
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of master’s thesis

Selection of Representative Samples from Datasets for

Malware Detection

Bc. Lukáš Děd

Mgr. Martin Jureček, Ph.D.

Informatics

Computer Security

Department of Information Security

until the end of summer semester 2023/2024

Instructions

Training datasets for malware detection usually consist of millions of samples. With the

growth of sample amounts, classification algorithms became more and more expensive.

This thesis aims to compare publicly available datasets for malware detection with

respect to the reduction rate and classification accuracy.

Detailed instructions:

1) Find and preprocess at least two publicly available datasets (e.g., EMBER, SOREL-20M).

2) Describe and apply at least five instance selection algorithms to the datasets from 1)

using the techniques for dealing with large datasets (such as stratification).

3) Compare the instance selection algorithms from 2) using the datasets from 1) in terms

of reduction rate and classification accuracy.

4) Try to propose a new instance selection algorithm or modify some existing one,

implement it and compare its results with the instance selection algorithms from 2).

Electronically approved by prof. Ing. Róbert Lórencz, CSc. on 22 December 2022 in Prague.

Master’s thesis

SELECTION OF
REPRESENTATIVE SAMPLES
FROM DATASETS FOR
MALWARE DETECTION

Bc. Lukáš Děd

Faculty of Information Technology

Department of Information Security

Supervisor: Mgr. Martin Jureček, Ph.D.

February 15, 2024

Czech Technical University in Prague

Faculty of Information Technology

© 2024 Bc. Lukáš Děd. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic. It has been submitted at Czech Technical

University in Prague, Faculty of Information Technology. The thesis is protected by the Copyright Act and its usage

without author’s permission is prohibited (with exceptions defined by the Copyright Act).

Citation of this thesis: Děd Lukáš. Selection of Representative Samples from Datasets for Malware Detection.

Master’s thesis. Czech Technical University in Prague, Faculty of Information Technology, 2024.

Contents

Acknowledgments viii

Declaration ix

Abstract x

Introduction 1

1 Data preprocessing 3
1.1 Data cleaning . 3

1.1.1 Missing values . 3

1.1.2 Basic methods for removing redundancy . 5

1.1.3 Outlier handling . 6

1.2 Convert category features to numerical . 8

1.2.1 Encoding . 9

1.2.2 Feature hashing . 10

1.3 Feature scaling . 10

1.3.1 Min-max normalization . 10

1.3.2 Standardization (z-score normalization) . 11

1.3.3 Robust scaling . 11

1.4 Feature extraction . 12

1.4.1 Principal Component Analysis (PCA) . 12

2 Instance selection algorithms 15
2.1 Condensation algorithms . 17

2.1.1 Condensed Nearest Neighbors (CNN) . 17

2.1.2 Modified Selective Subset (MSS) . 18

2.2 Edition algorithms . 19

2.2.1 Edited Nearest Neighbors (ENN) . 20

2.2.2 AllKNN . 21

2.3 Hybrid algorithms . 22

2.3.1 Decremental Reduction Optimization Procedure 3 22

2.3.2 Parallel Instance Filtering . 23

2.3.3 Iterative Case Filtering . 24

iii

iv Contents

3 Classification algorithms 27
3.1 K Nearest Neighbors (KNN) . 27

3.2 Classification metrics . 28

4 Structure of Portable Executable file format 31
4.1 DOS Header . 32

4.2 DOS Stub . 32

4.3 NT Headers . 32

4.3.1 File Header . 33

4.3.2 Optional Header . 33

4.4 Section Table . 36

4.5 Sections . 37

5 Preprocessing of Datasets Before Applying IS Algorithms 39
5.1 Used hardware devices . 39

5.2 Information about the Chosen Datasets . 40

5.2.1 EMBER . 40

5.2.2 SOREL-20M . 41

5.3 Preprocessing procedure . 42

5.3.1 EMBER . 43

5.3.2 SOREL-20M . 47

6 Proposed modifications of the PIF algorithm 51
6.1 Replacement of the editing algorithm . 51

6.2 Repeated PIF . 52

6.3 RPIF with edition algorithm changed . 53

7 Experiments with instance selection algorithms 55
7.1 Tuning parameters of instance selection algorithms . 55

7.2 Comparison of IS algorithms . 57

7.2.1 EMBER . 57

7.2.2 SOREL-20M . 61

Conclusion 69

A Graphs for the tables from Chapter 7 71

B Description of the attached files 81

List of Figures

1.1 Example of a column with a constant value . 6

1.2 Example of duplicate rows . 6

1.3 One-hot encoding example . 9

1.4 Label encoding example . 10

2.1 Taxonomy of instance selection algorithms . 17

4.1 The structure of a PE file . 31

4.2 The structure of the NT header . 32

5.1 Diagram of the distribution of datasets within outlier handling 46

5.2 EMBER dataset partitioning scheme . 46

A.1 Values of MAccSize achieved by IS algorithms depending on the size of the reduced set -

EMBER . 72

A.2 Sizes of reduced sets depending on sizes of original sets - EMBER 73

A.3 Classification accuracies depending on the sizes of original sets - EMBER 74

A.4 Run times of IS algorithms depending on the sizes of the original sets. - EMBER 75

A.5 Values of MAccSize achieved by IS algorithms depending on the size of the reduced set -

SOREL-20M . 76

A.6 Sizes of reduced sets depending on sizes of original sets - SOREL-20M 77

A.7 Classification accuracies depending on the sizes of original sets - SOREL-20M 78

A.8 Run times of IS algorithms depending on the sizes of the original sets - SOREL-20M . . 79

List of Tables

5.1 Specifications of the NVIDIA DGX Station . 39

5.2 Specification of parameters for GPU2 computing station 40

5.3 Tested numbers of bins for individual structures . 42

5.4 Selected bin counts for individual structures . 43

v

5.5 Sizes of the created sets of the EMBER dataset . 43

5.6 Changes after the removal of constant features in the EMBER dataset 44

5.7 Changes after removing unique features from the EMBER dataset 44

5.8 Changes after removing duplicate instances from the EMBER dataset 45

5.9 Changes after applying one-hot encoding to the EMBER dataset 45

5.10 Information about selected versions of the EMBER dataset before feature extraction . . . 47

5.11 Information about the EMBER dataset after preprocessing 47

5.12 The sizes of the created sets of the SOREL-20M dataset 48

5.13 Changes after the removal of constant features from the SOREL-20M dataset 48

5.14 Changes after removing duplicate instances from the SOREL-20M dataset 48

5.15 Changes after removing inconsistencies from the SOREL-20M dataset 49

5.16 Changes after applying one-hot encoding to the SOREL-20M dataset 49

5.17 Information about selected versions of the SOREL-20M dataset before feature extraction 50

5.18 Information about the SOREL-20M dataset after preprocessing 50

7.1 Tested parameter values of instance selection algorithms 56

7.2 Selected parameters of IS algorithms for experiments with the EMBER dataset 56

7.3 Selected parameters of IS algorithms for experiments with the SOREL-20M dataset . . . 57

7.4 Values of the MAccSize metric achieved by IS algorithms - EMBER 58

7.5 Sizes (%) of reduced sets - EMBER . 59

7.6 Classification accuracies (%) achieved by IS algorithms - EMBER 60

7.7 Durations (s) of IS algorithms - EMBER . 61

7.8 Values of the MAccSize metric achieved by IS algorithms - SOREL-20M 62

7.9 Sizes (%) of reduced sets - SOREL-20M . 63

7.10 Classification accuracies (%) achieved by IS algorithms - SOREL-20M 64

7.11 Durations (s) of IS algorithms - SOREL-20M . 65

7.12 Results of IS algorithms when using stratification - SOREL-20M 66

List of Algorithms

1 IQR outlier detection . 8

2 PCA . 13

3 CNN . 18

4 MSS . 19

5 ENN . 20

6 RENN . 21

7 AllKNN . 21

vi

List of Algorithms vii

8 DROP3 . 23

9 PIF . 24

10 ICF . 25

11 KNN Algorithm . 28

12 PIF-AllKNN/PIF-RENN . 51

13 RPIF . 52

14 RPIF-AllKNN/RPIF-RENN . 53

This way, I would like to express my gratitude to Mgr. Martin Jureček,

Ph.D., for his expert guidance without which this thesis could not have

been created. I would also like to thank my family and friends for their

support throughout my studies.

viii

Declaration

I hereby declare that the presented thesis is my own work and that I have cited all sources of information

in accordance with the Guideline for adhering to ethical principles when elaborating an academic final

thesis.

I acknowledge that my thesis is subject to the rights and obligations stipulated by the Act No.

121/2000 Coll., the Copyright Act, as amended. In accordance with Article 46(6) of the Act, I hereby

grant a nonexclusive authorization (license) to utilize this thesis, including any and all computer programs

incorporated therein or attached thereto and all corresponding documentation (hereinafter collectively re-

ferred to as the “Work”), to any and all persons that wish to utilize the Work. Such persons are entitled

to use the Work in any way (including for-profit purposes) that does not detract from its value. This

authorization is not limited in terms of time, location and quantity.

In Prague on February 15, 2024 .

ix

Abstract

This thesis focuses on the selection of representative instances for the training set in malware detection.

Experiments were conducted on two publicly available datasets containing metadata of Windows PE

files, namely the EMBER and SOREL-20M datasets. The theoretical part describes data preprocessing

methods, instance selection algorithms, and classification algorithms used in the practical part of this

thesis. It also includes a description of the structure of PE files. The practical part outlines the process

of preprocessing datasets and main experiments related to the comparison of state-of-the-art instance

selection algorithms. As part of the thesis, modifications to the parallel instance selection algorithm PIF

were proposed and implemented, and these were also experimentally evaluated and compared with the

results of state-of-the-art instance selection algorithms.

Keywords instance selection, PIF, DROP3, MSS, CNN, ICF, AllKNN, RENN, ENN, KNN, machine

learning, artificial intelligence, classification, malware, PE files, Windows

Abstrakt

Tato závěrečná se zabývá výběrem reprezentativnı́ch instancı́ trénovacı́ množiny pro detekci malware.

Experimenty byly provedeny na dvou veřejně dostupných datasetech, obsahujı́cı́ch metadata Windows

PE souborů. Jedná se o datasety EMBER a SOREL-20M. V teoretické části jsou popsány metody

předzpracovánı́ dat, instance selection algoritmy a klasifikačnı́ algoritmy, použité v praktické části této

thesis, a také struktura PE souboru. Praktická část popisuje průběh předzpracovánı́ datasetů a hlavnı́

experimenty souvisejı́cı́ s porovnánı́m state-of-the-art instance selection algoritmů. V rámci závěrečné

práce byly navrženy a implementovány modifikace paralelnı́ho instance selection algoritmu PIF, které

byly rovněž experimentálně vyhodnoceny a porovnány s výsledky state-of-the-art instance selection al-

goritmů.

Klı́čová slova výběr instancı́, PIF, DROP3, MSS, CNN, ICF, AllKNN, RENN, ENN, KNN, strojové

učenı́, umělá inteligence, klasifikace, malware, PE soubory, Windows

x

Introduction

The world of information technology is developing rapidly, especially in recent years. Business environ-

ments are moving into the digital world, resulting in an increase in the number of devices connected to

the Internet. According to [1], by 2022, 90% of all data was generated in the years 2019-2022. Just like

in the real world, in the digital world are also criminal entities trying to achieve their goals through illegal

means. The number of these entities in the digital environment is also increasing.

Attackers use many methods and technologies to achieve their goals. Malicious software, abbreviated

as malware, has long been one of the biggest threats. Malware is software that aims to cause damage to a

computer system or an entire network and thus to the owner of those assets [2]. Examples include trojans,

worms, or today’s increasingly common ransomware, whose goal is to encrypt data in the computer

systems of the attacker’s targets. According to [3], approximately 560,000 new malware samples are

detected every day.

One of the possible methods for malware detection is based on the signatures of executable files.

Antivirus programs, relying on signature-based methods, operate by comparing a file against a signature

database created from previously obtained malware samples. This detection method achieves good re-

sults for already-known versions of malware, emphasizing the importance of working with an up-to-date

signature database. However, the effectiveness of this method diminishes for new versions of malware

[4]. A potential solution to this problem is the use of machine learning algorithms.

Malware detection using machine learning (ML) algorithms is currently a popular method employed

by many antivirus programs. ML algorithms classify files based on their properties (referred to as fea-
tures). Examples of features include file size or the number of imported libraries. An essential phase

in ML algorithms is the learning process, which takes place using acquired samples. The learning pro-

cess involves setting the hyperparameters of the ML algorithm to optimize its performance within the

addressed issue. The resulting configuration is then used for the classification of new samples.

In addition to properly tuning the hyperparameters of ML algorithms, their performance can be en-

hanced by selecting representative samples on which the algorithm is trained. The datasets used for model

training commonly contain noise and redundant data, which can have a negative impact on the overall

performance of the resulting model. Instance selection algorithms are employed to address this problem

[5]. Reducing the size of the dataset also results in shorter training times for ML models and lower mem-

1

2 Introduction

ory requirements. Given the time and memory complexity of some ML algorithms, this is another reason

for the application of instance selection algorithms. The task of instance selection algorithms is to reduce

the size of the data, ensuring that there is no significant loss in the classification model’s performance

or, conversely, to achieve improvement. This is accomplished by removing redundant and noisy samples

from the dataset.

The main theme of this thesis is the selection of representative samples for malware detection using

instance selection algorithms. Part of this work is the experimental evaluation of some state-of-the-art

algorithms and experiments with modified versions of existing algorithms. The comparison of instance

selection algorithms is performed using two publicly available datasets containing metadata of Windows

Portable Executable (PE) files. These are the EMBER [6] and SOREL-20M [7] datasets. Both datasets

were preprocessed before experimenting with instance selection algorithms. Another contribution is the

experimentation with proposed modifications to the Parallel Instance Filtering algorithm, which is also

part of the comparison of instance selection algorithms.

This thesis is divided into seven chapters. In the theoretical part, covered in the first four chapters, the

algorithms used and the structure of Windows PE files are described. The practical part of this thesis is

outlined in the last three chapters. A brief description of all seven chapters follows:

Chapter 1 - This chapter provides an overview of all methods applied to the datasets before experi-

menting with instance selection algorithms.

Chapter 2 - This chapter contains a detailed description of several state-of-the-art instance selection

algorithms, including pseudocode descriptions.

Chapter 3 - Classification algorithms and metrics used in the experimental evaluation of instance

selection algorithms are described in Chapter 3.

Chapter 4 - The fourth chapter describes the structure of Windows PE files, including headers and

individual sections.

Chapter 5 - In this chapter, experiments related to the application of methods described in Chapter

1 are documented. It includes descriptions of individual changes during the preprocessing of both

datasets.

Chapter 6 - The sixth chapter provides a description of proposed modifications to the Parallel Instance

Filtering instance selection algorithm.

Chapter 7 - In this chapter, all experiments related to instance selection algorithms outlined in Chap-

ters 2 and 6 are described. It includes the experimental evaluation and comparison of these algorithms

in terms of computational time, achieved classification accuracy (or F1 score), and the level of dataset

reduction.

Chapter 1

Data preprocessing

This chapter describes some of the commonly used data preprocessing methods intended for classifica-

tion, except for the description of instance selection algorithms described in a separate chapter. The first

section is devoted to data cleaning. The second part deals with converting categorical data types into nu-

merical data types. The third section describes methods for scaling data. Section four describes a method

used for reducing the number of features.

1.1 Data cleaning

Data cleaning is an important part of data preprocessing. Training models on unclean data often leads to

a decrease in the performance of these models. In real-world scenarios, data is often incomplete (missing

values), contains typos, unrealistic values (e.g., a person’s height of 18 meters instead of 1.8 meters),

or noisy data. Instance selection algorithms (described in Chapter 2) are used to remove noise from

data and select representative instances [8]. Data also often contains various inconsistencies (e.g., Jan

Novak vs J. Novak, Praha vs. Prague) and it is necessary to ensure that values with the same meaning

are represented consistently. To improve the performance of machine learning algorithms, it is necessary

to remove these errors [9]. Some algorithms cannot even work with missing values in the data (e.g., K

Nearest Neighbors). The following sections describe data cleaning methods that deal with completing

missing values, removing redundant information from the data, and detecting and removing outliers.

1.1.1 Missing values
Data are represented as matrices of values, where the rows are formed by individual cases (instances) and

the columns of the matrix are formed by attribute values (features). Some instances may have missing

values for certain features. In order for machine learning algorithms to function properly, it is necessary

to find and replace missing values. Finding missing values can sometimes be a problem, as these miss-

ing values can be represented in many ways (NaN, N/A, None, ?, ??, Empty, etc.) and it is necessary

to transform them into a correct representation depending on the tool used for imputation. There are

3

4 Data preprocessing

several imputation methods based on different approaches. Choosing the appropriate method can have a

significant impact on overall classification/prediction accuracy and it is therefore important not to under-

estimate this step. Before choosing a method, it is important to understand why data is missing and how

these missing data are represented. There are three basic groups of missing values [10]:

MCAR - missing completely at random - The absence of a feature value does not depend on the

data (the value is not missing due to a systematic error), for example, due to a connection failure when

collecting data from sensors over the internet.

MAR - missing at random - The occurrence of a missing value may depend on the value of another

feature, for example, sensor failure depending on wind speed.

MNAR - missing not at random - It is known under which conditions the missing values will occur.

In the following sections, some of the commonly used methods for imputing missing values are de-

scribed. Section 1.1.1.1 deals with replacement by a constant value. Section (1.1.1.2) outlines imputation

using statistical properties of the features.

1.1.1.1 Impute constant value

One of the options is to replace a missing value with a constant value. According to [11, p. 105], it is often

the case that the missing value is replaced with a constant value that is a valid value from the domain of

the corresponding column. This is not an appropriate solution to the missing value problem. The selected

constant should be a value outside of the domain of the feature. Common values are, for example, -1 for

natural numbers or ’UNKNOWN’ for categorical data. This approach is used when dealing with missing

values of the type MCAR. This method is straightforward and easy to implement. However, imputing

a constant value can also introduce bias into the dataset, especially if the missing values are not of the

MCAR type.

1.1.1.2 Imputation using basic statistical properties

Imputation of missing values with a constant whose value is determined in a more sophisticated way.

This technique based on descriptive statistics is used for filling in missing values in a dataset using the

statistical properties of the data. These properties are calculated from the other (non-missing) values of a

given feature. The most commonly used metrics are mean, median, and mode [12].

When using the mean as the metric for filling in missing values, the arithmetic mean (1.1) is calculated

from the available data (values of the feature), and this value is used to fill in the places containing missing

values. This technique is fast, simple, and easy to implement, but it has several disadvantages. Mean

imputation is sensitive to outliers, which can significantly increase/decrease the calculated value. This

imputation method can also introduce bias into the data, especially if the missing values are not of the

MCAR type. If the number of missing values is high, it can lead to a reduction in variance, as a large

number of identical values are added. A large number of identical values can create a new peak in the

distribution and thus distort it (if it is not a normal distribution) [13]. This is a numerical method and

therefore not suitable for categorical columns.

Data cleaning 5

x̄ =
1
N

N

∑
i=1

xi (1.1)

where:

x̄ is the sample mean,

xi is the i-th value,

N is the number of values

In median imputation, missing values are replaced by the median. To perform median imputation, the

first step is to sort the values in the dataset. Then, the median is calculated based on the number of values

in the dataset. For columns with an odd number of values, the median is the middle value of the sorted

array. For columns with an even number of values, the median is the average of the two middle values (of

sorted values). The median method is more robust to outliers than the mean method and is more suitable

for skewed distributions, other properties of these techniques are almost the same.

Another simple and straightforward technique that is simple to use is mode imputation. This method

is suitable for categorical data. Missing values in a column are replaced with the value that has the highest

frequency in that column.

1.1.2 Basic methods for removing redundancy
In the field of data preprocessing, there are several types of redundancy. It can be, for example, redun-

dant information that does not contribute to the appropriate solution of the given problem or multiple

occurrences of the same or very similar data. The following sections describe the solution to redundancy

by removing duplicate data (1.1.2.2) and features containing constant values (1.1.2.1) [14]. To remove

redundancy caused by the presence of similar instances, instance selection algorithms are used, which

aim to select a representative subset of data. These algorithms are described in more detail in Chapter

2. To remove redundant columns (e.g., features with high correlation), feature selection algorithms are

used. Another way to select representative features (and thus remove redundant columns) is to use feature

extraction techniques discussed in Section 1.4.

1.1.2.1 Removal of features with constant value

One type of redundancy is features containing a constant value, where the value of one or more features

is the same for every instance. These columns do not provide any information and, therefore, do not

contribute to the model’s performance. Since these features are not useful and increase the computational

complexity of the model, it is advisable to remove them. The variance of a feature containing only a

single value is zero [15]. Based on this fact, these columns can be identified and subsequently removed.

Another way to detect constant value features is to calculate the number of unique values for all columns

and then remove those with only one value. Figure 1.1 shows an example of a data matrix containing a

column with a constant value.

6 Data preprocessing

ID

0

1

2

n-1

n

...

x_1

0.25

0.21

0.17

0.45

0.32

x_2

0.48

0.15

0.33

0.51

0.74

. . .

. . .

x_j

1

1

1

1

1

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Figure 1.1 Example of a column with a constant value

1.1.2.2 Removal of duplicate rows

We refer to two or more identical rows in a dataset as duplicate rows. These are instances whose feature

values (feature vectors) are identical. If such values occur in the data, it is necessary to keep only a

single occurrence and remove the remaining rows (only in some cases). After splitting the dataset into

training and test sets, identical instances may appear in both subsets and thus bias the results of the model,

which could affect its overall reliability and accuracy. On the other hand, if we need to assign weights

to individual instances, this is one of the options. The greater the occurrence of a given instance in the

dataset, the greater its weight. Removing duplicate rows can also lead to the loss of information, for

example, if identical rows represent different time moments. Therefore, it is necessary to consider each

case separately to determine whether applying this method is appropriate. Figure 1.2 shows an example

of duplicate rows .

x_1

0.25

0.17

0.17

0.45

x_2

0.48

0.33

0.33

0.51

x_3

0.67

0.07

0.07

0.78

x_4

0.37

x_5

0.72

0.72

0.94

0.48

0.49

0.49

0.26

Figure 1.2 Example of duplicate rows

1.1.3 Outlier handling
An outlier is an extreme value that significantly differs from the rest of the population, and its occurrence

in a data set is unlikely. Outliers can be included in the data naturally or artificially [16]. An example of

a natural outlier is salaries in a factory. Managers, who are significantly fewer in number, usually have

significantly higher salaries than the rest of the factory. These salaries can appear as outliers in the data.

An artificially created outlier can arise, for example, from a sensor incorrectly measuring a value. The

occurrence of outliers in data can have a significant impact on some machine learning algorithms and data

preprocessing methods that are sensitive to these deviations (such as min-max normalization described

in 1.3.1). The search for outliers should involve a domain expert who has an overview of the problem

Data cleaning 7

at hand and can decide whether a particular value is an outlier or not. The detection of outliers can be

divided into four basic categories (some methods may fall into more than one of these categories.) [17]:

Statistical methods - Statistical data processing techniques that assume significant difference of out-

liers from normal values are used to detect outliers. Examples include the Standard Deviation method,

Z-score method, and Interquartile Range Method.

Distance-based methods - Distance-based methods detect outliers based on information about the

distances between individual data points. Examples include K Nearest Neighbors or Local Outlier

Factor (LOF).

Density-based methods - The search for outliers is based on the assumption that these values have a

significantly different density than normal data. Examples include Density-Based Spatial Clustering

of Applications with Noise or LOF.

Deviation-based methods - Deviation-based methods detect outliers based on the deviation from the

central tendency of the data. Examples include Standard Deviation method, Z-score method, and

Interquantile Range method.

There are many ways to deal with detected outlier values. Below are several commonly used methods:

Removal of outliers - The method involves removing instances containing outlier values.

Replacement of outliers with boundary values - Another option is to replace outlier values with the

upper or lower bound of the range of normal values. If the outlier value is lower than the values in the

range, this deviation is replaced with the lower bound value, and if the outlier value is higher than the

upper bound, it is replaced with this value.

Transformation - Outliers can also be dealt with by transforming the data. Data transformation refers

to the application of a mathematical function (e.g., logarithm) in order to obtain ”more normally”

distributed data.

Imputation - Replacing an outlier value with another (normal) value (e.g., mean, median).

In Section 1.1.3.1, the Interquartile Range method, which was used in this thesis, is described.

1.1.3.1 Interquartile Range method

Interquartile Range (IQR) outlier detection is another statistical-based method. Detecting outliers in-

volves finding patterns that do not conform to the normal distribution of the processed data. Outliers are

data points whose values are either below the lower threshold or above the upper threshold [18]. As the

name suggests, the upper and lower threshold is calculated based on the interquartile range. This value is

calculated as the difference between the third and first quartile (1.2).

8 Data preprocessing

IQR = Q3−Q1 (1.2)

where:

IQR is the value of interquantile range,

Q3 is the 75th percentile,

Q1 is the 25th percentile

Subsequently, using the IQR, the thresholds are calculated. The upper threshold is obtained by adding

a multiple of the IQR to the 75th percentile, while the lower threshold is obtained by subtracting a multiple

of the IQR from the 25th percentile. The value of 1.5 is often chosen as the multiplier [19]. If the goal

is to identify extreme outliers, a multiplier of 3 (or more) is used. Values that do not fall within the

calculated thresholds are marked as outliers. The formulas for calculating the upper and lower thresholds

are shown in equations (1.3) and (1.4).

lowerbound = Q1− k ∗ IQR (1.3)

upperbound = Q3+ k ∗ IQR (1.4)

where (for both equations):

k is the multiple that determines how many values will be marked as outliers

The steps described above are summarized in Algorithm 1.

Algorithm 1 IQR outlier detection

1: sort the dataset in ascending order
2: calculate Q1 - the value that separates the first 25% of values from the remaining 75%
3: calculate Q3 - the value that separates the first 75% of values from the remaining 25%
4: calculate the IQR
5: calculate the upper and lower thresholds
6: mark the outliers (values that do not fall within the calculated range)

1.2 Convert category features to numerical

In real-world data, categorical variables often appear. These variables can be divided into two basic

categories: nominal and ordinal. Nominal features contain category values that do not depend on the

order. These include variables such as gender (male/female), color of an object (blue, red, yellow, etc.),

or religion (Christian, Muslim, etc.). The values of ordinal variables have a natural order in the real

world. An example of an ordinal variable is food rating (excellent, average, poor). Many machine learn-

ing algorithms used for classification (e.g., K nearest neighbors classifier, neural networks) require only

Convert category features to numerical 9

numeric inputs to function properly. To use these algorithms without losing information from categorical

variables, it is necessary to replace their values with a numeric representation. This work presents two

basic methods for converting categorical variables to numerical ones. The first method is encoding (see

1.2.1), and the second method is feature hashing (see 1.2.2), which is suitable for variables with different

lengths. In most cases, both methods result in an increase in the number of variables.

1.2.1 Encoding

As mentioned above, based on their functioning principles, some machine learning algorithms require

only numerical values as inputs. One way to convert non-numerical categories to numerical is through

encoding. There are many encoding methods available, and the selection of a suitable method depends

on the categorical variable that we want to encode. Nominal features are often encoded using the one-

hot encoding method (see 1.2.1.1).For ordinal features, we can use the Ordinal encoding method. Label

encoding is often used for the target variable (see 1.2.1.2). These methods are described in more detail in

the following sections.

1.2.1.1 One-hot encoding

One-hot encoding is used to encode nominal features (i.e., variables that have no inherent order) [20].

The transformation is performed by replacing the original column with a binary vector of length k, where

k is the number of unique values of the categorical variable (i.e., one binary feature is created for each

category). The variable for the category present in the instance takes on a value of one, while the re-

maining variables take on a value of zero. The newly created variables are often referred to as dummy

variables [21]. This method solves the problem of missing values. If a value is missing in the data, all

dummy variables will be set to zero. An example of using one-hot encoding is shown in Figure 1.3.

color
red

blue

red

color = {red,

 green, blue}

green

color_r
1

0

1

0

color_g
0

0

0

1

color_b
0

1

0

0

Figure 1.3 One-hot encoding example

1.2.1.2 Label Encoding

Label encoding is used to encode the target variable [22]. Unlike ordinal encoding, the order of individual

values does not matter. Each label is assigned an integer value. The principle of operation is the same as

the ordinal encoding method, but in this case, the order of individual values is not considered important.

The example of label encoding is shown in Figure 1.4.

10 Data preprocessing

label
clean

malware

malware

label = {clean,

malware}

clean

label
0

1

1

0

Figure 1.4 Label encoding example

1.2.2 Feature hashing
If a categorical variable has a large number of unique values, one-hot encoding may be impractical, as

creating a dummy variable for each unique value results in an increase in the dimensionality of the data.

With increasing dimensionality, computational complexity and storage requirements increase as well.

One possible solution is to use one-hot encoding only for the k most frequent values, and merge the re-

maining values into a single category. In these cases, feature hashing, also known as the hashing trick,

can be used as well [23]. This method typically creates a smaller number of dummy variables than the

number of unique values of the original categorical variable. The size of the input value domain is there-

fore usually larger than the size of the output value domain. As a result, collisions may occur, meaning

that several input values can be transformed into the same output value. The input to the algorithm is the

number of output variables and the hash function. The hashing trick can also be used to create a feature

vector from documents and generally from variable-length information (e.g., the number of sections in

the header of a PE file may vary).

1.3 Feature scaling

Feature scaling is one of the most important techniques used in data preprocessing that can significantly

affect the performance of machine learning algorithms. Some machine learning algorithms (Support

Vector Machine, K nearest neighbors, Principal Component Analysis, etc.) are sensitive to this problem

[24]. The domains of values of individual features differ commonly in real datasets. This fact leads to

some features containing larger values and thus significantly influencing the output value of the algorithm.

Features containing small values are suppressed and do not significantly affect the output of the algorithm,

even though they may have significant informative value for solving the given task. Feature scaling

methods address this problem by transforming data into a chosen range that is identical for all features.

The following sections describe some commonly used algorithms for feature scaling. Normalization is

described in section 1.3.1, standardization is described in section 1.3.2, and robust scaling is summarized

in section 1.3.3.

1.3.1 Min-max normalization
One of the most commonly used methods for scaling features is normalization [24], also known as min-

max scaling. This method transforms features so that the original distribution of the data is preserved.

Feature scaling 11

The result of the transformation is values ranging from 0 to 1. As the minimum value, maximum value,

and mean are included in the calculation, this method is sensitive to outliers. The formula for calculating

the transformed values includes the equation (1.5).

yi =
xi−min

max−min
(1.5)

where:

yi is the scaled i-th value

xi is the i-th value to be scaled

min is the minimum value of the given feature across the entire dataset (or training set).

max is the maximum value of the given feature across the entire dataset (or training set).

1.3.2 Standardization (z-score normalization)
Another technique for dealing with features with different value ranges is standardization [25]. This

method can be divided into two parts. First, the dataset is centered by subtracting the mean value of each

column from each value of that column. This operation is called centering. Centered columns have a

mean value of zero. After centering the data, the feature is scaled by dividing it by its standard deviation.

Features that have been scaled have a standard deviation of one. Due to the operations used, standard-

ization is sometimes referred to as center scaling or z-score normalization. Standardization assumes a

normal distribution of the scaled data. If the data does not have a normal distribution, the results may

not be satisfactory. Due to the use of the mean value in the calculation of the transformed values, this

method is also sensitive to outliers, but less so than min-max normalization. The formula for calculating

the standardized value includes equation (1.6).

yi =
xi− x̄

σ
(1.6)

where:

x̄ is the mean calculated over all values of the given feature

σ is the standard deviation of the feature

1.3.3 Robust scaling
Robust scaling [26] is a data scaling method designed to be robust against outliers, which can skew the

shape of the probability distribution and thus affect statistical characteristics such as mean and standard

deviation, minimum and maximum values. The technique of robust scaling uses characteristics whose

sensitivity to outliers is low during calculation. Instead of subtracting the mean/min from the original

value, the median (50th percentile or 2nd quantile) is used and the result is then divided by the difference

between the third quartile (75th percentile) and the first quartile (25th percentile), i.e., the interquartile

12 Data preprocessing

range, instead of standard deviation/range of max-min. The formula for calculating the value transformed

using robust scaling includes equation (1.7). Scaled features have a mean and median of zero and a

standard deviation of one.

yi =
xi−q2

q3−q1
(1.7)

where:

q2 is the median (50th percentile) of all values of the given feature

q3 is the 3rd quartile (75th percentile) of all values of the given feature.

q1 is the 1st quartile (25th percentile) of all values of the given feature.

1.4 Feature extraction

One option for reducing the number of features and mitigating negative impacts (such as computational

complexity or overfitting) in models trained on high-dimensional data is to use feature extraction tech-

niques. The goal of feature extraction is to transform the original set of features into another set of features

while preserving as much available information as possible. There are several methods that can be di-

vided into two main groups: supervised and unsupervised [27]. The unsupervised Principal Component

Analysis method, which was used for feature extraction in this thesis, is described in Section 1.4.1 .

1.4.1 Principal Component Analysis (PCA)
Principal Component Analysis (PCA) [28] is a linear method for dimensionality reduction of a dataset.

The PCA algorithm was invented by mathematician Karl Pearson in 1901 [29]. The method does not

require any information about the target variable during computation, making it an unsupervised method.

As PCA involves an orthogonal transformation, the result is a set of linearly uncorrelated features that

capture the maximum variance [30]. These transformed features are linear combinations of the original

features and are called principal components. This means that each principal component is a linear com-

bination of the original features. The first principal component contains the maximum possible variance

among all linear combinations, the second principal component contains the maximum variance orthog-

onal to the first principal component, and so on. In 2, the procedure of the PCA algorithm is described

[31].

Feature extraction 13

Algorithm 2 PCA

1: standardize all features ▷ PCA requires zero mean and unit variance for all features
2: for each random variable (feature) Xi do
3: compute the variance of Xi (1.8)

var(Xi) =
∑

n
y=1(xiy− x̄i)

2

n−1
(1.8)

where:
var(Xi) is the variance of the i-th random variable
xiy is the value of the y-th element of the i-th random variable
x̄i is the mean value of the i-th random variable
n is the number of values of the i-th random variable

4: compute the (pairwise) covariance between Xi and other random variables (1.9):

cov(Xi,X j) =
∑

n
y=1(xiy− x̄i)(x jy− x̄ j)

n−1
(1.9)

where:
cov(Xi,X j) is the covariance between the i-th and j-th random variables, where i ̸= j
x jy is the value of the y-th element of the j-th random variable
x̄ j is the mean value of the j-th random variable
n is the number of instances

5: end for
6: based on the computed variances and covariances, create a covariance matrix
7: compute the eigenvectors and eigenvalues of the covariance matrix (1.10)

Cv = λv (1.10)

where:
C is the covariance matrix
v is the eigenvector of the covariance matrix
λ is the eigenvalue of the covariance matrix

8: sort the eigenvectors in descending order based on the magnitude of eigenvalues
9: select the top k principal components

10: transform the data using the transformation matrix formed by the k selected eigenvectors (1.11)

Xnew =W T X (1.11)

where:
Xnew is the resulting feature matrix after transformation into the new subspace
X is the original feature matrix
W is the transformation matrix formed by the top k eigenvectors arranged as columns

14 Data preprocessing

Chapter 2

Instance selection algorithms

Another possibility to reduce the size of data is to apply instance selection (IS) algorithms. The task of

these algorithms is to decrease the number of instances while preserving or even improving the classifica-

tion/prediction ability [32]. This is achieved by removing noise in the data or eliminating irrelevant and

redundant instances. IS algorithms are applied to the training dataset (see 3), and the output is a subset of

this set that is sufficiently representative for solving the given problem. Similarly to feature selection, by

reducing the number of instances, computational and memory requirements, as well as storage demands,

are decreased. In addition to the metrics described in Section 3.2, the suitability of an IS algorithm is

compared based on the so-called reduction rate, which describes the extent to which the original dataset

has been reduced. Usually, it is necessary to find a compromise between the reduction rate and the result-

ing accuracy of the model. There are many instance selection algorithms, which can be divided into three

basic types based on the way instances are selected [33]:

Condensation algorithms - The principle of these methods is to retain instances that are close to

the decision boundary (known as ’border points’), while removing distant instances (referred to as

’internal points’) from the training set. Condensation techniques are based on the assumption that

internal points have less influence on the formation of the decision boundary (due to their distance

from it) and can therefore be eliminated. These algorithms typically achieve a good reduction rate

but are prone to overfitting, resulting in a loss of generalization ability on unseen data. Examples

of these algorithms include Condensed Nearest Neighbor and its modifications, Modified Selective

Algorithm, Max Nearest Centroid Neighbor, Reduced Nearest Neighbor, and Minimal Consistent Set.

Edition algorithms - Contrary to condensation algorithms, these techniques focus on removing some

border points while retaining internal points in the training set. Edition algorithms remove instances

near the decision boundary whose labels differ from the labels of their nearest neighbors. This results

in noise removal and smoothing of the decision boundary. These algorithms are less prone to over-

fitting but achieve poorer results in terms of data reduction. Examples of Edition algorithms include

Edited Nearest Neighbor, AllKNN, Multiedit, and Relative Neighborhood Graph Edition .

15

16 Instance selection algorithms

Hybrid algorithms - Hybrid algorithms are a combination of the previous two methods. Reduction

of the number of instances is achieved by removing both internal and border points. Examples of

hybrid algorithms include Instance-Based Learning Algorithm, Decremental Reduction Optimization

Procedure or Iterative Case Filtering.

Another possible way to divide instance selection algorithms is according to the direction in which

the training set is searched [34]. The following is a description of the individual options:

Inceremental - As the name suggests, incremental algorithms start with an empty subset Tnew, the size

of which gradually increases as the instances are traversed. These are order-dependent techniques,

i.e., it depends on the order in which the instances are traversed. The algorithms go through all the

instances that are subsequently added to the reduced subset Tnew if they meet a certain condition.

The advantage of incremental algorithms is that newly acquired instances can be added to the subset

Tnew additionally, which makes them a suitable option for online learning and data stream processing.

Examples of incremental algorithms include Condensed Nearest Neighbor and its modifications or

Instance-Based Learning Algorithm.

Decremental - These techniques start with a reduced subset of the same size as the original training

set (Tnew = T). Then, all instances that satisfy a certain condition are sequentially examined, and if

the condition is met, they are removed from the subset Tnew. If the condition is met, the instance is

removed immediately after it has been tested. Unlike incremental algorithms, decremental algorithms

are typically more computationally demanding and require access to all available data for compu-

tation. Examples of decremental algorithms include Reduced Nearest Neighbor, Modified Selective

Subset, Edited Nearest Neighbor, and Parallel Instance Filtering.

Batch - Like Decremental algorithms, Batch methods start with a reduced set Tnew that is identical

to the original training set T . The difference is that if one of the instances fulfills the condition

while going through the instances, it is not removed immediately but only marked as a candidate for

removal. Deletion of the marked data occurs only at once after passing all (or a selected number

of) instances. Examples of batch algorithms include Max Nearest Centroid Neighbor, AllKNN or

Iterative Case Filtering.

Mixed - Mixed algorithms operate on a pre-selected reduced subset Tnew, which is either randomly

chosen or obtained through incremental/decremental techniques. Based on a chosen criterion, these

algorithms iteratively remove or add instances. A special case of mixed algorithms is called fixed
algorithms, where the number of instances to be added and removed from Tnew is predetermined and

fixed (the number of additions and removals is always the same).

The methods described above are summarized in the image 2.1, which contains a taxonomy of in-

stance selection algorithms. The following sections describe some of the condensation (section 2.1),

edition (section 2.2) and hybrid (section 2.3) algorithms. In all cases, these are wrapper methods.

Condensation algorithms 17

Instance selection algorithms

Condensation Edition Hybrid

In
cre

m
e
n
ta

l

D
e
cre

m
e
n
ta

l

B
a
tch

M
ixe

d
 +

 W
ra

p
p
e
r

M
ixe

d
 +

 Filte
r

Fixe
d
 +

 W
ra

p
p
e
r

Figure 2.1 Taxonomy of instance selection algorithms

2.1 Condensation algorithms

Condensation algorithms reduce the size of the dataset by removing internal points, i.e., points far from

the decision boundary (see description at the beginning of this chapter). The following sections describe

some of the condensation algorithms. Section 2.1.1 describes the incremental algorithm Condensed Near-

est Neighbor and the decremental algorithm Modified Selective Subset is summarized in section 2.1.2.

2.1.1 Condensed Nearest Neighbors (CNN)
Condensed Nearest Neighbor [35] was created in 1968 by Hart and is considered one of the first instance

selection algorithms. It is an incremental algorithm, i.e., incrementally creates a reduced subset Tnew by

successively traversing instances of the original training set T .

At the beginning, a random instance from the set T is selected and moved to an empty set Tnew.

Subsequently, the remaining instances are classified using a 1-NN classifier trained on the set Tnew. If an

instance is classified incorrectly, it is moved to the set Tnew. The classification of each instance is always

performed using the most up-to-date version of Tnew. This iteration over all instances in T is repeated

until either no instances are moved to Tnew during a complete cycle or the set T becomes empty.

The output of the CNN algorithm is not a minimal consistent set but only a consistent set. A minimal

consistent set is one in which all instances from the original set are correctly classified using a 1-NN

classifier, and this set cannot be further reduced without violating this condition [36]. In other words, a

subset Tnew (Tnew ⊆ T) is consistent if, for all instances x from the original set T , their nearest neighbor

from the set Tnew has the same class as x. The entire procedure is summarized in pseudocode 3 .

18 Instance selection algorithms

Algorithm 3 CNN

Let:
T be the original dataset
Tnew be the reduced consistent subset from the original dataset T

1: Tnew← /0
2: randomly select an initial instance xstart from T and move it to Tnew, i.e., T ← T \{xstart} and Tnew←

Tnew∪{xstart}
3: moved← f alse
4: for each x ∈ T do
5: classify x using a 1-NN classifier with Tnew as the training set
6: if x is misclassified then
7: move x from T to Tnew, i.e., T ← T \{x} and Tnew← Tnew∪{x}
8: moved← true
9: end if

10: end for
11: if moved AND T ̸= /0 then
12: go back to the step 3
13: end if
14: return Tnew

There are many modifications of the CNN algorithm [37]. Examples include Tomek Condensed

Nearest Neighbor, Modified Condensed Nearest Neighbor, or Generalized Condensed Nearest Neighbor.

2.1.2 Modified Selective Subset (MSS)
One of the representatives of decremental algorithms, which also falls into the category of condensation

algorithms, is Modified Selective Subset [38]. Decremental algorithms start working with the set Tnew =

T and while traversing individual instances, they remove from Tnew those instances that meet the selected

criterion (a more detailed description of decremental algorithms can be found at the beginning of this

chapter). The Modified Selective Subset algorithm is based on the so-called selective subset. The set

Tnew ⊆ T is a selective subset if:

Consistent (see Section 2.1.1)

For all instances x from the original dataset T , it holds that the distance between their nearest neighbor

in the selective subset Tnew, which belongs to the same class as x, is smaller than the distance to the

nearest enemy of x in the original set T . The nearest enemy refers to the closest neighbor that belongs

to a different class.

As the name suggests, the output of the described algorithm is a modified selective subset. Modified

selective subset can be defined based on the following terms:

Related neighbor - An element x j is a related neighbor of element xi belonging to the same class if

the distance between x j and xi is smaller than the distance between xi and its nearest enemy.

Relative neighborhood of element xi - The relative neighborhood RNi of element xi refers to the set

of all its related neighbors.

Edition algorithms 19

Modified Selective Subset - A subset MSS of the original dataset T is called a modified selective

subset if, for all elements x from T , MSS contains the furthest relative neighbor of x from its relative

neighborhood.

The proposed algorithm processes elements of each class separately. Firstly, it sorts all elements of

a given class in ascending order based on their distances to their nearest enemies. Then, each element x

is compared to other elements of the same class that have a higher index in the sorted array (including x

itself). If the compared element y is part of the set S (where initially, S contains all elements belonging

to the currently processed class) and the distance between x and y is smaller than the distance between y

and its nearest enemy, the element y is removed from the set S. If there was at least one change in the

set S during this traversal, the element x is added to the set MSS (where initially, MSS = /0). The process

continues until the set S is emptied or all elements x have been processed. This procedure is performed

for all classes and is summarized in pseudocode 4.

Algorithm 4 MSS

Let:
T be the original dataset
n be the number of classes in the dataset
S is an array of length n containing subsets of elements from the dataset T , divided according to
the classes to which the elements belong

MSS be the modified selective subset
dist(y j,ney j) be the distance of the j-th element y to its nearest enemy ney j

dist(xi,y j) be the distance between the i-th element x and j-th element y
1: MSS = /0
2: for each Sn ∈ S do
3: for each xi ∈ Sn do
4: add← f alse
5: for each y j ∈ Sn, where j ≥ i do
6: if dist(xi,y j)< dist(y j,ney j) then
7: Sn← Sn \{y j}
8: add← true
9: end if

10: end for
11: if add then
12: MSS←MSS∪{xi}
13: end if
14: if Sn = /0 then
15: continue to the next Sn
16: end if
17: end for
18: end for
19: return MSS

2.2 Edition algorithms

The task of edition algorithms is to reduce data by removing noise. Using these techniques, ”problematic”

border points are removed, which results in a smoothing of the decision boundary. A more detailed

20 Instance selection algorithms

description of the working principle of edition algorithms is at the beginning of this chapter. According

to [39, p. 10], due to the low rate of data reduction, edition algorithms are not used independently and

in practice are part of more complex (hybrid) algorithms. The decremental Edited Nearest Neighbor

algorithm is described in 2.2.1. The AllKNN batch algorithm, which is a modification of the Edited

Nearest Neighbor algorithm, is described in section 2.2.2.

2.2.1 Edited Nearest Neighbors (ENN)

Edited Nearest Neighbor [40] is a representative of decremental algorithms. The output of the decre-

mental algorithms is the set Tnew, which at the beginning is identical to the original set T and its size is

reduced by successive traversal. During the process of reducing the set T , classification using the K Near-

est Neighbor classifier (see 3.1) is used. The appropriate value of the parameter K is usually chosen based

on experiments. Before applying ENN, we set Tnew = T . The Edited Nearest Neighbor algorithm first

finds for all elements x from the original set T their K nearest neighbors (without elements x) according

to the selected distance metric (see 3.1). Using the found K nearest neighbors, classification is performed

for all elements x. Elements x whose actual class does not match the classified class are removed from

Tnew. The procedure described above is summarized in pseudocode 5.

Algorithm 5 ENN

Let:
T be the original dataset
K be the parameter of the KNN algorithm indicating the number of nearest neighbors
n be the number of elements in the dataset T
targetKNNi be the class assigned to element xi by the KNN algorithm
targetRi be the true class of element xi

1: for each xi ∈ T , where i = 1, ...,n do
2: calculate the distances between xi and the other elements in T
3: sort the elements in ascending order based on their distances to xi
4: obtain targetKNNi by classifying xi according to the majority class of its K nearest neighbors
5: end for
6: for each xi ∈ T , where i = 1, ...,n do
7: if targetKNNi ̸= targetRi then
8: T = T \{xi}
9: end if

10: end for
11: return T

A modified version of the ENN algorithm is Repeated Edited Nearest Neighbor (RENN). This algo-

rithm further smooths the decision boundary by repeatedly applying the ENN algorithm until all remain-

ing elements have the same majority class of k nearest neighbors with their class. The individual steps of

the RENN algorithm are summarized in pseudocode 6.

Edition algorithms 21

Algorithm 6 RENN

Let:
T be the original dataset
K be the parameter of the KNN algorithm indicating the number of nearest neighbors
n be the number of elements in dataset T
targetKNNi be the class assigned to element xi by the KNN algorithm
targetRi be the true class of element xi

1: for each xi ∈ T , where i = 1, ...,n do
2: calculate the distances between xi and the other elements in T
3: sort the elements in ascending order based on their distances to xi
4: obtain targetKNNi by classifying xi according to the majority class of its K nearest neighbors
5: end for
6: missclassi f ied← f alse
7: for each xi ∈ T , where i = 1, ...,n do
8: if targetKNNi ̸= targetRi then
9: T = T \{xi}

10: misclassi f ied← true
11: end if
12: end for
13: if misclassi f ied then
14: go back to step 1
15: end if
16: return T

2.2.2 AllKNN

AllKNN [41] is a modification of the Edited Nearest Neighbors algorithm proposed by Tomek. The

operating principle of the AllKNN method consists in repeatedly applying the ENN algorithm, each

time for a different number of nearest neighbors. These are values from 1 to K, where K is an optional

parameter. This is a batch method, i.e., misclassified instances are during traversal only flagged and

they are removed at once at the end of the algorithm. The entire procedure of the AllKNN algorithm is

included in pseudocode 7.

Algorithm 7 AllKNN

Let:
T be the original dataset
K be the parameter of the KNN algorithm, with values ranging from 1 to K
n be the number of elements in dataset T
targetKNNi be the class assigned to element xi by the KNN algorithm
targetRi be the true class of element xi
f lags be an array of flags, where the index of the flag corresponds to the index of the instance

1: set all values in f lags to 0

22 Instance selection algorithms

AllKNN Algorithm (continued)

2: for each nn ∈ {1...K} do
3: for each xi ∈ T , where i = 1, ...,n do
4: calculate the distances between xi and the other elements in T
5: sort the elements in ascending order based on their distances to xi
6: obtain targetKNNi by classifying xi according to the majority class of its nn nearest neighbors
7: end for
8: for each xi ∈ T , where i = 1, ...,n do
9: if targetKNNi ̸= targetRi then

10: set f lags[i] = 1
11: end if
12: end for
13: end for
14: for each xi ∈ T , where i = 1, ...,n do
15: if f lags[i] = 1 then
16: T ← T \{xi}
17: end if
18: end for
19: return T

2.3 Hybrid algorithms

Hybrid algorithms are combinations of multiple methods, making them more complex. By applying hy-

brid algorithms, usually both inappropriate border points and internal points that do not have a significant

impact on decision border can be removed. The goal is to retain only representative border points in the

reduced set, which are close to the decision border and have the biggest influence on its formation. The

following subsections describe some hybrid algorithms. Subsection 2.3.1 describes the decremental al-

gorithm Decremental Reduction Optimization Procedure version 3. The fully parallel algorithm Parallel

Instance Filtering is described in subsection 2.3.2, and subsection 2.3.3 summarizes the Iterative Case

Filtering algorithm.

2.3.1 Decremental Reduction Optimization Procedure 3

The Decremental Reduction Optimization Procedure (DROP) [39] family is a group of five decremental

methods designed for instance selection. According to [42, p. 140], they are among the best wrapper

algorithms in terms of achieved accuracy and data reduction. The DROP3 version achieves the best

results among these DROP methods. The third version of the DROP algorithm combines the methods of

ENN and DROP2.

First, the instance set is reduced using the ENN algorithm. Then, the instances are sorted in de-

scending order based on their distances to their nearest enemies. This step ensures that internal points,

which are farther from the decision boundary and thus have a greater distance to their nearest enemies,

are removed first. For each instance, a list of K +1 nearest neighbors (where K is the input parameter of

the algorithm) and a list of so-called associates are created. Associates of an instance x are considered

those instances that have x among their K nearest neighbors. Subsequently, instances x are removed if

Hybrid algorithms 23

the number of associates correctly classified without x as a neighbor (using the (K + 1)-th neighbor in-

stead) is greater than or equal to the number of associates correctly classified when instance x is taken

into account. If an instance x is removed from the dataset, the list of nearest neighbors of all associates of

x must be updated, replacing x with another nearest neighbor nn, ensuring that each remaining instance

still has K +1 nearest neighbors. After finding a new neighbor nn for element a, a is added to the list of

associates of nn. This is done for all a that were affected by the removal of x. Once all instances have been

processed, the algorithm returns the reduced dataset. The individual steps of the described procedure are

summarized in pseudocode 8.

Algorithm 8 DROP3

Let:
T be the original dataset
Tnew be the reduced dataset
KENN be the input parameter of the ENN algorithm

K be the number of neighbors used for classifying associates
nwith be the number of associates of x correctly classified with the help of x
nwithout be the number of associates of x correctly classified without the help of x (using the

(K +1)-th neighbor instead)
Ax be the list of associates of element x

1: Tnew← T
2: Tnew← ENN(Tnew,KENN)
3: sort the elements of Tnew in descending order based on their distances to their nearest enemies
4: for each x ∈ Tnew do
5: find the K +1 nearest neighbors of x in Tnew
6: add x to the associates lists of its K nearest neighbors
7: end for
8: for each x ∈ Tnew do
9: if nwithout ≥ nwith then

10: Tnew← Tnew \{x}
11: for each a ∈ Ax do
12: remove x from the nearest neighbors list of a
13: find a new nearest neighbor nnnew for element a
14: add a to the associates list of nnnew
15: end for
16: end if
17: end for
18: return Tnew

2.3.2 Parallel Instance Filtering
Another representative of hybrid algorithms is Parallel Instance Filtering (PIF) [32]. This is a decremental

method. The PIF algorithm can be divided into three main parts, each of which can be parallelized,

allowing it to be used (unlike some other IS algorithms) on datasets with a large number of instances.

Firstly, noise is filtered in the data by applying Wilson editing , which means removing elements

misclassified using K nearest neighbors algorithm. Subsequently, the dataset is divided into disjoint

subsets. Elements are assigned to these subsets according to their closest enemies, i.e., in each subset,

24 Instance selection algorithms

there are only those elements that have a common nearest enemy. If an element has multiple nearest

enemies, only one of them is randomly selected. After dividing the dataset into disjoint subsets, a filter

rule is applied to each subset that is greater than the value of the chosen parameter m. This rule removes

an element y if it finds an element x different from y such that the distance between y and the nearest

enemy ne (ne is the same for all elements of the given subset) is greater than or equal to the maximum of

the distances between x and y and between x and ne. The procedure of the PIF algorithm described above

is summarized in pseudocode 9.

Algorithm 9 PIF

Let:
T be the original dataset
Tnew be the reduced dataset
NE be the set of elements that are the nearest enemies for at least one of the other elements in

Tnew
K be the parameter for the Wilson editing algorithm
m be the parameter indicating the minimum subset size
d(x,y) be the distance (e.g., Euclidean distance) between elements x and y

1: Tnew← T
2: Tnew←WilsonEditing(Tnew,K)
3: for each x ∈ Tnew do
4: find the nearest enemy nex
5: add x to the subset Snex

6: end for
7: for each ne ∈ NE do
8: if |Sne| ≥ m then
9: for each y ∈ Sne do

10: for each x ∈ Sne where x ̸= y do
11: if d(y,ne)≥max{d(x,y),d(x,ne)} then
12: Tnew← Tnew \{y}
13: continue to the next y
14: end if
15: end for
16: end for
17: end if
18: end for
19: return Tnew

2.3.3 Iterative Case Filtering
The next state-of-the-art hybrid algorithm is Iterative Case Filtering (ICF) [43]. It is a batch method,

meaning that instances satisfying the reduction condition are only flagged during the traversal, and their

removal occurs all at once.

The ICF algorithm uses the terms LocalSet(x), Coverage(x), and Reachable(x). The following is an

explanation of these terms:

Hybrid algorithms 25

LocalSet(x) - It is the set of all nearest neighbors of element x that belong to the same class as x

and have a smaller distance to x than its nearest enemy. This set is also referred to as the Relative

Neighborhood of x in the MSS algorithm (see 2.1.2).

Coverage(x) - It is the set of all elements y for which element x belongs to their LocalSet(y). A similar

concept is used in the DROP3 algorithm (see 2.3.1), which refers to such a set as associates(x).

Reachable(x) - It is the set of all elements y that belong to the LocalSet of x.

The execution of the algorithm can be divided into two parts. At the beginning, the dataset Tnew (in the

beginning Tnew = T) is denoised using Wilson editing (as in the PIF and DROP3 algorithms). Wilson’s

editing is described in section 2.2.1. In the second part, the sets Reachable(x) and Coverage(x) are created

for all elements x from Tnew. Subsequently, those elements x whose Reachable(x) set is larger than the

Coverage(x) set are flagged. After traversing the entire set Tnew, all marked elements are removed at once.

The second part is repeated until at least one element meets the condition for removal. After completion,

the reduced dataset Tnew is returned. Pseudocode 10 summarizes the steps of the ICF algorithm.

Algorithm 10 ICF

Let:
T be the original dataset
Tnew be the reduced dataset
K be the parameter for Wilson editing algorithm
Coverage(x) see description above
Reachable(x) see description above
removed be the variable indicating whether at least one instance was removed during the traversal
of the dataset

1: Tnew← T
2: Tnew←WilsonEditing(Tnew,K)
3: for each x ∈ Tnew do
4: compute Coverage(x)
5: compute Reachable(x)
6: end for
7: removed← f alse
8: for each x ∈ Tnew do
9: if |Reachable(x)|> |Coverage(x)| then

10: flag x for removal
11: set removed← true
12: end if
13: end for
14: for each x ∈ Tnew do
15: if x is flagged then
16: Tnew← Tnew \{x}
17: end if
18: end for
19: if removed = true then
20: go back to step 3
21: end if
22: return Tnew

26 Instance selection algorithms

Chapter 3

Classification algorithms

Classification tasks can be solved using both supervised and unsupervised machine learning algorithms.

The goal of classification algorithms is to determine the class to which a classified instance belongs.

Classification is used in various fields, such as medicine, security, or the automotive industry.

The dataset is commonly divided before training classification algorithms. Most commonly, it is split

into three parts: the training, validation, and test sets. The classification algorithm is trained using the

training set. The validation set is used for tuning the hyperparameters of the chosen algorithm, and the

test set is used for the final evaluation of the resulting model.

Since, in this thesis, a K nearest neighbors classifier was used for evaluating experiments during data

preprocessing and for comparing instance selection algorithms, its description is provided in Section 3.1.

Section 3.2 describes the metrics used for the evaluation of the experimental results.

3.1 K Nearest Neighbors (KNN)

K Nearest Neighbors [44] is considered as one of the most straightforward machine learning algorithms

used for classification. A new instance is classified with the help of K nearest neighbors, where K is a

chosen parameter. The appropriate value of the K parameter is usually determined based on experiments.

Firstly, the distances between the classified instance and all instances from the training set are calculated.

The equation (3.1) contains the formula for calculating the Minkowski distance.

dMink(x,y) = (
N

∑
i=1
|xi− yi|p)

1
p (3.1)

where:

N is the dimension of the feature vector

xi is the value of the i-th feature of the vector x

27

28 Classification algorithms

yi is the value of the i-th feature of the vector y

p is a parameter

Very commonly used metrics in KNN are the Euclidean distance and the Manhattan distance [45].

Both distances are special cases of the Minkowski distance, with parameter values of p = 2 for the

Euclidean distance and p = 1 for the Manhattan distance. After the distance calculation, the instances

(neighbors) are sorted in ascending order based on their distances. The classified instance is then assigned

the majority class among the K nearest neighbors. The described procedure is summarized in pseudocode

11.

Algorithm 11 KNN Algorithm

Let:
T be the training set
K be a parameter indicating the number of nearest neighbors used for classification
x be a classified instance
y ∈ T be an instance from the training set

1: Calculate the distances between x and all y ∈ T (3.1)
2: Sort T in ascending order by the distance of instances y ∈ T to the classified instance x
3: Select K first instances as nearest neighbors
4: Assign the instance x a class according to the majority class of the K nearest neighbors

3.2 Classification metrics

After creating a classification model, its performance is evaluated on a test set. The evaluation of the

model is done using one or more metrics commonly used for classification problems. During the binary

classification of individual instances, four situations can occur [46]:

True Positive (TP) - This situation occurs when the classifier correctly labels an instance as positive

(malware is correctly classified as malware).

False Positive (FP) - This situation occurs when the classifier incorrectly labels an instance as positive

(a clean file is incorrectly classified as malware). This is a Type I error.

True Negative (TN) - This situation occurs when the classifier correctly labels an instance as negative

(a clean file is correctly classified as clean).

False Negative (FN) - This situation occurs when the classifier incorrectly labels an instance as

negative (malware is incorrectly classified as a clean file). This is a Type II error.

Many metrics utilize the information about the situations described above for evaluation. Below are

described the metrics used for evaluating the experimental results in this thesis [47]:

Accuracy - It is the ratio of the number of correctly classified instances to the total number of in-

stances in the test set. The equation (3.2) shows the formula for calculating accuracy.

Classification metrics 29

Accuracy =
#T P+#T N

#T P+#T N +#FP+#FN
(3.2)

Precision - It is the ratio of the number of TP (True Positive) classifications to the total number of

instances classified as Positive. The formula for calculating precision is provided in the equation

(3.3).

Precision =
#T P

#T P+#FP
(3.3)

Recall (True Positive Rate - TPR) - The recall metric is used to evaluate how well the model is able

to correctly classify positive instances (in our case, malware). It is the ratio of the number of TP (True

Positive) classifications to the total number of instances that are actually positive (malware). Equation

(3.4) shows the formula for calculating recall.

Recall =
#T P

#T P+#FN
(3.4)

F1 Score - To obtain the F1 score, it is necessary to calculate the harmonic mean of precision and

recall. Equation (3.5) shows the formula for calculating the F1 score.

F1 = 2× Precision×Recall
Precision+Recall

(3.5)

30 Classification algorithms

Chapter 4

Structure of Portable Executable file
format

Since this thesis works with datasets containing metadata of Portable Executable (PE) files, this chapter

describes the structure of this format. The PE format is utilized by executable files for the Windows

operating system, and it is based on the Common Object File Format (COFF) files [48]. Examples of

files having the PE format include those with the extensions EXE and DLL [49]. Information contained

in the PE file header is crucial for the successful loading into the computer’s memory and subsequent

code execution. The structure of a PE file is depicted in Figure 4.1 [50]. The following sections describe

the main parts of the PE file. Section 4.1 provides a description of the DOS header. Section 4.2 details

the structure of the DOS Stub. The structure of the NT Headers, which includes the File Header and

Optional Header, is described in Section 4.3. Information about the Section table is in Section 4.4, and a

description of the Sections in a PE file is in Section 4.5.

Figure 4.1 The structure of a PE file

31

32 Structure of Portable Executable file format

4.1 DOS Header

The first structure is the DOS Header, consisting of the initial 64 bytes of the PE file [51]. Nowadays, this

structure does not significantly impact the functionality of executable files. However, it remains a part

of the file for backward compatibility with MS-DOS executable files [52]. The DOS Header structure

contains a total of 19 fields, but from the perspective of Windows executable files, the following two are

noteworthy:

e magic - This is the first field of the DOS Header structure. The ASCII value of this field is MZ,

which are the initials of one of the MS-DOS developers. This field is often used for the initial identi-

fication of a PE file.

e lfanew - This is the last field of the DOS Header structure, containing the offset to the start of the

File Header (or COFF Header), which falls under NT Headers (see description below). From the

perspective of Windows executable files, this is the most important field in the DOS header.

Thanks to the ASCII string ’MZ’ contained in the e magic field, this structure is also referred to as

the MZ Header.

4.2 DOS Stub

After the DOS Header, the DOS Stub structure follows, which is also part of PE files for backward

compatibility with MS-DOS executable files. During the linking process of the executable file, a message

is placed here by the linker. This message is printed if the file is executed in an MS-DOS environment.

The default displayed value is the message ’This program cannot be run in DOS mode’.

4.3 NT Headers

NT Headers is a structure that consists of three fields [53]. The first of them is the PE Signature. This

4-byte field contains the constant ASCII value ”PE\0\0,” which is used for identifying PE files [54]. The

remaining two attributes, which are the File and Optional headers, are described in sections 4.3.1 and

4.3.2. Figure 4.2 contains a schema of the NT Headers structure.

Figure 4.2 The structure of the NT header

NT Headers 33

4.3.1 File Header
After the PE Signature, the File Header structure follows. It is a 20-byte structure that contains this

fundamental information about the PE file [55]:

Machine - It is a value that uniquely identifies the target CPU type. Examples include IMAGE FILE

MACHINE AMD64 or IMAGE FILE MACHINE I386.

NumberOfSections - The number of sections in the file.

TimeDateStamp - It is the creation date, represented as the number of seconds since January 1, 1970.

PointerToSymbolTable - It is a pointer pointing to the COFF symbol table. Since COFF debugging

information is currently deprecated, this value is often set to zero.

NumberOfSymbols - This value determines the number of symbols in the COFF symbol table. Sim-

ilar to PointerToSymbolTable, this value is often set to zero (for the same reason).

SizeOfOptionalHeader - The size of the Optional Header structure.

Characteristics - These are flags indicating attributes of the PE file. From the perspective of mal-

ware detection, this is an important element [56]. Attributes, for example, include information about

whether it is a dynamically linked library or whether the architecture of the target processor is 32-bit.

4.3.2 Optional Header
The Optional Header is a structure whose size is not fixed. Despite the name suggesting it is optional,

executable files must include it. The information contained in this header is crucial for the PE loader,

which performs the loading and execution of the executable file based on this information. The content

can be divided into three main parts:

Standard Fields

Windows-Specific Fields

Data Directories

More detailed information about the aforementioned parts is provided in Sections 4.3.2.1, 4.3.2.2, and

4.3.2.3.

4.3.2.1 Standard Fields

After the File Header, the Standard Fields follow. The first eight fields of this Optional Header part

are identical for both PE32+ and PE32 files. The PE32 format additionally includes the ninth field,

BaseOfData. The description of all nine fields follows:

34 Structure of Portable Executable file format

Magic - The magic number can have one of three possible values. The value 0x10b is used to denote

the 32-bit PE32 format. The 64-bit PE32+ format is represented in the Magic field by the value 0x20b.

The last possible value is 0x107, which represents ROM image files.

MajorLinkerVersion - This field contains the major version of the linker.

MinorLinkerVersion - This field contains the minor version of the linker.

SizeOfCode - This field contains the size of the .text section or the sum of the sizes of all .text
sections if the PE file contains multiple ones.

SizeOfInitializedData - This field contains the size of the .data section or the sum of the sizes of all

.data sections if the PE file contains multiple ones.

SizeOfUninitializedData - The SizeOfUninitializedData field contains the size of the .bss section or

the sum of the sizes of all .bss sections if the PE file contains multiple ones.

AddressOfEntryPoint - It is a Relative Virtual Address (RVA) pointing to the entry point of the

program. This RVA contains the relative distance from the image base and changes depending on the

location in the memory. If the entry point is missing (not mandatory for DLLs), the field must be set

to zero.

BaseOfCode - BaseOfCode is an RVA pointing to the beginning of the .text section. Its value is

obtained after loading the file into the memory.

BaseOfData (only for PE32) - This is an RVA pointing to the beginning of the .data section. The

RVA is obtained after loading the file into the memory.

4.3.2.2 Windows-Specific Fields

After the Standard Fields, there are 21 fields that constitute an extension of the original COFF Optional

Header. The information contained in these fields is crucial for the loader and linker in executable files

running under the Windows operating system. These fields include:

ImageBase - This field represents the preferred address of the first byte of the executable file, i.e., the

address to which the file should be loaded. It must be a multiple of 64K. In most cases, this field is

ignored by the PE loader, and an address from the free part of the memory is chosen.

SectionAlignment - SectionAlignment determines the alignment of individual sections. The value

(in bytes) of this field must be greater than or equal to the value of the FileAlignment field.

FileAlignment - This field represents the alignment of raw data sections in the image file on disk.

Similar to SectionAlignment, the value, specified in bytes, should range between 512 and 64K and

should be a power of two.

MajorOperatingSystemVersion - This field contains the major version number of the required op-

erating system.

NT Headers 35

MinorOperatingSystemVersion - This field contains the minor version number of the required op-

erating system.

MajorImageVersion - This field contains the major version number of the image.

MinorImageVersion - This field contains the minor version number of the image.

MajorSubsystemVersion - This field contains the major version number of the subsystem.

MinorSubsystemVersion - This field contains the minor version number of the subsystem.

Win32VersionValue - Reserved field; its value must be zero.

SizeOfImage - This field contains information about the size of the image in bytes after loading into

memory. This value includes all file headers and must be a multiple of Section Alignment.

SizeOfHeaders - It represents the sum of the sizes of the DOS Stub, NT Headers, and section headers.

If it is not a multiple of FileAlignment, it is rounded to the nearest such value.

CheckSum - Checksum of the file.

Subsystem - Here, the required subsystem for the successful execution of the PE file is specified. Indi-

vidual subsystems are represented by values between 0 and 16. For example, IMAGE SUBSYSTEM

WINDOWS GUI is a constant for the Windows graphical user interface subsystem, represented by

the decimal value 2.

DllCharacteristics - This field contains information about the PE file in the form of flags.

SizeOfStackReserve - This field contains information about the size of the stack to reserve.

SizeOfStackCommit - This field contains information about the size of the stack to commit.

SizeOfHeapReserve - This field contains information about the size of heap space to reserve.

SizeOfHeapCommit - This field contains information about the size of heap space to commit.

LoaderFlags - Reserved field; its value must be zero.

NumberOfRvaAndSizes - This field contains information about the number of entries in the Data

Directories section.

4.3.2.3 Data Directories

Data Directories, which immediately follow the Windows-Specific Fields, are the last element of the

Optional Header. It is a structure containing up to (the count is not fixed) sixteen fields:

VirtualAddress - It contains the RVA pointing to the beginning of the Data Directory entry.

Size - It contains the size of the Data Directory entry.

36 Structure of Portable Executable file format

Currently, two Data Directory entries are reserved, and therefore, the values of their fields must be set

to zero, same as all missing Data Directories. The remaining fourteen entries are described below:

Export Table - Contains the RVA and size of the export table. This table is located in the .edata
section.

Import Table - Contains the RVA and size of the import table. This table is located in the .idata
section.

Resource Table - Contains the RVA and size of the resource table. This table is located in the .rsrc
section.

Exception Table - Contains the RVA and size of the exception table. This table is located in the

.pdata section.

Certificate Table - Contains the RVA and size of the certificate table.

Base Relocation Table - Contains the RVA and size of the base relocation table. This table is located

in the .reloc section.

Debug - Contains the RVA and size of debug data.

Global Ptr - RVA pointing to the value of the global pointer register. The Size field is set to zero in

this case.

TLS Table - Contains the RVA and size of the Thread Local Storage (TLS) table.

Load Config Table - Contains the RVA and size of the load configuration table.

Bound Import - Contains the RVA and size of the bound import table.

IAT - Contains the RVA and size of the import address table.

Delay Import Descriptor - Contains the RVA and size of the delay import descriptor.

CLR Runtime Header - Contains the RVA and size of the CLR runtime header.

4.4 Section Table

The Section Table follows directly in the structure of the PE file after the NT Headers. This must be

adhered to because there is no field pointing to this structure. It is a table whose entries are section

headers. The structure of each of the headers is as follows:

Name - This 8-byte field contains the name of the section. The name is represented as a UTF-8 string,

and if its size is less than 8 bytes, it is padded with null bytes. In the case of executable files, strings

longer than 8 bytes are not used.

Sections 37

VirtualSize - It represents the size of the section after loading into the memory. This value may be

larger than the value in the SizeOfRawData field. This situation occurs when the section is zero-

padded.

VirtualAddress - This field contains the RVA pointing to the first byte of the section. The RVA is

obtained after loading the executable file into memory.

SizeOfRawData - For executable files, this is the size of initialized data on disk. This value must

be a multiple of the FileAlignment value from the Optional Header and also less than or equal to

VirtualSize.

PointerToRawData - For executable files, this value, which is a multiple of the FileAlignment value,

is the file pointer to the beginning of the section within the executable file.

PointerToRelocations - This field contains a pointer to the beginning of relocation entries for the

section.

PointerToLineNumbers - This is a pointer to the beginning of line-entries records. For executable

files, this value is set to zero because these are deprecated records.

NumberOfRelocations - The value of this field indicates the number of relocation entries. PE files

do not have relocation entries, so this value is set to zero.

NumberOfLinenumbers - It is a value indicating the number of line-number entries, and for PE files,

it is set to zero.

Characteristics - This field of the section header contains flags characterizing the section.

4.5 Sections

The sections are located in the file structure after the section table and contain the actual data of the PE

file. Each file has at least two sections, one for code and the other for data [57]. There are many types of

sections, and the most common ones are described below.

.text - This section contains executable code that is executed upon launching the PE file.

.data - In this section, initialized data is stored.

.rdata - This section contains data intended for read-only access.

.bss - It holds uninitialized data.

.edata - Export tables are stored in this section.

.idata - The .idata section contains import tables.

.reloc - It contains relocation information for the PE file.

38 Structure of Portable Executable file format

.rsrc - All resources used by the executable file are stored in the .rsrc section. Examples include icons.

.tls - The Thread Local Storage section provides storage for the currently executing threads of the

program.

Chapter 5

Preprocessing of Datasets Before
Applying IS Algorithms

In this chapter, the data preprocessing methods applied before experiments with instance selection algo-

rithms are described. Section 5.1 specifies the parameters of the computing stations used during prepro-

cessing. An overview of the selected datasets is provided in Section 5.2. Section 5.3 describes the process

of preprocessing the EMBER and SOREL-20M datasets, including the applied methods and experimental

results.

5.1 Used hardware devices

Experiments and computations were conducted on two computing stations. All experiments with the

EMBER dataset took place on the NVIDIA DGX Station. The specifications of the NVIDIA DGX

Station are described in Table 5.1.

NVIDIA DGX Station A100 Version 5.4.2

Processor AMD EPYC 7742 64-Core Processor 2.25 GHz
Memory 512 GB
Operating system Ubuntu 20.04.5 LTS

Table 5.1 Specifications of the NVIDIA DGX Station

Due to its size, the SOREL-20M dataset was partially processed on the GPU2 computing station,

which has a larger memory. Specifically, this involved parsing the dataset into CSV files and data clean-

ing. The specifications of the GPU2 computing station are provided in Table 5.2. The remaining prepro-

cessing of the SOREL-20M dataset was performed on the NVIDIA DGX Station.

39

40 Preprocessing of Datasets Before Applying IS Algorithms

GPU2 Station

Processor 2x Intel(R) Xeon(R) Gold 6136, 3.00GHz, 12 cores
Memory 755 GB
Operating system Ubuntu 20.04.5 LTS

Table 5.2 Specification of parameters for GPU2 computing station

5.2 Information about the Chosen Datasets

For the experiments in this master’s thesis, two datasets containing features extracted from malicious and

benign PE files were selected. Section 5.2.1 provides an overview of the EMBER dataset, while Section

5.2.2 contains information about the SOREL-20M dataset.

5.2.1 EMBER
EMBER [6] is a dataset designed for static detection of Windows portable executable files. In this thesis,

experiments were conducted using version 2 from 2018, which contains one million instances. For the

experiments, 800k instances were used from the original dataset, the remaining 200k were unlabeled

and thus were not suitable for experiments with supervised algorithms. The dataset containing instances

represented as JSON objects was transformed into two CSV files (feature and label separation) using the

Python script ember json parsing.py. Feature hashing (see 5.3) was applied during parsing on parts with

variable sizes and some structures. Each JSON record contained the following thirteen main elements,

and some of them contained additional substructures:

sha256 (string) - Contains the SHA-256 hash of the file.

md5 (string) - Contains the MD5 hash of the file.

avclass (string) - Contains the malware type.

appeared (date) - Contains the month and year of the first appearance.

label (number) - Contains one of three possible values (malicious = 1, benign = 0, unlabeled = -1).

general (JSON) - Contains general metadata, such as file size, the number of imported functions, or

information about whether the file is digitally signed.

header (JSON) - Contains information obtained from File and Optional Headers.

imports (JSON) - For each imported library, a list of imported functions is provided.

exports (list) - Contains a list of exported symbols.

section (JSON) - Contains information obtained from section headers.

histogram (list) - Contains information about the frequency of individual bytes.

Information about the Chosen Datasets 41

byteentropy (list) - A list containing the entropy of individual bytes.

strings (JSON) - Contains information about strings, including a histogram of printable characters.

An example structure of one of the original JSON records is provided in ember example structure.txt
due to its size.

5.2.2 SOREL-20M
The second chosen large-scale dataset is SOREL-20M [7]. SOREL-20M was created from nearly twenty

million instances containing pre-extracted features and metadata of Windows Portable Executable files.

The data were parsed from two databases: the SQLite3 database meta.db and the LDBM pe metadata
database, composed of files lock.mdb and data.mdb. The SQLite3 database contained information about

labels, tags, detection counts, and first/last occurrences related to SHA-256 file hashes. These hashes

served as keys for accessing the LDBM database, which contained PE metadata extracted using the

Python module pefile [58]. Each record consisted of 12 main parts, some of which were composed

of additional substructures:

DOS HEADER (JSON) - The fields of this structure is identical to the fields of the DOS header.

NT HEADERS (JSON) - Contains the PE signature.

FILE HEADER (JSON) - Contains information obtained from the File Header.

Flags (list) - A list of executable file attributes corresponding to the Characteristics field in the File

Header.

OPTIONAL HEADER (JSON) - This part contains information obtained from the Optional Header

of the PE file.

DllCharacteristics (list) - A list of executable file attributes obtained from the Optional Header.

PE Sections (list) - A list of structures of section headers containing information about individual

sections.

Directories (list) - A list of Data Directory entries.

Version Information (list) - Contains general information about the executable file.

Imported symbols (list) - Contains a list of imported libraries and functions.

Resource directory (list) - Contains information about resources used in the PE file, such as icons,

bitmaps, or strings.

Base relocations (list) - Contains information about address relocations in memory.

An example of the original JSON record is provided in the file sorel example structure.txt, due to

its size. Parsing was performed using the script sorel json parsing.py.

42 Preprocessing of Datasets Before Applying IS Algorithms

5.3 Preprocessing procedure

As feature hashing was used during parsing, experiments with the number of transformed feature bins

were conducted first. The impact of the created bins on classification accuracy was evaluated separately

for each structure. This means that while experimenting with the number of bins for one structure, the

bin counts for other structures were fixed. Only the training and validation sets of the EMBER dataset

were used for experiments, and the resulting bin counts were also applied to the SOREL-20M dataset

(identical transformed features). Feature hashing was applied to these structures:

Characteristics from File Header

DllCharacteristics from Optional Header

From the structure IMAGE SECTION HEADER:

List of Name fields

List of VirtualSize fields

List of SizeOfRawData fields

List of Characteristics fields

List of Entropy fields

List of imported libraries

List of ordered pairs (imported library, imported function)

List of exported functions

List of Entry fields (only for EMBER)

Table 5.3 contains the counts of bins experimented with during feature hashing for individual sections.

Section Bin counts

Pairs library-function 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 600, 700,
800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1750, 2000

Library names 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 200, 300, 400, 500, 600, 700
Other 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120

Table 5.3 Tested numbers of bins for individual structures

For evaluation, a KNN classifier with the parameter K=3 was used. Before evaluation, the following

methods were applied to all versions: imputation of missing values with a constant, removal of con-
stant features, removal of features with unique values, removal of duplicate rows, one-hot encoding
(features ”machine,” ”subsystem,” and ”magic”), and standardization. More detailed information about

each method is provided below.

As part of the experiments, a comparison was also made between a version of the dataset where feature

scaling was applied to all features and a version where feature scaling was omitted for features created

Preprocessing procedure 43

using one-hot encoding and feature hashing (hereinafter referred to as the dataset with ”non-dummy”
features scaled). For both EMBER and SOREL-20M, two versions were created for further experimen-

tation. In Table 5.4, selected bin counts for individual structures and dataset versions are provided. The

values were selected based on the classification accuracy of the validation set. Complete results have

been included in the appendices.

Section
All features scaled ”Non-dummy” features scaled

Num of bins Accuracy Num of bins Accuracy

Characteristics 50 0.9521 10 0.9471
DllCharacteristics 40 0.9519 20 0.9471

Name 10 0.9525 0 0.9499
Misc 10 0.9525 0 0.9499

SizeOfRawData 10 0.9525 0 0.9499
Flags 10 0.9525 0 0.9499

Entropy 10 0.9525 0 0.9499
Imported libraries 110 0.9525 50 0.9472

Pairs (library-function) 900 0.9521 1300 0.9476
Exports 0 0.9524 0 0.9482
Entry 10 0.9519 0 0.9472

Table 5.4 Selected bin counts for individual structures

The parsing of both datasets was thus carried out with the above-mentioned counts. Further prepro-

cessing of datasets before applying IS algorithms is described in sections 5.3.1 and 5.3.2.

5.3.1 EMBER
Both created versions of the EMBER dataset were divided into training, validation, and test sets in a ratio

of 60:20:20. The sizes of the individual sets are in Table 5.5. In sections 5.3.1.1, 5.3.1.2, 5.3.1.3, 5.3.1.4,

5.3.1.5, 5.3.1.6, 5.3.1.7, 5.3.1.8, 5.3.1.9, and 5.3.1.10, methods of data preprocessing and experimental

evaluation are described in the order in which they were applied to the dataset.

Set All features scaled ”Non-dummy” features scaled

Num of instances Num of features Num of instances Num of features

Train 480000 1834 480000 2054
Validation 120000 1834 120000 2054

Test 120000 1834 120000 2054
Table 5.5 Sizes of the created sets of the EMBER dataset

44 Preprocessing of Datasets Before Applying IS Algorithms

5.3.1.1 Missing values imputation

In the EMBER dataset, missing values were present in the following features:

All features VirtualAddress and Size in the Data Directory structures

Categorical features Machine and Subsystem

In all cases, a constant value was used to impute missing values. Missing values represented by NaN

for the features VirtualAddress and Size were replaced with zeros. For categorical features Machine and

Subsystem, where missing values were represented by the string ”???”, these values were replaced with

the string ”UNKNOWN,” which, according to [50], is a valid category for both mentioned features.

5.3.1.2 Removal of constant features

Constant features were subsequently removed from both versions of the EMBER dataset, i.e., features

with the same value for all instances in the training set. In most cases, these were features created using

feature hashing. Table 5.6 contains the original and new counts of features for both versions.

Dataset version Num of features before Num of features after

All features scaled 1834 1758
”Non-dummy” features scaled 2054 2042

Table 5.6 Changes after the removal of constant features in the EMBER dataset

5.3.1.3 Removal of features with unique values

Subsequently, the features whose value was unique for each instance of the training set were removed.

This condition applied to the sha256 and md5 features, which were removed from the dataset. The

original and new counts after removing these features are in Table 5.7.

Dataset version Num of features before Num of features after

All features scaled 1758 1756
”Non-dummy” features scaled 2042 2040

Table 5.7 Changes after removing unique features from the EMBER dataset

5.3.1.4 Removal of duplicate instances

Duplicate instances were removed from all three sets, i.e., training, validation, and test. In all three sets,

the number of duplicate instances was in the order of units. Changes in the number of instances for each

set and version of the EMBER dataset are summarized in Table 5.8.

Preprocessing procedure 45

Set All features scaled ”Non-dummy” features scaled

Before After Before After

Train 480000 479952 480000 479952
Validation 120000 159993 120000 159993

Test 120000 159997 120000 159997

Table 5.8 Changes after removing duplicate instances from the EMBER dataset

5.3.1.5 Removal of inconsistencies

In this thesis, the term ’inconsistencies’ refers to two or more instances with the same feature vector but

different labels. No inconsistencies were found in the EMBER dataset.

5.3.1.6 Conversion of categorical features to numeric

Since the KNN classifier and the employed IS algorithms work with numerical vectors, the following

operations were applied to the remaining categorical features:

The appeared feature was converted from the date format to the datetime/109 format.

One-hot encoding was applied to the features machine, subsystem, and magic.

The changes in the number of features are recorded in Table 5.9.

Dataset version Num of features before Num of features after

All features scaled 1756 1778
”Non-dummy” features scaled 2040 2062

Table 5.9 Changes after applying one-hot encoding to the EMBER dataset

5.3.1.7 Outlier handling

The IQR method was used for detecting outliers. Each of the two versions was then divided into three

additional sub-versions:

Version without replacing outliers

Version with outliers replaced by the median

Version with outliers replaced by the mean

Thus, six new versions were created from the two original versions of the EMBER dataset (see Fig-

ure 5.1). These newly created versions were processed separately, and their evaluation took place after

applying feature scaling.

46 Preprocessing of Datasets Before Applying IS Algorithms

Figure 5.1 Diagram of the distribution of datasets within outlier handling

5.3.1.8 Feature scaling

In this thesis were conducted experiments with the following feature scaling methods:

Min-max normalization

Standardization

Robust scaling

Each of the above-mentioned methods was applied to all versions created so far. Thus, the six original

versions of the EMBER dataset were transformed into eighteen new versions. The diagram in Figure 5.2

summarizes the gradual creation of versions of the EMBER dataset during preprocessing.

Figure 5.2 EMBER dataset partitioning scheme

Preprocessing procedure 47

5.3.1.9 Evaluation before feature extraction

A KNN classifier with the parameter K=3 was used to evaluate all eighteen variants on the validation

set of the EMBER dataset. The highest accuracy was achieved when applying min-max normalization to

all features without replacing outliers (labeled as Scaled all in the following table). Among the datasets

without applied feature scaling to dummy features, the best accuracy was achieved by combining stan-

dardization and replacing outliers with the mean (labeled as Not scaled all in the following table). These

two versions were used for further experiments with feature extraction. Information about the accuracy

of selected versions is in Table 5.10. Complete results are included in the appendices.

Metric Scaled all Not scaled all

Accuracy 0.9554 0.9513
F1 score 0.9555 0.9514

Table 5.10 Information about selected versions of the EMBER dataset before feature extraction

5.3.1.10 Feature extraction

The PCA method was used for feature extraction from both datasets selected in 5.3.1.9. The number

of tested features obtained by the PCA method ranged from 1 to 120. The transformed version of the

’Scaled all’ dataset with 119 features achieved the highest accuracy on the validation set and was used

for the following experiments with IS algorithms. Information about the chosen dataset is in Table 5.11.

Set sizes Number of features Accuracy F1
Train Validation Test

479952 159993 159997 119 0.9544 0.9545
Table 5.11 Information about the EMBER dataset after preprocessing

5.3.2 SOREL-20M
Based on the experiments described at the beginning of Section 5.3, two versions of the SOREL-20M

dataset with different numbers of features created using feature hashing were parsed. Like the EMBER

dataset, the dataset was divided into training, validation, and test sets in a ratio of 60:20:20. The numerical

representation of the created sets is in Table 5.12. Sections 5.3.2.1, 5.3.2.2, 5.3.2.3, 5.3.2.4, 5.3.2.5,

5.3.2.6, 5.3.2.7, 5.3.2.8, 5.3.2.9, and 5.3.2.10 describe the applied preprocessing methods and the results

of the experimental evaluation in the order in which they were applied to the SOREL-20M dataset.

48 Preprocessing of Datasets Before Applying IS Algorithms

Set All features scaled ”Non-dummy” features scaled

Num of instances Num of features Num of instances Num of features

Train 11626773 1242 11626773 1472
Validation 3875591 1242 3875591 1472

Test 3875592 1242 3875592 1472
Table 5.12 The sizes of the created sets of the SOREL-20M dataset

5.3.2.1 Missing values imputation

The SOREL-20M dataset contained missing values for the same features as the EMBER dataset. For

this reason, the procedure for completing the missing values was identical to the procedure given in the

5.3.1.1 section.

5.3.2.2 Removal of constant features

In both versions of the SOREL-20M dataset created so far, constant features were found and subsequently

removed. In most cases, these were features created using feature hashing. The changes after the removal

of constant features are in Table 5.13.

Dataset version Num of features before Num of features after

All features scaled 1242 1062
”Non-dummy” features scaled 1472 1405

Table 5.13 Changes after the removal of constant features from the SOREL-20M dataset

5.3.2.3 Removal of features with unique values

Neither version contained features for which each instance in the training set had a unique value.

5.3.2.4 Removal of duplicate instances

The removal of duplicates, as with EMBER, took place for the training, validation, and test sets. The

number of deleted instances for the SOREL-20M dataset was in the order of millions. Changes in the

number of instances according to individual sets and versions of the SOREL-20M dataset are summarized

in table 5.14.

Set All features scaled ”Non-dummy” features scaled

Before After Before After

Train 11626773 6931041 11626773 6438086
Validation 3875591 2390916 3875591 2223164

Test 3875592 2389201 3875592 2222007
Table 5.14 Changes after removing duplicate instances from the SOREL-20M dataset

Preprocessing procedure 49

5.3.2.5 Removal of inconsistencies

In the case of the SOREL-20M dataset, inconsistencies were found. The size of both versions decreased

by thousands of instances after removal. The exact changes in the number of instances for individual

versions and their sets are recorded in Table 5.15.

Set All features scaled ”Non-dummy” features scaled

Before After Before After

Train 6931041 6926181 6438086 6430468
Validation 2390916 2388994 2223164 2220534

Test 2389201 2387255 2222007 2219577
Table 5.15 Changes after removing inconsistencies from the SOREL-20M dataset

5.3.2.6 Conversion of categorical features to numeric

One-hot encoding was applied to the remaining categorical features of both versions that were not trans-

formed using feature hashing (see the beginning of Section 5.3). These features include Machine, Sub-
system, and Magic. Table 5.16 summarizes the changes in the number of features after applying one-hot

encoding.

Dataset version Num of features before Num of features after

All features scaled 1062 1088
”Non-dummy” features scaled 1405 1431

Table 5.16 Changes after applying one-hot encoding to the SOREL-20M dataset

5.3.2.7 Outlier handling

The transformation of the original two versions of the SOREL-20M dataset into six new versions followed

the procedure used for the EMBER dataset. More details about the methods used can be found in Section

5.3.1.7.

5.3.2.8 Feature scaling

The creation of eighteen new versions from the original six versions was carried out based on the same

procedure used for the EMBER dataset. A description of the methods used and the newly created versions

is provided in Section 5.3.1.8.

5.3.2.9 Evaluation before feature extraction

The eighteen created versions of the SOREL-20M dataset were evaluated using a KNN classifier with

the parameter K=3. Due to the imbalanced representation of classified classes in the datasets, besides

50 Preprocessing of Datasets Before Applying IS Algorithms

accuracy, the F1 score was also taken into account. The version with standardized ’non-dummy’ features

and outliers replaced by the mean (labeled as Not scaled all in the following table) achieved the highest

accuracy. In the achieved F1 score, this version ranked second. Among the versions with feature scaling

applied to all features, the combination of robust scaling with outliers replaced by the arithmetic mean

(labeled as Scaled all in the following table) achieved the highest accuracy and F1 score (among all

versions). Experiments with feature extraction were conducted on both mentioned dataset variants. The

achieved F1 scores and accuracies of selected versions are presented in Table 5.17. The complete results

of the experiments have been included in the appendices.

Metric Scaled all Not scaled all

Accuracy 0.9765 0.9770
F1 score 0.9595 0.9562

Table 5.17 Information about selected versions of the SOREL-20M dataset before feature extraction

5.3.2.10 Feature extraction

The PCA method was also used for feature extraction from the two selected versions of the SOREL-

20M dataset (see 5.3.2.9). The extracted features were tested within the range of 1 to 120 during the

experiments. The ’Scaled all’ version with 106 extracted features has been chosen for experiments with

IS algorithms. A description of the selected version is provided in Table 5.11.

Set sizes Number of features Accuracy F1
Train Validation Test

6926181 2388994 2387255 106 0.9761 0.9587
Table 5.18 Information about the SOREL-20M dataset after preprocessing

Chapter 6

Proposed modifications of the PIF
algorithm

This chapter describes proposed modifications of the PIF algorithm, which were applied and experimen-

tally evaluated alongside other state-of-the-art IS algorithms. Combining two proposed modifications re-

sulted in a total of five modified versions, described below. Section 6.1 contains a description of versions

of the PIF algorithm with replaced editing algorithms. The principle of applying repeated subset filtration

in the PIF algorithm is described in Section 6.2, and Section 6.3 contains combinations of modifications

proposed in the previous sections.

6.1 Replacement of the editing algorithm

The first proposal was to replace the original Wilson editing with other editing algorithms. Specifically,

the algorithms RENN (see 2.2.1) and AllKNN (see 2.2.2) were considered. The version using the RENN

algorithm is further referred to as PIF-RENN, and the designation PIF-AllKNN is used for the modifica-

tion of the PIF algorithm in which the AllKNN algorithm is used for editing. Both mentioned algorithms

more thoroughly reduce ’noisy’ border points, resulting in a ’smoother’ decision boundary. The aim is to

assess the impact of this fact on the subsequent filtration of disjoint subsets and the overall performance

of the PIF algorithm. Pseudocode 12 contains the algorithms described above. Changes compared to the

original version of the PIF algorithm are highlighted in red.

Algorithm 12 PIF-AllKNN/PIF-RENN

Let:
T be the original dataset
Tnew be the reduced dataset
NE be the set of elements that are the nearest enemies for at least one of the other elements in
Tnew

51

52 Proposed modifications of the PIF algorithm

PIF-AllKNN/PIF-RENN (continued)
K be the parameter for the AllKNN/RENN algorithms
m be the parameter indicating the minimum subset size
d(x,y) be the distance (e.g., Euclidean distance) between elements x and y

1: Tnew← T
2: Tnew← AllKNN(Tnew,K)/RENN(Tnew,K) ▷ Select AllKNN or RENN
3: for each x ∈ Tnew do
4: find the nearest enemy nex
5: add x to the subset Snex

6: end for
7: for each ne ∈ NE do
8: if |Sne| ≥ m then
9: for each y ∈ Sne do

10: for each x ∈ Sne where x ̸= y do
11: if d(y,ne)≥max{d(x,y),d(x,ne)} then
12: Tnew← Tnew \{y}
13: continue to the next y
14: end if
15: end for
16: end for
17: end if
18: end for
19: return Tnew

6.2 Repeated PIF

This modification involves repeatedly applying the filtration rule to updated disjoint subsets containing

elements with the same nearest enemy. For this reason, the proposed algorithm is further referred to as

Repeated PIF (RPIF). Another iteration of the algorithm occurs if, during the previous filtration, at least

one element y was removed. Another option is to use a parameter specifying the maximum number of

iterations. The RPIF algorithm is summarized in pseudocode 13. The parts highlighted in red indicate

changes compared to the PIF algorithm.

Algorithm 13 RPIF

Let:
T be the original dataset
Tnew be the reduced dataset
NE be the set of elements that are the nearest enemies for at least one of the other elements in
Tnew
K be the parameter for the Wilson Editing algorithm
m be the parameter indicating the minimum subset size
d(x,y) be the distance (e.g., Euclidean distance) between elements x and y
max iter be the parameter specifying the maximum number of iterations (OPTIONAL)

1: Tnew← T
2: Tnew←WilsonEditing(Tnew,K)
3: progress← true
4: iter← 0

RPIF with edition algorithm changed 53

RPIF (continued)

5: while progress do
6: iter = iter+1
7: if max iter is set AND iter > max iter then
8: go to step 29
9: end if

10: progress← f alse
11: for each x ∈ Tnew do
12: find the nearest enemy nex
13: add x to the subset Snex

14: end for
15: for each ne ∈ NE do
16: if |Sne| ≥ m then
17: for each y ∈ Sne do
18: for each x ∈ Sne where x ̸= y do
19: if d(y,ne)≥max{d(x,y),d(x,ne)} then
20: Tnew← Tnew \{y}
21: progress← true
22: continue to the next y
23: end if
24: end for
25: end for
26: end if
27: end for
28: end while
29: return Tnew

6.3 RPIF with edition algorithm changed

Further experiments were conducted with two modified versions of the PIF algorithm, combining adjust-

ments mentioned in sections 6.1 and 6.2. The version of the RPIF algorithm with the AllKNN editing

algorithm is further referred to as RPIF-AllKNN, and the designation RPIF-RENN is used for the RPIF

algorithm that performs editing using the RENN algorithm. The pseudocode for the described modifica-

tions is presented in section 14.

Algorithm 14 RPIF-AllKNN/RPIF-RENN

Let:
T be the original dataset
Tnew be the reduced dataset
NE be the set of elements that are the nearest enemies for at least one of the other elements in
Tnew
K be the parameter for the AllKNN/RENN algorithms
m be the parameter indicating the minimum subset size
d(x,y) be the distance (e.g., Euclidean distance) between elements x and y

54 Proposed modifications of the PIF algorithm

RPIF-AllKNN/RPIF-RENN (continued)
1: Tnew← T
2: Tnew← AllKNN(Tnew,K)/RENN(Tnew,K) ▷ Select AllKNN or RENN
3: progress← true
4: while progress do
5: progress← f alse
6: for each x ∈ Tnew do
7: find the nearest enemy nex
8: add x to the subset Snex

9: end for
10: for each ne ∈ NE do
11: if |Sne| ≥ m then
12: for each y ∈ Sne do
13: for each x ∈ Sne where x ̸= y do
14: if d(y,ne)≥max{d(x,y),d(x,ne)} then
15: Tnew← Tnew \{y}
16: progress← true
17: continue to the next y
18: end if
19: end for
20: end for
21: end if
22: end for
23: end while
24: return Tnew

Chapter 7

Experiments with instance selection
algorithms

This chapter presents the main part of this thesis, focusing on the experimental evaluation and mutual

comparison of instance selection algorithms described in Chapters 2 and 6. The chosen classification

algorithm is KNN with a parameter K=3. The main metric used for comparing IS algorithms was the

ratio between the achieved accuracy when using the reduced training set and the level of reduction of this

set (7.1).

MAccSize =
Accred

Sizered
(7.1)

where:

Accred is the achieved accuracy on the test set when classifying using the reduced training set, ex-

pressed as a percentage

Sizered is the size of the reduced training set compared to the original training set, expressed as a

percentage

Additionally, classification accuracy, reduction level, and runtime of IS algorithms were considered in

the comparison. For all IS algorithms, a custom implementation was developed. The main programming

language used was Python, but computationally intensive and parallelizable parts of the algorithms were

implemented in the C programming language for speed. Section 7.1 describes the process of tuning the

parameters of instance selection algorithms. The main experiments, the comparison of IS algorithms, and

the discussion of the obtained results are presented in Section 7.2.

7.1 Tuning parameters of instance selection algorithms

This section describes the tuning of parameters for IS algorithms conducted before their mutual compar-

ison. Parameter tuning was performed separately for both datasets, meaning that the parameters of IS

55

56 Experiments with instance selection algorithms

algorithms were set based on independent evaluations on each dataset. The size of the training set subset

for experiments was 75,000 for both the SOREL-20M and EMBER datasets. The parameter labels corre-

spond to the labeling used in the pseudocodes in Chapters 2 and 6. Algorithms with multiple parameters

were tested with all possible combinations of the specified parameter values. Table 7.1 contains the pa-

rameter values for each algorithm that were experimented with during the tuning process. The parameter

selection was based on MAccSize, considering only parameter combinations where the accuracy did not

decrease by more than p percent compared to the original accuracy. This condition was created because

the metric MAccSize does not include a penalty for accuracy loss. Algorithms with ’significantly’ lower

accuracy could therefore surpass algorithms with high accuracy if they achieved a greater level of dataset

reduction. In this work, p = 5% was chosen. If no parameter combination meeting this condition was

found, the combination with the smallest accuracy reduction was selected.

Algorithms Parameter Parameter values

ENN, RENN, AllKNN, CNN, ICF K 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29
PIF/RPIF - all versions K 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29

m 2, 3, 4, 5, 6, 7, 8, 9, 10
max iter 2, 3, 4, all

DROP3 KENN 1, 3, 5, 7, 9, 11, 13, 15, 17, 19
K 1, 3, 5, 7, 9, 11, 13, 15, 17, 19

Table 7.1 Tested parameter values of instance selection algorithms

The results of tuning the parameters of IS algorithms on the EMBER and SOREL-20M datasets are

presented in Tables 7.2 and 7.3. Both tables include classification results in the first row when using the

KNN classifier with the unreduced training set. The selected parameters are in the Params column. The

parameter names correspond to the notation in the pseudocodes of IS algorithms, as described in Chapters

2 and 6.

Algorithm Params MAccSize Size (%) Acc (%) F1 (%)

KNN - - 100 92.67 92.69
ENN K=27 1.01 89.69 90.28 90.32

RENN K=27 1.02 86.15 88.27 88.34
AllKNN K=29 1.09 82.14 89.65 89.70

CNN K=3 5.22 17.54 91.55 91.59
ICF K=7 5.07 17.45 88.56 88.66

DROP3 KENN=17, K=19 8.73 10.10 88.17 88.07
PIF K=29, m=2 8.67 10.31 89.34 89.38

PIF-RENN K=13, m=2 8.79 10.02 88.09 88.07
PIF-AllKNN K=17, m=2 10.52 8.42 88.65 88.56

RPIF K=25, m=2, max iter=all 12.55 7.04 88.30 88.33
RPIF-RENN K=13, m=2, max iter=2 13.33 6.60 88.05 88.04

RPIF-AllKNN K=17, m=2, max iter=2 16.31 5.41 88.27 88.22
Table 7.2 Selected parameters of IS algorithms for experiments with the EMBER dataset

Comparison of IS algorithms 57

Further, the tables include metric values (7.1), sizes of reduced sets, accuracies, and F1 scores. In

the columns MAccSize, Size, Acc, and F1, the best achieved values across IS algorithms are highlighted

in bold (the first row is not considered). If none of the combinations of parameter values for a specific

algorithm resulted in an accuracy loss of less than five percent, the metric value in the corresponding row

is highlighted in red. This case occurred only for the SOREL-20M dataset during the tuning of parameters

for the ICF algorithm. In the case of both datasets, the CNN algorithm achieved the highest accuracy and

F1 score. In terms of MAccSize and the level of reduction, for both the EMBER and SOREL-20M datasets,

the RPIF-AllKNN algorithm was the best.

Algorithm Params MAccSize Size (%) Acc (%) F1 (%)

KNN - - 100 92.84 87.43
ENN K=29 1.00 90.3880 90.71 82.81

RENN K=29 1.01 88.1360 89.44 80.24
AllKNN K=29 1.08 83.5973 90.35 82.12

CNN K=3 4.89 18.6000 90.97 84.69
ICF K=5 7.81 11.19 87.36 78.91

DROP3 KENN = 13, K=13 11.51 7.67 88.24 79.34
PIF K=29, m=2 6.35 14.22 90.33 82.16

PIF-RENN K=29, m=2 7.19 12.39 89.14 79.87
PIF-AllKNN K=29, m=2 7.47 12.05 90.03 81.59

RPIF K=29, m=2, max iter = all 10.69 8.29 88.63 79.81
RPIF-RENN K=19, m=2, max iter = all 12.11 7.28 88.24 79.18

RPIF-AllKNN K=29, m=2, max iter = 4 13.82 6.38 88.23 79.21
Table 7.3 Selected parameters of IS algorithms for experiments with the SOREL-20M dataset

7.2 Comparison of IS algorithms

The content of this section involves the comparison of the listed instance selection algorithms. In Sub-

section 7.2.1, the comparison of IS algorithms when applied to the EMBER dataset is presented, and the

results of IS algorithms for the SOREL-20M dataset are described in Subsection 7.2.2.

7.2.1 EMBER
In the case of EMBER, IS algorithms were applied to the following set sizes: 1k, 2k, 5k, 10k, 20k, 30k,

40k, 50k, 60k, 75k, 100k, 200k, 300k, 479,952. The parameter k in these values denotes multiples of

a thousand. The DROP3 algorithm, due to computational complexity, was applied only up to a size of

300k. The remaining algorithms were used to reduce the entire training set. This subsection includes

a total of four tables. Each table contains values for one of the following metrics: the MAccSize metric,

classification accuracy, the size of reduced sets, and computational time. The content of each table is

visualized in separate graphs. Values marked in red represent sets where the reduction resulted in an

accuracy decrease greater than 5%. In addition to the RPIF algorithm version with parameters set based

on experiments described in 7.1, a version labeled as RPIF 2 was used, where the maximum number of

58 Experiments with instance selection algorithms

iterations (max iter) was set to 2. This was done to evaluate whether additional iterations of the algorithm

lead to a ”significant” loss of classification accuracy at the expense of only a ”small” reduction in the size

of reduced sets.

Table 7.4 and Figure A.1 contain the values of the MAccSize metric achieved by IS algorithms depend-

ing on the sizes of reduced sets. For edition algorithms, the values of MAccSize decrease with increasing

size of the reduced set. In the case of condensation and hybrid algorithms, the trend is opposite, i.e.,

MAccSize increases with the increasing size of the reduced set. An exception is the ICF algorithm, where

a decreasing trend appeared for set sizes 300k and 479,952. The RPIF-AllKNN algorithm achieved the

best result, while the ENN algorithm achieved the worst result in terms of MAccSize. If we exclude edition

algorithms from the evaluation, mainly included in this thesis due to their use in the hybrid algorithm PIF,

the ICF algorithm achieved the worst values of the MAccSize metric. According to this metric, IS algo-

rithms can be divided into five groups in the graph. The order of these groups depends on the achieved

results (from the best to the worst). In the first group, which achieves the highest values of MAccSize,

are all versions of the RPIF algorithm, namely RPIF, RPIF 2, RPIF-AllKNN, and RPIF-RENN. For this

group, the values of MAccSize during the reduction of the entire training set range from 15 to 18. The

DROP3 algorithm follows, which achieved a value of 12.22 for a size of 300k. The third group consists

of versions of the PIF algorithm, with the best results achieved by PIF-AllKNN. The range of values for

this group during the reduction of the entire training set ranges from 9 to 12. The CNN, MSS, and ICF

algorithms form the fourth group. The values of MAccSize for the fourth group range from 6 to 9. The last

group consists of edition algorithms, which achieved values around one.

Original size KNN ENN RENN AllKNN CNN ICF MSS

1000 0.79 1.02 1.08 1.41 1.87 3.73 2.22
2000 0.83 1.00 1.07 1.29 2.22 2.94 2.48
5000 0.86 1.00 1.03 1.19 2.80 4.14 3.01
10000 0.88 1.00 1.03 1.15 3.32 4.60 3.50
20000 0.90 1.00 1.02 1.13 3.80 4.88 4.06
30000 0.91 1.00 1.03 1.11 4.25 4.96 4.38
40000 0.91 1.00 1.02 1.10 4.47 4.69 4.63
50000 0.92 1.00 1.02 1.10 4.66 5.19 4.90
60000 0.92 1.01 1.02 1.09 4.95 4.96 5.11
75000 0.93 1.01 1.02 1.09 5.21 5.07 5.37

100000 0.93 1.00 1.02 1.08 5.57 5.18 5.65
200000 0.94 1.00 1.02 1.06 6.53 6.66 6.61
300000 0.95 1.00 1.01 1.06 7.20 6.74 7.18
479952 0.95 1.00 1.01 1.05 8.10 6.39 7.96

Original size PIF PIF-AllKNN PIF-RENN RPIF RPIF-AllKNN RPIF-RENN DROP3 RPIF 2

1000 4.81 6.30 6.35 6.52 8.95 8.31 5.24 6.23
2000 4.04 5.68 4.49 6.38 8.36 6.39 4.13 5.61
5000 4.16 5.74 4.29 6.02 8.30 6.28 4.91 5.66
10000 5.22 6.92 5.34 8.32 10.62 8.48 5.53 7.68
20000 6.01 7.46 6.39 9.91 11.99 9.80 6.78 8.78
30000 6.37 7.79 6.72 10.51 12.12 10.32 7.28 8.90
40000 6.82 8.18 7.11 11.15 0.14 11.61 7.72 9.99
50000 7.22 9.03 7.41 11.94 13.92 11.49 8.22 10.66
60000 7.68 8.89 7.67 11.91 13.64 11.59 8.40 11.04
75000 7.62 9.11 7.80 12.55 14.33 12.46 8.73 11.31

100000 7.94 9.41 8.18 12.91 14.43 12.75 9.10 11.82
200000 8.72 10.19 8.87 14.47 16.15 13.96 11.49 13.12
300000 9.34 10.46 9.26 15.76 16.95 14.68 12.22 14.33
479952 10.08 11.33 9.86 16.94 18.03 15.63 - 15.50

Table 7.4 Values of the MAccSize metric achieved by IS algorithms - EMBER

Comparison of IS algorithms 59

Sizes of the reduced sets are provided in Table 7.5. The visualization of this table is presented in

Figure A.2. When examining the results, a similarity with the outcomes related to MAccSize is evident,

confirming the influence of the reduced set size on the overall metric value. The graph depicting the sizes

of reduced sets in relation to the original sizes almost mirrors Figure A.1. The algorithm RPIF-AllKNN

achieved the best results in terms of reducing the training set, while the algorithm ENN achieved the least

reduction. Ignoring edition algorithms, the ICF algorithm achieved the least favorable results as the size

of the reduced set increased. In this case as well, algorithms can be divided into five groups, listed from

the best to the worst. The first group consists of the RPIF algorithm and all its modifications. The sizes

of reduced sets when using these algorithms on the entire training set ranged from 5% to 6% compared to

the original size. In the second group is the DROP3 algorithm, which managed to reduce the set of size

300k to 7.36%. All three versions of the PIF algorithm form the third group. The sizes of the reduced

sets when using these algorithms ranged from 8% to 10%. The MSS, CNN, and ICF algorithms, which

achieved a reduction in the training set size between 11% and 15%, form the fourth group. The fifth group

is composed of edition algorithms. The sizes of reduced sets ranged from 89% to 94% compared to the

original size of the training set. For condensation algorithms CNN and MSS, it can be observed that with

increasing size of the reduced set, the level of reduction compared to hybrid algorithms decreases more

rapidly and approaches the reduction level of the PIF algorithm. Edition algorithms achieved a lower

level of reduction with the increasing size of the original set.

Original size KNN ENN RENN AllKNN CNN ICF MSS

1000 100 73.80 67.50 53.50 42.10 19.50 34.00
2000 100 78.05 69.15 59.60 36.70 25.75 31.00
5000 100 81.50 75.34 67.38 30.24 18.84 27.04

10000 100 83.43 77.97 72.14 26.05 17.66 23.86
20000 100 86.17 81.16 75.83 23.37 17.36 21.08
30000 100 87.10 82.99 78.17 21.09 17.31 19.66
40000 100 88.07 84.44 79.50 20.18 18.42 18.81
50000 100 88.65 85.01 80.57 19.44 16.72 17.91
60000 100 89.07 85.39 81.16 18.36 17.61 17.25
75000 100 89.69 86.15 82.17 17.54 17.45 16.52

100000 100 90.39 87.33 83.46 16.55 17.13 15.80
200000 100 91.93 89.62 86.29 14.28 13.24 13.69
300000 100 92.70 90.65 87.62 13.03 13.26 12.71
479952 100 93.48 91.70 89.01 11.68 14.14 11.57

Original size PIF PIF-AllKNN PIF-RENN RPIF RPIF-AllKNN RPIF-RENN DROP3 RPIF 2

1000 15.50 11.80 11.80 11.30 8.30 8.90 13.80 11.80
2000 19.45 13.30 17.00 12.25 8.60 11.45 18.60 13.90
5000 18.92 13.50 17.82 12.90 9.08 12.22 16.10 13.78

10000 15.68 11.80 15.30 9.80 7.43 9.67 14.84 10.73
20000 14.09 11.27 13.23 8.53 6.92 8.55 12.36 9.63
30000 13.41 10.95 12.55 8.04 6.81 8.11 11.77 9.34
40000 12.72 10.35 12.02 7.68 6.18 7.34 11.05 8.57
50000 12.16 9.61 11.57 7.28 6.24 7.34 10.38 8.16
60000 11.49 9.82 11.47 7.32 6.23 7.35 10.26 7.94
75000 11.69 9.59 11.29 6.99 6.05 7.04 10.10 7.84

100000 11.31 9.48 10.85 6.87 5.91 6.94 9.58 7.51
200000 10.34 8.87 10.19 6.16 5.55 6.37 7.80 6.82
300000 9.78 8.62 9.86 5.76 5.37 6.15 7.36 6.36
479952 9.21 8.13 9.24 5.39 5.04 5.80 - 5.95

Table 7.5 Sizes (%) of reduced sets - EMBER

60 Experiments with instance selection algorithms

Classification accuracies of IS algorithms depending on the sizes of original sets are provided in Table

7.6. Graph A.3 visually represents the values from this table. In terms of achieved classification accu-

racy, the CNN algorithm achieved the best results, surpassing the edition algorithms. The ICF algorithm

achieved the worst results as the sizes of reduced sets increased. Excluding the edition algorithms from

the evaluation, the PIF algorithm ranked second for the entire training set of the EMBER dataset, and the

third place was occupied by the RPIF algorithm with the max iter parameter set to 2. The MSS and PIF-

AllKNN algorithms were close to the RPIF 2 algorithm in terms of the achieved accuracy. The remaining

versions of the PIF and RPIF algorithms achieved the lowest classification accuracy. The RPIF-AllKNN

algorithm, which achieved the largest reduction in the training set, was also the third worst algorithm in

terms of achieved accuracy. The DROP3 algorithm, which also performed among the best in terms of

reduction, achieved the second worst classification accuracy for the size of 300k.

Original size KNN ENN RENN AllKNN CNN ICF MSS

1000 79.44 75.51 73.10 75.23 78.52 72.75 75.43
2000 82.83 78.39 73.80 77.18 81.46 75.69 76.88
5000 85.74 81.25 77.69 80.07 84.59 78.04 81.29

10000 88.12 83.62 80.28 82.70 86.56 81.15 83.48
20000 89.96 86.15 83.15 85.49 88.75 84.76 85.50
30000 90.74 87.42 85.12 86.90 89.68 85.81 86.01
40000 91.46 88.33 86.31 87.71 90.29 86.45 87.11
50000 91.85 88.92 86.90 88.32 90.66 86.82 87.84
60000 92.23 89.54 87.40 88.77 90.97 87.26 88.12
75000 92.64 90.15 88.13 89.61 91.47 88.44 88.67

100000 93.18 90.77 89.04 90.27 92.14 88.75 89.28
200000 94.26 92.26 90.98 91.88 93.24 88.15 90.51
300000 94.82 93.04 91.90 92.62 93.90 89.37 91.29
479952 95.43 93.78 92.75 93.49 94.54 90.37 92.16

Original size PIF PIF-AllKNN PIF-RENN RPIF RPIF-AllKNN RPIF-RENN DROP3 RPIF 2

1000 74.57 74.35 74.92 73.70 74.28 73.97 72.31 73.50
2000 78.60 75.61 76.35 78.21 71.87 73.17 76.76 77.97
5000 78.76 77.46 76.40 77.67 75.41 76.68 79.11 78.00

10000 81.85 81.61 81.72 81.55 78.88 82.00 82.04 82.41
20000 84.66 84.09 84.48 84.45 82.92 83.79 83.76 84.60
30000 85.39 85.29 84.33 84.49 82.53 83.68 85.71 83.19
40000 86.72 84.63 85.45 85.64 85.19 85.27 85.31 85.66
50000 87.75 86.73 85.79 86.97 86.90 84.28 85.31 86.95
60000 88.22 87.29 87.90 87.11 85.02 85.25 86.17 87.70
75000 89.09 87.37 88.04 87.74 86.72 87.69 88.19 88.71

100000 89.77 89.24 88.73 88.72 85.21 88.45 87.15 88.79
200000 90.25 90.32 90.43 89.14 89.66 88.95 89.53 89.48
300000 91.42 90.12 91.26 90.86 91.02 90.27 89.85 91.18
479952 92.83 92.08 91.15 91.35 90.91 90.62 - 92.22

Table 7.6 Classification accuracies (%) achieved by IS algorithms - EMBER

Table 7.7 and graph A.4 contain data for the evaluation and comparison of IS algorithms in terms of

computational time. When looking at the graph, IS algorithms can be divided into four groups based on

computational time. The first group is formed by the DROP3 algorithm, which was clearly the slowest.

Processing a set of size 300k took approximately 77,570 seconds, which is several times longer than the

computation time of other IS algorithms when processing the entire training set. The CNN algorithm,

with a computation time of approximately 9,909 seconds for processing the entire training set, forms

the second group. This time is roughly three times longer than the computation time of all other hybrid

algorithms (except DROP3) and the MSS algorithm. These algorithms form the third group, and their

Comparison of IS algorithms 61

computation times ranged between 2,709 and 3,733 seconds. The fastest in this group was the ICF

algorithm, making it the fastest among hybrid and condensation algorithms for the EMBER dataset.

Following were the versions of PIF and RPIF algorithms without replaced edition algorithms. Even longer

computation times were achieved by PIF and RPIF algorithms used in combination with the AllKNN

algorithm, and the slowest in this group were the algorithms using RENN for editing. The fourth group

is formed by edition algorithms. Computation times required for processing the entire training set in

this group of algorithms ranged between 57 and 697 seconds. The fastest was the ENN algorithm. The

AllKNN algorithm was the second fastest, and the slowest among the edition algorithms was RENN.

With increasing sizes of the reduced sets, the computation time of this algorithm increases faster than in

the case of the ENN and AllKNN algorithms. This fact was also evident in the algorithms from the third

group, which use this algorithm for editing.

Original size KNN ENN RENN AllKNN CNN ICF MSS

1000 - 0.0 0.1 0.5 41.8 0.4 0.1
2000 - 0.1 0.3 1.0 95.6 0.6 0.2
5000 - 0.2 0.9 2.5 203.6 1.8 0.5

10000 - 0.3 1.7 4.9 380.4 5.4 1.8
20000 - 0.6 3.4 10.1 803.6 20.2 6.4
30000 - 1.0 8.3 15.3 971.9 13.1 13.1
40000 - 1.4 10.9 21.1 1173.5 27.1 22.3
50000 - 1.8 21.0 26.4 1506.0 40.5 36.1
60000 - 2.2 37.3 32.1 1611.1 52.6 51.0
75000 - 2.3 25.3 39.8 1681.4 68.6 71.0
100000 - 3.7 47.2 53.7 1751.1 192.5 126.2
200000 - 12.1 124.3 111.9 3436.1 426.7 529.0
300000 - 24.4 364.4 175.3 5488.3 1006.9 1212.0
479952 - 57.3 697.0 298.7 9909.0 2709.6 3242.5

Original size PIF PIF-AllKNN PIF-RENN RPIF RPIF-AllKNN RPIF-RENN DROP3 RPIF 2
1000 0.2 0.5 0.4 0.4 0.4 0.5 65.6 0.2
2000 0.4 0.9 0.6 0.6 0.9 0.6 169.2 0.4
5000 1.3 2.7 1.7 1.7 2.4 1.9 388.6 1.4

10000 4.1 6.7 5.3 4.8 6.2 5.4 716.9 4.2
20000 16.9 20.3 20.0 18.3 19.2 20.4 1213.2 17.2
30000 17.0 25.9 27.9 18.4 27.8 28.1 1698.6 18.2
40000 31.0 40.7 45.9 32.1 44.0 46.6 2316.8 31.1
50000 47.3 67.9 61.4 47.7 61.6 62.0 3118.7 47.7
60000 68.5 88.2 83.3 66.2 79.6 83.9 4034.1 69.0
75000 94.3 116.2 100.4 93.2 111.4 101.5 5707.2 95.3
100000 181.4 200.2 200.5 160.4 198.9 202.9 9401.9 183.4
200000 587.1 610.2 711.8 595.7 602.0 716.4 34861.1 591.5
300000 1340.8 1378.6 1533.7 1363.8 1370.9 1541.0 77578.9 1349.7
479952 3317.5 3350.8 3709.0 3348.7 3368.8 3732.9 - 3335.9

Table 7.7 Durations (s) of IS algorithms - EMBER

7.2.2 SOREL-20M

The experiments described in this subsection can be divided into two parts. The first part, where subsets

of the training set of the SOREL-20M dataset are experimented with, is described in Section 7.2.2.1.

Section 7.2.2.2 details the reduction of the entire training set using stratification.

62 Experiments with instance selection algorithms

7.2.2.1 Reduction of subsets of the training set without using stratification

Reduction of the SOREL-20M dataset without using stratification was performed on subsets of the fol-

lowing sizes: 1k, 2k, 5k, 10k, 20k, 30k, 40k, 50k, 60k, 75k, 100k, 200k, 300k, 500k, 750k, 1000k.

Exceptions are the MSS and DROP3 algorithms, for which processing was only conducted up to the size

of 300k. For the DROP3 algorithm, experiments were halted due to high computational times, and for

the MSS algorithm, the implemented version encountered a memory shortage problem during the reduc-

tion of larger sets. This section includes tables and graphs containing values for the same metrics as in

7.2.1. In addition to experiments with versions of the RPIF algorithms, RPIF-AllKNN, and RPIF-RENN,

where the max iter parameter was set based on experiments, experiments were also conducted with the

max iter = 2 parameter setting. These versions are further referred to as RPIF 2, RPIF-AllKNN 2, and

RPIF-RENN 2.

Original size KNN ENN RENN AllKNN CNN ICF MSS DROP3

1000 0.78 0.93 1.05 1.26 1.84 4.27 1.98 6.44
2000 0.81 0.96 1.00 1.20 2.14 4.49 2.27 8.86
5000 0.83 0.96 0.99 1.13 2.59 5.22 2.68 7.27
10000 0.85 0.96 0.99 1.10 3.00 6.11 3.03 7.68
20000 0.86 0.96 0.99 1.07 3.43 6.21 3.40 9.13
30000 0.87 0.97 0.99 1.07 3.70 6.65 3.66 9.60
40000 0.88 0.96 0.98 1.06 3.98 7.09 3.84 9.46
50000 0.88 0.97 0.98 1.05 4.19 7.26 4.07 9.64
60000 0.89 0.97 0.98 1.05 4.38 7.10 4.19 10.47
75000 0.89 0.97 0.98 1.04 4.66 7.33 4.36 11.08

100000 0.90 0.97 0.98 1.04 4.80 7.13 4.55 11.40
200000 0.90 0.97 0.98 1.03 5.61 7.78 5.14 13.93
300000 0.90 0.97 0.98 1.02 6.22 7.99 5.57 14.66
500000 0.90 0.96 0.97 1.00 6.83 8.12 - -
750000 0.91 0.96 0.97 1.00 7.37 8.87 - -

1000000 0.91 0.96 0.96 1.00 7.89 8.96 - -

Original size PIF PIF-AllKNN PIF-RENN RPIF RPIF-AllKNN RPIF-RENN RPIF 2 RPIF-AllKNN 2 RPIF-RENN 2

1000 3.10 5.22 5.13 4.30 9.18 5.92 4.47 8.51 9.06
2000 4.93 6.71 5.86 7.92 13.52 16.29 7.20 10.08 8.28
5000 4.63 5.99 7.32 7.37 11.46 9.69 6.65 9.16 11.80
10000 4.83 6.43 5.91 7.54 12.86 8.76 6.83 10.59 9.20
20000 5.28 6.47 5.95 8.72 12.61 9.67 7.75 10.42 9.22
30000 5.49 6.66 6.18 9.17 12.84 10.26 8.19 11.16 10.17
40000 5.47 6.64 6.37 9.08 12.92 10.88 8.17 11.09 10.40
50000 5.58 6.71 6.39 9.53 12.61 10.90 8.42 10.73 10.34
60000 5.68 6.74 6.57 9.73 12.50 11.20 8.58 10.72 10.56
75000 5.93 6.84 6.72 10.19 13.32 11.66 8.98 11.34 10.92

100000 6.19 7.06 6.90 10.56 13.91 12.22 9.35 11.94 11.31
200000 6.90 7.67 7.62 12.25 15.53 13.58 10.74 13.33 12.64
300000 7.22 8.10 8.01 13.50 16.38 14.76 11.44 14.12 13.48
500000 7.80 8.67 8.62 14.66 18.60 15.81 12.66 15.40 14.81
750000 8.23 9.16 8.79 16.20 19.52 17.18 13.52 16.32 15.30

1000000 8.77 9.52 9.15 17.38 20.63 17.99 14.58 17.20 16.06

Table 7.8 Values of the MAccSize metric achieved by IS algorithms - SOREL-20M

The values of the MAccSize metrics for IS algorithms, depending on the sizes of the reduced sets, are

displayed in Table 7.8 and the graph A.5. Similar to the EMBER dataset, the MAccSize values for edition

algorithms decrease with increasing sizes of the reduced sets. In the case of condensation and hybrid

algorithms, the metric shows an increasing trend. When looking at the graph, IS algorithms can be

divided into six groups based on the results. The reported metric values relate to the results on a subset

of the SOREL-20M training set with a size of 1000k unless otherwise specified. The RPIF-AllKNN

algorithm, achieving the highest MAccSize metric value, forms the first group. This algorithm reached a

value of 20.63. The second-best group consists of the algorithms RPIF-RENN, DROP3, RPIF, RPIF-

AllKNN 2, and RPIF-RENN 2. The order of these algorithms was chosen based on the MAccSize metric

Comparison of IS algorithms 63

values (for the DROP3 algorithm, it is an estimate). The MAccSize values ranged from 16 to 18. The

third group is composed of the RPIF 2 algorithm with an achieved metric value of 14.58. The fourth

group consists of all three versions of the PIF algorithm along with the ICF algorithm. The PIF-AllKNN

algorithm, with an achieved value of 9.52, was the best algorithm in this group. The lowest value of 8.77

was achieved by the PIF algorithm. The condensation algorithms CNN and MSS form the fifth group.

The MSS algorithm reached a value of 5.57 on a set of size 300k. The CNN algorithm, which was better

from this pair, reached a value of 7.89 on a set of size 1000k. The last group is composed of edition

algorithms, with values hovering around one. If we exclude edition algorithms from the evaluation, then,

in the case of the SOREL-20M dataset, the ICF algorithm did not achieve the worst result in terms of

MAccSize, but MSS did.

Original size KNN ENN RENN AllKNN CNN ICF MSS DROP3

1000 100 82.00 67.80 60.40 40.30 17.00 37.50 11.60
2000 100 81.70 77.25 63.75 35.65 16.85 34.35 8.05
5000 100 83.90 78.02 70.94 30.66 14.22 29.86 10.80

10000 100 86.06 82.56 74.80 27.36 12.13 26.86 10.35
20000 100 87.43 84.29 77.97 24.36 12.51 24.27 8.82
30000 100 88.29 85.64 79.57 22.56 12.04 22.84 8.52
40000 100 89.15 86.46 80.93 21.14 11.39 21.90 8.84
50000 100 89.53 86.96 82.01 20.36 11.15 21.03 8.58
60000 100 89.98 87.51 82.80 19.63 11.44 20.40 8.11
75000 100 90.39 88.14 83.61 18.60 11.19 19.69 7.67

100000 100 91.05 88.92 84.68 17.76 11.55 18.99 7.30
200000 100 92.44 90.55 87.03 15.46 10.81 17.08 6.09
300000 100 93.02 91.49 88.14 14.22 10.58 15.79 5.53
500000 100 93.83 92.45 89.48 12.86 10.43 - -
750000 100 94.32 93.12 90.40 11.87 9.54 - -
1000000 100 94.68 93.60 91.05 11.15 9.50 - -

Original size PIF PIF-AllKNN PIF-RENN RPIF RPIF-AllKNN RPIF-RENN RPIF 2 RPIF AllKNN 2 RPIF RENN 2

1000 24.40 14.40 14.20 17.40 8.00 12.20 16.60 8.80 7.90
2000 15.85 11.60 13.10 9.60 5.65 4.60 10.75 7.55 9.00
5000 17.42 13.04 10.58 10.56 6.56 8.08 11.84 8.48 6.50

10000 16.84 12.61 13.60 10.67 6.18 9.04 11.79 7.60 8.59
20000 15.87 12.83 13.93 9.38 6.47 8.49 10.66 7.92 8.86
30000 15.46 12.61 13.61 8.95 6.40 7.99 10.20 7.42 8.19
40000 15.54 12.75 13.27 9.20 6.45 7.60 10.29 7.53 8.02
50000 15.35 12.85 13.26 8.79 6.62 7.61 10.06 7.83 8.13
60000 15.14 12.83 12.97 8.67 6.70 7.51 9.92 7.87 7.97
75000 14.57 12.57 12.76 8.30 6.33 7.21 9.49 7.50 7.76

100000 14.16 12.28 12.59 8.12 6.11 6.99 9.23 7.16 7.57
200000 12.76 11.35 11.52 6.93 5.47 6.29 8.03 6.44 6.86
300000 12.07 10.72 11.02 6.43 5.12 5.88 7.52 6.05 6.45
500000 11.26 10.11 10.34 5.83 4.60 5.36 6.87 5.62 5.91
750000 10.65 9.61 9.91 5.34 4.37 5.00 6.46 5.35 5.68
1000000 10.24 9.27 9.68 5.05 4.16 4.82 6.08 5.11 5.44

Table 7.9 Sizes (%) of reduced sets - SOREL-20M

Table 7.9 and graph A.6 display the sizes of the reduced sets depending on the sizes of the original

sets. In the case of the SOREL-20M dataset, there was a similarity between these results and the MAccSize

results. The RPIF-AllKNN algorithm again achieved the best reduction levels, and the ENN algorithm

reduced individual sets the least. If we exclude edition algorithms from the evaluation, then the MSS

algorithm achieved the smallest reduction levels. Based on the graph, IS algorithms can be divided

into three groups. The first group consists of all versions of the RPIF algorithm. When applying these

algorithms, the sizes of the reduced sets ranged from 4% to 6%. All versions of the PIF, ICF, CNN, and

MSS algorithms form the second group. Although the size of the reduced sets using the CNN algorithm

is larger than other algorithms at small original sizes, with increasing original set sizes, the reduction

level of CNN approached the other algorithms in this group. They were able to reduce the original size of

1000k to sizes ranging from 9% to 12%. The MSS algorithm reduced the set of size 300k to 15.79%. The

64 Experiments with instance selection algorithms

third group consists of edition algorithms, where, in the case of the SOREL-20M dataset, the reduction

level decreased with increasing original set sizes. The reduced sizes ranged from 91% to 95% compared

to the original size of 1000k.

Table 7.10 contains classification accuracies achieved by IS algorithms depending on the sizes of

the reduced sets. This table is visualized in graph A.7. Since the ranking of IS algorithms in terms

of classification accuracy varies for different sizes, they cannot be clearly divided into groups. The

mentioned classification accuracies in this paragraph are related to the set of size 1000k unless stated

otherwise. In most cases, edition algorithms achieve the best results. Classification accuracies for edition

algorithms range between 90% and 91%. Among the worst algorithms in terms of achieved accuracy

are ICF, DROP3, RPIF-AllKNN, and RPIF-RENN. For these algorithms, accuracies ranged from 85%

to 87%. Modifications of RPIF with the parameter max iter = 2 set (at the cost of a lower reduction

level), all three versions of the PIF algorithm, and the condensation algorithm CNN achieved better

results. Classification accuracies for these algorithms ranged between 87% and 90%. The MSS algorithm

achieved an accuracy of 88% for the set of size 300k.

Original size KNN ENN RENN AllKNN CNN ICF MSS DROP3

1000 77.53 76.67 71.26 76.20 73.96 72.51 74.08 74.65
2000 80.89 78.15 77.48 76.81 76.42 75.66 78.11 71.36
5000 82.67 80.80 77.50 80.45 79.47 74.29 79.93 78.53

10000 84.64 82.85 81.46 82.23 81.98 74.13 81.35 79.49
20000 86.20 84.19 83.11 83.72 83.55 77.61 82.59 80.55
30000 87.29 85.53 84.49 84.91 83.45 80.06 83.69 81.74
40000 87.77 86.03 84.95 85.65 84.09 80.73 84.10 83.59
50000 88.44 86.82 85.49 86.36 85.23 80.89 85.63 82.71
60000 88.56 87.12 85.77 86.79 85.88 81.15 85.45 84.93
75000 89.28 87.43 86.34 87.28 86.77 82.00 85.88 85.01

100000 89.61 88.33 87.39 88.10 85.23 82.37 86.44 83.15
200000 90.29 89.48 88.76 89.22 86.69 84.12 87.83 84.83
300000 90.42 89.91 89.29 89.70 88.44 84.60 88.00 81.01
500000 90.39 89.94 89.78 89.71 87.89 84.73 - -
750000 91.10 90.37 90.05 90.64 87.47 84.61 - -
1000000 91.29 90.67 90.21 90.60 87.96 85.10 - -

Original size PIF PIF-AllKNN PIF-RENN RPIF RPIF-AllKNN RPIF-RENN RPIF 2 RPIF AllKNN 2 RPIF RENN 2

1000 75.53 75.21 72.84 74.89 73.44 72.22 74.20 74.89 71.57
2000 78.21 77.85 76.77 76.05 76.40 74.95 77.38 76.12 74.48
5000 80.63 78.12 77.42 77.79 75.19 78.33 78.72 77.67 76.68

10000 81.36 81.09 80.34 80.48 79.50 79.20 80.52 80.45 78.99
20000 83.77 82.99 82.87 81.79 81.54 82.04 82.57 82.52 81.65
30000 84.81 83.96 84.12 82.10 82.21 81.96 83.56 82.78 83.27
40000 84.99 84.59 84.49 83.48 83.33 82.64 84.02 83.44 83.42
50000 85.67 86.15 84.79 83.81 83.48 82.88 84.71 84.01 84.03
60000 85.94 86.41 85.17 84.40 83.80 84.12 85.15 84.28 84.18
75000 86.33 86.01 85.69 84.53 84.32 84.09 85.27 85.09 84.69

100000 87.73 86.66 86.93 85.71 84.98 85.37 86.36 85.49 85.54
200000 87.98 87.08 87.73 84.97 84.94 85.49 86.17 85.83 86.72
300000 87.16 86.83 88.27 86.79 83.84 86.83 86.00 85.34 87.00
500000 87.89 87.68 89.16 85.47 85.58 84.68 87.03 86.59 87.56
750000 87.68 87.96 87.15 86.59 85.25 85.94 87.37 87.33 86.85
1000000 89.78 88.20 88.60 87.71 85.88 86.73 88.56 87.88 87.34

Table 7.10 Classification accuracies (%) achieved by IS algorithms - SOREL-20M

Table 7.11 contains recorded computational times of IS algorithms depending on the sizes of the

reduced subsets of the training set of the SOREL-20M dataset. The data from this table is visualized

in graph A.8. Based on the computational times, IS algorithms can be divided into six groups. The

mentioned times in this paragraph are related to the reduced set of size 1000k unless stated otherwise.

Edition algorithms form the first group. These algorithms achieved the lowest computational times, with

reduction times ranging between 200 and 2200 seconds. ENN algorithm was the fastest, and RENN

algorithm was the slowest, with its computational time increasing faster with the growing size of the

Comparison of IS algorithms 65

reduced set compared to ENN and AllKNN algorithms. This effect was also observed in the modified

versions of PIF and RPIF algorithms that used this algorithm for editing. The second group consists of

PIF, PIF-AllKNN, RPIF-AllKNN, RPIF-AllKNN 2, RPIF, and RPIF 2 algorithms. For this group, the

reduction time ranged between 11594 and 12560 seconds. The next group is formed by PIF-RENN and

RPIF-RENN 2 algorithms. The computational time of the PIF-RENN algorithm was 13713 seconds, and

RPIF-RENN 2 reduced the set of size 1000k in approximately 13799 seconds. Group four is composed

of MSS, ICF, and RPIF-RENN algorithms. The slowdown of the RPIF-RENN algorithm was influenced

by the repetition of subset filtration without a set max iter parameter in combination with RENN, which

was the slowest representative of editing algorithms. The computational time of this algorithm was 15352

seconds. The ICF algorithm completed the computation in 15272 seconds. The set of size 300k was re-

duced by the MSS algorithm in approximately 1624 seconds. In this algorithm, due to non-parallelizable

parts, a slowdown can be expected. The fifth group is represented by the CNN algorithm with a computa-

tional time of almost 34000 seconds, which is more than twice the time compared to algorithms from the

previous group. In the case of the SOREL-20M dataset, seemingly the slowest algorithm was DROP3,

with a computational time exceeding 53409 seconds for the reduction of the set of size 300k.

Original size KNN ENN RENN AllKNN CNN ICF MSS DROP3

1000 - 0.0 0.3 0.5 35.0 0.4 0.1 36.9
2000 - 0.1 0.4 1.0 94.8 0.6 0.2 96.6
5000 - 0.2 1.2 2.5 201.8 2.1 0.6 252.9

10000 - 0.3 2.2 4.9 378.4 6.9 2.2 466.7
20000 - 0.6 5.1 10.2 675.8 26.6 7.9 822.5
30000 - 1.0 8.1 15.3 924.8 15.1 16.0 1155.6
40000 - 1.4 9.0 20.7 1469.6 26.2 28.3 1596.7
50000 - 1.9 15.7 26.3 1235.1 39.3 44.3 2189.3
60000 - 2.3 28.2 32.0 1662.1 56.2 62.7 2854.3
75000 - 2.4 20.8 39.3 1524.1 78.8 87.4 4074.8
100000 - 3.6 35.4 52.8 1834.3 143.8 163.0 6795.3
200000 - 11.4 141.2 110.9 3336.1 563.8 665.9 25019.2
300000 - 23.3 195.7 175.0 6015.1 1307.2 1623.8 53409.4
500000 - 58.5 719.4 311.3 10462.1 3814.4 - -
750000 - 124.5 1790.8 516.3 24328.3 8729.5 - -

1000000 - 216.7 2170.6 734.3 33976.8 15272.0 - -

Original size PIF PIF-AllKNN PIF-RENN RPIF RPIF-AllKNN RPIF-RENN RPIF 2 RPIF AllKNN 2 RPIF RENN 2

1000 0.2 0.7 0.4 0.4 0.7 0.7 0.2 0.7 0.4
2000 0.5 1.3 0.7 0.8 1.4 0.9 0.5 1.3 0.8
5000 1.7 3.7 2.8 2.0 4.0 3.6 1.7 3.8 2.8

10000 5.1 8.8 7.0 6.2 9.3 6.9 5.2 9.1 7.1
20000 20.9 27.0 24.8 22.4 27.4 24.1 21.4 27.5 25.3
30000 16.8 29.9 23.8 18.5 31.0 24.1 17.1 30.4 24.0
40000 28.1 40.9 33.9 31.2 44.3 34.2 28.8 44.0 34.3
50000 35.5 60.5 47.4 38.5 59.8 49.1 36.1 61.4 48.1
60000 50.6 77.6 75.5 54.1 79.0 67.3 51.8 78.1 76.5
75000 66.0 106.5 83.9 71.7 108.1 96.5 67.7 107.9 85.5
100000 127.1 164.8 157.4 139.0 168.1 159.5 129.9 168.1 159.6
200000 518.5 575.7 657.6 572.9 585.1 626.9 527.0 581.8 663.8
300000 1305.9 1240.7 1368.8 1291.2 1255.3 1440.6 1199.2 1242.8 1361.6
500000 3181.3 3246.0 3906.1 3332.9 3268.8 4126.1 3215.9 3275.1 3933.0
750000 7409.6 7552.3 9131.6 7483.7 7210.2 8558.3 7469.9 7593.5 9188.7

1000000 11835.3 11594.9 13713.3 12559.3 11695.3 15351.9 11961.2 11668.6 13798.5

Table 7.11 Durations (s) of IS algorithms - SOREL-20M

7.2.2.2 Reduction of the training set using stratification

The entire training set of the SOREL-20M dataset was reduced using stratification [59], meaning the

training set was randomly divided into a chosen number of equally-sized subsets while preserving the

class distribution. IS algorithms were then applied to these subsets, and the results were combined into

the reduced training set. The number of subsets was selected based on experiments with values of 100,

66 Experiments with instance selection algorithms

200, 300, and 400. Due to computational complexity, CNN and DROP3 algorithms were excluded from

experiments with the number of subsets. Two values of the dividing parameter were chosen based on

the MAccSize metric. Edition algorithms, including ENN, RENN, and AllKNN, achieved the best results

when using a parameter value of 400. Higher values of MAccSize were thus achieved by applying edition

algorithms to more smaller subsets. For the remaining algorithms, the lowest tested value of 100 was

selected. This value was also used for CNN and DROP3 algorithms.

IS Algorithm Stratification Size (%) Accuracy (%) F1(%) MAccSize Duration (s)

KNN - 100 92.04 86.54 - -
ENN 400 87.31 90.00 81.01 1.03 219.1

RENN 400 83.80 88.35 77.30 1.05 1540.9
AllKNN 400 77.53 89.18 78.98 1.15 3823.3

CNN 100 14.11 87.95 81.10 6.23 54364.6
ICF 100 11.52 89.36 82.19 7.76 7892.9
MSS 100 20.12 91.61 85.73 4.55 8066.5

DROP3 100 7.64 91.43 84.58 11.96 366067.1
PIF 100 14.99 90.56 82.77 6.04 6883.5

PIF-AllKNN 100 12.68 90.05 81.31 7.10 10357.2
PIF-RENN 100 13.15 89.80 80.84 6.83 9818.5

RPIF 100 8.48 90.29 82.44 10.65 8309.2
RPIF-AllKNN 100 6.24 89.94 81.39 14.43 10563.7
RPIF-RENN 100 7.48 89.84 81.27 12.01 9902.7

RPIF 2 100 9.69 90.33 82.50 9.32 7824.2
RPIF-AllKNN 2 100 7.42 89.88 81.21 12.11 10481.8
RPIF-RENN 2 100 8.00 89.63 80.81 11.20 9895.6
Table 7.12 Results of IS algorithms when using stratification - SOREL-20M

The experimental results of IS algorithms in reducing the entire training set of the SOREL-20M

dataset using stratification are presented in Table 7.12. In terms of the MAccSize metric, the algorithm

RPIF-AllKNN achieved the best result with a value of 14.43. In this case, it managed to outperform

RPIF-AllKNN 2 both in the achieved level of reduction and in classification accuracy. Among the algo-

rithms with the best MAccSize values were the remaining versions of the RPIF algorithm and the DROP3

algorithm. These algorithms, however, performed the worst according to MAccSize. MSS, on the other

hand, was the best algorithm in terms of achieved classification accuracy and F1 score, with a loss com-

pared to the original accuracy and F1 score not exceeding 0.5%. The low MAccSize value for the MSS

algorithm was due to the lowest achieved level of reduction among non-edition IS algorithms, with a size

of 20.12% compared to the original training set. ”Non-edition” is the term used for hybrid and condensa-

tion algorithms. The second-best algorithm in terms of accuracy and F1 score was the DROP3 algorithm,

which also ranked among the best in reducing the training set, with a reduced set size of 7.64%. The low-

est size of 6.24% was achieved by the RPIF-AllKNN algorithm. The CNN algorithm achieved the lowest

accuracy, and among non-edition algorithms, RPIF-RENN 2 obtained the lowest F1 score. The reduction

of subsets created through stratification proceeded gradually. In the case of parallel algorithms, paral-

lelization was applied to individual subsets. This processing method disadvantaged mainly the DROP3

and CNN algorithms. For these two algorithms, lower computational times can be expected if the subsets

Comparison of IS algorithms 67

were reduced concurrently. DROP3 was unequivocally the slowest algorithm with a computation time

of 366067.1 seconds. The ENN algorithm was the fastest, managing to reduce the training set by 219.1

seconds. Excluding edition algorithms, PIF was the fastest with a time of 6883.5 seconds.

Considering computational times, the reduction of the entire training set with a size of 6926181 using

stratification took less time for the RENN, ICF, PIF, PIF-AllKNN, PIF-RENN, RPIF, RPIF-AllKNN,

RPIF-RENN, RPIF 2, RPIF-AllKNN 2, and RPIF-RENN 2 algorithms than when reducing a set of size

1000k without stratification. In some cases, the reduction time even approached the computational times

of reducing a set of size 750k. MSS and DROP3 algorithms were processed without stratification only

up to a size of 300k. For the remaining algorithms, reduction took longer with stratification than without

stratification for a set of size 1000k. The remaining metric values achieved with stratification (referred

to as ’with stratification’ reduction) are compared with the metric values achieved when reducing sets of

size 1000k without stratification (referred to as ’without stratification’ reduction), with the exception of

MSS and DROP3 algorithms, where metric values for ’without stratification’ reduction are related to a set

size of 300k. Unlike ’without stratification’ reduction, in the case of ’with stratification’ reduction, none

of the algorithms achieved a decrease in accuracy of more than 5% compared to the original accuracy.

For edition algorithms and the CNN algorithm, classification accuracy was lower in the case of ’with

stratification’ reduction, while the remaining algorithms achieved improvements. For metrics MAccSize and

Size, the comparison results are similar. For edition algorithms, ’with stratification’ reduction was better,

while the remaining algorithms achieved better results in the case of reduction ’without stratification.’

However, it is necessary to emphasize that the reported Size values are expressed as percentages relative to

the original subset size. The training set size was almost seven times larger than the subset size of 1000k.

This means that in all cases, the sizes of the reduced sets when applying ’with stratification’ reduction

were several times bigger compared to the sizes when applying ’without stratification’ reduction. If we

do not consider edition algorithms, when using stratification, an improvement in classification accuracies

was achieved with similar computational times at the cost of deterioration of MAccSize and several times

larger reduced sets. An exception is the CNN algorithm, which also deteriorated in terms of achieved

accuracy.

68 Experiments with instance selection algorithms

Conclusion

Within this thesis, two publicly available datasets, EMBER and SOREL-20M, containing metadata of

PE binary files were processed. The parsed data from the databases underwent preprocessing. Initially,

a cleaning process took place, involving the imputation of missing values with constant values, removal

of duplicates, constant features, and features containing a unique value for each instance, as well as the

detection and subsequent replacement of outliers. In the case of the SOREL-20M dataset, values de-

tected by the IQR method were replaced with the mean, while the EMBER dataset achieved better results

without outlier handling. After the data cleaning phase, the transformation of categorical features into nu-

merical ones occurred. One-hot encoding and feature hashing were used for this purpose. Subsequently,

feature scaling was applied to all features in both datasets. For the EMBER dataset, feature values were

transformed using min-max normalization, while robust scaling was chosen for the SOREL-20M dataset.

Feature extraction was performed in both cases using the PCA method. The aforementioned methods

were applied through scripts created in the Python programming language, utilizing available libraries.

For the purposes of experiments with instance selection algorithms, eight state-of-the-art algorithms

were used. In the case of edition algorithms, these were ENN, RENN, and AllKNN. The category of

condensation algorithms was represented by CNN and MSS, while the hybrid algorithms chosen for

experiments were ICF, DROP3, and PIF. A custom implementation was created for all eight algorithms.

Python was the main programming language, but some parallel and computationally intensive parts were

implemented in the C programming language. The experiments also included modifications to the PIF

algorithm. The first modification involved repeated filtration of subsets created based on the nearest

enemies of elements. The second modification replaced the edition algorithms, specifically the AllKNN

and RENN algorithms. This resulted in five modified versions of the PIF algorithm, namely PIF-AllKNN,

PIF-RENN, RPIF, RPIF-AllKNN, and RPIF-RENN. The modified versions were also implemented in

Python, combined with the C programming language for computationally intensive parts. The parameters

of the instance selection algorithms were set based on experiments.

The main goal of this thesis was to create or modify existing instance selection algorithms and com-

pare them with existing state-of-the-art algorithms. The findings from the comparison of state-of-the-art

algorithms are summarized in the following paragraph.

69

70 Conclusion

Edition algorithms were unequivocally the fastest among the compared IS algorithms. They were

also among the best in terms of classification accuracy achieved on reduced datasets. However, they were

unequivocally the worst in terms of reduction capability and, consequently, in the achieved values of the

metric MAccSize. In the case of condensation algorithms, the level of reduction and values of MAccSize were

higher than for edition algorithms but lower compared to hybrid algorithms. For the EMBER dataset,

CNN algorithm was the best in terms of accuracy, while for the SOREL-20M dataset, the achieved accu-

racy was comparable to MSS and hybrid algorithms. In terms of computational times, the CNN algorithm

was the second slowest, and with increasing sizes of reduced sets, the difference in reduction speed com-

pared to faster algorithms grew. Computational times of the MSS algorithm were comparable to ICF

and PIF algorithms at smaller sizes. However, from the size of the reduced set of 500k, the MSS im-

plementation encountered a memory shortage issue. The best in terms of MAccSize and reduction level up

to size 300k was the hybrid DROP3 algorithm. However, in terms of computational time, it was signifi-

cantly slower compared to other algorithms, with computation times several times higher. The remaining

two hybrid algorithms, ICF and PIF, achieved lower reduction and MAccSize values compared to DROP3

algorithms, but due to greater parallelization, they were better in terms of computational times. With

increasing sizes, the PIF algorithm became the fastest among hybrid and condensation algorithms, and

considering its full parallelization, this trend is expected to continue.

All modifications of the PIF algorithm, thanks to a higher degree of set reduction, achieved higher

values of MAccSize compared to the original version. However, as the sizes of the reduced sets decreased,

the classification accuracies of the new versions also decreased. Modified algorithms can be divided into

two groups. The first group consists of algorithms PIF-AllKNN and PIF-RENN, while the second group

is formed by algorithms RPIF, RPIF-RENN, and RPIF-AllKNN. The first group achieved lower values of

MAccSize compared to the second group, but the losses in classification accuracy compared to non-reduced

sets were lower. Algorithms from the second group were among the overall best in terms of MAccSize and

reduction level; however, there was a greater loss in classification accuracy compared to the first group.

Specifically, the RPIF-AllKNN algorithm was able to reduce sets to the smallest sizes, thus achieving the

highest values of MAccSize. However, in terms of accuracy, it ranked among the worst. The computation

time was extended the most for versions that used the RENN algorithm for the initial filtration.

In conclusion, the created modifications of the PIF algorithm were able to achieve greater reduction,

although at the cost of a loss in accuracy. According to the MAccSize metric, the results can be considered

better; however, if preserving higher accuracy is more important for someone, then MAccSize may not

sufficiently reflect this requirement. Future work related to this issue could therefore involve introducing a

penalty that takes into account the loss of accuracy on reduced sets. Further experiments could explore the

replacement of the editing method in other hybrid algorithms. Regarding the PIF algorithm, experiments

could involve changing the filtration rule applied to subsets or experimenting with the application of

multiple filtration rules simultaneously.

Appendix A

Graphs for the tables from Chapter 7

This appendix contains graphs related to the tables from Chapter 7. These tables include the results of

evaluating IS algorithms on datasets of various sizes, without using stratification. The graphs have been

placed in the appendix due to their size.

71

72 Graphs for the tables from Chapter 7

0 50k 100k 150k 200k 250k 300k 350k 400k 450k 500k

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Original size

M
A

cc
Si

ze
ENN
RENN
AllKNN
CNN
ICF
MSS
PIF
PIF-AllKNN
PIF-RENN
RPIF
RPIF-AllKNN
RPIF-RENN
DROP3
RPIF 2

Figure A.1 Values of MAccSize achieved by IS algorithms depending on the size of the reduced set - EMBER

73

0 50k 100k 150k 200k 250k 300k 350k 400k 450k 500k

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

Original size

R
ed

uc
ed

si
ze

[%
]

ENN
RENN
AllKNN
CNN
ICF
MSS
PIF
PIF-AllKNN
PIF-RENN
RPIF
RPIF-AllKNN
RPIF-RENN
DROP3
RPIF 2

Figure A.2 Sizes of reduced sets depending on sizes of original sets - EMBER

74 Graphs for the tables from Chapter 7

0 50k 100k 150k 200k 250k 300k 350k 400k 450k 500k

70

72

74

76

78

80

82

84

86

88

90

92

94

96

Original size

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy
[%

]

KNN
ENN
RENN
AllKNN
CNN
ICF
MSS
PIF
PIF-AllKNN
PIF-RENN
RPIF
RPIF-AllKNN
RPIF-RENN
DROP3
RPIF 2

Figure A.3 Classification accuracies depending on the sizes of original sets - EMBER

75

0 50k 100k 150k 200k 250k 300k 350k 400k 450k 500k

−5,000

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

50,000

55,000

60,000

65,000

70,000

75,000

80,000

85,000

Original size

D
ur

at
io

n
[s

]

ENN
RENN
AllKNN
CNN
ICF
MSS
PIF
PIF-AllKNN
PIF-RENN
RPIF
RPIF-AllKNN
RPIF-RENN
DROP3
RPIF 2

Figure A.4 Run times of IS algorithms depending on the sizes of the original sets. - EMBER

76 Graphs for the tables from Chapter 7

0 100k 200k 300k 400k 500k 600k 700k 800k 900k 1000k
−1

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

Original size

M
A

cc
Si

ze
ENN
RENN
AllKNN
CNN
ICF
MSS
PIF
PIF-AllKNN
PIF-RENN
RPIF
RPIF-AllKNN
RPIF-RENN
DROP3
RPIF 2
RPIF-AllKNN 2
RPIF-RENN 2

Figure A.5 Values of MAccSize achieved by IS algorithms depending on the size of the reduced set - SOREL-20M

77

0 100k 200k 300k 400k 500k 600k 700k 800k 900k 1000k

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

Original size

R
ed

uc
ed

si
ze

[%
]

ENN
RENN
AllKNN
CNN
ICF
MSS
PIF
PIF-AllKNN
PIF-RENN
RPIF
RPIF-AllKNN
RPIF-RENN
DROP3
RPIF 2
RPIF-AllKNN 2
RPIF-RENN 2

Figure A.6 Sizes of reduced sets depending on sizes of original sets - SOREL-20M

78 Graphs for the tables from Chapter 7

0 100k 200k 300k 400k 500k 600k 700k 800k 900k 1000k

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

Original size

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy
[%

]

KNN
ENN
RENN
AllKNN
CNN
ICF
MSS
PIF
PIF-AllKNN
PIF-RENN
RPIF
RPIF-AllKNN
RPIF-RENN
DROP3
RPIF 2
RPIF-AllKNN 2
RPIF-RENN 2

Figure A.7 Classification accuracies depending on the sizes of original sets - SOREL-20M

79

0 100k 200k 300k 400k 500k 600k 700k 800k 900k 1000k
−5,000

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

50,000

55,000

Original size

D
ur

at
io

n
[s

]

ENN
RENN
AllKNN
CNN
ICF
MSS
PIF
PIF-AllKNN
PIF-RENN
RPIF
RPIF-AllKNN
RPIF-RENN
DROP3
RPIF 2
RPIF-AllKNN 2
RPIF-RENN 2

Figure A.8 Run times of IS algorithms depending on the sizes of the original sets - SOREL-20M

80 Graphs for the tables from Chapter 7

Appendix B

Description of the attached files

This page describes only the content of the root directory. This directory is further divided into subdirec-
tories. Each subdirectory contains its own file description.txt, where its content is described.

Ded masters thesis appendices.zip.......................................root directory
1 data parsing...........................downloading datasets and parsing into CSV files
2 data preprocessing.....................preprocessing datasets before feature extraction
3 feature selection..feature extraction (PCA)
4 instance selection...parameters tuning of IS algorithms and their subsequent comparison
description.txt.........................a brief description of the content of the directory

81

82 Description of the attached files

Bibliography

1. WATTERS, Ashley. 25 Crucial Information Technology Statistics and Facts to Know [online].

[N.d.]. Available also from: https://connect.comptia.org/blog/information-technology-

stats-facts. Accessed: 2024-01-15.

2. JAIN, Prati; RAJVAIDYA, Ishita; SAH, Keshav Kumar; KANNAN, Jayanthi. Machine Learning

Techniques for Malware Detection- a Research Review. In: 2022 IEEE International Students’ Con-

ference on Electrical, Electronics and Computer Science (SCEECS). 2022, pp. 1–6. Available from

DOI: 10.1109/SCEECS54111.2022.9740918.

3. PALATTY, Nivedita James. 30+ Malware Statistics You Need To Know In 2024 [online]. [N.d.].

Available also from: https : / / www . getastra . com / blog / security - audit / malware -

statistics/. Accessed: 2024-01-15.

4. AGARKAR, Sanket; GHOSH, Soma. Malware Detection Classification using Machine Learning.

In: 2020 IEEE International Symposium on Sustainable Energy, Signal Processing and Cyber Se-

curity (iSSSC). 2020, pp. 1–6. Available from DOI: 10.1109/iSSSC50941.2020.9358835.

5. OLVERA-LÓPEZ, José; CARRASCO-OCHOA, Jesús; MARTÍNEZ-TRINIDAD, José Francisco;

KITTLER, Josef. A review of instance selection methods. Artif. Intell. Rev. 2010, vol. 34, pp. 133–

143. Available from DOI: 10.1007/s10462-010-9165-y.

6. ANDERSON, H. S.; ROTH, P. EMBER: An Open Dataset for Training Static PE Malware Machine

Learning Models. ArXiv e-prints. 2018. Available from DOI: 10.48550/arXiv.1804.04637.

7. HARANG, Richard; RUDD, Ethan M. SOREL-20M: A Large Scale Benchmark Dataset for Mali-

cious PE Detection. 2020. Available from arXiv: 2012.07634 [cs.CR].

8. KUMAR, Virender; KHOSLA, Cherry. Data Cleaning-A Thorough Analysis and Survey on Un-

structured Data. In: 2018 8th International Conference on Cloud Computing, Data Science En-

gineering (Confluence). 2018, pp. 305–309. Available from DOI: 10.1109/CONFLUENCE.2018.

8442950.

83

https://connect.comptia.org/blog/information-technology-stats-facts
https://connect.comptia.org/blog/information-technology-stats-facts
https://doi.org/10.1109/SCEECS54111.2022.9740918
https://www.getastra.com/blog/security-audit/malware-statistics/
https://www.getastra.com/blog/security-audit/malware-statistics/
https://doi.org/10.1109/iSSSC50941.2020.9358835
https://doi.org/10.1007/s10462-010-9165-y
https://doi.org/10.48550/arXiv.1804.04637
https://arxiv.org/abs/2012.07634
https://doi.org/10.1109/CONFLUENCE.2018.8442950
https://doi.org/10.1109/CONFLUENCE.2018.8442950

84 Bibliography

9. RIDZUAN, Fakhitah; WAN ZAINON, Wan Mohd Nazmee. A Review on Data Cleansing Methods

for Big Data. Procedia Computer Science. 2019, vol. 161, pp. 731–738. ISSN 1877-0509. Available

from DOI: https://doi.org/10.1016/j.procs.2019.11.177. The Fifth Information Systems

International Conference, 23-24 July 2019, Surabaya, Indonesia.

10. KANG, Hyun. The prevention and handling of the missing data. Korean journal of anesthesiology.

2013, vol. 64, pp. 402–6. Available from DOI: 10.4097/kjae.2013.64.5.402.

11. DASU, Tamraparni; JOHNSON, Theodore. Exploratory Data Mining and Data Cleaning. ATT

Labs, Research Division Florham Park, NJ: Wiley-Interscience, 2003. ISBN 978-0471268512.

12. SESSA, Jadran; SYED, Dabeeruddin. Techniques to deal with missing data. In: 2016 5th Inter-

national Conference on Electronic Devices, Systems and Applications (ICEDSA). 2016, pp. 1–4.

Available from DOI: 10.1109/ICEDSA.2016.7818486.

13. PHAN, Quoc-Thang; WU, Yuan-Kang; PHAN, Quoc-Dung; LO, Hsin-Yen. A Study on Missing

Data Imputation Methods for Improving Hourly Solar Dataset. In: 2022 8th International Con-

ference on Applied System Innovation (ICASI). 2022, pp. 21–24. Available from DOI: 10.1109/

ICASI55125.2022.9774453.

14. BROWNLEE, Jason. Data Preparation for Machine Learning. 2020.

15. KUHN, Max; JOHNSON, Kjell. Feature Engineering and Selection: A Practical Approach for

Predictive Models. 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742,

USA: Chapman and Hall/CRC, 2019. ISBN 978-1138079229.

16. HAN, Jiawei; KAMBER, Micheline; PEI, Jian. Data Mining: Concepts and Techniques. 500 San-

some Street, Suite 400, San Francisco, CA 94111, USA: Morgan Kaufmann, 2011. ISBN 978-

9380931913.

17. ILYAS, Ihab F.; CHU, Xu. Data Cleaning. New York, NY, United States: Association for Computing

Machinery, 2019. ISBN 978-1-4503-7152-0.

18. BELICHOVSKI, Martin; STAVROV, Dushko; DONCHEVSKI, Filip; NADZINSKI, Gorjan. Un-

supervised Machine Learning Approach for Anomaly Detection in E-coating Plant. In: 2022 IEEE

17th International Conference on Control Automation (ICCA). 2022, pp. 992–997. Available from

DOI: 10.1109/ICCA54724.2022.9831858.

19. BENKERT, Katharina; GABRIEL, Edgar; RESCH, Michael M. Outlier detection in performance

data of parallel applications. In: 2008 IEEE International Symposium on Parallel and Distributed

Processing. 2008, pp. 1–8. Available from DOI: 10.1109/IPDPS.2008.4536463.

20. CERDA, Patricio; VAROQUAUX, Gaël; KÉGL, Balázs. Similarity encoding for learning with dirty

categorical variables. 2018. Available from arXiv: 1806.00979 [cs.LG].

21. KUHN, Max; JOHNSON, Kjell. Applied Predictive Modeling. New York, USA: Springer, 2013.

ISBN 978-1461468486.

22. SCIKIT-LEARN. LabelEncoder [online]. [N.d.]. Available also from: https://scikit-learn.

org/stable/modules/generated/sklearn.preprocessing.LabelEncoder.html. Ac-

cessed: 2023-04-03.

https://doi.org/https://doi.org/10.1016/j.procs.2019.11.177
https://doi.org/10.4097/kjae.2013.64.5.402
https://doi.org/10.1109/ICEDSA.2016.7818486
https://doi.org/10.1109/ICASI55125.2022.9774453
https://doi.org/10.1109/ICASI55125.2022.9774453
https://doi.org/10.1109/ICCA54724.2022.9831858
https://doi.org/10.1109/IPDPS.2008.4536463
https://arxiv.org/abs/1806.00979
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.LabelEncoder.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.LabelEncoder.html

Bibliography 85

23. WEINBERGER, Kilian; DASGUPTA, Anirban; ATTENBERG, Josh; LANGFORD, John; SMOLA,

Alex. Feature Hashing for Large Scale Multitask Learning. 2009. Available from DOI: 10.1145/

1553374.1553516.

24. CAO, Xi Hang; STOJKOVIC, Ivan; OBRADOVIC, Zoran. A robust data scaling algorithm to im-

prove classification accuracies in biomedical data. BMC bioinformatics. 2016, vol. 17, p. 359. Avail-

able from DOI: 10.1186/s12859-016-1236-x.

25. FERREIRA, Pedro; C. LE, Duc; ZINCIR-HEYWOOD, Nur. Exploring Feature Normalization and

Temporal Information for Machine Learning Based Insider Threat Detection. In: 2019 15th Inter-

national Conference on Network and Service Management (CNSM). 2019, pp. 1–7. Available from

DOI: 10.23919/CNSM46954.2019.9012708.

26. AMORIM, Lucas B.V. de; CAVALCANTI, George D.C.; CRUZ, Rafael M.O. The choice of scaling

technique matters for classification performance. Applied Soft Computing. 2023, vol. 133, p. 109924.

ISSN 1568-4946. Available from DOI: 10.1016/j.asoc.2022.109924.

27. GHOJOGH, Benyamin; SAMAD, Maria N.; MASHHADI, Sayema Asif; KAPOOR, Tania; ALI,

Wahab; KARRAY, Fakhri; CROWLEY, Mark. Feature Selection and Feature Extraction in Pattern

Analysis: A Literature Review. CoRR. 2019, vol. abs/1905.02845. Available from arXiv: 1905.

02845.

28. SONG, Fengxi; GUO, Zhongwei; MEI, Dayong. Feature Selection Using Principal Component

Analysis. In: 2010 International Conference on System Science, Engineering Design and Manufac-

turing Informatization. 2010, vol. 1, pp. 27–30. Available from DOI: 10.1109/ICSEM.2010.14.

29. ALKANDARI, Abdulrahman; ALJABER, Soha Jaber. Principle Component Analysis algorithm

(PCA) for image recognition. In: 2015 Second International Conference on Computing Technology

and Information Management (ICCTIM). 2015, pp. 76–80. Available from DOI: 10.1109/ICCTIM.

2015.7224596.

30. MURPHY, Kevin P. Machine Learning: A Probabilistic Perspective. The MIT Press, 2012. ISBN

978-0262018029.

31. SEHGAL, Shruti; SINGH, Harpreet; AGARWAL, Mohit; BHASKER, V.; SHANTANU. Data anal-

ysis using principal component analysis. In: 2014 International Conference on Medical Imaging,

m-Health and Emerging Communication Systems (MedCom). 2014, pp. 45–48. Available from DOI:

10.1109/MedCom.2014.7005973.

32. JUREČEK, Martin; JUREČKOVÁ, Olha. Parallel Instance Filtering for Malware Detection. 2022.

Available from DOI: 10.48550/arXiv.2206.13889.

33. MALHAT, Mohamed; MENSHAWY, Mohamed El; MOUSA, Hamdy; SISI, Ashraf El. A new ap-

proach for instance selection: Algorithms, evaluation, and comparisons. Expert Systems with Appli-

cations. 2020, vol. 149, p. 113297. ISSN 0957-4174. Available from DOI: https://doi.org/10.

1016/j.eswa.2020.113297.

34. WILSON, D.; MARTINEZ, Tony. Instance Pruning Techniques. In: 1997, pp. 403–411.

https://doi.org/10.1145/1553374.1553516
https://doi.org/10.1145/1553374.1553516
https://doi.org/10.1186/s12859-016-1236-x
https://doi.org/10.23919/CNSM46954.2019.9012708
https://doi.org/10.1016/j.asoc.2022.109924
https://arxiv.org/abs/1905.02845
https://arxiv.org/abs/1905.02845
https://doi.org/10.1109/ICSEM.2010.14
https://doi.org/10.1109/ICCTIM.2015.7224596
https://doi.org/10.1109/ICCTIM.2015.7224596
https://doi.org/10.1109/MedCom.2014.7005973
https://doi.org/10.48550/arXiv.2206.13889
https://doi.org/https://doi.org/10.1016/j.eswa.2020.113297
https://doi.org/https://doi.org/10.1016/j.eswa.2020.113297

86 Bibliography

35. HART, P. The condensed nearest neighbor rule (Corresp.) IEEE Transactions on Information The-

ory. 1968, vol. 14, no. 3, pp. 515–516. Available from DOI: 10.1109/TIT.1968.1054155.

36. BINIAZ, Ahmad; CABELLO, Sergio; CARMI, Paz; CARUFEL, Jean-Lou De; MAHESHWARI,

Anil; MEHRABI, Saeed; SMID, Michiel. On the Minimum Consistent Subset Problem. 2018.

Available from DOI: 10.48550/arXiv.1810.09232.

37. GARCÍA, Salvador; LUENGO, Julián; HERRERA, Francisco. Data Preprocessing in Data Mining.

Springer, 2014. ISBN 978-3319102467.

38. BARANDELA, Ricardo; FERRI, Francesc; SÁNCHEZ, Josep. Decision boundary preserving pro-

totype selection for nearest neighbor classification. IJPRAI. 2005, vol. 19, pp. 787–806.

39. WILSON, D.; MARTINEZ, Tony. Reduction Techniques for Instance-Based Learning Algorithms.

Machine Learning. 2000, vol. 38, pp. 257–286. Available from DOI: 10.1023/A:1007626913721.

40. WILSON, Dennis L. Asymptotic Properties of Nearest Neighbor Rules Using Edited Data. IEEE

Transactions on Systems, Man, and Cybernetics. 1972, vol. SMC-2, no. 3, pp. 408–421. Available

from DOI: 10.1109/TSMC.1972.4309137.

41. TOMEK, Ivan. An Experiment with the Edited Nearest-Neighbor Rule. IEEE Transactions on Sys-

tems, Man, and Cybernetics. 1976, vol. SMC-6, no. 6, pp. 448–452. Available from DOI: 10.1109/

TSMC.1976.4309523.

42. OLVERA-LÓPEZ, José; CARRASCO-OCHOA, Jesús; MARTÍNEZ-TRINIDAD, José Francisco;

KITTLER, Josef. A review of instance selection methods. Artif. Intell. Rev. 2010, vol. 34, pp. 133–

143. Available from DOI: 10.1007/s10462-010-9165-y.

43. BRIGHTON, Henry; MELLISH, Chris. On the Consistency of Information Filters for Lazy Learn-

ing Algorithms. In: 1999, pp. 283–288. ISBN 978-3-540-66490-1. Available from DOI: 10.1007/

978-3-540-48247-5_31.

44. COVER, T.; HART, P. Nearest neighbor pattern classification. IEEE Transactions on Information

Theory. 1967, vol. 13, no. 1, pp. 21–27. Available from DOI: 10.1109/TIT.1967.1053964.

45. CUNNINGHAM, Padraig; DELANY, Sarah. k-Nearest neighbour classifiers. Mult Classif Syst.

2007, vol. 54. Available from DOI: 10.1145/3459665.

46. JAPKOWICZ, Nathalie; SHAH, Mohak. Evaluating Learning Algorithms: A Classification Per-

spective. Cambridge University Press, 2011. ISBN 978-0521196000.

47. OBI, Jude. A Comparative Study of Several Classification Metrics and Their Performances on Data.

World Journal of Advanced Engineering Technology and Sciences. 2023, vol. 8, pp. 308–314. Avail-

able from DOI: 10.30574/wjaets.2023.8.1.0054.

48. ARYAL, Kshitiz; GUPTA, Maanak; ABDELSALAM, Mahmoud. Exploiting Windows PE Struc-

ture for Adversarial Malware Evasion Attacks. In: Proceedings of the Thirteenth ACM Conference

on Data and Application Security and Privacy. Charlotte, NC, USA: Association for Comput-

ing Machinery, 2023, pp. 279–281. CODASPY ’23. ISBN 9798400700675. Available from DOI:

10.1145/3577923.3585044.

https://doi.org/10.1109/TIT.1968.1054155
https://doi.org/10.48550/arXiv.1810.09232
https://doi.org/10.1023/A:1007626913721
https://doi.org/10.1109/TSMC.1972.4309137
https://doi.org/10.1109/TSMC.1976.4309523
https://doi.org/10.1109/TSMC.1976.4309523
https://doi.org/10.1007/s10462-010-9165-y
https://doi.org/10.1007/978-3-540-48247-5_31
https://doi.org/10.1007/978-3-540-48247-5_31
https://doi.org/10.1109/TIT.1967.1053964
https://doi.org/10.1145/3459665
https://doi.org/10.30574/wjaets.2023.8.1.0054
https://doi.org/10.1145/3577923.3585044

Bibliography 87

49. FANG, Yong; ZENG, Yuetian; LI, Beibei; LIU, Liang; ZHANG, Lei. DeepDetectNet vs RLAttack-

Net: An adversarial method to improve deep learning-based static malware detection model. PLOS

ONE. 2020, vol. 15, e0231626. Available from DOI: 10.1371/journal.pone.0231626.

50. PE Format [online]. [N.d.]. Available also from: https://learn.microsoft.com/en- us/

windows/win32/debug/pe-format. Accessed: 2023-09-14.

51. A dive into the PE file format - PE file structure - Part 2: DOS Header, DOS Stub and Rich Header

[online]. [N.d.]. Available also from: https://0xrick.github.io/win- internals/pe3/.

Accessed: 2023-09-14.

52. NISI, Dario; GRAZIANO, Mariano; FRATANTONIO, Yanick; BALZAROTTI, Davide. Lost in the

Loader:The Many Faces of the Windows PE File Format. In: San Sebastian, Spain: Association for

Computing Machinery, 2021, pp. 177–192. RAID ’21. ISBN 9781450390583. Available from DOI:

10.1145/3471621.3471848.

53. A dive into the PE file format - PE file structure - Part 3: NT Headers [online]. [N.d.]. Available

also from: https://0xrick.github.io/win-internals/pe4/. Accessed: 2023-09-14.

54. REZAEI, Tina; MANAVI, Farnoush; HAMZEH, Ali. A PE header-based method for malware de-

tection using clustering and deep embedding techniques. Journal of Information Security and Ap-

plications. 2021, vol. 60, p. 102876. ISSN 2214-2126. Available from DOI: https://doi.org/

10.1016/j.jisa.2021.102876.

55. DUONG, Lai Van; XUAN, Cho Do. Detecting Malware based on Analyzing Abnormal behaviors

of PE File. International Journal of Advanced Computer Science and Applications. 2021, vol. 12,

no. 3. Available from DOI: 10.14569/IJACSA.2021.0120355.

56. KUMAR, Ajit; KUPPUSAMY, K.S.; AGHILA, G. A learning model to detect maliciousness of

portable executable using integrated feature set. Journal of King Saud University - Computer and

Information Sciences. 2019, vol. 31, no. 2, pp. 252–265. ISSN 1319-1578. Available from DOI:

https://doi.org/10.1016/j.jksuci.2017.01.003.

57. DEVI, Dhruwajita; NANDI, Sukumar. PE File Features in Detection of Packed Executables. Inter-

national Journal of Computer Theory and Engineering. 2012, pp. 476–478. Available from DOI:

10.7763/IJCTE.2012.V4.512.

58. CARRERA VENTURA, Ero. pefile. 2023. Version 2023.2.7. Available also from: https : / /

github.com/erocarrera/pefile.

59. CANO, José; HERRERA, Francisco; LOZANO, Manuel. Stratification for scaling up evolutionary

prototype selection. Pattern Recognition Letters. 2005, vol. 26, pp. 953–963. Available from DOI:

10.1016/j.patrec.2004.09.043.

https://doi.org/10.1371/journal.pone.0231626
https://learn.microsoft.com/en-us/windows/win32/debug/pe-format
https://learn.microsoft.com/en-us/windows/win32/debug/pe-format
https://0xrick.github.io/win-internals/pe3/
https://doi.org/10.1145/3471621.3471848
https://0xrick.github.io/win-internals/pe4/
https://doi.org/https://doi.org/10.1016/j.jisa.2021.102876
https://doi.org/https://doi.org/10.1016/j.jisa.2021.102876
https://doi.org/10.14569/IJACSA.2021.0120355
https://doi.org/https://doi.org/10.1016/j.jksuci.2017.01.003
https://doi.org/10.7763/IJCTE.2012.V4.512
https://github.com/erocarrera/pefile
https://github.com/erocarrera/pefile
https://doi.org/10.1016/j.patrec.2004.09.043

	Acknowledgments
	Declaration
	Abstract
	Introduction
	Data preprocessing
	Data cleaning
	Missing values
	Basic methods for removing redundancy
	Outlier handling

	Convert category features to numerical
	Encoding
	Feature hashing

	Feature scaling
	Min-max normalization
	Standardization (z-score normalization)
	Robust scaling

	Feature extraction
	Principal Component Analysis (PCA)

	Instance selection algorithms
	Condensation algorithms
	Condensed Nearest Neighbors (CNN)
	Modified Selective Subset (MSS)

	Edition algorithms
	Edited Nearest Neighbors (ENN)
	AllKNN

	Hybrid algorithms
	Decremental Reduction Optimization Procedure 3
	Parallel Instance Filtering
	Iterative Case Filtering

	Classification algorithms
	K Nearest Neighbors (KNN)
	Classification metrics

	Structure of Portable Executable file format
	DOS Header
	DOS Stub
	NT Headers
	File Header
	Optional Header

	Section Table
	Sections

	Preprocessing of Datasets Before Applying IS Algorithms
	Used hardware devices
	Information about the Chosen Datasets
	EMBER
	SOREL-20M

	Preprocessing procedure
	EMBER
	SOREL-20M

	Proposed modifications of the PIF algorithm
	Replacement of the editing algorithm
	Repeated PIF
	RPIF with edition algorithm changed

	Experiments with instance selection algorithms
	Tuning parameters of instance selection algorithms
	Comparison of IS algorithms
	EMBER
	SOREL-20M

	Conclusion
	Graphs for the tables from Chapter 7
	Description of the attached files

