
Bachelor Project

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Computer Science

Managing personal bank accounts

Dmytro Rastvorov

Supervisor: Ing. Božena Mannová, Ph.D.
May 2024

ii

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

503169 Personal ID number: Rastvorov Dmytro Student's name:

Faculty of Electrical Engineering Faculty / Institute:

Department / Institute: Department of Computer Science

Software Engineering and Technology Study program:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Managing personal bank accounts

Bachelor’s thesis title in Czech:

Správa osobních bankovních účtů

Guidelines:

The goal of the work is to create a simple and user-friendly application
for managing personal finances. The application will allow tracking of expenses and
income, creating budgets and tracking them and help keep them within them
order and plan them. Present overviews of financial data graphically.
Solution procedure:
1. Familiarize yourself with the management of personal bank accounts. Analyze existing
solutions available to you for specific applications, compare and evaluate them.
2. Based on the analysis, design the basic functionalities of the proposed application.
3. Choose the application architecture and select the most suitable technologies for
implementation. Justify the choice of technologies.
4. Implement and test the application, including user tests.
5. Evaluate the results and suggest any additional functionality or other improvements.
6. Use appropriate means of software engineering when solving.

Bibliography / sources:

[1] Roger S. Pressmann Bruce Maxim: Software Engineering: A Practitioner's Approach ,
ISBN-10: 9780078022128
[2] Use Case Diagram https://www.ibm.com/docs/en/rational-soft-arch/9.6.1?topic=diagrams-use-case
[3] Česká Spořitelna https://george.csas.cz/

© ČVUT v Praze, Design: ČVUT v Praze, VIC Page 1 from 2 CVUT-CZ-ZBP-2015.1

Name and workplace of bachelor’s thesis supervisor:

Ing. Božena Mannová, Ph.D. Center for Software Training FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 24.05.2024 Date of bachelor’s thesis assignment: 16.02.2024

Assignment valid until: 21.09.2025

___________________________ ___________________________ ___________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature

Head of department’s signature Ing. Božena Mannová, Ph.D.
Supervisor’s signature

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC Page 2 from 2 CVUT-CZ-ZBP-2015.1

Acknowledgements
I would like to express my immense grati-
tude to the teachers for the knowledge I
have gained. I would also like to express
my special thanks to my bachelor’s thesis
supervisor Ing. Božena Mannová Ph.D.,
for timely advice and assistance in writing
my bachelor thesis. Finally, I would like
to express my gratitude to my family and
friends who supported me throughout my
studies.

Declaration
I hereby declare that I have used
only the information I received during
my studies at the university and the
sources attached to this bachelor’s
thesis to complete this bachelor’s thesis.
I have done this bachelor’s thesis on
my own, without the help of third parties.

Prague, 16. May 2024

v

Abstract
This thesis demonstrates the research of
managing personal bank accounts, creat-
ing the logic of the application and its
implementation. The main goal of this
project is to create an efficient server part
that will allow to perform transactions,
transfers and other banking operations
rapidly, the possibility to communicate
with the users through online chat, as
well as the possibility to modify user data
without the need for third party confirma-
tion.
The following chapters will analyze the ex-
isting solutions, the project development
proposals and its implementation. The
implementation of the server side will be
done by using the Java language and the
use of the Spring Boot framework. In ad-
dition, monolithic architecture will also
be used to achieve the expected result.
To demonstrate the result, the Postman
application will be used.

Keywords: Banking operations, Server
side, Java, Spring Boot, Monolithic
architecture, Postman

Supervisor: Ing. Božena Mannová,
Ph.D.
Praha 2, Karlovo náměstí 13, E-430

Abstrakt
Tato práce se zabývá správou osobních

bankovních účtů. Hlavním cílem tohoto
projektu je vytvoření efektivní serverové
části, která umožní rychlé provádění trans-
akcí, převodů a dalších bankovních ope-
rací, možnost komunikace s uživateli pro-
střednictvím on-line chatu a také možnost
úpravy uživatelských údajů bez nutnosti
potvrzení třetí stranou.
V následujících kapitolách budou analyzo-
vána stávající řešení, návrhy na vývoj pro-
jektu a jeho realizace. Implementace na
straně serveru bude provedena pomocí ja-
zyka Java a s využitím frameworku Spring
Boot. Kromě toho bude také použita mo-
nolitická architektura k dosažení očekáva-
ného výsledku. K demonstraci výsledku
bude použita aplikace Postman.

Klíčová slova: Bankovní operace,
Strana serveru, Java, Spring Boot,
Monolitická architektura, Postman

Překlad názvu: Správa osobních
bankovních účtů

vi

Contents
1 Introduction 1
1.1 Motivation . 1
1.2 Goal . 1
2 Overview of existing solutions 3
2.1 Česká Spořitelna 3
2.2 Digital Pumb 4
2.3 Privat24 . 6
2.4 Raffeisenbank 7
2.5 Industrial bank 9
2.6 Conclusion 10
3 Business Analysis 13
3.1 Target audience 13
3.2 Roles . 13

3.2.1 User . 13
3.2.2 Anonymous user 14
3.2.3 Moderator 14
3.2.4 Administrator 14

3.3 Use-Case diagram. 15
3.4 Conclusion 17
4 Functional and nonfunctional
requirements 19

4.0.1 Functional requirements 19
4.0.2 Nonfunctional requirements . 21

4.1 Conclusion 22
5 Software Analysis 23
5.1 Database . 23

5.1.1 PostgreSQL 23
5.1.2 MySQL 24
5.1.3 Oracle Database 24
5.1.4 MongoDB 24
5.1.5 Comparison of databases 24

5.2 Backend . 26
5.2.1 Java . 26
5.2.2 Kotlin . 26
5.2.3 PHP . 26
5.2.4 Python 27
5.2.5 Comparison of languages 27

5.3 Conclusion 29

6 Proposal 31
6.1 Architecture 31

6.1.1 Microservice architecture 31
6.1.2 Monolithic architecture 32
6.1.3 Deployment diagram 33
6.1.4 UML Diagram 36
6.1.5 Server side 38
6.1.6 Security 40
6.1.7 Database 42
6.1.8 Hibernate 42
6.1.9 JPA . 42
6.1.10 Maven 43
6.1.11 REST API 43

6.2 Used Third-party API’s 43
6.2.1 Currency API 44
6.2.2 Country API 45

6.3 Apache Kafka 46
6.4 Hazelcast . 46
6.5 Docker Image 47
6.6 Conclusion 47
7 Implementation 49
7.1 Application implementation 49

7.1.1 Spring Boot 49
7.1.2 Application structure 49

7.2 Conclusion 52
8 Development environment 53
8.1 IntelliJ IDEA Ultimate 53
8.2 Postman . 54
8.3 Docker . 55
8.4 Conclusion 55
9 Versioning 57
9.1 GitHub . 57
9.2 Conclusion 58
10 Application description 59
10.1 Registration 59
10.2 Log in . 61
10.3 Adding User photo 63
10.4 Currency data 64

vii

10.5 Card creation and management 65
10.6 Opening loan and Repayment . 67
10.7 Opening a deposit 69
10.8 Transfer to user account 72
10.9 Sending messages 74
10.10 Conclusion 75
11 Testing 77
11.1 Server-side testing 78
11.2 JUnit . 79
11.3 Mockito . 80
11.4 Bank vs Application 80
11.5 Conclusion 82
12 Next steps 83
13 Conclusion 85
14 List of used abbreviations 87
15 Bibliography 89

viii

Figures
2.1 Česká Spořitelná web application 4
2.2 Digital Pumb web application . . . 5
2.3 Privat24 web application 6
2.4 Raffeisen web application 8
2.5 Industrial bank web application . 9
2.6 Conclusion table with the main

factors of banking applications. . . . 11

3.1 Use-Case diagram with actors . . 15
3.2 Use-Case diagram with interaction

between actors 16

5.1 Conclusion table with the main
factors of databases 25

5.2 Conclusion table with the main
factors of languages 28

6.1 Demonstration of microservice
architecture [29] 32

6.2 Demonstration of monolith
architecture [31] 32

6.3 Deployment diagram 33
6.4 Deployment diagram (Docker

Image) . 35
6.5 UML diagram 37
6.6 Component diagram 39
6.7 Basic Auth diagram demonstration

[33] . 40
6.8 Security chain implementation

demonstration 41
6.9 PreAuthorize implementation

demonstration 41
6.10 PostgreSQL configuration for

accessing to the database 42
6.11 Demonstration of REST call in

the application 43
6.12 Demonstration of the

ExhcangeRate-API usage 44
6.13 Demonstration of the REST

Countries API usage 45

6.14 Demonstration of the Apache
Kafka configuration 46

6.15 Demonstration of the Hazelcast
configuration 46

6.16 Demonstration of Docker Image 47

7.1 Demonstration of the application
structure . 50

8.1 IntelliJ IDEA web page 53
8.2 Postman web page 54
8.3 Docker web page 55

9.1 Demonstration of an example of
project versioning [46] 57

9.2 Demonstration of project
repository located in GitHub 58

10.1 Demonstration of user
registration . 60

10.2 Demonstration of automatically
added card after registration 60

10.3 Demonstration of authorization
via Postman 61

10.4 Demonstration of simulate
authorization Log In 62

10.5 Demonstration of simulate
authorization Log Out 62

10.6 Demonstration of uploading user
avatar . 63

10.7 Demonstration of getting
available currencies 64

10.8 Demonstration of creating card 65
10.9 Demonstration of refilling the

card . 65
10.10 Demonstration of the result of

refilling the card 66
10.11 Demonstration of opening loan 67
10.12 Demonstration of repaying loan 68
10.13 Demonstration of the openning

deposit . 69

ix

10.14 Demonstration of the user’s
balance after opening a deposit . . . 70

10.15 Demonstration of the deleting
deposit and user’s balance 71

10.16 Demonstration of transferring
money to another card 72

10.17 Demonstration of user cards
after transfer 73

10.18 Demonstration of messaging
between users 74

11.1 Demonstration of testing result
during running Maven 78

11.2 Demonstration of JUnit testing 79
11.3 Demonstration of Mockito

testing . 80
11.4 Table with the all testing speed

results . 81

x

Chapter 1
Introduction

This chapter describes what the project is about, what aspects will be touched
and what the purpose of the project is to accomplish.

1.1 Motivation

Nowadays there are many different banks that try to attract future customers
with favorable services. When creating a card, customers are asked to install
the bank’s mobile app where the user will have full access to their data and
accounts, but what many banks don’t tell to the customer is that they also
have web apps that can also be used to manage their accounts.

Due to this, provided that many banks have a modern interface of their
web application, they are also complex. The complexity is that it takes
time to fully use the application, for example, if a customer want to make
a transaction, he has to click through several pages when it could be done
in one: change user data, for example, if the customer’s contact number has
been changed, the possibility of transferring funds to another account and
more.

1.2 Goal

The aim of the work is to analyze the existing web applications of banks and
develop a server part for managing personal bank accounts. The program
should present the ability to easily and quickly manage bank accounts, getting
actual exchange rates, creating new cards, conducting transactions and the
ability to change your data. In the course of the project, as well as the
bachelor’s thesis, a prototype of the server with functionality covering the
client’s needs will be created.

1

2

Chapter 2
Overview of existing solutions

This chapter will analyze several banks from different countries, examining
their positive and negative aspects. Based on this, functional and non-
functional inquiries will be founded.

2.1 Česká Spořitelna

Česká Spořitelna is the largest bank in the Czech Republic, which is used
by the majority of the population of the Czech Republic. The bank offers
favorable and pleasant offers to customers, and it is also a partner of several
universities and a sponsor of various events.

Upon authorization on the bank’s page user will see his personal bank
account, in which user can find his active accounts and a graph showing
the interaction with the bank account. When working with the bank card
user can see the date of purchased goods or received funds, type, name and
amount.

User can also change his data, interact with the bank account, change the
limit at which user can withdraw money from the account, pay online for
goods, add contacts, create templates and new accounts. [10]

3

2. Overview of existing solutions..............................

Figure 2.1: Česká Spořitelná web application

Disadvantages:..1. Navigation Clarity Issue - Navigation is quite complicated and not quite
clear for a user who opens this page for the first time. For example, user
can observe the account on the main page of the website, but if he hover
over "Your Products", user will see the same thing...2. Too big a set of pages - It would have been better to have all the necessary
and important information on 1 page, but in the end it turns out that
to get somewhere, user has to open several different pages, which is not
exactly pleasant...3. Exchange Rate Visibility Absence - On the main page does not see the
exchange rate, which would be appreciated to see at least in relation to
world currencies such as the dollar and euro...4. One theme type for the website - Would be better if the website had a
dark theme in addition to the light theme.

2.2 Digital Pumb

Digital Pumb is a well-known bank in Ukraine, like the Czech bank, the
Ukrainian bank offers quite pleasant services for the client. The big plus, unlike
the Czech bank, is the direct connection to the application for documents.
There is no need to go to the bank to open a Physical Entrepreneur, it
is enough just to open a web application, pass identification through the

4

.................................... 2.2. Digital Pumb

application "Dia”, which is an application for storing documents and sign an
online document, which according to the web website, will take less than 5
minutes. Also user can apply for a loan online, which is a positive factor.

In the personal account user can watch the exchange rate, which is quite
convenient. The interface in contrast to the Czech bank is quite pleasant and
convenient and allows the user to perform the necessary tasks in just 1 click.

The website itself is dynamically one-page, which allows the user to easily
perform the necessary financial tasks without navigating through several pages.
In this bank, user can interact with his account, set limits, send paychecks,
open accounts and cards, take loans, and perform cash transactions. Also in
the settings there is an option to change the theme (from dark to light), send
passwords to Viber messenger, set a default account and much more. [11]

Figure 2.2: Digital Pumb web application

Disadvantages:..1. Language Limitation - In the settings there is no option to choose, for
example, English. Therefore, the choice of this bank is less interesting
for foreigners...2. Too narrow a range of possibilities to customize the profile - Apart from
changing the password and photo image no other services are offered.

5

2. Overview of existing solutions..............................
2.3 Privat24

Privat24 is the largest bank in Ukraine, which represents about a quarter of
the entire banking system of the country, being systemically important and
the largest savings specialized bank, servicing a third of the deposits of the
country’s population.

The bank has a quite pleasant interface and has the same functions as
other banks. There is an opportunity to transfer money to an account at
once, transfer to another card, convert the amount of money in order to
understand how much user can get for a certain amount (for example, the
ratio of hryvnia to dollar).

On the main page of the profile there is a currency rate against the dollar.
If user clicks on the rate, he will get a larger list of currency rates. There
are also loan products on the page. With the help of this bank user can
immediately pay for music listening, parking, withdraw a deposit or even
buy a train or airplane ticket and much more. User can set up automatic
payments for services, as well as create a template or use it. When user click
on a profile, he can also contact his personal banker immediately. A nice
touch is the ability to revert the website to an older version for those who
are used to it, for example. It is also possible to change the theme (user can
also set the interaction wallpaper with the operating system). [12]

Figure 2.3: Privat24 web application

6

.................................... 2.4. Raffeisenbank

Disadvantages:..1. Changing profile data - Besides photos and passwords, users can change
information only by contacting the bank, which is not so convenient...2. Overloaded UI - There are too many options and different options on
the page, which makes it very easy to get lost in the interface...3. Problems with transferring money to another bank (foreign) - When
attempting to do so, it will ask the user to come to the bank’s department
in person, which is not so convenient.

2.4 Raffeisenbank

Raiffeisenbank is an Austrian bank that is one of the largest banks in Europe
(about 15 countries, including Austria itself) and serves over 17 million
customers.

The bank provides a variety of services to customers that may be tempting
to many people. The bank itself also has a web version through which it
can interface with its account. When user authorize in his personal profile,
user will be able to see the current balance of the amount on the card. It
is also possible to switch between cards. In addition, it is possible to view
the card history, check the messages received from the bank, make payments,
transfer money between accounts, make conversions, open a new account, get
a statement of accounts, ask for a new card, take out a loan for a limited
amount, make an investment, just like in other banks. It is also possible for
user to manage his data. [13]

7

2. Overview of existing solutions..............................

Figure 2.4: Raffeisen web application

Disadvantages:..1. Empty home page - The main page contains quite little information.
There is nothing else besides the main map and this is a big disadvantage...2. One type of theme for the website - It would be nice if the website had
a dark theme in addition to a light theme...3. Poor online service - The service is quite slow for issuing documents.

8

....................................2.5. Industrial bank

2.5 Industrial bank

Industrial Bank is a Chinese bank that is the largest bank in the country and
one of the largest banks in the world in terms of its assets and capital.

This bank also has its departments in Ukraine. The bank provides a variety
of banking services, as well as actively implements modern technologies for
the convenience of customers. The website of the bank has a type of one-sided
dynamic website.

In the personal profile of the web version of the bank user can see his
account, debts, exchange rate and various options offered in the left bar:
currency exchange, sending funds, services, creation and management of
templates, operations, callback, the ability to contact the concierge. On the
main page user can create new templates, sending funds, bills, loan, deposits.
User also have the possibility to manage his profile, to change it. [14]

Figure 2.5: Industrial bank web application

Disadvantages:..1. Old interface - The interface is quite old and does not look presentable
against other banking websites...2. One type of theme for the website - It would be better if website had a
dark theme in addition to the light theme.

9

2. Overview of existing solutions................................3. Website crashes when zooming in - If the user zooms in on a page, the
website crashes...4. Lack of Home Button - When a user clicks from the personal cabinet, the
icon throws the user out of the personal cabinet and opens the website
from the beginning...5. Ambiguous Icons in “Utilities" - Within the "Utilities" section, the icons
displayed appear unfamiliar and lack clarity...6. Unclear arrangement of sections - It confuses users on which page they
are at.

2.6 Conclusion

The purpose of studying 5 different bank websites was to find out how well
they fulfill the main criteria - ease of use, speed and security, profile customi-
sation, modern interface and multilingualism.

The table below shows the final analysis of the banks.

10

..................................... 2.6. Conclusion

Figure 2.6: Conclusion table with the main factors of banking applications.

11

12

Chapter 3
Business Analysis

Business analytics describes who the target audience of the application is,
what roles exist, their capabilities, how they can interact with the application,
and a Use-Case diagram that visually illustrates that.

3.1 Target audience

The target audience of the application is users who will use the web version
of the bank in order to manage their bank account. Since the server side of
the application will be implemented, it also gives companies the opportunity
to use this application for the purpose of implementing the web version of
the bank.

3.2 Roles

The application will have several roles: User, Anonymous User, Moderator
and Administrator. In this chapter it will be described in more detail how
they can interact with the application.

3.2.1 User

User (USER role) has the right to manage his/her profile, open new accounts,
make bank transactions, take out loans and repay them, deposit money, send
messages to other users. A user cannot delete his/her card as long as there
are funds on it. Also, the user cannot close his account. To do this, he/she
must contact the administrator via chat or email with a request to close the
account, after which the administrator will delete it.

13

3. Business Analysis
3.2.2 Anonymous user

This type of user does not have access to account management and any other
services provided by the web version of the bank. An anonymous user can
only create an account. Upon creation, he/she is automatically given a card
with the national currency.

3.2.3 Moderator

Moderator (MODERATOR role) has the ability to see users’ accounts and
edit them if necessary, has the ability to manage users’ cards, loans, deposits
and transfers, solve issues through internal chats or emails. Also moderator
has the ability to set restrictions on access to users’ bank accounts. Has the
same capabilities as the regular user.

3.2.4 Administrator

The administrator (ADMIN role) has the ability to see user accounts and
delete them if necessary. A user with the administrator role has the ability
to set roles for other users, namely the moderator and administrator roles.
He also has the ability to delete bank accounts if there are no funds in them,
set restrictions on access to users’ bank accounts but does not have access
to their loans, and does not have access to users’ loans and deposits data.
Possesses incomplete regular user capabilities.

14

.................................. 3.3. Use-Case diagram

3.3 Use-Case diagram

The Use-Case diagram describes the existing roles in the application that are
inherited from the user and also the anonymous user. [15]

Figure 3.1: Use-Case diagram with actors

15

3. Business Analysis
This Use-Case diagram describes the interactions between roles and the

capabilities available to users with different roles.

Figure 3.2: Use-Case diagram with interaction between actors

16

..................................... 3.4. Conclusion

3.4 Conclusion

The Business Analysis chapter delves into defining the target audience, roles,
and interactions within the application, alongside presenting a Use-Case
diagram illustrating these aspects visually. By detailing user roles such as
User, Anonymous User, Moderator, and Administrator, it delineates their
respective capabilities and interactions. The Use-Case diagrams visually
depict these interactions, offering a comprehensive understanding of the
application’s functionality and user roles.

17

18

Chapter 4
Functional and nonfunctional requirements

This chapter discusses the distinction between functional and non-functional
requirements and their impact on the scope and functionality of the project.

4.0.1 Functional requirements

Functional requirements are the requirements that the end user has as core
capabilities that the system must provide. All these functionalities must
necessarily be included in the system as part of the contract. They are
represented or formulated in terms of the input data to be fed into the system,
the operations to be performed, and the expected output data. [16]

Based on the analyses that were made during the material review, the
project will have the following functional requirements:

FR1: Registration

The program will allow the user to register and set personal information such
as - name, surname, date of birth, country of origin, email, password and
phone number. After registration user will be able to set his image profile.

FR2: Opening and maintenance of accounts

The program will allow the user to open accounts with different currencies
and the ability to manage them, for example, to put on deposit, to withdraw
funds from the card, to transfer funds to other accounts of the user.

19

4. Functional and nonfunctional requirements........................
FR3: Deletion of account

When deleting a bank account, if there is any amount left on it, the application
will not allow the user to delete it. To do this, it is necessary to transfer
money to another card, so that there are no funds on the account to be
deleted.

FR4: Conversions

The main account is automatically opened in Czech crowns upon registration.
Provided that the user opens a deposit, the amount transferred to the deposit,
if the currency is foreign, will be converted to the currency of the deposit.
The user also has the possibility to transfer the amount to his account with
both national and foreign currencies. When transferring money to a foreign
account, conversion will be done. A user cannot send an amount to another
user’s account if the currency of their account is not the same as the sender’s
currency account. Currency conversion will be set based on data coming from
third-party API.

FR5: Delete profile

User will be able to delete his profile if he has no money in his account, no
loan either on his profile or on his card, and no deposit opened. Also the
deletion of the profile must be confirmed by the administrator.

FR6: Loan options

The system will allow the user to take a loan from the bank. The loan will
be linked either to the bank account or to the user himself. When an amount
is sent to the loan account, the loan will decrease and will soon automatically
be removed.

FR7: Currency rate check

The user is able to monitor the exchange rate against the Czech crown.

FR8: Edit profile

User has the ability to edit their profile - photo, phone number, email and
password. Changing the user’s role can be done only from the adminis-
trator’s side, as well as blocking and unblocking the user can be from the
administrator’s and moderator’s side.

20

........................ 4. Functional and nonfunctional requirements

FR9: Write to other users

The user has the ability to communicate with other users using chat. Moder-
ator and administrator also have such possibilities.

FR10: Account blocking

The administrator and moderator have the right to block the user’s account.
In this case, the user will not be able to authorize, delete the account and
perform various operations. Also he/she will not be able to create a new
account if he/she provides the same data as in the previous account.

4.0.2 Nonfunctional requirements

Non-functional requirements are qualitative constraints that the system must
satisfy according to the project contract. The priority or degree of realization
of these factors varies from project to project. They are also referred to as
non-functional requirements. [16]

Based on the analyses that were made during the material review, the
project will have the following non-functional requirements:

NFR1: Continuity

The developed program should function in a 24/7 activity mode, ensuring
continuous operation without any scheduled or emergency application stops.

NFR2: Safety

The program must have an established authorization, which includes login
and password. In this way the program protects the user from the third
person.

NFR3: Performance and scalability

The program must be optimized for high performance and be able to scale
with changing workloads. It should successfully handle a large number of
users and its architecture should allow for efficient expansion when necessary.

NFR4: User application of the program

The program will be easy to use and will not require much effort from the
user to understand the application.

21

4. Functional and nonfunctional requirements........................
NFR5: Testing

The program will be followed by testing to prevent any errors.

NFR6: Portability

The program will not be dependent on the operating system and can be run
on other devices of different OS.

NFR7: Reliability and reusability

The program must have full access to the database of all users. The data
itself must be reusable.

NFR8: Repairability

The system should be easily maintainable and capable of rapid recovery from
system crashes.

NFR9: Flexibility

The program must be flexible and able to adapt to new technologies.

NFR10: Efficient resource management

The program must be able to effectively access and interact with resources.

4.1 Conclusion

The "Functional and Nonfunctional Requirements" chapter outlines the essen-
tial functionalities and qualitative constraints of the application. Functional
requirements include vital features like user registration, account manage-
ment, currency conversions, profile editing, and communication capabilities.
Nonfunctional requirements emphasize continuous operation, safety measures,
performance optimization, user-friendliness, testing protocols, portability,
reliability, and flexibility. Together, these requirements shape the project’s
scope, defining its operational parameters and ensuring functionality and
quality across various dimensions.

22

Chapter 5
Software Analysis

This section discusses the various technologies that will be used to implement
this project and the reasons why they were chosen. Among the technologies
used are discussed such as the database and programming language.

5.1 Database

A database is a set of data stored in a system and usually managed by a
database management system. Databases are stored and in the form of tables,
which enables efficient querying and processing of information. Structured
Query Language (SQL) is used to manipulate the data. The database is
an integral part of the project, providing the requested information when
interacting with the application. For example, when an administrator wants
to see all existing users, he accesses the database to display a list of all
registered users. [17]

5.1.1 PostgreSQL

PostgreSQL is a powerful object-relational database system that is used in
many web projects. The language has support for both SQL and JSON, which
has gained more interest among developers. Among the many advantages
of PostgreSQL can be mentioned reliability, data integrity, a wide range of
functions, extensibility and much more. [18]

23

5. Software Analysis...................................
5.1.2 MySQL

MySQL is one of the most popular databases that is used in various companies
such as Facebook, Netflix, Uber and others. MySQL is also an implementation
database, where data is stored in separate tables. The main advantages are
speed, reliability and easy to use. MySQL also has its disadvantages, such
as: inefficiency with the work of very large data as well as in transaction
processing, lack of support for SQL control limits, difficult scaling. [19] [20]

5.1.3 Oracle Database

Oracle Database - A relational database management system and is one of
the most robust and widely used relational databases for storing, organizing,
and searching data by type while preserving relationships between different
types. The disadvantages of using Oracle are the complexity of use with
architectural and administrative costs, which can put a strain on the use of
small Websites. [21]

5.1.4 MongoDB

MongoDB is a database program (tool) to manage document-oriented informa-
tion, store or retrieve information and has a NoSQL type format. MongoDB
is used for big data storage, indexing, load balancing, aggregation and more.
MongoDB also has a number of drawbacks such as: limited transaction vol-
ume, limited join capabilities, data redundancy and memory use, document
size limitation, and nested document layers. [22] [23]

5.1.5 Comparison of databases

Below can be seen a table that demonstrates database comparisons, their
advantages and disadvantages.

24

...................................... 5.1. Database

Figure 5.1: Conclusion table with the main factors of databases

25

5. Software Analysis...................................
5.2 Backend

The backend is the server side of the website, which is the main part of the
project. It stores and organizes data, and makes sure that everything on
the client side of the website accomplishes its task. It is the part of the
software that does not come in direct contact with the users. The parts and
features designed by the backend designers are indirectly available to the
users through the front-end application.

The backend is also the thread of communication between the client and
the database, because the user, without access to the database, will not be
able to get the requested information. Various programming languages are
used for its implementation: Java, Kotlin, Python, PHP, C# and others.

5.2.1 Java

Java is a programming language and computing platform first released by
Sun Microsystems in 1995 and then purchased by Oracle in 2010. This
programming language is considered a dynamically typed language with a
C-like syntax. It is a multi-paradigm language but is predominantly object-
oriented, also a statically typed, cross-platform general-purpose programming
language. The language is used to develop web websites, mobile applications,
games, and more.

The main advantage of the Java language is its multiplatform nature, which
allows user to run applications written in this language on any platform using
JVM (Java Virtual Machine). [24]

5.2.2 Kotlin

Kotlin is a cross-platform, statically typed, general-purpose high-level pro-
gramming language with type inference. The language appeared in 2011
and was developed by JetBrains. Kotlin is mainly JVM-oriented, but also
compiles to JavaScript. Kotlin is a popular language due to its simplicity and
efficiency. It has powerful tools for creating server-side, client-side, mobile as
well as desktop applications. [25]

5.2.3 PHP

PHP is an open source server-side scripting language that many developers
use for web development. The language was developed in 1995 by The PHP
Group. PHP is a general-purpose language that can be used to create many

26

...................................... 5.2. Backend

projects, including graphical user interfaces (GUIs). PHP is one of the popular
languages for beginner programmers due to its ease of learning and use. It
provides powerful tools for processing forms, working with databases, creating
dynamic web pages and much more. The language also has its drawbacks,
such as weak typing, limitations in performance and scalability when working
with large and complex applications. [26]

5.2.4 Python

Python is a high-level interpreted object-oriented programming language
with dynamic semantics, created by the Python Software Foundation in 1991.
Its built-in data structures, dynamic typing, garbage-collected and linking
make it ideal for developing a variety of applications and use as a scripting
language. It can be used for both functional and dynamic programming,
making it unique. Python supports modules and packages, making it easy to
compartmentalize programs and reuse code. [27] [28]

5.2.5 Comparison of languages

Below can be seen a table that demonstrates the comparison of programming
languages, their advantages and disadvantages.

27

5. Software Analysis...................................

Figure 5.2: Conclusion table with the main factors of languages

28

..................................... 5.3. Conclusion

5.3 Conclusion

After studying all available technologies, it was decided to use PostgreSQL
as a database language and Java as a language for developing the server side
of the application. PostgreSQL language was chosen because it is convenient
and easy to use. The Java language was chosen because it is very popular for
implementing the server side of projects, and it is also a clear and accessible
programming language due to its syntax and support for object-oriented
programming (OOP).

These technologies were chosen because of the experience gained in their
use, and also because they were studied in detail during my university studies.

29

30

Chapter 6
Proposal

This section discusses the microservice, monolithic architecture, used APIs,
Kafka, Docker Image and Hazelcast. Among other things, UML diagrams
are shown to show what these entities will be and how they will interact with
each other.

6.1 Architecture

The application architecture describes the system components, the relation-
ships and interactions between them.

6.1.1 Microservice architecture

Microservices are a type of architecture that is used to implement distributed
and loosely coupled applications, where changing one microservice will not
suspend the entire application. A microservice consists of a single deployment
that is independent of other deployments and processes that supports a
specific business function. [29]

31

6. Proposal.......................................

Figure 6.1: Demonstration of microservice architecture [29]

6.1.2 Monolithic architecture

Monolithic architecture is a traditional model of software that presents itself
as a single network that integrates all business tasks. In order to make changes
to an application with this architecture, user need to update the entire stack,
access the database and after all the changes, run the project. [30]

Figure 6.2: Demonstration of monolith architecture [31]

32

..................................... 6.1. Architecture

6.1.3 Deployment diagram

Deployment diagrams are diagrams that model the physical architecture of a
system. Their main purpose is to show the relationships between the software
and hardware components of the system and the distribution of processing
between them. [32]

Below is a deployment diagram showing the basic process of communication
between nodes.

Figure 6.3: Deployment diagram

33

6. Proposal.......................................
The first node in the diagram represents the client side of the application.

It contains applications to run the necessary applications such as Terminal
and Postman. Also for communication between users, the Kafka Message
Broker will be used, which will work through the terminal and send messages
to the server, which will then store the data in a database.

The second node represents the server part of the application. The server
part is the main part of the application because it connects the user and the
database. In addition, the server uses APIs such as "ExchangeRate-API" and
"Country API" to retrieve data about exchange rates and existing countries.
It also has a link to Kafka, through which it processes and stores messages in
the server.

The third node is the database. It stores data about users, transactions,
deposits, credits, etc. in the form of tables. When users interact with the
application, they always access the server to retrieve, save, or modify data.

Below is a deployment diagram where two nodes are used. The first node
is a PC, which represents the client side or user interface. The second node
represents the Docker Image which contains a copy of the application in its
deployment version. We also use Postman to interact and test the application.

34

..................................... 6.1. Architecture

Figure 6.4: Deployment diagram (Docker Image)

35

6. Proposal.......................................
6.1.4 UML Diagram

The UML diagram is a graphical demonstration of the server-side concept,
the relationships between classes, and what attributes they have.

In the diagram below it can be seen what classes are available in the project,
as well as enumerative classes that will allow to set a status or process.

36

..................................... 6.1. Architecture

Figure 6.5: UML diagram

37

6. Proposal.......................................
6.1.5 Server side

The server side of the application is written on the Spring Boot framework
using the Java language. Spring Boot framework is a popular framework
for developing the server side of web applications. It allows user to create
a web application without much effort, so customizing and writing code
seems to be easier. Spring Boot has a lot of functionality, among which its
most significant features can be considered: dependency management and
automatic configuration.

Below is a component diagram describing the interaction with the server side
of the application.

38

..................................... 6.1. Architecture

Figure 6.6: Component diagram

39

6. Proposal.......................................
6.1.6 Security

Security is a major aspect in apps, especially when it comes to bank accounts.
The application uses Spring Security. Spring Security is a unique framework
that is used for authorization and authentication. Its benefit is also that it
can be easily augmented with the desired functionality. The application uses
Basic Auth for authentication.

Figure 6.7: Basic Auth diagram demonstration [33]

Basic Auth is one of the authentication methods and is a simple way to secure
the REST API. It uses an HTTP header to pass the username and password
when requesting a server. The disadvantage of Basic Auth is that it does not
require the use of cookies to manage user sessions. This can affect application
performance due to the need to re-authenticate each time a request is made.
One way to solve this problem could be through the use of a session manager.
By using a session manager, user can manage user sessions more efficiently
and reduce the time spent authenticating and loading data to the page. [34]

40

..................................... 6.1. Architecture

Below is the implementation of "Basic Auth" authentication in the applica-
tion.

Figure 6.8: Security chain implementation demonstration

Also, in the application, users have been divided into roles, and only users
with a specific role have access to certain methods. This can be achieved by
using the @PreAuthorize annotation. Below is a demonstration of how this is
implemented in the application.

Figure 6.9: PreAuthorize implementation demonstration

41

6. Proposal.......................................
6.1.7 Database

The PostgreSQL database was selected for the application development. This
database is popular among users due to its powerful, open-source, object-
relational database system. Additionally, it was studied and utilized during
university courses, which provided a solid understanding of its syntax.
Below is a demonstration of how PostgreSQL is configured in the application.

Figure 6.10: PostgreSQL configuration for accessing to the database

6.1.8 Hibernate

Hibernate is a Java framework whose goal is to simplify database relationships
and the use of data in code. Hibernate resides in the freely available Object
Relational Mapping tool, or ORM for short. Hibernate allows user to write
less code to manipulate the database, making the code more readable. It is
also part of the Java Persistence API (JPA) implementing its specifications
for data persistence. [35]

6.1.9 JPA

The Java Persistence API (JPA) is a Java language specification that is used
to persist Java objects in a relational database. In this way, JPA can be
referred to as the node that connects databases to our code. ORM tools
such as Hibernate, which implement the JPA specifics to persist data in the
database. [36]

42

................................ 6.2. Used Third-party API’s

6.1.10 Maven

Maven is a powerful tool that allows user to manage projects. Its functionality
includes such mechanics as building projects, working with validation, cleaning
up unnecessary dependencies, rebuilding files, testing, building into a package,
installing new dependencies and much more. Maven makes the daily work
of Java developers easier and generally helps to understand the essence of
any Java project. However, it is also worth mentioning that Maven is an
important part of the project, without which it will be impossible to run the
application. Maven allows user to use it as a controller to control a Java
application. [37]

6.1.11 REST API

REST (Representational state transfer) is a style of software architecture
that is used to create APIs (Application Persistence Interface) in the modern
world. REST allows user to use information using HTTP requests, thanks to
which user can call information, write it to a database, modify and delete it.

The most common HTTP requests used for manipulation are GET, POST,
PATCH, PUT, DELETE. Each piece of information is uniquely defined by
a global identifier such as a URL. Each URL in turn has a strictly defined
format. Below is an example from an application where an HTTP request is
used to perform manipulations on data in a database.

Figure 6.11: Demonstration of REST call in the application

6.2 Used Third-party API’s

Third-party APIs were used in the application, through which the application
can get up-to-date information about currencies and existing countries.

43

6. Proposal.......................................
6.2.1 Currency API

Currency API (or "ExchangeRate-API") is a free, publicly available API that
allows user to get up-to-date currency rates from over 162 countries around
the world. In the application the main currency is Czech crown, so rates of
other currencies will refer to Czech crown, so for example 1 crown is 0.04232
dollars. In the application, the exchange rate is updated every 24 hours so
that the user can see the current exchange rate today. Below user can see
how information about currency rates is stored in the application database.
[38]

Figure 6.12: Demonstration of the ExhcangeRate-API usage

44

................................ 6.2. Used Third-party API’s

6.2.2 Country API

The "REST Countries API" is used to verify that a user has entered an
existing country when registering. Below is a demonstration of how the
country entered by the user is validated in the application. [39]

Figure 6.13: Demonstration of the REST Countries API usage

45

6. Proposal.......................................
6.3 Apache Kafka

Apache Kafka is a distributed platform for streaming data that is continuously
generated during real-time use of an application. The application uses Apache
Kafka as a robust and scalable Message Broker that enables messaging between
users. The use of the customized configuration for Kafka in application.yml
file is demonstrated below. [40]

Figure 6.14: Demonstration of the Apache Kafka configuration

6.4 Hazelcast

Hazelcast is a distributed In-Memory Data Grid platform for Java. In an
application, Hazelcast acts as query caching, allowing users to retrieve data
instantly when the data is re-processed, without having to execute the query
again. Below is an example of the configuration that can be found in the
hazelcast.yml file, as well as a demonstration of the use of the caching
annotations that Hazelcast works with. [41]

Figure 6.15: Demonstration of the Hazelcast configuration

46

.................................... 6.5. Docker Image

6.5 Docker Image

A Docker image is a file that is used to execute code in a Docker container.
Docker images act as a set of instructions to create a Docker container, similar
to a template. In a Docker image file, we specify the commands to build the
application, create the Docker image, specify variables for environment, port,
etc. Below is a Dockerfile that runs the commands described above. [42]

Figure 6.16: Demonstration of Docker Image

6.6 Conclusion

In this chapter, all technologies and frameworks used in the application
were analyzed. After studying this title it is possible to conclude why these
technologies and frameworks were used, what are their advantages and what
role they play in the application.

47

48

Chapter 7
Implementation

This chapter will describe the development of the application, what framework
is used and the structure of the application.

7.1 Application implementation

The application itself is the server side of the web application, which plays
a very important role as the information that is manipulated will later be
written out in the client side of the application.

7.1.1 Spring Boot

Spring Boot is an open source framework that makes it easy to build web
applications. It provides user-friendly tools and automated configurations,
which makes the development process fast and enjoyable. Spring Boot is
widely used in the industry and is a popular choice among web application
developers. It supports not only Java but also more modern programming
languages such as Kotlin and Scala, allowing user to choose the right tool for
each project.

7.1.2 Application structure

The main files are located in the folder
src/main/java/accounts/bank/managing/thesis/bachelor/rastvdmy/.
During development, the code was structured and divided into several folders,
each of which contains a specific part of the application responsible for a
particular program process.
Below demonstrates the structure of the application.

49

7. Implementation....................................

Figure 7.1: Demonstration of the application structure

/config/ - This folder contains the configurations needed to initialize the
application, run Kafka, and install security. Also inside this folder there is
a folder /config/utils/, which contains Kafka listeners - a component acting
as a listener, thanks to which it is possible to see the status of the message
when communicating.

/controller/ - A folder that stores files used to manipulate data by per-
forming certain operations defined in REST controllers and displaying them on
the screen. Inside this folder user can also find the folder /controller/handler/,
which contains the Error handler, which when processing messages, in case
of error will display the page with errors, which are located in the folder
/resources/templates/.

/dto/ - The application uses two types of data transfer objects, known as
DTO, provided in the dto folder. A DTO is the process by which the necessary
data is transferred between the client and server parts of an application.
/dto/request/ - Responsible for transferring data from the client part to the
server part. This type of data transfer object is used to send requests to the
server and transfer the data for processing.
/dto/response/ - Responsible for transferring data from the server part to
the client part. This type of data transfer object is used to send responses

50

.............................. 7.1. Application implementation

from the server to the client and transfer the data for display to the user.
Each type of DTO is represented in a corresponding class within the

specified folder.
/entity/ - This folder contains entities that are a directly important part

of the application. As the application runs, there will be constant interaction
with the entities, including assigning new roles, deleting, modifying, and other
operations.

/exception/ - The exception folder contains the application’s error class,
which is used to write an error to the screen if the user for example makes a
mistake while entering data.

/repository/ - This folder contains files through which it is possible to
manipulate the database, namely to retrieve certain data, to save and delete
from the database, and to modify data. The folder links the business logic
with the database logic.

/service/ - This folder contains the files that implement the business
logic. In this folder, services interact with entities, controllers, errors and
repositories, thus making themselves the "heart" of the application. The
business logic implements such details as: getting up-to-date exchange rates,
transferring money, opening a deposit, creating a profile, opening a new
account, and more. This folder also contains the /service/component/ folder,
which stores: The Administrator Initializer - every time user try to create a
database, an administrator is automatically created, as well as the Generator
- which stores the logic for generating the necessary data for the map, namely:
IBAN, Swift, account number and reference number.

/resources/ - This folder contains the application configuration files, the
Hazelcast hashing configuration, and the /resources/templates/ folder, which
contains the files the user sees when errors are displayed.

/test/ - The tests folder contains files that test the application before
launching it so that there are no unnecessary errors.

51

7. Implementation....................................
7.2 Conclusion

The "Implementation" chapter outlines the development process, highlighting
the utilization of Spring Boot for web application development. It provides a
comprehensive overview of the application’s structure, detailing each folder’s
purpose and functionality. Key components such as configurations, controllers,
DTOs, entities, exceptions, repositories, services, and test files are discussed,
underscoring the meticulous organization of the codebase. This chapter
underscores the development effort and emphasizes the significance of the
application’s structure and core components.

52

Chapter 8
Development environment

This chapter will describe all the development environments used to create
the application.

8.1 IntelliJ IDEA Ultimate

IntelliJ IDEA is an integrated development environment (IDE) developed by
JetBrains that is used for application development. IntelliJ allows user to write
applications in different languages such as Java, Kotlin, Scala, JavaScript and
many others, which makes it unique. Also the main feature is plugins, which
are unique tools that allow developers to make IntelliJ a unique sandbox. [43]

Figure 8.1: IntelliJ IDEA web page

53

8. Development environment
8.2 Postman

Postman is a platform developed by Postdot Technologies for creating and
using APIs. It allows users to test the server side of an application by creating
different REST requests, facilitating interaction with both the server side and
the database. Additionally, Postman is a unique tool for creating REST API
documentation, enabling the generation of documentation once all requests
have been written. [44]

Figure 8.2: Postman web page

54

....................................... 8.3. Docker

8.3 Docker

Docker is an open platform for developing, delivering, and running applications.
It allows applications to be decoupled from the infrastructure, enabling faster
software delivery. In an application, Docker is used to create images that can
be executed independently. Docker includes builds that can run on their own,
independent of the underlying application. [45]

Figure 8.3: Docker web page

8.4 Conclusion

The "Development Environment" chapter highlights the key tools used in
application development. IntelliJ IDEA Ultimate provides a robust integrated
development environment supporting various languages. Postman simplifies
API testing and documentation, while Docker enables efficient application
development, delivery, and execution. These tools collectively streamline the
development process, emphasizing efficiency and productivity.

55

56

Chapter 9
Versioning

Project versioning is an important part of project implementation, because
with its help you can define the project status, dividing each change in the
project into bug fixes, minor changes and major changes. Project versioning
is also an important part of team-based application development, because
this way we can divide the work between each team member, specifying their
own branch version, and after implementation and validation, merge it with
the main version.

Figure 9.1: Demonstration of an example of project versioning [46]

9.1 GitHub

GitHub is a free web service that acts as a repository for open source IT
projects as well as a service for collaborative application development. With
GitHub, users can share projects, manage them, change access to them, and
much more. At the moment, this web service is the most popular among
developers. Due to the fact that GitHub supports the distributed version

57

9. Versioning
control system git, it became possible to use the knowledge gained during
university studies, namely creating separate branches, merging them and
much more. GitHub’s unique functionality, GitHub Pages, was also utilized.
GitHub Pages allows the user to create a static site that uses code written in
the application. Thus, it was possible to realize Java documentation of the
project and publish it as a web page.
Here is link to the project repository https://github.com/UnknownPug/
Managing-personal-bank-accounts, which is in public state. Below is a
picture of what the repository page of the Managing Personal Bank Accounts
application looks like.

Figure 9.2: Demonstration of project repository located in GitHub

9.2 Conclusion

In this chapter, all the applications that are used to implement the project,
their functionality and features have been broken down in detail. The next
chapters will describe the application, its testing and the next steps in the
project realization.

58

https://github.com/UnknownPug/Managing-personal-bank-accounts
https://github.com/UnknownPug/Managing-personal-bank-accounts

Chapter 10
Application description

This chapter describes the functionality of the application, its features that
the application currently has. Below can be seen a few basic scenarios of the
application.

10.1 Registration

To use the functionality of the app user need to register in it, when registering
the user will need to set the data that is wanted from them and then the
program will check if the data has been entered correctly. If so, the user will
be created and a Czech currency bank card will be automatically linked to it.
In case the user tries to enter incorrect data, such as invalid country, invalid
phone number, name, email and other data, then the user will not be able to
enter the correct data. If user wrote some wrong data, he will be able to edit
them. Also, only the administrator can delete a user as well as change roles.

59

10. Application description

Figure 10.1: Demonstration of user registration

Figure 10.2: Demonstration of automatically added card after registration

60

....................................... 10.2. Log in

10.2 Log in

For user authorization the standard Basic Auth is used, which has a login
page. Authorization can be done using Postman. There is also a generated
authorization page that can be used to simulate authorization. In order to
try the authorization simulation user should enter the ip that was specified in
the application (standard is localhost), then the symbol ":", then the port that
was also specified in the application settings and the last is endpoint, which is
/login. Example: localhost:8082/login. If the user logs out of the application
/logout, then his status will change to OFFLINE and user will be redirect to
/login page. If user decides to log in later, then after authorization his status
will change to ONLINE and he will be redirect to the page with Json info
message. Below user can see what authorization looks like in Postman, as
well as a Simulation of the login page with user status changes.

Figure 10.3: Demonstration of authorization via Postman

61

10. Application description

Figure 10.4: Demonstration of simulate authorization Log In

Figure 10.5: Demonstration of simulate authorization Log Out

62

................................. 10.3. Adding User photo

10.3 Adding User photo

The user can also customize their photo. To do this, upload a file of type jpg,
png, jpeg. If the user tries to upload files that are not images, an error will
appear.

Figure 10.6: Demonstration of uploading user avatar

63

10. Application description
10.4 Currency data

Any user can view the exchange rate available at the bank. Thanks to the
ExchangeRate-API, the bank has 162 exchange rates available.

Figure 10.7: Demonstration of getting available currencies

64

............................ 10.5. Card creation and management

10.5 Card creation and management

The user can open a card by specifying its currency from the available 5
(Czech crowns, Dollars, Euros, Zloty, Hryvnias) and its type (MasterCard or
Visa). The card can also be refilled. The moderator can change its type, as
well as block or unblock it. A card can only be deleted by a user with the
administrator role and provided there is no loan, no deposit and the card
itself has no funds on it. Below can be seen a demonstration of creating a
card.

Figure 10.8: Demonstration of creating card

We can also refill the card by entering its pin code and the amount we want
to deposit. When the user refill the account, the amount is automatically
converted into Czech crowns. The following shows how to refill the card.

Figure 10.9: Demonstration of refilling the card

65

10. Application description

Figure 10.10: Demonstration of the result of refilling the card

66

.............................10.6. Opening loan and Repayment

10.6 Opening loan and Repayment

The user can also take money on loan. To do this, he/she will need to specify
the currency from the available bank currencies and the amount. In addition,
the user must choose where the loan will be recorded - on the user’s card or
in his name. After that, he will be given a deadline for which he must pay it
off. The user cannot take more than one loan. Also the end date of payment
can be increased, but this can only be done by the moderator. Below is a
demonstration of how the loan is opened.

Figure 10.11: Demonstration of opening loan

67

10. Application description
The user can pay for the loan in any currency. Upon payment, the amount

is converted to the currency of the loan. Once the loan is paid off, it will
automatically be removed from the user’s view. Below is a demonstration of
a loan.

Figure 10.12: Demonstration of repaying loan

68

..................................10.7. Opening a deposit

10.7 Opening a deposit

The user can also open a deposit account. When depositing money to the
deposit account, the user must transfer money from the specified card, after
which it will be debited and transferred to the deposit account. After the
deposit time expires, the user will be able to return the money to the specified
card with a 5 percent bonus. The user can also return the amount before
the expiration of the deposit period, but the bonus will not be accrued. The
deposit can be opened in 5 available currencies. When transferring money of
one currency to a deposit in another currency, the money is converted. Below
is an example of deposit replenishment and the condition that if the money
is requested back immediately, then without the 5 percent bonus.

Figure 10.13: Demonstration of the openning deposit

69

10. Application description

Figure 10.14: Demonstration of the user’s balance after opening a deposit

70

..................................10.7. Opening a deposit

Figure 10.15: Demonstration of the deleting deposit and user’s balance

71

10. Application description
10.8 Transfer to user account

Users can send money to each other’s cards. To do this, you need to specify
the sender’s ID, the recipient’s card number, the amount and a description.
Below is an example where a user with a Czech card sends money to his
dollar card. The specified amount will be converted to the currency of the
card to which the amount of money is sent. This operation cannot be done
between users. Only transfer with the same currency is available for users.

Figure 10.16: Demonstration of transferring money to another card

72

............................... 10.8. Transfer to user account

Figure 10.17: Demonstration of user cards after transfer

73

10. Application description
10.9 Sending messages

Users can also send messages to each other, thus communicating to solve
various issues. The following is a demonstration of how users send messages
to each other and can be seen using Kafka Message Broker.

Figure 10.18: Demonstration of messaging between users

74

.................................... 10.10. Conclusion

10.10 Conclusion

This chapter provides an overview of the application’s functionality, covering
registration, login, photo customization, currency data retrieval, card manage-
ment, loan handling, deposit management, money transfers, and messaging.
It demonstrates the application’s versatility and usability across different
scenarios.

75

76

Chapter 11
Testing

In this chapter, the processes of testing an application are studied in detail.
Testing is one of the major factors in application development. Tests can be
used to check various scenarios in an application and if any errors are found,
they can be fixed. The purpose of testing is to verify that the application
performs the required functions and that the application itself works without
any errors. In the chapter, the types of testing are analyzed and a comparison
is made between one of the banks and the application.

77

11. Testing.......................................
11.1 Server-side testing

The server side of an application plays a key role in its functionality, so
thorough testing is necessary to ensure that it meets user expectations. For
this purpose, tools such as JUnit and Mockito are often used, which allow
testing the operability and reliability of the code, as well as emulating various
use scenarios. Below is a demonstration of the results of application tests,
the task of which is to test the service part of the application.

Figure 11.1: Demonstration of testing result during running Maven

78

....................................... 11.2. JUnit

11.2 JUnit

JUnit is an open source unit testing framework for the Java programming
language that plays an important role in development and is used for testing
applications. JUnit offers the user a list of annotations and functions that will
allow testing different parts of the code, comparing results, error dropdowns
and more. Below is a demonstration of the JUnit testing method from the
project. [47]

Figure 11.2: Demonstration of JUnit testing

79

11. Testing.......................................
11.3 Mockito

Mockito testing is a framework that is used to write tests efficiently while
using special mock objects. Thus Mockito allows user not to implement
production class objects, instead it creates a "mock" which is not an existing
object but just a shell. This makes it possible to check, for example, if a class
has been run, how many times it has been run, and much more. Below is a
demonstration of the Mockito testing method from the project. [48]

Figure 11.3: Demonstration of Mockito testing

11.4 Bank vs Application

In this chapter, a table displaying the results of comparisons between the
different operations performed during the testing of the "Managing Personal
Bank Accounts" and "Monobank" applications can be found below.

80

................................. 11.4. Bank vs Application

Figure 11.4: Table with the all testing speed results

81

11. Testing.......................................
11.5 Conclusion

This chapter sampled the types of testing used in the application, analyzed the
comparison of application and bank testing. The following chapters describe
the next steps to improve the application and the main result of the work
performed.

82

Chapter 12
Next steps

As a result of the work performed, it can be said that the application fulfills
the above described functional and non-functional requirements that were set
for the implementation of the application. It should also be noted that the
application has opportunities for improvement and is open for modifications.
The following aspects can be realized in this application:..1. Transferring the application to microservice architecture...2. Replacing Basic Auth with OAuth 2.0...3. Optimizing the application for a large user flow...4. Frontend implementation using React or Angular...5. Using Kubernetes for container management...6. Using Cloud service...7. Adding more choice of currencies.

83

84

Chapter 13
Conclusion

In this bachelor’s project, the topic of the project was studied in detail,
comparisons were made with other existing analogs of applications, and
programs were selected with which the application is implemented. Then
the application was implemented using Java and PostgreSQL languages,
Spring Boot framework, caching using Hazelcast, image creation using Docker
and messenger was created using Apache Kafka. In addition, tests of the
application were written using JUnit and Mockito frameworks to test the
application and test different situations.

This analysis of the assignment gave a better understanding of the imple-
mentation of the application.

The result of the bachelor’s thesis is the design and implementation of
managing personal bank accounts.

There is also a video demonstration of the application, where it is possible
to get familiar with the main features of the project. To view the video, click
on the quote number or find the reference in the bibliography under the quote
number. [49]

85

86

Chapter 14
List of used abbreviations

IT - Information Technology

API - Application Persistence Interface

UML - Unified Modeling Language

SQL - Structured Query Language

REST - Representational State Transfer

DB - Database

UI - User Interface

JPA - Java Persistence API

OS - Operating System

JSON - JavaScript Object Notation

JVM - Java Virtual Machine

GUI - Graphical User Interface

OOP - Object-Oriented Programming

HTTP - Hypertext Transfer Protocol

TCP - Transmission Control Protocol

Auth - Authentication

87

14. List of used abbreviations...............................
IDE - Integrated Development Environment

ORM - Object–Relational Mapping

URL - Uniform Resource Locator

DTO - Data Transfer Object

IBAN - International Bank Account Number

ID - Identification

MPBA - Managing Personal Bank Accounts

88

Chapter 15
Bibliography

[1] Roger S. Pressmann Bruce Maxim: "Software Engineering: A Practi-
tioner’s Approach", ISBN-10: 9780078022128

[2] doc. Ing. Miroslav Bureš, Ph.D. ČVUT. "Software Testing" [online].
2021 [quoted. 2023-10-20]. Available from: https://moodle.fel.cvut.
cz/course/view.php?id=6692

[3] Ing. Martin Řimnáč, Ph.D. ČVUT. "Database systems" [online]. 2021
[quoted 2023-10-25]. Available from: https://cw.fel.cvut.cz/b212/
courses/b0b36dbs/start

[4] Ing. Petr Křemen, Ph.D. ČVUT. "Enterprise architecture" [online]. 2022
[quoted 2023-11-01]. Available from: https://cw.fel.cvut.cz/b221/
courses/b6b36ear/lectures/start

[5] Ing David Kadleček, Ph.D. ČVUT. "Object modeling" [online]. 2021
[quoted 2023-11-03]. Available from: https://cw.fel.cvut.cz/b211/
courses/b6b36omo/prednasky

[6] Ing. Jiří Šebek. ČVUT. "Design of software systems" [online]. 2022
[quoted 2023-11-18]. Available from: https://cw.fel.cvut.cz/b222/
courses/b6b36nss/start

[7] Baeldung. "Build Your REST API with Spring" [online]. 2020
[quoted 2023-11-19]. Available from:
https://www.baeldung.com/rest-api-spring-guide

89

https://moodle.fel.cvut.cz/course/view.php?id=6692
https://moodle.fel.cvut.cz/course/view.php?id=6692
https://cw.fel.cvut.cz/b212/courses/b0b36dbs/start
https://cw.fel.cvut.cz/b212/courses/b0b36dbs/start
https://cw.fel.cvut.cz/b221/courses/b6b36ear/lectures/start
https://cw.fel.cvut.cz/b221/courses/b6b36ear/lectures/start
https://cw.fel.cvut.cz/b211/courses/b6b36omo/prednasky
https://cw.fel.cvut.cz/b211/courses/b6b36omo/prednasky
https://cw.fel.cvut.cz/b222/courses/b6b36nss/start
https://cw.fel.cvut.cz/b222/courses/b6b36nss/start
https://www.baeldung.com/rest-api-spring-guide

15. Bibliography
[8] Regina O. Obe, Leo S. Hsu. "PostgreSQL: Up and Running" [online].

2017 [quoted 2024-03-20]. Available from: https://www.oreilly.com/
library/view/postgresql-up-and/9781491963401/

[9] Erich Gamma, John Vlissides, Richard Helm, Ralph Johnson.
"Design patterns: elements of reusable object-oriented software" [online].
1994 [quoted 2024-04-25]. Available from: https://www.oreilly.com/
library/view/design-patterns-elements/0201633612/

[10] Erste Group. "Česká Spořitelna" [online]. [quoted 2023-10-16].
Available from: https://george.csas.cz/

[11] Dragon Capital. "Digital Pumb" [online]. [quoted 2023-10-16].
Available from: https://www.digital.pumb.ua/

[12] PrivatBank. "Privat24" [online]. [quoted 2023-10-16].
Available from: https://next.privat24.ua/

[13] Raiffeisen Bank International. "Raiffeisenbank" [online].
[quoted 2023-10-16]. Available from: https://www.rb.cz/en

[14] Joint-Stock. "Industrial bank" [online]. [quoted 2023-06-10]. Available
from: https://industrialbank.ua/en/business

[15] IBM. "Use Case Diagram" [online]. [quoted 2023-11-19].
Available from: https://www.ibm.com/docs/en/rational-soft-arch/
9.6.1?topic=diagrams-use-case

[16] GeekforGeeks. "Functional vs Non Functional Requirements" [online].
[quoted 2024-02-24]. Available from: https://www.geeksforgeeks.
org/functional-vs-non-functional-requirements/

[17] GeekforGeeks. "What is Database?" [online]. [quoted 2023-11-21].
Available from: https://www.geeksforgeeks.org/what-is-database/

[18] PostgreSQL. "What is PostgreSQL?" [online]. [quoted 2024-02-09].
Available from: https://www.postgresql.org/about/

90

https://www.oreilly.com/library/view/postgresql-up-and/9781491963401/
https://www.oreilly.com/library/view/postgresql-up-and/9781491963401/
https://www.oreilly.com/library/view/design-patterns-elements/0201633612/
https://www.oreilly.com/library/view/design-patterns-elements/0201633612/
https://george.csas.cz/
https://www.digital.pumb.ua/
https://next.privat24.ua/
https://www.rb.cz/en
https://industrialbank.ua/en/business
https://www.ibm.com/docs/en/rational-soft-arch/9.6.1?topic=diagrams-use-case
https://www.ibm.com/docs/en/rational-soft-arch/9.6.1?topic=diagrams-use-case
https://www.geeksforgeeks.org/functional-vs-non-functional-requirements/
https://www.geeksforgeeks.org/functional-vs-non-functional-requirements/
https://www.geeksforgeeks.org/what-is-database/
https://www.postgresql.org/about/

..................................... 15. Bibliography

[19] MySQL. "What is MySQL?" [online]. [quoted 2024-02-15].
Available from: https://www.oracle.com/mysql/what-is-mysql/
#mysql-benefits

[20] GeekforGeeks. "Disadvantages of using MySQL" [online].
[quoted 2024-02-22]. Available from:
https://www.geeksforgeeks.org/disadvantages-of-using-mysql/

[21] Margaret Rouse. Technopedia. "Oracle Database" [online]. [quoted 2024-
02-23]. Available from: https://www.techopedia.com/definition/
8711/oracle-database

[22] Alexander S. Gillis, Bridget Botelho. TechTarget. "What is Mon-
goDB?" [online]. [quoted 2024-02-24]. Available from: https://www.
techtarget.com/searchdatamanagement/definition/MongoDB

[23] GeekforGeeks. "MongoDB advantages and disadvantages" [online]. [quoted
2024-02-25]. Available from:
https://www.geeksforgeeks.org/mongodb-advantages-disadvantages/

[24] Java. "What is Java?" [online]. [quoted 2024-05-12]. Available from:
https://www.java.com/en/download/help/whatis_java.html

[25] Wikipedia. "Kotlin programming language" [online]. [quoted 2024-
03-24]. Available from: https://en.wikipedia.org/wiki/Kotlin_
(programming_language)

[26] Kolade Chris. freeCodeCamp. "What is PHP?" [online]. [quoted
2024-03-03]. Available from: https://www.freecodecamp.org/news/
what-is-php-the-php-programming-language-meaning-explained/

[27] Wikipedia. "Python programming language" [online]. [quoted 2024-
03-03]. Available from: https://en.wikipedia.org/wiki/Python_
(programming_language)

[28] Python.org. "What is Python? Executive Summary" [online]. [quoted
2024-03-03]. Available from: https://www.python.org/doc/essays/
blurb/

91

https://www.oracle.com/mysql/what-is-mysql/#mysql-benefits
https://www.oracle.com/mysql/what-is-mysql/#mysql-benefits
https://www.geeksforgeeks.org/disadvantages-of-using-mysql/
https://www.techopedia.com/definition/8711/oracle-database
https://www.techopedia.com/definition/8711/oracle-database
https://www.techtarget.com/searchdatamanagement/definition/MongoDB
https://www.techtarget.com/searchdatamanagement/definition/MongoDB
https://www.geeksforgeeks.org/mongodb-advantages-disadvantages/
https://www.java.com/en/download/help/whatis_java.html
https://en.wikipedia.org/wiki/Kotlin_(programming_language)
https://en.wikipedia.org/wiki/Kotlin_(programming_language)
https://www.freecodecamp.org/news/what-is-php-the-php-programming-language-meaning-explained/
https://www.freecodecamp.org/news/what-is-php-the-php-programming-language-meaning-explained/
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Python_(programming_language)
https://www.python.org/doc/essays/blurb/
https://www.python.org/doc/essays/blurb/

15. Bibliography
[29] Microsoft. "Microservices architecture design" [online]. [quoted 2024-

03-05]. Available from: https://learn.microsoft.com/en-us/azure/
architecture/microservices/

[30] Chandler Harris. Atlassian. "Microservices vs. monolithic architecture"
[online]. [quoted 2024-03-05]. Available from: https://www.atlassian.
com/microservices/microservices-architecture/microservices-vs-monolith

[31] ZenTao. ZenTao Blog. "Monolithic Architecture" [online].
[quoted 2024-03-04]. Available from: https://www.zentao.pm/blog/
where-cloud-native-comes-from-and-where-its-going-1104.html

[32] IBM. "Deployment diagrams" [online]. [quoted 2024-03-04]. Avail-
able from: https://www.ibm.com/docs/en/rational-soft-arch/9.7.
0?topic=diagrams-deployment

[33] Sato Kenta. Dev. "The Simplicity of Basic Authentication" [online].
[quoted 2024-03-06]. Available from:
https://dev.to/satokenta/understanding-the-benefits-of-oauth-over-
basic-authentication-36lj

[34] Ayush Shrivastava. LinkedIn. "Spring Boot Security Implementation
With Basic Auth" [online]. [quoted 2024-04-04].
Available from: https://www.linkedin.com/pulse/spring-boot
-security-implementation-basic-auth-ayush-shrivastava-plr6c/

[35] Javatpoint. "Hibernate Tutorial" [online]. [quoted 2024-04-05]. Available
from: https://www.javatpoint.com/hibernate-tutorial

[36] Javatpoint. "JPA Introduction" [online]. [quoted 2024-04-05]. Available
from: https://www.javatpoint.com/jpa-introduction

[37] GeekforGeeks. "Apache Maven" [online]. [quoted 2024-04-05]. Available
from: https://www.geeksforgeeks.org/apache-maven/

[38] AYR Tech (Pty) Ltd. "ExchangeRate-API" [online]. [quoted 2024-05-03].
Available from: https://app.exchangerate-api.com/

92

https://learn.microsoft.com/en-us/azure/architecture/microservices/
https://learn.microsoft.com/en-us/azure/architecture/microservices/
https://www.atlassian.com/microservices/microservices-architecture/microservices-vs-monolith
https://www.atlassian.com/microservices/microservices-architecture/microservices-vs-monolith
https://www.zentao.pm/blog/where-cloud-native-comes-from-and-where-its-going-1104.html
https://www.zentao.pm/blog/where-cloud-native-comes-from-and-where-its-going-1104.html
https://www.ibm.com/docs/en/rational-soft-arch/9.7.0?topic=diagrams-deployment
https://www.ibm.com/docs/en/rational-soft-arch/9.7.0?topic=diagrams-deployment
https://www.linkedin.com/pulse/spring-boot-security-implementation-basic-auth-ayush-shrivastava-plr6c/
https://www.linkedin.com/pulse/spring-boot-security-implementation-basic-auth-ayush-shrivastava-plr6c/
https://www.javatpoint.com/hibernate-tutorial
https://www.javatpoint.com/jpa-introduction
https://www.geeksforgeeks.org/apache-maven/
https://app.exchangerate-api.com/

..................................... 15. Bibliography

[39] Alejandro Matos. "REST Countries" [online]. [quoted 2024-05-03].
Available from: https://restcountries.com/

[40] Red Hat. "What is Apache Kafka?" [online]. [quoted 2024-04-13].
Available from: https://www.redhat.com/en/topics/integration/
what-is-apache-kafka

[41] Baeldung. "Guide to Hazelcast with Java" [online]. [quoted 2024-04-15].
Available from: https://www.baeldung.com/java-hazelcast

[42] Alexander S. Gillis. Techtarget. "What is Docker Image?" [online].
[quoted 2024-04-17]. Available from: https://www.techtarget.com/
searchitoperations/definition/Docker-image

[43] JetBrains. "IntelliJ IDEA" [online]. [quoted 2024-04-19]. Available from:
https://www.jetbrains.com/idea/

[44] Postdot Technologies. "Postman" [online]. [quoted 2024-04-19]. Available
from: https://www.postman.com/

[45] "Docker" [online]. [quoted 2024-04-19]. Available from: https://www.
docker.com/

[46] GeekforGeeks. "Introduction to Semantic Versioning" [online]. [quoted
2024-04-20]. Available from:
https://www.geeksforgeeks.org/introduction-semantic-versioning/

[47] Tutorialspoint. "JUnit Overview" [online]. [quoted 2024-04-25]. Available
from: https://www.tutorialspoint.com/junit/junit_overview.htm

[48] Skillcombo. Medium. "The Difference Between JUnit and Mockito"
[online]. [quoted 2024-04-25].
Available from: https://medium.com/@skillcombo/the-difference-between-
junit-and-mockito-detailed-comparison-f5b86e062a25

[49] Dmytro Rastvorov. YouTube. "MPBA - video demonstration" [online].
[quoted 2024-05-05]. Available from: https://youtu.be/Q0lxQ8F4bYs

93

https://restcountries.com/
https://www.redhat.com/en/topics/integration/what-is-apache-kafka
https://www.redhat.com/en/topics/integration/what-is-apache-kafka
https://www.baeldung.com/java-hazelcast
https://www.techtarget.com/searchitoperations/definition/Docker-image
https://www.techtarget.com/searchitoperations/definition/Docker-image
https://www.jetbrains.com/idea/
https://www.postman.com/
https://www.docker.com/
https://www.docker.com/
https://www.geeksforgeeks.org/introduction-semantic-versioning/
https://www.tutorialspoint.com/junit/junit_overview.htm
https://medium.com/@skillcombo/the-difference-between-junit-and-mockito-detailed-comparison-f5b86e062a25
https://medium.com/@skillcombo/the-difference-between-junit-and-mockito-detailed-comparison-f5b86e062a25
https://youtu.be/Q0lxQ8F4bYs

	Introduction
	Motivation
	Goal

	Overview of existing solutions
	Česká Spořitelna
	Digital Pumb
	Privat24
	Raffeisenbank
	Industrial bank
	Conclusion

	Business Analysis
	Target audience
	Roles
	User
	Anonymous user
	Moderator
	Administrator

	Use-Case diagram
	Conclusion

	Functional and nonfunctional requirements
	Functional requirements
	Nonfunctional requirements

	Conclusion

	Software Analysis
	Database
	PostgreSQL
	MySQL
	Oracle Database
	MongoDB
	Comparison of databases

	Backend
	Java
	Kotlin
	PHP
	Python
	Comparison of languages

	Conclusion

	Proposal
	Architecture
	Microservice architecture
	Monolithic architecture
	Deployment diagram
	UML Diagram
	Server side
	Security
	Database
	Hibernate
	JPA
	Maven
	REST API

	Used Third-party API’s
	Currency API
	Country API

	Apache Kafka
	Hazelcast
	Docker Image
	Conclusion

	Implementation
	Application implementation
	Spring Boot
	Application structure

	Conclusion

	Development environment
	IntelliJ IDEA Ultimate
	Postman
	Docker
	Conclusion

	Versioning
	GitHub
	Conclusion

	Application description
	Registration
	Log in
	Adding User photo
	Currency data
	Card creation and management
	Opening loan and Repayment
	Opening a deposit
	Transfer to user account
	Sending messages
	Conclusion

	Testing
	Server-side testing
	JUnit
	Mockito
	Bank vs Application
	Conclusion

	Next steps
	Conclusion
	List of used abbreviations
	Bibliography

