each testing phase takes a different amount of time and
resources. Therefore, it is crucial to make sure the potential bugs are discovered
as soon as possible in the testing process.

34

2.4. I/O module development

Figure 2.8: Internal release - Test workflow

35

2. State-of-the-Art

2.5 Methods of virtualization

This section provides an overview of the most common types of virtualization
and introduces the reader to the differences between emulation and virtualiza-
tion and explore the most convenient virtualization methods for this thesis.

There are many definitions of virtualization in the literature. Therefore
this section focuses more on the general principles of virtualization than on
the exact definitions. In general, virtualization is a technique that allows more
efficient use of hardware resources by creating a virtual version of a device or
resources.

Virtualization technology abstracts applications, guest operating systems,
or data storage from the underlying hardware or software. Server virtualiza-
tion, a major application of this technology, utilizes a hypervisor to emulate
hardware resources like CPU, memory, and I/O. That offers flexibility, con-
trol, and isolation by decoupling software from specific hardware platforms,
enabling diverse applications. Despite the fact that the performance may not
match that of native hardware, virtualization provides significant benefits for
various computing environments. [23]

Several types of virtualization are categorized based on the level of abstrac-
tion and the scope of the virtualization. The following list provides the six
main areas where virtualization is used [23]:

• Network Virtualization: Combines network resources by dividing
available bandwidth into independent channels, facilitating real-time as-
signment to servers or devices, and simplifying network management.

• Storage Virtualization: Pools physical storage from multiple devices
into a single entity managed from a central console, commonly used in
storage area networks (SANs).

• Server Virtualization: Masks server resources from users, enabling
increased resource sharing and utilization while abstracting server com-
plexities.

• Data Virtualization: Abstracts technical data details for broader ac-
cess and resilience tied to business needs, simplifying data management.

• Desktop Virtualization: Virtualizes workstation loads for remote ac-
cess via thin clients, providing security and portability benefits. Requires
accounting for OS licenses and infrastructure.

• Application Virtualization: Abstracts application layer from the OS,
allowing encapsulated execution independent of the underlying OS, facil-
itating cross-platform compatibility and isolation.

To sum it up, the term virtualization refers to a process that typically
creates an abstraction layer between the physical hardware and the software
running on it. This abstraction layer can be represented in different ways,
depending on the type of virtualization used. However, the most common is
a virtual machine (VM) that partitions existing hardware into multiple isolated
environments.

36

2.5. Methods of virtualization

2.5.1 Levels of Virtualization

One of the main reasons for the popularity of virtualization is the flexibility
it provides. It can be implemented at different levels, each offering distinct
benefits and use cases. As the figure 2.9 shows, there are five levels ordered
from the application level to the lowest instruction level. This section provides
a brief overview of each level which will later help to choose the most convenient
method of virtualization for this thesis.

Figure 2.9: Levels of virtualization [24]

Application Level
The highest level of virtualization is at the application level. At this level,
the user-level programs and the operating systems are executed in a virtual
environment, which behaves like a real machine.

Application virtualization involves creating a layer between an application
and the operating system, making the application think it’s interacting di-
rectly with the OS when it’s not. This layer runs subsets of the application
virtually without impacting the underlying OS. By consolidating files and reg-
istry changes into a single executable file, applications can run smoothly across
different devices, including previously incompatible ones. Desktop virtual-
ization, used alongside application virtualization abstracts the physical desk-
top environment and its associated apps from the end-user device accessing
them. [24] [25]

37

2. State-of-the-Art

The main benefit of application-level virtualization is that it allows ap-
plications to run on different operating systems. This is particularly useful
for legacy applications that are no longer supported by modern operating sys-
tems or for cross-platform operations such as running Windows applications on
a MacOS. Another benefit can be in preventing conflicts with other virtualized
applications or the host operating system since each application runs in its own
isolated environment. The isolation also allows users to run multiple versions
or instances of the same application on the same machine which is useful for
many purposes such as testing or development. [25]

Library level
Virtualization at the library level is a technique where software libraries provide
an abstraction layer that masks the underlying hardware or software. This
abstraction layer is created through library interfaces that allow controlling
the communication link between the application and the rest of the system
through API hooks. [24]

OS level
OS-level virtualization, often called containerization, creates isolated containers
on a single physical server. That is achieved by creating a virtualization layer
on top of the operating system which separates the physical machine from its
logical structure.

This virtualization layer acts in many ways like a virtual machine man-
ager and allows users to access and run multiple isolated virtual systems on
a single physical server. The layer imitates the operating environment, which
is recognized on the physical machine, to create a virtual environment for the
applications. Applications then run in the containers as if they were running
on a dedicated physical machine without recognizing any difference between
the container and the physical server. [24]
The main advantages of this level of virtualization are[26]:

• Resource Efficiency: OS-level virtualization enhances resource effi-
ciency by eliminating the need to emulate complete hardware environ-
ments, thereby reducing resource overhead.

• High Scalability: Containers offer high scalability, allowing for quick
and easy scaling based on demand, facilitating seamless adaptation to
workload changes.

• Reduced Costs: OS-level virtualization can significantly lower costs
by requiring fewer resources and infrastructure compared to traditional
virtual machines.

• Faster Deployment: Containers enable rapid deployment, reducing the
time needed to launch new applications or update existing ones.

• Portability: Containers offer high portability, allowing for effortless mi-
gration between environments without necessitating modifications to the
underlying application.

On the other hand, there are various disadvantages such as limited isola-
tion between containers, and security risks. Since containers share the same

38

2.5. Methods of virtualization

host operating system, a security breach in one container can potentially affect
all others. Moreover, this level of virtualization always requires the installa-
tion of virtualization software on the host machine which could be potentially
problematic in some cases.

Hardware abstraction layer level
HAL (Hardware Abstraction Layer) virtualization is a technique that uses soft-
ware component that acts as an interface between the operating system and
the hardware. This abstraction layer provides a consistent and a uniform way
for software programs to use different physical hardware devices without any
knowledge of the specific details of each device.

The main idea behind HAL virtualization is to provide a set of standardized
functions and protocols that separate the low-level details of hardware compo-
nents from the higher-level software programs. Once this set of functions and
protocols is defined, the software programs communicate with the hardware
devices by using a high-level API, instead of using the device-specific drivers.

The HAL virtualization indeed offers numerous benefits, many of which are
particularly advantageous for I/O (Input/Output) module development. The
first and foremost advantage is that it significantly simplifies software develop-
ment by providing a consistent interface for interacting with hardware devices.
Therefore, developers can write software programs that are independent of the
specific hardware components and do not need to learn about the details of
each device they are working with. That is closely related to the second ad-
vantage, which is the increased portability of software programs. Since the
software programs are not tied to specific hardware components, they can be
easily ported to different platforms without any modifications in the code itself.

Besides numerous advantages, the HAL virtualization can be customized for
a specific hardware device. This approach is particularly useful for I/O module
development since both hardware and firmware are developed in parallel but
independently. The hardware developers can focus on designing the hardware
while the firmware developers can focus on writing the software since they know
the pre-defined interface that the software will use to communicate with the
hardware. [24] [27]

ISA level
The lowest level of virtualization is at the instruction set architecture level.
This level of virtualization involves creating a virtual environment that emu-
lates the instruction set of a particular hardware architecture. This allows to
run software that is designed for a specific hardware architecture on a different
hardware with a different instruction set.

To understand the idea behind ISA-level virtualization, it is necessary to
understand the term ISA itself. The Instruction Set Architecture defines the
interface between the hardware and the software, specifying the functional
definition of storage locations such as registers, memory, operations that can
be performed on them, and most importantly the definitions of instructions
that can be executed. [28]

Virtualization at this level is achieved by creating a virtual component
called an emulator that translates the instructions of the guest architecture to

39

2. State-of-the-Art

the instructions of the host architecture. The instruction can be of two types:
I/O-specific instructions and processor-oriented instructions.

It is a convenient method of virtualization that allows running device-
specific software on different hardware. That offers flexibility, control, and
isolation by decoupling software from specific hardware platforms. However,
the performance is typically extremely slow due to the translation process of
the instructions. [24]

2.6 Convenient level of virtualization for this thesis

The main goal of this thesis is to develop a virtual testing framework for in-
dustrial I/O modules. To achieve this goal, it is necessary to analyze which
level of virtualization is most convenient for this purpose. It is clear that the
application level and OS level virtualization are not suitable for this thesis as
they are typically not designed for hardware testing and do not provide the
necessary level of control over the hardware. Similar arguments can be made
for library-level virtualization.

On the other hand, the HAL level and ISA level virtualization are promis-
ing candidates for this thesis. They both offer a high level of control over the
hardware and allow for the development of custom virtual environments. Be-
sides, they can benefit from an extreme separation of hardware and software,
which is crucial for I/O module development since both hardware and firmware
are developed in parallel but independently.

The ISA level could be a good choice for this thesis since it allows running
device-specific software on different hardware. Using virtualization software
such as QEMU, it is possible to emulate the whole instruction set of a par-
ticular hardware architecture. However, since this level of virtualization is
implemented at the lowest level without any changes in the code of the soft-
ware, the timing of the software execution is crucial. That would make the
emulation process extremely slow and difficult to implement, which is unsuit-
able for this project. Besides that, the instructions of the guest architecture
can differ from project to project, which would make it necessary to implement
a new emulator for each project.

However, the HAL-level virtualization would allow running the module
firmware on the standard Windows or Linux operating system by implement-
ing the hardware interface that is defined for all I/O modules developed in the
company. This approach would allow us to maintain the technology part of
the module firmware and replace the hardware-specific parts. This way all the
modules from the same family of modules could be tested on the same virtual
environment.

Therefore, the HAL level of virtualization is the most convenient method
for this thesis. Mainly because it allows to create a customized environment
that replaces the hardware-specific parts of the firmware with a customized
emulator that allows running the firmware on a standard operating system and
gathers the necessary data for testing.

40

Chapter 3
Analysis and Design

In this chapter, we analyze the currently used testing process in the Company
to find room for improvement. Then, we design and describe a virtual test-
ing framework that improves the quality and effectiveness of testing. Special
attention is given to the impact of the VT framework on the project delivery
process.

3.1 Analysis of the current testing process

This section aims to analyze the current testing process of the I/O modules to
identify the rooms for improvement that the VT framework can address. The
analysis corresponds to point 3 of the thesis’s objectives and is based on the
information described in the section 2.4.3, which provides a high level overview
of the testing process of the I/O modules in the Company.

3.1.1 Testing time frames and delays
Synchronizing comprehensive testing with module development is a challeng-
ing task for a project manager. Each testing phase, described in section 2.4.3,
requires a specific amount of time to complete and is dependent on the success-
ful completion of the previous phase. Besides the time required for testing can
be prolonged due to the unavailability of the required hardware that is often
shared among multiple projects. However, for this initial analysis, let’s assume
that the hardware is available when needed.

Table 3.1 provides an overview of the time frames for each testing phase
along with the estimated time for fixing the bugs discovered during each phase.
The time frames are based on the information provided by the Company’s
testing team and are based on the average duration of the testing phases.
Assuming the provided numbers, the total time required for testing can be
estimated to be around 4-6 weeks without any bugs discovered during the
testing process. However, developing a complex I/O module without any bugs
is highly unlikely and unrealistic.

It is crucial to note that discovering bugs means restarting the whole testing
process from the beginning. Therefore, the time required for fixing the bugs
increases the later the bugs are discovered in the testing process. The follow-
ing paragraphs describe the process of fixing discovered bugs for each testing

41

3. Analysis and Design

Type of testing Duration Delay
Automated tests in
CI/CD pipeline ∼1 hour None

Integration test 1-2 weeks up to 4 weeks
System test 1-2 weeks up to 7 weeks
Acceptance test >2 weeks >10 weeks

Table 3.1: Time frames for testing phases

phase. Since the acceptance testing does not test the module’s algorithms and
is focused on other aspects of the module, this phase is excluded from the
analysis.

Automated tests in CI/CD pipeline
The automated tests in the CI/CD pipeline are the first line of defense against
bugs. The tests are executed automatically after each “git push” to the reposi-
tory dedicated to the module. This testing phase aims to provide an immediate
response to the developer about the newly implemented code. Discovering bugs
in this phase usually causes no delays since the developer can fix the bugs im-
mediately. These tests currently include Static code analysis, Unit tests, and
newly added virtual tests in the VT framework.

Integration test
The integration tests are performed by specialized testers on the physical hard-
ware. That means there must be a communication between the developers and
the testers to schedule the testing and provide feedback.

The first step of this testing phase is to assemble a testing rack with the
required hardware. This process can take up to a few days, depending on the
availability of the hardware. It is important to realize that assembling the
testing rack for one project can block the hardware for other projects.

The second step is to perform the testing according to the test plan. The
testers can either perform the tests manually or use automated testing tools.
If a bug is discovered, the testers are required to provide a detailed bug report
to the developers. Once the bug is reported to the developers and the project
managers, a task is created for the following sprint to fix the bug. This means
that the bug usually cannot be fixed immediately, as the developers are focused
on the tasks planned for the current sprint.

In conclusion, it takes 1-2 weeks to discover the bug in the integration
testing phase, then the bug is reported and a task for fixing the bug is planned
for the next sprint. Assuming that the bug was discovered in the middle of
the current sprint, it will take at least one week before the developers start
working on the bug. Even if the bug is fixed in a matter of days, it takes at
least 2 weeks to initiate the integration test again. In the worst scenario, it
can take up to 4 weeks, which is highly unusual in the Company.

System test
The system test is the final phase of testing that evaluates the module’s algo-
rithms. The testing is typically performed by specialized testers in different

42

3.1. Analysis of the current testing process

locations. This leads to potential delays in communication between the devel-
opers, integration testers, and system testers. However, for this analysis, let’s
assume that the communication is flawless.

A critical aspect of the system test is that it always requires full regression
testing of the entire module to pass successfully. This means that even with
a tight deadline, there is no way to speed up the testing process.

Let’s consider a hypothetical situation where a bug is detected towards the
end of the system testing phase. This implies that the module has already
passed the integration testing phase, which took approximately two weeks,
and the majority of the system testing, which took at least one week. Since
the system testing phase is more intricate and the testers are typically less
familiar with the internal workings of the module, it generally takes more time
to describe the bug and provide a comprehensive bug report to the developers.

Therefore, It takes around 3-4 weeks for developers to discover a bug and
plan a task for the next sprint. Assuming the bug can be fixed within one
sprint, it takes another 2-3 weeks for the module to be tested. This leads
to a total of up to 7 weeks before the module can be sent back to integration
testing. Additionally, if we include the required time for integration and system
testing, it will take at least 11 weeks to get the module ready for acceptance
testing. It’s important to note that this timeline assumes no additional bugs
are discovered during the second round of testing.

To summarize, identifying bugs during this testing phase can result in sig-
nificant delays and cause substantial financial losses and other damages to the
Company. Hence, the Company has developed a clear strategy to minimize
the risk of discovering bugs at such a late stage in the testing process.

Conclusion
The entire process of addressing the bugs that were discovered during the test-
ing stages is explained in Figure 3.1. This figure, along with table 3.1, provides
a comprehensive overview of the time needed to test and fix the detected
bugs. Based on the information presented, it is important to minimize the risk
of finding bugs during the later stages of the testing process. Also, developers
require a way to test the module’s algorithms before starting another testing
round.

43

3. Analysis and Design

Figure 3.1: Process of fixing bugs discovered during testing phases

44

3.1. Analysis of the current testing process

3.1.2 Quality of testing
The Company is widely known for its high-quality products that went through
a rigorous testing process. It is safe to say that testing quality is crucial for
the Company’s reputation and its position in the market.

Since the stakeholders are aware of this situation they are willing to invest
in improving the testing process. This section aims to analyze the current
situation and identify the room for improvement that the VT framework can
address.

Ensuring an excellent quality of testing is a challenging task that costs a
significant amount of time and financial resources. As we have introduced the
testing process and bug-fixing process in the previous sections, we can now go
into more technical details.

Development testing
The first level of testing is performed by the developers themselves or by the
automated tests in the CI/CD pipeline. These tests are fully designed by the
developers and are focused on the module’s algorithms.

This testing phase corresponds to typical White box testing and it typically
includes Static code analysis and Unit testing. Both of these techniques help
developers to identify bugs and ensure the quality of the code. However, it’s
important to note that these testing techniques can only assess individual parts
of the code and not the module as a whole.

That means, the developers have very limited options to verify many types
of bugs, such as race conditions, memory leaks, or any other edge cases.

Functional testing
Functional testing is implemented through integration testing of the physical
hardware. The integration testers in the Company do not know the internal
structure of the module’s code and are focused on the module’s behavior. That
corresponds to typical Black box testing, which means testers cannot verify the
module’s inner state. That makes it difficult for developers to identify the root
cause of the discovered bugs and can lead to significant delays as they cannot
replicate the bugs in their development environment.

Having the ability to easily replicate discovered bugs in a development en-
vironment, with the option to debug the code and verify the module’s internal
state, would significantly reduce the time required for bug fixing. However, the
goal is to discover the bugs before initiating the integration testing phase.

It is worth noting that the test suites used for integration testing are avail-
able to both developers and integration testers. This means that developers are
aware of which tests are going to be performed during the integration testing
phase. However, during the development phase, they usually face difficulty in
debugging their code as they do not have access to the necessary hardware.

System testing
It was stated before, that the goal of the system testing is to verify the behavior
of the final product. The testing is performed by a completely independent
team that is not involved in the development process. The system testers have
a completely independent test approach that is not shared with the developers.
The tests are based on the project’s requirements and other requirements that

45

3. Analysis and Design

verify the module is compliant with the standards and regulations required for
the product to be introduced to the market.

This situation corresponds with the requirement of ensuring unbiased and
independent testing. Analysis of the closer details of the system testing is not
part of this thesis as it does not aim to improve the system testing.

However, in the previous section 3.1.1, we established the time frames for
this testing phase and the time required for fixing the bugs discovered during
this phase. The system testing can cause significant delays in the case of newly
discovered bugs, the Company strives to improve the quality of Testing in the
previous phases and reduce the number of bugs discovered during the system
testing.

Conclusion
The Company has a well-established testing process and an excellent reputation
for the quality of its products. However, the management is aware that the
improvement of the quality of testing on development and integration testing
the level can be improved and is willing to invest in such an improvement as it
can significantly reduce the number of bugs discovered during the system and
acceptance testing.

The following requirements can be derived for the solution to improve the
quality of testing:

• Improve accessibility of testing: The developers should have the
ability to easily replicate discovered bugs or even design their own test
cases to verify the module’s behavior and internal state.

• Increase frequency of testing: Since the required hardware is often
shared among multiple projects, it is not always available when needed.
Therefore, the development continues without the possibility to verify the
functionality of the new code. That significantly increases the time re-
quired for fixing identified bugs. Running the tests more frequently would
allow developers to always work with verified code and easily recognize
new bugs.

• Extend the test coverage: It is almost impossible to identify certain
types of bugs, such as memory leaks or buffer overflows, with tests run
on physical hardware. Those bugs are often identified during late testing
phases such as system testing.

These requirements were used as a basis for the design of the VT frame-
work. However, quality of testing is not the only perspective that needs to be
considered to create an effective solution that can be adopted by the Company.

3.1.3 Inefficiencies of the testing process
This section aims to summarize the room for improvement in the testing pro-
cess from the previous sections. Mainly, from the technical and organizational
perspective. That corresponds with point 2 of the thesis’s assignment and
clearly states the inefficiencies that the VT framework can address.

The developers, testers and project managers typically face the problem of
discovering the bugs in the later stages of the testing process. That leads to

46

3.1. Analysis of the current testing process

the necessity of restarting the whole testing process from the beginning and
significant delays in the project’s timeline as was described in the section 3.1.1.
This situation could get even worse by the unavailability of the required hard-
ware that is often shared among multiple projects. In addition to that, there
is a significant amount of time at the beginning of the project when the devel-
opers and testers are waiting for the hardware to be available and are forced to
develop the firmware of the product without the possibility of testing it. That
leads to the situation when and complex structure of the firmware is developed
with a significant amount of bugs which are time-consuming to discover and
fix once the hardware is available.

Therefore, the following problems can be identified:

• Unavailability of the required hardware: Hardware is often shared
among multiple projects and it takes a significant effort to assemble the
testing racks with the required hardware.

• Lack of feedback for developers: The firmware developers have very
limited options to verify the accessibility of the newly implemented code.
That leads to developing complex structures that are time-consuming to
debug and fix in case of any problems with their functionality.

• Discovering bugs in late stages of the testing process: The early
stages of the testing process are not currently designed to identify bugs
that occurs less frequently.

• Lack of Gray box testing: Discovering a bug is only the first step
of the process. The developers need to identify the root cause of the
bug by replicating it in their development environment. As you can see
in figure 3.2, current testing methods lack Gray box testing, that would
allow the developers to easily replicate the discovered bugs while also
being able to verify the module’s internal state.

Besides the problems mentioned above, there is a significant delay at the
beginning of the firmware development. The developers are waiting for the
hardware which takes a significant amount of time to be prepared at the be-
ginning of the project. Without the hardware, the testing process can’t be
The management is aware that the developers often wait weeks before they
can start with the firmware development and is willing to invest in the solution
that would allow them to start with the development sooner.

The Company’s management is aware of these inefficiencies and their sig-
nificant financial impact and is willing to invest in the solution that would
address them.

47

3. Analysis and Design

Figure 3.2: Scope of testing

3.2 Requirements engineering for the VT framework

Requirement engineering is a crucial part of the software development process.
In this section, the requirements for the VT framework are determined based
on the analysis of the current testing process. This section goes into the de-
tails of what the Company’s management and stakeholders expect from the
VT framework and what the framework should provide to the developers and
testers.

As each of the involved parties has different expectations from this frame-
work, it took a significant effort to find common ground and define reasonable
goals that satisfy all the parties. For a better understanding of the situation
in the Company, this section is divided into three subsections, each of which
represents the expectations of a different party.

3.2.1 Developer’s requirements
The main problem the developers face is the accessibility of testing, especially
at the beginning of the project. Their options to verify the functionality of the
newly implemented code are limited. The situation is improved by the static
code analysis and unit tests running in the CI/CD pipeline, however, any of
these methods are not able to verify how the individual components of the
tested modules interact with each other.

This situation forces the developers to implement complex structures with-
out verifying their functionality. Once a bug is discovered during the integra-
tion testing phase, it takes a significant amount of time to identify where the
root cause of the bug is.

48

3.2. Requirements engineering for the VT framework

Besides that, the only way to replicate the discovered bugs is to assemble
their own testing rack. However, running the tests on the physical hardware
does not allow the developers to easily look into the module’s internal state.
Over the years, various methods to log the current state of the modules have
been developed, however, they were required to go through the logs manually,
which is a time-consuming process that requires an experienced developer.

To sum it up, from the developer’s perspective, the VT framework should
provide the following features:

• Easily applicable: There should be a clear set of instructions on how to
set up the virtual tests for new modules. This effort should be minimal
and outweighed by the benefits of the virtual tests.

• Easy bug replication: The developers should be able to look into the
module’s internal state while replicating the bugs discovered during the
testing process. Ideally, the VT framework should provide a way to run
the same tests that were run on the physical hardware.

• Improved test coverage: The VT framework should allow developers
to verify the behavior of the module in edge cases and under different
conditions by providing a way to control the module extremely precisely,
which is impossible to achieve with the physical hardware.

• Integration with the CI/CD pipeline: Frequent feedback is crucial
for the developers to work efficiently. The VT framework should be in-
tegrated into the CI/CD pipeline which is automatically executed every
time any code is pushed to the repository.

All of these requirements are based on a thorough discussion and analysis
with the developers in the Company. Fulfilling them should significantly lower
the number of bugs discovered during the later stages of testing and improve
the overall quality of the code developed in the Company by providing frequent
and precise feedback to the developers.

3.2.2 Tester’s requirements
The VT framework is not supposed to replace testing on physical hardware as
it is a hard requirement from the customer to test all the products that go to
the market on the physical hardware and go through all the testing phases.

Despite this fact, the VT framework could be a valuable tool for the testers,
if certain requirements are met. The main requirement from testers is com-
patibility with the already existing Automation Test Framework. To fully
understand this requirement, it is necessary to provide a brief overview of the
existing framework and define the word “compatibility” in this context.

The Automation Test Framework was developed in the Company. The
framework allows the testers to set up the testing rack and execute a sig-
nificant part of the test cases automatically or partially automatically. The
framework itself is not a part of this thesis, however, the majority of test cases
for all modules tested in the Company are written in Python and are using the
framework. Therefore, there is an existing requirement from the management
to implement the new VT framework in a way that the existing test cases can
be reused without any changes.

49

3. Analysis and Design

The compatibility with the existing Automation Test Framework is the
crucial requirement for the testers. In case this requirement is not met, the
test cases would have to be rewritten, which is a time-consuming process that
would prevent the testing team from using the newly designed VT framework.

However, the testers have also expressed a significant interest in the main
topic of this thesis and are willing to make adjustments to the automation test
framework to make it easier to achieve the desired compatibility.

To sum it up, the main requirement from the testers is compatibility with
their existing framework. As the VT framework is supposed to be used primar-
ily by the developers, the testers are willing to adjust their existing framework
to achieve better compatibility and reusability of the existing test cases.

3.2.3 Management’s requirements
The Company’s management needs to ensure that investing in the VT frame-
work will provide a significant return. In addition to the technical requirements,
they must consider the financial aspect of the investment and the Company’s
overall testing strategy.

The testing strategy aims to synchronize the testing process across all
Company locations and ensure that test suites implemented at one location
are easily reusable at other locations. This minimizes the effort required when
a module development is moved from one team to another.

Furthermore, the management aims to create a solution that allows devel-
opers and testers to create test cases in a unified way. This prevents each
entity from creating its own tests during development, which duplicates the
effort required for testing. Such duplication is a significant waste of resources
and is not in line with the Company’s testing strategy.

However, the most crucial requirement from the management is the quick
implementation of the VT framework for new modules. The VT framework
should aim to be applicable in the early stages in 2-3 weeks. This requirement
would allow the developers to use the time at the beginning of the project more
efficiently and start with the firmware development sooner. Even before, the
hardware is available.

To summarize the management’s requirements, the VT framework should
provide the following features:

• Unified way of creating test cases: The VT framework should pro-
vide a way to create test cases in a unified way to prevent the duplication
of effort.

• Compatibility – locations: The VT framework should be compatible
with the existing solutions to ensure it can be used across all Company
locations.

• Quick implementation: The VT framework should be applicable in
the early stages of the project in 2-3 weeks.

• Improve quality of testing: The VT framework should aim to improve
the quality of testing on the development and integration testing level by
allowing to create tests for various edge cases and conditions that are
impossible to achieve with the physical hardware.

50

3.2. Requirements engineering for the VT framework

• Test cases reusability: All the test cases implemented for the physical
hardware that does not depend on the hardware behavior itself should
be reusable for the virtual testing without any changes in the test cases
themselves.

Even though there are multiple requirements from the management, they
all have the same goal. Lower the necessary resources for testing while im-
proving its quality. From the management’s perspective, the success of the VT
framework is determined by the ability to fulfill this goal.

3.2.4 Outcome of the requirements engineering process
The final set of requirements for the VT framework was derived from the re-
quirements of the developers, testers, and the Company’s management. Besides
that, the requirements were also discussed and approved by the Company’s
stakeholders who are responsible for financing this project.

After a thorough discussion and analysis, the following requirements were
created for the VT framework project:

• Easily applicable: The VT framework should be applicable in the early
stages of the project in 2-3 weeks and allow the developers to start with
the firmware development even before the hardware is available.

• Compatibility with solutions across all Company locations: The
VT framework should be easily usable with the existing solutions across
all Company locations, including the Automation Test Framework in
Prague.

• Integration with the CI/CD pipeline: Virtual testing should become
part of the automated testing process in the CI/CD pipeline, to provide
frequent feedback to the developers.

• Improved quality of testing: The VT framework should allow devel-
opers and testers to control the module extremely precisely and verify its
behavior in edge cases and under different conditions that are impossible
to achieve with the physical hardware.

• Provide Gray box testing: The VT framework should provide a way to
verify the module’s internal state and replicate the firmware bugs easily.

• Lower the necessary resources for testing: The goal of the VT
framework is to lower the necessary resources for testing by improving its
quality and efficiency.

In addition to the technical requirements, the Company has various policies
that apply to all the projects. These policies are not directly related to the
VT framework, however, they have to be considered during the implementa-
tion of the VT framework. Examples of such policies are the usage of C++
programming language, following coding guidelines, and standard git workflow.

The formal and informal requirements above were discussed with the Com-
pany’s management and stakeholders and were officially approved. To corre-
spond with the PML methodology used in the Company, the official project
documentation was created and the project was officially kicked off.

51

3. Analysis and Design

3.3 Virtual testing framework

The goal of this section is to design a virtual testing framework based on the
requirements defined in section 3.2. The section introduces the reader to the
architecture of the virtual testing framework and describes how it fulfills the
requirements that the stakeholders have defined. Then the focus shifts to the
individual components of the solution and how they interact with each other.

3.3.1 Architecture
The main requirement that the architecture of the VT framework must fulfill
is compatibility with the existing testing infrastructure. The VT framework
must be able to interact with the automated testing frameworks that testers
use to run tests on real hardware. The problem is that each location of the
Company typically uses a different testing framework.

Therefore, the architecture needs to be modular and flexible. There must
be a clear separation between the components that interact with the technology
part of the module and the components that handle the testing infrastructure.
In addition to that, the testing infrastructure is constantly evolving at each
location of the Company.

For these reasons, the architecture of the VT framework is based on a client-
server model. The server is responsible for managing the virtual testing envi-
ronment and the client represented by any testing framework that the Company
uses connects to the server to run test cases.

The architecture of the VT framework is composed of three main compo-
nents:

• Virtual testing library(DLL): A layer that is responsible for wrapping
the technology part of the module and allowing the code to be compil-
able and executable on the Windows platform. This component is often
referred to as the emulator.

• Virtual testing app (Server): An exe application that is able to load
the DLL and manage the communication between the emulator and the
testing client.

• Testing client: Any testing client that is used within the Company and
implements the pre-defined interface for the VT framework.

The general overview of the architecture is shown in Figure 3.3, where we
can all the components and their interactions. Each of these components is
described in more detail in the following sections including the communication
between them.

52

3.3. Virtual testing framework

Figure 3.3: Architecture of the VT framework

Module components
Prior to the description of the individual components of the VT framework, it is
important to understand the common structure of the modules developed in the
Company. The modules are typically divided into two main parts: a technology
part and a shared part called BaSy.

What is important to understand is that the BaSy component only provides
an interface for hardware control. The technology uses the interface functions
to control registers, LEDs, and other hardware components. The BaSy stays
the same for the whole family of modules and any change is extremely rare due
to compatibility reasons.

The programmable logic is implemented in the technology part of the mod-
ule. Everything that determines the external and internal behavior of the
module is included in this particular component. Since the developers work
with the technology component, the VT framework aims to verify its behavior.

Understanding this structure is crucial for future understanding of the VT
framework architecture. For the reasons mentioned above, the BaSy component
can be modified or replaced by a mock component as it does not affect the
behavior of the technology part of the module and allows the emulator to
access the internal structures of the module.

On the other hand, there must be no changes required in the technology
for the virtual testing. Even a small change would invalidate the results of the
tests as it would not be clear whether the module behaves the same way as
it would on the real hardware. That is why the technology is encapsulated in
the DLL and the emulator accesses its functions and data through pre-defined
functions and by implementing the BaSy interface.

To sum it up, the main access point to the technology part of the module
is the BaSy interface which originally serves as a communication layer between
the technology and the hardware. That ensures that from the perspective of
the technology, there is no difference between running on the real hardware and
running on the emulator, which is crucial for the validity of the test results.

53

3. Analysis and Design

3.3.2 Virtual testing library
The virtual testing library otherwise called the Emulator is the core component
of the VT framework. This part of the framework is responsible for wrapping
the technology part of the module and allowing the code to be compilable and
executable on the Windows platform. Besides that, the emulator allows the
testing client to control the technology part of the module and read data from
its inner data structures.

The external behavior of the emulator is clear. It must be able to control
the technology part of the module, allow the testers to modify the state of
the internal structures and read the data from them. At the same time, the
emulator cannot modify the behavior of the code in any way. From the per-
spective of the module code, there must be no difference between running on
the real hardware and running on the emulator, otherwise, the results of the
tests would be invalid.

Due to the complexity of this component, it requires its own separate ar-
chitecture and design. As shown in figure 3.4, the DLL is composed of three
main parts:

• DLL interface: This part of the DLL is responsible for exposing the
functionality of the emulator to the testing client. It is a set of func-
tions that the testing client can call to control the technology part of the
module through LLC(Low-Level Commands).

• Emulator: This part of the DLL is responsible for wrapping the tech-
nology part of the module. The data objects and functions allow control
of the inner state of the module and read the data that would normally
be stored in the registers and memory of the real hardware.

• Technology part of the module: The part of the module that is being
tested. This code cannot be modified in any way and must behave the
same way as it would on the real hardware. All the changes that need
to be done to make the code compilable and executable on the Windows
platform need to be done in other parts of the DLL.

DLL interface
The DLL interface is a set of functions that the testing client can call to control
the module. Controlling the module means setting the internal state of the
module, reading the data from the module and executing the module for a given
amount of emulated time.

To fully understand what the DLL interface needs to provide, we need to
understand how the testing of any I/O module is typically done. To successfully
run a test case, the testing clients require the following functionalities:

• Start and Initialize: This function is used to start the module and
initialize its internal state to default values.

• Insert submodule: The module is often composed of multiple logic
submodules. Each submodule is identified by a unique ID. Since each
submodule can differ in the size of its data objects, the specific submodule
needs to be inserted into an imaginary slot to allow the code to control
the validity of the data that is being written or read.

54

3.3. Virtual testing framework

• Read/Write data record: All I/O modules are being parametrized
through special data objects called data records. The operations of prop-
erly writing and reading the data records are specific from other opera-
tions and require special functions.

• Read/Write data objects: Each module in the family needs its own
set of data objects. This interface function allows us to modify them and
read their values based on the data object handle defined at the beginning
of the communication.

• Execute Emulation: The emulation of the module is executed for
a given amount of emulated time. This concept is necessary because
the processes in the modules are time-dependent and the testers need to
access the data at specific points in time.

• Query for handle: The handle is a unique identifier for each data
object. This function is used by the testing client to get a handle for
specific data. This handle is then used to read and write the data into
the data object through the “Read/Write data objects” functions.

Through these functions, the testing client can fully control the technology
part of the module. This layer is necessary to isolate the testing clients from
the logic hidden inside the Virtual testing DLL. This way, any changes to the
internal logic of the DLL will not affect the testing clients, which is crucial for
the maintainability of the framework.

Emulator
The emulator is the core of the whole VT framework that allows the execution
of the technology part of the module without access to the physical hardware.
As the figure 3.4 shows, the emulator is composed of three parts:

• Data objects: These data objects are used to handle data that are
passed to the technology part of the module. There are data objects that
are common for all modules in the family such as data records, and data
objects that are specific for each module. It is important to note that
the data stored in these objects can be only modified by the technology
part of the module, not the emulator itself as it would lead to invalid test
results.

• Emulation functions: This part of the emulator handles the data ob-
jects and the execution of the technology part. It is responsible for calling
the right technology functions at the right time. This logic needs to be
adapted for each module along with the definition of the specific data
objects. However, the general rules are shared among all modules in the
family.

• HW emulator: This part of the emulator is responsible for emulating
specific hardware parts of the module such as registers. This part typi-
cally implements the BaSy interface and gathers the data that would be
handled by the hardware.

55

3. Analysis and Design

Each of these parts has its own specific purpose. The separation of concerns
here is crucial for the maintainability of the framework and the ability to adapt
the framework to new modules.

To better understand the emulator component, we need to identify what
responsibilities it has. The emulator is responsible for the following tasks:

• Process commands from the DLL interface and execute them
accordingly: The DLL interface only calls the functions that are defined
in the emulator. The emulator is responsible for controlling the module
by calling the right technology functions or reading the data from the
data objects.

• Implement HW interface for the technology part of the module:
The HW emulator ensures that there are no changes required from the
technology code perspective. It is responsible for reading and writing
the data that would be stored in the registers or memory of the physical
hardware.

• Data handling: The Emulator is responsible for handling the data and
transferring it between the technology code and DLL interface in the
correct format. That is achieved through the pre-defined data objects or
other convenient data structures.

• Call the right technology functions at the right time: The emu-
lation is always executed for a given amount of emulated time. Since the
execution is not real-time, there must be other mechanisms that ensure
correct behavior. That is achieved through the complex mechanism called
Event calendar, which schedules the events and executes them when the
time comes.

To sum it up, the emulator is responsible for all the logic that is required
to control the technology part of the module. module and handle the data.
It consists of three main parts: data objects, emulation functions and HW
emulator, where each part has its own specific purpose. That is crucial for the
maintainability of the framework and the ability to adapt the framework to new
modules. This section only provides a high-level overview of this component
as it is an important part of the software design. The actual details of the
implementation will be described in the chapter 4.

Technology code
The technology code is a part of the DLL, however it cannot be modified in
any way. This is the code that is being tested and it is the same code that
would be executed on the physical hardware. All the other parts of the DLL
are responsible for wrapping this code to make it compilable, executable and
controllable without the need for the physical hardware.

56

3.3. Virtual testing framework

Figure 3.4: Architecture of the Virtual testing library(DLL)

3.3.3 Server application
As the name of this component suggests, the server application is part of the
VT framework that is responsible for managing the communication between
the testing client and the virtual testing library. After further analysis, the
following requirements for this component have been identified:

• Communication with the testing client: The server application
needs to handle the interprocess communication with the client. This
means that the server application must be able to receive the commands
from the testing client and send the responses back to it.

• DLL handling: The application must be able to load/unload the DLL
and call its interface functions. Besides that, it needs to hold the current
context of the DLL and be able to reset it to the initial state if required.

• Logging: The server application must be able to log the communication
between the testing client and the virtual testing library.

• Error handling: The server application must be able to handle the er-
rors that occur during the communication. This means that the server
application must be able to detect the errors and throw appropriate ex-
ceptions.

57

3. Analysis and Design

The need for a standalone server application comes from the fact that there
is a possibility of creating other testing libraries for different types of modules.
There is no reason to create a different server application for each library as
the communication protocol is supposed to stay the same for all of them.

3.3.4 Testing client
The testing client is part of the VT framework, however, the development
of the testing clients is not in the scope of this thesis. As we know from
the requirements for this project, the goal is to create a framework that is
compatible with the existing testing clients in the Company.

However, there are following requirements that the testing client must fulfill
in order to be compatible with the VT framework:

• Implements the LLC communication protocol: The client needs to
implement the LLC communication protocol described in section 3.3.5.

• Test cases need to stay in the same format: There must be no
changes in the format of the test cases. The same scripts that are used
to run the tests on the real hardware must be used to run the tests in
the virtual environment. All the changes that need to be done must be
done in the backend library of the client.

• Error handling: There must be a special layer in the client that inter-
prets the errors that are reported by the server application.

• Data object preparation: The client must support the pre-defined
data objects to properly interpret the data from the virtual testing library.

Given these requirements, there is a need for a clear separation of concerns
to multiple layers in the testing client. The proposed architecture of the testing
client is shown in Figure 3.5. The goal of this design is to create a client
where the test cases stay the same for both the real hardware and the virtual
environment. That is achieved through the proper separation of the test cases,
the backend library and the communication layer. As you can see, the test
cases are injected into the backend library which then chooses whether to use
the implementation for the real hardware or the virtual testing library.

It is important to note, that at all levels the interfaces stay the same. The
only thing that changes is the implementation is hidden behind those interfaces,
which is crucial for the maintainability and reusability of the solution.

58

3.3. Virtual testing framework

Figure 3.5: Architecture of the testing client

3.3.5 Communication & Interfaces

The communication between the testing clients, server application and the
virtual testing library was mentioned in the previous sections. This section
focuses on the communication protocol and the interfaces that are used to
separate the individual components as much as possible.

The VT framework proposes a communication protocol based on LLC (Low-
Level Commands). The protocol is designed to be simple, easy to implement
and platform-independent. That means that the way how the commands are
transmitted does not influence the format of the data.

As mentioned in the previous sections, the architecture of the VT framework
is based on the client-server model. That means that the clients send commands
to the server, which then processes the commands and responds to the client.
Both commands and responses are transferred in the form of frames, which are
categorized into two types: rx_frame and tx_frame.

As it is shown in the figure 3.6, the frames are divided into three separate
parts:

• Header: The header contains information necessary for processing the
data in the payload such as its length.

• Function code: The function code is used to determine which VT li-
brary function should be called to process the command.

59

3. Analysis and Design

• Data: The data should be processed by the technology code. Typically
in the form of a byte array.

Each part of the frame is mandatory for any valid frame. If there is any
inconsistency in the frame, the server must respond with an appropriate error
code. Once the command frame is received and processed by the server and
the VT library, the server responds with a response frame.

From the high-level perspective, the format of the response frame is very
similar, except for the function code, which would be redundant. If we go
into more detail, the data included in the header of the response frame are
different. The most important part of the header is the status code, which
is used to determine whether the command was processed successfully or not.
The client should always check the status code before going through the data
in the payload, as the data in the payload might not be valid. In addition to
the status code, the header contains the length of the payload, which allows
the client to validate the data prior to processing it.

To sum it up, the client and server communication is based on the LLC
protocol. Both commands and responses are transferred in the form of frames,
which slightly differ for each direction of the communication. The header of
the frame contains the information necessary for processing the data in the
payload such as - message length, status code, and flags that can be used for
additional functionalities. The function code is used to determine which VT
library function should be called to process the command as the server app
should not add any additional logic to the command processing. The protocol
is designed to be simple, easy to implement and platform-independent, which is
necessary for the maintainability and reusability of the solution for all locations
of the Company.

Figure 3.6: Low-level command

3.4 VT Framework’s Impact from a Project
Management Perspective

This section explores the impact of the VT framework on the project delivery
process and provides valuable insights from a project management perspective.
It presents a comprehensive analysis that project managers within the Com-
pany should carefully consider when deciding about the adoption of the VT
framework for their projects. The analysis encompasses crucial factors such as
the enhanced quality of testing, reducing the risk of project delays, and the
financial impact.

3.4.1 Project planning impact and risk reduction
One of the biggest responsibilities of a project manager is to ensure that the
project is delivered on time and within the budget. That requires careful plan-

60

3.4. VT Framework’s Impact from a Project Management Perspective

ning, which is often a complex and challenging task, especially if there are
too many unknowns. In addition to that, the project manager needs to prop-
erly manage their resources and appropriately distribute the workload among
the team members. This subsection aims to analyze the impact of the VT
framework on the project planning process, resources management, and risk
reduction. The analysis is based on the information described in the previous
sections.

Properly managing the resources assigned to the project is the key respon-
sibility of the project manager. The improvement in this area can lead to
a significant reduction in the costs and time required to deliver the project.
The Company’s management is quite aware of this fact and has been actively
looking for ways to support their project managers in this area.

The most significant constraint that the project manager faces is the limited
availability of the testing resources that can be allocated to the project at any
given time. That often leads to situations where the developers are not able
to get feedback on their work in time and are forced to wait for the testing
resources to become available. In addition to that, the project managers often
cannot predict when the module will come back from the system testing phase,
which makes it difficult to plan the next steps in the project.

To sum it up, project managers typically face the following issues:

• Limited availability of testing resources: The testing rack needs to
be assembled for the module to be tested, which takes time and is often
not available when needed.

• Unpredictability of the testing process: The project managers often
cannot predict if the module will contain more bugs that need to be fixed.
That makes it often difficult to plan the next steps.

• Accesibility of testing: The developers often cannot run the tests on
their own, or replicate the bugs that were reported by the testers.

All of these issues make it difficult for the project manager to properly
allocate their most valuable resources - the employee’s time. Currently, the
common practice in the Company is to allocate from 10% to 20% of the project
time as a buffer for the additional testing that might be required. However,
this approach is not always effective and forces the project manager to allocate
more time than necessary.

The VT framework aims to address these problems by providing the de-
velopers with a way to create and run their own test cases, easily and quickly
replicate a majority of firmware bugs discovered during the integration and
system testing, and get almost immediate feedback on their work. By lowering
the number of bugs that are discovered during the late stages of the testing
process, the unpredictability of the project is reduced, which allows the project
manager to allocate less resources.

In conclusion, by adaptation of the VT framework, the project managers
can expect:

• Reduced unpredictability of the testing process: Improved quality
of testing at the developer level will lead to a lower number of bugs
discovered during the later testing stages, which will lower the risk of
additional testing time required.

61

3. Analysis and Design

• Easier access to testing for the developers: The requirements for
the VT framework clearly state, that the developers should be able to
run all of the tests from the official test suite if there are no hardware
dependencies. That helps them continuously test their work and get
immediate feedback, which also helps them to find a potential bug faster.

• Frequent feedback by automated CI/CD pipeline: The developers
typically code in small increments and push their changes to the repos-
itory multiple times a day. VT framework allows the developers to get
feedback on their work almost immediately, which helps them to find and
fix the bugs faster. Besides that, the developers are always able to test
their code to some extent, even if the testing rack is not available.

• Lower probability of project delays: Improved accessibility of testing
for the developers and allowing them to create and run their own test
cases for various edge cases, leads to a lower probability of project delays
caused by the testing process.

• Lower probability of project budget overrun: By reducing the
unpredictability of the testing process, and lowering the number of bugs
discovered during the later stages of the project, the project manager can
more accurately allocate the resources for the project with a lower risk
of budget overrun.

The reasons mentioned above make the VT framework a valuable tool for
project managers. Even if we do not consider the money saved by reducing the
number of testing rounds required, the improved predictability of the project
and lowering the risk of project delays is a significant benefit for the Company’s
management a customers.

3.4.2 Unified testing strategy
The Company is a global organization with an extensive network of develop-
ment and testing teams located in various locations around the world. To avoid
the duplication of work at different locations and teams, the Company defined
a unified testing strategy that all of the teams should follow. The strategy
does not enforce the use of specific tools, frameworks and programming lan-
guages, but rather defines the requirements that new solutions should fulfill to
be considered as a part of the unified testing strategy. That ensures that the
new solutions are compatible with the existing testing frameworks and can be
reused by the teams at different locations.

The management is actively looking for solutions that are not useable at
a single location, as it does not bring benefits in the long run. For this rea-
son, the Company’s management and stakeholders need to carefully consider
whether the VT framework aligns with these rules and be reused by multiple
teams.

After analyzing the requirements for the VT framework, it is clear that
the Emulator DLL can be used by any testing client that implements the
defined communication protocol. The benefit of this approach is that it does not
matter how the testing client is implemented because the low-level commands
need to stay the same by definition. In other words, the testing client can be

62

3.4. VT Framework’s Impact from a Project Management Perspective

implemented in any programming language such as Python or C#, but that
does not affect the compatibility with the Emulator DLL itself.

Despite the fact there is required an additional effort to implement the
pre-defined interface to use the VT framework, the management decided that
it was a reasonable trade-off as the implementation should be straightforward
and only a one-time effort for each location.

In conclusion, the management of the Company decided that the VT frame-
work aligns with the unified testing strategy as it can be relatively easily reused
by the teams at different locations. The additional effort required to implement
the pre-defined interface is considered a relatively small and most importantly
a one-time effort.

3.4.3 Financial impact
The analysis of the financial impact of the VT framework was crucial for the
Company’s management, stakeholders and project managers. The decision
to invest in the framework was based on the potential financial benefits that
could be achieved by adopting this solution. In addition to that, this sub-
section explores the decision-making process that the project managers within
the Company should consider when deciding about the adoption of the VT
framework for their projects.

In order to provide a comprehensive analysis, the project’s expenses need to
be explored to identify where the biggest potential room for improvement lies.
The analysis is based on the information provided by the Company’s manage-
ment and project managers. Once the expenses are identified and analyzed,
the focus shifts to the potential financial benefits and the return on investment
that the VT framework can bring to the majority of the projects within the
Company.

Budget distribution
The Company has a significant amount of projects that are developed in par-
allel. The size of the projects varies from small projects that are developed by
a small team of developers to large and complex projects that require a signif-
icant amount of resources and time to be developed.

The company keeps a close eye on the expenses of all its projects. After
analyzing the data, it was found that three main expenses are common to
all projects, regardless of their size. Therefore, this analysis focuses on the
following expense categories:

• Employees: The salaries of the developers, testers, and project man-
agers.

• Hardware: The cost of the hardware that is required for the module
development.

• Licenses: The cost of the software licenses that are required for the
module development.

The budget distribution for the projects is shown in the figure 3.7 based
on the data provided by the Company’s management. The numbers are based
on the average budget distribution as the numbers slightly vary from project

63

3. Analysis and Design

Salaries
95%

HW
4%

Licences1%

Figure 3.7: Budget distribution

to project. The biggest part of the budget is allocated to the salaries of the
employees which is typically from 90% to 98% of the total budget. That means
the most expensive part of the project is the time of the employees who are
working on the project. Any improvement that can reduce the time required for
the project’s development or testing significantly reduces the project’s expenses.

Even if the VT framework could allow lower expenses on the hardware or
licenses, the impact on the total budget would be negligible and would not
justify the investment in the framework. Therefore, they can be excluded from
the analysis and the focus should be on the potential reduction of employees
time required for finishing the project.

Sample Project definition
To explore the financial potential of the VT framework for a project, a hy-
pothetical project will be created. Using the project, we will go through the
process of identifying the potential financial benefits and the return on invest-
ment that should be considered by the project managers when deciding about
the adoption of the VT framework for their projects.

The project is based on the average and most common type of project in
the Company. Since we already established that the expenses for the hardware
and licenses are negligible for the VT framework, the focus will be only on the
time of the employees and therefore the efficiency of the project’s development
and testing process.

The project consists of 3 developers, two integration testers, and one project
manager. Even though the salaries of each employee vary, we can estimate the
average expenses per employee to be 50 AC. Therefore, from the stakeholder’s
perspective, efficiency is based purely on the time of the employees, not on the
cost of their actual salaries. It is important to note that the management and
stakeholders are interested in reducing the overall time and the stability and
predictability of the project’s timeline.

64

3.4. VT Framework’s Impact from a Project Management Perspective

Initial cost
The adoption of the VT framework requires an initial investment at the begin-
ning of the project. The preparation of the virtual testing takes 2-3 weeks of
the developer’s time regardless of the project’s size. Knowing the hourly rate
of the developers, and the 40-hour work week we can estimate the initial cost
of the VT framework adoption to be from 4,000 AC to 6,000 AC per project.

This estimation gives the project managers a clear understanding of how
much time and money the VT framework requires to save during the project’s
development and testing process. On the other hand, it is important to realize
that the adoption of the VT framework can be started before the hardware
is available and the development of the firmware can start. That means for
certain projects the adoption of the VT framework is implemented while the
developers are already assigned to the project, however, they cannot fully start
with the firmware development and the Company is losing money due to bad
planning or unforeseen delays in the hardware preparation.

For the purpose of this analysis, we will assume the hardware is available
when needed and the initial cost of the VT framework adoption is in the range
stated above. That being said, the usage of the VT framework needs to save at
least 80-120 hours of the employee’s time to be considered a good investment
for the project.

Bug related expenses
The goal of the VT framework is to reduce the number of bugs discovered
during the later stages of the testing process and therefore reduce the project
delays and the time required to fix them. Knowing the hourly rate of the
employees, we can estimate how much a discovered bug costs in each phase.
The estimation is based on the information provided in the section 3.1.1, which
describes the process of fixing the bugs discovered during each testing phase.

A bug discovered during the Automated tests in the CI/CD pipeline during
the feature development typically has no additional cost. Since the developers
receive immediate feedback, they can fix it inside the scope of the current sprint
and the time assigned to the implementation of this feature.

Bugs - Integration testing
The situation is different for the bugs discovered during the integration testing.
When bugs are found during integration testing on physical hardware, the
developer responsible for fixing them needs to release the feature and move
on to other tasks planned for the current sprint. This means that fixing the
bugs is an additional cost in terms of time and may delay other planned tasks.
Besides that, any time there is a bug discovered during the integration testing,
at least all test suits connected to the bug need to be tested again. The table 3.1
clearly states that the time required for integration testing is from 1 to 2 weeks.
However, the actual time that the testers spend on the testing is only a part of
the waiting period. According to the project manager and the team leader of
the integration testers in the company, the actual time required for the testing
is 3-5 working days, which is around 24-40 hours. The rest of the time is just
waiting for the hardware or testers who are busy performing the tests for other
projects. Therefore, one round of integration testing performed by 2 testers
costs from 2400 AC to 4000 AC worth of the employee’s time.

65

3. Analysis and Design

However, once a bug is discovered during the integration testing, the testing
process is interrupted and the testers move on to other tasks. From the data
provided by the Company, the majority of the bugs were discovered during the
first two days of the testing. The testing is purposefully designed this way by
prioritizing the test suits with the highest probability of finding a bug. That
being said, the cost of the bug discovered during the integration testing on this
project is estimated to be from 800 AC to 1600 AC. If we consider only the cost
of the interrupted testing process, we can calculate the potential ROI for the
integration testing as shown in table 3.4.3. As we can see, the number of bugs
discovered during the integration testing phase to cover the initial investment
depends on when the bug is discovered during the process. However, if we
consider the average cost of the bug during this phase, it is sufficient to discover
only 4 bugs to cover the initial investment for the project.

bugs Min(€) % initial investment(€)
1 800 13% - 20%
2 1,600 26% - 40%
3 2,400 40% - 60%
4 3,200 53% - 80%
5 4,000 66% - 100%

bugs Average(€) % initial investment(€)
1 1,200 20 - 30 %
2 2,400 40% - 60%
3 3,600 60% - 90%
4 4,800 80%-100% +
5 6,000 100% +

bugs Max(€) % initial investment(€)
1 4,000 66% - 100%
2 8,000 100% +
3 12,000 100% +
4 16,000 100% +
5 20,000 100% +

Table 3.2: Potential ROI for integration testing - discovered bugs

The project manager must also account for the time developers will need
to spend analyzing and fixing a discovered bug. This often causes a significant
slowdown in the development process and can result in additional testing time.
Experienced project managers have found that replicating and analyzing the
root cause of a bug typically requires at least 4 hours of a skilled developer’s
time. The time required for actually fixing the bug varies depending on the
specific issue but is generally consistent regardless of the phase in which it was
discovered.

In summary, it takes 1-5 bugs discovered before the initiation of the inte-
gration testing by the VT framework to cover the initial investment. Besides
the resources saved from the actual testing, there is additional time saved on
the developer’s side and the project manager’s side. In addition, the develop-
ment process is interrupted less frequently which ensures a more stable and
predictable timeline for the project, which is one of the most important factors

66

3.4. VT Framework’s Impact from a Project Management Perspective

for the stakeholders.

Bugs - System testing
The system testing is initiated after the integration testing is successfully fin-
ished. To better understand the expenses related to this testing phase, we need
to consider following rules previously described in the section 3.1.1:

• Performed by the testers who are not involved in the integration testing

• Only physical hardware is used for this testing phase

• It is performed by a completely independent test framework that is pur-
posefully unknown to the developers and the integration testers

• The project manager and the development team from the company have
very limited control over the waiting periods and the time required for
the testing

• In case of a discovered bug, the testing process needs to be repeated from
the beginning including the integration testing

• The estimated time required for the system testing is 3-5 working days
for 2-3 FTE(Full-time employee) testers

Considering the information above, the cost of one system testing round
is estimated to be from 3,600 AC to 6,000 AC, depending on the size and
complexity of the project. For our hypothetical project, we are going to assume
the cost of 2 FTE for 3-5 working days, which costs a fixed price of 50 AC per
hour. In addition to that, we need to consider the time required to hand over
the project to the independent system testers and back to the developers. This
price is estimated by the project manager to a fixed price of 800 AC.

Similarly to integration testing, system testing is purposefully designed to
prioritize the test suits with the highest probability of finding a bug. For the
purpose of this analysis, we will assume that the majority of the bugs are
discovered during the first half of the testing as it has been observed in the
past. The time for discovering a bug is estimated during the first twenty hours
of testing, which costs up to 1,000 AC.

The details of the potential ROI for the hypothetical project are shown in
the table 3.4.3. As we can see, even if we consider only the fixed price for
handing over the project to the system testers, it is sufficient to discover only
five bugs to cover the initial investment for the project. Needless to say, this
situation is highly unlikely and it would typically take at least some time to
discover the first bug.

It is important to note that prior to the initiation of the system testing after
the bug fixing, the whole integration testing process needs to be repeated to
make sure the changes did not influence other parts of the module. Therefore,
the cost of the bug discovered during this testing phase is significantly higher
as it also includes the cost of another round of integration testing(2400 AC to
4000 AC).

67

3. Analysis and Design

bugs Min(€) % of the initial investment (€)
1 800 up to 20%
2 1600 up to 40%
3 2400 up to 60%
4 3200 up to 80%
5 4,000 66% - 100% +

bugs Average(€) % of the initial investment (€)
1 1,800 up to 45%
2 3,600 up to 90%
3 7,200 100%+
4 8,600 100%+
5 10,400 100%+

bugs Max(€) % of the initial investment (€)
1 6,800 100%+
2 13,600 100% +
3 20,400 100% +
4 27,200 100% +
5 34,000 100% +

Table 3.3: Potential ROI for system testing - discovered bugs

In summary, the potential ROI for the system testing is significantly higher
than for the integration testing. Moreover, the VT framework has great po-
tential to allow developers to verify the functionality of the module in various
edge cases and scenarios that could be otherwise discovered at the end of the
system testing, which costs the customer the most money and resources. In
addition to that, the bugs discovered during the system, testing could easily
result in a significant delay in the project’s timeline or even a delay of other
projects that the developers are assigned to.

Conclusion
The outcome of this analysis for the management and the stakeholders is clear.
The VT framework has great potential to ensure a more stable and predictable
timeline for the majority of the projects, and prevent unexpected expenses.
Moreover, the initial investment for the customer is relatively low, and among
other advantages, it takes up to 5 discovered bugs during the integration testing
to cover them.

The potential return on investment for the system testing is even higher.
Any bugs discovered during this late testing stage save the customer a sig-
nificant amount of time and resources. It is essential to stress that the VT
framework is designed to run particular test cases that would be otherwise dis-
covered at the end of the system testing, where the potential expenses are the
highest.

Besides the easily calculatable expenses, the VT framework prevents signifi-
cant delays in the project’s timeline that often cause the product to be released
later than planned, which can lead to a loss of the customer’s trust and a loss
of potential revenue. However, both of these aspects are beyond the scope of

68

3.4. VT Framework’s Impact from a Project Management Perspective

this analysis as it is difficult to estimate the potential and beyond the scope of
the project manager’s decision-making process.

This analysis is based on the information provided by the Company’s man-
agement, project managers, developers, and testers. The stakeholders verified
the numbers during the budget approval process during the project’s initia-
tion phase, and they were impressed by the potential financial benefits that
a relatively small initial investment can achieve, which is even lower from their
perspective as the adaptation of the framework could be started before the
firmware development is initiated.

In conclusion, the initial investment for the VT framework is around 4,000 AC
to 6,000 AC per project. For highly complex projects, the investment could be
higher, but not significantly since the VT framework should not implement any
additional logic and the it is designed to be easily adaptable to the project’s
requirements. The potential return on the investment is higher for complex
projects with a higher probability of untested edge cases and scenarios. The
project managers in the Company are advised to consider the adoption of the
VT framework using a decision-making process similar to the one described in
this analysis of the hypothetical project, which is based on the average and most
common type of project in the Company. As the result of this analysis suggests,
the VT framework seems to be a good investment for similar project types, and
there is a high probability that the money invested in the VT framework will
save significantly more on the testing process expenses.

3.4.4 Analysis summary
The analysis presented in this section provided a comprehensive overview of
the potential impact of the VT framework on the project delivery process
from a project management perspective. The analysis was divided into two
three categories that the project managers consider: the impact on the project
planning process, the impact on the Company’s unified testing strategy, and
the financial impact.

The analysis performed in subsection 3.4.1 showed that the VT framework
is a great tool for developers and testers that also has a significant impact on
the project planning process. We have identified that the most common source
of unpredictability in the project planning process is the testing process which
often requires additional time and resources after discovering a bug.

The VT framework addresses this issue by providing the developers with
a way to create and run test cases from the integration testing test suite, and
easily create their own test cases for various edge cases. Besides that, it adds
a frequent automated feedback loop as a part of the CI/CD pipeline, as shown
in figure 3.8. That improves the quality of the code and lowers the number of
bugs discovered on the physical hardware, which lowers the risk of the necessity
of additional testing rounds.

Another aspect that the management in the Company considers is how the
new solution aligns with the unified testing strategy in the Company. The
analysis shows that if the VT framework fulfills all of the requirements, it can
be a valuable tool for testers and developers at all locations of the Company,
despite the differences in their own testing frameworks. That brings various
benefits such as reusability of test cases, easier bug replication, and unification
of the way the tests are written by the developers and testers. Even though

69

3. Analysis and Design

this is not a direct financial benefit, it can significantly speed up the process of
handing over the project from one team to another, which for many projects
in the Company turned out to be a significant bottleneck that consumed a lot
of time and resources.

The last aspect that was analyzed was the financial impact of the VT frame-
work. The aim of the analysis was to determine how quickly the initial invest-
ment in the VT framework would pay off. That was done by identifying the
estimated cost of bugs discovered during each phase of the testing process. The
outcome of the analysis showed that the probability of positive ROI is high for
the vast majority of the projects in the Company. However, the adoption of
the VT framework still requires careful consideration by a project manager.

Figure 3.8: Automated testing in CI/CD pipeline - Feedback loop

The overall conclusion is that the VT framework can significantly improve
the project planning process, reduce the risk of project delays, and have a pos-
itive financial impact on the project.

70

Chapter 4
Implementation

The aim of this chapter is to describe the implementation details of the VT
framework based on the analysis and design performed in the previous chapter.
The chapter is divided into several sections, each of which describes a specific
component of the VT framework. As we are already familiar with the archi-
tecture of the framework, the focus of this chapter is on the implementation
itself and the challenges that were faced during the implementation.

Before we dive into the details of the implementation, there are a few things
that need to be mentioned. Since the Company is a large organization, it has its
own standards and guidelines that need to be followed. One of the important
rules that influenced the implementation of this project is to use Microsoft
Visual Studio as the main development environment. For this reason, both the
server application and the virtual testing library are implemented as a Visual
Studio project. This decision could not be avoided and it was necessary to
follow.

Another important thing to mention is the choice of the programming lan-
guage. As all modules are being developed in C and C++, this programming
language is always prioritized over others. One of the main reasons is it allows
precise control over the memory and achieves great performance.

However, this does not apply to the testing clients where there are two
main programming languages that testers use - Python and C#. Both of
these languages offer great support for testing and are easy to use even for less
experienced programmers. The performance limitations are not problematic
here as the testing clients do not require any heavy computation.

4.1 Virtual testing library

The VT library consists of three main parts: the emulator, the DLL interface
and the technology conde. Since the technology code is specific for each module,
and cannot be published, a sample module was implemented to demonstrate
the usage of the VT library. However, it is important to note that this code is
not the actual technology code, but a simplified version of it.

For the reasons mentioned above, the VT library is implemented as a Visual
Studio solution in C++. The project is divided into several directories as shown
in the figure 4.1. The structure of the library is designed to be easily readable

71

4. Implementation

emulator.................................Emulator part of the project
emul_app..Server application
emul_common......................Shared files between components
emul_dll............................The core files of the emulation
module_client................Testing client for the sample module

module_core..........................Replacement of the HW control
src.............................Technology code of the sample module

Figure 4.1: Directory structure - VT library

for developers and testers who decide to adapt the VT framework for their
projects.

It is important to note that each directory can be assigned to a specific com-
ponent of the VT library architecture. The data_obj directory along with any
directory that includes the prefix “emul” is assigned to the Emulator compo-
nent. The directories with the prefix “module” are assigned to the technology
code or BaSy component, and the directories with the prefix “llc” are part of
the DLL interface.

This clear structure corresponds to the requirements such as easy usage
and maintainability of the framework. Another requirement that needs to be
fulfilled is detailed logging of the emulator and the communication. For this
reason, there is a separate directory called “log” that includes the logging func-
tionality that is used throughout the whole library and the server application.

4.1.1 Emulator
The Emulator is the key component of the VT library. The most important
files are located in the emul_core directory. The emulator is implemented as
a set of functions that are used to call the appropriate technology code at the
right time. In addition to that, it uses the appropriate data objects to store
the data that is being exchanged between the technology code and the testing
client.

Time emulation & Event handling
The I/O modules often call the technology functions at a specific time point,
which makes it necessary to find a way to emulate the time in the VT library
as well. However, since the VT framework does not strive to be a real-time
testing system that would verify the actual behavior of the physical hardware,
the time emulation could be simplified.

To ensure the right events are called at the appropriate time points, the
emulator uses a mechanism called the “event calendar”. The event calendar is
a simple dynamic structure sorted by the time of the event. That allows all
the components of the module to register their own events for the future. The
emulator then iterates through the event calendar and calls the functions that
correspond to the scheduled event.

The most common events are periodic events that are called at a specific
time interval. That is why the event calendar allows each event to schedule its
next call based on the current time point and the reload period.

72

4.1. Virtual testing library

To allow the event calendar to work properly, the events are represented by
a class shown in figure 4.2. The Vector_Node class serves as a base class for
all events that can be scheduled in the event calendar. If the event requires
any additional variables or functions, the class can be inherited and extended,
which is a common practice in the VT library.

class Vector_Node
{
private:

uint64_t key;
int TypeOfEvent;
int NodeID;

public:
void setKey(uint64_t timeStamp) {this->key = timeStamp;}
void setTypeOfEvent(int eventType) { this->TypeOfEvent = eventType;

}
void setNodeID(int ID) { this->NodeID = ID;}
const uint64_t getKey(){ return this->key;}
const int getTypeOfEvent() { return TypeOfEvent;}
const int getNodeID() { return NodeID; }
void setVariables(uint64_t key, int TypeOfEvent, int nodeID);

};

Figure 4.2: Representation of an event in the event calendar

Data objects
Preparing required data objects is a crucial part of the adoption of the VT
framework for a specific project. It is important to understand that the term
“data object” is not used exactly as it is in the object-oriented programming
context. The data object is any entity to which the VT library can assign
a unique handle.

However, some data objects also require traditional object-oriented objects
to store the data that would be typically stored somewhere in the hardware
memory. An example of such a data object is the ds128 parametrization struc-
ture that holds the currently applied parametrization of the I/O module.

The handles are communicated between the testing client and the VT li-
brary during the initialization of the communication. Without the handles, the
testing client cannot access the data objects and therefore cannot control the
module.

Emulation
The execution of the emulation is always triggered by the testing client. Once
the client sends the command to start the emulation, the emulator starts to
iterate through the event calendar and call the corresponding technology func-
tions. The highest priority always has the event that is scheduled for the closest
time point. Once the event is processed and executed, the event is removed
from the event calendar if it is not a periodic event, which only reschedules the
next call.

The emulation always runs for a given number of milliseconds of the artificial
time, which is necessary to allow the testing client to check the internal state
of the module by reading the corresponding data objects. In other words, the

73

4. Implementation

internal state of the module is updated only when the emulation is specifically
requested by the tester.

The figure 4.1.1 shows the implementation of the execute function that is
called through the DLL interface. The argument of the function is the number
of milliseconds that the emulation should run. The goal of this function is to
process all events that are scheduled between the current time point and the
given time point. The function works as follows:

1. The function calculates the end of the iteration based on the current time
point and the given time point.

2. The function processes all events that are scheduled before the end of the
iteration.

3. The function resets the current time point and the breakpoint to zero to
prepare for the next iteration.

4. The function returns the remaining time that was not processed, due to
the lack of scheduled events in the time frame.

To summarize how the emulation works, the testing client sends the com-
mand to start the emulation for a given time period. It is crucial to understand
that the emulation does not run in real-time, but in an artificial time that is
controlled by the event calendar. The time with no scheduled events is skipped
to the first event that is scheduled in the future. The testing client can then
read the data objects to check the internal state of the module before and after
the emulation. The tester needs to be aware that without the execution com-
mand, the technology code is not called and the internal state of the module
is not updated despite setting the parametrization or any other data object.

uint64_t emul_execute_emulation(uint64_t ms) {
uint64_t ret = ms;
BreakPoint += ms;
new_emulation_process = true;
EndOfIteration = CurrentTime + BreakPoint;
Process_events();

for (int i = 0; i < Event_index; i++) {
if (Events_Array[i]->getKey() >= EndOfIteration) {

ret = Events_Array[i]->getKey() - EndOfIteration;
Events_Array[i]->setKey(Events_Array[i]->getKey() - (

EndOfIteration));
}

}

CurrentTime = 0;
BreakPoint = 0;
module_report();
return ret;

}

Figure 4.3: Implementation of the execute function

74

4.1. Virtual testing library

4.1.2 DLL interface
The DLL interface defines how the emulator functions are called from the
testing client. This component is module-specific and must be adjusted for
each module that is being tested. However, the set of functions that the DLL
interface should provide stays the same with very few exceptions.

The interface includes the following functions:

• start_and_initialize: Responsible for processing the initialization
command.

• query_do_handle: This function is used to get a handle on any data
object.

• write_data_record: This function is used to write a data record that
parametrizes the module.

• read_data_record: Returns the data record that is currently applied
to the module.

• write_do_data: Write the data to the data object based on the given
handle.

• read_do_data: Read the data from the data object based on the given
handle.

• execute_emulation_ns: Execute the emulation for a given number of
nanoseconds.

• insert_submodule: The majority of modules are multiple variants
called submodules. The submodules usually differ in their input/output
data length or the size of the data records. To allow the technology code
to verify the correct size of the data, the submodule must be inserted.

These eight functions are the core of the DLL interface that allows to fully
control the module and verify its behavior from the testing client.

4.1.3 LLC communication layer
All communication between the testing client and the VT library is done
through the Low-Level Commands. The LLC layer is responsible for following
the pre-defined protocol shown in figure 3.6. The implementation of the LLC
layer consists of the following functions:

• dll_llc_payload_start: Initiates parsing/composing of parameters.

• dll_llc_payload_rx_finish: Completes processing of the request.

• dll_llc_payload_tx_finish: Completes composing of the answer.

• dll_llc_payload_error: Concludes interface function with an error,
taking an error code as input.

• dll_llc_payload_get_uint32: Retrieves a UINT32 from the input
frame.

75

4. Implementation

• dll_llc_payload_put_uint32: Inserts a UINT32 into the output
frame.

• dll_llc_payload_get_uint16: Retrieves a UINT16 from the input
frame.

• dll_llc_payload_put_uint16: Inserts a UINT16 into the output
frame.

• dll_llc_payload_put_uint8: Inserts a UINT8 into the output frame.

• dll_llc_payload_get_name: Retrieves an IDENTIFIER from the
input frame, with a maximum length specified.

• dll_llc_payload_get_data: Retrieves actual parameters, with the
length specified.

• dll_llc_payload_put_data: Inserts a data array into the output
frame, with the length specified.

These functions are used to parse, compose, and send the LLC commands
between the testing client and the VT library. The data are being exchanged
in the form of frames, where each frame has a header that specifies necessary
information about the command and the payload that contains the actual data.

4.1.4 Sample module
The sample module is a simplified version of the technology code that is used
to demonstrate the usage of the VT library. The sample module does not
have any real functionality, however, it can be parametrized in many ways to
demonstrate the typical behavior and the usage of the VT library.
The module is represented by a class that implements the following functions:

• Constructor: Initializes module data with default values.

• report_module: Reports module data.

• module_init: Initializes the module.

• module_open: Opens the module.

• module_start: Starts the module.

• set_default_module_ID: Sets the default module ID.

• set_submodule_ID: Sets the submodule ID.

• configure_module: Configures the module with a new channel and
mode.

• perform_services: Modifies module’s variables according to its algo-
rithms.

• parametrize_module: Parametrizes the module based on provided
data.

76

4.1. Virtual testing library

• is_module_initialized: Checks if the module is initialized.

• is_module_opened: Checks if the module is opened.

• is_module_started: Checks if the module is started.

• get_module_ID: Retrieves the module ID.

• get_channel: Retrieves the channel value.

• get_mode: Retrieves the mode value.

• get_sub_mod_id: Retrieves the submodule ID.

• get_WB_Enabled: Retrieves the status of WB diagnostics for a spe-
cific channel.

• get_SC_Enabled: Retrieves the status of SC diagnostics for a specific
channel.

The internal state of the module is stored in the class variables that are
being updated through the technology functions. That allows the testing client
to read the internal state, verify its correctness, and check the behavior in
the same way as it would be done with the real technology code. The only
difference is that instead of complex algorithms, the sample module is set to
return a predefined value that is based on the information that the tester
provides through macros.

The sample module currently provides the following functionalities:

• Initialization: The module must be initialized before it can be used.
The initialization is successful or unsuccessful based on the macro that
is set by the tester.

• Parametrization: The module can be parametrized with a data record
that is provided by the testing client. However, the parametrization is
simplified to the more common use cases such as diagnostics settings.

• Configuration: The module can be configured with a new channel and
mode. The configuration can be even unsuccessful based on the macro
that is set by the tester.

• Diagnostics: The module allows to enabling diagnostics of WB (Wire
break) and SC (Short circuit) for a specific channel.

• Input/Output control: The module allows setting the input values as
well as reading the output values.

In addition to the technology functions, a functioning module does need
a layer that controls the module’s hardware. The hardware layer is mocked
by the files in the “module_core” directory. That corresponds to the typical
architecture of the I/O modules described in the previous chapter.

These functions do not control the real hardware, however, they simulate
the same behavior for the technology code that is being tested and is stored in
the “src” directory.

77

4. Implementation

In summary, the sample module is a simplified version of a real I/O module
that can be used to demonstrate the usage of the VT library and the whole VT
framework. The module is designed to be easily parametrized to allow us to
test different scenarios and verify the functionality of the already implemented
components.

4.2 Server application

The server application is a component of the VT framework responsible for the
communication between the testing client and the VT library. As we can see
in the figure 4.4, the server application handles the commands from the client
through the functions provided by the DLL interface.

Similarly to other components of the VT framework, the emul_app is im-
plemented as a Visual Studio project in C++. Since the Microsoft Windows
operating system is mandatory to use in the Company, there is currently no
requirement to support other operating systems.
The application works in the following steps:

1. The application is started and waits for the connection from the testing
client.

2. Once the client is connected, the application loads the DLL testing li-
brary.

3. The application processes the commands from the client and handles the
inter-process communication.

4. Once the client disconnects, the application unloads the DLL library and
waits for the next connection.

During the implementation, the most important issue that needed to be
resolved was identifying the most appropriate communication channel. There
were different options available, such as packets or pipelines. However, since
the solution is already reliant on the Windows operating system, selecting
a Windows pipeline was a viable choice. This option offers a highly efficient
communication method between processes, while also providing error-handling
capabilities. It is also important to mention the name of the pipeline. There-
fore, the clients need to be aware of the name that is supposed to be used.
In case the name of the pipeline needs to be changed on the server side, the
application offers a command line argument that sets the pipeline’s name to
any valid string.

Besides the command line argument mentioned above, the server applica-
tion offers the following list of other arguments that allow the user to configure
the server as required:

• location <path_to_dll_file>: Specifies the path to the DLL file.
Example: -L ..\example.dll.

• timeout <timeout>: Sets the IPC timeout in seconds after which the
client is disconnected. Example: -T 10 or -T 0 for infinity.

• infinite: Enables infinite run of the emulator.

78

4.3. Testing client

• pipe-name: Sets the name of the pipe. Example: -P my_pipe.

• log-level <lvl>: Sets the log level.

• colored: Enables colored terminal output.

The command line arguments above provide the tester with complete con-
trol over the server. As the application is straightforward to restart and quite
simple, there was no need to modify the server settings while running. It
is important to note that the log-level setting applies not only to the server
application but also to the VT library.

Figure 4.4: Communication layers

4.3 Testing client

As we know from the architecture of the VT framework, the testing client is
any application that implements the pre-defined interface for the VT library.
Similar to the sample module, this section describes a simple implementation of
the testing client. To conveniently show the functionality of the VT framework,
the following testing client is designed to test the sample module described in
the section 4.1.4

The client can be divided into three layers:

• emul_llc layer: This layer is responsible for communication with the
server using the Low-Level Commands.

• tech_control: A layer is responsible for the control of the technology
code such as parametrization, initialization and input/output control.

• Test cases: The client includes a set of test cases that uses the
tech_control layer to test the sample module.

It is worth mentioning that the emul_llc layer is a common part of all
testing clients implemented in Python. There is no need to adjust this layer
for each module that is being tested as the communication protocol does not
change and the layer is only responsible for data exchange not validating the
data.

On the other hand, the tech control layer is usually specific to the module
and requires adjustments at the start of the testing client implementation. Nev-
ertheless, most functions have common headers, and only the implementation

79

4. Implementation

of the functions needs to be customized. Therefore, this section emphasizes
the general functionality of these functions rather than their implementation
details. The most commonly recommended functions to be implemented in the
tech control layer are:

• query_do_handle: This allows the client to get a handle on the data
objects that are used to control the module.

• set_submodule: This function is used to set the submodule ID.

• set_channel: This function sets the module input value at the specific
channel.

• get_input_data: This function reads the input data from the module.

• get_channel_di: This function reads the DI (Digital Input) value from
the module.

• get_channel_qi: This function reads the QI (Quality Information)
value from the module.

• get_diagnostics: This function allows the client to read the diagnostics
status of the module.

The majority of test cases are implemented using the functions above, in
case the tester needs to test a specific functionality that is not covered by these
functions, the tech control layer can be easily extended with new functions.

Similar to the data objects in the VT library, it is a good practice to use
corresponding data objects in the testing client. These data objects are used
to store the data in a predefined format and prevent the tester from making
mistakes when setting the data.

A good example of such a data object is the parametrization structure that
is used to parametrize each channel of the module. The parametrization struc-
ture for I/O modules is usually quite complex and the majority of information
is stored in two to three bytes of data, which is not easily readable for the
tester.

The last layer of the testing client is the set of test cases. As we know from
the previous chapters, the test cases should not differ from the test cases that
are used in the real testing environment, which is why the test cases need to
use the tech control layer so all of the required changes can be done in the
implementation of the tech control layer and not the test cases themselves.
All test cases should follow the following steps:

1. Initiate module start and initialization: During these steps, the
client should check the connection to the server application and request
the required handles on the data objects. Then send a command to
initialize the module.

2. Parametrize the module through the parametrization structure.
Each test case should parametrize the module at the beginning. Without
a proper parametrization, the behavior of the module is undefined and
therefore it does not make sense to verify it. Besides that, the module can
be reparametrized during the run and even parametrized with multiple
parametrization structures.

80

4.4. Logger

3. Set input values & verify output values: The majority of test cases
for I/O modules are based on setting the input values and verifying the
output values which should be based on the input values. It is crucial to
execute the emulation after setting the input values to allow the technol-
ogy code to process the input values and set the output values.

4. Verify the diagnostics status: The diagnostics status is an important
part of the I/O modules. Even if the output values are correct, that
does not mean the module is working correctly. The technology code has
many mechanisms to detect these errors and the diagnostics status is the
way to verify them.

The usage of the testing client is shown in the chapter 5 where the client
is used to test the sample module. It is crucial to understand that this is only
one of the possible implementations of the testing client and the client can
be implemented in any the programming language that implements the DLL
interface.

4.4 Logger

Logging is a crucial requirement given by the developers and testers as it was
mentioned in the chapter 3.2.1. A good logging system is necessary to under-
stand the behavior of all of the components and to be able to debug the system
in case of any issues.

The potential issue with the logging system is choosing the right level of
logging and to provide the user with the possibility to change the level of
logging. Without this feature, the log files can grow to a size that is not
manageable and the important information can be lost in the noise.

For this reason, the logging system offers the following levels of logging:

• Debug: Provides detailed information for debugging purposes.

• Info: Provides general information about the application’s state.

• Warning: Indicates potential issues that may need attention.

• Error: Indicates critical errors that require immediate attention.

The only way to set the log level for the server application is by using the
command line argument. Once set, the log level is applied throughout the
entire application, including the VT library. The log level is assigned to each
log message as shown below this paragraph, and the message is only written
to the log if the log level of the message corresponds to the log level set by the
user. The only exception is the DEBUG log level, which serves as an extension
of the INFO log level and usually provides more detailed information about
the current state of the server application or the VT library.

Logger::log(LogType::Info, message);

Another challenge that needed to be faced during the implementation was
the common logging system for the server application and the VT library. Since
these two components are closely related, it would have been confusing to have

81

4. Implementation

two separate logs. However, the server application is a standalone application
that needs to be able to run without the VT library.

To tackle this issue, an independent message queue that runs in a separate
thread was created. The message queue stores the log messages sent from the
components of the VT library. The server application then reads the message
queue, and the log messages are displayed in the console.

To use the logger in the VT library component, the logger class needs to
be included in the component’s header file. Once included, an instance of the
message queue needs to be created, as shown in figure 4.5. It is crucial to use
the namespace Logger to avoid any conflicts with other libraries that may use
the same name for the logger class.

To sum it up, the logger fulfills the requirements of the developers and
testers and provides a detailed log of all the components of the VT framework.
The usage of the logger is straightforward and does not require any additional
knowledge, besides the log levels that are used to filter the log messages and
creating an instance of the message queue for your component.

namespace Logger {

extern MessageQueue msgQueue;

template <typename T>
requires emul_concepts::printable<T>
void log(LogType::type logLvl, T message) {

msgQueue.push(logLvl, message);
}

extern MessageQueue* getMsgQueue();
}

Figure 4.5: Example of the logger usage

82

Chapter 5
Demonstration of the VT

Framework usage

The chapter aims to demonstrate the functionality of the Virtual Testing
Framework which corresponds to point 4 of the objectives of this thesis. Since
it is not possible to publish an existing module, the demonstration will be
shown on a sample module described in section 4.1.4. The module has very
simple functionality which can be easily parametrized through the macros in
the header file. That is convenient for the demonstration purposes as we can
easily change the behavior of the module.

Besides showing the functionality of the VT framework, this chapter should
also serve as a simple user manual for the potential users of the VT Framework,
including the installation, prerequisites, test case preparation, and execution
of the test cases.

5.1 Prerequisites & Installation

All parts of the VT Framework are developed as a Visual Studio solution
utilizing the platform toolset of Visual Studio 2022 (v143). To ensure optimal
functionality, it is recommended to use the same version of this Microsoft IDE.
Once installed, no further installation is necessary, and the solution can be
compiled and executed with ease.

Keep in mind that the emul_dll project is set to start the server application
through a command line argument. Therefore it is necessary to compile and
build the emul_app project first. Without the emul_app exe file, the emul_dll
project will not be able to start the server application and the testing will fail.

The last step required to test the sample module is to run the testing client.
The testing client is implemented in Python, therefore it is necessary to have
Python installed on the system. Once the Python is installed, the testing client
can be run directly from the command line or in the Visual Studio IDE.

5.2 Test case preparation

One of the main features of the VT Framework is the ability to run the same
test cases on the physical hardware and the virtual environment. To achieve

83

5. Demonstration of the VT Framework usage

this goal, the test cases must use the functions from the tech_control layer
which can differ in the implementation based on the environment.

To create a new test case, the user must follow the steps below:

1. Create a new Python file in the testing client directory.

2. Import the necessary modules from the tech_control layer such as the
input/output codes, parametrization structures or and functions for con-
trolling the module.

3. Create an instance of the emulation library.

4. Use the created instance to call the functions from the tech_control layer.

The testing client is designed to handle the communication outside of the
scope of the test cases. Therefore the user does not need to worry about the
LLC protocol or inter-process communication between the client and the server
application.

Once the formal part of the test case is prepared, the user can implement the
test case logic. The tests for the I/O modules usually consist of the following
steps:

1. Module initialization and parametrization.

2. Assert the initial state of the module.

3. A loop of setting the input values and checking the validity of the internal
state of the module including its output values.

4. Report the results of the test case.

The testing client directory contains multiple examples of the test cases for
the sample module. Part of the test case named “test_square_signal.py” is
shown in figure 5.1 and will help us to demonstrate how the test case should
be implemented.

The test case is designed to test square signal generation on the sample
module. As you can see, the test case repeatedly sets the input value to low
and high and checks the output value and the quality information bit. Since
the sample module is not supposed to change the signal in any way, the output
value should be the same as the input value after the execution of the module.
If the assert statement fails, the test case will stop and the user will be informed
about the failure.

84

5.3. Module parametrization

Initialization and parametrization of the module

for i in range (0, 10):
Set the input value to low
el.set_channel(0, Input.SAMPLE_MODULE_LOW)

Execute emulation for 70 ms
el.wait_ms(70)

Check the output value and quality bit
assert el.get_channel_di(0) == 0
assert el.get_channel_qi(0) == 1

Set the input value to high
el.set_channel(0, Input.SAMPLE_MODULE_HIGH)
Execute emulation for 70 ms
el.wait_ms(70)

Check the output value and quality bit
assert el.get_channel_di(0) == 1
assert el.get_channel_qi(0) == 1

Figure 5.1: Example of the test case for the sample module

5.3 Module parametrization

Every test case must parametrize the module at the beginning of the test case.
The parameterization has a crucial impact on the behavior of the module and
it does not make sense to test its functionality without knowing what to expect
from the module.

The parameterization is done through the parametrization structure which
is defined in the technology control layer.

5.4 Diagnostics testing

Besides testing the input and output values of the module, the VT Framework
also allows the user to test the diagnostics information that the module pro-
vides. The diagnostics information is usually used to find out what went wrong
with the module in case the quality information bit is set to 0 for the specific
channel.

It is important to note that the diagnostics are not enabled by default.
The module must be properly parametrized to provide the diagnostics infor-
mation. In addition to that, there are multiple types of diagnostics such as:
WB (Wirebreak) diagnostics or SC (Short Circuit) diagnostics.

In the attachment of this thesis, you can find two test cases for the diag-
nostics testing. The first test case named “test_WB.py” is designed to test
the Wirebreak diagnostics as shown in figure 5.2. The point of the test case is
to test if the diagnostics information is available only if the diagnostics are en-
abled for the specific channel. As you can see, the diagnostics are enabled only
for the first channel and the test case tries to set the input value to the first

85

5. Demonstration of the VT Framework usage

and second channels. The desired behavior is that the diagnostics information
is available only for the first channel.

For a better understanding of this test case, the figure 5.3 hows the flow
of the test case. As we can see the test case starts with establishing the con-
nection with the server application. Then the module needs to be properly
parametrized to enable the diagnostics on the desired channels. After that,
we perform the test steps that verify the behavior of the module by checking
the output value, quality information bit, and diagnostics information. If the
assert statement fails, the test case will stop and the user will be informed
about the failure.

The second test case named “test_SC.py” is designed to test the Short
Circuit diagnostics. The test case is almost identical to the previous one and
any other test case that verifies the behavior of the diagnostics. Typically, the
only difference is in the type of the diagnostic.

In summary, to show the functionality of the VT Framework for the di-
agnostics testing, two test cases were implemented for the sample module.
The test cases can be found in the attachment of this thesis in the “sam-
ple_module_client” directory and can be run directly from the command line
or in the Visual Studio IDE as described in the user manual in Apendix B.

Enable the WB diagnostics for the first channel
ParStructure.ch[0].diag_wb = True
ParStructure.ch[1].diag_wb = False

el.power_on()

Parametrization
el.set_submodule(ModuleID.SAMPLE_MODULE_V2, SubmoduleID.

DEFAULT_SUBMODULE)
el.write_data_rec(128, bytearray(ParStructure))
ret, _ , data_record = el.read_data_rec(128, len(bytearray(

ParStructure)))
assert data_record == bytearray(ParStructure)

for i in range (0, 10):
Set WB for the first channel
el.set_channel(0, Input.SAMPLE_MODULE_WB)
el.wait_ms(100)
assert el.get_channel_di(1) == 0
assert el.get_channel_qi(1) == 0
assert el.get_diagnostics(1) == DiagOutput.DIAG_WB

el.set_channel(1, Input.SAMPLE_MODULE_WB)
el.wait_ms(100)
assert el.get_channel_di(1) == 0
assert el.get_channel_qi(1) == 0
assert el.get_diagnostics(1) == DiagOutput.DIAG_NO_ERROR

Figure 5.2: Simplified example of the test case for the sample module

86

5.4. Diagnostics testing

Figure 5.3: The flow of the Test_WB Test case

87

5. Demonstration of the VT Framework usage

5.5 Logging & Reporting

The VT Framework has a crucial requirement of providing the user with a com-
prehensive logging system. This will help the user to have a clear understanding
of the internal state of the module at any given time and to easily find out what
went wrong in case of a failure. Additionally, the framework should also gen-
erate a report that summarizes the results of the test cases to allow the testers
to easily recognize if a bug was identified or not.

This section will demonstrate the logging and reporting functionality of the
VT Framework of the VT library, the server application, and the testing client.
However, since the testing client should be easily replaceable by the user’s own
testing client, the demonstration will be focused on the components of the VT
library and the server application.

In the previous chapters, we have already discussed the complex logging
system that is shared between the VT library and the server application. This
logging system allows the user to set the logging level to the following values:
DEBUG, INFO, WARNING, ERROR. The logging level can be set through
a command line argument of the server application as shown in figure 5.4.

-L ..\..\emul_dll\Debug\emul_dll.dll -I --log-level INFO

Figure 5.4: Command line argument for setting the logging level

The logging level of each individual message is set by the developer of the
technology control layer. It is a good practice to use the ERROR level only for
messages that indicate a severe problem during testing. The example of the
usage of the logging system is shown in the figure 5.5.

// get name
if (!dll_llc_payload_get_name(&data_obj_name, sizeof(rx_frame->

query_do.do_name))) {
Logger::log(LogType::Error, std::format("{} : Get name- ERR

", __func__));
return;

};
// finish the request
if (!dll_llc_payload_rx_finish()) {

Logger::log(LogType::Error, std::format("{} : Finish
payload - ERR", __func__));

return;
};

Figure 5.5: Logging macro for the sample module

As we have introduced the reader to how to use the logging system in the
VT library and the server application, we can now show the output of the
logging. The output is displayed in the console window and can be easily
redirected to a file. As the figure 5.6 shows, the has a specific format that
includes the timestamp, the logging level, and the message itself. The example
shows a logging output of the “write_data_record” function that parametrizes
the module. As you can see, the INFO level is used for general information

88

5.5. Logging & Reporting

about the function, while the DEBUG level is used to inform the user about the
details of the data record and other values that are important for this particular
function. Keep in mind that none of these messages would be displayed if the
logging level was set to ERROR or WARNING.

[2024-03-28 22:41:38 - INFO] EMULDLL_iface_write_data_record
[2024-03-28 22:41:38 - DEBUG] EMULDLL_iface_write_data_record: record

number: 128, record len 50
[2024-03-28 22:41:38 - DEBUG] EMULDLL_iface_write_data_record: Check

para ds - success
[2024-03-28 22:41:38 - DEBUG] Reading of rx_frame - done; Record

number: 128
[2024-03-28 22:41:38 - DEBUG] Curr data record len: 0; Data object

size : 50

Figure 5.6: Logging output of the VT library and the server application

Besides this logging, the VT library also provides various logging macros
which are parametrized by static variables in the header file. These macros
are convenient if the user wants just quickly log some information about the
module without the need to use the complex logging system. An example of
the logging macro for the sample module is shown in figure 5.7. The macro is
defined in the header file of the sample module and can be used in the source
file to log the information about the inner state of the module.

#define LOG_SAMPLE_MODULE(flag,...) \
do { \

if (flag) { \
printf("MODULE --> "); \
printf(__VA_ARGS__); \

}; \
} while(0)

Figure 5.7: Logging macro for the sample module

The output of this particular logging macro would be also displayed in the
console window and looked as shown in the figure 5.8.

MODULE --> ---------------------
MODULE --> Initialized: true
MODULE --> Opened: true
MODULE --> Started: true
MODULE --> Parametrized: true
MODULE --> Module ID: 1
MODULE --> Submodule ID: 264
MODULE --> Channel: 0
MODULE --> Mode: 1
MODULE --> Services Performed: 12160

Figure 5.8: Output of the logging macro for the sample module

In summary, the VT Library offers a complex logging system that is ca-
pable of gathering information about the current state from all the individual

89

5. Demonstration of the VT Framework usage

components of the VT Library, including the server application. The actual
reporting of the test results is done by the testing client because the VT Li-
brary is not aware of the test cases that are being executed, nor the expected
outputs.

90

Chapter 6
Evaluation of the Virtual Testing

Framework

The VT framework project has been implemented in multiple projects at the
Company. Therefore, it was possible to collect valuable feedback and evalu-
ate the impact on the projects and the user experience. This chapter aims to
summarize the data collected from the users of the VT framework and eval-
uate whether the project goals and requirements were fulfilled or not. Once
the solution is evaluated, the focus of this chapter will shift to the possible im-
provements that could be implemented to improve the framework’s usability.

6.1 Requirements fulfillment

This section aims to evaluate the provided feedback and determine if the re-
quirements given in the section 3.2.4 were fulfilled. The requirements were
divided into three categories: usability, quality of testing, and resource man-
agement.

Usability
The usability category primarily focuses on the VT framework adoption on
new projects. Therefore, the following requirements are included:

• Easily applicable: How hard was it to adapt the VT framework for
your project?

• Compatibility with solutions across all Company locations: Is
the VT framework compatible with various testing clients?

The most significant requirement from the usability point of view is the
complexity of VT framework adoption for new projects. According to the
analysis performed in section 3.4.3, it takes two to three weeks of work of one
experienced developer to adapt the VT framework. The provided feedback
suggests that both teams were able to succeed in this task in the given time
frame. The predictability of the initial cost is crucial for the project managers,
especially for shorter projects where the positive ROI can be questionable.
Therefore, fulfilling this requirement is considered one of the key indicators for
this project.

91

6. Evaluation of the Virtual Testing Framework

The compatibility requirements were tested on two testing clients as a proof-
of-concept at two most important locations of the Company as far as the I/O
module development is concerned. In both cases, the required modifications at
the testing client-side were implemented within three weeks. The interface was
described as clear and easily implemented by the experienced testers. Whether
the VT framework will be used at another location remains unknown.

In summary, the provided feedback suggests that the VT framework is easily
applicable to the new projects, including the required implementation of the
communication interface.

Quality of testing
One of the goals of this project is to improve the quality of testing by increasing
the frequency, improving the module control, and providing a type of gray box
testing for the testers and developers.

The most important requirement that increases the frequency of testing is
the integration into the CI/CD pipeline. Every time a developer adds code
to the project repository, regression testing should be performed to confirm
the newly added code does not negatively influence any already existing fea-
tures. Typically, each team services their own testing pipeline according to
their needs. However, the general approach is to divide the automated jobs
into steps to make the pipeline easily readable. Therefore, the usage of the VT
framework pipeline was divided into the following steps:

1. Build the VT library project, which includes the technology code of the
testing module

2. Publish the VT library as an artifact accessible for usage

3. Build the server application

4. Create a virtual environment for the virtual testing client

5. Install all required packages for the testing client

6. Run all test cases from the dedicated directory

7. Publish the results

The provided feedback suggests that the following steps were easy to follow
and the integration to the CI/CD pipeline took approximately an hour of work.
Another important aspect of this feature is the time required to run the tests.
To provide an accurate evaluation, the teams were asked to transfer all of the
existing test cases and evaluate how long it takes to get the results.

The results suggest that for both projects, around 80% of the test cases
from the existing test plan were transferable to the VT framework. The re-
maining 20% were not transferable due to their high dependency on the physical
hardware e.g., LED testing. However, this situation was fully anticipated and
80% of the test cases are considered a success. In both cases, it took less than
twenty minutes to run all of the transferable test cases from the test plan. That
means, once the developer pushes a new code to the repository, it takes less
than twenty minutes to get the results from Static code analysis, Unit tests,
and Virtual tests.

92

6.1. Requirements fulfillment

In addition to testing in the CD/CD pipeline, testing frequency can be in-
creased by allowing developers to run tests on their local machines. This feature
is closely related to the need for gray box testing and improving test coverage by
enhancing module control. The primary concern of project managers regard-
ing this approach is that implementing test cases may be too time-consuming
for developers since they have very little knowledge about creating test cases.
For this reason, the project managers were asked to make a comprehensive
evaluation using the VT framework on one of the projects.

Therefore a senior developer who did not participate in the VT framework
adaption for the project was asked to implement a test suite that consists
of twenty-one test cases. This time was then compared to the time that an
experienced tester needed to implement the same test suite. The result of
this experiment shows that the developer needed approximately 8-12 hours to
understand how the VT framework works and how the test cases should be
implemented. After this initial phase, the average time needed to implement
one test case was around 24 minutes. However, it is worth mentioning that with
each implemented test case, the time needed for the implementation decreased
as figure 6.1 shows. The average time required for the first 4 test cases was
over 38 minutes, while the average time for the last 7 test cases was around 20
minutes. This decrease in the required time was an important factor for the
project managers, as it suggests that the developers can quickly learn how to
implement test cases using the VT framework.

The experienced tester did not need the initial 8-12 hours to understand the
VT framework, as he was already familiar with it. The average time needed
to implement one test case was around 20 minutes. This result was surprising
for the project managers as it suggests that the developers can quickly learn to
implement test cases using the VT framework at a similar pace as the testers.

Figure 6.1: Time needed to implement one test case

The results of this experiment suggest that the VT framework is easy to use
and allows developers to create their own test cases relatively quickly. Besides
that, most of the test cases the developers create can be reused on the physical
hardware, which increases the test coverage without any additional effort from
the testers. In addition, the VT framework allows the implementation of test

93

6. Evaluation of the Virtual Testing Framework

cases with exact control over the module, which is impossible to achieve on the
physical hardware.

Gray box testing
Another requirement that is closely connected to the quality of testing and
improving the module control, in general, is to fill the gap between the black
box and white box testing that the Company is currently using. The goal is to
allow the user to execute the test cases with precise control over the module
and the environment, being able to stop the execution at any given time and
check the state of the module.

This requirement was successfully fulfilled by a combination of the imple-
mentation of the event calendar and step-by-step execution described in section
4.1.1, which allows the execution of the module for any given time beginning
with one nanosecond. Once the execution is over, the testing client can request
the data from the module and verify if it is correct.

In case the data stored in the data objects are not enough to verify the
internal state of the module. The behavior of the whole VT library and the
server application can be debugged by the Visual Studio debugger. That pro-
vides an option to set all types of breakpoints inside of the technology code and
observe the code execution line by line, which is nearly impossible to achieve
on the physical hardware. This feature turned out to be highly appreciated
by the developers during the development as they are all familiar with the
Visual Studio debugger and it was very difficult for them to verify the newly
implemented technology code on their local machines.

6.2 Resource Management

The goal of the VT framework is to lower the necessary resources for testing by
resolving some of the inefficiencies of the testing process. The expected financial
impact is described in section 3.4.3. The analysis describes the anticipated
initial cost and how many bugs need to be discovered by the VT framework
to achieve a positive financial impact. The analysis is focused on three main
topics: the initial investment, the impact of the VT framework on the speed
and predictability of the development and the impact of the discovered bugs.

The first topic is to evaluate the initial investment required to adapt the
VT framework for the project. This investment is anticipated to be the work
of one experienced developer for two to three weeks. The given time frame
was confirmed in both cases and it is reasonable to assume that the initial
investment is predictable and within the acceptable range.

Secondly, according to the developer’s feedback, the impact on the speed of
the development is positive. Especially at the beginning of the project when
it typically takes more than a month to obtain the required hardware and
start the development. In both cases, the waiting period for the hardware
exceeded four weeks. During this period the developers are assigned to the
project, unable to work on the actual development and therefore working on
the low-priority tasks.

Once the VT framework was adapted to the project, the developers could
immediately start with the development. That means the actual development
started two to three weeks earlier than it would without the Virtual testing.

94

6.3. Evaluation summary

Besides that, it allowed the integration testers to start working on the basic
test cases described in the test plan. That means once the required hardware
arrives, the basic features of the module are already implemented and can be
only verified on the physical hardware. The cost of two weeks of development
varies depending on the complexity of the project. However, even for small
projects with three developers, the cost exceeds 18,000 AC, which covers the
initial investment to the VT framework by itself.

In addition to the saved time and resources at the beginning of the project,
the developers highly appreciate the possibility of easily executing and debug-
ging the newly implemented code. Until now the developers were required to
use complicated racks with the physical hardware to help them find the root
cause of many complex bugs. According to the feedback, the VT framework
helps them to resolve the bugs faster and with less effort as they can easily
identify the problematic section and debug it line by line.

Lastly, the project managers need to consider the financial impact of the
bugs discovered early in the development by the virtual testing. There is no
direct way to measure the number of bugs that would otherwise be discovered
later in the testing process. However, according to the project managers of
the projects, no test cases that passed in the virtual testing environment failed
on the physical hardware. That suggests that the testing is quite reliable and
provides reliable feedback to the developers and testers which undoubtedly will
have a positive impact on the project budget.

In summary, after the evaluation performed by the project managers based
on the feedback from the developers and testers, the VT framework is consid-
ered a successful project from the quality of testing and resource management
point of view. The goal of lowering the resources required for testing was
achieved by providing a reliable testing environment accessible to all entities
working on the project and fully automated testing pipelines. In addition to
that, the VT framework allows to start with the module development earlier
in the project timeline which has a significant impact on the project budget.

6.3 Evaluation summary

The evaluation of the VT framework based on the feedback of two project teams
suggests that the project goals and requirements were successfully fulfilled. The
VT framework is easily applicable for new projects within the given time frame
and considering the feedback from the developers it is easy to use on their local
machines.

In terms of compatibility, the VT library provides a comprehensive in-
terface that allows to control of the tested module to any testing client that
implements the required interface functions. Thanks to this approach, the
framework can be used across all Company’s locations where the I/O modules
are being developed.

One of the crucial requirements was to improve the quality of testing in
terms of module control and frequency to lower the necessary resources for
testing by avoiding the restarting of the testing process on the physical hard-
ware. That was successfully achieved by the integration to the CI/CD pipeline,
precise module control, and Visual Studio debugger.

95

6. Evaluation of the Virtual Testing Framework

The CI/CD pipeline verifies the functionality of any newly implemented
code once it is added to the repository. The virtual testing was added to already
existing test steps such as Unit testing or Static Code Analysis. Thanks to the
automated testing in the testing pipeline the bugs are discovered before other
features are based on their behavior and the bug fixing becomes a complex
task.

The precise module control allows to verification of various edge cases that
are difficult to achieve on the physical hardware. The testing client can exe-
cute the technology code for any given time beginning from 1 nanosecond and
request the data from the module to verify if it is correct. In case the data
stored in the data objects is not enough for the user, there is a possibility to
debug the code line by line by using the Visual Studio debugger. Thanks to
these features, the VT framework provides a type of gray box testing that is
not possible to achieve on the physical hardware and was currently missing in
the Company’s testing strategy.

The improved quality of testing and the possibility to start with the devel-
opment earlier in the project timeline has a significant impact on the project’s
budget and lowers the necessary resources for testing, which was the main
goal of the project. Besides the positive impact on the project’s timeline, the
project managers in the Company appreciate the better predictability of the
development process. That allows them to plan the resources more efficiently
and avoid the situation when the developers are unable to work on the project
they are assigned to.

To sum it up, the VT framework fulfilled all the requirements and goals
set in section 3.2.4. The project is considered successful from all perspectives
and is likely to become part of the testing strategy in the Company. The
VT framework is a valuable tool for developers and testers that brings various
benefits described above. Besides that, the usage of virtual testing offers better
predictability to the module development which is highly appreciated by the
project managers as it allows them to plan their resources more efficiently.
In addition, the initial investment is relatively small and therefore even small
projects are likely to benefit from the adaptation of the virtual testing.

6.4 Suggestions for future improvements

Despite the success of the VT framework project, there is room for improve-
ment. This section aims to describe what steps would improve the usability
of the framework in the Company and improve its impact on the module de-
velopment. The suggestions are based on the evaluation of the VT framework
performed in the previous sections.

The first suggestion is to switch from the Visual Studio solutions to the
CMake build system. The Visual Studio solutions are not compatible with the
Linux operating system. That can be problematic in the future for various
reasons. Firstly, the developers often use docker containers to prepare the
environment for specific projects and test cases. Since the docker containers
are usually based on the Linux operating system, the VT framework cannot be
currently used for this purpose. Secondly, many developers in the Company
prefer to use the Linux operating system for development, which is allowed
if does not interfere with the project requirements. Therefore, it would be

96

6.4. Suggestions for future improvements

inconvenient for many developers if the only reason they need to switch to the
Windows operating system is the VT framework.

Another suggestion is to increase the modularization of the VT library. If
the VT library is divided into smaller independent components, it would be
easier to maintain and extend the framework in the future. It would also allow
to more easily adapt the VT framework for new projects as the developers
could choose only the components they need for their specific project. Besides
that, the modularization would allow sharing of the specific components across
multiple projects that use the VT framework and therefore further reduce the
initial investment required for the VT framework adaptation.

Lastly, the server application currently relies on Windows inter-process com-
munication. The Windows pipelines are very limiting in terms of the number
of processes that can be created and the number of messages that can be
sent. Besides that, the Windows pipelines are not compatible with the Linux
operating system, which could be problematic in the future. Therefore, it is
suggested to switch to platform-independent socket communication that would
allow communication between the server application and the testing client on
any operating system.

In summary, after the evaluation of the VT framework, the following im-
provements should be considered to improve the usability of the VT framework
in the Company:

• Switch from Visual Studio solutions to the CMake build system

• Increase the modularization of the VT library

• Switch to platform-independent socket communication

These improvements will enhance the accessibility of the VT framework
for developers and testers across all Company locations. They will also re-
duce the initial investment required for the adaptation of the VT framework.
Moreover, by modularizing the framework, specific components can be shared
across multiple projects, reducing the risk of bugs in the implementation of
the VT framework and reusing already tested components. It is expected that
the reusability of the components could significantly improve the user experi-
ence and convince the project managers at other locations to adapt the VT
framework for their projects.

97

Conclusion

The main goal of this thesis was to propose and develop a Virtual Testing
Framework that would improve the efficiency of the current testing process in
the Company and therefore reduce the time and resources required for testing.
To achieve this goal, numerous steps needed to be taken.

Firstly, get familiar with the current process of testing throughout the de-
velopment process in the Company and understand the testing requirements
and the overall workflow of the testing process in the Company. This process
is described in section 2.4 focusing on the testing process in section 2.4.3.

Secondly, analyze the current testing and implementation process to identify
areas for improvement in resource management. The analysis is performed and
described in chapter 3, especially in section 3.1.

Thirdly, derive the requirements for the Virtual Testing Framework based
on the identified inefficiencies. The requirements are described in section 3.2.
Once the requirements were identified, the Virtual Testing Framework was
proposed, designed, and described in section 3.3.

Fourthly, implement the Virtual Testing Framework according to the pro-
posed architecture, design and requirements. The implementation is described
in chapter 4. The functionality of the Virtual Testing Framework is then
demonstrated in chapter 5.

Finally, evaluate the Virtual Testing Framework and its impact on the
project delivery process. The analysis of the impact is performed 3.4. The
follow-up evaluation is then described in chapter 6, which is based on the feed-
back from the developers, testers and project managers.

Despite the relatively complex requirements that were set for this project
due to the many different entities that are involved in the testing process,
the Virtual Testing Framework was successfully implemented. The provided
feedback suggests that the framework has a positive financial impact on the
projects and increases the predictability of the project timelines which is highly
appreciated by the project managers.

In conclusion, all objectives of this thesis have been achieved. The proposed
solution has met all the requirements and has been successfully integrated into
the development process of the Company. Despite the success of the project,
there is still room for improvement and further development such as ensuring
platform independence by switching to a Cmake build system and TPC/IP
socket communication.

99

Bibliography

1. MACHINEMETRICS. I/O modules: Enabling device connectivity and
control [online]. 2023. Available also from: https://www.machinemetrics.
com/connectivity/hardware/io-modules. [Cited 03-04-2024].

2. Siemens industry mall - I/O modules [online]. [N.d.]. Available also from:
https : / / mall . industry . siemens . com / mall / en / WW / Catalog /
Products/10046659. [Cited 03-04-2024].

3. WESTLAND, Jason. The Project Management Life Cycle A Complete
Step-By-Step Methodology for Initiating, Planning, Executing Closing a
Project Success. Kogan Page, 2007. isbn 9780749448080.

4. ASANA, Team. What is IT project management? [2023] • asana [online].
Asana, 2022. Available also from: https://asana.com/resources/it-
project-management.

5. COLE, Ben. What is IT project management?: Definition from TechTar-
get [online]. TechTarget, 2015. Available also from: https://www.techtarget.
com/searchcio/definition/IT-project-management. [Cited 2024-06-
01].

6. BRIDGES, Jennifer. What is a feasibility study? how to conduct one for
your project [online]. ProjectManager, 2023. Available also from: https://
www.projectmanager.com/training/how-to-conduct-a-feasibility-
study. [Cited 2024-06-01].

7. AKANKSHA VERMA Amita Khatana, Sarika Chaudhary. A Compara-
tive Study of Black Box Testing and White Box Testing. IJCSE, Indore,
INDIA, 2017. Available from doi: https://doi.org/10.26438/ijcse/
v5i12.301304.

8. PHANIVEDALA. Black Box Testing : Exploring types and benefits [on-
line]. 2023. Available also from: https : / / www . extnoc . com / learn /
security/black-box-testing. [Cited 2024-31-01].

9. SAMRA, Hardeep. Study on Non Functional Software Testing. INTER-
NATIONAL JOURNAL OF COMPUTERS AND TECHNOLOGY. 2005,
vol. 4, pp. 151–155. Available also from: https://www.researchgate.
net/publication/324985802_Study_on_Non_Functional_Software_
Testing. [Cited 2024-31-01].

101

https://www.machinemetrics.com/connectivity/hardware/io-modules
https://www.machinemetrics.com/connectivity/hardware/io-modules
https://mall.industry.siemens.com/mall/en/WW/Catalog/Products/10046659
https://mall.industry.siemens.com/mall/en/WW/Catalog/Products/10046659
https://asana.com/resources/it-project-management
https://asana.com/resources/it-project-management
https://www.techtarget.com/searchcio/definition/IT-project-management
https://www.techtarget.com/searchcio/definition/IT-project-management
https://www.projectmanager.com/training/how-to-conduct-a-feasibility-study
https://www.projectmanager.com/training/how-to-conduct-a-feasibility-study
https://www.projectmanager.com/training/how-to-conduct-a-feasibility-study
https://doi.org/https://doi.org/10.26438/ijcse/v5i12.301304
https://doi.org/https://doi.org/10.26438/ijcse/v5i12.301304
https://www.extnoc.com/learn/security/black-box-testing
https://www.extnoc.com/learn/security/black-box-testing
https://www.researchgate.net/publication/324985802_Study_on_Non_Functional_Software_Testing
https://www.researchgate.net/publication/324985802_Study_on_Non_Functional_Software_Testing
https://www.researchgate.net/publication/324985802_Study_on_Non_Functional_Software_Testing

Bibliography

10. TOMAR, Vinita; BANSAL, Mamta; SINGH, Pooja. 2022 4th Interna-
tional Conference on Artificial Intelligence and Speech Technology (AIST).
Regression Testing Approaches, Tools, and Applications in Various Envi-
ronments. 2022. Available from doi: 10.1109/AIST55798.2022.10064753.
[Cited 2024-31-01].

11. BRAR, Hanmeet Kaur; KAUR, Puneet Jai. 2015 2nd International Con-
ference on Computing for Sustainable Global Development (INDIACom).
Differentiating Integration Testing and unit testing [online]. 2015. Avail-
able also from: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=
&arnumber=7100358.

12. AWATI, Rahul. What is integration testing (IT)? [Online]. TechTarget,
2022. Available also from: %5Curl%7Bhttps://www.techtarget.com/
searchsoftwarequality/definition/integration-testing%7D. [Cited
2024-03-02].

13. KAUR, Paramjeet. A Research Paper on White Box Testing. Interna-
tional Journal [online]. 2018. Available also from: https://wwjmrd.com/
upload/a-research-paper-on-white-box-testing_1519477825.pdf.
[Cited 2024-03-02].

14. What is unit testing? [Online]. AWS, 2023. Available also from: https:
//aws.amazon.com/what-is/unit-testing/. [Cited 2024-05-02].

15. MIECZNIK, Rafal. The importance and benefits of unit testing [online].
CodiLime, 2023. Available also from: https://codilime.com/blog/
unit-testing/. [Cited 2024-05-02].

16. RANA, Kuldeep. Unit testing: Definition, advantages and limitations [on-
line]. 2023. Available also from: https : / / artoftesting . com / unit -
testing. [Cited 2024-05-02].

17. GILLIS, Alexander S. What is Static Analysis (Static Code Analysis)?
[Online]. TechTarget, 2020. Available also from: https://www.techtarget.
com/whatis/definition/static-analysis-static-code-analysis.
[Cited 24-02-2024].

18. KANSARA, Darshil. What is static code analysis and how it works? un-
derstanding sast in DevOps [online]. Radixweb, 2023. Available also from:
https://radixweb.com/blog/what-is-static-code-analysis. [Cited
24-02-2024].

19. KAUR, Paramjeet. A Research Paper on White Box Testing [online]. 2018.
Available also from: https://wwjmrd.com/upload/a-research-paper-
on-white-box-testing_1519477825.pdf. [Cited 25-02-2024].

20. MOHD EHMER, Farmeena Khan. A Comparative Study of White Box,
Black Box and Grey Box Testing Techniques [online]. 2012. Available from
doi: 10.14569/IJACSA.2012.030603. [Cited 2024-17-02].

21. GFG. Gray box testing - software testing [online]. GeeksforGeeks, 2023.
Available also from: https : / / www . geeksforgeeks . org / gray - box -
testing-software-testing/. [Cited 2024-17-02].

102

https://doi.org/10.1109/AIST55798.2022.10064753
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7100358
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7100358
%5Curl%7Bhttps://www.techtarget.com/searchsoftwarequality/definition/integration-testing%7D
%5Curl%7Bhttps://www.techtarget.com/searchsoftwarequality/definition/integration-testing%7D
https://wwjmrd.com/upload/a-research-paper-on-white-box-testing_1519477825.pdf
https://wwjmrd.com/upload/a-research-paper-on-white-box-testing_1519477825.pdf
https://aws.amazon.com/what-is/unit-testing/
https://aws.amazon.com/what-is/unit-testing/
https://codilime.com/blog/unit-testing/
https://codilime.com/blog/unit-testing/
https://artoftesting.com/unit-testing
https://artoftesting.com/unit-testing
https://www.techtarget.com/whatis/definition/static-analysis-static-code-analysis
https://www.techtarget.com/whatis/definition/static-analysis-static-code-analysis
https://radixweb.com/blog/what-is-static-code-analysis
https://wwjmrd.com/upload/a-research-paper-on-white-box-testing_1519477825.pdf
https://wwjmrd.com/upload/a-research-paper-on-white-box-testing_1519477825.pdf
https://doi.org/10.14569/IJACSA.2012.030603
https://www.geeksforgeeks.org/gray-box-testing-software-testing/
https://www.geeksforgeeks.org/gray-box-testing-software-testing/

Bibliography

22. SAXENA, Ruhi; SINGH, Monika. Gray Box Testing: Proactive Method-
ology for the Future Design of Test Cases to Reduce Overall System Cost
[online]. Krishi Sanskriti Publications, 2014. issn 2350-0077. Available also
from: http://www.krishisanskriti.org/jbaer.html. [Cited 2024-20-
02].

23. BRUSH, Kate; KIRSCH, Brian. What is virtualization? definition from
searchservervirtualization [online]. TechTarget, 2021. Available also from:
https : / / www . techtarget . com / searchitoperations / definition /
virtualization. [Cited 04-04-2024].

24. ANNAMALAI, Banushri; KARTHIKA, R.A. Implementation levels of
virtualization and security issues in cloud computing. International Jour-
nal of Engineering and Technology(UAE) [online]. 2018, vol. 7, pp. 678–
682. Available also from: https://www.researchgate.net/publication/
326683646_Implementation_levels_of_virtualization_and_security_
issues_in_cloud_computing. [Cited 04-04-2024].

25. VMWARE. What is application virtualization? | vmware glossary [online].
2023. Available also from: https://www.vmware.com/topics/glossary/
content/application-virtualization.html. [Cited 04-04-2024].

26. JAVAPOINT. Operating system based Virtualization [online]. 2022. Avail-
able also from: https://www.javatpoint.com/operating- system-
based-virtualization. [Cited 04-04-2024].

27. LENOVO. What is a Hardware Abstraction Layer and How Does it Work?
| Lenovo US [online]. 2023. Available also from: https://www.lenovo.
com/us/en/glossary/hardware-abstraction-layer/?orgRef=https%
253A%252F%252Fwww.google.com%252F. [Cited 04-04-2024].

28. ARM LTD. What is Instruction Set Architecture (ISA)? [Online]. [N.d.].
Available also from: https://www.arm.com/glossary/isa. [Cited 04-04-
2024].

103

http://www.krishisanskriti.org/jbaer.html
https://www.techtarget.com/searchitoperations/definition/virtualization
https://www.techtarget.com/searchitoperations/definition/virtualization
https://www.researchgate.net/publication/326683646_Implementation_levels_of_virtualization_and_security_issues_in_cloud_computing
https://www.researchgate.net/publication/326683646_Implementation_levels_of_virtualization_and_security_issues_in_cloud_computing
https://www.researchgate.net/publication/326683646_Implementation_levels_of_virtualization_and_security_issues_in_cloud_computing
https://www.vmware.com/topics/glossary/content/application-virtualization.html
https://www.vmware.com/topics/glossary/content/application-virtualization.html
https://www.javatpoint.com/operating-system-based-virtualization
https://www.javatpoint.com/operating-system-based-virtualization
https://www.lenovo.com/us/en/glossary/hardware-abstraction-layer/?orgRef=https%253A%252F%252Fwww.google.com%252F
https://www.lenovo.com/us/en/glossary/hardware-abstraction-layer/?orgRef=https%253A%252F%252Fwww.google.com%252F
https://www.lenovo.com/us/en/glossary/hardware-abstraction-layer/?orgRef=https%253A%252F%252Fwww.google.com%252F
https://www.arm.com/glossary/isa

Appendix A
Acronyms

API Application Programming Interface

DI Digital Input

DLL Dynamic-link library

FTE Full-time employee

HAL Hardware Abstraction Layer

HW Hardware

IPC Inter-Process Communication

ISA Instruction Set Architecture

OS Operating System

QI Quality Information

ROI Return on Investment

PLM Project Management Lifecycle

SC Short Circuit

SW Software

TC Test Case

TCP/IP Transmission Control Protocol/Internet Protocol

ToR Terms of Reference

UT Unit Testing

VT Virtual Testing

WB Wire Break

WBS Work Breakdown Structure

105

Appendix B
User Manual

B.1 Prerequisites

To run the Virtual Testing system for the sample module project included
in the attachment of this thesis you need to have the following prerequisites
installed on your computer: Visual Studio 2019 and Python 3.10 or newer. The
system was tested on Windows 10, but there are no apparent reasons why it
should not work on different Windows versions.

B.2 Project preparation

The structure of the project is shown in the attachment contents in Chapter C.
To run the Virtual Testing framework adjusted for the sample module project,
you need to follow these steps:

1. Open the emul_dll project in Visual Studio 2019 or newer and build it
(Debug, x86 platform)

2. Open the emul_app project in Visual Studio 2019 or newer and build it
(Debug, x86 platform)

3. Open the module_client project in Visual Studio 2019 - No need to build
it

B.3 Running the Virtual Testing system

Everything should be prepared for running the Virtual Testing at this point.
To run the test cases prepared for the sample module project, follow these two
simple steps:

1. Run the emul_dll project (The project is set to run the emul_app server
application with the required command line arguments)

2. Run any of the test cases included in the module_client project

107

B. User Manual

The comment line arguments for the emul_app server application can be
adjusted in the project properties by right-clicking on the project in the Solu-
tion Explorer and selecting Properties, then navigating to the Debug tab. The
default arguments are set as follows:

-L ..\..\emul_dll\Debug\emul_dll.dll -I --log-level INFO

The most common change would be to adjust the logging level.
In case of the need to run multiple test cases, there is a possibility to adjust

the test_all.py script, which is currently set to run all the test cases included
in the project.

108

Appendix C
Attachments Contents

readme.md...Contents description
emulator...Emulator project

emul_app..............................Server application for emulator
emul_client_py............................Shared files for VT clients
emul_common.............Files shared between VT library components

templates..Shared templates
util ...Shared tools

emul_dll.......................................Emulator DLL library
dll_llc_layer..LLC layer
emul_core Emulator core - Event calendar
emul_log...Shared logging
emul_SPI..SPI emulation
module_data_obj..............Data objects for the sample module
module_interfaces Module interface
module_client.........................Directory for testing clients

sample_module_client..Client adjusted for the sample module
module_core...........................Module layer controlling hardware
src.........................Source code of the module - Technology code
Thesis.pdf.....................................PDF version of the thesis

109

	Introduction
	Goal of the thesis
	State-of-the-Art
	I/O modules
	Functionality of I/O modules
	Types of I/O modules

	Project delivery process
	Project management life cycle
	Project Initiation
	Project Planning
	Project Execution
	Project monitoring and controlling
	Project Closure

	Fundamental testing techniques
	Black box testing
	Types of Black Box testing
	Functional Testing
	Non-Functional Testing
	Regression Testing
	Integration Testing

	Advantages and drawbacks of Black Box testing
	White box testing
	White Box Testing Techniques
	Statement Coverage technique
	Branch Coverage technique
	Path Coverage technique

	White Box Testing Strategies
	Unit Testing
	Static Code Analysis

	Advantages and Limitations of Whitebox testing
	Gray box testing

	I/O module development
	Project delivery
	Implementation process
	Testing of I/O modules

	Methods of virtualization
	Levels of Virtualization

	Convenient level of virtualization for this thesis

	Analysis and Design
	Analysis of the current testing process
	Testing time frames and delays
	Quality of testing
	Inefficiencies of the testing process

	Requirements engineering for the VT framework
	Developer's requirements
	Tester's requirements
	Management's requirements
	Outcome of the requirements engineering process

	Virtual testing framework
	Architecture
	Virtual testing library
	Server application
	Testing client
	Communication & Interfaces

	VT Framework's Impact from a Project Management Perspective
	Project planning impact and risk reduction
	Unified testing strategy
	Financial impact
	Analysis summary

	Implementation
	Virtual testing library
	Emulator
	DLL interface
	LLC communication layer
	Sample module

	Server application
	Testing client
	Logger

	Demonstration of the VT Framework usage
	Prerequisites & Installation
	Test case preparation
	Module parametrization
	Diagnostics testing
	Logging & Reporting

	Evaluation of the Virtual Testing Framework
	Requirements fulfillment
	Resource Management
	Evaluation summary
	Suggestions for future improvements

	Conclusion
	Bibliography
	Acronyms
	User Manual
	Prerequisites
	Project preparation
	Running the Virtual Testing system

	Attachments Contents

